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ABSTRACT 
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Tampere University of Technology 
Master of Science Thesis, 49 pages, 0 Appendix pages 
June 2016 
Master’s Degree Programme in Information Technology 
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Increasing sizes of databases and data stores mean that the traditional tasks, such as lo-

cating a nearest neighbor for a given data point, become too complex for classical solu-

tions to handle. Exact solutions have been shown to scale poorly with dimensionality of 

the data. Approximate nearest neighbor search (ANN) is a practical compromise be-

tween accuracy and performance; it is widely applicable and is a subject of much re-

search. 

Amongst a number of ANN approaches suggested in the recent years, the ones based on 

vector quantization stand out, achieving state-of-the-art results. Product quantization 

(PQ) decomposes vectors into subspaces for separate processing, allowing for fast 

lookup-based distance calculations. Additive quantization (AQ) drops most of PQ con-

straints, currently providing the best search accuracy on image descriptor datasets, but at 

a higher computational cost. This thesis work aims to reduce the complexity of AQ by 

changing a single most expensive step in the process – that of vector encoding. Both the 

outstanding search performance and high costs of AQ come from its generality, there-

fore by imposing some novel external constraints it is possible to achieve a better com-

promise: reduce complexity while retaining the accuracy advantage over other ANN 

methods.  

We propose a new encoding method for AQ – pyramid encoding. It requires significant-

ly less calculations compared to the original “beam search” encoding, at the cost of an 

increased greediness of the optimization procedure. As its performance depends heavily 

on the initialization, the problem of choosing a starting point is also discussed. The re-

sults achieved by applying the proposed method are compared with the current state-of-

the-art on two widely used benchmark datasets – GIST1M and SIFT1M, both generated 

from a real-world image data and therefore closely modeling practical applications. AQ 

with pyramid encoding, in addition to its computational benefits, is shown to achieve 

similar or better search performance than competing methods. However, its current ad-

vantages seem to be limited to data of a certain internal structure. Further analysis of 

this drawback provides us with the directions of possible future work. 
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1. INTRODUCTION 

The nearest neighbor (NN) search, or the problem of matching the given object to the 

most similar one from the given group, is extremely common; it is not only specific to 

science or engineering, but permeates the everyday life in many forms, such as recogni-

tion. Its technical definition can vary based on the nature of the objects and how their 

similarity is established. The latter is usually defined as a function, providing a numeric 

output value. The objects of search are commonly vectors, allowing for a variety of sim-

ilarity measures to be used, both metric and nonmetric. 

While the search problem is trivial when the number of objects to consider is small, the 

advances in computer science and technology lead to a consistent growth of data sizes. 

For this reason the data structures allowing efficient search were extensively studied 

since 1970s [1]. Branch-and-bound approach in particular resulted in numerous types of 

search trees, allowing for queries to be of logarithmic complexity with respect to data 

size [2]. Space partitioning would remain dominant for decades thereafter. 

The emergence of Big Data has led to reconsideration of many previously established 

solutions [3][4]. This new environment presents a number of challenges, one of which is 

the sheer volume of the databases. Traditional algorithms and methods commonly be-

come computationally infeasible in such scenarios, sometimes to the point of complete 

inapplicability. The nearest neighbor search techniques were no exception from this; 

many well-established data structures were found to lose their advantages completely in 

higher-dimensional spaces, becoming inferior to exhaustive calculations [5]. 

Many current practical applications involving the search do not require perfectly accu-

rate results. For instance, when information retrieval is performed, the returned docu-

ments or images are often deemed acceptable if they are relevant; the exact definition of 

relevance varies on case by case basis, but can generally be taken to mean “similar 

enough to the perfect outcome”. This factor, combined with previously mentioned com-

putational costs issue, leads to the notion of the approximate nearest neighbor (ANN) 

search, which has been the focus of much recent research. 

The focus of approximate search techniques is as much on accuracy as it is on scalabil-

ity and low costs, both in computation and in memory use. Removing the requirement 

for an exact solution allows for a considerable complexity reduction, making the ap-

proximate search preferable in many practical scenarios. Some of the current large-scale 

applications include: 
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 information and content-based retrieval (e.g. VisualRank, as used in Google Im-

age Search) [6][7]; 

 large-scale cluster analysis, as many common algorithms (e.g. k-means, hierar-

chical clustering) require NN search as an intermediate step [8]; 

 computer vision [9]; 

 recommendation systems [10]; 

 pattern recognition and classification [11][12][13]. 

Locality sensitive hashing (LSH) introduced a breakthrough in ANN search algorithms, 

leading to an emergence of the large family of hashing-based techniques [14]. All of 

these produce binary codes from the data, and Hamming distance between the codes is 

used as a substitute for the original similarity measure. The hash function is required to 

produce similar codes for similar data inputs, and vice versa. The exact choice of the 

hashing function naturally depends on the similarity measure used. Later algorithms 

attempted to learn suitable hash functions from the data itself, instead of just using the 

static formulations. Due to extensive research the properties of LSH and its derivatives 

are relatively well-understood. There is a wide variety of hash functions for many simi-

larity measures and use cases. Due to these factors and typically modest computational 

costs, hashing-based techniques have been widely applied in practice and still draw the 

academic attention [7][14][15]. 

The drawback of this family of methods is the relatively poor search accuracy. In addi-

tion to the imperfection of the hash functions and the locality criterion, the binary codes 

simply lack the representation power to preserve the original pairwise distances. While 

reducing (compressing) the data does provide the approximate search benefits, it could 

be more efficient, if the same similarity measure could be retained after the transfor-

mation. Under the assumption of Euclidean distance (which often holds in practice) the 

data can be compressed (quantized) with an algorithm known as vector quantization 

(VQ), which operates completely in the original space [16]. 

While ANN search can be performed with VQ, it is not a practical solution. VQ is sus-

ceptible to a “curse of dimensionality”, leading to exponential growth in calculations 

and memory requirements as the data grows in dimensions [17]. However, other tech-

niques that avoid the issue have been derived in recent years, resulting in a quantization-

based methods forming a family of their own [18]. These methods often enjoy a strong 

advantage over state-of-the-art hashing-based ANN solutions [18][19][20]. 

One example of such is additive quantization (AQ) [21]. It represents the original vec-

tors as sums of vectors chosen from a limited set, the contents of which are learned from 

the data. AQ has been shown to achieve state-of-the-art search performance, but at the 

cost of computational complexity, which limits its applicability in practice.  

Finding an accurate AQ representation for any given vector is called encoding and is 

known to be NP-hard, leading to the adoption of various heuristics, but even then it con-
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stitutes the majority of AQ computational costs. Any vector to be added to the database 

needs to be encoded; the learning of AQ also requires numerous runs of encoding. De-

veloping encoding algorithms that achieve the balance between complexity and accura-

cy is thus of major importance, as outlined by the AQ authors [21]. 

Several variants of AQ formulation have been proposed since, each taking a different 

approach to simplification of the encoding problem [22][23]. These approaches take 

form of additional constraints, resulting in some generality loss. As the representation 

becomes more limited, the search performance is decreased. However, the computation-

al gains from the simpler encoding result in more practical solutions. 

This thesis work aims to provide a novel encoding algorithm that does not rely on ex-

plicit constraints. Employing a previously unused heuristic, the goal is to achieve the 

compromise between the complexity and quality of encoding. 

1.1 Thesis outline 

The structure of the remainder of the thesis is described below. 

Chapter 2 provides the problem formulations for both exact and approximate nearest 

neighbor search. Rough outline of the most common exact solutions follows. Finally, a 

very large family of hashing-based methods for approximate is presented. These ap-

proaches have been extensively researched, received a wide variety of practical applica-

tions and remained dominant in performance until the emergence of vector quantization 

family. 

Chapter 3 presents the approximate search schemes based on vector quantization. Basic 

concepts common to many methods are presented first, followed by detailed descrip-

tions of two most influential solutions – product quantization (PQ) and additive quanti-

zation (AQ). Several derivative methods are also briefly covered. Complexity and 

memory requirement estimates are provided for all the operations (if possible).  

Chapter 4 explores the proposed encoding methods – pyramid encoding and residual 

pyramid encoding – from motivation to application and related costs. The influence and 

choice of initialization is discussed. 

Chapter 5 covers the experimental evaluation of the proposed methods against the ref-

erence results of other recent approaches. Complexities are compared, as well as practi-

cal performance on image descriptor datasets in terms of quantization error and preci-

sion. 

Chapter 6 contains the general conclusions about the work results. Further analysis of 

the proposed solutions is given, and several potential directions of future research are 

outlined. 
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2. NEAREST NEIGHBOR SEARCH 

2.1 Problem formulation 

Nearest neighbor (NN) search is a problem frequently encountered in many data-related 

fields and applications. It can be formalized as follows: Given 𝑁 database vectors 

𝑋 = {𝑥1, 𝑥2…𝑥𝑁} in 𝐷-dimensional space (search space), a query vector 𝑞 in the same 

space and a distance measure 𝑑𝑖𝑠𝑡(𝑥, 𝑦), find a vector 𝑁𝑁(𝑞) ∈ 𝑋, such that 𝑁𝑁 is the 

closest to 𝑞:  

    arg min ,
x X

NN q dist q x


  (1) 

The same formulation can be easily generalized to k-NN search, when, instead of a sin-

gle nearest neighbor, a specific number 𝑘 of vectors with smallest distances to 𝑞 is re-

turned. In this work only 1-NN search is considered, but all the methods and approaches 

listed can be trivially generalized to fit 𝑘 > 1 scenario. Given a list of distances to data-

base vectors, it is possible to utilize partial sorting techniques to retrieve k smallest val-

ues in 𝑂(𝑁 + 𝑘 log 𝑘), where 𝑘 log 𝑘 can be disregarded if 𝑘 is small enough [24].  

Distance function in the above expression can be arbitrary, but while it is enough to use 

only a dissimilarity matrix, many methods make assumptions on specific distance types, 

relying on them for theoretical derivations or utilizing their properties for better perfor-

mance. Euclidean distance is one of the most commonly used and well-researched dis-

tance metrics. For two 𝐷-dimensional vectors it is defined as follows: 

 𝑑𝑖𝑠𝑡𝐸𝑈(𝑥, 𝑦) = √∑ (𝑥𝑑 − 𝑦𝑑)2
𝐷
𝑑=1  (2) 

As the square root is a monotonously increasing function, its application does not 

change the comparison results between two non-negative values. Therefore, for neigh-

bor search purposes, squared Euclidean distance is equivalent in practice, while saving 

some computation. Unless explicitly stated otherwise, any mention of a distance meas-

ure made within this work refers specifically to the squared Euclidean distance.  

In many modern applications the exact nearest neighbor search is not practical [25]. 

This is mainly driven by the computational considerations, as many traditional search 

methods fail on data of sufficiently high dimensionality (see Section 2.2). Additionally, 

when performing a relevance search (information retrieval) in large databases (e.g. web 

search, document or image repositories) the exact solution is not strictly necessary, and 

any result which is sufficiently similar may be deemed acceptable. In these cases an 
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approximate nearest neighbor (ANN) search may be more suitable, giving up the exact-

ness of the original NN problem to enable faster computation. Several ANN formula-

tions exist; the most common one is (1 + 𝜀)-approximate NN search. It requires finding 

a vector �̃� such that 

 𝑑𝑖𝑠𝑡(𝑞, �̃�) ≤ (1 + 𝜀)𝑑𝑖𝑠𝑡(𝑞, 𝑥𝑇) (3) 

where 𝑥𝑇 is the true nearest neighbor and 𝜀 is a small positive real value. In other 

words, the distance from the query to �̃� should be no larger than the distance to the true 

nearest neighbor, scaled up by the factor of 1 + 𝜀.  

Because of non-exact nature of the ANN, the performance measure is required to assess 

how close the results are to the “ground truth”. One commonly used measure is re-

call@T, which is the probability that a true nearest neighbor is found within top T 

search results returned by a given method. The recall is typically estimated at pre-

specified cutoff points (e.g. T = 1, 10, 100) of the approximate ranking. Alternatively, a 

recall curve (with T on the horizontal axis) is plotted to provide a visual representation 

of the method performance over many possible cutoff points.  

2.2 Exact solutions 

The straightforward solution of the exact NN problem is a so-called linear search. All 

the distances between 𝑞 and the database vectors are calculated, while the lowest value 

calculated so far is retained. Since all the database vectors need to be considered, as-

suming that the distance function is linear in data dimensionality 𝐷, the linear search 

complexity is 𝑂(𝑁𝐷). While acceptable for small datasets, the costs become prohibitive 

in many modern problems, specifically in Big Data environments. 

Branch and bound approach has commonly been applied to a variety of optimization 

problems [2]. It reduces the total number of evaluated solutions by decomposing the 

search space in a manner such that the whole regions can be discarded at once. Search 

trees implement branch and bound paradigm for fast data searching and retrieval [1]. 

Numerous variants of trees have been proposed since, all of them sharing a single very 

desirable property – 𝑂(log𝑁) complexity of search operations. 

k-d tree is a classic search tree designed for multidimensional case [26]. It allows for 

both range searches and nearest neighbor queries, featuring logarithmic average com-

plexity of insertions, deletions and retrievals (worst case is linear). The tree is construct-

ed by recursively splitting the data space along dimensions; splitting points can be mean 

or median values of corresponding vector components. Nearest neighbors can then be 

retrieved by a procedure similar to depth-first search: the first leaf node reached is taken 

as a current best, and then other subspaces that can potentially contain closer points are 

inspected. Figure 1 shows the example of 2-d tree.  
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Figure 1.  Example of k-d tree for 2-dimensional data.
 1

 

The approach taken by k-d trees to split the search space has significant drawbacks. 

Recursive partitioning leads to exponentially growing number of regions as dimension-

ality increases. The splitting points may be expensive to compute for large data sizes, 

and random sampling, which was introduced to mitigate this drawback, may result in 

suboptimal partitions. The k-d tree often fails to take advantage of possible internal data 

regularity, instead creating “dead” regions (containing no database points). 

