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Orientation covariant aggregation of local

descriptors with embeddings

Giorgos Tolias, Teddy Furon & Hervé Jégou

Inria

Abstract. Image search systems based on local descriptors typically
achieve orientation invariance by aligning the patches on their dominant
orientations. Albeit successful, this choice introduces too much invariance
because it does not guarantee that the patches are rotated consistently.
This paper introduces an aggregation strategy of local descriptors that
achieves this covariance property by jointly encoding the angle in the
aggregation stage in a continuous manner. It is combined with an efficient
monomial embedding to provide a codebook-free method to aggregate
local descriptors into a single vector representation.
Our strategy is also compatible and employed with several popular en-
coding methods, in particular bag-of-words, VLAD and the Fisher vector.
Our geometric-aware aggregation strategy is effective for image search,
as shown by experiments performed on standard benchmarks for image
and particular object retrieval, namely Holidays and Oxford buildings.

1 Introduction

T
his paper considers the problem of particular image or particular object re-
trieval. This subject has received a sustained attention over the last decade.

Many of the recent works employ local descriptors such as SIFT [1] or variants [2]
for the low-level description of the images. In particular, approaches derived from
the bag-of-visual-words framework [3] are especially successful to solve problems
like recognizing buildings. They are typically combined with spatial verifica-
tion [4] or other re-ranking strategies such as query expansion [5].

Our objective is to improve the quality of the first retrieval stage, before
any re-ranking is performed. This is critical when considering large datasets, as
re-ranking methods depend on the quality of the initial short-list, which typi-
cally consists of a few hundred images. The initial stage is improved by better
matching rules, for instance with Hamming embedding [6], by learning a fine
vocabulary [7], or weighting the distances [8, 9]. In addition to the SIFT, it is
useful to employ some geometrical information associated with the region of
interest [6]. All these approaches rely on matching individual descriptors and
therefore store some data on a per descriptor basis. Moreover, the quantization
of the query’s descriptors on a relatively large vocabulary causes delays.

Recently, very short yet effective representations have been proposed based
on alternative encoding strategies, such as local linear coding [10], the Fisher
vector [11] or VLAD [12]. Most of these representations have been proposed first
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for image classification, yet also offer very effective properties in the context of
extremely large-scale image search. A feature of utmost importance is that they
offer vector representations compatible with cosine similarity. The representa-
tion can then be effectively binarized [13] with cosine sketches, such as those
proposed by Charikar [14] (a.k.a. LSH), or aggressively compressed with princi-
pal component dimensionality reduction (PCA) to very short vectors. Product
quantization [15] is another example achieving a very compact representation of
a few dozens to hundreds bytes and an efficient search because the comparison
is done directly in the compressed domain.

This paper focuses on such short- and mid-sized vector representations of im-
ages. Our objective is to exploit some geometrical information associated with
the regions of interest. A popular work in this context is the spatial pyramid
kernel [16], which is widely adopted for image classification. However, it is inef-
fective for particular image and object retrieval as the grid is too rigid and the
resulting representation is not invariant enough, as shown by Douze et al. [17].

Here, we aim at incorporating some relative angle information to ensure that
the patches are consistently rotated. In other terms, we want to achieve a covari-
ant property similar to that offered by Weak Geometry Consistency (WGC) [6],
but directly implemented in the coding stage of image vector representations like
Fisher, or VLAD. Some recent works in classification [18] and image search [19]
consider a similar objective. They suffer from several shortcomings. In particu-
lar, they simply quantize the angle and use it as a pooling variable. Moreover
the encoding of a rough approximation of the angles is not straightforwardly
compatible with generic match kernels.

In contrast, we achieve the covariant property for any method provided that
it can be written as a match kernel. This holds for the Fisher vector, LLC, bag-
of-words and efficient match kernels listed in [20]. Our method is inspired by
the kernel descriptor of Bo et al. [21], from which we borrow the idea of angle
kernelization. Our method however departs from this work in several ways. First,
we are interested in aggregating local descriptors to produce a vector image
representation, whereas they construct new local descriptors. Second, we do
not encode the gradient orientation but the dominant orientation of the region
of interest jointly with the corresponding SIFT descriptor, in order to achieve
the covariant property of the local patches. Finally, we rely on explicit feature
maps [22] to encode the angle, which provides a much better approximation than
efficient match kernel for a given number of components.

