909 research outputs found

    A statistical reduced-reference method for color image quality assessment

    Full text link
    Although color is a fundamental feature of human visual perception, it has been largely unexplored in the reduced-reference (RR) image quality assessment (IQA) schemes. In this paper, we propose a natural scene statistic (NSS) method, which efficiently uses this information. It is based on the statistical deviation between the steerable pyramid coefficients of the reference color image and the degraded one. We propose and analyze the multivariate generalized Gaussian distribution (MGGD) to model the underlying statistics. In order to quantify the degradation, we develop and evaluate two measures based respectively on the Geodesic distance between two MGGDs and on the closed-form of the Kullback Leibler divergence. We performed an extensive evaluation of both metrics in various color spaces (RGB, HSV, CIELAB and YCrCb) using the TID 2008 benchmark and the FRTV Phase I validation process. Experimental results demonstrate the effectiveness of the proposed framework to achieve a good consistency with human visual perception. Furthermore, the best configuration is obtained with CIELAB color space associated to KLD deviation measure

    The space complexity of inner product filters

    Get PDF
    Motivated by the problem of filtering candidate pairs in inner product similarity joins we study the following inner product estimation problem: Given parameters d∈Nd\in {\bf N}, α>ÎČ≄0\alpha>\beta\geq 0 and unit vectors x,y∈Rdx,y\in {\bf R}^{d} consider the task of distinguishing between the cases ⟹x,y⟩≀ÎČ\langle x, y\rangle\leq\beta and ⟹x,y⟩≄α\langle x, y\rangle\geq \alpha where ⟹x,y⟩=∑i=1dxiyi\langle x, y\rangle = \sum_{i=1}^d x_i y_i is the inner product of vectors xx and yy. The goal is to distinguish these cases based on information on each vector encoded independently in a bit string of the shortest length possible. In contrast to much work on compressing vectors using randomized dimensionality reduction, we seek to solve the problem deterministically, with no probability of error. Inner product estimation can be solved in general via estimating ⟹x,y⟩\langle x, y\rangle with an additive error bounded by Δ=α−ÎČ\varepsilon = \alpha - \beta. We show that dlog⁥2(1−ÎČΔ)±Θ(d)d \log_2 \left(\tfrac{\sqrt{1-\beta}}{\varepsilon}\right) \pm \Theta(d) bits of information about each vector is necessary and sufficient. Our upper bound is constructive and improves a known upper bound of dlog⁥2(1/Δ)+O(d)d \log_2(1/\varepsilon) + O(d) by up to a factor of 2 when ÎČ\beta is close to 11. The lower bound holds even in a stronger model where one of the vectors is known exactly, and an arbitrary estimation function is allowed.Comment: To appear at ICDT 202

    Strategies for Searching Video Content with Text Queries or Video Examples

    Full text link
    The large number of user-generated videos uploaded on to the Internet everyday has led to many commercial video search engines, which mainly rely on text metadata for search. However, metadata is often lacking for user-generated videos, thus these videos are unsearchable by current search engines. Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity problem by directly analyzing the visual and audio streams of each video. CBVR encompasses multiple research topics, including low-level feature design, feature fusion, semantic detector training and video search/reranking. We present novel strategies in these topics to enhance CBVR in both accuracy and speed under different query inputs, including pure textual queries and query by video examples. Our proposed strategies have been incorporated into our submission for the TRECVID 2014 Multimedia Event Detection evaluation, where our system outperformed other submissions in both text queries and video example queries, thus demonstrating the effectiveness of our proposed approaches

    Orientation covariant aggregation of local descriptors with embeddings

    Get PDF
    Image search systems based on local descriptors typically achieve orientation invariance by aligning the patches on their dominant orientations. Albeit successful, this choice introduces too much invariance because it does not guarantee that the patches are rotated consistently. This paper introduces an aggregation strategy of local descriptors that achieves this covariance property by jointly encoding the angle in the aggregation stage in a continuous manner. It is combined with an efficient monomial embedding to provide a codebook-free method to aggregate local descriptors into a single vector representation. Our strategy is also compatible and employed with several popular encoding methods, in particular bag-of-words, VLAD and the Fisher vector. Our geometric-aware aggregation strategy is effective for image search, as shown by experiments performed on standard benchmarks for image and particular object retrieval, namely Holidays and Oxford buildings.Comment: European Conference on Computer Vision (2014

    Compact Bilinear Pooling

    Full text link
    Bilinear models has been shown to achieve impressive performance on a wide range of visual tasks, such as semantic segmentation, fine grained recognition and face recognition. However, bilinear features are high dimensional, typically on the order of hundreds of thousands to a few million, which makes them impractical for subsequent analysis. We propose two compact bilinear representations with the same discriminative power as the full bilinear representation but with only a few thousand dimensions. Our compact representations allow back-propagation of classification errors enabling an end-to-end optimization of the visual recognition system. The compact bilinear representations are derived through a novel kernelized analysis of bilinear pooling which provide insights into the discriminative power of bilinear pooling, and a platform for further research in compact pooling methods. Experimentation illustrate the utility of the proposed representations for image classification and few-shot learning across several datasets.Comment: Camera ready version for CVP

    Efficient Vector Quantization for Fast Approximate Nearest Neighbor Search

    Get PDF
    Increasing sizes of databases and data stores mean that the traditional tasks, such as locating a nearest neighbor for a given data point, become too complex for classical solutions to handle. Exact solutions have been shown to scale poorly with dimensionality of the data. Approximate nearest neighbor search (ANN) is a practical compromise between accuracy and performance; it is widely applicable and is a subject of much research. Amongst a number of ANN approaches suggested in the recent years, the ones based on vector quantization stand out, achieving state-of-the-art results. Product quantization (PQ) decomposes vectors into subspaces for separate processing, allowing for fast lookup-based distance calculations. Additive quantization (AQ) drops most of PQ constraints, currently providing the best search accuracy on image descriptor datasets, but at a higher computational cost. This thesis work aims to reduce the complexity of AQ by changing a single most expensive step in the process – that of vector encoding. Both the outstanding search performance and high costs of AQ come from its generality, therefore by imposing some novel external constraints it is possible to achieve a better compromise: reduce complexity while retaining the accuracy advantage over other ANN methods. We propose a new encoding method for AQ – pyramid encoding. It requires significantly less calculations compared to the original “beam search” encoding, at the cost of an increased greediness of the optimization procedure. As its performance depends heavily on the initialization, the problem of choosing a starting point is also discussed. The results achieved by applying the proposed method are compared with the current state-of-the-art on two widely used benchmark datasets – GIST1M and SIFT1M, both generated from a real-world image data and therefore closely modeling practical applications. AQ with pyramid encoding, in addition to its computational benefits, is shown to achieve similar or better search performance than competing methods. However, its current advantages seem to be limited to data of a certain internal structure. Further analysis of this drawback provides us with the directions of possible future work
    • 

    corecore