In an attempt to improve upon the k-d tree, many variants and modifications of it 

emerged over the years. Balltrees [27] represent a set hyperspheres instead of dimen-

sional splits; these hyperspheres are not required to cover the data space completely and 

also allow regions to intersect or include each other. Vantage point tree (vp-tree) [28] 

further generalizes the problem to any metric space (instead of original Euclidean), per-

forming splits based on similarity to a number of well-chosen vantage points. Figure 2 

shows the k-d tree structure in comparison with vp-tree. 

No matter what particular tree structure is used, some of their theoretical limitations 

cannot be overcome. Specifically, trees are not viable for high-dimensional data 

(𝐷 > 10). It has been demonstrated that in such scenarios they are reduced to exhaus-

tive search with an additional overhead of maintaining the tree [5]. Query time therefore 

grows exponentially with dimensions; it is possible to make it polynomial, but only at 

the cost of making the preprocessing phase exponential instead [29]. Unfortunately, that 

makes trees unsuitable for many current applications; for example, the number of fea-

tures in image or document retrieval easily reaches hundreds or thousands [30]. This 

shortcoming has become a large driving factor behind the recent large-scale research 

into approximate nearest neighbor techniques. 

                                                 
1
 Source: http://algoviz.org/OpenDSA/Books/Everything/html/KDtree.html 
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Figure 2. k-d tree space decomposition (left) and vp-tree decomposition (right). [28] 

2.3 Hashing-based approximate search 

In the context of ANN search, a hash function maps the original data space to another, 

significantly more limited space of hash codes [14]. The search problem becomes sig-

nificantly easier to solve in the hash code space, allowing for a major computational 

gain. The approximate nature of the search stems from the imperfection of the hash 

function, as well as the inherent limitations of the new space. 

Locality sensitive hashing (LSH) [25] is a family of hashing methods sharing the same 

design goal – similar items should be mapped to the same hash code (“bucket”) with a 

high probability, while dissimilar items should be placed in different buckets. Naturally, 

if this requirement is to be fulfilled, different hash functions are required for different 

similarity measures. Constructing distance-specific hash functions with theoretically 

guaranteed bounds of performance is an ongoing topic of extensive research.  Numerous 

solutions have been proposed in the recent years, presenting LSH function families for 

distances such as 𝐿𝑝 (including e.g. Euclidean and Manhattan), cosine, Hamming, 𝜒2, as 

well as rank similarity, Jaccard coefficient for sets and general non-metric distances 

[14]. 

LSH family methods require the entire database to be hashed and stored in a code table. 

Then fast ANN search can be performed by hashing the query, locating the correspond-

ing bucket and retrieving its contents (database vectors sharing the same code) for a 

linear search. LSH thus does not reduce the costs of a distance computation, but instead 

makes the search non-exhaustive, effectively performing randomized space partitioning 

not unlike the previously considered tree structures. 

Figure 3 visually illustrates the concept. The red circle denotes the query, the hash code 

of which is “0110”. Only those database vectors that share the same code will be re-
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trieved for distance computation and comparison. The approximate nature of the repre-

sentation is also apparent from the figure, as the immediate neighborhood of the query 

was not hashed into the same bucket, leading to loss of search accuracy. 

 

Figure 3. Visual example of locality sensitive hashing.
2
 

To improve the search performance, it is common to use several hash functions simul-

taneously [14]. For storage purposes the resulting codes are concatenated into a single 

vector, but during the retrieval the query is independently hashed with each function, 

and every corresponding bucket contributes its contents. The number of vectors for dis-

tance calculation thus increases, but so does the accuracy.  

One of the common LSH schemes for Euclidean distance is based on so-called 2-stable 

distributions [31]. An example of such a distribution is a Gaussian. The hash function is 

then given as 

 ℎ(𝑥) = ⌊
𝑤𝑇𝑥+𝑏

𝑟
⌋, (4) 

where 𝑥 is a 𝐷-dimensional database vector, 𝑤 is a random 𝐷-dimensional vector sam-

pled from the Gaussian distribution of zero mean and unit variance, 𝑟 is a positive real 

number and 𝑏 is an offset value, randomly chosen from a range [0, 𝑟]. The database 

vector is thus mapped to a single value via random projection and shifting. 

Hash functions in the LSH family of methods are completely data-independent, making 

applications easier, but sacrificing performance. To alleviate this, several learning-to-

hash approaches have been proposed [14]. They aim to derive and/or tune an efficient 

hash function from the specific data with respect to some optimization criterion, not 

unlike the training phase of machine learning models. A common secondary criterion is 

the maximization of the coding efficiency by maintaining bit balance and bit independ-

ence. Bit balance implies that for each code bit the values 0 and 1 are approximately 

equally probable. Bit independence is hard to attain and is in practice relaxed to decor-

                                                 
2
 Source: http://ttic.uchicago.edu/~gregory/pose/psh.html 
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relation; the purpose of both is minimizing the code redundancy. Together these re-

quirements allow for the shortest codes possible given a particular data. 

One influential example of an early data-specific hashing algorithm is spectral hashing 

[32], which presents the similarities in a graph form and then infers binary codes as the 

balanced partitioning of the graph. Since the problem is NP-hard, it is solved approxi-

mately by eigen-analysis of the graph Laplacian. To generalize the solution to the data 

not used for training, it is assumed that the input vectors are generated by the uniform 

distribution. Since this assumption is usually violated in practice, the performance of 

spectral hashing is degraded; the algorithm, however, provides important theoretical 

insights and has inspired many learning-to-hash approaches since. 

    

Figure 4.  ITQ on preprocessed normalized data. [33] 

Iterative quantization (ITQ) [33] is an efficient learning-to-hash algorithm, which as-

signs every database vector to a closest (in Euclidean terms) vertex of an 𝑀-

dimensional hypercube (𝑀 ≤ 𝐷). Every vertex can then be uniquely indexed by 𝑀 bits, 

resulting in binary hash codes. First the data dimensionality is reduced to 𝑀 via princi-

pal component analysis (PCA). Then, to improve the hashing, rotation is applied to the 

preprocessed data, for the purpose of balancing the variances along each principal direc-

tion. This corresponds to previously described bit balance requirement. Even the ran-

dom rotation improves the hashing, but ITQ instead opts for an optimized rotation, giv-

en the PCA-aligned data. This transformation is found by minimizing the Euclidean 

distance between each database vector and the hypercube vertex it is assigned to. The 

example can be seen on Figure 4. If no rotation is applied (Figure 4a), similar data 

points (contained in the same cluster) will be assigned to different hypercube vertices, 

resulting in different hash codes. Random rotation (Figure 4b) provides an improve-

ment, but optimized rotation (Figure 4c) attains the best solution. 

ITQ, as its name implies, is learned by an iterative procedure, alternating between as-

signment of data points to vertices and optimizing the rotation. These two steps are re-

peated until no further changes in hash codes occur. 
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3. VECTOR QUANTIZATION FOR APPROXIMATE 

SEARCH 

3.1 General concepts 

Vector quantization (VQ) [16] is a technique that represents a given set of 𝑁 𝐷-

dimensional vectors with another set of 𝐾 centroids of the same dimensionality 

(𝐾 < 𝑁). The set of centroids 𝐶 is called a codebook, while centroids themselves are 

alternatively called codevectors. Each vector from the original set is represented by one 

and only one codevector. Needless to say, VQ representation of the data is lossy. The 

quantization loss is typically measured by mean squared error (MSE) between the data 

vectors and their reproductions: 

 𝐸 =
1

𝑁
∑ ‖𝑞(𝑥) − 𝑥‖2

2𝑁
𝑖=1 , (5) 

where 𝑥 is the data vector and 𝑞(𝑥) is the corresponding codevector. 

Any optimal (having minimal quantization loss) VQ quantizer is subject to two neces-

sary optimality conditions, known as Lloyd conditions [17]. First condition states that 

each vector must be assigned to a centroid which is the closest in Euclidean distance 

terms: 

  
2

2
ar .g min

i
i

c C
q x c x


   (6) 

Second condition limits the position of each centroid to the mean value of all the vectors 

it represents: 

 𝑐𝑖 =
1

𝑛𝑖
∑ 𝑥𝑗
𝑛𝑖
𝑗=1 , 𝑠. 𝑡.  𝑞(𝑥𝑗) = 𝑐𝑖 (7) 

These conditions are greatly reminiscent of well-known k-means clustering. Indeed, a 

common way to construct a vector quantizer is with a Lloyd’s algorithm: 

1. Randomly initialize centroid positions. 

2. Repeat for a predetermined number of iterations: 

a. Assign every data vector to the nearest centroid (6). 

b. Replace every centroid with the mean of vectors assigned to it (7). 
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The total computational complexity of Lloyd’s algorithm is 𝑂(𝐿𝑁𝐾𝐷), where 𝐿 is the 

number of iterations. While Lloyd’s algorithm is intuitive, simple and widely used, it 

only converges to a locally optimal solution. The results may vary wildly with different 

initializations, and some starting points may lead to very poor representations. 

A set of vectors assigned to a particular centroid is known as Voronoi cell or just a cell. 

Any vector quantizer therefore defines a space partitioning – a Voronoi tessellation, 

with each cell defining a separate subspace. An example of such is shown on Figure 5. 

 

Figure 5.  An example of a vector quantizer and corresponding Voronoi tesselation.
3
 

Evidently, the Voronoi tessellation can be used as a foundation for non-exhaustive dis-

tance calculation. One strong advantage of such an approach, when compared to hash-

ing, would be the fact that the original data space is preserved, and the Euclidean dis-

tances remain meaningful instead of being approximated with Hamming distances. Bet-

ter preservation of pairwise vector dissimilarities, in turn, leads to better search perfor-

mance. 

Since vector quantization does not change the distance function, there are two possible 

approaches to the nearest neighbor search [18]. If symmetric distance computation 

(SDC) is used, the query vector is quantized to the nearest centroid, and then the dis-

tances from that centroid to all the others are estimated. In case of asymmetric distance 

computation (ADC), the distances between the query and all the centroids are calculated 

directly. Both scenarios are shown on Figure 6. 

                                                 
3
 Source: http://www.mqasem.net/vectorquantization/vq.html 
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Figure 6. Distance computation with vector quantization: 

symmetric (left) and asymmetric (right). [18] 

Since centroid positions are always known in advance when the search is performed, it 

is possible to precompute all the pairwise distances between centroids and store them. 

This seemingly makes SDC very quick, but to quantize the query, one needs to calculate 

the distance from it to every centroid, which is the exact same process as in ADC. As a 

result, the differences in the calculation speed between the two are minimal. However, 

the quantization of the query vector introduces additional distortion. It is thus reasona-

ble to conclude that ADC is superior to SDC and should be preferred. In fact, availabil-

ity of ADC is a direct consequence of space preservation and can be considered an addi-

tional advantage of vector quantization over hashing-based approaches. 

Despite the aforementioned benefits, traditional vector quantization without any chang-

es is not a practical solution for approximate nearest neighbor search, as it too suffers 

from the “curse of dimensionality” [18][34]. If the number of codevectors (centroids) is 

𝐾, the code (index) of each database vector has a length of log2𝐾 bits. This is not near-

ly enough for discrimination; for example, if a vector of dimensionality 960 (e.g. global 

color GIST descriptor [35]) would be represented by a 960-bit code (1 bit per dimen-

sion), the corresponding vector quantizer would have to have 2960 centroids. Evidently, 

it is impossible to even store a codebook of that size in a computer memory, let alone 

applying any search operations on it. A different approach is necessary to take ad-

vantage of VQ properties. A number of such approaches have emerged, proceeding to 

outperform hashing-based techniques by a large margin [18][19][20]. 

3.2 Product quantization (PQ) 

Product quantization (PQ) [18] is one of the most important methods in the vector 

quantization family. To allow for more powerful representations with small number of 

codevectors, PQ splits the data space into 𝑀 subspaces, each of 𝐷 𝑀⁄  dimensions. Vec-

tor quantization (learned with Lloyd’s algorithm) is then separately applied on each 
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subspace, resulting in 𝑀 codebooks. Every database vector can be subsequently recon-

structed by concatenating 𝑀 corresponding codevectors. Assuming that each codebook 

has 𝐾 codevectors, the total number of possible representations is 𝐾𝑀. Any quantized 

database vector is stored as a sequence of 𝑀 codes, indexing into 𝐾 elements each, re-

sulting in a total code length of  𝑀 log2 𝐾 bits. The amount of memory required for 

codebook storage (in terms of scalar values) is 𝑀 ∙ 𝐾 ∙
𝐷

𝑀
= 𝐾𝐷, which is small in prac-

tice, as 𝐾 ≪ 𝑁. 

Figure 7 shows an example of a product quantizer applied to 128-dimensional vector. It 

is typical to use parameter values which are powers of 2, as indices are stored in a bina-

ry computer memory. In this case 𝑀 = 8 codebooks are used, and each 16-dimensional 

subspace is quantized to 𝐾 = 256  centroids (codevectors). A single subspace can then 

be indexed with an 8-bit (log2 256 = 8) code. The whole vector is subsequently stored 

as a concatenation of sixteen 8-bit codes for a total of 64 bits.  

 

Figure 7.  Product quantizer  for 128-dimensional vectors, 𝑀 = 4, 𝐾 = 256.
4
 

3.2.1 PQ distance estimation 

Being a vector quantization-based approach, PQ allows both symmetric and asymmetric 

distance estimation. The previous conclusion in regards to the superiority of ADC (see 

Chapter 3.1) applies here; its advantage in ANN search was also shown experimentally 

by the authors [18]. For this reason only ADC is considered for search purposes in the 

following section. 