This paper is organized as follows. Section 2 introduces notation and dis-
cusses some important related works more in details. Our approach is presented
in Section 3 and evaluated in Section 4 on several popular benchmarks for image
search, namely Oxford5k [4], Oxford105k and Inria Holidays [23]. These exper-
iments show that our approach gives a significant improvement over the state
of the art on image search with vector representations. Importantly, we achieve
competitive results by combining our approach with monomial embeddings, i.e.,
with a codebook-free approach, as opposed to coding approaches like VLAD.
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2 Preliminaries: match kernels and monomial embeddings

We consider the context of match kernels. An image is typically described by
a set of local descriptors X = {x1, . . . ,xi, . . . }, xi ∈ R

d, ‖xi‖ = 1. Similar to
other works [24, 20, 6], two images described by X and Y are compared with a
match kernel K of the form

K(X ,Y) = β(X )β(Y)
∑

x∈X

∑

y∈Y

k(x,y), (1)

where k is referred to as the local kernel and where the proportionality factor β
ensures that K(X ,X ) = K(Y,Y) = 1. A typical way to obtain such a kernel is
to map the vectors x to a higher-dimensional space with a function ϕ : Rd →
R

D, such that the inner product similarity evaluates the local kernel k(x,y) =
〈ϕ(x)|ϕ(y)〉. This approach then represents a set of local descriptors by a single
vector

X = β(X )
∑

x∈X

ϕ(xi), (such that ‖X‖ = 1) (2)

because the match kernel is computed with a simple inner product as

K(X ,Y) = β(X )β(Y)
∑

x∈X

∑

y∈Y

〈ϕ(x)|ϕ(y)〉 = 〈X|Y〉. (3)

This framework encompasses many approaches such as bag-of-words [3, 25],
LLC [10], Fisher vector [11], VLAD [12], or VLAT [26]. Note that some non-linear
processing, such as power-law component-wise normalization [8, 27], is often ap-
plied to the resulting vector. A desirable property of k is to have k(x,y) ≈ 0
for unrelated features, so that they do not interfere with the measurements be-
tween the true matches. It is somehow satisfied with the classical inner product
k(x,y) = 〈x|y〉. Several authors [24, 26, 9] propose to increase the contrast be-
tween related and unrelated features with a monomial match kernel of degree p
of the form

K(X ,Y) = β(X )β(Y)
∑

x∈X

∑

y∈Y

〈x|y〉p. (4)

All monomial (and polynomial) embeddings admit exact finite-dimensional fea-
ture maps whose length rapidly increases with degree p (in O(dp/p!)). The order
p = 2 has already demonstrated some benefit, for instance recently for semantic
segmentation [28] or in image classification [26]. In this case, the kernel is equiv-
alent to comparing the set of features based on their covariance matrix [26].
Equivalently, by observing that some components are identical, we can define
the embedding ϕ2 : Rd → R

d(d+1)/2 mapping x = [x1, . . . , xd]
⊤ to

ϕ2(x) = [x2
1, . . . , x

2
d, x1x2

√
2, . . . , xd−1xd

√
2]⊤. (5)

Similarly, the simplified exact monomial embedding associated with p = 3 is the
function ϕ3 : Rd → R

(d3+3d2+2d)/6 defined as

ϕ3(x) = [x3
1, . . . , x

3
d, x

2
1x2

√
3, . . . , x2

dxd−1

√
3, x1x2x3

√
6, . . . , xd−2xd−1xd

√
6]⊤.
(6)
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Fig. 1. Similarities between regions of interest, based on SIFT kernel k (left), angle
consistency kernel kθ (middle) and both (right). For each local region, we visualize the
values k(x,y), kθ(∆θ) and their product by the colors of the link (red=1).

3 Covariant aggregation of local descriptors

The core idea of the proposed method is to exploit jointly the SIFT descriptors
and the dominant orientation θx associated with a region of interest. For this
purpose, we now assume that an image is represented by a set X ⋆ of tuples,
each of the form (x, θx), where x is a SIFT descriptor and θx ∈ [−π, π] is the
dominant orientation. Our objective is to obtain an approximation of a match
kernel of the form

K⋆(X ⋆,Y⋆) = β(X ⋆)β(Y⋆)
∑

(x,θx)∈X⋆

∑

(y,θy)∈Y⋆

k(x,y) kθ(θx, θy) (7)

= 〈X⋆|Y⋆〉, (8)

where k is a local kernel identical to that considered in Section 2 and kθ re-
flects the similarity between angles. The interest of enriching this match kernel
with orientation is illustrated by Figure 1, where we show that several incorrect
matches are downweighted thanks to this information.

