
HAL Id: hal-00846041
https://hal.inria.fr/hal-00846041v6

Submitted on 21 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial-Time Algorithms for Quadratic Isomorphism
of Polynomials: The Regular Case

Jérémy Berthomieu, Jean-Charles Faugère, Ludovic Perret

To cite this version:
Jérémy Berthomieu, Jean-Charles Faugère, Ludovic Perret. Polynomial-Time Algorithms for
Quadratic Isomorphism of Polynomials: The Regular Case. Journal of Complexity, Elsevier, 2015, 31
(4), pp.590–616. �10.1016/j.jco.2015.04.001�. �hal-00846041v6�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49530506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00846041v6
https://hal.archives-ouvertes.fr

Polynomial-Time Algorithms for Quadratic Isomorphism of Polynomials:
The Regular Case

Jérémy Berthomieua,b,c,∗, Jean-Charles Faugèrec,a,b, Ludovic Perreta,b,c

aSorbonne Universités, UPMC Univ Paris 06, Équipe POLSYS, LIP6, F-75005, Paris, France
bCNRS, UMR 7606, LIP6, F-75005, Paris, France

cINRIA, Équipe POLSYS, Centre Paris – Rocquencourt, F-75005, Paris, France

Abstract

Let f= (f1, . . . , fm) and g= (g1, . . . ,gm) be two sets of m≥ 1 nonlinear polynomials in K[x1, . . . ,xn]
(K being a field). We consider the computational problem of finding – if any – an invertible
transformation on the variables mapping f to g. The corresponding equivalence problem is known
as Isomorphism of Polynomials with one Secret (IP1S) and is a fundamental problem in multivariate
cryptography. Amongst its applications, we can cite Graph Isomorphism (GI) which reduces to
equivalence of cubic polynomials with respect to an invertible linear change of variables, according
to Agrawal and Saxena. The main result is a randomized polynomial-time algorithm for solving
IP1S for quadratic instances – a particular case of importance in cryptography.

To this end, we show that IP1S for quadratic polynomials can be reduced to a variant of the
classical module isomorphism problem in representation theory. We show that we can essentially
linearize the problem by reducing quadratic-IP1S to test the orthogonal simultaneous similarity
of symmetric matrices; this latter problem was shown by Chistov, Ivanyos and Karpinski (ISSAC
1997) to be equivalent to finding an invertible matrix in the linear space Kn×n of n× n matrices
over K and to compute the square root in a certain representation in a matrix algebra. While com-
puting square roots of matrices can be done efficiently using numerical methods, it seems difficult
to control the bit complexity of such methods. However, we present exact and polynomial-time
algorithms for computing a representation of the square root of a matrix in Kn×n, for various fields
(including finite fields), as a product of two matrices. Each coefficient of these matrices lie in an
extension field of K of polynomial degree. We then consider #IP1S, the counting version of IP1S
for quadratic instances. In particular, we provide a (complete) characterization of the automor-
phism group of homogeneous quadratic polynomials. Finally, we also consider the more general
Isomorphism of Polynomials (IP) problem where we allow an invertible linear transformation on
the variables and on the set of polynomials. A randomized polynomial-time algorithm for solv-

∗Laboratoire d’Informatique de Paris 6, Université Pierre-et-Marie-Curie, Boîte Courrier 169, 4 place Jussieu, F-
75252 Paris Cedex 05, France.

Email addresses: jeremy.berthomieu@lip6.fr (Jérémy Berthomieu), jean-charles.faugere@inria.fr
(Jean-Charles Faugère), ludovic.perret@lip6.fr (Ludovic Perret)

Preprint submitted to Journal of Complexity April 21, 2015

ing IP when f = (xd
1 , . . . ,x

d
n) is presented. From an algorithmic point of view, the problem boils

down to factoring the determinant of a linear matrix (i.e. a matrix whose components are linear
polynomials). This extends to IP a result of Kayal obtained for PolyProj.

Keywords: Quadratic forms, computer algebra, polynomial isomorphism, multivariate
cryptography, module isomorphism
2010 MSC: 12Y05, 94A60, 68W20, 68W30, 68Q25

1. Introduction

A fundamental question in computer science is to provide algorithms allowing to test if two
given objects are equivalent with respect to some transformation. In this paper, we consider equiv-
alence of nonlinear polynomials in several variables. Equivalence of polynomials has profound
connections with a rich variety of fundamental problems in computer science, ranging – among oth-
ers topics – from cryptography (e.g. Patarin (1996); Tang and Xu (2012, 2014); Yang et al. (2011)),
arithmetic complexity (via Geometric Complexity Theory (GCT) for instance, see Bürgisser (2012);
Kayal (2012); Mulmuley (2012); Mulmuley and Sohoni (2001)), testing low degree affine-invariant
properties (Bhattacharyya et al. (2013); Green and Tao (2009); Grigorescu et al. (2013), . . .). As
we will see, the notion of equivalence can come with different flavours that impact the intrinsic
hardness of the problem considered.

In Agrawal and Saxena (2006); Saxena (2006), the authors show that Graph Isomorphism re-
duces to equivalence of cubic polynomials with respect to an invertible linear change of variables
(a similar reduction holds between F-algebra Isomorphism and cubic equivalence of polynomi-
als). This strongly suggests that solving equivalence problems efficiently is a very challenging
algorithmic task.

In cryptography, the hardness of deciding equivalence between two sets of m polynomials
with respect to an invertible linear change of variables is the security core of several cryptographic
schemes: the seminal zero-knowledge ID scheme of Patarin (1996), and more recently group/proxy
signature schemes (Tang and Xu (2012, 2014); Yang et al. (2011)). Note that there is a subtle dif-
ference between the equivalence problem considered in Agrawal and Saxena (2006); Kayal (2011);
Saxena (2006) and the one considered in cryptographic applications.

Whilst Agrawal and Saxena (2006); Kayal (2011); Saxena (2006) restrict their attention to
m = 1, arbitrary m ≥ 1 is usually considered in cryptographic applications. In the former case,
the problem is called Polynomial Equivalence (PolyEquiv), whereas it is called Isomorphism of
Polynomials with One Secret (IP1S) problem in the latter case. We emphasize that the hardness of
equivalence can drastically vary in function of m. An interesting example is the case of quadratic
forms. The problem is completely solved when m = 1, but no polynomial-time algorithm exists
for deciding simultaneous equivalence of quadratic forms. In this paper, we make a step ahead
to close this gap by presenting a randomized polynomial-time algorithm for solving simultaneous
equivalence of quadratic forms over various fields.

2

Equivalence of multivariate polynomials is also a fundamental problem in Multivariate Public-
Key Cryptography (MPKC). This is a family of asymmetric (encryption and signature) schemes
whose public-key is given by a set of m multivariate equations (Matsumoto and Imai (1988); Patarin
(1996)). To minimize the public-key storage, the multivariate polynomials considered are usu-
ally quadratic. The basic idea of MPKC is to construct a public-key which is equivalent to a set
of quadratic multivariate polynomials with a specific structure (see for instance Wolf and Preneel
(2011)). Note that the notion of equivalence considered in this context is more general than the
one considered for PolyEquiv or IP1S. Indeed, the equivalence is induced by an invertible linear
change of variables and an invertible linear combination on the polynomials. The corresponding
equivalence problem is known (Patarin (1996)) as Isomorphism of Polynomials (IP or IP2S).

PolyEquiv, IP, and IP1S are not NP-Hard unless the polynomial-hierarchy collapses, Perret
(2004); Patarin et al. (1998). However, the situation changes drastically when considering the
equivalence for more general linear transformations (in particular, not necessarily invertible). In
this context, the problem is called PolyProj. At SODA’11, Kayal (2011) showed that PolyProj
is NP-Hard. This may be due to the fact that various fundamental questions in arithmetic complex-
ity can be re-interpreted as particular instances of PolyProj (see Bürgisser (2012); Kayal (2012);
Mulmuley (2012); Mulmuley and Sohoni (2001)).

Typically, the famous VP vs VNP question (Valiant (1979)) can be formulated as an equiv-
alence problem between the determinant and permanent polynomials. Such a link is in fact the
core motivation of Geometric Complexity Theory. The problem of computing the symmetric
rank (Bernardi et al. (2011); Comon et al. (2008)) of a symmetric tensor also reduces to an equiv-
alence problem involving a particular multivariate polynomial (Kayal (2012)). To mention another
fundamental problem, the task of minimizing the cost of computing matrix multiplication reduces
to a particular equivalence problem (Bürgisser and Ikenmeyer (2011, 2013); Cohn and Umans (2013);
Kayal (2012)).

Organization of the Paper and Main Results

Let K be a field, f and g be two sets of m polynomials over K[x1, . . . ,xn]. The Isomorphism of
Polynomials (IP) problem, introduced by Patarin (Patarin (1996)), is as follows:
Isomorphism of Polynomials (IP)

Input:
(

(f = (f1, . . . , fm) and g = (g1, . . . ,gm)
)

∈K[x1, . . . ,xn]
m ×K[x1, . . . ,xn]

m.
Question: Find – if any – (A,B) ∈ GLn(K)×GLm(K) such that:

g(x) = B · f(A ·x), with x = (x1, . . . ,xn)
T.

While IP is a fundamental problem in multivariate cryptography, there are quite few algorithms,
such as Patarin et al. (1998); Bouillaguet et al. (2013); Faugère and Perret (2006), solving IP. In
particular, Faugère and Perret (2006) proposed to solve IP by reducing it to a system of nonlin-
ear equations whose variables are the unknown coefficients of the matrices. It was conjectured
in Faugère and Perret (2006), but never proved, that the corresponding system of nonlinear equa-
tions can be solved in polynomial time as soon as the IP instances considered are not homogeneous.

3

Indeed, by slicing of the polynomials degree by degree, one can find equations in the coefficients
of the transformation allowing one to recover the transformation. More recently, Bouillaguet et al.
(2013) presented exponential (in the number of variables n) algorithms for solving quadratic ho-
mogeneous instances of IP over finite fields. This situation is clearly unsatisfying, and suggests
that an important open problem for IP is to identify large class of instances which can be solved in
(randomized) polynomial time.

An important special case of IP is the IP problem with one secret (IP1S for short), where
B is the identity matrix. From a cryptographic point of view, the most natural case encountered
for equivalence problems is inhomogeneous polynomials with affine transformations. For IP1S,
we show that such a case can be handled in the same way as homogeneous instances with linear
transformations (see Proposition 5). As a side remark, we mention that there exist more effi-
cient methods to handle the affine case; typically by considering the homogeneous components,
see Faugère and Perret (2006). However, homogenizing the instances allows us to make the proofs
simpler and cleaner. As such, we focus our attention to solve IP1S for quadratic homogeneous
forms.

When m = 1, the IP1S problem can be easily solved by computing a reduced form of the input
quadratic forms. In Bouillaguet et al. (2011), the authors present an efficient heuristic algorithm
for solving IP1S on quadratic instances. However, the algorithm requires to compute a Gröbner
basis. So, its complexity could be exponential in the worst case. More recently, Macario-Rat et al.
(2013) proposed a polynomial-time algorithm for solving IP1S on quadratic instances with m = 2
over fields of any characteristic. We consider here arbitrary m > 1.

In computer algebra, a fundamental and related problem is the simplification of a homogeneous
polynomial system f ∈ K[x]m. That is, compute A ∈ GLn(K) such that g(x) = f(A · x) is easier to
solve. In this setting, RIDGE algorithm (see Berthomieu et al. (2010); Hironaka (1970); Giraud
(1972)) and MINVAR algorithm (see Carlini (2005); Kayal (2011)) reduce to the best the number
of variables of the system. More generally, for a given homogeneous polynomial system f, the
Functional Decomposition Problem is the problem of computing h = (h1, . . . ,hs) homogeneous
and g such that f(x) = g(h(x)).

