
Research Article

International Journal of Distributed
Sensor Networks
2020, Vol. 16(4)
� The Author(s) 2020
DOI: 10.1177/1550147720914775
journals.sagepub.com/home/dsn

Post quantum proxy signature scheme
based on the multivariate public key
cryptographic signature

Jiahui Chen1, Jie Ling1, Jianting Ning2, Emmanouil Panaousis3,
George Loukas4, Kaitai Liang3 and Jiageng Chen5,6

Abstract
Proxy signature is a very useful technique which allows the original signer to delegate the signing capability to a proxy
signer to perform the signing operation. It finds wide applications especially in the distributed environment where the
entities such as the wireless sensors are short of computational power and needed to be convinced to the authenticity
of the server. Due to less proxy signature schemes in the post-quantum cryptography aspect, in this article, we investi-
gate the proxy signature in the post-quantum setting so that it can resist against the potential attacks from the quantum
adversaries. A general multivariate public key cryptographic proxy scheme based on a multivariate public key crypto-
graphic signature scheme is proposed, and a heuristic security proof is given for our general construction. We show that
the construction can reach Existential Unforgeability under an Adaptive Chosen Message Attack with Proxy Key Exposure
assuming that the underlying signature is Existential Unforgeability under an Adaptive Chosen Message Attack. We then use
our general scheme to construct practical proxy signature schemes for three well-known and promising multivariate
public key cryptographic signature schemes. We implement our schemes and compare with several previous construc-
tions to show our efficiency advantage, which further indicates the potential application prospect in the distributed net-
work environment.

Keywords
Post-quantum cryptography, multivariate public key cryptography, general construction, proxy signature, provable
security

Date received: 28 December 2018; accepted: 2 March 2020

Handling Editor: José Camacho

Introduction

The characteristic that some specified agents have the
capability to proceed with the signing operations on
behalf of the original signer turns out to be very attrac-
tive in case of the original signers temporal absence,
short of computational power, and so on. It has
already been shown in many previous researches that
the proxy signature can be very helpful especially for
application in the environments such as the wireless
sensor networks,1 Internet of things,2 distributed
shared object systems,3 grid computing,4 global

1School of Computers, Guangdong University of Technology, Guangzhou,

China
2School of Computing, National University of Singapore, Singapore
3Surrey Centre for Cyber Security, University of Surrey, Guildford, UK
4University of Greenwich, London, UK
5School of Computer, Central China Normal University, China
6Central China Normal University Wollongong Joint Institute, Wuhan,

China

Corresponding author:

Jiageng Chen, School of Computer, Central China Normal University,

No. 152 Luoyu Road, Wuhan, Hubei 430079, China.

Email: chinkako@gmail.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access pages

(https://us.sagepub.com/en-us/nam/open-access-at-sage).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/323986432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1177/1550147720914775
http://journals.sagepub.com/home/dsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1550147720914775&domain=pdf&date_stamp=2020-04-03

distribution networks,5 and so on. However, most of
the previous constructions are based on the hardness of
number theory such as the integer factorization and
discrete logarithm. According to Shor’s algorithm,6

Rivest–Shamir–Adleman (RSA) and some other algo-
rithms based on the number theory will be broken in
polynomial time after the emergence of quantum com-
puters. And as a result, it will eventually lead to the
break of most of the traditional cryptosystem.

To deal with the upcoming quantum computers, cryp-
tographic researchers from different countries are begin-
ning to devote themselves to explore the cryptosystems
that can resist quantum computer attacks, that is,
researching on the post-quantum cryptography.7 Post-
quantum cryptography can be divided into five cate-
gories: code-based cryptography, lattice-based cryptogra-
phy, hash-based cryptography, multivariate public key
cryptography (MPKC), and isogeny-based cryptography.
The National Institute for Standards and Technology
(NIST) has announced a formal call for proposals for
post-quantum cryptography in fall 2016.8 Thereafter, it
formally provided the first round (round 1) submissions
of post-quantum cryptographic standard protocols in
December 2017.

The security of MPKC is based on solving a set of
random quadratic multivariate equations on a finite
field. So far, evidence does not reveal that quantum
computers could solve this kind of questions effectively.
Plus, MPKC schemes are in general much more effec-
tive than RSA in computing. But there are two draw-
backs that become obstacles to use MPKCs. The first
one is the large key sizes. The second drawback is that
the security of MPKCs relies both on the multivariate
quadratic (MQ) problem and on the Isomorphism of
Polynomials (IP) problem, so the schemes in MPKCs
are subjected to not only direct attacks but also struc-
tural attacks. This makes many MPKCs insecure, such
as Matsumoto–Imai scheme,9 balanced Oil, and
Vinegar.10 Under this situation, a number of attempts
have been undertaken in order to tackle these two
problems. For example, Courtois11 studied provable
security against key-only attack on Quartz, but the
security against the chosen-message attack is unclear.
Beyond these techniques, the Unbalanced Oil and
Vinegar (UOV) scheme12 is a well-known and deeply
studied scheme in MPKC, Bulygin et al.13 then pre-
sented an idea to reduce the public key size of the UOV
signature scheme and provided provable security
against direct attacks. Then, Sakumoto et al.14 gave
provable security of UOV against chosen-message
attack, using the idea given in the study by Bellare and
Rogaway,15 which concatenates a random seed r with
the signing message M so as to make the basic trapdoor
one-way function of UOV become full domain hash
(FDH). In Crypto2011, Sakumoto et al.16 proposed
provably secure identification/signature schemes based

on the MQ problem, which is a great improvement for
the security of MPKCs.

According to NIST Computer Security Resource
Center (CSRC): Cryptographic Technology Group,8

MPKC is popular for its efficient signature scheme in
the post-quantum cryptography (PQC) aspect and
signature schemes are promising. As shown in the sub-
mission, there are nine signature schemes, named dou-
ble exponentiation with matrix exponent (DME),8

DualModeMS,17 GeMSS,18 Gui,19 Hi-MQ, lifted unba-
lanced oil and vinegar scheme (LUOV)20 (a variant of
UOV), multivariate quadratic digital signature scheme
(MQDSS),21 Rainbow,22 TPSig.23 Among them, only
Rainbow is the old scheme, and others are all published
in the recent 5 years and the best scheme is LUOV,
which has a combined not more than 20 kB size.
However, it is the newest one which need time to con-
firm its security. Another promising scheme is MQDSS,
which is provable secure one and the key size is rela-
tively small. However, its resultant signature is too large
compared with the original small message. Also, the
running time of two schemes is not fast which in fact is
the most advantage of MPKC schemes compared with
other PQC schemes. Other schemes such as Rainbow is
good at the running time and the security consideration
but suffers from large key size.

Also, multivariate signature schemes with special
properties, such as proxy signature, ring signature, are
proposed. For example, Tang and Xu24 proposed the
first MPKC proxy signature scheme based on the prob-
lem of IP. Petzoldt et al.25 proposed the first provable
MPKC threshold ring signature scheme based on the
result of Sakumoto et al.14 Chen et al.26 proposed the
first online/offline signature based on UOV by utilizing
the linear construction of the central map of UOV, so
that the proposed scheme can be distributed in the wire-
less sensor networks. In addition, multivariate sequen-
tial aggregate signature scheme by Petzoldt et al.27 and
multivariate blind signature scheme by El Bansarkhani
et al.28 are proposed to enrich this area.

Since proxy signature scheme is widely used as a com-
munication solution in distributed sensor networks, that
is, the solution in healthcare wireless sensor networks in
Verma et al.29 In this article, we focus on developing mul-
tivariate signature schemes with special properties and
investigate how to build an MPKC proxy scheme and
then we will use this idea to build a series of MPKC proxy
schemes based on current promising MPKCs (UOV,
Rainbow, MQDSS). A highlight of our work is the gen-
eral proxy scheme is formally provable security under the
assumption that the basing scheme is secure, so based on
the promising MPKC signature shcemes, our practical
resultant proxy schemes from the general construction are
considered promising proxy MPKC schemes.

This article is structured as follows: First, we introduce
how to build a general MPKC proxy scheme, specifically

2 International Journal of Distributed Sensor Networks

we give a formal proof for the general scheme assuming
the underlying MPKC scheme is secure. Then we propose
three practical proxy signature schemes: Proxy-UOV,
Proxy-Rainbow, and Proxy-MQ. Next, we run some
experiments to verify the security and efficiencies of our
schemes. Finally, we draw a conclusion.

Preliminaries

In this section, we give the preliminaries of this article.

Proxy signature scheme

A proxy signature protocol allows an entity, called the
original signer, to delegate another entity, called a proxy
signer, to sign messages on behalf of itself, in case of tem-
poral absence, lack of time or computational power, and
so on. The first efficient proxy signature was introduced
by Mambo et al.30 A proxy signature scheme consists of
the following algorithms: Setup, KeyGen, Delegate,
ProxyKeyGen, ProxySign, ProxyVerify, where
the Setup and KeyGen correspond with an ordinary sig-
nature scheme

Q
=(Setup,KeyGen,Sign,Verify).