The kernel in (7) resembles that implemented in WGC [6] with a voting ap-
proach. In contrast, we intend to approximate this kernel with an inner product
between two vectors as in (8), similar to the linear match kernel simplification
in (3). Our work is inspired by the kernel descriptors [21] of Bo et al., who also
consider a kernel of a similar form, but at the patch level, to construct a local
descriptor from pixel attributes, such as gradient and position.

In our case, we consider the coding/pooling stage and employ a better ap-
proximation technique, namely explicit feature maps [22], to encode X ⋆. This
section first explains the feature map of the angle, then how it modulates the
descriptors, and finally discusses the match kernel design and properties.
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3.1 A feature map for the angle

The first step is to find a mapping α : [−π, π] → R
M from an angle θ to a vector

α(θ) such that α(θ1)
⊤
α(θ2) = kθ(θ1 − θ2). The function kθ : R → [0, 1] is a

shift invariant kernel which should be symmetric (kθ(∆θ) = kθ(−∆θ)), pseudo-
periodic with period of 2π and monotonically decreasing over [0, π]. We consider
in particular the following function:

kVM(∆θ) =
exp(κ cos(∆θ))− exp(−κ)

2 sinh(κ)
. (9)

It is derived from Von Mises distribution f(∆θ;κ), which is often considered as
the probability density distribution of the noise of the measure of an angle, and
therefore regarded as the equivalent Gaussian distribution for angles. Although
this is not explicitly stated in their paper, the regular Von Mises distribution is
the kernel function implicitly used by Bo et al. [21] for kernelizing angles. Our
function kVM is a shifted and scaled variant of Von Mises, designed such that its
range is [0, 1], which ensures that kVM(π) = 0.

The periodic function kVM can be expressed as a Fourier series whose coeffi-
cients are (see [29][Eq. (9.6.19)]):

kVM(∆θ) =

(

I0(κ)− e−κ + 2

∞
∑

n=1

In(κ) cos(n∆θ)

)

.
1

2 sinh(κ)
, (10)

where In(κ) is the modified Bessel function of the first kind of order n. We now
consider the truncation k̄N

VM
of the series to the first N terms:

k̄N
VM

(∆θ) =

N
∑

n=0

γn cos(n∆θ) with γ0 =
(I0(κ)− e−κ)

2 sinh(κ)
and γn =

In(κ)

sinh(κ)
if n > 0.

(11)
We design the feature map α(θ) as follows:

α(θ) = (
√
γ0,

√
γ1 cos(θ), . . . ,

√
γN cos(Nθ),

√
γ1 sin(θ), . . . ,

√
γN sin(Nθ))⊤.

(12)
This vector has 2N + 1 components. Moreover

α(θ1)
⊤
α(θ2) = γ0 +

N
∑

n=1

γn(cos(nθ1) cos(nθ2) + sin(nθ1) sin(nθ2)) (13)

=

N
∑

n=0

γn cos(n(θ1 − θ2)) (14)

= k̄N
VM

(θ1 − θ2) ≈ kVM(θ1 − θ2) (15)

This process of designing a feature map is explained in full details by Vedaldi and
Zisserman [22]. This feature map gives an approximation of the target function
kVM, which is more accurate as N is bigger.
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Fig. 2. Function kVM for different values of κ and its approximation k̄N

VM using 1, 3 and
10 frequencies, as implicitly defined by the corresponding mapping α : [π, π] → R

2N+1.

Figure 2 illustrates the function kVM for several values of the parameter κ
and its approximation k̄N

VM
for different values of N . First note that k̄N

VM
may

not fulfill the original requirements: its range might be wider than [0, 1] and it
might not be monotonically decreasing over [0, π]. Larger values of κ produce
a more “selective” function of the angle, yet require more components (larger
N) to obtain an accurate estimation. Importantly, the approximation stemming
from this explicit angle mapping is better than that based on efficient match
kernels [20], which converges slowly with the number of components. Efficient
match kernels are more intended to approximate kernels on vectors than on
scalar values. As a trade-off between selectivity and the number of components,
we set κ=8 and N=3 (see Section 4). Accordingly, we use k̄3

VM
as kθ in the sequel.

