67 research outputs found

    Polynomial-Time Algorithms for Quadratic Isomorphism of Polynomials: The Regular Case

    Get PDF
    Let f=(f_1,,f_m)\mathbf{f}=(f\_1,\ldots,f\_m) and g=(g_1,,g_m)\mathbf{g}=(g\_1,\ldots,g\_m) be two sets of m1m\geq 1 nonlinear polynomials over K[x_1,,x_n]\mathbb{K}[x\_1,\ldots,x\_n] (K\mathbb{K} being a field). We consider the computational problem of finding -- if any -- an invertible transformation on the variables mapping f\mathbf{f} to g\mathbf{g}. The corresponding equivalence problem is known as {\tt Isomorphism of Polynomials with one Secret} ({\tt IP1S}) and is a fundamental problem in multivariate cryptography. The main result is a randomized polynomial-time algorithm for solving {\tt IP1S} for quadratic instances, a particular case of importance in cryptography and somewhat justifying {\it a posteriori} the fact that {\it Graph Isomorphism} reduces to only cubic instances of {\tt IP1S} (Agrawal and Saxena). To this end, we show that {\tt IP1S} for quadratic polynomials can be reduced to a variant of the classical module isomorphism problem in representation theory, which involves to test the orthogonal simultaneous conjugacy of symmetric matrices. We show that we can essentially {\it linearize} the problem by reducing quadratic-{\tt IP1S} to test the orthogonal simultaneous similarity of symmetric matrices; this latter problem was shown by Chistov, Ivanyos and Karpinski to be equivalent to finding an invertible matrix in the linear space Kn×n\mathbb{K}^{n \times n} of n×nn \times n matrices over K\mathbb{K} and to compute the square root in a matrix algebra. While computing square roots of matrices can be done efficiently using numerical methods, it seems difficult to control the bit complexity of such methods. However, we present exact and polynomial-time algorithms for computing the square root in Kn×n\mathbb{K}^{n \times n} for various fields (including finite fields). We then consider \\#{\tt IP1S}, the counting version of {\tt IP1S} for quadratic instances. In particular, we provide a (complete) characterization of the automorphism group of homogeneous quadratic polynomials. Finally, we also consider the more general {\it Isomorphism of Polynomials} ({\tt IP}) problem where we allow an invertible linear transformation on the variables \emph{and} on the set of polynomials. A randomized polynomial-time algorithm for solving {\tt IP} when f=(x_1d,,x_nd)\mathbf{f}=(x\_1^d,\ldots,x\_n^d) is presented. From an algorithmic point of view, the problem boils down to factoring the determinant of a linear matrix (\emph{i.e.}\ a matrix whose components are linear polynomials). This extends to {\tt IP} a result of Kayal obtained for {\tt PolyProj}.Comment: Published in Journal of Complexity, Elsevier, 2015, pp.3

    Proxy Blind Signature using Hyperelliptic Curve Cryptography

    Get PDF
    Blind signature is the concept to ensure anonymity of e-coins. Untracebility and unlinkability are two main properties of real coins and should also be mimicked electronically. A user has to fulll above two properties of blind signature for permission to spend an e-coin. During the last few years, asymmetric cryptosystems based on curve based cryptographiy have become very popular, especially for embedded applications. Elliptic curves(EC) are a special case of hyperelliptic curves (HEC). HEC operand size is only a fraction of the EC operand size. HEC cryptography needs a group order of size at least 2160. In particular, for a curve of genus two eld Fq with p 280 is needeed. Therefore, the eld arithmetic has to be performed using 80-bit long operands. Which is much better than the RSA using 1024 bit key length. The hyperelliptic curve is best suited for the resource constraint environments. It uses lesser key and provides more secure transmisstion of data

    Non-conventional digital signatures and their implementations – A review

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19713-5_36The current technological scenario determines a profileration of trust domains, which are usually defined by validating the digital identity linked to each user. This validation entails critical assumptions about the way users’ privacy is handled, and this calls for new methods to construct and treat digital identities. Considering cryptography, identity management has been constructed and managed through conventional digital signatures. Nowadays, new types of digital signatures are required, and this transition should be guided by rigorous evaluation of the theoretical basis, but also by the selection of properly verified software means. This latter point is the core of this paper. We analyse the main non-conventional digital signatures that could endorse an adequate tradeoff betweeen security and privacy. This discussion is focused on practical software solutions that are already implemented and available online. The goal is to help security system designers to discern identity management functionalities through standard cryptographic software libraries.This work was supported by Comunidad de Madrid (Spain) under the project S2013/ICE-3095-CM (CIBERDINE) and the Spanish Government project TIN2010-19607

    MQ Signature and Proxy Signature Schemes with Exact Security Based on UOV Signature

    Get PDF
    Multivariate public key cryptography which relies on MQ (Multivariate Quadratic) problems is one of the main approaches to guarantee the security of communication in the post-quantum world. In this paper, we propose a combined MQ signature scheme based on the yet unbroken UOV (Unbalanced Oil and Vinegar) signature if parameters are properly chosen. Our scheme can not only reduce the public key size of the UOV signature, but also provide more tighter bound of security against chosen-message attack in the random oracle model. On the other hand, we propose a proxy signature scheme based on our proposed combined signature scheme. Additionally, we give a strict security proof for our proxy signature scheme. Finally, we present experiments for all of our proposed schemes and the baseline schemes. Comparisons with related schemes show that our work has some advantages on performance along with more strict security