Assume (pkA, skA) and (pkB, skB) generated by KeyGen
are the public/private key pairs of the original signer and
the proxy signer, respectively. Delegate is a randomized
algorithm for the delegation of signing right, that is,
u Delegate(w, skA, pkA) is run by the original signer.
The input w can be regarded as a warrant. In general, w

includes the original signer’s public key pkA, the proxy
signer’s public key pkB, a delegated time period t, and
other information. ProxyKeyGen algorithm generates
the proxy key psk for the proxy signer. For a message
m, the proxy signer can generate a proxy signature by
ProxySign, that is, s ProxySign (m, (w, u), psk).
Anyone who receives the proxy signature can verify
the validity of the signature by ProxyVerify.
ProxyVerify outputs 1 if the signature is valid; other-
wise, it outputs 0.

MPKC signature scheme

Usually, an MPKC scheme over a finite field k is
defined as

P= L18 F 8 L2

in which F is a set of m quadratic multivariate polyno-
mials in n variables, L1 is an affine transformation from
F

m
q to F

m
q , and L2 is an affine transformation from F

n
q to

F
n
q.

For an MPKC digital signature scheme, the setup
algorithm Setup (1l) takes 1l as input and then out-
puts the system parameter param which mainly contains
(q, n,m), and all the arithmetic operations hereafter are
over this finite field.

The key generation algorithm KeyGen(param) takes
param as input and then outputs pk =P and
sk =(L1,F, L2).

The signing algorithm Sign(M , sk) is described in
Algorithm 1.

Finally, the verification algorithm Verify(s, M , P)
returns 1 if P(s)=M , otherwise returns 0.

Security model for MPKC signature scheme

We quantify the security of MPKC signature scheme
from the idea in Bellare and Rogaway.15 A signature
scheme is said to be (ε, t, qs)� secure if an attacker,
given the public key, allowed to run in time t, and
allowed a chosen-message attack in which he or she
can get qs legitimate message–signature pairs, can be
successful in forging the signature of a new message
with probability at most ε.

Definition 1. We say that the MPKC signature scheme is
(ε, t, qs)� secure if there is no forger A who takes a pub-
lic key generated through (pk, �) KeyGen (1l), after at
most qs signature queries, and t processing time, then
outputs a valid signature with probability at least ε.

UOV and Rainbow

The UOV scheme is one of the earliest MPKC signature
scheme. Even though its construction is very simple, it
turns out to be one of the most secure MPKC scheme
so far. However, Rainbow is one of the most popular
schemes in MPKC schemes and rapid development in
recent years. It could be regarded as an extension of
UOV and has obvious advantages over efficiency and
key size.

The central map F of UOV is composed of a set of
so-called Oil–Vinegar polynomials which have the fol-
lowing form

Xo

i= 1

Xv

j= 1

aijxix
0
j +

Xv

i= 1

Xv

j= 1

bijx
0
ix
0
j +

Xo

i= 1

cixi +
Xv

j= 1

djx
0
j+e

ð1Þ

Algorithm 1. Sign(M, sk).

Input
M: the message;
sk: sk=(L1, F, L2), the private key;

Output
s: the signature on message m;

Begin
Step 1. The signer computes M1 = L�1

1 (M);
Step 2. The signer computes M2 = F�1(M1);
Step 3. The signer computes s= L�1

2 (M2);
Step 4. Return s;
End

Chen et al. 3

In this polynomial, there are two kinds of variables:
Oil variables (xi) and Vinegar variables (x0j). Once we
assign a set of random values for Vinegar variables, the
central map becomes a set of linear polynomials and
can be easily inverted. When v.o, this scheme is called
UOV scheme, the construction of a UOV scheme is as
follows

P=F 8 T ð2Þ

where T is an affine translation from F
n
q to F

n
q. The con-

struction does not have to compose an invertible affine
transformation on the left.

In the case of Rainbow, Rainbow is an extension of
UOV scheme. It could be viewed as a multi-layer UOV
scheme. Each layer is an independent UOV and each
layer’s variables (including Oil variables and Vinegar
variables) are Vinegar variables of the next layer.
Specifically, let us assume a Rainbow has l layers. We
use vi to represent the number of Vinegar variables of
the ith layer and oi to represent the number of Oil vari-
ables of the ith layer. Then we have vi+ 1 = oi + vi and
vl + 1 = n. Each layer’s Vinegar variables set and Oil
variables set are represented as fx1, : : : , xvi

g,
fxvi + 1, : : : , xvi + oi

g and the ith layer’s polynomials have
the form of

Xvi

i= 1

Xvi + oi

j= vi + 1

aijxixj +
Xvi

i= 1

Xvi

j= 1

bijxixj +
Xvi + oi

i= 1

cixi + d ð3Þ

We can see that the above polynomial has the basic
Oil–Vinegar polynomial form. Finally, the construction
of a Rainbow scheme is given as follows

P= L1 8 F 8 L2 ð4Þ

The MQ-based signature scheme

At CRYPTO 2011 Sakumoto et al.16 presented a new
identification scheme whose security is solely based on
the MQ problem. In the scheme, every user chooses a
vector s 2 F

n
q as his secret key and computes his public

key as v=F(s) 2 F
m
q . To identify himself to a verifier,

he or she has to show that he or she indeed knows s

(without revealing any information about s). Thus, to
create a zero-knowledge proof of the vector s, we need
the polar form of the multivariate system F, which is
defined as

G(x, y)=F(x+ y)� F(x)� F(y)

Note that G(x, y) is bilinear in x and y, the knowl-
edge of s is equivalent to knowing a tuple
(r0, r1, t0, t1, e0, e1) satisfying

G(t0, r1)+ e0 = v� F(r1)� G(t1, r1)� e1

and (t0, e1)= (r0 � t1,F(r0)� e1). The five-pass identi-
fication scheme between a prover and a verifier is as
follows

1. The prover chooses randomly t0, r02R

F
n
q, e02RF

m
q , set r1 = s� r0 and computes com-

mitments c0 =Com(r0, t0, e0), c1 =Com(r1,
G(t0, r1)+ e0) and then sends (c0, c1) to the
verifier.

2. The verifier chooses randomly a choice a2RFq

and sends a to the prover.
3. After receive a, the prover computes

t1 =ar0 � t0, e1 =aF(r0) and then sends (t1, e1)
to the verifier.

4. The verifier chooses randomly the challenge
Ch2Rf0, 1g and sends Ch to the prover.

5. If Ch= 0, the prover sends Rsp= r0 back; if
Ch= 1, the prover sends Rsp= r1 back.

6. If the verifier chooses 0 as the challenge Ch, he
or she checks whether c0 =Com(r0,ar0�
t0,aF(r0)� e1) hold. If the verifier chooses 1 as
the challenge Ch, he or she checks whether
c1 =Com(r1,av� F(r1)� G(t1, r1)� e1) holds.

This scheme has a cheating probability per round of
3/4 when q= 2. Therefore, one needs at least 133
rounds to reduce the impersonation probability to less
than 2�80. Sakumoto et al.16 propose for their five-pass
schemes that q= 2, n= 80,m= 80 to achieve a security
level of 80 bits.

Using the Fiat–Shamir paradigm,31 anyone can
transform the MQ identification scheme into a signa-
ture scheme, and a good example is the MQDSS21

which is transformed from five-pass MQ identification
scheme. Below we give a short description of the MQ
signature scheme. For the full description of the MQ
scheme, we recommend to read.21 The setup and key
generation process for the signature scheme work just
the same as the identification scheme.

To generate a signature for a message m, the signer
gathers the commitments for all rounds, creates the
commitments c

(1)
0 , c

(1)
1 , : : : c(round)

0 , c
(round)
1 , and then

uses a hash function H to produce the challenge vector
Ch and compute the according responses Rsp(1), : : : ,
Rsp(round). Finally, the signature is s =(c(1)0 jjc

(1)
1 jj: : :

c
(round)
0 jjc(round)

1)jjRsp(1)jj: : : jjRsp(round).
To verify the authenticity of a signature, the verifier

parses s, computes the challenge vector Ch, and tests
for each i 2 1, : : : , round if Rspi is a correct response to
Chi according to c

(i)
0 , c

(i)
1 .

Security model for proxy signature

Schuldt et al.32 presented the security notion Existential
Unforgeability under an Adaptive Chosen Message
Attack with Proxy Key Exposure (ps-uf-pke) for

4 International Journal of Distributed Sensor Networks

multilevel proxy signature scheme. Later, Tang and
Xu24 modified this notion to single-level proxy signa-
ture scheme and adopted as the security model for a
proxy signature. In the analysis of our proxy scheme,
we also use this model, and we recommend to read
more information about this model in Tang and Xu.24

We summarize the security model for a proxy signature
in the following.