The corresponding embedding α : R → R
7 maps any angle to a 7-dimensional

vector.

Remark: Instead of approximating a kernel on angles with finite Fourier se-
ries, one may rather consider directly designing a function satisfying our initial
requirements (pseudo-period, symmetric, decreasing over [0, π]), such as

kP (∆θ) = cos(∆θ/2)P with P even. (16)

This function, thanks to power reduction trigonometric identities for even P , is
re-written as

kP (∆θ) =

P/2
∑

p=0

γp cos(p∆θ) (17)

with γ0 =
1

2P

(

P

P/2

)

, γp =
1

2P−1

(

P

P/2− p

)

0 < p ≤ P/2. (18)

Applying (12) leads to a feature map α(θ) with P + 1 components such that
α(θ1)

⊤
α(θ2) = kP (θ1−θ2). For this function, the interesting property is that the

scalar product is exactly equal to the target kernel value kP (θ1 − θ2), and that
the original requirements now hold. From our experiments, this function gives
reasonable results, but requires more components than k̄VM to achieve a shape
narrow around ∆θ = 0 and close to 0 otherwise. The results for our image search
application task using this function are slightly below our Von Mises variant for
a given dimensionality. So, despite its theoretical interest we do not use it in our
experiments. Ultimately, one would rather directly learn a Fourier embedding
for the targeted task, in the spirit of recent works on Fourier kernel learning [30].
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Fig. 3. Distribution of patch similarity for different values of orientation difference.
In this figure, we split the angular space into 8 equally-sized bins and present the
similarity distribution separately for each of these bins. Horizontal axis represents the
similarity value between matching features.Top: distribution of similarities with kernel
on SIFTs. Bottom: Distribution after modulation with α.

3.2 Modulation and covariant match kernel

The vector α encoding the angle θ “modulates”1 any vector x (or pre-mapped
descriptor ϕ(x)) with a function m : R

2N+1 × R
D → R

(2N+1)D. Thanks to
classical properties of the Kronecker product ⊗, we have

m(x,α(θ)) = x⊗α(θ) = (x1α(θ)⊤, x2α(θ)⊤. . . . , xdα(θ)⊤)⊤. (19)

We now consider two pairs of vectors and angle, (x, θx) and (y, θy), and
their modulated descriptors m(x,α(θx)) and m(y,α(θy)). In the product space
R

(2N+1)D, the following holds:

m(x,α(θx))
⊤m(y,α(θy) = (x⊗α(θx))

⊤(y ⊗α(θy))

= (x⊤ ⊗α(θx)
⊤)(y ⊗α(θy)) = (x⊤y)⊗ (α(θx)

⊤
α(θy))

= (x⊤y)kθ(θx − θy). (20)

Figure 3 shows the distribution of the similarities between regions of interest
before and after modulation, as a function of the difference of angles. Interest-
ingly, there is no obvious correlation between the difference of angle and the
SIFT: the similarity distribution based on SIFT is similar for all angles. This
suggests that the modulation with angle provides complementary information.

Combination with coding/pooling techniques. Consider any coding method ϕ
that can be written as match kernel (Fisher, LLC, Bag-of-words, VLAD, etc).
The match kernel in (7), with our kθ approximation, is re-written as

K⋆(X ⋆,Y⋆) =β(X ⋆)β(Y⋆)
∑

(x,θx)∈X⋆

∑

(y,θy)∈Y⋆

m(ϕ(x),α(θx))
⊤m(ϕ(y),α(θy)),

=β(X ⋆)





∑

(x,θx)

m(ϕ(x),α(θx))





⊤

β(Y⋆)





∑

(y,θy)

m(ϕ(y),α(θy)



,

(21)

1 By analogy to communications, where modulation refers to the process of encoding
information over periodic waveforms.
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where we observe that the image can be represented as the summation X⋆ of the
embedded descriptors modulated by their corresponding dominant orientation,
as

X⋆ = β(X ⋆)
∑

(x,θx)∈X⋆

m(ϕ(x),α(θx)). (22)

This representation encodes the relative angles and is already more discrimina-
tive than an aggregation that does not consider them. However, at this stage, the
comparison assumes that the images have the same global orientation. This is
the case on benchmarks like Oxford5k building, where all images are orientated
upright, but this is not true in general for particular object recognition.