    Data Service Outsourcing and Privacy Protection in Mobile Internet

    Get PDF
    Mobile Internet data have the characteristics of large scale, variety of patterns, and complex association. On the one hand, it needs efficient data processing model to provide support for data services, and on the other hand, it needs certain computing resources to provide data security services. Due to the limited resources of mobile terminals, it is impossible to complete large-scale data computation and storage. However, outsourcing to third parties may cause some risks in user privacy protection. This monography focuses on key technologies of data service outsourcing and privacy protection, including the existing methods of data analysis and processing, the fine-grained data access control through effective user privacy protection mechanism, and the data sharing in the mobile Internet

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    On the Design and Improvement of Lattice-based Cryptosystems

    Get PDF
    Digital signatures and encryption schemes constitute arguably an integral part of cryptographic schemes with the goal to meet the security needs of present and future private and business applications. However, almost all public key cryptosystems applied in practice are put at risk due to its vulnerability to quantum attacks as a result of Shor's quantum algorithm. The magnitude of economic and social impact is tremendous inherently asking for alternatives replacing classical schemes in case large-scale quantum computers are built. Lattice-based cryptography emerged as a powerful candidate attracting lots of attention not only due to its conjectured resistance against quantum attacks, but also because of its unique security guarantee to provide worst-case hardness of average-case instances. Hence, the requirement of imposing further assumptions on the hardness of randomly chosen instances disappears, resulting in more efficient instantiations of cryptographic schemes. The best known lattice attack algorithms run in exponential time. In this thesis we contribute to a smooth transition into a world with practically efficient lattice-based cryptographic schemes. This is indeed accomplished by designing new algorithms and cryptographic schemes as well as improving existing ones. Our contributions are threefold. First, we construct new encryption schemes that fully exploit the error term in LWE instances. To this end, we introduce a novel computational problem that we call Augmented LWE (A-LWE), differing from the original LWE problem only in the way the error term is produced. In fact, we embed arbitrary data into the error term without changing the target distributions. Following this, we prove that A-LWE instances are indistinguishable from LWE samples. This allows to build powerful encryption schemes on top of the A-LWE problem that are simple in its representations and efficient in practice while encrypting huge amounts of data realizing message expansion factors close to 1. This improves, to our knowledge, upon all existing encryption schemes. Due to the versatility of the error term, we further add various security features such as CCA and RCCA security or even plug lattice-based signatures into parts of the error term, thus providing an additional mechanism to authenticate encrypted data. Based on the methodology to embed arbitrary data into the error term while keeping the target distributions, we realize a novel CDT-like discrete Gaussian sampler that beats the best known samplers such as Knuth-Yao or the standard CDT sampler in terms of running time. At run time the table size amounting to 44 elements is constant for every discrete Gaussian parameter and the total space requirements are exactly as large as for the standard CDT sampler. Further results include a very efficient inversion algorithm for ring elements in special classes of cyclotomic rings. In fact, by use of the NTT it is possible to efficiently check for invertibility and deduce a representation of the corresponding unit group. Moreover, we generalize the LWE inversion algorithm for the trapdoor candidate of Micciancio and Peikert from power of two moduli to arbitrary composed integers using a different approach. In the second part of this thesis, we present an efficient trapdoor construction for ideal lattices and an associated description of the GPV signature scheme. Furthermore, we improve the signing step using a different representation of the involved perturbation matrix leading to enhanced memory usage and running times. Subsequently, we introduce an advanced compression algorithm for GPV signatures, which previously suffered from huge signature sizes as a result of the construction or due to the requirement of the security proof. We circumvent this problem by introducing the notion of public and secret randomness for signatures. In particular, we generate the public portion of a signature from a short uniform random seed without violating the previous conditions. This concept is subsequently transferred to the multi-signer setting which increases the efficiency of the compression scheme in presence of multiple signers. Finally in this part, we propose the first lattice-based sequential aggregate signature scheme that enables a group of signers to sequentially generate an aggregate signature of reduced storage size such that the verifier is still able to check that each signer indeed signed a message. This approach is realized based on lattice-based trapdoor functions and has many application areas such as wireless sensor networks. In the final part of this thesis, we extend the theoretical foundations of lattices and propose new representations of lattice problems by use of Cauchy integrals. Considering lattice points as simple poles of some complex functions allows to operate on lattice points via Cauchy integrals and its generalizations. For instance, we can deduce for the one-dimensional and two-dimensional case simple expressions for the number of lattice points inside a domain using trigonometric or elliptic functions

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Developing an Automatic Generation Tool for Cryptographic Pairing Functions

    Get PDF
    Pairing-Based Cryptography is receiving steadily more attention from industry, mainly because of the increasing interest in Identity-Based protocols. Although there are plenty of applications, efficiently implementing the pairing functions is often difficult as it requires more knowledge than previous cryptographic primitives. The author presents a tool for automatically generating optimized code for the pairing functions which can be used in the construction of such cryptographic protocols. In the following pages I present my work done on the construction of pairing function code, its optimizations and how their construction can be automated to ease the work of the protocol implementer. Based on the user requirements and the security level, the created cryptographic compiler chooses and constructs the appropriate elliptic curve. It identifies the supported pairing function: the Tate, ate, R-ate or pairing lattice/optimal pairing, and its optimized parameters. Using artificial intelligence algorithms, it generates optimized code for the final exponentiation and for hashing a point to the required group using the parametrisation of the chosen family of curves. Support for several multi-precision libraries has been incorporated: Magma, MIRACL and RELIC are already included, but more are possible
    corecore