In our security model for proxy signature, the defini-
tion is the same as that in Tang and Xu.24 In the security
model in Tang and Xu,24 it uses only one list psklist to
store the proxy key which generated by C, but it does not
use lists to store the original signature query and the
proxy query, this is ambiguous for someone to calculate
the number and kinds of query oracle. So, in our security
model, we use three initialized empty lists: OSList,
delList(w), pskList(w) which are maintained by a challen-
ger C. The OSList stores all the signatures which are quer-
ied by the original signature query, and the delList(w)
stores the submitted warrants and the corresponding
delegation. The pskList(w) stores all the proxy key which
is generated by C from the warrants in the delList(w).
Using these three lists, we can follow the security proof
more clearly. More precisely, by calculating the list
OSList, we can know how many times of ordinary signa-
ture oracle have been queried, and from delList(w), we
can know the number of query of proxy signature oracle.
The security model is based on the following game which
is played between a challenger C and an adversary A:

� Setup. The challenger C runs Setup with input
1k and generates (pk�, sk�) for u� by running the
KeyGen (1k) of an ordinary signature scheme.
After that, C sends pk� to the adversary A and
stores sk�.

� Queries. The adversary A can adaptively access
to any of the following queries which are
answered by C:
1. Ordinary signature. A submits a message m

to C, C generates a signature on m by
s Sign(m, sk�). C returns s to A and adds
(m,s) to the OSList list.

2. Delegation to u�. A transmits w to C, C inter-
acts with A through the Delegate and the
ProxyKeyGen with (pk�, sk�). After the pro-
cess finished, C will obtain a delegation of sign-
ing right with u Delegate(w, sk�, pk�) and a
proxy key skp. Then, C adds (w, u) and (w, skp)
to the delList(w) list and the pskList(w) list,
respectively.

3. Delegation from u�.
1. Delegation of sk0: A submits w to A and

want u� to give a delegation of signing
right to u0. C generates a delegation u

for u0 by Delegate and adds (w, u) to
the delList(w) list.

2. Self-delegation: C interacts with itself
through Delegate and ProxyKeyGen
on input w. C generates a delegation of
signing right u and a proxy key skp, adds
(w, u) and (w, skp) to the delList(w) list
and the pskList(w)list, respectively. Then
C sends u to A.

1. Proxy signature. A transmits (m, (w, u)) to
C and wants to obtain a proxy signature of
m. C finds the proxy key skp which corre-
spond with w in pskList(w). If skp exists, C
returns s ProxySign(m, (w, u), skp) to
A. Otherwise, returns ? to A.

2. Proxy key exposure. A transmits w to C, C
returns the proxy key skp to A if such a key
exists in pskList(w). Otherwise, returns ? to
A.

� Forgery. The successful forgery of A can be one
of the following forms:
1. Forge an ordinary signature of u�. A outputs

(m,s) which can be verified by Verify and m

has not been submitted in an ordinary signa-
ture query.

2. Forge a proxy signature of u�. A outputs
(m, (w, u),s) where the s corresponds to the
public key pk�. This forgery is said to be
valid if it can be verified by ProxyVerify
with (m, (w, u)) has not been queried and w

has not been queried.
3. Self-proxy signature on behalf of u�. A out-

puts (m, (w, u),s) where s corresponds to
the public key pkp. This forgery is said to be
valid if it can be verified by ProxyVerify with
w has not been queried.

If one of the above cases happens, the game returns
1. Otherwise, it returns 0.

Definition 2. An adversary A is said to be a (ε0, t0, q0d , q0s)-
forger of a proxy signature scheme if A has advantage
at least ε0 in the above game, runs in time at most t, and
makes at most q0d and q0s delegation and signing queries
to the challenger. A proxy signature scheme is said to
be (ε0, t0, q0d , q

0
s)-secure if no (ε0, t0, q0d, q0s)-forger exists.

The general construction of MPKC proxy
signature scheme

General proxy signature scheme

Assume we have an above MPKC signature scheme,
we now describe our general proxy signature scheme as
follows.

Setup: Let n and m be two positive integers, Fq is a
finite field and all the arithmetic operations hereafter

Chen et al. 5

are over this finite field. H: f0, 1g� ! F
n
q is a crypto-

graphic hash function.
KeyGen: This algorithm generates the public key

and the private key of a user. The detail process is the
same as that of the key generation of an MPKC signa-
ture scheme. After this algorithm, we set the private
key of user A is skA =(L1A, L2A,FA), and the public key
pkA =PA, where PA = L1A 8 FA 8 L2A. Similarly, the pri-
vate key and public key of user B are skB =(L1B,
L2B,FB) and pkB =PB, respectively.

Delegate: On input a warrant w where
w=(pkA, pkB, t), this algorithm is performed by user A

and generates a delegation of signing right to user B.

1. Randomly choose two invertible affine transfor-
mations L01 and L02, which in the forms of L1A

and L2A, respectively. Then, compute
L1 = L01 8 L�1

1A , L2 = L�1
2A 8 L02, and

P0A = L1 8 PA 8 L2 ð5Þ

2. Compute u=Sign(H(wjjP0A), skA).
3. Send (L1, L2,P

0
A) and the warrant (w, u) to user B

through an authenticated channel.

ProxyKeyGen: This algorithm generates a proxy key
for the proxy signer with input (L1, L2,P

0
A,w, u). It is

performed by user B as follows:

1. Verify the validity of P0A and u. If they are true,
goto the next step. Otherwise, output 0.

2. Select two random invertible affine transforma-
tions L001 and L002, respectively, compute

L1p = L1 8 L�1
1B 8 L001

�1 ð6Þ

L2p = L002
�1

8 L�1
2B 8 L2 ð7Þ

and

Fp = L001 8 L1B 8 PA 8 L2B 8 L002 ð8Þ

3. Compute a signature on (w, u,Fp) through run-
ning Sign with skB, that is, sprx =Sign
(H(wjjujjP0A), skB).

4. Output skp =(L1p, L2p,Fp) as a proxy key of user
B which uses to generate proxy signatures on
behalf of user A, and the corresponding public
key is pkp =P0A.

Remark 1. Note that since Fp = L001 8 L1B 8 PA 8 L2B 8 L002, to
invert Fp, we do not need the secret key FA of user A,
but the public key PA of user A, what we need to choose
is the linear transformations such that the map Fp can still

be easily inverted. This is the key point in the construc-
tion; otherwise, the construction cannot work. In some
cases of MPKCs, the linear transformations are totally
random, such as our proxy signature for MQ-based signa-
ture shown in section ‘‘Proxy-MQ: our MQ-based proxy
signature scheme,’’ and the proxy signature in Tang and
Xu.24 In some cases of MPKCs, we need to choose some
special linear transformations, for example, in section
‘‘Practical implementations for these two schemes,’’ we
will show how to choose the linear transformations in the
practical implementation of our proposed proxy schemes
for UOV and Rainbow.
ProxySign: Suppose M is the message to be signed.
This algorithm generates a proxy signature on the mes-
sage M by user B.

User B applies L1p, L2p, and the central map Fp to
the basic MPKC signature algorithm described in
Algorithm 1 to generate the signature s on M

s =Sign(H(M), skp) ð9Þ

Then the proxy signature on message M by user B is
(s, (w, u,P0A,sprx)).

ProxyVerify: On input (M ,s, (w, u,P0A,sprx)),
anyone can verify the validity of the proxy signature by
executing this algorithm. This algorithm includes the
following steps:

1. Check the validity of u on w by running

Verify with pkA: Verify((w,P0A), u, pkA)¼
?

true. If it is ture, goto the next step. Otherwise,
output 0.

2. Check the validity of sprx on (w, u,P0A) by run-
ning Verify with pkB: Verify ((w, u,P0A),
sprx, pkB)¼

?
true. If it is true, goto the next step.

Otherwise, output 0.
3. Check the validity of s on message M by run-

ning Verify with P0A: Verify(M ,s,
P0A)¼

?
true. If it is true, output 1. Otherwise, out-

put 0.

The verifier accepts the proxy signature if and only
if the three conditions of ProxySign are all true.
Otherwise, the verifier rejects the proxy signature.

Security analysis of the general proxy
signature scheme

Theorem 1. If the basic MPKC signature scheme is
(ε, t, qs) secure, then the general proxy signature scheme
is (ε0, t0, q0d , q

0
s) secure, where εø e0=2q0d, t = t0 and

qs = q0s + q0d .

Proof. Let A be an adversary who can (ε0, t0, q0d , q
0
s)

break our proxy signature scheme, then there exists an

6 International Journal of Distributed Sensor Networks

attacker C who can (ε, t, qs) break the corresponding
MPKC signature scheme using A. Assume that C
receives a random public key pk0=P0 of MPKC signa-
ture scheme and has the right to access to an MPKC
signing oracle Oraclesig(m, sk). Before beginning the
security game, the attacker C flips a uniform coin c.
The result of c is hidden from A, unless the security
game aborts. If c= 0, C sets pk�= pk0, and sk�=[,
where [means empty set. Otherwise, C generates a
fresh key pair (pk�, sk�) KeyGen where pk�=(P�),
and chooses i� 2 f1, 2, . . . , q0dg.