To simplify the presentation in this introduction, we mainly deal with fields of characteristic
, 2. Results for fields of characteristic 2 are also given later in this paper. Now, we define formally
IP1S:

Definition 1. Let
(

f = (f1, . . . , fm),g = (g1, . . . ,gm)
)

∈ K[x1, . . . ,xn]
m ×K[x1, . . . ,xn]

m. We shall
say that f and g are equivalent, denoted f ∼ g, if ∃ A ∈ GLn(K) such that:

g(x) = f(A ·x).

IP1S is then the problem of finding – if any – A ∈ GLn(K) that makes g equivalent to f (i.e.
A ∈ GLn(K) such that g(x) = f(A ·x)

)

.

In such a case, we present a randomized polynomial-time algorithm for solving IP1S with
quadratic polynomials. To do so, we show that such a problem can be reduced to the variant of a

4

classical problem of representation theory over finite dimensional algebras. In our setting we need,
as in the case m = 1, to provide a canonical form of the problem.

Canonical Form of IP1S
Let
(

f=(f1, . . . , fm),g=(g1, . . . ,gm)
)

∈K[x1, . . . ,xn]
m×K[x1, . . . ,xn]

m be homogeneous quadratic
polynomials. Let H1, . . . ,Hm be the Hessian matrices of f1, . . . , fm (resp. H ′

1, . . . ,H
′
m be the Hes-

sian matrices of g1, . . . ,gm). Recall that the Hessian matrix associated to a fi is defined as Hi =
(

∂ 2 fi
∂xk∂xℓ

)

k,ℓ
∈ Kn×n. Consequently, IP1S for quadratic forms is equivalent to finding A ∈ GLn(K)

such that:
H ′

i = AT ·Hi ·A, for all i,1 ≤ i ≤ m. (1)

Assuming H j is invertible, and thus so is H ′
j, one has H ′−1

j = A−1H−1
j A−T. Combining this with

equation (1) yields H ′−1
j H ′

i = A−1 ·H−1
j Hi ·A. If none of the Hi’s is invertible, then we look for an

invertible linear combination thereof. For this reason, we assume all along this paper:

Assumption 1 (Regularity assumption). Let f = (f1, . . . , fm) ∈ K[x1, . . . ,xn]. We assume that a
linear combination over K of the quadratic forms f1, . . . , fm is not degenerate1 . In particular, we
assume that |K|> n.

Taking as variables the entries of A, we can see that (1) naturally yields a nonlinear system of
equations. However, we show that one can essentially linearize equations (1). To this end, we prove
in Section 2 that under Assumption 1 any quadratic homogeneous instance IP1S can be reduced,
under a randomized process, to a canonical form on which – in particular – all the quadratic forms
are nondegenerate. We shall call these instances regular. More precisely:

Theorem 1. Let K be a field of charK , 2. There exists a randomized polynomial-time algorithm
which given a regular quadratic homogeneous instance of IP1S returns “NOSOLUTION” only if
the two systems are not equivalent or a canonical form

(

(

n

∑
i=1

dix
2
i , f2, . . . , fm

)

,
(

n

∑
i=1

dix
2
i ,g2, . . . ,gm

)

)

,

where the di are equal to 1 or a nonsquare in K, fi and gi are nondegenerate homogeneous
quadratic polynomials in K[x1, . . . ,xn]. Any solution on K on the canonical form can be efficiently
mapped to a solution of the initial instance (and conversely).

Let us note that over the rationals, computing the exact same sum of squares for the first
quadratic forms of each set is difficult, see (Saxena, 2006, Chapter 3), (Wallenborn, 2013, Chap-
ter 1). As such, one could only assume that the first quadratic form of the second set is ∑n

i=1 d′
ix

2
i .

1We would like to thank G. Ivanyos for having pointed us this issue in a preliminary version of this paper.

5

This does not fundamentally change the algorithms presented in this paper, beside some matrices
denoted by D which could be changed into D′ = Diag(d′

1, . . . ,d
′
n).

Note that the success probability of the algorithms presented here will depend on the size
of the field. If one looks for A ∈ Ln×n with L an extension of K, one can amplify the success
probability over a small field by using the fact that matrices are conjugate over K if and only if they
are conjugate over an algebraic extension L (see de Seguins Pazzis (2010)). Thus, one can search
linear change of variables with coefficients in some algebraic extension L ⊇ K (but of limited
degree).

Conjugacy Problem
When IP1S is given in canonical form, equations (1) can be rewritten as AT DA = D with

D = Diag(d1, . . . ,dn) and H ′
i = AT ·Hi ·A = DA−1 D−1 ·Hi ·A for all i,2 ≤ i ≤ m. Our task is now

to solve the following problem:

Definition 2 (D-Orthogonal Simultaneous Matrix Conjugacy (D-OSMC)). Let Kn×n be the set of
n×n matrices with entries in K. Let {H1, . . . ,Hm} and {H ′

1, . . . ,H
′
m} be two families of matrices in

Kn×n. The D-OSMC problem is the task to recover – if any – a D-orthogonal matrix X ∈ Ln×n, i.e.
XTDX = D, with L being an algebraic extension of K, such that:

X−1 Hi X = H ′
i , ∀ i,1 ≤ i ≤ m,

Chistov et al. (1997) show that D-OSMC with D = Id is equivalent to:

1. Solving the Simultaneous Matrix Conjugacy problem (SMC) between {Hi}1≤i≤m and {H ′
i}1≤i≤m,

that is to say finding an invertible matrix Y ∈ GLn(K) such that:

Y−1 ·Hi ·Y = H ′
i and Y−1 ·HT

i ·Y = H ′
i
T ∀ i,1 ≤ i ≤ m. (2)

2. Computing the square-root W of the matrix Z = Y ·Y T. Then, the solution of the D-OSMC
problem is given by X = Y W−1.

In our context, D = Diag(d1, . . . ,dn) is any diagonal invertible matrix. So, we extend Chistov et al.
(1997) and show that D-OSMC is equivalent to

1. Finding an invertible matrix Y ∈ GLn(K) such that:

Y−1 ·Hi ·Y = H ′
i and DY−1D−1 ·HT

i ·DY D−1 = H ′
i
T ∀ i,1 ≤ i ≤ m. (3)

2. Computing the square-root W of the matrix Z = DY ·Y TD−1. Then, the solution of the
D-OSMC problem is given by X = Y W−1.

In our case, the Hi’s (resp. H ′
i ’s) are symmetric (Hessian matrices). Thus, condition (3) yields

a system of linear equations and one polynomial inequation:

H1 ·Y = Y ·H ′
1, . . . ,Hm ·Y = Y ·H ′

m and det(Y) , 0. (4)

6

From now on, we shall denote by On(L,D) the set of D-orthogonal matrices with coefficients in L.
Let V ⊂ Kn×n be the linear subspace of matrices defined by these linear equations. The SMC

problem is then equivalent to recovering an invertible matrix in V ; in other words we have to solve
a particular instance of Edmonds’ problem (Edmonds (1967)). Note that, if the representation of
the algebra spanned by {H−1

1 Hi}1≤i≤m is irreducible, we know that V has dimension at most 1
(Schur’s Lemma, see (Lang, 2002, Chap. XVII, Proposition 1.1) and (Newman, 1967, Lemma 2)
for a matrix version of this lemma). After putting the equations in triangular form, randomly sam-
pling over the free variables an element in V yields, thanks to Schwartz-Zippel-DeMillo-Lipton
Lemma (DeMillo and Lipton (1978); Zippel (1979)), a solution to D-OSMC with overwhelming
probability as soon as K is big enough. If one accepts to have a solution matrix over an exten-
sion field, we can amplify the probability of success by considering a bigger algebraic extension
(see de Seguins Pazzis (2010)). Whilst a rather “easy” randomized polynomial-time algorithm
solves SMC, the task of finding a deterministic algorithm is more delicate. In our particular case, we
can adapt the result of Chistov et al. (1997) and provide a deterministic polynomial-time algorithm
for solving (2).

Characteristic 2
Let us recall that in characteristic 2, the associated matrices H1, . . . ,Hm,H ′

1, . . . ,H
′
m to quadratic

forms can be chosen as upper triangular. In this context, we show in Section 3.4 that IP1S can still
be reduced to a (H1 +HT

1)-conjugacy problem. Under certain conditions in even dimension, we
can solve this conjugacy problem in polynomial-time. These results are well confirmed by some
experimental results presented in Section 3.5. We can recover a solution in less than one second
for n up to one hundred (cryptographic applications of IP1S usually require smaller values of n,
typically ≤ 30, for efficiency reasons).

Matrix Square Root Computation
It is well known that computing square roots of matrices can be done efficiently using numerical

methods (for instance, see Gantmacher (1959)). On the other hand, it seems difficult to control the
bit complexity of numerical methods. In (Chistov et al., 1997, Section 3), the authors consider the
problem of computing, in an exact way, the square root of matrices over algebraic number fields.
As presented, it is not completely clear that the method proposed is polynomial-time as some
coefficients of the result matrix lie in extensions of nonpolynomial size, see Cai (1994). However,
by applying a small trick to the proof of Chistov et al. (1997), one can compute a solution in
polynomial-time for various field of characteristic , 2. In any case, for the sake of completeness,
we propose two polynomial-time algorithms for this task. First, a general method fixing the issue
encountered in (Chistov et al., 1997, Section 3) is presented in Section 3.2. To do so, we adapt the
technique of Cai (1994) and compute the square root as the product of two matrices in an algebraic
extension which can both be computed in polynomial time. The delicate task being to control the
size of the algebraic extensions occurring during the algorithm. In here, each coefficient of the two
matrices are lying in an extension field of polynomial degree in n. Furthermore, these matrices
allow us to test in polynomial time if H1, . . . ,Hm and H ′

1, . . . ,H
′
m are indeed equivalent. We then

7

present a second simpler method based on the generalized Jordan normal form (see Section 6.3)
which works (in polynomial time) over finite fields. In general, it deals with algebraic extensions
of smaller degree than the first one. Putting things together, we obtain our main result:

Theorem 2. Let K be a field with charK , 2. Under Assumption 1, there exists a randomized
polynomial-time algorithm for solving quadratic-IP1S over an extension field of K of polynomial
degree in n.

Let us note that the authentication scheme using IP1S requires to find a solution over the base
field. However, it is not always necessary to find a solution in the base field (typically, in the
context of a key-recovery for multivariate schemes). In Bettale et al. (2013), the authors recover an
equivalent key over an extension for the multi-HFE scheme.

In addition, under some nondegeneracy assumption, Theorem 2 can be turned into a determin-
istic algorithm solving IP1S over the base field K or an extension thereof. That is:

Theorem 3. Under Assumption 1 and the assumption that one of the quadratic form is nonde-
generate, there is a deterministic polynomial-time algorithm for solving quadratic-IP1S over an
extension of K of polynomial degree in n. Furthermore, if the space of matrices satisfying equa-
tions (4) has dimension 1, then the algorithm can solve quadratic-IP1S over K.