Assume that the database vectors are quantized with codebooks  𝐶𝑖, 𝑖 = 1. .𝑀. If every 

codevector is padded with zeros to the original number of dimensions 𝐷, a reconstruc-

tion vector �̃� can be represented as a simple sum: �̃� = ∑ 𝑐𝑖
𝑀
𝑖 . Note that the padded 

codevectors are orthogonal to each other as long as they come from different code-

books. Then the squared Euclidean distance between �̃� and a query vector 𝑞 decompos-

es to the sum of distances over the individual subspaces: 

 ‖𝑞 − �̃�‖2
2 = ∑ ‖𝑞 − 𝑐𝑖‖2

2𝑀
𝑖 − (𝑀 − 1)‖𝑞‖2

2 (8) 

                                                 
4
 Source: http://lear.inrialpes.fr/pubs/2010/JDSP10/jegou_compactimagerepresentation_slides.pdf 
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The second component of (8) does not depend on �̃�; as a result, it does not affect the 

relative ranking between different database vectors and can be ignored during search, 

unless the estimated values of distances are required. Taking into account the codevec-

tor structure, the total number of operations required to compute (8) is 𝑂(𝑀 ∙
𝐷

𝑀
) =

𝑂(𝐷) – the same as if the distance was computed without quantization. The benefit of 

PQ is in the fact that the same set of codevectors is used to represent the whole original 

database. 

It is possible to compute pairwise distances between a given query vector and all the 

codevectors (from all codebooks), storing them into a table. This would require 

𝑀 ∙ 𝐾 ∙
𝐷

𝑀
= 𝐾𝐷 operations, taking subspaces into account. Then the value of ‖𝑞 − 𝑐𝑖‖2

2 

can be found in constant time via a table lookup, meaning that ‖𝑞 − �̃�‖2
2 can be calcu-

lated in 𝑀 lookups and 𝑀 summations. Estimating the distances from the given query to 

a quantized set of 𝑁 vectors would require 𝑂(𝐾𝐷 + 𝑁𝑀) total operations. This is sig-

nificantly smaller than the linear search of 𝑂(𝑁𝐷). Since the dimensionality and num-

ber of vectors are decoupled, product quantizer allows for much better scaling on both. 

One drawback of such an approach is the exhaustive nature of the search. When 𝑁 is 

very large, even the product quantizer costs may become excessive. Inverted indexing is 

one of the possible solutions for this problem [18]. Simple vector quantization is applied 

on the data, with a number of centroids 𝑘′ < 𝑁 ≪ 𝐾𝑀. The value of 𝑘′ typically ranges 

anywhere from 10
3
 to 10

6
. Then for each data point the residual is calculated between it 

and the centroid of its cell: 

 𝑟(𝑥) = 𝑥 − 𝑞(𝑥) (9) 

These residuals are subsequently quantized with PQ, and both representations are re-

tained. When the query is processed, the centroids of the coarse quantizer (VQ) are ex-

haustively searched first, requiring 𝑂(𝑘′𝐷) operations. When the nearest centroid is 

located, query residual is computed and the normal PQ distance estimation is per-

formed, but only in a single Voronoi cell, which contains some subset of the database. 

This allows for significant search speedup at the cost of additional memory require-

ments [18]. Although it’s possible to learn a separate product quantizer in each Voronoi 

cell, this would be prohibitive for large 𝑘′, meaning that a single set of PQ codebooks is 

used for all the residuals. Additional memory costs are thus 𝑂(𝑘′𝐷) to store the coarse 

quantizer and 𝑂(𝑁 log2 𝑘′) for all the corresponding indices. 

It is common in practice that the database vector and its true nearest neighbor would be 

assigned to the separate centroids of the coarse quantizer. This means that the procedure 

outlined above could not possibly locate the true neighbor, as it is not included in the 

data subset to be searched. To alleviate this, a multiple assignment strategy is proposed 

[18][36]. During the coarse quantization step, each database vector is assigned not to a 
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single closest centroid, but to 𝑤 nearest centroids. All of their contents are consequently 

retrieved for exhaustive searching. The PQ authors have concluded that inverse index-

ing with multiple assignment provides a major speedup for large databases and even 

improves the search performance in some cases [18].  

3.2.2 Learning the product quantizer 

To encode a data vector with PQ (given a set of codebooks), it is necessary to locate the 

closest centroid (in Euclidean terms). PQ centroids are generated by the Cartesian prod-

uct of the codebooks, so the total number of options is, as mentioned earlier, 𝐾𝑀. This is 

too large for an exhaustive search. Fortunately, subspace orthogonality can be exploited 

here, same as for the query distance estimation. The distance between a given vector 

and a PQ centroid decomposes into the sum of distances to codevectors within individu-

al subspaces, yielding the exact same result as (8). The nearest neighbor search in 𝐾𝑀 

vectors is thus replaced with 𝑀 nearest neighbor searches in 𝐾 vectors each; the indices 

of the located codevectors are then concatenated to obtain the result. Computational 

complexity of encoding a single vector becomes  𝑂 (𝑀 ∙ 𝐾 ∙
𝐷

𝑀
) = 𝑂(𝐾𝐷). It is im-

portant to note that encoding costs do not depend on the number of codebooks 𝑀. 

Before PQ can be applied on a dataset, it is necessary to obtain a good set of codebooks. 

Because the codebooks are data-specific, they need to be learned in a process known as 

training. Product quantization inherits its training scheme directly from vector quantiza-

tion, adapting a simple Lloyd algorithm for iterative adaptation. To save computation 

time, it is common to not use the whole data for training, opting instead for a repre-

sentative subset.  

As discussed earlier, Lloyd’s algorithm alternates between centroid assignment and cen-

troid adjustment. The former corresponds to encoding the training data, which was al-

ready described. The latter involves adapting the codebooks to minimize the quantiza-

tion error, given a particular encoding of the data. As PQ is equivalent to VQ in each 

individual subspace, optimal codevectors are generated by averaging their correspond-

ing Voronoi cells. PQ training is thus completely equivalent to running 𝑀 k-means clus-

tering algorithms in reduced dimensionality spaces. With 𝐿 training iterations and 𝑁 

training vectors, the total complexity of learning a set of codebooks is  𝑂(𝑁𝐿𝐾𝐷).  

To start the training, it is necessary to define a starting point – either an initial encoding 

or an initial set of codebooks. Although it’s possible to use random (e.g. uniform) codes 

for this purpose, the common approach is to generate the codevectors by sampling from 

the corresponding dimensions of training data [18]. 
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3.2.3 Optimized product quantization (OPQ) 

Optimized product quantization (OPQ) [19], also known as Cartesian k-means (CKM) 

[37], is a variant of product quantization that makes an attempt to optimize the alloca-

tions of dimensions to subspaces. In the original PQ paper [18] it was noted that the 

search performance varies greatly based on the contents (semantics) of the data. Product 

quantization considers all the subspaces to be equal in terms of information content, 

which is quite likely to be incorrect for the real sets of vectors. In fact, the choice of 

dimensions for a particular subspace has been shown to have a major effect on the quan-

tization performance [18]. Since the domain knowledge is not always available, the 

quantization algorithm can benefit from an internal subspace optimization.  

Rotation is a linear transformation that preserves vector norms and pairwise Euclidean 

distances; for any orthogonal 𝐷 × 𝐷 matrix 𝑅 and 𝐷-dimensional vectors 𝑥 and 𝑦 the 

following expression holds: 

 ‖𝑥 − 𝑦‖2
2 = ‖𝑅𝑥 − 𝑅𝑦‖2

2. (10) 

Due to (10) any centroid assignments (codes) of a vector quantizer with codebook 𝐶 on 

dataset 𝑋 remain valid, if both codevectors and data vectors are transformed with the 

same matrix 𝑅. This property naturally generalizes to PQ. The benefit of rotation lies in 

the fact that it can represent any reordering of the vector dimensions [19]. Optimizing 

rotation of PQ quantizer is thus equivalent to finding better allocation of dimensions to 

subspaces. Random rotation has been explored and found to improve the quantization 

error and search performance [38]. Further gains can be expected if the matrix 𝑅 is fine-

tuned with respect to the data. 

OPQ differs from PQ in that it learns not only codebooks and codes, but also an orthog-

onal transformation matrix 𝑅. Any data to be encoded is first rotated via multiplication 

by 𝑅, and then the product quantizer is applied. Computational complexity of encoding 

a single vector thus increases by the multiplication cost, resulting in a total estimate of 

𝑂(𝐾𝐷 + 𝐷2). 

Two formulations of OPQ exist [19]. Parametric formulation is derived from the as-

sumption that the data is generated by Gaussian distribution. If the assumption holds, 

the solution is provably optimal and achieves the theoretical lower bound of quantiza-

tion error, which is derived to be 

 𝐸 ≥
𝐷

𝑀
𝐾−

2𝑀

𝐷 ∑ |Σ̂𝑚|
𝑀

𝐷𝑀
𝑚=1 , (11) 

where Σ̂𝑚 is the covariance submatrix of 𝑚-th subspace of rotated data 𝑅𝑥. Further the-

oretical analysis shows that for a parametric solution to achieve optimality, two condi-

tions must hold: subspace independence and balance of subspace variance. These con-
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clusions exactly correspond to the ones drawn in ITQ – a hashing-based method de-

scribed earlier. 

To construct a matrix R satisfying the above requirements for subspaces, a simple 

greedy algorithm – eigenvalue allocation – was proposed [19]. The database is first 

processed with PCA, which takes 𝑂(𝑁𝐷2 + 𝐷3) operations. The eigenvalues are then 

sorted in a descending order and sequentially allocated to 𝑀 bins of capacity 𝐷 𝑀⁄ , such 

that the product of values inside each bin would be roughly equal (thus balancing the 

variance). When the eigenvectors are reordered according to allocation of their respec-

tive eigenvalues, the matrix 𝑅 is formed. Then the database is rotated and PQ is applied 

on the result. Total training complexity of parametric OPQ is thus 𝑂(𝑁𝐷2 + 𝐷3 +

𝑁𝐿𝐾𝐷). 

Naturally, the Gaussian assumption rarely holds in practice. Nonparametric OPQ does 

not construct a single rotation matrix, but instead optimizes it during the training phase 

[19]. At the beginning of each iteration the data is rotated with the current estimate of 𝑅. 

Then the codebook adaptation and encoding are performed on the rotated data, with no 

differences from PQ. Finally, the current estimate of 𝑅 is updated so as to minimize the 

quantization error criterion: 

 
2

min ,
FR

RX Y  (12) 

where 𝑋 and 𝑌 are matrices composed of original (not rotated) data vectors and their 

reconstructions, respectively, and ‖∙‖𝐹 is the Frobenius norm: ‖𝐴‖𝐹 = √𝑡𝑟𝑎𝑐𝑒(𝐴∗𝐴). 

To solve this optimization problem, first the singular value decomposition (SVD) of  

𝑋𝑌𝑇 is calculated:  𝑋𝑌𝑇 = 𝑈𝑆𝑉𝑇. The matrix 𝑅 is then calculated as follows: 

 𝑅 = 𝑉𝑈𝑇 .   (13) 

The complexities of this procedure are as follows: 𝑋𝑌𝑇 multiplication is 𝑂(𝑁𝐷2), SVD 

is 𝑂(𝐷3), and 𝑉𝑈𝑇 multiplication is also 𝑂(𝐷3). Since rotation is adapted in each itera-

tion, the total cost of non-parametric OPQ training becomes 𝑂(𝐿(𝑁𝐾𝐷 + 𝑁𝐷2 + 𝐷3)). 

Nonparametric OPQ typically performs better on real datasets, as it does not rely on 

Gaussian assumption. OPQ training can be initialized similarly to PQ, with an identity 

matrix as a first estimate of 𝑅. Better results are attained if parametric solution is used 

for initialization, although that increases the amount of computation required [19].  

   



18 

 

Figure 8. Visualization of different quantizers trained on artificial data.
5
 

Figure 8 shows the centroids generated by k-means (VQ), PQ, ITQ (Chapter 2.3) and 

OPQ on artificial two-dimensional data. Adaptive procedure for subspace allocation 

allows OPQ to reliably outperform PQ and numerous hashing-based methods [19]. OPQ 

requires 𝑂(𝐾𝐷) memory to store the codebooks (same as PQ) and 𝑂(𝐷2) memory for 

the rotation matrix. 

 

Figure 9.  Different quantizers on artificial data with well-separated clusters [39] 

A further derivate of optimized product quantization was recently proposed – locally 

optimized product quantization (LOPQ) [39]. The idea behind the approach is that op-

timizing separate rotation matrices for different regions of data space might lead to bet-

ter performance compared to a single global transformation (see Figure 9). To achieve 

this, LOPQ applies standard k-means on the data and then trains a separate optimized 

product quantizer on each cluster. To index the vector on both hierarchical levels, 

log2𝐾
′ +𝑀 log2 𝐾 bits are required, where 𝐾′ is the number of centroids of k-means. 

For the sake of simplicity it is typically assumed that 𝐾′ = 𝐾, as running too many sep-

                                                 
5
 Source: http://kaiminghe.com/cvpr13/index.html 
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arate OPQ algorithms will increase the computational costs dramatically. Assume that 

the top-level quantizer is learned over 𝐿′ iterations, and the data is roughly equally dis-

tributed between k-means clusters. Then it takes 𝑂(𝐿′𝐾𝑁𝐷) operations to run global k-

means, followed by the costs of training 𝐾 OPQ instances on 𝑁 𝐾⁄  data points each, 

which is 𝑂(𝐾𝐿(𝑁𝐷 + 𝑁𝐷2 + 𝐷3)). Adding the two together and simplifying the result 

leads to the following LOPQ training complexity:  𝑂(𝐿′𝑁𝐾𝐷 + 𝐿𝐾(𝑁𝐷2 + 𝐷3)). 