As the challenger in the security game, C will main-
tain three lists OSList, delList(w), pskList(w). Here, the
delList list stores the intermediate result which will be
considered in the following. Furthermore, A is allowed
to make q0s ordinary signature queries and q0d delegation
queries which C will answer in the security game as
follows:

� Ordinary signature. On input m from A, if c= 0,
C simply makes query to the MPKC signing ora-
cle and obtains an answer s; if c= 1, b generates
a signature s by running Sign(m, sk�). C adds
(m,s) to the OSList list and sends s to A.

� Delegation to u�. A transmits a delegation mes-
sage (w, u, L

0
1d , L

0
2d ,P

0
d) where w=(pkd , pk�, t). C

verifies whether both P0d = L
0
1d 8 Pd 8 L

0
2d and

u=Sign(H(wjjP0d), skd) are correct. If c= 0, C
chooses randomly two invertible affine transfor-
mations L01 and L02, and computes L1p =
L01d 8 L1

0�1, L2p = L02
�1

8 L02d , and Fpu� = L01Pd 8 L02.
Let pkp =P0d and skp =(L1p, L2p,Fpu�). makes a
query to the MPKC signing oracle for
(w, u,P0d , pkp) and obtains a signature sprx. In this
case, sprx would be added to the OSList list. If
c= 1 and this is not the i�th query, C similarly
chooses randomly two invertible affine transfor-
mations L1 and L2, and computes L1p = L01d 8 L�1

1 ,
L2p = L�1

2 8 L02d , and Fpu� = L1 8 Pd 8 L2. Let
pkp =P0d and skp =(L1p, L2p,Fpu�). Then C runs
sprx =Sign(H(wjjujjpkp), sk�). If c= 1 and this
is the i�th query, C directly lets pkp = pk0,
skp =f and runs sprx =Sign(H(wjjujjpkp), sk�).
Finally, C stores (w, u,P0d) and (w, skp) to the
delList(w) and pskList(w), respectively.

� Delegation from u�.
1. Delegation of sk�. A submits w to C, where

w=(pk�, pkd , t). C chooses randomly two
invertible affine transformations (L1d0 , L2d0)
and computes P�

0
= L1d0 8 P� 8 L2d0 . If c= 0,

then C makes a query to the MPKC signing
oracle and obtains a signature u on wjjP�0 .
The u later is added to the OSList list by C.
If c= 1, then C generates u by running
u Sign(H(wjjP�0), sk�) and sends the
delegation message (w, u, L1d0 , L2d0 ,P

�0) to

A. Of course, C adds (w, u,P�
0
) to the

delList(w) list.
2. Self-delegation. C interacts with itself with

w=(pk�, pk�, t) which submitted by A. If
c= 0 or c= 1 and this is not the i�th
query, C chooses randomly two invertible
affine transformations (L1p, L2p), computes
P�
0
= L1p 8 P� 8 L2p, makes a query to the

MPKC signing oracle, and obtains a signa-
ture u on wjjP�0 with P�. Then, C also makes
a query to the MPKC signing oracle
for (w, u,P�

0
) and obtains a signature sprx.

If c= 1 and this is the i�th query, C directly
lets pkp = pk0 and computes sprx =
Sign(H(wjjujjpkp), sk�). Finally, C adds
(w, u, pkp) to the delList(w) and (w, skp) to
the pskList(w). If the u is obtained by the
MPKC signing oracle, C also adds it to the
OSList list.

� Proxy signature. Once receiving (m, (w, u)) sub-
mitted by A, C finds the relevant information
with w from delList(w) and pskList(w). C parses
pkp and the proxy key as skp. Then, C makes a
query to the MPKC signing oracle for m and
obtains a signature s if c= 0. Otherwise, C com-
putes s Sign(H(m), skp). Then C sends
(m,s, (w, u, pkp,sprx)) to A.

� Proxy key exposure. On input w from A, C finds
relevant information from delList(w) and
pskList(w) and parses it as (skp, (w, u, pkp,sprx). If
skp =f, C aborts the game. Otherwise, C returns
(skp, (w, u, pkp,sprx)) to A.

If the above game is not forced to abort by C, A will
eventually output a forgery. The forgeries are classified
into two different cases:

Case 1: A forges (1) a valid MPKC signature (m,s)
or (2) a valid proxy signature (m, (w, u, pkp,sprx),s)
which the corresponding public key pkp was not gen-
erated by C, or (3) a valid proxy signature
(m, (w, u, pkp,sprx),s) where w was not submitted to
the ordinary signature query.
Case 2: A forges a valid signature which is not in
case 1.

In the case c= 0, C sets pk�= pk0. If A constructs a
valid forgery in case 2, C will abort the game.
Otherwise, if A constructs a valid forgery in case 1,
then

� If the forgery is of type 1, that is, (m,s), it shows
that A has not requested a signature on m. Then,
C will not have submitted m to an MPKC signa-
ture oracle. That is, s is a valid forgery of an
MPKC signature under the public key pk0.

Chen et al. 7

� If the forgery is of type 2, that is,
(m, (w, u, pkp,sprx),s) is a valid signature for
(w, u, pkp) under the public key pkp = pk

0
, then C

will not have submitted (w, u, pkp) to MPKC sign-
ing oracle. Therefore, sprx will be a valid MPKC
signature forgery under the public key pk0.

� If the forgery is of type 3, that is,
(m, (w, u, pkp,sprx),s) derives that u is a valid
forgery for w, and C will therefore not have sub-
mitted w to the signing oracle. Hence u is a valid
forgery of an MPKC signature under the public
key pk0.

Now, let us consider the case c= 1 where C inserts
pk0 as a proxy public key. In this case, if the forgery is
in case 1, then C will abort the game. However, if the
forgery is in case 2 which forgery (m, (w, u, pkp,sprx),s)
where pkp = pk0, then C outputs (m,s) as a valid forgery
for signature scheme. Otherwise, C aborts. Note that if
A constructs such a forgery, then A will not have quer-
ied the proxy key (w, u, pkp,sprx) with pkp.

We define the following events associated with the
above security game: E1 be the event that A constructs
a forgery in case 1, E2 be the event that A. constructs a
forgery in case 2, and E3 denotes that A guesses the
correct value of i� in a forgery for case 2. The success
probability of A is Pr½E1�+Pr½E2�. Then the success
probability of C can be

ε=Pr½c= 0 ^ E1�+Pr½c= 1 ^ E2 ^ E3�
= 1=2 � Pr½E1�+Pr½E3jc= 1 ^ E2��
Pr½c= 1jE2� � Pr½E2�
= 1=2 � Pr½E1�+ 1=q0d � 1=2 � Pr½E2�

ø
e0

2qd
0 :

Remark 2. Note that the above proof is only a heuristic
security proof, since the underlying signature schemes
in the area of MPKC are mostly not provable secure,
more discussion will be done next, and we propose the
additional analysis in section ‘‘Practical implementa-
tions for these two schemes’’ for our practical
implementation.

Furthermore, we can obtain that anyone can deter-
mine the proxy signer by the verification of the warrant
w and the signature sprx. Then, the proxy signer is
required to sign u and the public key of the proxy signa-
ture. Under the assumption that the underlying signa-
ture scheme is secure, we can conclude that any proxy
signer cannot deny the proxy signature he or she cre-
ated due to the existence of sprx. At the same time, the
private key of the original signer is only directly used to
sign the warrant w. And no one can obtain the private
key of the original signer from the proxy key because of

the selected random transformations in Delegate.
The above discussions show that our scheme meets all
the security properties of a proxy signature scheme.

The proposed MPKC proxy signature
schemes

In this section, we will propose three proxy schemes
based on three well-known MPKC schemes: UOV,12

Rainbow22 and MQ-based scheme.16

Proxy-UOV: proxy scheme based on UOV

Now we describe the process of our proxy scheme based
on UOV using our general construction.

Setup: Let n and m be two positive integers, k is a
finite field and all the arithmetic operations here-
after are over this finite field. H: f0, 1g� ! kn is a
cryptographic hash function.
KeyGen: This algorithm generates the public key
and the private key of a user. The detail process is
the same as that of the key generation of an MPKC
signature scheme. After this algorithm, we set the
private key of user A is skA =(FA, TA), and the pub-
lic key pkA =PA, where PA =FA 8 TA. Similarly, the
private key and public key of user B are:
skB =(FB, TB), pkB =PB, respectively.
Delegate: A randomly chooses a bijective affine
transformation T , then computes T 0A = T 8 TA,
F 0A =FA 8 T and P0A =F 0A 8 T 0A.