3.3 Rotation invariance

We now describe how to produce a similarity score when the orientations of
related images may be different. We represent the image vector X⋆ as the con-
catenation of 2N + 1 D-dimensional subvectors associated to one term of the
finite Fourier series: X⋆ = [X⋆

0
⊤,X⋆

1,c
⊤,X⋆

1,s
⊤, . . . ,X⋆

N,c
⊤,X⋆

N,s
⊤]⊤. The vector

X⋆
0 is associated with the constant term in the Fourier expansion, X⋆

n,c and X⋆
n,s,

1 ≤ n ≤ N , correspond to the cosine and sine terms, respectively.
Imagine now that this image undergoes a global rotation of angle θ. Denote

X̆ the new set of pairs (x, θ̆x) with θ̆x = θx − θ, and X̆⋆ is the new image vector
derived from these local descriptors. It occurs that X̆⋆

0 = X⋆
0 because this term

does not depend on the angle, and that, for a given frequency bin n, elementary
trigonometry identities lead to

X̆⋆
n,c = X⋆

n,c cosnθ +X⋆
n,s sinnθ (23)

X̆⋆
n,s = −X⋆

n,c sinnθ +X⋆
n,s cosnθ. (24)

This in turn shows that ‖X̆⋆‖ = ‖X⋆‖. Therefore the rotation has no effect on
the normalization factor β(X ⋆).

When comparing two images with such vectors, the linearity of the inner
product ensures that

〈X̆⋆|Y⋆〉 = 〈X⋆
0|Y⋆

0〉+
N
∑

n=1

cosnθ
(

〈X⋆
n,c|Y⋆

n,c〉+ 〈X⋆
n,s|Y⋆

n,s〉
)

(25)

+

N
∑

n=1

sinnθ
(

−〈X⋆
n,c|Y⋆

n,s〉+ 〈X⋆
n,s|Y⋆

n,c〉
)

. (26)

Here, we stress that the similarity between two images is a real trigonometric
polynomial in θ (rotation angle) of degree N . Its 2N + 1 components are fully
determined by computing 〈X⋆

0|Y⋆
0〉 and the inner products between the subvec-

tors associated with each frequency, i.e., 〈X⋆
n,c|Y⋆

n,c〉, 〈X⋆
n,s|Y⋆

n,s〉, 〈X⋆
n,c|Y⋆

n,s〉
and 〈X⋆

n,s|Y⋆
n,c〉. Finding the maximum of this polynomial amounts to finding

the rotation maximizing the score between the two images.



Orientation covariant aggregation of local descriptors with embeddings 9

Computing the coefficients of this polynomial requires a total of D×(1+4N)
elementary operations for a vector representation of dimensionality D×(1+2N),
that is, less than twice the cost of the inner product between X⋆ and Y⋆. Once
these components are obtained, the cost of finding the maximum value achieved
by this polynomial is negligible for large values of D, for instance by simply
sampling a few values of θ. Therefore, if we want to offer the orientation invariant
property, the complexity of similarity computation is typically twice the cost of
that of a regular vector representation (whose complexity is equal to the number
of dimensions).

Remark: This strategy for computing the scores for all possible orientations of
the query is not directly compatible with non-linear post-processing of X⋆ such
as component-wise power-law normalization [27], except for the subvector X⋆

0.
We propose two possible options to overcome this problem.

1. The naive strategy is to compute the query for several hypothesis of angle
rotation, typically 8. In theory, this multiplies the query complexity by the
same factor 8. However, in practice, it is faster to perform the matrix-matrix
multiplication, with the right matrix representing 8 queries, than computing
separately the corresponding 8 matrix-vector multiplications. We use this
simpler approach in the experimental section.

2. Alternately, the power-law normalization is adapted to become compatible
with our strategy: we compute the modulus of the complex number repre-
sented by two components (sin and cos) associated with the same frequency
n and the same original component in ϕ(x). These two components are then
divided by the square-root (or any power) of this modulus. Experimentally,
this strategy is as effective as the naive option.