In addition to the training overhead, other operations with LOPQ naturally have higher 

computational costs. 𝐾 individual OPQ quantizers need to be stored, resulting in 

memory cost of  𝑂(𝐾𝐷[𝐾 + 𝐷]). Query processing requires searching the top level 

first, which takes extra 𝐾𝐷 operations, but the following OPQ distance estimation is 

non-exhaustive and takes 𝐷2 + 𝐾𝐷 + 𝑁′𝑀 operations, where  𝑁′ < 𝑁. Finally, a vector 

encoding cost also increases by 𝐾𝐷 operations due to the need of locating the closest 

top-level centroid. 

LOPQ requires noticeably more complex training, but its encoding and distance calcula-

tion overheads, as well as increase in code length, are considered to be well justified by 

the improvement in quantization error and search performance [39].   

3.3 Additive quantization (AQ) 

Additive quantization (AQ) generalizes the methods described earlier by relaxing code-

book constraints [21]. The quantizer, similarly to PQ or OPQ, consists of 𝑀 codebooks, 

each containing 𝐾 codevectors. However, no subspace decomposition is performed, and 

all the codevectors share the same dimensionality 𝐷 as the original data. Instead of con-

catenation, 𝑀 indexed codevectors are instead added together to obtain a reconstruction 

(see Figure 10).  

 

Figure 10.  Vector representations in PQ and in AQ. [21]  
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The representation codelength is still 𝑀 log2𝐾, just as in the methods of PQ family. 

Memory requirements for codebook storage are naturally higher, due to the increased 

codevector dimensionality, and constitute an equivalent of 𝑀𝐾𝐷 values – 𝑀 times larg-

er when compared to PQ or OPQ. Since the value of 𝑀 is rarely above 16, this extra 

cost is deemed negligible for sufficiently large datasets. Any set of PQ or OPQ code-

books may be converted to a set of AQ codebooks by appropriate padding of all 

codevectors with zeroes. 

Elimination of subspace decomposition means the omission of codebook orthogonality 

constraint. This, in turn, leads to potentially richer representation, and AQ indeed has 

outperformed older methods significantly [21]; however, this formulation comes with 

the price of much higher encoding and training complexity, as simple k-means proce-

dure is no longer applicable. 

3.3.1 AQ distance estimation 

The squared Euclidean distance from query 𝑞 to a reconstructed vector �̃� = ∑ 𝑐𝑖
𝑀
𝑖=1  can 

be represented with the following expression: 

 𝑑𝑖𝑠𝑡2(𝑞, �̃�) = ∑ ‖𝑞 − 𝑐𝑖‖2
2𝑀

𝑖=1 − (𝑀 − 1)‖𝑞‖2
2 + ∑ ∑ ⟨𝑐𝑖, 𝑐𝑗⟩

𝑀
𝑗=1,𝑖≠𝑗

𝑀
𝑖=1  (14) 

When compared to (8), AQ distance estimate has an additional component – the sum of 

dot products between all the included codevectors. This is due to codebooks no longer 

being orthogonal. Since this component does not depend on 𝑞, it can be precomputed 

and reused for different queries. One approach is to construct a set of lookup tables, 

containing dot products between all the possible pairs of codevectors. In this case 𝑀2 2⁄  

extra lookups will be required for every search, in addition to 𝑂(𝑀2𝐾2) memory. An-

other solution would be to calculate the sum in (14) for each encoded vector in the data-

base and store it as set of scalars. To reduce the memory overhead, these scalar values 

can be quantized and appended to the AQ code of each data point; then the dot products 

in (14) can be found with a single lookup. Although this operation further distorts the 

distances and degrades the search performance, experiments have shown that the detri-

mental effects are minimal and may well be justified by the faster search [21]. 

The first two terms of (14) are identical to their PQ equivalents. The only difference is 

that full-length codebooks result in more expensive lookup table calculations – 

𝑂(𝑀𝐾𝐷) instead of 𝑂(𝐾𝐷). However, since 𝑀 is relatively small in practice (rarely 

taking a value above 𝑀 = 16), this overhead is considered acceptable, especially for 

large databases [21]. The total search cost for a single query therefore becomes 

𝑂(𝑀𝐾𝐷 +𝑀𝑁), or  𝑂(𝑀𝐾𝐷 +𝑀2𝑁) if the dot product table lookup is used.  
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3.3.2 Learning the additive quantizer 

An additive quantizer is trained iteratively, via alternating between codebook adaptation 

and encoding. Unfortunately, the distance estimate of (14) is more complex than (8), so 

a simple problem decomposition is not possible; general approaches for both of the 

steps need to be devised instead. 

Given fixed codes, an optimal set of codebooks can be found by solving the following 

least-squares problem: 

 min𝐶𝑚𝑘 ∑ ‖𝑥𝑛 − ∑ ∑ 𝑎𝑛𝑚𝑘𝐶𝑚,𝑘
𝐾
𝑘

𝑀
𝑚 ‖

2

2𝑁
𝑛 , (15) 

where 𝐶𝑚,𝑘 is the 𝑘-th codevector of 𝑚-th codebook and 𝑎𝑛𝑚𝑘 is a binary indicator var-

iable, taking value 1 if a database vector 𝑥𝑛 is assigned to codevector 𝐶𝑚𝑘 and zero oth-

erwise. The corresponding system of linear equations is overdetermined, with the corre-

sponding matrix having 𝑁 rows and  𝑀𝐾𝐷 columns. Equivalently, 𝐷 overdetermined 

linear systems of 𝑁 equations and 𝑀𝐾 variables each can be solved, as problem (15) 

decomposes along the dimensions [21]: 

 

{
 
 

 
 ∑ ∑ 𝑎1𝑚𝑘𝐶𝑚,𝑘1 = 𝑥11

𝐾
𝑘

𝑀
𝑚

∑ ∑ 𝑎2𝑚𝑘𝐶𝑚,𝑘1 = 𝑥21
𝐾
𝑘

𝑀
𝑚

…

∑ ∑ 𝑎𝑁𝑚𝑘𝐶𝑚,𝑘1 = 𝑥𝑁1
𝐾
𝑘

𝑀
𝑚

, … ,

{
 
 

 
 ∑ ∑ 𝑎1𝑚𝑘𝐶𝑚,𝑘𝐷 = 𝑥1𝐷

𝐾
𝑘

𝑀
𝑚

∑ ∑ 𝑎2𝑚𝑘𝐶𝑚,𝑘𝐷 = 𝑥2𝐷
𝐾
𝑘

𝑀
𝑚

…

∑ ∑ 𝑎𝑁𝑚𝑘𝐶𝑚,𝑘𝐷 = 𝑥𝑁𝐷
𝐾
𝑘

𝑀
𝑚

 (16) 

Fortunately, since only 𝑀 out of 𝑀𝐾 coefficients in each equation are nonzero, the co-

efficient matrix can be efficiently stored in sparse format (with density 1 𝐾⁄ ), allowing 

for special solvers to be used. In addition, the coefficient matrix is exactly the same for 

all the systems (only the right-hand constant terms 𝑥𝑖𝑑 change), so it can be reused for 

all the solutions. These factors lead the AQ authors to disregard the computational costs 

of codebook adaptation during training, as the complexity is dominated by the encoding 

step [21].  

The problem of finding the optimal AQ representation of a given vector is equivalent to 

inference on a fully connected pairwise Markov Random Field (MRF), which is NP-

hard [21][40]. One of the simplest algorithms for this problem is Iterated Conditional 

Modes (ICM) [41]. In the context of AQ encoding ICM proceeds as follows: 

1. Given a database vector 𝑥, set iteration counter 𝑙 = 1, current reconstruction 

�̃� = 0 and codevector assignments 𝑖𝑚 = 0,𝑚 = 1…𝑀. 
2. For all the codebooks 𝑚 = 1…𝑀 do: 

a. If 𝑖𝑚 ≠ 0, subtract the currently assigned codevector from the recon-

struction: �̃� = �̃� − 𝐶𝑚,𝑖𝑚. 

b. Calculate the current residual 𝑟 = 𝑥 − �̃�. 
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c. Find the nearest neighbor to the residual amongst the codevectors of 

the current codebook and take it as an assignment: 

 𝑖𝑚 = argmin‖𝑟 − 𝐶𝑚,𝑖𝑚‖2
2
 (17) 

d. Modify the reconstruction accordingly: �̃� = �̃� + 𝐶𝑚,𝑖𝑚 and proceed to 

the next codebook. 

3. Increase the iteration counter 𝑙 = 𝑙 + 1, if pre-specified maximal number of 

iterations 𝐿 was reached, stop, otherwise go to step 2. 

As can be seen from the above, ICM considers one codebook at a time and tries to im-

prove the quantization error, while keeping other 𝑀− 1 assignments fixed. This solu-

tion has a complexity of 𝑂(𝐿𝑀𝐾𝐷) for encoding a single vector; unfortunately, as it 

never considers interaction between codebooks, its greediness leads to poor practical 

performance. Other MRF-specific methods were also considered by the AQ authors, but 

failed to achieve suitable results, prompting them to suggest their own approach [21]. 

Beam Search is a heuristic method of AQ encoding, based on 2-step optimization. Beam 

Search concatenates all the codebooks thus considering more options at a time. Nega-

tive effects of the greedy encoding manifest as globally poor codevector choices, driven 

by the local optimality. To alleviate this, Beam Search does not improve a single solu-

tion throughout the algorithm, but instead keeps 𝐻 candidate solutions, the best of 

which is chosen after the procedure is over. Search depth 𝐻 is a parameter set before the 

encoding. Figure 11 shows an illustration of the first step of Beam Search.  

 

Figure 11.  Visual representation of the first iteration of Beam Search encoding. 

The entire Beam Search encoding sequence is given below: 
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1. Given a database vector 𝑥 and search depth 𝐻, set codevector assignments 

𝑖𝑚 = 0,𝑚 = 1…𝑀. 
2. Find 𝐻 nearest neighbors to 𝑥 from all the 𝑀𝐾 codevectors and store them, as 

well as corresponding codebook indices, as candidate solutions:  

𝐼 = {{�̅�1, 𝑖�̅�1
} {�̅�2, 𝑖�̅�2

} … {�̅�𝐻, 𝑖�̅�𝐻
}}. 

Here �̅�𝑗 is a set of codebook indices and 𝑖�̅�𝑗
 is a set of corresponding 

codevector assignments. 

3. For every candidate solution 𝐼ℎ, ℎ = 1…𝐻 do: 

a. Calculate the solution residual: 

 𝑟 = 𝑥 − ∑ 𝐶𝑚,𝑖𝑚𝑚 , 𝑚 ∈ �̅�ℎ. 

b. Find 𝐻 nearest neighbors 𝑖𝑚∗ to 𝑟 from 𝐶′ = ⋃𝐶𝑚 , 𝑚 ∉ �̅�ℎ, i.e. 

from all codevectors whose codebooks are not yet in the solution.  

c. Generate 𝐻 new solutions by appending the indices found in the pre-

vious step to the current solution: 

 �̅�ℎ𝑗 = �̅�ℎ ∩𝑚𝑗
∗, 𝑖�̅�ℎ𝑗

= 𝑖�̅�ℎ
∩ 𝑖𝑚𝑗

∗ ,   𝑗 = 1…𝐻. 

d. Replace the current solution with 𝐻 newly generated ones: 

𝐼 = 𝐼 ∖ {�̅�ℎ, 𝑖�̅�ℎ
} ∩ {�̅�ℎ1, 𝑖�̅�ℎ1

} ∩ …∩ {�̅�ℎ𝐻, 𝑖�̅�ℎ𝐻
} 

4. 𝐼 is now a list of 𝐻2 solutions. Sort the list by the quantization error and keep 

𝐻 best solutions. 

5. If every solution in 𝐼 contains 𝑀 codevectors, take the solution with the low-

est quantization error as a final answer and stop. Otherwise go to step 3. 

Two-step optimization allows Beam Search encoding to find significantly better repre-

sentations. The major drawback lies in the complexity of the procedure. The algorithm 

described above has the complexity of 𝑂(𝑀3𝐾𝐻𝐷), which is the highest amongst the 

current quantization-based approaches. Some improvement can be attained by avoiding 

the distance calculations within the encoding process, replacing them with table 

lookups. The table can be constructed in 𝑂(𝑀𝐾𝐷), resulting in a total complexity of 

𝑂(𝑀3𝐾𝐻 +𝑀𝐾𝐷). In this case the data dimensionality has a lesser effect on encoding, 

but the cost remains very high. It is particularly pronounced during the training phase, 

where the dataset has to be repeatedly re-encoded over several iterations. 

AQ with Beam Search encoding has demonstrated superior results in both search and 

quantization error reduction, improving upon the majority of other methods [21]. How-

ever, the prohibitive complexity hinders the practicality of AQ applications. Training 

time is typically given less consideration in ANN search systems, as it is performed in 

offline mode and can be assumed to take advantage of the full computational power 

available. Encoding new database vectors, on the other hand, is a relatively common 

task and can be considered time-sensitive.  

AQ authors suggest a simple approach to slightly reduce the computational costs of AQ 

while sacrificing some representation power. As AQ scales cubically with the number 

of codebooks, it may be viable to perform explicit subspace decomposition similar to 

PQ and apply a separate AQ quantizer in each subspace. Optimal rotation of OPQ may 

be applied to improve the allocations of dimensions in such case. This simple technique 
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is called additive product quantization (APQ). Additional benefit stems from the reduc-

tion in memory costs: storing 𝑀 codebooks would normally require 𝑀𝐾𝐷 memory, but 

if the decomposition is performed with 𝑆 subspaces and 𝑀′ < 𝑀 codebooks are used in 

each, the requirement becomes 𝑆 (𝑀′𝐾
𝐷

𝑆
) = 𝑀′𝐾𝐷, plus 𝐷2 (optionally) for the rota-

tion matrix. APQ is quite commonly used instead of AQ in experiments with extremely 

large data (billions of vectors) or with high numbers of codebooks (𝑀 ≥ 16).   