The affine T should be kept secret by A. A sends
(T 0A,F

0
A,P0A) and the warrant (w, u) to B through an

authenticated channel, where w=(pkA, pkB, t), t is a
time period which denotes that w is valid in time t and
u is a signature on w generated by A using our pro-
posed signing algorithm, that is, u=Sign(H(w), skA).

ProxyKeyGen: After receiving (T 0A,F
0
A,P

0
A,w, u), B

first checks the validity of P0A, u by checking if
P0A =F 0A 8 T 0A and Verify(w, u, pkA)= 1. Then B

selects a random bijective affine transformation T 0

and computes Tp = T 0�1
8 T 0A, and Fp =F 0A 8 T 0. Let

skp =(Fp, Tp), and pkp =P0A. Then skp is a private
key for ordinary signature, and the corresponding
public key is pkp, that is because the following equal-
ity holds

Fp 8 Tp =F 0A 8 T 0 8 T 0�1
8 T 8 TA

=F 0A 8 T 8 TA =F 0A 8 T 0A =P0A
ð10Þ

Then B computes a signature sprx by running

sprx =Sign((H(w, u,P0A), skB) ð11Þ

8 International Journal of Distributed Sensor Networks

and sets skp as the proxy signing key that B uses to gen-
erate proxy signatures on behalf of A and sets pkp and
(w, u,P0A,sprx) as the proxy verifying key.

ProxySign: Suppose M is the message to be
signed. This algorithm generates a proxy signature
on the message M by user B.

User B applies Tp and the central map Fp to the basic
MPKC signature algorithm described in Algorithm 1 to
generate the signature s on M

s =Sign(H(M), skp) ð12Þ

Then the proxy signature on message M by user B is
(s, (w, u,P0A,sprx)).

ProxyVerify: On input (M ,s, (w, u,P0A,sprx)),
anyone can verify the validity of the proxy signature
by executing this algorithm. This algorithm includes
the following steps:
1. Check the validity of u on w by running

Verify with pkA: Verify((w,P0A), u, pkA)¼
?

true.
If it is ture, go to the next step. Otherwise, out-
put 0.

2. Check the validity of sprx on (w, u,P0A) by run-
ning Verify with pkB: Verify((w, u,P0A),
sprx, pkB)¼

?
true. If it is true, go to the next step.

Otherwise, output 0.
3. Check the validity of s on message M by run-

ning Verify with P0A: Verify(M ,s,P0A)¼
?

true.
If it is true, output 1. Otherwise, output 0.

The verifier accepts the proxy signature if and only
if the three conditions of ProxySign are all true.
Otherwise, the verifier rejects the proxy signature.

Proxy-Rainbow: proxy scheme based on Rainbow

Since the main difference of this proxy signature
schemes lies on the Delegate step and ProxyKeyGen
process compared to the general construction, we just
only describe the processes Delegate step and
ProxyKeyGen.

Setup: Let n and m be two positive integers, k is a
finite field, and all the arithmetic operations here-
after are over this finite field. H: f0, 1g� ! kn is a
cryptographic hash function.
KeyGen: This algorithm generates the public key
and the private key of a user. The detail process is
the same as that of the key generation of an MPKC
signature scheme. After this algorithm, we set the
private key of user A is skA =(L1A, L2A,FA), and the
public key pkA =PA, where PA = L1A 8 FA 8 L2A.

Similarly, the private key and public key of user B

are skB =(L1B, L2B,FB) and pkB =PB, respectively.
Delegate: A randomly chooses two invertible
affine transformations L01 and L02 respectively, then
computes L1 = L1A 8 L01, L2 = L02 8 L2A and
F 0A = L01 8 FA 8 L2

0. P0A =L1 8 F 0A 8 L2. The affine L01
and L02 should be kept secret by A. A sends
(L1, L2,F

0
A,P

0
A) and the warrant (w, u) to B through an

authenticated channel, where w=(pkA, pkB, t), t is a
time period which denotes that w is valid in time t and
u is a signature on w generated by A using Rainbow
signing algorithm, that is, u=Sign(w, skA).
ProxyKeyGen: After receiving (L1, L2,F 0A,P

0
A,w, u),

B randomly chooses two invertible affine transfor-
mations L001 and L002, respectively, and computes
L1p = L1 8 L001

�1, L2p = L002
�1

8 L2, and Fp = L001 8 PA 8
L002. Let skp =(L1p,Fp, L2p), and pkp =P0A. Then skp

is a private key for ordinary signature, and the cor-
responding public key is pkp, that is, because the fol-
lowing equality holds

L1p 8 Fp 8 L2p = L1 8 L001
�1

8 L001 8 PA 8 L002

8 L002
�1

8 L2 = L1 8 F 0A 8 L2 =P0A
ð13Þ

Then B computes a signature sprx by running

sprx =Sign((w, u, pkp), skB) ð14Þ

and sets skp as the proxy signing key that B uses to gen-
erate proxy signatures on behalf of A, and sets pkp and
(w, u, pkp,sprx) as the proxy verifying key.

Practical implementations for these two schemes

In Petzoldt et al.,33 the result indicates that
q= 28,m= 26, v= 52 has security level higher than 280

for UOV scheme, where q is the order of the finite field,
m is the number of polynomials and is equal to the
number of Oil variate, and v is the number of Vinegar
variate. We will choose this parameter set.

Next, also the extremely important setting of our
construction, we should choose appropriate affine
transformations that could preserve the special struc-
ture of UOV scheme. Specifically, after composing an
affine transformation, the polynomials in the new cen-
tral map, the public key should still stay in the form of
Oil–Vinegar polynomials. If we represent a UOV
scheme’s central polynomial by its corresponding
matrix, then the matrices of the polynomials in central
map should be in the form of following.

Next, also the extremely important setting of our
construction, we should choose appropriate affine
transformations that could preserve the special struc-
ture of UOV scheme. Specifically, after composing an
affine transformation, the polynomials in the new

Chen et al. 9

central map, the public key should still stay in the form
of Oil–Vinegar polynomials. If we represent a UOV
scheme’s central polynomial by its corresponding matrix,
the Vinegar variables are denoted by its first v= 52 vari-
ables. Then the matrices of the polynomials in central
map should be in the form of Figure 1. In Figure 1, the
gray areas represent the random entries while blank areas
denote zero entries. The rest part of this article follows the
same rules. Thereby, our problem is transformed to
choose an affine transformation that could keep the shape
of the above matrix of central equation. To achieve that
goal, we could pick the invertible affine transformations
of the form as shown in Figure 2.

Once T and T 0 are choosing in this form, we will get
that Fp =FA 8 T 8 T 0, which means that the matrices
form of central map Fp is

Fp =
�v 3 v �v 3 o

�o 3 v 0o 3 o

� � �v 3 v 0v 3 o

�o 3 v �o 3 o

� � �v 3 v �0 3 o

�o 3 v �o 3 o

� �

=
�v 3 v �v 3 o

�o 3 v 0o 3 o

� �

Thus, this will make sure that the map Fp can still be
easily inverted.

Currently, the Rainbow prevails now is two-layer
based and layer structure (18,12,12) and GF(28) is
enough to resist all the attacks mentioned above (secu-
rity level is greater than 280).34 Thereby, we plan to use
this parameter set of Rainbow for our Proxy-Rainbow
scheme. The Rainbow’s corresponding matrices have
the following forms in Figure 3.

Moreover, to keep the multi-layer structure of cen-
tral equation, the structure of the left affine transforma-
tion L1 and L01 should have the shapes as shown below.
By choosing these structures, we can make sure that the
map Fp of Proxy-Rainbow can still be easily inverted
(Figures 4 and 5).

Proxy-MQ: our MQ-based proxy signature scheme

Using our general method to propose a proxy signature
scheme based on the basic MQ-based signature scheme
described in section ‘‘The general construction of
MPKC proxy signature scheme,’’ we need to make
some changes in the key generation phase KeyGen.

Below is the full description of our proxy signature
for the MQ scheme.

Setup: Let n and m be two positive integers, Fq is a
finite field and all the arithmetic operations here-
after are over this finite field. H: f0, 1g� ! F

n
q is a

cryptographic hash function.
KeyGen: Let e be a vector from F

n
q that every ele-

ment is randomly chosen in k (i.e. e= f1, : : : , 1gT,

the superscript T denotes transposition), to get As
private key, A first randomly chooses a bijective
affine transformation TA, and its private key sA is
calculated by sA = TA(e), then the corresponding
public key pkA is (FA, vA) that satisfies vA =FA(sA).
Similarly, B’s private key skB is calculated by
sB = TB(e) where TB is a randomly bijective affine
transformation, and the corresponding public key
pkB is (FB, vB) that satisfies vB =FB(sB). Then e,
pkA =(FA, vA) and pkB =(FB, vB), are published to
the public bulletin board.
Delegate: Let sA = TA(e), A randomly chooses a
bijective affine transformation T , then computes

T 0A = T 8 TA

F 0A =FA 8 T

v0A =F 0A 8 T 0A(e)

The affine T should be kept secret by A. A sends
(T 0A,F

0
A, v
0
A) and the warrant (w, u) to B through an

authenticated channel, where w=(pkA, pkB, t) and t is a
time period which denotes that w is valid in time t, and
u is a signature on w generated by A using our pro-
posed signing algorithm, that is, u=Sign(w, skA).