4 Experiments

We evaluate the performance of the proposed approaches and compare with state
of the art methods on two publicly available datasets for image and particular
object retrieval, namely Inria Holidays [23] and Oxford Buildings 5k [4]. We also
combine the latter with 100k distractor images to measure the performance on
a larger scale. The merged dataset is referred to as Oxford105k. The retrieval
performance is measured with mean Average Precision (mAP) [4].

Our approach modulates any coding/pooling technique operating as a match
kernel. Therefore, we evaluate the benefit of our approach combined with several
coding techniques, namely

◦ VLAD [12], which encodes a SIFT descriptor by considering the residual
vector to the centroid.

◦ The Fisher vector [11, 27, 31]. For image classification, Chatfield et al. [32]
show that it outperforms concurrent coding techniques, in particular LLC [10].
We adopt the standard choice for image retrieval and use only the gradient
with respect to the mean [12].
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◦ Monomomial embeddings of order 2 and 3 applied on local descriptors (See
below for pre-processing), i.e., the functions ϕ2 in (5) and ϕ3 in (6). For the
sake of consistency, we also denote by ϕ1 the function ϕ1 : x → x.

We refer to these methods combined with our approach with the symbol “⊗”:
VLAD⊗, Fisher⊗, ϕ1⊗, ϕ2⊗ and ϕ3⊗, correspondingly. In addition, we compare
against the most related work, namely the recent CVLAD [19] method, which
also aims at producing an image vector representation integrating the dominant
orientations of the patches. Whenever the prior work is not referenced, results
are produced using our own (improved) implementations of VLAD, Fisher and
CVLAD, so that the results are directly comparable with the same features.

4.1 Implementation Details

Local descriptors. We use the Hessian-Affine detector [33] to extract the re-
gions of interest, that are subsequently described by SIFT descriptors [1] post-
processed with RootSIFT [34]. Then, following the pre-processing required for
the Fisher vector [11, 27, 12], we apply PCA to reduce the vector to 80 compo-
nents. An exception is done for VLAD and CVLAD with which we only use the
PCA basis to center and rotate descriptors as suggested by Delhumeau [35], with-
out dimensionality reduction. The resulting vector is subsequently ℓ2-normalized.

The improved Hessian-Affine detector of Perdoch et al. [36] improves the
retrieval performance. However, we do not use it, since it ignores rotations by
making the gravity vector assumption. Instead, we use the original detector
modified so that it has similar parameters (patch size set to 41).

Codebook. For all methods based on codebooks, we only consider distinct datasets
for learning. More precisely and following common practice, the k-means and
GMM (for VLAD and Fisher, respectively) are learned on Flickr60k for Inria
Holidays and Paris6k [37] for Oxford buildings. We rely on the Yael library [38]
for codebook construction and VLAD and Fisher encoding.

Post-processing. The final image vector obtained by each method is power-law
normalized [8, 27, 12]. This processing improves the performance by efficiently
handling the burstiness phenomenon. Exploiting the dominant orientation in
our covariant match kernel provides a complementary way to further handle the
same problem. We mention that using the dominant orientation is shown effective
in a recent work by Torii et al. [39]. With our angle modulation, this post-
processing inherently captures and down weights patches with similar dominant
orientation. The power-law exponent is set to 0.4 for Fisher and VLAD and to 0.2
for monomial embeddings. These values give best or close-to-best performance
for the initial representations. The resulting vector is ℓ2-normalized.

In addition to power-law normalization, we rotate the aggregated vector rep-
resentation with a PCA rotation matrix [40, 41]. This aims at capturing the
co-occurrences to down-weight them either by whitening [40] or a second power-
law normalization [41]. We adopt the latter choice (with exponent 0.5) to avoid
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Fig. 4. Left: Performance on Holidays dataset of modulated VLAD for different values
of κ and for different approximations. Right: Performance comparison of modulated
VLAD for increasing number of components of the angle feature map. Zero corresponds
to original VLAD (not modulated). A codebook of 32 visual words is used.

the sensitivity to eigenvalues (in whitening) when learning PCA with few input
data. We refer to this Rotation and Normalization as RN in our experiments.

Optionally, to produce compact representations, we keep only the first few
components (the most energetic ones) and ℓ2-normalize the shortened vector.