3.3.3 Derivate methods 

Several AQ derivate methods have been recently proposed [22][23]. While sharing the 

same representation and overall approach, these methods impose certain constraints on 

the codebooks, limiting the search space of encoding. This allows for significantly fast-

er training and processing, making these solutions more practical. The cost of simplifi-

cation is degradation in search performance, caused by the loss of generality. One such 

approach is described here to give an example of the tradeoff. 

Composite quantization (CQ) [22] was first formulated in an attempt to simplify AQ 

distance calculations. As mentioned earlier, AQ distance estimate (14) differs from the 

one used in PQ (8) due to the presence of nonzero dot products between the codevec-

tors. This scalar value could either be precomputed (and optionally quantized) or calcu-

lated during the search, requiring 𝑀2 2⁄  additional lookups. Composite quantization 

imposes the following constraint: for any set of 𝑀 codevectors, each coming from a 

different codebook, their dot products have to sum up to a single constant value 𝜖: 

 ∀𝑐1 ∈ 𝐶1, 𝑐2 ∈ 𝐶2… , 𝑐𝑀 ∈ 𝐶𝑀 :  ∑ ∑ ⟨𝑐𝑖, 𝑐𝑗⟩
𝑀
𝑗=1,𝑖≠𝑗

𝑀
𝑖=1 = 𝜖 (18) 

In this case the corresponding component in (14) can be disregarded during the search, 

as it value is independent of both the query and the encoded data. Distance estimation 

then requires only 𝑀 lookups from a query-specific table. 

Besides the above simplification, CQ constraint carries a more important consequence. 

If it is perfectly satisfied, the reconstruction error of any database vector, which follows 

the same expression as (14), decomposes to sum of errors for individual codevectors. 

The encoding can then be performed in the same manner as PQ – by a series of inde-

pendent nearest neighbor searches within each codebook. Still, even if 𝜖 = 0, CQ re-

mains more general than PQ, as no explicit subspace decomposition is performed and 

codebooks can be any orthogonal vector sets. 

To satisfy the CQ constraint, the codebook adaptation procedure must be changed. The 

new error function is obtained by adding a quadratic penalty on constraint violation. 

Reformulated optimization problem of CQ training is given as follows: 
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 min𝐶,𝑎,𝜖 ∑ ‖𝑥𝑛 − ∑ 𝑐𝑛𝑖
𝑀
𝑖 ‖

2

2
+ 𝜇∑ (∑ 〈𝑐𝑛𝑖, 𝑐𝑛𝑗〉 − 𝜖

𝑀
𝑖≠𝑗 )

2𝑁
𝑛

𝑁
𝑛 , (19) 

where 𝜇 is the penalty parameter chosen via cross-validation. Since this is a complex 

problem with no closed-form solution, trained composite quantizer will not exactly ful-

fill the CQ constraint in practice. Still, it is assumed that the solution is close to optimal 

and dropping the dot products in distance estimation (14) will not introduce significant 

errors.  

Composite quantizer is trained by alternating between the following three steps: 

1. Updating assignments, i.e. encoding the training set with current codebooks 

and fixed 𝜖. Due to CQ constraint not being perfectly realized, independent 

codebook searches (akin to PQ) would produce suboptimal results, which can 

potentially propagate through training iterations. For this reason ICM (see 

Section 3.3.2) is adopted, as a compromise between simplicity and quality. 

However, instead of simple distances, (19) is used as a minimization criterion 

for choosing the codevectors. The complexity of this step is 𝑂(𝐿𝑁𝑀𝐾𝐷); au-

thors suggest the number of ICM iterations 𝐿 = 3.  

2. Updating 𝜖, given fixed codebooks and encoding. From (19) it trivially fol-

lows that an optimal value for 𝜖 is an average sum of dot products over the 

training set: 

 𝜖 =
1

𝑁
∑ ∑ 〈𝑐𝑛𝑖, 𝑐𝑛𝑗〉

𝑀
𝑖≠𝑗

𝑁
𝑛  (20) 

The complexity of this update is 𝑂(𝑁𝑀2), assuming that the dot products 

have been precomputed and stored in a lookup table. 

3. Updating codebooks, given encoding and 𝜖. This is an unconstrained nonlin-

ear optimization problem. CQ authors suggest the use of quasi-Newton solv-

ers and specifically refer to L-BFGS, which has publicly available implemen-

tations [22].The complexity of this step is 𝑂(𝑁𝑀𝐷𝑇𝑙𝑇𝑐), where 𝑇𝑐 is the 

number of L-BFGS iterations and 𝑇𝑙 is a number of line searches within L-

BFGS; CQ authors suggest 𝑇𝑐 = 10 and 𝑇𝑙 = 5. 

At the beginning of each training iteration the dot products have to be computed and 

stored in a lookup table, to allow for fast objective function evaluation. The total as-

ymptotic complexity of CQ training is thus 𝑂(𝑀2𝐾2𝐷 + 𝑁𝑀𝐾𝐷 + 𝑁𝑀2). 

For CQ there is no need to store dot product lookup tables or quantize the corresponding 

value, leading to some memory savings when compared to AQ. The two approaches are 

otherwise almost identical from the application viewpoint, after the training has been 

performed. However, CQ, unlike AQ, allows for fast vector encoding with ICM, which 

allows for smaller computational expenses of growing the database.  

While the constraint on dot products reduces the representational ability of the quantiz-

er, negatively affecting its performance metrics, it also allows for faster lookups and 
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much simpler encoding solutions to be viable. The example of CQ shows well how im-

posing constraints can ultimately be beneficial for the practical search applications. 

Tree quantization (TQ) [23] is a direct successor to AQ, imposing very particular or-

thogonality constraints to make exact (optimal) encoding possible. In PQ a single di-

mension was represented by only one codebook, while in the opposite case of AQ it was 

represented by all the codebooks. TQ employs a compromise solution instead: every 

dimension is encoded exactly twice (see Figure 12). 

 

Figure 12. Representation of TQ encoding with 8 codebooks [23]. 

Underlying constraints are expressed with a tree structure, the so-called coding tree, 

where every node is a codebook and every edge corresponds to one or more data dimen-

sions. Each codebook only contains dimensions that are mapped to its adjacent edges in 

the graph. It follows that any pair of codebooks which are not immediate neighbors in 

the tree are orthogonal. TQ thus performs subspace decomposition, but the one that is 

more general in nature. 

While AQ encoding is equivalent to inference on fully connected MRF, TQ corresponds 

to its Chow-Liu approximation [23]. Exact solution can be calculated for the latter in 

polynomial time; in practice this translates to 𝑂(𝑀𝐾2) encoding complexity. Another 

benefit is that during the distance estimation, the dot product component of (14) can be 

calculated in linear time, only being nonzero for the codebooks adjacent in the tree. 

Similarly to CQ, TQ training scheme has to be extended to accommodate for con-

straints. Between the encoding, which is done with exact inference on the graph, and the 

codebook adaptation, which does not differ from AQ, the coding tree itself needs to be 

constructed. A complex integer linear programming (ILP) problem is formulated, with 

large set of constraints ensuring the proper tree structure (e.g. absence of loops). The 

authors of the method have used a commercial general purpose solver for the latter, 

meaning that no complexity analysis is possible for training [23]. 
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4. FAST ENCODING FOR ADDITIVE QUANTIZA-

TION 

It has been empirically noticed that the reduction in quantization error typically leads in 

search performance improvements [18]. In addition, the quantization error on the train-

ing set is typically representative of the whole database, more so when the size of the 

training data increases. Taking these assumptions can significantly simplify the devel-

opment and analysis of new techniques, as quantization error is typically well-defined 

and easy to examine. The same assumptions are thus taken for derivation of the pro-

posed methods. Before the detailed description is given, it is beneficial to examine the 

general behavior of the quantization error for additive representations. As no global 

optimization techniques have been found suitable for AQ yet, only incrementally 

learned solutions are considered. 

4.1 Quantization error of incremental solutions 

The complexity of AQ encoding stems from the presence of dot product sum compo-

nent ∑ ∑ ⟨𝑐𝑖, 𝑐𝑗⟩
𝑀
𝑗=1,𝑖≠𝑗

𝑀
𝑖=1  in (14). It invalidates greedy approaches by introducing inter-

action between codevectors. The dot product component can also have a negative sign, 

unlike squared norms. Since encoding is performed iteratively, by adding one codebook 

index at a time, it is possible that a seemingly suboptimal choice at one time instance 

can lead to a larger error reduction later. 

One solution is to constrain the dot products, simplifying the optimization procedure 

and thus improving the greedy solutions. Among the methods considered so far, (O)PQ 

has strictly orthogonal codebooks, CQ imposes the constant value on the dot products, 

and TQ retains only some nonzero values. All of these approaches, however, sacrifice 

the generality of the representation, leading to larger quantization error compared to 

AQ. Considering this, it might be reasonable to avoid placing explicit constraints and 

instead seek for a different optimization procedure. 

Consider a database vector 𝑥 and its additive reconstruction 𝐶𝑝𝑟𝑒𝑣, with the quantization 

error 𝐸0 = ‖𝑥 − 𝐶𝑝𝑟𝑒𝑣‖
2
. Assume that another codevector 𝐶𝑛𝑒𝑥𝑡 is added to the repre-

sentation, resulting in a new error value 𝐸1 = ‖𝑥 − (𝐶𝑝𝑟𝑒𝑣 + 𝐶𝑛𝑒𝑥𝑡)‖
2
. This expression 

can be expanded as follows: 

 ‖𝑥 − (𝐶𝑝𝑟𝑒𝑣 + 𝐶𝑛𝑒𝑥𝑡)‖
2
= ‖𝑥‖2 + ‖𝐶𝑝𝑟𝑒𝑣 + 𝐶𝑛𝑒𝑥𝑡‖

2
− 2〈𝑥, 𝐶𝑝𝑟𝑒𝑣〉 − 2〈𝑥, 𝐶𝑛𝑒𝑥𝑡〉 (21) 
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The second squared norm in the right-hand part can be expanded further: 

 ‖𝐶𝑝𝑟𝑒𝑣 + 𝐶𝑛𝑒𝑥𝑡‖
2
= ‖𝐶𝑝𝑟𝑒𝑣‖

2
+ ‖𝐶𝑛𝑒𝑥𝑡‖

2 + 2〈𝐶𝑝𝑟𝑒𝑣, 𝐶𝑛𝑒𝑥𝑡〉 (22) 

Meanwhile, the sum of quantization errors, if 𝐶𝑝𝑟𝑒𝑣 and 𝐶𝑛𝑒𝑥𝑡 are used individually, 

would be 

 ‖𝑥 − 𝐶𝑝𝑟𝑒𝑣‖
2
+‖𝑥 − 𝐶𝑛𝑒𝑥𝑡‖

2 = 2‖𝑥‖2 + ‖𝐶𝑝𝑟𝑒𝑣‖
2
+ ‖𝐶𝑛𝑒𝑥𝑡‖

2 − 

 −2〈𝑥, 𝐶𝑝𝑟𝑒𝑣〉 − 2〈𝑥, 𝐶𝑛𝑒𝑥𝑡〉 (23) 

Combining (21), (22) and (23) leads to the following expression: 

 ‖𝑥 − (𝐶𝑝𝑟𝑒𝑣 + 𝐶𝑛𝑒𝑥𝑡)‖
2
= ‖𝑥 − 𝐶𝑝𝑟𝑒𝑣‖

2
+ ‖𝑥 − 𝐶𝑛𝑒𝑥𝑡‖

2 − 

 −‖𝑥‖2 + 2〈𝐶𝑝𝑟𝑒𝑣, 𝐶𝑛𝑒𝑥𝑡〉  (24) 

Since ‖𝑥 − 𝐶𝑝𝑟𝑒𝑣‖
2
 is the quantization error of the original representation, the error 

difference  ∆𝐸 after the refinement is 

  ∆𝐸 = 𝐸1 − 𝐸0 = ‖𝑥 − 𝐶𝑛𝑒𝑥𝑡‖
2 − ‖𝑥‖2 + 2〈𝐶𝑝𝑟𝑒𝑣, 𝐶𝑛𝑒𝑥𝑡〉 (25) 

Using the geometric definition of the dot product and expressing the squared norms 

through dot products, the alternative expression for ∆𝐸 is obtained: 

 ∆𝐸 = ‖𝐶𝑛𝑒𝑥𝑡‖
2 − 2‖𝑥‖ ∙ ‖𝐶𝑛𝑒𝑥𝑡‖ ∙ cos 𝛼 + 2‖𝐶𝑝𝑟𝑒𝑣‖ ∙ ‖𝐶𝑛𝑒𝑥𝑡‖ ∙ cos 𝛽 (26) 

Here 𝛼 is an angle between vectors 𝑥 and 𝐶𝑛𝑒𝑥𝑡, while 𝛽 is an angle between 𝐶𝑝𝑟𝑒𝑣 and 

𝐶𝑛𝑒𝑥𝑡 (see Figure 13 for a simple 2-dimensional visualization). 

 

Figure 13. Refining the additive vector representation. 

With a greedy encoding procedure it is expected that the quantization error will always 

decrease for a good choice of 𝐶𝑛𝑒𝑥𝑡. To achieve maximal possible reduction, the follow-

ing criterion needs to be optimized: 

 �̅� 

𝐶�̅�𝑟𝑒𝑣 

𝐶�̅�𝑒𝑥𝑡 

𝛼 

�̅� 𝛽 
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 min ‖𝐶𝑛𝑒𝑥𝑡‖,𝛼,𝛽  ‖𝐶𝑛𝑒𝑥𝑡‖ − 2‖𝑥‖ cos 𝛼 + 2‖𝐶𝑝𝑟𝑒𝑣‖ cos 𝛽. (27) 

Expression (27) was obtained from (26) by discarding the multiplier ‖𝐶𝑛𝑒𝑥𝑡‖, which 

does not affect the semantics, since it is strictly positive and ∆𝐸 is expected to be nega-

tive for a good choice of 𝐶𝑛𝑒𝑥𝑡. 