Figure 1. Oil–Vinegar scheme corresponding matrix.

Figure 2. The affine transformation form for Proxy-UOV.

10 International Journal of Distributed Sensor Networks

ProxyKeyGen: Let sB = TB(e), after receiving
(T 0A,F

0
A, v
0
A,w, u), B selects a random bijective affine

transformation T 0 and computes

sp = T 0�1
8 T 0A(e)

Fp =F 0A 8 T 0

vp = v0A

Let pkp =(Fp, vp), skp = sp. Then skp is a private key
for ordinary signature, and the corresponding public
key is pkp, that is because the following equality holds

Fp(sp)=F 0A 8 T 0 8 T 0�1
8 T 0A(e)

=F 0A 8 T 8 TA(e)

= v0A = vp

Then B computes a signature sprx by running

sprx =Sign((w, u, pkp), skB) ð15Þ

and sets skp as the proxy signing key that B uses to gen-
erate proxy signatures on behalf of A, and sets pkp and
(w, u, pkp,sprx) as the proxy verifying key.

ProxySign: Suppose M is the message to be
signed. This algorithm generates a proxy signature
on the message M by user B.

User B applies L1p, L2p and the central map Fp to the
basic MPKC signature algorithm described in
Algorithm 1 to generate the signature s on M

s =Sign(H(M), skp) ð16Þ

Then the proxy signature on message M by user B is
(s, (w, u,P0A,sprx)).

ProxyVerify: On input (M ,s, (w, u,P0A,sprx)),
anyone can verify the validity of the proxy signature
by executing this algorithm. This algorithm includes
the following steps:
1. Check the validity of u on w by running Verify

with pkA: Verify((w,P0A), u, pkA)¼
?

true. If it is
ture, goto the next step. Otherwise, output 0.

2. Check the validity of sprx on (w, u,P0A) by run-
ning Verify with pkB: Verify((w, u,P0A),
sprx, pkB)¼

?
true. If it is true, goto the next step.

Otherwise, output 0.
3. Check the validity of s on message M by run-

ning Verify with P0A: Verify(M ,s,P0A)¼
?

true.

If it is true, output 1. Otherwise, output 0.

The verifier accepts the proxy signature if and only
if the three conditions of ProxySign are all true.
Otherwise, the verifier rejects the proxy signature.

Practical implementation for Proxy-MQ

After the changes, it is easy to see that we modify the
randomly selected vector into an invertible transforma-
tion and a public known random vector, so the scheme
is based not only on MQ problem, but also on IP prob-
lem. In contrast to Sakumoto et al.,16 we suggest to use
a determined system for the MQ-based signature
scheme (i.e. m= n). The reason for this is that a greater
number of variables does not increase the security of
this scheme.35 And we propose for the scheme the para-
meters k =GF(2), (m, n)= (84, 84), r = 193, where r is

Figure 3. Rainbow scheme corresponding matrix.

Figure 4. The left affine transformation form for Proxy-
Rainbow.

Figure 5. The right affine transformation form for Proxy-
Rainbow.

Chen et al. 11

the number of the signer gathers the commitments in
our modified MQ signature scheme.

A toy example and deployment in real distributed
scenario

To illustrate how our proxy signature scheme works,
we propose a toy example for Proxy-UOV in this sec-
tion (others are similar). The following example comes
from our running test on Magma.36

In our toy example, we choose the parameter of
Proxy-UOV as q= 22,m= 2, n= 4, o= 2, v= 2.

First, we set the private key of user A is
skA =(FA, TA), the public key pkA =PA, the private key
and public key of user B are skB =(FB, TB) and
pkB =PB, respectively

FA =
x1x3 + a2x2x4 + x2

3 + x2
4

a2x1x4 + x3x4 + x2
4

� �

TA(x1, x2, x3, x4)=

1 a a2 0

a2 a2 a 1

a2 0 a2 a

a 0 1 1

0
BB@

1
CCA

x1

x2

x3

x4

0
BB@

1
CCA

PA =

x2
1 +ax1x2 + x1x3 + x1x4 +a2x2x3

+ x2x4 +a2x3x4 + x2
4

a2x2
1 +ax1x2 +ax1x3 +a2x1x4 + x2x3

+ x2x4 +a2x3x4 +a2x2
4

0
BB@

1
CCA

FB =
ax1x3 +ax2x4 + x2x3 +ax2

3 + x3x4 + x2
4

x1x4 +a2x2x3 + x3x4

� �

TB(x1, x2, x3, x4)=

a 1 a a

a2 a 0 1

0 a 0 a

1 a2 0 1

0
BB@

1
CCA

x1

x2

x3

x4

0
BB@

1
CCA

PB =

x2
1 +ax1x2 +a2x1x3 +ax1x4 +a2x2

2

+ax2x3 +ax3x4 + x2
4

ax2
1 + x1x2 +ax1x3 + x1x4 + x2x3

+ax3x4 + x2
4

0
BB@

1
CCA

where PA =FA 8 TA, PB =FB 8 TB.

Delegate: A randomly chooses a bijective affine
transformation T as follows

T (x1, x2, x3, x4)=

0 a 0 0

a a 1 1

0 0 a2 a

0 0 a 0

0
BB@

1
CCA

x1

x2

x3

x4

0
BB@

1
CCA

Then A computes T 0A = T 8 TA, F 0A =FA 8 T 0A, and
P0A =F 0A 8 T 0A. The results are

T 0A(x1, x2, x3, x4)=

1 1 a2 a

a a 0 1

1 0 0 a2

1 0 1 a2

0
BB@

1
CCA

x1

x2

x3

x4

0
BB@

1
CCA

F 0A =
ax1x3 +a2x2x3 +a2x2x4 + x3x4 +a2x2

4

ax2x3 +ax2
3 +a2x3x4

� �

P0A =
ax1x2 + x1x3 +ax1x4 + x2x3 + x2x4

+a2x2
3 +a2x3x4 + x2

4

ax2
1 +a2x1x2 +a2x1x3 +ax3x4 +a2x2

4

0
@

1
A

In addition, A generates a warrant w=(pkA, pkB, t)
(assume that H(w)= (0,a)), signs it using the regular
UOV signing algorithm, and gets u=Sign(H(w),
skA)= (0, 0,a, 1),

Finally, A sends (T 0A,F 0A,P
0
A) and the warrant (w, u)

to B through an authenticated channel.

ProxyKeyGen: Afterreceiving (T 0A,F
0
A,P0A,w, u, B

first checks the validity of P0A, u by checking
P0A =F 0A 8 T 0A and Verify(w, u, pkA)=PA(0, 0,
a, 1)= (0,a). Then B selects a random bijective
affine transformation T 0 and computes Tp =
T 0�1

8 T 0A, and Fp =F 0A 8 T 0, where

T 0(x1, x2, x3, x4)=

1 a a2 1

a2 a2 0 a2

0 0 0 a

0 0 a a2

0
BB@

1
CCA

x1

x2

x3

x4

0
BB@

1
CCA

Tp(x1, x2, x3, x4)=

1 0 a 1

1 a2 a 1

a 0 a2 1

a2 0 0 a

0
BB@

1
CCA

x1

x2

x3

x4

0
BB@

1
CCA

Fp =
ax1x3 + x1x4 +a2x2x4 +ax2

3 +ax3x4 + x2
4

ax1x4 +ax2x4 +ax3x4

� �

P0A =
ax1x2 + x1x3 +ax1x4 + x2x3 + x2x4

+a2x2
3 +a2x3x4 + x2

4

ax2
1 +a2x1x2 +a2x1x3ax3x4 +a2x2

4

0
@

1
A

Let skp =(Fp, Tp), and pkp =P0A. Then skp is a pri-
vate key for ordinary signature, and the corresponding
public key is pkp.

Assume the hash value of (w, u,P0A) is (a,a), B com-
putes a signature sprx by running

sprx =Sign(H(w, u,P0A), skB)= (1, 1, 1,a)

and sets skp as the proxy signing key that B uses to gen-
erate proxy signatures on behalf of A, and sets pkp and
(w, u,P0A,sprx) as the proxy verifying key.

ProxySign: Suppose H(M)= (0,a2) is the message
to be signed.

12 International Journal of Distributed Sensor Networks

User B generates the signature s on M using the
proxy key skp

s =Sign(H(M), skp)= (a2, 0,a,a)

Then the proxy signature on message M by user B is
(s, (w, u,P0A,sprx)).