Query rotation. In order to obtain rotation invariance jointly with power-law
normalization and RN, we apply rotations of the query image and apply indi-
vidual queries as described in Section 3 (option 1). We apply 8 query rotations
on Holidays dataset. On Oxford5k, we rather adopt the common choice of not
considering other possible orientations: Possible rotation of the query object is
usually not considered since all the images are up-right.

4.2 Impact of the parameters

The impact of the angle modulation is controlled by the function kθ parametrized
by κ and N . As shown in Figure 2, the value κ typically controls the “band-
witdh”, i.e., the range of ∆θ values with non-zero response. The parameter N
controls the quality of the approximation, and implicitly constrains the achiev-
able bandwidth. It also determines the dimensionality of the output vector.

Figure 4 (left) shows the impact of these parameters on the performance. As
to be expected, there is a trade-off between defining too narrow or too large. The
optimal performance is achieved with κ in the range [2, 8]. Figure 4 (right) shows
the performance for increasing number of frequencies, which rapidly converges
to a fixed mAP. This is the mAP of the exact evaluation of (7). We set N = 3
as a compromise between dimensionality expansion and performance. Therefore
the modulation multiplies the input dimensionality by 7.

4.3 Benefit of our approach

Table 1 shows the benefit of modulation when applied to the monomial embed-
dings ϕ1, ϕ2 and ϕ3. The results are on par with the recent coding techniques like
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Method ϕ1 ϕ1⊗ ϕ2 ϕ2⊗ ϕ3 ϕ3⊗

RN × × ×

N – 1 3 6 – – 1 3 1 3 – 1
#dim 80 240 560 1,040 3240 3,240 9,720 22,680 9,720 22,680 88,560 265,680
mAP 35.4 48.9 59.5 63.2 59.7 71.6 68.8 73.7 75.3 79.9 60.0 72.5

Table 1. Impact of modulation on monomial embeddings of order 1, 2 and 3. The
performance is reported for Holidays dataset. RN = Rotation and Normalization.
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Fig. 5. Impact of modulation on VLAD and Fisher: Performance versus dimensionality
of the final vector for VLAD (left) and Fisher (right) compared to their modulated
counterparts. Codebook size is shown with text labels. Results for Holidays dataset.

VLAD or Fisher improved with modulation. We consider the obtained perfor-
mance as one of our main achievements, because the representation is codebook-
free and requires no learning. In addition, we further show the benefit of combin-
ing monomial embeddings with RN. This significantly boosts performance with
the same vector dimensionality and negligible computational overhead.

We compare VLAD, Fisher and monomial embeddings to their modulated
counterparts. Figure 5 shows that modulation significantly improves the perfor-
mance for the same codebook size. However, given that the modulated vector is
×7 larger (with N = 3), the comparison focuses on the performance obtained
with the same dimensionality. Even in this case, modulated VLAD⊗ and Fisher⊗
offer a significant improvement. We can conclude that it is better to increase the
dimensionality by modulation than using a larger codebook.

4.4 Comparison to other methods

We compare our approach, in particular, to CVLAD, as this work also intends to
integrate the dominant orientation into a vector representation. We consistently
apply 8 query rotations for both CVLAD and our method on Holidays dataset.
Figure 6 shows the respective performance measured for different codebooks.
The proposed methods appear to consistently outperform CVLAD, both for
the same codebook and for the same dimensionality. Noticeably, the modulated
embedded monomial ϕ2⊗ is on par with or better than CVLAD.

We further conduct experiments using oriented dense [19] to compare VLAD⊗
to CVLAD. They achieve 87.2 and 86.5 respectively, on Holidays with codebook
of size 512. This score is significantly higher than the one reported in [19]. Corre-
sponding scores on Oxford5k are 50.5 and 50.7, respectively. However, note that
it is very costly to densely extract patches aligned with dominant orientation.
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Method #C #dim RN Holidays Oxford5k Oxford105k

VLAD [12] 64 4,096 55.6 37.8 -
Fisher [12] 64 4,096 59.5 41.8 -
VLAD [12] 256 16,384 58.7 - -
Fisher [12] 256 16,384 62.5 - -
Arandjelovic [42] 256 32,536 65.3 55.8 -
Delhumeau [35] 64 8,192 65.8 51.7 45.6
Zhao [19] 32 32,768 68.8 42.7 -
VLAD⊗ 32 28,672 74.8 52.5 46.3
VLAD⊗ 32 28,672 × 81.0 61.8 53.9