Let us note that assuming that one of the Hessian matrix is invertible is not a strong assump-
tion when the size of K is not too small. Indeed, the probability of picking a random invertible
symmetric matrix over Fq is

∏n
i=1(1−q−i)

∏
⌊n/2⌋
i=1 (1−q−2i)

=
⌈n/2⌉

∏
i=1

(1−q−2i+1),

see (Carlitz, 1954, Equations 4.7 and 4.8).
If m≥ 3, for random matrices H1, . . . ,Hm, the set of solutions of equations (4) is a 1-dimensional

matrix space. This allows us to solve quadratic-IP1S in polynomial-time over K. In Section 3.5,
we present our timings for solving IP1S. These experiments confirm that for randomly chosen ma-
trices, our method solves IP1S over K. We remark also that our method succeeds to solve IP1S

over F2 for public-keys whose sizes are much bigger than practical ones.
In Section 4, we consider the counting problem #IP1S associated to IP1S for quadratic (ho-

mogeneous) polynomials in its canonical form (as defined in Theorem 1). Note that such a count-
ing problem is also related to cryptographic concerns. It corresponds to evaluating the number of
equivalent secret-keys in MPKC, see Faugère et al. (2012); Wolf and Preneel (2011). Given homoge-
neous quadratic polynomials

(

f = (f1, . . . , fm),g = (g1, . . . ,gm)
)

∈K[x1, . . . ,xn]
m ×K[x1, . . . ,xn]

m,
we want to count the number of invertible matrices A ∈ GLn(K) such that g(x) = f(A ·x). To do so,
we define:

Definition 3. Let f = (f1, . . . , fm) ∈K[x1, . . . ,xn]
m, we shall call automorphism group of f the set:

Gf = {A ∈ GLn(K) | f(A ·x) = f(x)}.

8

If f ∼ g, the automorphism groups of f and g are similar. Thus, the size of the automorphism
group of f allows us to count the number of invertible matrices mapping f to g. For quadratic
homogeneous polynomials, the automorphism group coincides with the subset of regular matrices
in the centralizer C (H) of the Hessian matrices H associated to f. Taking α an algebraic element
of degree m over K = Fq, let us assume the Jordan normal form of H = ∑m

i=i α i−1 Hi has Jordan
blocks of sizes si,1 ≤ ·· · ≤ si,di associated to eigenvalue ζi, for i,1 ≤ i ≤ r. Then, as a consequence
of (Singla, 2010, Lemma 4.11), we prove that, if q is an odd prime power, then the number of
solutions of quadratic-IP1S in Fn×n

q is bounded from above by:

q(∑1≤i≤r ∑1≤ j≤di
(2di−2 j+1)si, j)−1.

Open Question: The Irregular Case

Given a quadratic instance of IP1S, a nondegenerate instance is an instance wherein the matrix
whose rows are all the rows of H1, . . . ,Hm has rank n. In paragraph 2.ii, we see how to transform
some degenerate instances into nondegenerate instances. However, nondegenerate instances are
not always regular instances. There are cases, the so-called irregular cases, such that the vector
space of matrices spanned by H1, . . . ,Hm does not contain a nondegenerate matrix. This situation
is well illustrated by the following example f1 = x1x3, f2 = x2x3. Any linear combination of f1, f2

is degenerate, while f = (f1, f2) is not. Note that we can decide in randomized polynomial time if
an instance of quadratic-IP1S is irregular since it is equivalent to checking if a determinant is iden-
tically equal to zero; thus it is a particular instance of polynomial identity testing. In the irregular
case, it is clear that our algorithm fails. In fact, it seems that most known algorithms dedicated to
quadratic-IP1S (Bouillaguet et al. (2011); Macario-Rat et al. (2013)) will fail on these instances;
making the hardness of the irregular case intriguing and then an interesting open question.

Special case of IP

In our quest of finding instances of IP solvable in polynomial-time, we take a first step in
Section 5. We consider IP for a specific set of polynomials with m = n. In the aforementioned
Section 5, we prove the following:

Theorem 4. Let g=(g1, . . . ,gn)∈K[x1, . . . ,xn]
n be given in dense representation, and f=POWn,d =

(xd
1 , . . . ,x

d
n) ∈K[x1, . . . ,xn]

n for some d > 0. Whenever charK= 0, let e = d and g̃ = g. Otherwise,
let p = charK, let e and r be integers such that d = pr e, p and e coprime, and let g̃ ∈K[x]n be such
that g(x) = g̃(xpr

). Let L be a polynomial size of an arithmetic circuit to evaluate the determinant
of the Jacobian matrix of g̃. If the size of K is at least 12 max(2L+2,e(n − 1)2e(n−1) + e3 (n−
1)3,2(e(n− 1)+ 1)4), then there is a randomized polynomial-time algorithm which recovers – if
any – (A,B) ∈ GLn(K)×GLn(K) such that:

g = B ·POWn,d(A ·x).

9

This extends a similar result of (Kayal, 2011, Section 5) who considered PolyEquiv for a sum
of d-power polynomials. We show that solving IP for POWn,d reduces to factoring the determinant
of a Jacobian matrix (in Kayal (2011), the Hessian matrix is considered). This illustrates, how
powerful partial derivatives can be in equivalence problems (Chen et al. (2011); Perret (2005)). To
go along with the proof of Theorem 4, we design Algorithm 4 at the end of Section 5.

2. Normalization - Canonical form of IP1S

In this section, we prove Theorem 1. In other words, we explain how to reduce, under Assump-
tion 1, any quadratic homogeneous instance (f,g) ∈ K[x1, . . . ,xn]

m ×K[x1, . . . ,xn]
m of IP1S to a

suitable canonical form, i.e. an instance of IP1S where all the Hessian matrices are invertible and
the first two equal the same diagonal invertible matrix. We emphasize that the reduction presented
is randomized.

2.i. Homogenization. We show here that the equivalence problem over inhomogeneous polynomi-
als with affine transformation on the variables reduces to the equivalence problem over homoge-
neous polynomials with linear transformation on the variables. To do so, we simply homogenize
the polynomials. Let x0 be a new variable. For any polynomial p ∈K[x] of degree 2, we denote by
p⋆(x0,x1, . . . ,xn) = x2

0 p(x1/x0, . . . ,xn/x0) its homogenization.

Proposition 5. IP1S with quadratic polynomials and affine transformation on the variables can
be reduced in polynomial-time to IP1S with homogeneous quadratic polynomials and linear trans-
formation on the variables.

Proof. Let (f,g) ∈ K[x]m ×K[x]m be inhomogeneous polynomials of degree 2. We consider the
transformation which maps (f,g) to

(

f⋆ = (f ⋆0 = x2
0, f ⋆1 , . . . , f ⋆m),g

⋆ = (g⋆0 = x2
0,g

⋆
1, . . . ,g

⋆
m)
)

. This
clearly transforms polynomials of degree 2 to homogeneous quadratic polynomials. We can write
fi(x) = xT Hi x+Li x+ci with Hi ∈Kn×n, Li ∈Kn and ci ∈K, then fi(Ax+b) = (Ax+b)T Hi (Ax+
b)+Li (Ax+b)+ci and its homogenization is (Ax+bx0)

T Hi (Ax+bx0)+Li (Ax+bx0)x0+ci x2
0 =

f ⋆i (A
′x⋆), with x⋆ = (x0,x1, . . . ,xn)

T. If (A,b) ∈ GLn(K)×Kn is an affine transformation solution
on the inhomogeneous instance then A′ =

(

1 0
b A

)

is a solution for the homogenized instance. Con-
versely, a solution A′ ∈ GLn+1(K) of the homogeneous problem must stabilize the homogenization
variable x0 in order to be a solution of the inhomogeneous problem. This is forced by adding
f0 = x2

0 and g0 = x2
0 and setting C′ = A′/a′0,0, with a′0,0 = ±1. One can see that C′ is of the form

(

1 0
d C

)

, and (C,d) ∈ GLn(K)×Kn is a solution for (f,g).

2.ii. Redundant Variables. As a first preliminary natural manipulation, we first want to eliminate
– if any – redundant variables from the instances considered. Thanks to Carlini (2005) (and refor-
mulated in Kayal (2011)), this task can be done in randomized polynomial time:

Proposition 6. (Carlini (2005); Kayal (2011)) Let f ∈ K[x1 . . . ,xn] be a polynomial. We shall
say that f has s essential variables if ∃M ∈ GLn(K) such that f (Mx) depends only on the first s
variables x1, . . . ,xs. The remaining n−s variables xs+1 . . . ,xn will be called redundant variables. If

10

charK= 0 or charK> deg f , and f has s essential variables, then we can compute in randomized
polynomial time M ∈ GLn(K) such that f (M x) depends only on the first s variables.

For a quadratic form, s is simply the rank of the associated Hessian matrix. As such, for m = 1,
a quadratic instance is regular if and only if the associated Hessian matrix is invertible. For a set of
equations, we extend the notion of essential variables as follows.

Definition 4. The number of essential variables of f = (f1, . . . , fm) ∈K[x1, . . . ,xn]
m is the smallest

s such that f can be decomposed as:
f = f̃(ℓ1, . . . , ℓs)

with ℓ1, . . . , ℓs being linear forms in x1, . . . ,xn of rank s and f̃ ∈K[y1, . . . ,ys]
m.

The linear forms ℓ1, . . . , ℓs can be easily computed thanks to Proposition 6 when the character-
istic of K is zero or greater than the degrees of f1, . . . , fm. In characteristic 2, when K is perfect
(which is always true if K is finite for instance) the linear forms can also be recovered in polyno-
mial time (see Berthomieu et al. (2010); Giraud (1972); Hironaka (1970) for instance). Below, we
show that we can restrict our attention to only essential variables. Namely, solving IP1S on (f,g)
reduces to solving IP1S on instances having only essential variables.

Proposition 7. Let (f,g) ∈K[x1, . . . ,xn]
m ×K[x1, . . . ,xn]

m be two sets of quadratic polynomials. If
f ∼ g, then their numbers of essential variables must be the same. Let s be the number of essential
variables of f. Finally, let (f̃, g̃) ∈K[y1, . . . ,ys]

m ×K[y1, . . . ,ys]
m be such that:

f = f̃(ℓ1, . . . , ℓs) and g = g̃(ℓ′1, . . . , ℓ
′
s),

with ℓ1, . . . , ℓs (resp. ℓ′1, . . . , ℓ
′
s) linear forms in x of rank s and f̃, g̃ ∈K[y1, . . . ,ys]

m. It holds that:

f ∼ g ⇐⇒ f̃ ∼ g̃.

Proof. Let H1, . . . ,Hm be the Hessian matrices of f1, . . . , fm (resp. H ′
1, . . . ,H

′
m be the Hessian ma-

trices of g1, . . . ,gm). Similarly, we define the Hessian matrices H̃1, . . . ,H̃m (resp. H̃ ′
1, . . . ,H̃

′
m) of

f̃1, . . . , f̃m (resp. g̃1, . . . , g̃m). Let also M and N be matrices in GLn(K) such that Hi = MT
(

H̃i 0
0 0

)

M

and H ′
i = NT

(

H̃′
i 0

0 0

)

N for all i,1 ≤ i ≤ m. There exist such M and N, as f and g have essentially

s variables. Up to re-indexing the rows and columns of Hi and H ′
i , so that they remain symmetric,

one can always choose M and N such that M =
(

M1 M2
0 Id

)

and N =
(

N1 N2
0 Id

)

, with M1,N1 ∈ GLs(K).
If f̃ ∼ g̃, ∃ Ã ∈ GLs(K) such that ATH̃iÃ = H̃ ′

i , for all i,1 ≤ i ≤ m. Then, for all B ∈ K(n−s)×s

and C ∈ GLn−s(K):

(

ÃT BT

0 CT

)(

H̃i 0

0 0

)(

Ã 0
B C

)

=
(

H̃′
i 0

0 0

)

,

NT
(

ÃT BT

0 CT

)

M−THi M
−1
(

Ã 0
B C

)

N = H ′
i .

11

Therefore, f and g are equivalent.
Conversely, we assume now that f ∼ g, i.e. there exists A ∈ GLn(K) such that AT ·Hi ·A = H ′

i ,
for all i,1 ≤ i ≤ m. This implies that:

N−TATMT
(

H̃i 0
0 0

)

M AN−1 =
(

H̃′
i 0

0 0

)

,∀ i,1 ≤ i ≤ m.

We then define Ã = ((MAN−1)i, j)1≤i, j≤s, so that f̃(Ãx) = g̃(x). As g has s essential variables, then
rank Ã cannot be smaller than s, hence Ã ∈ GLs(K). We then get ÃTH̃iÃ = H̃ ′

i for all i,1 ≤ i ≤ m,
i.e. f̃ ∼ g̃.