Problem (27) shows the factors taken into account, when a greedy selection of a new 

codevector is performed. Every term can be interpreted to have its own meaning: 

1. ‖𝐶𝑛𝑒𝑥𝑡‖ is the norm of the newly chosen codevector. Being strictly positive 

(as adding null vectors is meaningless), it ensures the minimality of the repre-

sentation – codevectors of smaller length are preferred, other criteria notwith-

standing. 

2. ‖𝑥‖ cos 𝛼 is the scalar projection of the new codevector on the database vec-

tor. This is the fitting term, which maximizes the contribution of the new 

codevector to the approximation. Note that the new codevector is fit to the 

target vector independently from previous choices. The sign of the term is not 

restricted, so it is possible to increase the quantization error with a poor 

choice.   

3. ‖𝐶𝑝𝑟𝑒𝑣‖ cos 𝛽 is the scalar projection of the new codevector on the current 

reconstruction. This is the correction term, as it can also take any sign and 

can contribute to the error reduction by interacting with the fitting term. 

The geometric interpretation of the simplest greedy solution (choosing a single best 

codevector from a set) is apparent from (27): the current reconstruction and the target 

are both projected on each candidate codevector, with resulting scalars composing the 

“fitness” of this particular solution.   

The orthogonality of the codebooks would result in cos 𝛽 = 0, leading to the absence of 

the correction term. This limits the possible options for 𝐶𝑛𝑒𝑥𝑡, reducing the expressive-

ness of the representation. For example, with non-orthogonal codebooks it is possible to 

include a codevector of the opposite direction to 𝑥 (cos 𝛼 < 0) and still achieve error 

reduction, if cos 𝛽 > 0. The advantage of AQ over PQ in terms of iterative encoding 

thus stems from the fact that the later codevector choices are capable of correcting the 

previous approximations.  

One possible direction of future work is to consider quantizing the norm and the direc-

tion of the database vectors separately. The norm, being a scalar value, is efficient to 

quantize; the expressions (21)–(27) can then be simplified and analyzed from the purely 

geometrical viewpoint, with angles playing a major role. This work instead focuses on 

the merging of several existing encodings. 
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4.2 Pyramid encoding 

Both ICM and Beam Search are iterative encoding procedures, performing successive 

local searches to locate suitable codevectors. The vast discrepancy in their effectiveness 

and computational complexity is caused by two major differences – size of local search 

space and storing several candidate solutions to alleviate greediness. ICM only consid-

ers one codebook at a time, resulting in 𝐾 codevector choices at each step. The ordering 

of codebooks is arbitrarily fixed and does not change within the training procedure. No 

candidate solutions are kept: a single encoding is optimized instead. Beam Search scans 

the entirety of codevectors, excluding, of course, codebooks which are already used. 

The number of codevector choices thus starts with 𝑀𝐾 and gradually decreases. In addi-

tion, a certain number of candidate encodings is stored for the 2-step optimization. 

With ICM and Beam Search representing the opposite extremes, the compromising so-

lution would keep the middle ground in both aspects. Keeping a pool of solutions be-

tween iterations partially alleviates the local nature of the search, without much increase 

in complexity (e.g. Beam Search is linear in search depth 𝐻); it is thus very useful and 

is retained for the proposed methods. Properly constraining the search space, however, 

warrants a closer examination. 

Chapter 4.1 contains the derivation (21)–(24) of the quantization error value, when an 

existing reconstruction 𝐶𝑝𝑟𝑒𝑣 is extended with a new codevector 𝐶𝑛𝑒𝑥𝑡. However, the 

nature and internal structure of 𝐶𝑝𝑟𝑒𝑣 and 𝐶𝑛𝑒𝑥𝑡 are completely arbitrary. The same ex-

pressions can be applied to find the quantization error when two different encodings are 

merged together.   

Assume that a database vector 𝑥 is encoded with two separate AQ quantizers (their pa-

rameters are irrelevant at this point), resulting in 2 approximations: �̃�1 and �̃�2, with 

quantization errors 𝐸1 and 𝐸2 respectively. Then from (24) it follows that the error of 

their combination is: 

 𝐸 = ‖𝑥 − (�̃�1 + �̃�2)‖2
2 = 𝐸1 + 𝐸2 − ‖𝑥‖2

2 + 2⟨�̃�1, �̃�2⟩ (28) 

Again, if the quantization error is only required for the purpose of ranking different so-

lutions, the term ‖𝑥‖2
2 may be omitted without consequence. Only dot product between 

�̃�1 and �̃�2 is therefore required to obtain a new error value. Assuming that the dot prod-

uct lookup table is available and both quantizers in question have 𝑀 codebooks, com-

bining them would cost only 𝑀2 table lookups. 

Pyramid encoding is a proposed encoding method for AQ, which utilizes the above 

scheme to hierarchically merge solutions until the required number of codebooks is 

reached. The merging is implemented in a hierarchical structure, best represented with a 

tree (see Figure 14; dashed lines indicate the search directions). The name “pyramid 
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encoding” is adopted to avoid confusion with tree quantization (TQ), which is a funda-

mentally different approach [23]. 

 

Figure 14.  The structure of pyramid encoding for 4 codebooks. 

Before the encoding process can begin, the dot products between all the pairs of code-

book vectors are precomputed and stored in a lookup table, which takes 𝑂(𝑀2𝐾2𝐷) 

operations. Since it does not depend on the vector being encoded, this table can be re-

used as long as the codebooks are not changed. The precomputation cost, being inde-

pendent from 𝑁, becomes negligible when processing large datasets. 

Individual codebooks form the bottom level of the pyramid. At this point distance cal-

culations are unavoidable. Nearest neighbors for a database vector 𝑥 are located in each 

codebook separately, resulting in 𝑀 searches requiring 𝐾𝐷 operations each, for a total 

of 𝑀𝐾𝐷 multiplications and additions. However, these are the only required calcula-

tions that depend on the data dimensionality, as error update (28) uses only dot product 

lookups.  

As the encoding proceeds, pairs of solutions are merged on each level of the pyramid. 

Some ordering of the codebooks is required to make this possible. One option is to per-

form an additional search to find the pairs of solutions with smallest error values. How-

ever, this dramatically increases the computational costs involved (up to 𝑀4 in some 

scenarios). An arbitrary ordering is used instead, similarly to ICM. It is plausible to as-

sume that during the training the codebooks will be adapted to fit whatever ordering is 

chosen. 

The number of possible combinations of solutions grows dramatically as the pyramid is 

ascended. The bottom level has 𝐾 options in each tree node, but the level above has 𝐾2, 

as pairs of codebooks are connected. This is followed by 𝐾4 and so on, until the top 

level is reached, where all the codebooks are used together for the 𝐾𝑀 possible options, 

which is the same as the original unconstrained NP-hard optimization. 
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To alleviate the explosive growth of solutions, the number of candidates is artificially 

limited on each pyramid level, via a cutoff procedure. In each node, including the bot-

tom level, only 𝐻 best solutions are kept, where 𝐻 is a user-provided parameter called 

search depth (as its meaning and purpose closely relate to those of the Beam Search 

parameter). In this case there are 𝐻2 candidates to consider in each merging node, from 

which, again, the best 𝐻 are retained for the next merge. This limitation naturally makes 

the final solution approximate, but allows for manageable computational costs. 

As mentioned earlier, the errors throughout the pyramid can be calculated from (28) 

using table lookups. Each level has 2 times less nodes than the previous one, as the so-

lutions are merged pairwise. However, during ascent the number of required lookups 

also increases. Consider two solutions using one codebook each: {𝑐1} and {𝑐2}. To find 

the quantization error of their combination, one needs to calculate the dot product 

〈𝑐1, 𝑐2〉, requiring a single table lookup. However, when the result {𝑐1, 𝑐2} is merged 

with another solution {𝑐3, 𝑐4} on the higher hierarchical level, the dot product becomes 

〈{𝑐1, 𝑐2}, {𝑐3, 𝑐4}〉 = 〈𝑐1+𝑐2, 𝑐3+𝑐4〉 = 〈𝑐1, 𝑐3〉 + 〈𝑐1, 𝑐4〉 + 〈𝑐2, 𝑐3〉 + 〈𝑐2, 𝑐4〉: equivalent 

to 4 table lookups.  

Treating the number of lookups per level as a geometric series and noting that the pyr-

amid height is equal to log2𝑀, it is possible to find the complexity of all the merging 

operations together. The result is 𝑂(𝑀2𝐻2), leading to the total complexity of encoding 

a single database vector with the proposed method: 𝑂(𝑀2𝐻2 +𝑀𝐾𝐷). The pyramid 

encoding is thus significantly faster then Beam Search, considering that the same value 

of 𝐻 (e.g. 𝐻 = 64) is perfectly applicable. Disregarding the lookup table construction 

cost (which does not change between methods), the pyramid encoding roughly attains a 

speedup of factor 𝑀𝐾 𝐻⁄ . For instance, with 𝑀 = 8 codebooks of 𝐾 = 256 codevectors 

each, setting the search depth to 𝐻 = 64 results in pyramid encoding being approxi-

mately 32 times faster. 

Despite the computational gains, in terms of quantization error and search performance 

it is reasonable to expect the inferiority of the pyramid encoding as compared to the 

Beam Search. As mentioned earlier, the original AQ encoding searches a larger space on 

each step and is not constrained to any specific ordering of the codebooks.  

4.3 Residual pyramid encoding 

The pyramid encoding scheme described above fits each individual solution to a single 

target – the database vector 𝑥. Assume that 2 independent additive approximations of 𝑥 

have been learned – �̃�1 and �̃�2. If both solutions are reasonably accurate, it follows from 

definition that �̃�1 ≈ 𝑥 and �̃�2 ≈ 𝑥. When such a pair is merged in the pyramid encoding, 

the result is �̃�1 + �̃�2 ≈ 𝑥 + 𝑥 ≈ 2𝑥 ≠ 𝑥. Combining the two solutions, both close to 

optimality when taken individually, can thus result in an error increase. Furthermore, as 



33 

this holds true for all the levels of the pyramid, the discrepancy accumulates, potentially 

hindering the search. 

One possible approach to tackling this problem is to disregard it. Since the codebook 

adaptation step is consistently applied on each training iteration, it can be reasonable to 

expect that the codebooks will gradually adjust to the pyramid structure. However, as-

suming that the adaptation step is not changed, the linear systems solved to obtain the 

codevectors contain no explicit information about the pyramid. There is no way to 

prove that the adaptation will happen. There are also no guarantees that, if the learning 

does indeed happen, it will not be inexplicably slow and/or reliant on random factors 

(e.g. initialization). However, it is possible to reformulate the pyramid encoding to take 

the factors described above into account. 

 

Figure 15.  Residual pyramid encoding for one subspace. 

Residual Pyramid Encoding (RPE) is a variant of the pyramid encoding, where the right 

branch of the final solution is fitted to the residual of the left branch and not to the target 

vector (see Figure 15). While this formulation is trivial in case of 4 codebooks and 3 

hierarchical levels, unlike the pyramid encoding, there is no straightforward generaliza-

tion to the cases where 𝑀 > 4. It is thus necessary to perform subspace decomposition 

(similarly to PQ) and apply residual pyramid encoding with4 codebooks individually on 

each subset of dimensions. For example, if 𝑀 = 16, the vector would be split into 4 

subvectors, each processed with a separate quantizer. This additional constraint is likely 

to have a negative impact on the search performance of the resulting representation, as 

discussed with respect to PQ (see Chapters 3.2–3.3). 

To compensate for the limitations on the number of codebooks, no cutoff is performed 

on the bottom level (otherwise the representation accuracy drops significantly). The 

residual pyramid encoding thus starts by evaluating 𝐾2 candidates from a pair of code-

books. From these the top 𝐻 with smallest quantization errors are retained. 𝐻 residual 

vectors are then calculated by subtracting the representations of the previous step from 

the target vector. Finally, a second pair of codebooks (again, having 𝐾2 possible combi-
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nations) is analyzed to produce the best fit for the residuals. The one with the lowest 

overall error is chosen as a final solution for the target vector 𝑥. 

The complexity of a single realization of the residual pyramid encoding is 𝑂(𝐾2𝐻). 

However, due to a need for subspace decomposition, 𝑀 4⁄  residual pyramids need to be 

calculated to encode a single vector. Since a lookup table is also necessary, the total 

complexity of the residual pyramid encoding becomes 𝑂(𝑀𝐾2𝐻). The costs of this 

method are noticeably higher than the ones for the simple pyramid encoding, especially 

if larger values of search depth parameter are used. Experimental assessment is required 

to conclude if the quality of encoding warrants the complexity increase. 

4.4 Codebook diversity problem and initialization 

The combination of a pair of approximations does not necessarily improve upon their 

individual errors. One example of such behavior is the overestimation of the target vec-

tor norm, described in the previous section as a motivation for the residual pyramid en-

coding. However, it is just one among the possible manifestations of a more general 

issue – codebook diversity problem. 

The codebook diversity problem can be described as follows. When two additive vector 

representations are combined, any information about the target vector that is covered by 

both of them is redundant (and might even lead to overestimation). Only the unique 

aspects of each individual solution contribute to the possible error reduction. The quan-

tizer should therefore maintain the diversity between codebooks; otherwise the pyramid 

encoding formulation is suboptimal. Codebook redundancy greatly reduces the repre-

sentational ability of the quantizer. The result is an overall efficiency loss, as increasing 

the number of codevectors raises computational costs, but does not significantly affect 

the quantization error. 

Again, it is possible to disregard the problem, relying on the codebook adaptation to 

provide a natural solution over time. However, as the optimization employed is very 

local in nature, the codebooks do not exhibit dramatic changes from their starting state, 

which is given by pre-encoding initialization. As a consequence, the training based on 

pyramid encoding is very sensitive to the initial choice of codebooks. 