Fisher⊗ 32 17,920 76.0 51.0 44.9
Fisher⊗ 32 17,920 × 81.2 60.7 52.2
Fisher⊗ 64 35,840 × 84.1 64.8 -
ϕ2⊗ n/a 22,680 73.7 50.1 44.3
ϕ2⊗ n/a 22,680 × 79.9 60.5 51.9
ϕ3⊗ n/a 265,680 72.5 53.5 -

Table 2. Performance comparison with state of the art approaches. Results with the
use of full vector representation. #C: size of codebook. #dim: Number of components
of each vector. Modulation is performed with N = 3 for all cases, except to ϕ3, where
N = 1. We do not use any re-ranking or spatial verification in any experiment. VLAD⊗

achieves 87.2 on Holidays and 50.5 on Oxford5k with #C=512 and oriented dense.

Method #dim full dim dim→1024 dim→128

VLAD 4,096 40.3 34.7 24.0
VLAD⊗ 28,672 53.9 40.7 (+7.0) 27.5 (+3.5)

Fisher 2,560 39.3 37.3 25.2
Fisher⊗ 17,920 52.2 39.9 (+2.6) 26.5 (+1.3)

ϕ2 3,240 35.8 31.1 20.4
ϕ2⊗ 22,680 51.9 37.7 (+6.6) 24.0 (+3.6)

Table 3. Oxford105k: Performance comparison (mAP) after dimensionality reduction
with PCA into 128 and 1024 components. The results with the full vector representation
are with RN. Observe the consistent gain (in parentheses) brought by our approach for
a fixed output dimensionality of 1,024 or 128 components.



14 Giorgos Tolias, Teddy Furon & Hervé Jégou

We also compare to other prior works and present results in Table 2 for Hol-
idays, Oxford5k and Oxford105k. We outperform by a large margin the state of
the art with full vector representations. Further, our approach is arguably com-
patible with these concurrent approaches, which may bring further improvement.
Note that RN also boosts performance for VLAD and Fisher. In particular with
a codebook of size 32, they achieve 50.0 and 48.6 respectively on Oxford5k. Our
scores on Holidays with Fisher⊗ and RN are also competitive to those reported
by state-of-the-art methods based on large codebooks [9]. To our knowledge,
this is the first time that a vector representation compatible with inner product
attains such image search performance.

On Oxford5k we do not evaluate multiple query rotations for our method. A
simple way to enforce up-right objects for baseline methods is to use up-right
features. Performance of VLAD with codebook of size 256 decreases from 51.3
to 49.4 by doing so, presumably because of small object rotations.

Finally, Table 3 reports the performance after dimensionality reduction to
128 or 1024 components. The same set of local features and codebooks are used
for all methods. We observe a consistent improvement over the original encoding.

4.5 Timings

The image representation created by modulating the monomial embedding ϕ2 us-
ingN = 3 takes on average 68ms for a typical image with 3,000 SIFT descriptors.
The resulting aggregated vector representation has 22,680 components. The av-
erage query time using cosine similarity on Oxford5k is 44ms assuming no query
rotation and 257ms with the use of 8 possible fixed rotations (with the naive
strategy discussed in Section 3.3). The corresponding timings for Oxford105k
and vectors reduced to 128 dimensions are 55ms and 134ms, respectively. Note,
these timings are better than those achieved by a bag-of-words representation
with a large vocabulary, for which the quantization typically takes above 1 sec-
ond with an approximate nearest neighbor search algorithm like FLANN [43].

5 Conclusion

Our modulation strategy integrates the dominant orientation directly in the cod-
ing stage. It is inspired by and builds upon recent works on explicit feature maps
and kernel descriptors. Thanks to a generic formulation provided by match ker-
nels, it is compatible with coding strategies such as Fisher vector or VLAD. Our
experiments demonstrate that it gives a consistent gain compared to the original
coding in all cases, even after dimensionality reduction. Interestingly, it is also
very effective with a simple monomial kernel, offering competitive performance
for image search with a coding stage not requiring any quantization.

Whatever the coding stage that we use with our approach, the resulting rep-
resentation is compared with inner product, which suggests that it is compliant
with linear classifiers such as those considered in image classification.
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