ProxyVerify: On input (M ,s, (w, u,P0A,sprx)), a
verifier V can verify the validity of the proxy signa-
ture by executing this algorithm. This algorithm
includes the following steps:
1. Compute PA(u)= (0,a) and check whether it is

equal to H(w). Since it is true, go to the next step.
2. Compute PB(sprx)= (a,a) and check whether it

is equal to H(w, u,P0A). Since it is true, go to the
next step.

3. Compute P0A(s)= (0,a2) and check whether it is
equal to H(M). Since it is also valid, the algo-
rithm outputs 1.

In addition, let us consider a communication sce-
nario in a distributed sensor network and see how we
can deploy our proxy scheme into this scenario. To
develop a secure communication in a distributed sensor
network, sensors digitally sign the data (i.e. the message
M) and communicate to a server. It is expected that the
server must be convinced to the authenticity of the sen-
der (i.e. sensor deployed in the distributed network)
and the sender (i.e. sensor) must also be convinced to

the authenticity of the receiver (i.e. server). To develop
such authentication method, a designated receiver dele-
gation method is the most promising. In this method,
the deploying authority (DA) (server administrator or
network developer) delegates its signing power to sen-
sor and also designates the trained professional as a
receiver. Thus, DA is original signer, sensor is a proxy
signer and the server is designated receiver. As shown
in the above toy example, in this scenario, the DA is
acting as A, the sensors are acting as B, and finally, it
can generate a proxy signature on message M as
(s, (w, u,P0A,sprx)). Finally, the server is acting as a veri-
fier V and thus can convince to the authenticity of the
sensors.

Performance and comparisons of our
proxy signature schemes

The complexity and running time of each procedure of
our proxy signature schemes, and comparison with
Tang’s scheme24 (the only proxy scheme of MPKC we
have known) and Mambo’s scheme30 (the first proxy
scheme), Hu–Zhang (HZ) scheme37 (an improved effi-
cient secure proxy scheme) is shown in Table 1. We set
the parameters in HZ scheme37 with (n= 2, t= 1).
From Table 1, we can see that the proxy signature gen-
eration and the proxy signature verification of our
schemes are more efficient than Tang’s schemes in
Table 1. According to recent research result, the time
of generating a large prime is more than 20 times than

Table 1. Computing complexity requirements by ours and compared with other schemes.

Proxy-UOV Proxy-Rainbow Proxy-MQ

Initialization O(2n2 + 2mn2) O(2m2 + 2n2 +

2mn2)

O(2n2 + 2mn2)

Proxy share generation O(3n3 + 2mn2 + n2 + S) O(3m3 + 4n3 +

4mn2 + 2uS)

O(2n3 + 3mn2 +

2round �mn3)
Proxy signature generation O(n3 + n2 + S) O(m3 + n3 + n2 +

uS)

O(round �mn3)

Signature verify O(3n) O(3n) O(3round �mn3)

Tang’s scheme24 Mambo’s scheme30 HZ scheme37

Initialization O(2m2 + 2n2 + 2mn2) 2Tp + Te + Tm ’

O(2log(nr)+

nrsalog(nr)+ n2
r)

2Tp + 5Te + 2Tm ’

O(2log(nr)+

5nrsalog(nr)+

2n2
r)

Proxy share generation O(5m3 + 5n3 +

5mn3 + 3qmn3)

Te + Tm ’O(nrlog(nr)+ n2
r) 6Te + 4Tm + TH ’O(6nrlog(nr)

+ 4n2
r + log(nh))

Proxy signature generation O(qmn3) Te ’O(nrlog(nr)) 4Te + 6Tm + 2TH ’O(4nrlog(nr)
+ 6n2

r + 2log(nh))
Signature verify O(3qmn3) 2Te + Tm ’O(2nrlog(nr)+ n2

r) 5Te + 3Tm + 2TH ’O(5nrlog(nr)
+ 3n2

r + 2log(nh)

UOV: Unbalanced Oil and Vinegar; MQ: multivariate quadratic; RSA: Rivest–Shamir–Adleman; HZ: Hu–Zhang.

Chen et al. 13

that of generating a system of polynomials, and an
exponentiation evaluation costs about half times than
an evaluation operation, while choosing proper para-
meters with security level more than 80 bits. So, in this
situation, all our schemes and Tang’s scheme24 have
better initialization time and verify process time than
that of Mambo’s scheme30 and HZ scheme.37

Notation for Table 1: u,m, n: the number of layers,
polynomials, and variables in a scheme, respectively; S:
average time required by a Gaussian Elimination func-
tion to solve linear equations; q: the length of output
bits of the hash function for Tang scheme;24round: the
iterative rounds for MQ-based signature; Tp, Te, Tm, TH :
the time for generating a large prime, one exponentia-
tion computation, one modular multiplication compu-
tation, and hash function computation, respectively;
nr, nh: the size of the public key in a secure RSA scheme
and the size of a secure hash function, respectively.The
running time of our proposed Proxy-UOV and Proxy-
Rainbow schemes (using our suggested parameters)
compared with Mambo’s scheme30 and HZ scheme37

(2048 bits) is shown in Table 2. From the experiments’
results, we can see that our schemes’ proxy signature
generation time is between RSA and elliptic curve cryp-
tography (ECC), while the initialization and verifying
time are much faster than both of them. Consequently,
even though our scheme is a bit slower than the proxy
share generation time, but it is applicable in real life.

While running in Magma, the memory will be over-
flowed when using the suggested parameters of Proxy-
MQ and Tang’s scheme in Tang and Xu,24 we have to
modify the parameter to formulate the running time
((n= 42,m= 42, q= 2, round = 2) for Proxy-MQ,

(n= 42,m= 42, q= 2, round = 2) for Tang’s scheme),
and the result is shown in Table 3.

From the result shows, the proxy signature scheme
based on MQ is slightly more efficient than Tang’s
scheme24 and is a promising proxy scheme by taking
into account its post-quantum property in multivariate
cryptography.

Conclusion

A general proxy signature scheme based on MPKC signa-
ture scheme is proposed, which invokes three number of
times of the underlying signature scheme, and can satisfy
all the security requirement of a proxy scheme. Through
formal security analysis, our general scheme is proved to
be cured on Existential Unforgeability under an Adaptive
Chosen Message Attack with Proxy Key Exposure assum-
ing that the underlying MPKC signature is Existential
Unforgeability under an Adaptive Chosen Message Attack.
Thereafter, we propose three practical proxy schemes
based on three promising MPKC schemes: UOV,
Rainbow, and MQ-based scheme. Although the security
of the underlying MPKC is still an open problem, the
method to construct our proxy scheme and the method to
formally prove the security of our proxy scheme are good
exploration in the area of MPKC.

In the future work, we plan to construct other primi-
tives based on multivariate signature scheme, such as
identity-based signature, forward secure signature, and
so on.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work is supported by the Key Areas Research
and Development Program of Guangdong Province under
Grant 2019B010139002, National Natural Science
Foundation of China under Grant 61972094, National
Natural Science Foundation of China under Grant 61902079,

Table 3. Running time requirements by Proxy-MQ and
compared with Tang scheme.

Proxy-MQ Tang’s scheme

Initialization (ms) 24, 043 24, 328
Proxy share generation (ms) 92, 008 122, 873
Proxy signature generation (ms) 30, 521 48, 642
Signature verify (ms) 74, 215 75, 832

MQ: multivariate quadratic.

Table 2. Running time requirements by Proxy-UOV and Proxy-Rainbow and compared with other schemes.

Proxy-UOV Proxy-Rainbow Mambo scheme HZ scheme

Initialization (ms) 19, 376 11, 912 404, 277 443, 885
Proxy share generation (ms) 52, 301 30, 691 141 10, 245
Proxy signature generation (ms) 187 61 47 4502
Signature verify (ms) 31 16 249 3646

UOV: Unbalanced Oil and Vinegar; HZ: Hu–Zhang.

14 International Journal of Distributed Sensor Networks

and the project of Guangzhou Science and Technology
(Grant 201902020006 and 201902020007).

ORCID iD

Jiageng Chen https://orcid.org/0000-0001-9033-2575

References

1. Varadharajan V, Allen P and Black S. An analysis of the
proxy problem in distributed systems. In: Proceedings of

the 1991 IEEE computer society symposium on research in

security and privacy, Oakland, CA, 20–22 May 1991,

pp.255–275. New York: IEEE.
2. Park HU and Lee IY. A digital nominative proxy signa-

ture scheme for mobile communication. In: Proceedings
of the international conference on information and commu-

nications security, Xi’an, China, 13–16 November 2001,
pp.451–455. Berlin; Heidelberg: Springer.

3. Leiwo J, Hnle C, Homburg P, et al. Disallowing

unauthorized state changes of distributed shared objects.
In: Proceedings of the IFIP international information secu-

rity conference, Beijing, China, 22–24 August 2000,
pp.381–390., Boston, MA: Springer.