According to Proposition 7, there is an efficient reduction mapping an instance (f,g) of IP1S
to an instance (f̃, g̃) of IP1S having only essential variables. From now on, we will then assume
that we consider instances of IP1S with n essential variables for both f and g.

2.iii. Canonical Form. We now assume that charK , 2.

Definition 5. Let f = (f1, . . . , fm) ∈ K[x1, . . . ,xn]
m be quadratic homogeneous forms with Hessian

matrices H1, . . . ,Hm. We shall say that f is regular if its number of essential variables is n and if
∃λ1, . . . ,λm ∈K such that det (∑m

i=1 λi Hi) , 0.

Remark 8. Our algorithm requires that amongst all the Hessian matrices, one at least is invertible,
the so-called regular case. It is not sufficient to only assume that the number of essential variables
is n. Indeed, Ivanyos’s irregular example f = (x1x3,x2x3) has 3 essential variables, but any nonzero
linear combination λ1 f1 + λ2 f2 has only 2 essential variables λ1x1 + λ2x2 and x3. Similarly, f =
(x2

1+x2
2+x2

3,x
2
2+2x2

3+x2
4) has 4 essential variables but any nonzero linear combination λ1 f1+λ2 f2

over F3 has only 3 essential variables. This explains the additional condition on the previous
definition, and our Assumption 1.

We are now in a position to reduce quadratic homogeneous instances of IP1S to a first simpli-
fied form.

Proposition 9. Let (f,g)∈K[x1, . . . ,xn]
m×K[x1, . . . ,xn]

m be regular quadratic homogeneous poly-
nomials. There is a randomized polynomial-time algorithm which returns “NOSOLUTION” only if
f ≁ g, or a new instance

(f̃, g̃) =

(

(

n

∑
i=1

dix
2
i , f̃2, . . . , f̃m

)

,
(

n

∑
i=1

dix
2
i , g̃2, . . . , g̃m

)

)

∈K[x]m ×K[x]m,

with d1, . . . ,dn being 1 or nonsquares in K, such that f ∼ g ⇐⇒ f̃ ∼ g̃. If K is finite, the output of
this algorithm is correct with probability at least 1− n/|K|. If f̃ ∼ g̃, invertible matrices P,Q and
A′ ∈ GLn(K) are returned such that f(Px) = f̃(x), g(Qx) = g̃(x) and f̃(A′x) = g̃(x). It then holds
that f(PA′Q−1x) = g(x).

12

Proof. Let H1, . . . ,Hm be the Hessian matrices associated to f1, . . . , fm. According to Schwartz-
Zippel-DeMillo-Lipton Lemma (DeMillo and Lipton (1978); Zippel (1979)), we can compute in
randomized polynomial time λ1, . . . ,λm ∈K such that ϕ =∑m

i=1 λi · fi is regular, i.e. det (∑m
i=1 λi Hi),

0. The probability to pick (λ1, . . . ,λm)∈Km on which ϕ is regular is bounded from above by n/|K|.
We define γ = ∑m

i=1 λi ·gi. Should one reorder the equations, we can assume w.lo.g. that λ1 , 0. We
have then:

f ∼ g ⇐⇒ (ϕ , f2, . . . , fm)∼ (γ ,g2, . . . ,gm).

Now, applying Gauß’s reduction algorithm to ϕ , there exists d1, . . . ,dn ∈ K, each being 1 or a
nonsquare, such that ϕ = ∑n

i=1 di ℓ
2
i , where ℓ1, . . . , ℓn are independent linear forms in x1, . . . ,xn.

This gives a P ∈ GLn(L) such that f̃ = (ϕ̃ = ∑n
i=1 di x2

i , f̃2, . . . , f̃m) = (ϕ(Px), f2(Px), . . . , fm(Px)).
Clearly, f ∼ f̃, hence, f̃ ∼ g.

After that, we can apply once again Gauß’s reduction algorithm to γ . If the reduced polynomial
is different from ∑n

i=1 di x2
i , then f ≁ g and we return “NOSOLUTION”. Otherwise, the reduction is

given by a matrix Q∈GLn(L) such that g̃=(γ̃ =∑n
i=1 di x2

i , g̃2, . . . g̃m)= (γ(Qx),g2(Qx), . . . ,gm(Qx))
and g ∼ g̃. Thus, f̃ ∼ g̃ if and only if f ∼ g.

Now, assume that ∃A′ ∈GLn(K) such that f̃(A′x)= g̃(x). Then, f(PA′x)= g(Qx), i.e. f(PA′Q−1x)=
g(x).

Let us recall that whenever K = Q, computing the exact same sum of squares for f̃1 and g̃1 is
difficult, see (Saxena, 2006, Chapter 3), (Wallenborn, 2013, Chapter 1). As such, we could only
assume that our canonical form is g̃1 = ∑n

i=1 d′
ix

2
i . This would merely change the formulation of

following Theorem 10.

2.iv. Invertible Hessian Matrices. We are now in a position to reduce any regular homogeneous
quadratic instances (f,g) of IP1S to a new form of the instances where all the polynomials are
themselves regular assuming we could find one. From Proposition 9, this is already the case –
under randomized reduction – for f1 and thus g1. For the other polynomials, we proceed as follows.
For i,2 ≤ i ≤ m, if the Hessian matrix Hi of fi is invertible, then we do nothing. Otherwise, we
change Hi into Hi − νi H1, with νi not an eigenvalue of Hi H

−1
1 . As K has at least n+ 1 elements,

there exists such a νi in K. This gives the following result:

Theorem 10. Let (f,g) ∈K[x1, . . . ,xn]
m ×K[x1, . . . ,xn]

m be regular quadratic homogeneous poly-
nomials. There is a randomized polynomial-time algorithm which returns “NOSOLUTION” only if
f≁ g. Otherwise, the algorithm returns two sets of n×n invertible symmetric matrices {D,H̃2 . . . ,H̃m}
and {D,H̃ ′

2, . . . ,H̃
′
m}, with D diagonal, defined over K such that:

g(x) = f(Ax), for A ∈ GLn(K) ⇐⇒ A′−1 D−1 H̃i A′ = D−1 H̃ ′
i ,∀ i,1 ≤ i ≤ m,

for A′ ∈ On(K,D),

with On(K,D) denoting the set of n×n D-orthogonal matrices over K.

13

Proof. Combining Proposition 9 and paragraph 2.iv any regular quadratic homogeneous instance
of IP1S can be reduced in randomized polynomial time to “NOSOLUTION”, only if the two systems
are not equivalent, or to a

(f̃, g̃) =

(

(

n

∑
i=1

dix
2
i , f̃2, . . . , f̃m

)

,
(

n

∑
i=1

dix
2
i , g̃2, . . . , g̃m

)

)

,

where all the polynomials are nondegenerate homogeneous quadratic polynomials in K[x]. It
follows that f̃ ∼ g̃ ⇐⇒ ∃A′ ∈ GLn(K) such that ∀ i,1 ≤ i ≤ m, A′T H̃i A′ = H̃ ′

i . In particular
A′T DA′ = D and A′ is D-orthogonal. Hence, A′T H̃i A′ = DA′−1 D−1 H̃i A′ = H̃ ′

i , ∀ i,1 ≤ i ≤ m.

The proof of this result implies Theorem 1.

2.v. Field Extensions and Jordan Normal Form. To amplify the success probability of our results,
it will be convenient to embed a field F in some finite extension F′ of F. This is motivated by the
fact that matrices in Fn×n are similar if and only if they are similar in F′n×n, see de Seguins Pazzis
(2010). In this paper, we will need to compute the Jordan normal form J of some matrix H
in several situations. The computation of the Jordan normal form is done in two steps. First,
we factor the characteristic polynomial, using for instance Berlekamp’s algorithm over F = Fq

in O(nM(n) log(qn)) operations in F, where M(n) is a bound on the number of operations in F
to multiply two polynomials in F[x] of degree at most n − 1, see (von zur Gathen and Gerhard,
1999, Theorem 14.14). Then, we use Storjohann (1998)’s algorithm to compute the generalized
eigenvectors in O(nω) operations in F, with ω being the exponent of time complexity of matrix
multiplication, 2 ≤ ω ≤ 3.

3. Quadratic IP1S

In this section, we present efficient algorithms for solving regular quadratic-IP1S. According
to Proposition 5, we can w.l.o.g. restrict our attention on linear changes of variables and homoge-
neous quadratic instances. Let D be a diagonal invertible matrix with 1 or nonsquare elements on
the diagonal. Let H = {D,H2, . . . ,Hm} and H ′ = {D,H ′

2, . . . ,H
′
m} be two families of invertible

symmetric matrices in Kn×n. As explained in Theorem 10, our task reduces – under a randomized
process – to finding a D-orthogonal matrix A′ ∈ On(K,D) such that:

A′−1 D−1 Hi A
′ = D−1 H ′

i , ∀ i,1 ≤ i ≤ m. (5)

Case D = Id was studied in (Chistov et al., 1997, Theorem 4). The authors prove that there is an
orthogonal solution A, such that Hi A = AH ′

i if and only if there is an invertible matrix Y such that
HiY = Y H ′

i and HT
i Y = Y HT

i . In our case, whenever D = Id, the matrices are symmetric. So,
the added conditions – with the transpose – are automatically fulfilled. In Chistov et al. (1997),
the authors suggest then to use the polar decomposition of Y = AW , with W symmetric and A
orthogonal. Then, A is an orthogonal solution of (5).

14

The main idea to compute A is to compute W as the square root of Z =Y TY as stated in (Chistov et al.,
1997, Section 3). However, in general W and A are not defined over K but over L=K(

√

ζ1, . . . ,
√

ζr),
where ζ1, . . . ,ζr are the eigenvalues of Z. Assuming ζ1 is the root of an irreducible polynomial P
of degree d, then ζ2, . . . ,ζd are also roots of the same polynomial. However, there is no reason for
them to be in K[x]/(P) = K(ζ1). But they will be the roots of a polynomial of degree d − 1, in
general, over the field K(ζ1). Then, doing another extension might only add one eigenvalue in the
field. Repeating this process yields a field of degree d! over K. As a consequence, in the worst
case, we can have to work over an extension field of degree n!. Therefore, computing W could be
the bottleneck of the method.

Chistov et al. (1997) emphasize that constructing such a square root W in polynomial time is
the only serious algorithmic problem. As presented, it is not completely clear that the method
proposed is efficient. They propose to compute W =

√
Y TY and then to set A =W−1Y . According

to Cai’s work (Cai (1994)), some coefficients of matrix A may lie in an extension of exponential
degree. Blockwise computation (see the proof of Proposition 12) can allow us to compute such a
matrix. Chistov, Ivanyos and Karpinski set yi as the restriction of Y to the ith eigenspace, associated
to ζi, of Y TY . Then, xi =

√

ζi
−1yi and they return the block diagonal matrix constructed from the

xi’s. However, this construction gives the impression that the ith eigenspace of Y TY is stable by
Y , as W−1 would act as a multiplication by

√

ζi
−1. As a consequence, the blockwise computation

was not ensured.
However, this issue does not happen if one uses the same proof on W =

√
Y Y T and A=Y W−1.

In the following subsection, we extend their proof to any invertible diagonal matrix D.

3.1. Existence of a D-Orthogonal Solution

The classical polar decomposition is used in (Chistov et al., 1997, Theorem 4) to determine an
orthogonal solution. Using the analogous decomposition, the so-called Generalized Polar Decom-
position (GPD), which depends on D, yields a D-orthogonal solution, see Mackey et al. (2005).
The GPD of an invertible matrix Y is the factorization Y = AW , with A D-orthogonal and W in the
associated Jordan algebra, i.e. W T = DW D−1. Let us notice that A and W might be defined only
over K′ an algebraic extension of K of some degree.