The traditional approach to initialize an AQ learning process is to randomly generate the 

codes for the training set, sampling them from the uniform distribution (𝑀 numbers per 

vector, each in range [1, 𝐾]). The training itself then begins from the codebook adapta-

tion. However, the uniformity of codes results in mostly uniform codebooks. Beam 

Search, as stated by its authors [21], does not exhibit much dependence on a starting 

point, but pyramid encoding is hindered by lack of diversity. A different initialization 

approach would greatly benefit the performance of suggested methods. 
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Product quantization is an approach where codebook diversity is explicit and extreme. 

Since codebooks encode non-intersecting parts of the target vector, any redundancy 

between them is impossible. PQ can therefore be used as an initial estimator, before the 

proper AQ training is started. Since the computational costs of PQ are much lower, and 

the procedure needs only to be run once using a small number of iterations, the com-

plexity increase can be disregarded. After the initial PQ processing is completed, AQ 

codebook adaptation is performed on the codes. The normal iterative training procedure 

follows. 

Since there are no constraints imposed on codevectors in AQ, the orthogonality of 

codebooks is not perfectly maintained and is typically lost after the first iteration of 

training. This is beneficial, as orthogonality was earlier shown to restrain the representa-

tions. However, low interdependence of solutions means that merging is almost always 

effective in terms of error reduction. Thus it can be argued that AQ with pyramid encod-

ing represents a “compromise” between PQ and original AQ, resembling methods such 

as CQ and TQ. However, these methods explicitly state and learn their constraints, 

while AQ with pyramid encoding and PQ initialization implicitly relaxes the codebook 

orthogonality to reduce the error. 

 

Figure 16.  t-SNE embedding of pyramid encoding codebooks. 

To illustrate the above statements, AQ quantizers (𝑀 = 4, 𝐾 = 256) were trained with 

pyramid encoding on the set of 100 000 SIFT image descriptors [42]. Both random ini-

tialization and PQ were used to obtain starting codes. The resulting 128-dimensional 

codebooks were then mapped to 2-D space with t-Distributed Stochastic Neighbor Em-

bedding (t-SNE). This well-known dimensionality reduction technique is capable of 

preserving both local and global structure, making it suitable for data visualization [43]. 

The result is shown on Figure 16, where each codebook is color-coded. It is apparent 

that the PQ initialization allows codebooks to specialize, while learning from random 

codes leads to the lack of diversity.   
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Figure 17. Heatmaps of the codebooks learned with PQ-initialized pyramid encoding. 

Figure 17 shows the heatmaps of the PQ-initialized codebooks after the training. While 

strict orthogonality no longer holds, the remnants of the original subspace decomposi-

tion are immediately obvious. These unique structures result in less redundancy than 

otherwise achievable. 

Naturally, the same considerations apply to residual pyramid encoding. The random 

initialization is even less suitable here, as it does not take into account the fact that some 

codebooks encode residuals of others. This, in turn, might lead to the failure of residual 

pyramid encoding to exhibit its beneficial properties. A number of other approaches are 

suggested below. 

Residual initialization for RPE is performed as follows. A set of codes for the first two 

codebooks, which encode the target vector directly, are initialized randomly. Then the 

linear equations (16) are solved for these codes only, resulting in two complete code-

books. The reconstructions for the training data are then calculated and subtracted from 

it to obtain a set of residuals. The second pair of codebooks is then calculated from 

these residuals and uniform random codes. 
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Orthogonal initialization (or PQ initialization) applies the product quantization on the 

data and uses the resulting codes for the first adaptation step. This is no different from 

the PQ initialization of pyramid encoding and can therefore serve as a point of compari-

son. 

Hybrid initialization combines the two approaches suggested above. First PQ is applied 

on the data, but only 2 codebooks (subspaces) are used. The reconstructions are then 

subtracted from the data to obtain a set of residuals, which are encoded in the two re-

maining codebooks (from random codes). 

While it is possible to employ other quantization methods for initialization purposes, it 

is undesirable due to their higher costs and no strong guarantees of codebook diversity. 

One exception from this is optimized product quantization (OPQ), that features a rela-

tively minor overhead when compared to PQ, as well as much smaller reconstruction 

error. Adaptive allocation of dimensions to subspaces may also prove beneficial. How-

ever, experiments failed to show any significant advantage of OPQ initialization, with 

most quantizers ultimately converging to the PQ-based solution. For these reasons no 

other initialization methods are considered in the experimental setting.  
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5. EXPERIMENTAL RESULTS 

5.1 Experimental procedure and datasets 

Vector quantization-based ANN methods typically share the same experimental work-

flow. The benchmark dataset is split in two non-intersecting parts; one of these, denoted 

as a hold-out set, is used in the iterative training procedure to obtain a good set of code-

books. A hold-out set should be not only representative, but also small enough to facili-

tate faster training. The second part of the original data (the base set) is then encoded 

with trained codebooks. At this point the quantization error value can be used to esti-

mate the representation accuracy of the quantizer; there is empirical evidence that lower 

quantization error corresponds to better search performance [18].  

To calculate the recall, a query set is used, for which the ground truth is available. 

Ground truth refers to known indices of true nearest neighbors to each query vector 

amongst the vectors of the base set. Since it’s common to use only a small number of 

true nearest neighbors to measure performance, usually the ground truth contains only 

about a hundred indices for each query vector. In this work the recall values are calcu-

lated for the first true neighbor only, making recall@T equivalent to precision for a giv-

en window size T. 

Two datasets were used for experiments – SIFT1M and GIST1M. Both having been in-

troduced in [18], they became standard benchmarks in the field. Information about both 

datasets is provided in Table 1. 

Table 1. Details of datasets used in experiments 

 SIFT1M GIST1M 

Content SIFT image descriptors [44] GIST image descriptors [35] 

Dimensionality 128 960 

Base set size 1 000 000 1 000 000 

Hold-out set size 100 000 500 000 

Query set size 10 000 1 000 

Ground truth length 100 100 

 

Since both datasets are comprised of image descriptors, calculated from images freely 

available online, they can be considered a reasonable approximation for an image re-

trieval application. All the data is openly accessible from [42]. 
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The experiments were conducted with product quantization (PQ), optimized product 

quantization (OPQ) and additive quantization (AQ), to provide an indicative compari-

son for the proposed improvements. For AQ using the original Beam Search encoding 

the label AQ-B is used throughout the following sections. AQ with proposed pyramid 

encoding is denoted as AQ-P when used random initialization and as AQ-P(pq) when 

using orthogonal initialization. For the residual pyramid encoding the abbreviation 

AQ-RP is used, followed by (pq) for orthogonal initialization, (rs) for residual initializa-

tion and (h) for hybrid initialization. PQ, OPQ and AQ with non-standard encoding 

were implemented by the authors; the first two were verified against results described 

by their original creators. For AQ with Beam Search encoding a well-optimized public-

ly available implementation was used [45]. 

Table 2 lists the parameters used for the quantizers. Same values are used for all the 

experiments, unless stated otherwise.  

Table 2. Parameter values for different quantizers. 

Parameter Value 

Number of codebooks 𝑀 4 and 8 

Number of codevectors per codebook 𝐾 256 

Representation codelength 32 bits for 4 codebooks, 

64 bits for 8 codebooks 

Search depth 𝐻 AQ-B – 16 for training, 64 for base encoding 

AQ-P – 64 

AQ-RP – 16 

Number of training iterations 30 for SIFT1M 

10 for GIST1M 

Number of PQ iterations for initialization of 

AQ-P(pq), AQ-RP(pq), AQ-RP(h) 

15 

  

The search depth 𝐻 for pyramid encoding and residual pyramid encoding was chosen 

empirically, based on small-scale experiments with 10%-subsets of data (both SIFT1M 

and GIST1M were considered). It was found that 𝐻 = 64 is a suitable value for the re-

sidual encoding, as setting it higher did not have a significant performance benefit, 

while decreasing it lead to noticeable increase in quantization error. AQ-RP was found 

to be quite robust in terms of 𝐻, so smaller value was chosen to partially mitigate the 

increased encoding costs.  

To evaluate search performance, recall@1, recall@10 and recall@100 are computed on 

each dataset; on GIST1M recall@1000 is also shown. For a more complete comparison 

also the performance of several other recent methods is provided. No experiments are 

performed with these, their reported results from respective papers are used instead. In 

cases where a particular value was not reported by the original authors, it is omitted. 

The list of these methods is as follows: 
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 Optimized Cartesian K-means (OCKM) [46] is a modification of CKM (OPQ), 

where every codebook is split into two additive subcodebooks to allow for more 

representation flexibility. 

 Composite Quantization (CQ) [22] is a variant of AQ, described in Chap-

ter 3.3.3.   

 Locally Optimized Product Quantization (LOPQ) [39] is a variant of OPQ, 

briefly described in Chapter 3.2.3.  

 Stacked Quantization (SQ) [47] is a hierarchical approach, where the first code-

book is adapted to fit the original database vector, the second codebook is 

learned on a set of residuals and so on.   

 Optimized Tree Quantization (OTQ) [23] is a modification of TQ, which was 

briefly described in Chapter 3.3.3. OTQ additionally learns and applies rotation 

on the data, following exactly the steps of OPQ. 

 

5.2 Computational complexity 

Any comparison between the ANN methods needs to take into account not only the 

search performance, as measured by recall, but also the computational complexity. For 

all the compared methods the codebook adaptation costs are negligible compared with 

encoding costs. For this reason only the complexity of encoding a single vector is con-

sidered. The estimates of the original algorithm authors were used where possible, oth-

erwise the derivation was made as part of thesis work. The results are provided in Ta-

ble 3.  

Table 3. Complexity of encoding a single database vector with different quantizers 

Quantization method Complexity 

PQ 𝑂(𝐾𝐷) 
OPQ 𝑂(𝐾𝐷 + 𝐷2) 
AQ 𝑂(𝑀3𝐾𝐻 +𝑀𝐾𝐷) 

OCKM 𝑂(10𝑀𝐾𝐷) 
CQ 𝑂(3𝑀𝐾𝐷) 

LOPQ 𝑂(𝐾𝐷 + 𝐷2) 
SQ 𝑂(𝑀2𝐾𝐷) 

OTQ 𝑂(𝑀𝐾2 + 𝐾𝐷 + 𝐷2) 
AQ-P 𝑂(𝑀2𝐻2 +𝑀𝐾𝐷) 

AQ-RP 𝑂(𝑀𝐾2𝐻 +𝑀𝐾𝐷) 
 

Numeric values for OCKM and CQ entries are obtained by substituting the extra pa-

rameters with their recommended values [46][22]. LOPQ has an additional sizeable 

overhead when compared to OPQ, but it is constant in data size [39]. 

PQ, OPQ and LOPQ have a significantly smaller encoding complexity, when compared 

to other methods. Subspace decomposition is performed in a way that makes the costs 

independent from the number of codebooks 𝑀. This allows the codelength to scale up 
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for improved representation without any cost increase during training or encoding (alt-

hough distance computations will naturally become slower, as there is more table 

lookups involved). AQ encoding (Beam Search), as mentioned earlier, features prohibi-

tive complexity, especially for larger codelength, as it is cubic in the number of code-

books. Other methods (OCKM, CQ, SQ and OTQ) provide significant improvements, 

with encoding costs being quadratic or even linear in terms of 𝑀 and 𝐾. 

As can be seen from the table, pyramid encoding complexity compares favorably to the 

others. Although many other methods scale better (linearly) with an increase in 𝑀, de-

coupling the data dimensionality 𝐷 from the other parameters (due to lookup tables) 

reduces the negative impact of large vector lengths on computation. Methods such as 

OCKM, SQ and CQ may prove inferior to AQ-P in such scenario. In addition, under the 

reasonable assumption that 𝐻 < 𝐾, pyramid encoding can be expected to achieve faster 

encoding than OTQ. Computational superiority in comparison with AQ was already 

discussed in the previous chapters. 

Residual Pyramid encoding (AQ-RP) does not compare as favorably to other methods. 

Because of subspace decomposition the constant coefficient of the number of operations 

can be expected to be small, and the algorithm scales linearly with the number of code-

books, but otherwise its computational benefits can only manifest on high-dimensional 

data and only in comparison with methods without table lookups (e.g. SQ, CQ).  

5.3 SIFT1M results and comparison 

Figure 18 shows the training curves of PQ, OPQ and AQ with different encoding types 

on the SIFT1M dataset for 2 codelengths – 32 bits, corresponding to 4 codebooks, and 

64 bits, corresponding to 8 codebooks. Figure 19 shows the quantization error achieved 

on encoding the base set for all the proposed encoding types and initializations. 

Pyramid encoding with random initialization (AQ-P) provides a more accurate represen-

tation than PQ and OPQ, but is outperformed by AQ-B. With orthogonal initialization, 

however, best result so far is attained, with especially significant error reduction for 

small codes (32 bit). AQ-P(pq) also shares with PQ the fastest convergence on both 

codelengths, rivaled only by AQ-B in 64-bit case. 
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Figure 18.  Training error on SIFT1M for 32 bit codes (top) and 64 bits (bottom) 

 

Figure 19. Quantization error on SIFT1M base set. 
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Despite this, it is important to reiterate on the fact that the quantization error is not al-

ways representative of search performance. For this reason the recall values at 3 cutoff 

points (1, 10 and 100 top vectors) were calculated for the abovementioned methods. 

These results are listed in Table 4. Additional results from other competing methods, as 

reported by their respective papers, are also provided for reference. Unreported values 

are marked with a dash. For every cutoff point the highest and the second highest recall 

values are highlighted for clarity. 