4. Foster I, Kesselman C, Tsudik G, et al. A security archi-

tecture for computational grids. In: Proceedings of the

5th ACM conference on computer and communications

security, San Francisco, CA, November 1998, pp.83–92.
New York: ACM.

5. Bakker A, Van Steen M and Tanenbaum AS. A law-

abiding peer-to-peer network for free-software distribu-
tion. In: Proceedings of the 2001 IEEE international sym-

posium on network computing and applications, Cambridge,
MA, 8–10 October 2001, pp.60–67. New York: IEEE.

6. Shor PW. Polynomial-time algorithms for prime factori-

zation and discrete logarithms on a quantum computer.
SIAM J Comput 1997; 26: 1484–1509.

7. Bernstein DJ. Introduction to post-quantum cryptogra-

phy. In: Bernstein DJ, Buchmann J and Dahmen E (eds)
Post-quantum cryptography. Heidelberg: Springer, 2009,

pp.1–14.
8. NIST CSRC: Cryptographic Technology Group. Sub-

mission requirements and evaluation criteria for the

post-quantum cryptography standardization process,
2016, https://csrc.nist.gov/CSRC/media/Projects/Post-

Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf

9. Matsumoto T and Imai H. Public quadratic polynomial-

tuples for efficient signature-verification and message-
encryption. In: Proceedings of the 7th international work-

shop on the theory and application of cryptographic tech-

niques (EUROCRYPT’08), Davos, 25–27 May 1988,
pp.419–453. Berlin: Springer

10. Patarin J. The oil and vinegar signature scheme. In: Dag-

stuhl workshop on cryptography, Schloss Dagstuhl, 22–26
September 1997. Dagstuhl.

11. Courtois N. Generic attacks and the security of Quartz.

In: Desmedt Y (ed.) Proceedings of the 6th international

workshop on practice and theory in public key cryptogra-

phy (PKC 2003), Miami, FL, 6–8 January 2003. Berlin:
Springer, 2003, pp.351–364.

12. Kipnis A, Patarin J and Goubin L. Unbalanced oil and
vinegar signature schemes. In: Proceedings of the 18th

annual international conference theory and application of

cryptographic techniques (EUROCRYPT’99), Prague, 2–
6 May 1999, pp.206–222. Berlin: Springer.

13. Bulygin S, Petzoldt A and Buchmann J. Towards prova-
ble security of the unbalanced oil and vinegar signature
scheme under direct attacks. In: Gong G and Gupta K
(eds) Progress in Cryptology—INDOCRYPT 2010, lec-

ture notes in computer science, 6498. Berlin; Heidelberg:
Springer, 2010, pp.17–32.

14. Sakumoto K, Shirai T and Hiwatari H. On provable

security of UOV and HFE signature schemes against
chosen-message attack. In: Proceedings of the 4th interna-

tional conference on post-quantum cryptography

(PQCrypto’2011), Taipei, Taiwan, 29 November—2
December 2011, pp.68–82. Berlin: Springer.

15. Bellare M and Rogaway P. The exact security of digital
signatures-how to sign with RSA and Rabin. In: Proceed-
ings of the 15th annual international conference on theory

and application of cryptographic techniques (EURO-

CRYPT’06), Saragossa, 12–16 May 1996, pp.399–416.
Berlin: Springer.

16. Sakumoto K, Shirai T and Hiwatari H. Public-key identi-
fication schemes based on multivariate quadratic polyno-
mials. In: Proceedings of the 31st annual international

cryptology conference (CRYPTO’ 2011), Santa Barbara,

CA, 14–18 August 2011, pp.706–723. Berlin: Springer.
17. Faugère J-C, Perret L and Ryckeghem J. DualModeMS:

a dual mode for multivariate-based signature 20170918
draft (First round submission to the NIST post-quantum
cryptography call). November 2017, https://www-polsy-
s.lip6.fr/Links/NIST/DualModeMS_specification.pdf

18. Casanova A, Faugère J-C, Macario-Rat G, et al. GeMSS:
a great multivariate short signature (First round submis-
sion to the NIST post-quantum cryptography call),

November 2017, https://www-polsys.lip6.fr/Links/NIST/
GeMSS_specification.pdf

19. Petzoldt A, Chen M-S, Yang B-Y, et al. Design principles
for HFEV-based multivariate signature schemes. In: Pro-
ceedings of the 21th international conference on the theory

and application of cryptology and information security

(ASIACRYPT’2015), Auckland, New Zealand, Novem-
ber 29–December 3 2015, pp.311–334. Berlin: Springer.

20. Beullens W and Preneel B. Field lifting for smaller UOV
public keys. In: Patra A and Smart N (eds) International
conference in cryptology in India—INDOCRYPT 2017,

LNCS, vol. 10698. Heidelberg: Springer, 2017, pp.227–
246.

21. Chen M-S, Hülsing A, Joost A, et al. From 5-pass MQ-
based identification to MQ-based signatures. In:
Advances in cryptology—ASIACRYPT 2016, LNCS, vol.

10032. Heidelberg: Springer, 2016, pp.135–165.
22. Ding J and Schmidt D. Rainbow a new multivariable

polynomial signature scheme. In: Proceedings of the 3th

international conference on applied cryptography and net-

work security (ACNS’2005), New York, 7–10 June 2005,
pp.164–175. Berlin: Springer.

23. Peretz Y. On multivariable encryption schemes based on
simultaneous algebraic Riccati equations over finite

fields. Finite Fields Th App 2016; 39: 1–35.

Chen et al. 15

https://orcid.org/0000-0001-9033-2575
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://www-polsys.lip6.fr/Links/NIST/DualModeMS_specification.pdf
https://www-polsys.lip6.fr/Links/NIST/DualModeMS_specification.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification.pdf

24. Tang S and Xu L. Towards provably secure proxy signa-
ture scheme based on isomorphisms of polynomials.
Future Gener Comp Sy 2014; 30: 91–97.

25. Petzoldt A, Bulygin S and Buchmann J. A multivariate
based threshold ring signature scheme: applicable algebra
in engineering. Commun Comput 2013; 24: 255–275.

26. Chen J, Tang S, He D, et al. Online/offline signature
based on UOV in wireless sensor networks. Wirel Netw

2017; 23: 1719–1730.
27. Petzoldt A, Szepieniec A and Mohamed MSE. A practi-

cal multivariate blind signature scheme (Cryptology
ePrint Archive, Report2017/131), 2017, http://eprint.ia-
cr.org/2017/131

28. El Bansarkhani R, Mohamed MSE and Petzoldt A.
MQSAS: a multivariate sequential aggregate signature
scheme. In: Proceedings of the 19th international confer-

ence on information security (ISC 2016), Honolulu, HI,

3–6 September 2016, pp.426–439. Cham: Springer.
29. Verma GK, Singh BB and Singh H. Bandwidth efficient

designated verifier proxy signature scheme for healthcare
wireless sensor networks. Ad Hoc Netw 2018; 81:
100–108.

30. Mambo M, Usuda K and Okamoto E. Proxy signatures:
delegation of the power to sign messages. IEICE T Fund

Elec Commun Comp Sci 1996; 79: 1338–1354.
31. Fiat A and Shamir A. How to prove yourself: practical

solutions to identification and signature problems. In:
Odlyzko A (ed.) Proceedings of the 6th annual

international cryptology conference (CRYPTO’06), Santa

Barbara, CA. Berlin: Springer, 1987, pp.186–194.
32. Schuldt J, Matsuura K and Paterson K. Proxy signatures

secure against proxy key exposure. In: Proceedings of the

11th international conference on theory and practice of pub-

lic key cryptography (PKC 2008), Barcelona, 9–12 March

2008, pp.141–161. Berlin: Springer.
33. Petzoldt A, Bulygin S and Buchmann J. Linear recurring

sequences for the UOV key generation. In: Proceedings

of the 14th international conference on theory and practice

of public key cryptography (PKC 2011), Taormina, 6–9

March 2011, pp.335–350. Berlin: Springer.
34. Petzoldt A, Bulygin S and Buchmann J. A multivariate

signature scheme with a partially cyclic public key. In:

Gong G and Gupta KC (eds) Proceedings of SCC. Ber-

lin: Springer, 2010, pp.33–48.
35. Patarin J and Goubin L. Trapdoor one-way permutations

and multivariate polynomials. In: Proceedings of the 1st

international conference on information security and cryp-

tology (ICISC 1997), Beijing, China, 11–14 November

1997, pp.53–66. Berlin: Springer.
36. Bosma W, Cannon J and Playoust C. The Magma alge-

bra system I: the user language. J Symb Comput 1997; 24:

235–265.
37. Hu J and Zhang J. Cryptanalysis and improvement of a

threshold proxy signature scheme. Comp Stand Inter

2009; 31: 169–173.

16 International Journal of Distributed Sensor Networks

http://eprint.iacr.org/2017/131
http://eprint.iacr.org/2017/131