Proposition 11. Let K = {K1, . . . ,Km} and K ′ = {K′
1, . . . ,K

′
m} be two subsets of m matrices in

Kn×n. Let D be an invertible diagonal matrix. There is a D-orthogonal solution A ∈ K′n×n to
the conjugacy problem Ki A = AK′

i for all 1 ≤ i ≤ m, if and only if there is an invertible solution
Y ∈K′n×n to the conjugacy problem KiY = Y K′

i and KT
i DY D−1 = DY D−1 K′T

i for all 1 ≤ i ≤ m.
Furthermore, if Y = AW is the GPD of Y with respect to D, then A suits.

Proof. This proof is a generalization of (Chistov et al., 1997, Section 3). If A is a D-orthogonal
solution to the first problem, then as AT = DA−1 D−1, it is clear that A is a solution to the second
problem. Conversely, let Y be a solution to the second problem, then Z = D−1Y T DY commutes
with K′

i . As Y is invertible, so is Z, therefore, given a determination of the square roots of the
eigenvalues of Z, there is a unique matrix W with these eigenvalues such that W 2 = Z and W is in

15

the Jordan algebra associated to D, that is W T = DW D−1, see (Mackey et al., 2005, Theorem 6.2).
As such, W is a polynomial in Z as proven in Section 6.1 and commutes with K′

i .
Finally, A = Y W−1 is an D-orthogonal solution of the first problem. As W commutes with K′

i ,
A−1Ki A =W Y−1KiY W−1 =W K′

i W−1 = K′
i and

AT DA =W−TY T DY W−1 = DW−1 D−1Y T DY W−1 = DW−1 ZW−1 = D.

For the sake of completeness, we present several efficient algorithms for performing the square
root computation.

3.2. Computing the D-Orthogonal Solution

The goal of this part is to “D-orthogonalize” an invertible solution Y ∈ GLn(K) of equation (5).
Instead of computing exactly A ∈ On(L,D), we compute in polynomial time two matrices whose
product is A. These matrices allow us to verify in polynomial time that Hi and H ′

i are equivalent
for all i,1 ≤ i ≤ m. To be more precise, we prove the following proposition.

Proposition 12. Let H = {H1 = D,H2, . . . ,Hm} and H ′ = {H ′
1 = D,H ′

2, . . . ,H
′
m} be two sets

of invertible matrices in Kn×n. We can compute in polynomial time two matrices representations
of matrices S and T defined over an algebraic extension L such that ST−1 is D-orthogonal and
for all 1 ≤ i ≤ m, D−1 Hi(ST−1) = (ST−1)D−1 H ′

i . In the worst case, product ST−1 cannot be
computable in polynomial time over L. However, matrices ST Hi S and T T H ′

i T can be computed
and tested for equality in polynomial time.

Proof. Let Y ∈ GLn(K) such that D−1 HiY =Y D−1 H ′
i , ∀ i,1 ≤ i ≤ m. We set Z = D−1Y T DY . Let

us denote by T , the change of basis matrix such that J = T−1 Z T is the Jordan normal form of Z.
According to Cai (1994), T , T−1 and J can be computed in polynomial time. Because of the issue
of mixing all the eigenvalues of Z, we cannot compute efficiently A in one piece. We will then
compute AT and T−1 separately. Indeed, AT (resp. T−1) is such that each of its columns (resp.
each of its rows) is defined over an extension field K(ζi), where ζ1, . . . ,ζr are the eigenvalues of Z.

We shall say that a matrix is block-wise (resp. columnblock-wise, rowblock-wise) defined over
K(ζ) if for all 1 ≤ i ≤ r, its ith block (resp. block of columns, block of rows) is defined over K(ζi).
The size of the ith block being the size of the ith Jordan block of J.

As J = T−1 Z T is a Jordan normal form, it is block-wise defined over K(ζ). Using the closed
formula of Section 6.1, one can compute in polynomial time a square root G of J. This matrix is
a block diagonal matrix, block-wise defined over K(

√

ζ), hence it can be inverted in polynomial
time. Should one want W , one would have to compute W = T GT−1. Let us recall that matrices T
and T−1 are respectively columnblock-wise and rowblock-wise defined over K(ζ), see (Cai, 1994,
Section 4). Since Y is defined over K, then Y T is columnblock-wise defined over K(ζ). Thus
S = AT = Y W−1 T = Y T G−1 is columnblock-wise defined over K(

√

ζ). We recall that product
AT ·T−1 mangles the eigenvalues and make each coefficient defined over K(

√

ζ1, . . . ,
√

ζr) and
thus must be avoided.

Now, to verify that AT H A = H ′, for any H ∈ H and the corresponding H ′ ∈ H ′, we compute
separately ST H S = T T AT H AT and T T H ′T . For the former, S = AT (resp. ST = (AT)T) is

16

columnblock-wise (resp. rowblock-wise) defined over K(
√

ζ) and H is defined over K. Therefore,
the product matrix makes each of the coefficients which are on both the ith block of rows and the
jth block of columns defined over K(

√

ζi,
√

ζ j) and so can be computed in polynomial time. For
the latter, the same behaviour occurs on the resulting matrix as T is columnblock-wise defined over
K(ζ).

Let us assume that the characteristic polynomial of Z, of degree n, can be factored as Pe1
1 · · ·Pes

s

with Pi and Pj coprime whenever i , j, degPi = di and ei ≥ 1. From a computation point of view,
one needs to introduce a variable αi, j for each root of Pi and then a variable βi, j for the square root
of αi, j . This yields a total number of 2∑s

i=1 di variables. In Section 6.3, we present another method
which manages to introduce only 2s variables in characteristic p > 2.

3.3. Probabilistic and Deterministic Algorithms

We first describe a simple probabilistic algorithm summarizing the method of Section 3.2.

Algorithm 1. Probabilistic algorithm.

Input Two sets of invertible symmetric matrices H = {H1 =D, . . . ,Hm}⊆Kn×n and H ′ = {H ′
1 =

D, . . . ,H ′
m} ⊆Kn×n.

Output A description of the matrix A ∈ GLn(L) such that H ′
i = AT Hi A for all 1 ≤ i ≤ m or

“NOSOLUTION”.

1. Compute the vector subspace Y = {Y | D−1 HiY = Y D−1 H ′
i , ∀1 ≤ i ≤ m} ⊆Kn×n.

2. If Y is reduced to the null matrix then return “NOSOLUTION”.
3. Pick at random Y ∈ Y .
4. Compute Z = D−1Y T DY and J = T−1Z T ∈ Ln×n, the Jordan normal form of Z together

with T .
5. Compute G−1 the inverse of a square root of J.
6. Return Y T G−1 and T .

Theorem 13. Algorithm 1 is correct with probability at least 1− n/|K| and runs in polynomial
time.

Proof. The correctness and the polynomial-time complexity of the algorithm come from Sec-
tion 3.2. After computing Y and putting the equations defining its matrices in triangular form, one
has to pick at random one matrix Y ∈Y . By sampling the whole field K on these free variables, the
probability that detY = 0 is upper bounded by n/|K| thanks to Schwartz-Zippel-DeMillo-Lipton
Lemma (DeMillo and Lipton (1978); Zippel (1979)).

Remark 14. Let us recall that the conjugacy problem does not depend on the ground field (see de Seguins Pazzis
(2010)), i.e. if there exists Y ∈ GLn(K

′), such that HiY =Y H ′
i , then there exists Y ′ ∈ GLn(K) such

17

that HiY ′ = Y ′H ′
i . This allows us to extend K to a finite extension in order to decrease the proba-

bility of getting a singular matrix Y . Thus the success probability of Algorithm 1 can be amplified
to 1− n/|K′| for any extension K′ ⊇ K. The probability can be then made overwhelming large
by considering extension of degree O(n). In this case, the algorithm returns the description of a
solution on K′(

√

ζ1, . . . ,
√

ζr). Notice also that this algorithm can be turned into a deterministic
algorithm using (Chistov et al., 1997, Theorem 2). That is, there is a polynomial-time algorithm
allowing to compute an invertible element in Y . Furthermore, if one of the original Hessian ma-
trices is already invertible, the computations of the essential variables of paragraph 2.ii and the
search of an equation with n essential variables in paragraph 2.iii can be done in a deterministic
way. Whence, the whole algorithm is deterministic.

The main Theorem 3 summarizes this remark together with Theorem 13.

3.4. The binary Case

In this section, we investigate fields of characteristic 2. Let K= Fq and (f,g) ∈K[x]m ×K[x]m.
Instead of Hessian matrices, we consider equivalently upper triangular matrices H1, . . . ,Hm and
H ′

1, . . . ,H
′
m such that:

fi(x) = xT Hi x, gi(x) = xT H ′
i x, ∀1 ≤ i ≤ m.

For any matrix M ∈Kn×n, let us denote ∆(M) = Diag(m11, . . . ,mnn) and Σ(M) = M+MT. It is
classical that if there exists A ∈ GLn(K) such that g(x) = f(A ·x), then we also have

Σ(H ′
i) = AT Σ(Hi)A, (6)

∆(H ′
i) = ∆(AT Hi A), ∀ i, 1 ≤ i ≤ m. (7)

It suffices for this to expand f(A ·x) and to consider the upper triangular matrices. In a sense, Σ(Hi)
is the Hessian matrix of fi and ∆(Hi) allow us to remember the x2

j terms in fi. Combining two
equations of (6) yields Σ(H ′

j)
−1Σ(H ′

i) = A−1Σ(H j)
−1Σ(Hi)A as long as Σ(H j) is invertible. Let us

notice that Σ(Hi)’s are symmetric matrices with a zero diagonal, thus antisymmetric matrices with
a zero diagonal. We would like to stress out that in odd dimension, the determinant of a symmetric
matrix S with a zero diagonal is always zero. Indeed, expanding formula ∑σ∈Sn ∏n

i=1 si,σ(i) yields,
for each nonzero term ∏n

i=1 si,σ(i), the term ∏n
i=1 si,σ−1(i) = ∏n

i=1 sσ(i),i = ∏n
i=1 si,σ(i). Dimension n

being odd, ∏n
i=1 si,σ(i) cannot be the same term as ∏n

i=1 si,σ−1(i). Hence they cancel each other. One
can also see these matrices as projections of antisymmetric matrices over a ring of characteristic 0,
namely Zq the unramified extension of the ring of dyadic integers of degree log2 q. Let S̃ ∈ Zn×n

q

be antisymmetric such that S̃ 7→ S. Then det S̃ = det S̃T = det(−S̃) = (−1)n det S̃, hence det S̃ = 0
and detS = 0.

Therefore, if n is odd, then a linear combination of the Σ(Hi)’s will always be singular. This
can be related to the irregular case of the introduction.

18

Reduction to canonical representations in even dimension. In this setting, we also rely on Assump-
tion 1 to assume that a linear combination ∑m

i=1 λi fi is not degenerate, and λ1, . . . ,λm can be found
in randomized polynomial time. Assuming λ1 , 0, we substitute the linear combinations ∑m

i=1 λi Hi

and ∑m
i=1 λi H ′

i to H1 and H ′
1.

As a consequence, we can find linear forms ℓ1, . . . , ℓn in x such that, see (Lidl and Niederreiter,
1997, Theorem 6.30): f1(x) = ℓ1ℓ2 + ℓ3ℓ4 + · · ·+ ℓn−1ℓn or f1(x) = ℓ1ℓ2 + ℓ3ℓ4 + · · ·+ ℓn−1ℓn +
ℓ2

n−1+dℓ2
n, where TrK(d) = d+d2+ · · ·+dq/2 = 1. After applying this change of variables, Σ(H1)

is always the following invertible block diagonal matrix:

Σ(H1) = Diag

((

0 1
1 0

)

, . . . ,

(

0 1
1 0

))

.