Table 4. Recall@T values on SIFT1M 

64 bits 

(M = 8) 

R 
@1 

R 
@10 

R 
@100 

32 bits 

(M = 4) 

R 
@1 

R 
@10 

R 
@100 

PQ 0,2243 0,599 0,9243 PQ 0,0518 0,2297 0,5945 

OPQ 0,2433 0,6384 0,9402 OPQ 0,06756 0,2725 0,6576 

AQ-B 0,3114 0,7733 0,983 AQ-B 0,1066 0,415 0,8255 

OCKM 0,2735 0,6804 0,9448 OCKM – 0,348 0,742 

CQ 0,288 0,7159 0,9666 CQ – – – 

LOPQ 0,2972 0,7031 0,9577 LOPQ 0,1342 0,3858 0,738 

SQ 0,2756 0,6942 0,9621 SQ 0,094 0,3445 0,7342 

OTQ 0,317 0,748 0,972 OTQ 0,093 0,368 0,793 

AQ-P 0,2051 0,5808 0,9115 AQ-P 0,0560 0,2438 0,6248 

AQ-P (pq) 0,2846 0,7125 0,9661 AQ-P (pq) 0,1177 0,3983 0,7941 

AQ-RP (pq) 0,2631 0,6815 0,955 AQ-RP (pq) 0,0963 0,3574 0,7411 

AQ-RP (rs) 0,2151 0,5882 0,9165 AQ-RP (rs) 0,0475 0,2229 0,5982 

AQ-RP (h) 0,2787 0,6956 0,9614 AQ-RP (h) 0,1162 0,397 0,7866 

 

AQ-P with random initialization does not demonstrate a very good search performance, 

barely surpassing PQ. Pyramid encoding with orthogonal initialization, however, 

achieves second best results (after AQ and LOPQ) for 32-bit codes and remains very 

competitive with other approaches with 64-bit codes. As discussed earlier, it also has an 

advantage in computational costs, making it a very viable approach, especially with 

small number of codebooks. 

Residual pyramid encoding (AQ-RP) is generally inferior to other methods, especially 

when its complexity is taken into account. It does achieve results comparable with 

AQ-P when hybrid initialization is used, but otherwise there is no apparent benefit from 

its use.  

5.4 GIST1M results and comparison 

GIST1M data has a significantly higher dimensionality when compared to SIFT1M 

(960 against 128), as well as a larger hold-out set (500 000 against 100 000). This leads 
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to large amounts of computation involved in any experiments, especially for quantizer 

training. Consequently, experiments with GIST1M were limited to the most promising 

approaches, as inferred from the preliminary estimates on smaller data subsets. Unfor-

tunately, this also applies to the authors of competing methods, meaning that fewer per-

formance results are reported, especially for algorithms with high encoding complexity. 

Figure 20 shows the quantization error of PQ, OPQ and AQ with different encoding 

types on the GIST1M dataset for 2 codelengths – 32 bits, corresponding to 4 codebooks, 

and 64 bits, corresponding to 8 codebooks. 

 

Figure 20.  Quantization error on GIST1M base set. 

The proposed methods are notably inferior to the existing approaches on GIST1M data. 

Residual pyramid encoding achieves only slightly lower quantization error than PQ, 

regardless of the initialization. Residual pyramid encoding attains better results, but can 

barely compare with OPQ and AQ regardless of the code length. 

Small-scale ANN experiments on GIST1M subsets confirmed that the recall is corre-

spondingly lower for proposed methods. Search performance of pyramid encoding with 

random initialization AQ-P, as well as residual pyramid encoding with residual initiali-

zation AQ-RP(rs) are reported. These were found to be representative, as the initializa-

tion had a negligible effect on the search. Table 5 contains the relevant results. 
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Table 5. Recall@T values on GIST1M 

64 bits  

(M = 8) 

R 

@1 

R 

@10 

R 

@100 

R 

@1000 

32 bits 

(M = 4) 

R 

@1 

R 

@10 

R 

@100 

R 

@1000 

PQ 0,076 0,218 0,504 0,8582 PQ 0,023 0,0675 0,1756 0,5045 

OPQ 0,118 0,334 0,715 0,9465 OPQ 0,054 0,1419 0,3964 0,7905 

AQ-B – – – – AQ-B 0,069 0,189 0,4666 0,809 

OCKM 0,13 0,3579 0,7197 – OCKM – 0,172 0,4683 0,816 

CQ 0,1352 0,3765 0,7294 0,972 CQ – – – – 

LOPQ 0,116 0,33 0,656 0,918 LOPQ 0,049 0,13 0,362 0,71 

SQ 0,1148 0,3153 0,6983 0,9559 SQ 0,0585 0,1599 0,43 0,795 

OTQ – – – – OTQ – – – – 

AQ-P – – – – AQ-P 0,047 0,157 0,382 0,726 

AQ-RP 

(rs) 

0,097 0,268 0,563 0,88 AQ-RP 

(rs) 

0,057 0,156 0,385 0,752 

 

In the absence of reported AQ results for 64-bit codes, CQ maintains superiority with 

8 codebooks, and would be likely to outperform OCKM on 32-bit codes, if the corre-

sponding information was available. Both suggested approaches demonstrate relatively 

poor performance. They also do not benefit as much as others from the increase in num-

ber of codebooks, failing to surpass even OPQ with 64-bit codes. 

5.5 Analysis of the results 

Pyramid encoding on SIFT1M dataset demonstrates impressive performance. The earli-

er observation about the importance of codebook diversity is now supported with exper-

imental evidence. Orthogonal initialization of AQ-P allows it to achieve significantly 

lower quantization error, especially with shorter codelengths. This property may prove 

beneficial, if the quantizer is used purely for data compression or another similar pur-

pose.  

The ANN performance of AQ with pyramid encoding is either comparable with or 

higher than other recent methods. Even with longer codes, when other AQ derivatives 

surpass the AQ-P in terms of recall, it stays competitive due to its mild computational 

requirements. The only quadratic components of AQ-P complexity are number of code-

books 𝑀, which is limited in scale and is rarely above 𝑀 = 16, and search depth 𝐻, 

which can be set to a number as low as 𝐻 = 64. 

Ultimately the good performance of pyramid encoding on SIFT1M can be explained 

with an internal structure of the data. SIFT descriptors are obtained by concatenating 16 

histograms of 8 bins each (thus 128 dimensions) [44]. Resulting vectors are thus very 

suitable for a straightforward decomposition into 4, 8 and 16 subspaces, which was one 
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of the major factors in product quantization success [18]. Referring to the theoretical 

foundations of OPQ (see Chapter 3.2.3), one can observe that for SIFT descriptors the 

variances of subspaces would be already roughly balanced, as well as independent 

(since elements may come from different histograms). When applied to SIFT data, OPQ 

finds a more optimal decomposition via rotation, reducing the existing inter-subspace 

dependence and balancing the variance further. AQ, in turn, drops the subspaces as-

sumption entirely, solving a much harder problem in virtually unconstrained space. The 

pyramid encoding with orthogonal initialization starts from the PQ solution and then 

gradually relaxes the subspace constraints. The codebooks are slightly “perturbed” dur-

ing the iterative learning procedure and cease to be strictly orthogonal, which allows for 

a significantly lower quantization error.  

GIST descriptors have a completely different structure; each sample of GIST1M dataset 

is composed of three 320-dimensional subvectors, calculated from separate planes of  

RGB colorspace [18]. Each subvector is in turn comprised of a number of normalized 

orientation histograms with varying number of bins. This makes the “natural” PQ sub-

space decomposition of GIST significantly less efficient, especially considering that the 

histograms, unlike in SIFT, are global and share no spatial relation. Every histogram 

also represents a separate image property, meaning that subspace variances are less like-

ly to be balanced. For this reason the performance of PQ on GIST1M dataset is quite 

poor. 

Same conclusion, it seems, can be extended to the orthogonal initializations of proposed 

encoding schemes. Since both pyramid encoding and residual pyramid encoding are 

inherently local in their optimization approach, they fail to improve from the poorly 

chosen starting point. Random initialization, in turn, suffers from lack of codebook di-

versity, regardless of the data origin. Residual and hybrid initializations slightly allevi-

ate the situation, but not enough to compete with more optimal subspace decomposition 

of OPQ. AQ avoids the issue, as its Beam Search optimization process is much less 

greedy; it is therefore more global and is able to find a better solution even from a ran-

dom initial guess.  
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6. CONCLUSIONS AND FUTURE WORK 

The original intent behind the pyramid encoding was to reduce computational costs and 

make AQ more practical, achieving a compromise between complexity and search per-

formance. This goal was achieved, although not to a perfect degree. As the experiments 

demonstrated, pyramid encoding is indeed capable of performing on par or better than 

the other methods, but is ultimately dependent on the suitability of the initial guess for a 

given data distribution. Meanwhile, the complexity of pyramid encoding is among the 

lowest of the methods with comparable quantization error and recall. It is also clear that 

there is room for further analysis and improvement, but careful consideration must first 

be given for the current results. 

The limitations of pyramid encoding stem directly from the assumptions it is based on. 

Random initialization, unlike in Beam Search, suffers from the local nature of the opti-

mization. Codebook uniformity implies redundancy, meaning that the hierarchical 

merging cannot provide a sufficient error decrease. Since the codebooks can only be 

adapted to a specific database representation (codes) during training, there is no oppor-

tunity for them to improve. Orthogonal initialization is the opposite extreme: as the 

codebooks represent non-overlapping subspaces of the data, no redundancy is possible. 

Unfortunately, the encoding is not capable of mitigating the suboptimality of space de-

composition, resulting in subpar performance. 

Residual Pyramid encoding, despite its plausible formulation, fails to improve upon the 

pyramid encoding, especially considering its higher computation costs. If the residual 

initialization is used, the algorithm is outperformed even by randomly initialized pyra-

mid encoding. Since the residuals are calculated from the uniformly initialized code-

books, they are naturally uniform themselves. As no further constraint is enforced dur-

ing the training, the learned codebooks are not distinguishable from the randomly ini-

tialized ones. Hybrid encoding can potentially produce diverse codebooks, but capturing 

the residual of PQ seems to be inferior to simply applying PQ with larger 𝑀. 

Residual Pyramid encoding has yet another drawback when compared to pyramid en-

coding. For larger numbers of codebooks (𝑀 > 4) residual pyramid encoding suffers 

from fixed PQ-like subspace decomposition, severely limiting the benefits of better rep-

resentation. The computational benefits of linear scaling with respect to 𝑀 are thus 

mostly irrelevant, as search performance improvement is minor. 
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6.1 Future work 

To further improve upon the pyramid encoding, two general approaches may be consid-

ered. A conservative approach would be to make changes in the encoding, such as 

providing new initializations, introducing new constraints and or altering the pyramid 

structure. Alternatively, one can change the codebook adaptation step as well; this 

would mean altering the overall training scheme, leading to an effectively new quantizer 

that cannot share the same name with AQ. 

Optimal rotation can be considered a logical step to improve upon the current results. It 

has contributed to the success of several predecessor methods (e.g. OPQ) and has a 

sound theoretical basis. Since OPQ initialization was not regarded as beneficial, it is 

reasonable to assume that the rotation matrix has to be adapted iteratively during train-

ing. While optimal rotation can never lead to increase of quantization error, it also in-

creases complexity, especially in extremely high-dimensional cases. Training conver-

gence can also be expected to proceed slower, due to currently learned codebooks being 

partially invalidated after the data transformation. Experimental assessment is necessary 

to decide if this line of work is worth pursuing. 

If the adaptation procedure is changed, some of the previously discussed pyramid en-

coding drawbacks can potentially be avoided. For instance, the codebook recalculation 

can be integrated into the pyramid ascent, performed on each level separately. The 

quantizer learned with such an approach would significantly differ from AQ, as code-

books are no longer equivalent to each other during the adaptation step. This “fine-

grained” control over codevector learning has an immediate benefit – the diversity of 

codebooks would be easier to maintain. Moreover, in this case the total number of oper-

ations performed throughout the complete training phase is not expected to change 

much. The computational costs of such an approach would thus remain well below the 

upper bound, imposed by AQ.     

Another possible encoding option, which was briefly touched upon in Chapter 4.1, is 

the angle-based quantization. The whole database of vectors can be decomposed to 

norms (scalar values) and directions (unit vectors). The former can be efficiently quan-

tized as a set of scalars, while the latter can be processed with the pyramid encoding. As 

outlined in Chapter 4.1, this transformation can simplify the formulations, reducing the 

full vectors to the cosines of angles between them. This problem can be easier to solve 

than the original one. Consider, for example, that the codebook diversity requirement in 

such case would amount to simply keeping codevectors with different orientations. 

As was mentioned previously, a number of issues common to many quantization-based 

ANN methods stem from the local nature of the optimization. While locality and greed-

iness are necessary to cope with otherwise highly complex encoding problems, there is 

a family of optimization techniques aimed at such tasks – a metaheuristics family [48]. 
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It encompasses random search, simulated annealing, swarm optimization, genetic algo-

rithms and a number of other approaches that solve the black-box problems, relying 

only on the objective function evaluations. While most metaheuristics are known for 

slow convergence and high computational costs, they are also capable of finding a glob-

al solution on extremely difficult fitness landscapes, where the local search fails. Addi-

tional research is required to determine the suitability of these methods to the encoding, 

as well as to find the ways to apply the domain-specific knowledge. It is possible that 

the global optimization would be capable of locating much better solutions for both the 

codebooks and the database codes, justifying the increase in computation.  

Finally, there are more application areas to explore with described methods. For exam-

ple, additive quantization can be used for approximate calculation of dot products be-

tween a given vector (equivalent to query) and a large number of other vectors (equiva-

lent to database). This approach may prove useful when numerous linear models need to 

be estimated, or in large-scale kernel methods. Alternatively, since codebooks and as-

signments are learned in an unsupervised manner, analysis of the resulting quantizer can 

potentially provide insight into the data’s internal structure; tasks like clustering or di-

mensionality reduction are possible, given specific formulations. 
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