Following paragraph 2.iv, we once again choose νi such that Σ(Hi+νi H1) is invertible and replace
Hi by Hi +νi H1. Thus, Proposition 9 and Theorem 10 become:

Proposition 15. Let n be an even integer and K be a field of characteristic 2. Let (f,g) ∈
K[x1, . . . ,xn]

m×K[x1, . . . ,xn]
m be regular quadratic homogeneous polynomials. There is a random-

ized polynomial-time algorithm which returns “NOSOLUTION” only if f ≁ g or a new instance

(f̃, g̃) = ((δ , f̃2, . . . , f̃m),(δ , g̃2, . . . , g̃m))K[x1, . . . ,xn]
m ×K[x1, . . . ,xn]

m

such that f ∼ g ⇐⇒ f̃ ∼ g̃. Furthermore, denoting D the upper triangular matrix of f̃1 = g̃1 = δ ,
IP1S comes down to a Σ(D)-Orthogonal Simultaneous Matrix Conjugacy problem, i.e. conjugacy
by an Σ(D)-orthogonal matrix under some constraints:

AT Σ(D)A = Σ(D) and ∀ i,2 ≤ i ≤ m,Σ(D)−1 Σ(H ′
i) = A−1 Σ(D)−1 Σ(Hi)A,

∆(AT Hi A) = ∆(H ′
i).

Proof. We mimic the proof of Proposition 9. We compute in randomized polynomial time λ1, . . . ,λm ∈
K such that ϕ = ∑m

i=1 λi · fi is regular and we define γ = ∑m
i=1 λi ·gi. Assuming w.lo.g. λ1 , 0. We

have then:
f ∼ g ⇐⇒ (ϕ , f2, . . . , fm)∼ (γ ,g2, . . . ,gm).

Computing δ the canonical quadratic form equivalent to ϕ yields a P ∈ GLn(K) such that f̃ = (ϕ̃ =
δ , f̃2, . . . , f̃m) = (ϕ(Px), f2(Px), . . . , fm(Px)).

Then computing the canonical quadratic form equivalent to γ allows us to compare it with δ . If
they are different, then f ≁ g and we return “NOSOLUTION”. Otherwise, the reduction is given by
a matrix Q ∈ GLn(K) such that g̃ = (γ̃ = δ , g̃2, . . . g̃m) = (γ(Qx),g2(Qx), . . . ,gm(Qx)). Thus, f̃ ∼ g̃

if and only if f ∼ g.
Finally, equations (6) AT Σ(Hi)A = Σ(H ′

i) for all i, 1 ≤ i≤ m of can be rewritten as AT Σ(D)A =
Σ(D) and Σ(D)−1 Σ(H ′

i)=A−1 Σ(D)−1 Σ(Hi)A for all i, 2≤ i≤m, while equations (7) ∆(AT Hi A)=
∆(H ′

i) for all i, 1 ≤ i ≤ m remain.

19

As a consequence, we designed the following algorithm to solve regular instances of quadratic-
IP1S in even dimension over a field of characteristic 2.

Algorithm 2. Probabilistic algorithm in characteristic 2.

Input Two sets of triangular matrices H = {H1 =D, . . . ,Hm}⊆Kn×n and H ′= {H ′
1 =D, . . . ,H ′

m}⊆
Kn×n such that H1 +HT

1 and H ′
1 +H ′T

1 are invertible.

Output A description of the matrix A ∈ GLn(L) such that H ′
i = AT Hi A for all 1 ≤ i ≤ m or

“NOSOLUTION”.

1. Compute the vector subspace Y = {Y | Σ(D)−1 Σ(Hi)Y =Y Σ(D)−1 Σ(H ′
i), ∀1 ≤ i ≤ m} ⊆

Kn×n.
2. If Y is reduced to the null matrix then return “NOSOLUTION”.
3. Pick at random Y ∈ Y .
4. Compute Z = Σ(D)−1 Σ(Y)T Σ(D)Σ(Y) and J = T−1Z T ∈ Ln×n, the Jordan normal form of

Z together with T .
5. While J is not diagonal

a. Pick at random Y ∈ Y .
b. Compute Z, J and T as above.

6. Compute G−1 the inverse of a square root of J.
7. Return Y T G−1 and T .

The while loop comes from the fact that unlike other characteristics, even if Z is invertible, it
might not have any square roots which are polynomials in Z. In Section 6.2, we prove that there
exists a square root of Z, which is a polynomial in Z if and only if Z is diagonalizable.

Open Question: The Irregular Case. As stated above, in characteristic 2, the irregular case seems
to cover more cases than in other characteristics. Indeed, what is called usually a regular quadratic
form in odd dimension falls in the irregular case. However, from the Hessian matrix point of view,
an instance is irregular if all linear combinations of the Hessian matrices are singular over the
ground field. This allows us to unify our statement about irregularity to all characteristics.

It seems to be an intriguing challenge to solve the binary case on instances with regular
quadratic forms, in particular in odd dimension.

3.5. Benchmarks

We present in this section some timings of our algorithms over instances of IP1S. We created
instances H = {H1, . . . ,Hm} and H ′ = {H ′

1, . . . ,H
′
m} which are randomly alternatively equiva-

lent over Fp, equivalent over Fp2 but not Fp or not equivalent at all over F̄p, the algebraic closure
of Fp, for an odd p. We report our timings in the following Table 1 obtained using one core
of an INTEL CORE I7 at 2.6GHz running MAGMA 2.19, Bosma et al. (1997), on LINUX with
16GB of RAM. These timings corresponds to solving the linear system which is the dominant

20

part in our algorithm with complexity O(n2ω). The code is accessible on the first author’s web-
page http://www-polsys.lip6.fr/~berthomieu/IP1S.html. To simplify the presentation,
we only considered the case when m = n. That is, we only considered n matrices of size n.

Since our matrices are randomly chosen, we apply the following strategy. We first solve the
linear system H−1

1 Hi A = AH ′−1
1 H ′

i , for all i, 2 ≤ i ≤ m. In fact, in practice, i = 2,3 give enough
equations to retrieve A up to one free parameter if H and H ′ are indeed equivalent. If the matrices
are not equivalent, this linear system will return the zero matrix only.

Then, to determine A, we solve one quadratic equation amongst the ones given by AT H1 A=H ′
1.

Let us notice that either all these equations can be solved over Fp or none of them can. If they can,
then H and H ′ are equivalent over Fp and we have determined A up to a sign, otherwise H and
H ′ are only equivalent over Fp2 but not Fp and we also have computed such an A. This yields
Algorithm 3.

Algorithm 3. Simplified Algorithm.

Input Two sets of generic invertible symmetric matrices H = {H1, . . . ,Hm} ⊆ Kn×n and H ′ =
{H ′

1, . . . ,H
′
m} ⊆Kn×n.

Output A matrix A ∈ GLn(K) such that H ′
i = AT Hi A for all 1 ≤ i ≤ m or “NOSOLUTION”.

1. Compute the vector subspace Y = {Y | H−1
1 HiY = Y H ′

1
−1 H ′

i , ∀2 ≤ i ≤ 3} ⊆Kn×n.
2. If Y is reduced to a space of singular matrices then return “NOSOLUTION”.
3. Determine Y0 such that Y = {λY0 | λ ∈K}.
4. Solve in λ one equation λ 2(Y T

0 H1Y0)i, j = (H ′
1)i, j for a suitable pair (i, j).

5. Set A = λ Y0.
6. Pick at random r ∈Kn.
7. Check that AT Hi Ar = H ′

i r for all i, 1 ≤ i ≤ m.
8. Return A.

Complexity estimate. Taking the first 3 matrix equations H−1
1 HiY = Y H ′

1
−1H ′

i , in the n2 un-
knowns, one can solve this system in O(n2ω) operations in K. Then, one needs to determine λ

by extracting one square root in K which can be done in O((logq)3) operations in K = Fq with
Tonelli–Shanks’s algorithm, Shanks (1973). Finally, one can check that AT Hi A = H ′

i for all i, with
high probability, by picking up at random a vector and checking that the products of this vector
with both sets of matrices coincides. This can be done in O(mn2) operations in K.

Recall that, in practice, the best matrix multiplication algorithm is due to Strassen (1969) whose
complexity is in O(nlog2 7) ⊆ O(n2.807). Thus, our complexity is in O(n5.615). This complexity is
well confirmed since multiplying by 2 the sizes and the number of matrices multiplies our timings
roughly by at most 50.

In Table 2, we report our timings for solving the linear system of our algorithm in characteris-
tic 2 presented in Section 3.4. Our method does not differ much from the one in odd characteristic.
We pick at random two sets of m upper triangular matrices over F2 which are either equivalent over

21

http://www-polsys.lip6.fr/~berthomieu/IP1S.html

n 20 30 40 50 60 70 80 90 100
Timings 0.040 0.20 0.84 2.7 7.5 17 40 79 130

Table 1: Timings for solving IP1S over F65521 in s.

n 20 30 40 50 60 70 80 90 100
Timings (MAGMA) 0.010 0.030 0.080 0.25 0.68 1.4 3.2 6.25 16

Timings (M4RI) 0.010 0.030 0.06 0.14 0.27 0.51 0.91

Table 2: Timings for solving IP1S over F2 in s.

F2 or not equivalent at all over F̄2, the algebraic closure of F2. We first solve the linear system
Σ(H1)

−1 Σ(Hi)A = AΣ(H ′
1)

−1 Σ(H ′
i), for all i, 2 ≤ i ≤ m. Let us notice that in dimension 2, the lin-

ear system does not yield any information on A. In dimensions 8 or more (resp. 4 and 6), if H and
H ′ are equivalent, the linear system yields in general A up to one free parameter if m ≥ 3 (resp.
m ≥ 5). Otherwise, it yields the zero matrix. Then, it suffices to solve one of the quadratic equa-
tions amongst the one given by AT Σ(H1)A = Σ(H ′

1) and ∆(AT Hi A) = ∆(H ′
i), for all i, 1 ≤ i ≤ m

(see Proposition 15).
We compare the timings of both MAGMA and the C library M4RI, due to Albrecht and Bard

(2012).
Once again, our complexity in O(n2ω) is well confirmed by our timings. Thanks to the linear

system which totally determines A up to one free parameter, we just need to set this parameter to 1
to obtain A. This also explains why our timings are better than over F65521 although it would seem
a lot of quadratic equations must be solved.

4. Counting the Solutions: #IP1S

In this part, we present a method for counting the number of solutions to quadratic-IP1S. The
main result is a consequence of (Singla, 2010, Lemma 4.11). According to Proposition 5, this is
equivalent to enumerating all the invertible linear transformations on the variables between two
sets of quadratic homogeneous polynomials. We provide here an upper bound on the number of
solutions. We consider in this part regular quadratic homogeneous instances (f,g)∈K[x]m×K[x]m.

Let H = {H1 = D, . . . ,Hm} and H ′ = {H ′
1 = D, . . . ,H ′

m} be the Hessian matrices in Kn×n of f

and g respectively. Our counting problem is equivalent to enumerating the number of D-orthogonal
matrices X satisfying:

X−1 D−1 Hi X = D−1 H ′
i , ∀ i,1 ≤ i ≤ m. (8)

In (Singla, 2010, Section 4), the author computes the set of all matrices commuting with a given
matrix. In particular, from Lemma 4.11 of the aforementioned paper, we can determine the size
of this set and thus our upper bound on the number of solutions to quadratic-IP1S. In order to be
self-contained, the proofs of the following lemmas shall be found in Appendix A.

22

Let us notice that if X and X ′ are both orthogonal solutions of (8), then XX ′−1 commutes with
D−1H (resp. X−1X ′ commutes with D−1H ′). Therefore, the size of the set of solutions is upper
bounded by the number of invertible elements in the centralizer C (D−1H) of D−1H .

Let α be an algebraic element of degree m over K and let K′ = K(α). We consider the
matrix H = D−1

(

H1 + · · ·+αm−1Hm
)

∈ K′n×n. It is clear that a matrix X ∈ Kn×n is such that
X−1 D−1 Hi X = D−1 Hi for all i,1 ≤ i ≤ m if and only if X−1HX = H . Hence, the problem again
reduces itself to the computation of the centralizer C (H) of H intersected with GLn(K). To ease
the analysis, we consider the subspace V = C (H)∩Kn×n of matrices in Kn×n commuting with H .
This provides an upper bound on the number of solutions. The dimension of V as a K-vector space
is upper bounded by the dimension of C (H) as a K′-vector space. Indeed, V ⊗K′ ⊆ C (H), hence
dimKV = dimK′(V ⊗K′)≤ dimK′ C (H). Since we only want the size of the centralizer of H , we
can restrict our attention to the centralizer of the Jordan normal form J of H defined over a field L.

Let us denote ζ1, . . . ,ζr the eigenvalues of J. According to (Singla, 2010, Lemma 4.11) and
Lemma 23 in Appendix A, if J is made of Jordan blocks of size si,1 ≤ ·· · ≤ si,di for i,1 ≤ i ≤ r,
then centralizer of H has dimension at most

∑
1≤i≤r

∑
1≤ j≤di

(2di −2 j+1)si, j.

As a consequence, if q is an odd prime power, then the following corollary gives an upper
bound on the number of solutions of quadratic-IP1S in Fn×n

q .

Corollary 16. Let H1, . . . ,Hm ∈ Fn×n
q be symmetric matrices. Let α be algebraic over Fq of degree

m. Let H = ∑m
i=1 α i−1 Hi ∈ Fn×n

qm and let J be its normal Jordan form with eigenvalues ζ1, . . . ,ζr.
Assuming the blocks of J associated to ζi are Jζi,si,1

, . . . ,Jζi,si,d1
with si,1 ≤ ·· · ≤ si,di for i,1 ≤ i ≤ r,

then the number of solutions of quadratic-IP1S in Fn×n
q on the instance (H1, . . . ,Hm) is at most

q(∑1≤i≤r ∑1≤ j≤di
(2di−2 j+1)si, j)−1.

As mentioned in the introduction, the counting problem considered here is related to cryp-
tographic concerns. It corresponds to evaluating the number of equivalent secret keys in MPKC

(see Faugère et al. (2012); Wolf and Preneel (2011)). In particular, in Faugère et al. (2012), the au-
thors propose an “ad-hoc” method for solving a particular instance of #IP1S. An interesting open
question would be to revisit the results from Faugère et al. (2012) with our approach.

5. Special Case of the general IP Problem

In this part, we present a randomized polynomial-time algorithm for the following task:
Input: g=(g1, . . . ,gn)∈K[x1, . . . ,xn]

n, and POWn,d =(xd
1 , . . . ,x

d
n)∈K[x1, . . . ,xn]

n for some d > 0.
Question: Find – if any – (A,B) ∈ GLn(K)×GLn(K) such that:

g = B ·POWn,d(A ·x), with x = (x1, . . . ,xn)
T.

23

In Kayal (2011), the author proposes a randomized polynomial-time algorithm for solving the
problem when B is the identity matrix and m = 1 of finding A such that g(x) = f (A · x) with
f (x) = ∑n

i=1 xd
i .

We generalize this result to m = n with an additional transformation on the polynomials. The
main tool of our method is the following theorem.

Theorem 17. Let g = (g1, . . . ,gn) be polynomials of degree d over K[x1, . . . ,xn] given in dense
representation. Let L be a polynomial size of an arithmetic circuit to evaluate the determinant
of the Jacobian matrix of g. If the size of K is at least 12 max(2L+2,d (n − 1)2d (n−1) + d3 (n−
1)3,2(d (n−1)+1)4), then one can factor the determinant of the Jacobian matrix of g in random-
ized polynomial time.

Proof. For this, we will use Kaltofen (1989)’s algorithm to factor a polynomial given by evaluation,
the needed size of K is a consequence of this. As g has at most n

(n+d−1
d

)

∈ O(nd+1) monomials, it

can be evaluated in polynomial time using a multivariate Horner’s scheme. Each ∂gi
∂x j

(a) is obtained

as the coefficient in front of x j of the expansion of gi(a1, . . . ,a j−1,a j + x j,a j+1, . . . ,an) which is a
univariate polynomial of degree at most d. By (Bini and Pan, 1994, Chapter 1, Section 8), this can
be computed as the shift of a polynomial in polynomial time. Hence the Jacobian matrix of g at a

can be evaluated in polynomial time with an arithmetic circuit of polynomial size L. This circuit
can be for instance the evaluation of the Jacobian matrix of g followed by a Gaussian elimination
on the matrix to compute the determinant. The determinant of the matrix can be recovered by linear
algebra in O(nω) operations, with ω being the exponent of time complexity of matrix multiplica-
tion, 2 ≤ ω ≤ 3. Using the arithmetic circuit of polynomial size L to evaluate the determinant of
the Jacobian matrix, one can use KALTOFEN’s algorithm to factor it in polynomial time.

As in Kayal (2011) or Perret (2005), we use partial derivatives to extract matrices A and B.
The idea is to factor the Jacobian matrix (whereas Kayal (2011) uses the Hessian matrix) of g at x

which is defined as follows:

Jg(x) =

(

∂ jgi =
∂gi

∂x j

)

1≤i≤m
1≤ j≤n

.

According to the following lemma, the Jacobian matrix is especially useful in our context:

Lemma 18. Let
(

f = (f1, . . . , fm),g = (g1, . . . ,gm)
)

∈ K[x1, . . . ,xn]
m ×K[x1, . . . ,xn]

m. If (A,B) ∈
GLn(K)×GLm(K) are such that g = B · f(A ·x), then

Jg(x) = B · Jf(A ·x) ·A.

As a consequence, det Jg(x) = detA ·detB ·detJf(A ·x).
As long as charK does not divide d, the Jacobian matrix of f = POWn,d(x) is an invertible

diagonal matrix whose diagonal elements are
(

Jf(x)
)

i,i = d · xd−1
i , ∀ i,1 ≤ i ≤ n. Thus:

det JPOWn,d(x) = dn
n

∏
i=1

xd−1
i .

24

This gives

Lemma 19. Let g = (g1, . . . ,gn) ∈ K[x1, . . . ,xn]
n. Let d > 0 be an integer, and define POWn,d =

(xd
1 , . . . ,x

d
n)∈K[x1, . . . ,xn]

m. If (A,B)∈ GLn(K)×GLn(K) are such that g(x) = B ·POWn,d(A ·x),
then:

det Jg(x) = c ·
n

∏
i=1

ℓi(x)
d−1,

with c ∈K\{0}, and the ℓi’s are linear forms whose coefficients are the ith rows of A.

Proof. According to Lemma 18, det
(

Jg(x)
)

= det(A) ·det(B) ·dn ·∏n
i=1 ℓi(x)

d−1.

From Lemmas 19, we can derive a randomized polynomial-time algorithm for solving IP on
the instance (f = POWn,d ,g) ∈ K[x1, . . . ,xn]

n ×K[x1, . . . ,xn]
n in characteristic 0. It suffices to use

Kaltofen (1989)’s algorithm for factoring det Jg(x) in randomized polynomial time.
This allows us to recover – if any – the change of variables A. The matrix B can be then recov-

ered by linear algebra, i.e. solving a linear system of equations. This proves the result announced
in the introduction for IP, that is Theorem 4 whenever charK ∤ d.

Small characteristic. If charK divides d, we must change a little bit our strategy. Let us write
d = pre with charK= p and e coprime. Then,

POWn,d(Ax) =





(

n

∑
j=1

a1, j x j

)pre

, . . . ,

(

n

∑
j=1

an, j x j

)pre




POWn,d(Ax) =

((

n

∑
j=1

apr

1, j xpr

j

)e

, . . . ,

(

n

∑
j=1

apr

n, j xpr

j

)e)

POWn,d(Ax) = POWn,e

(

A(pr) xpr
)

,

with A(pr) =
(

apr

i, j

)

1≤i, j≤n
and xpr

=
(

xpr

1 , . . . ,xpr

n

)

. Thus g is a polynomial in xpr
and by replacing

xpr
by x, the problem comes down to checking if g̃ = B ·POWn,e(A(pr) · x) where g(x) = g̃(xpr

).
Now, as g̃(x) = B ·POWn,e

(

A(pr) x
)

, then

Jg̃ = B · JPOWn,e(A
(pr) x) ·A(pr).

Hence, det Jg̃(x)= det B det JPOWn,e(A
(pr) x)det A(pr)= en ∏n

i=1 ℓ̃i(x)
e−1

(detA)pr
detB, where the ℓ̃i’s

are linear forms whose coefficients are the ith rows of A(pr). Then, to use KALTOFEN’s algorithm,
one must set a low enough probability of failure ε yielding a big enough set of sampling points,
see (Kaltofen, 1989, Section 6, Algorithm, Step R). In particular, if the arithmetic circuit for eval-
uating the determinant of the Jacobian we want to factor has size L, then the size of the sampling
set must be greater than

6
ε

max
(

2L+2,e(n−1)2e(n−1)+ e3 (n−1)3,2(e(n−1)+1)4
)

,

25

recalling that our polynomial has degree e(n− 1). In other words, if the probability of failure is
less than 1/2, then one must consider a field of size at least

12max
(

2L+2,e(n−1)2e(n−1)+ e3 (n−1)3,2(e(n−1)+1)4
)

.

All in all, this allows us to retrieve – if any – the change of variables A(pr) and thus A. Then B can
be recovered by linear algebra. This proves Theorem 4 for any characteristic, as in the introduction.

Theorem 4 (restated). Let g = (g1, . . . ,gn) ∈K[x1, . . . ,xn]
n be given in dense representation, and

f = POWn,d = (xd
1 , . . . ,x

d
n) ∈ K[x1, . . . ,xn]

n for some d > 0. Whenever charK = 0, let e = d and
g̃ = g. Otherwise, let p = charK, let e and r be integers such that d = pr e, p and e coprime, and
let g̃ ∈ K[x]n be such that g(x) = g̃(xpr

). Let L be a polynomial size of an arithmetic circuit to
evaluate the determinant of the Jacobian matrix of g̃. If the size of K is at least 12 max(2L+2,e(n−
1)2e(n−1) + e3 (n − 1)3,2(e(n − 1) + 1)4), then there is a randomize polynomial-time algorithm
which recovers – if any – (A,B) ∈ GLn(K)×GLn(K) such that:

g = B ·POWn,d(A ·x).

The computation of such a pair (A,B) is summarized in the following Algorithm.

Algorithm 4. IP for POWn,d and g.

Input One set of polynomials g = (g1, . . . ,gn) ∈K[x1, . . . ,xn]
n, homogeneous of degree d.

Output Two matrices A,B∈GLn(K) – if any – such that g(x)=B ·POWn,d(A ·x)with POWn,d(x)=
(xd

1 , . . . ,x
d
n) or “NOSOLUTION”.

1. If charK= p > 0 then

a. Compute r,e such that d = pr e with p and e coprime.
b. Compute g̃ such that g̃(xpr

) = g(x).
2. Else e = d and g̃ = g.
3. Create an arithmetic circuit of polynomial size L to evaluate det Jg(x).
4. Evaluate det Jg(x) in at least 12 max(2L+2,e(n− 1)2e(n−1) + e3 (n− 1)3,2(e(n − 1) + 1)4)

distinct points.
5. Factor det Jg(x) with KALTOFEN’s algorithm.

6. If the factorization is c ∏n
i=1 ℓi(x)

e−1 then A =
(

ℓ
e/d
i, j

)

1≤i, j≤n
.

7. Else return “NOSOLUTION”.
8. Compute B such that g̃(x) = B · (ℓ1(x)

e, . . . , ℓn(x)
e)T.

9. Return (A,B).

26

6. Square Root of a Matrix

In this section, we present further algorithms for computing the square root of a matrix. We use
the same notation as in Section 3. A square root of a matrix Z is a matrix whose square is Z. In the
first subsection, we deal with some properties of the square root of a matrix in characteristic not 2.
In particular, we show that an invertible matrix Z always has a square root which is a polynomial
in Z. In the second subsection, we consider the case of characteristic 2. We recall that whenever Z
is not diagonalizable, then Z might have a square root but it is never a polynomial in Z. We give
some examples of such matrices Z. Lastly, we propose an alternative to the method of Section 3
for computing the square root of a matrix in polynomial time for any field of characteristic p ≥ 2.

6.1. The square root as a polynomial in characteristic not 2
In this part, we prove that an invertible matrix always has a square root which is a polynomial

in considered matrix. More specifically, we shall prove the following result.

Proposition 20. Let Z ∈ Kn×n be an invertible matrix whose eigenvalues are ζ1, . . . ,ζr. Let
ω1, . . . ,ωr be such that ω2

i = ζi and ζi = ζ j ⇒ ωi = ω j, for all 1 ≤ i, j ≤ r. Then, there exists
W ∈K(ω1, . . . ,ωr)[Z] a square root of Z whose eigenvalues are ω1, . . . ,ωr.

Proof. Let T be a matrix of change of basis, such that J = T−1 Z T is made of Jordan blocks. It
is clear that W such that W 2 = Z is a polynomial in Z, i.e. W = Q(Z), if and only if G = T−1W T
satisfies G = Q(J). Let Jζ ,d be the Jordan block of size d associated with eigenvalue ζ and ω be a
square root of ζ . We shall first prove that the square root Gω ,d of Jζ ,d is a polynomial in Jζ ,d with
coefficients in K(ω). Matrix Jζ ,d − ζ Idd is nilpotent of degree d. Hence, by the classical Taylor
expansion of the square root near Idd , one can write

Gω ,d = ω
d−1

∑
k=0

(

1/2
k

)

ζ−k (Jζ ,d −ζ Id
)k

=
d−1

∑
k=0

(

1/2
k

)

ω1−2k (Jζ ,d −ζ Id
)k

= Qζ (Jζ ,d) (9)

=













ω
(1/2

1

)

ω−1 · · ·
(1/2

d−1

)

ω3−2d

. . .
. . .

...
. . .

(1/2
1

)

ω−1

ω













,

with Qζ (x) = ∑d−1
k=0

(1/2
k

)

ω1−2k (x−ζ)i ∈K(ω)[x].
It remains to prove that for multiple Jordan blocks, one can find a common polynomial. From

equation (9), we deduce that G is a polynomial in J = Diag
(

Jζ1,d1
, . . . ,Jζr ,dr

)

if and only if there
exists a polynomial Q such that Q = Qζi

mod (X − ζi)
di , for all i, 1 ≤ i ≤ r. By the Chinese

Remainder Theorem, this can always be solved as soon as ζi = ζ j implies Qζi
= Qζ j

mod (X −
ζi)

min(di,d j), which is exactly the condition ωi = ω j.

Let us notice that picking the same square root for two equal eigenvalues is necessary. Indeed,
although W =

(

1 0
0 −1

)

is a square root of Z =
(

1 0
0 1

)

, W <K[Z].

27

6.2. Matrices with square roots in characteristic 2

In this part, we consider the trickier case of computing the square root of a matrix over a field K
with charK= 2. Unfortunately, unlike other characteristics, an invertible matrix has not necessarily
a square root over K̄. In fact, no Jordan block of size at least 2 has any square root. This is mainly
coming from the fact that generalized binomial coefficients

(1/2
k

)

, involved in the Taylor expansion,
are meaningless in characteristic 2.

Proposition 21. Let Z ∈Kn×n be a Jordan normal form with blocks J1, . . . ,Jr of sizes d1, . . . ,dr ≥ 2,
associated to eigenvalues ζ1, . . . ,ζr and blocks of sizes 1 with eigenvalues υ1, . . . ,υs. We assume
that J1, . . . ,Jr are ordered by decreasing sizes and then eigenvalues. Matrix Z has a square root W
if and only if d1 −d2 ≤ 1 and ζ1 = ζ2, d3 −d4 ≤ 1 and ζ3 = ζ4, etc. and if for each Ji of size 2 that
is not paired with Ji−1 or Ji+1, then there exists a j such that υ j = ζi.

Furthermore, matrix W is a polynomial in Z if and only if Z is diagonalizable.

Before, proving this result, we give some example of matrices with or without square roots.
Following matrices J and J′ both have two Jordan blocks associated with eigenvalue ζ . Denoting
ω the square root of ζ , then K is the square root of J and K′

1,K
′
2 are those of J′ for x,y,z any.

J =





ζ 0 0
0 ζ 1
0 0 ζ



 , K =





ω 0 x
1
x ω y
0 0 ω



 ,

J′ =









ζ 1 0 0
0 ζ 0 0
0 0 ζ 1
0 0 0 ζ









, K′
1 =









ω x 0 y
0 ω 0 0
1
y z ω x

0 1
y 0 ω









, K′
2 =









ω x y z
0 ω 0 y
0 1

y ω x

0 0 0 ω









.

As one can see, none of K, K′
1 and K′

2 are polynomials in J or J′ because of the nonzero subdiagonal
elements 1/x and 1/y. Examples of matrices without square roots are J′′, with two Jordan blocks
associated with ζ of sizes 1 and 3, and J′′′, with three Jordan blocks associated with ζ of size 2.
Computing a square root of each of them yields an inconsistent system.

J′′ =









ζ 0 0 0
0 ζ 1 0
0 0 ζ 1
0 0 0 ζ









, J′′′ = Diag

((

ζ 1
0 ζ

)

,

(

ζ 1
0 ζ

)

,

(

ζ 1
0 ζ

))

.

Proof. Let J be a Jordan block of size d associated to eigenvalue ζ . Then J2 − ζ 2Id =
(

0 Idd−2
0 0

)

and one can deduce that ζ 2 is the sole eigenvalue of J2 but that its geometric multiplicity is 2.
Hence the Jordan normal form of J2 is made of two Jordan blocks.

As (J−ζ Id)d = 0 and (J−ζ Id)e
, 0 for all e< d, then

(

J2 −ζ 2Id
)⌈d/2⌉

= 0 and
(

J2 −ζ 2Id
)e
,

0 for e < ⌈d/2⌉, i.e. e < d/2 if d is even and e < (d + 1)/2 if d is odd. Thus the Jordan normal

28

form of J2 has a block of size exactly ⌈d/2⌉. That is, if d is even, both blocks have size d/2 and if
d is odd, one block has size (d +1)/2 and the other block has size (d −1)/2.

By this result, if Z is a square, then one must be able to pair up its Jordan blocks with same
eigenvalue ζ so that the sizes differ by at most 1. The blocks that need not be paired being the
blocks of size 1.

Conversely, assuming one can pair up the Jordan blocks of Z with same eigenvalue ζ so that
the sizes differ by at most 1 and the remaining blocks have sizes 1. Then, each pair of blocks is
the Jordan normal form of the square of a Jordan block of size the sum of the sizes and eigenvalue
√

ζ . Furthermore, each lonely block of size 1 associated with ζ is the square of the block of size
1 associated with

√

ζ .
Finally, for the last statement, the if part is easy. It remains the only if part for which we assume

W 2 = Z and Z is not diagonalizable. Let J be the Jordan normal form of Z with blocks J1, . . . ,Jr.
For any polynomial P, P(J) is also block diagonal with blocks P(J1), . . . ,P(Jr). Thus, if P(J)2 = J,
then P(Ji)

2 = Ji for all 1 ≤ i ≤ r, which is false, unless Ji has size 1.

6.3. Computation in characteristic p ≥ 2

In this part, we present an alternative method to the one presented in Section 3.2. We aim at
diminishing the number of variables needed in the expression of the square root. However, this
method does not work in characteristic 0. For the time being, we consider charK > 2. However,
we shall see below how to adapt this method to the characteristic 2.

The idea is still to perform a change of basis T over K so that J = T−1 Z T has an easily
computable square root. This matrix J is the generalized Jordan normal form, also known as the
primary rational canonical form of Z. As the classical Jordan normal form, if Z is diagonaliz-
able over K̄, then J is block diagonal, otherwise it is a block upper triangular matrix. Its diagonal
blocks are companion matrices C (P1), . . . ,C (Pr) of irreducible factors P1, . . . ,Pr of its character-
istic polynomial. Superdiagonal blocks are zero matrices with eventually a 1 on the bottom-left
corner, if the geometric multiplicity associated to the roots of one the Pi is not large enough. In
other words, it gathers d conjugated eigenvalues in one block of size d which is the companion
matrix of their shared minimal polynomial. Let us note that computing such a normal form can be
done in polynomial time and that the change of basis matrix T is defined over K, see Matthews
(1992); Storjohann (1998). Thus, after computing a square root G of J, one can retrieve W and A
of Section 3.2 in O(nω) operations in the field of coefficients of G, with ω being the exponent of
the time-complexity of matrix multiplication 2 ≤ ω ≤ 3. Furthermore, computing a square root of
J is equivalent to computing the square root of each companion matrix. Finally, using the same
argument as for the more classical Jordan normal form in Section 6.1, G is a polynomial in J. In
the following, we only show how to determine the square root of a companion matrix C (P), for an
irreducible P.

29

Let P = xd + pd−1 xd−1 + · · ·+ p0, let us recall that the companion matrix of P is

C (P) =













0 −p0

1
. . . −p1
. . . 0

...
1 −pd−1













.

If polynomial P can be decomposed as P(z) = (z −α0) · · · (z −αd−1), then we want to find a
polynomial Q such that Q(z) = (z−β0) · · · (z−βd−1), where β 2

i = αi for all 0 ≤ i ≤ d −1. Let us
notice that

P(z2) = (z2 −α0) · · · (z2 −αd−1) = Q(z)(z+β0) · · · (z+βd−1) = (−1)d Q(z)Q(−z).

As a consequence, the characteristic polynomial of C (Q)2 is

det(λ Id−C (Q)2) = det(
√

λ Id−C (Q))det(
√

λ Id+C (Q)) = (−1)dQ(
√

λ)Q(−
√

λ) = P(λ).

But since P is irreducible over K, by the invariant factors theory, then C (Q)2 must be similar to the
companion matrix C (P) over K.

As P is irreducible over K= Fq, up to reindexing the roots of P, the conjugates α1, . . . ,αd−1 of
α0 are just its iterated qth powers. Denoting L=K[x]/(P(x)) =Fqd , let us assume that S(y) = y2−x

is reducible in L[y], then β0 ∈ L. As such, one can choose βi = β
qi

0 , the iterated qth powers. In that
case, the previous equations can be rewritten

P(z) = (z−α0)
(

z−α
q
0

)

· · ·
(

z−α
qd−1

0

)

= (z− x) (z− xq) · · ·
(

z− xqd−1
)

,

Q(z) = (z−β0)
(

z−β
q
0

)

· · ·
(

z−β
qd−1

0

)

= (z− y) (z− yq) · · ·
(

z− yqd−1
)

.

As a consequence, Q(z) ∈ K[z] and to compute Q(z), we need to compute yqi
effectively. This is

done by computing the following values in O(d logq) operations in L:

u0 = x,u1 = xq mod P(x), . . . ,ud−1 = uq
d−2 = xqd−1

mod P(x).

Then, we simply compute in d operations Q(z) = (z−u0)(z−u1) · · · (z−ud−1) and we know that
the resulting polynomial is in K[z].

Whenever α0 is not a square in L, that is whenever S(y) is irreducible, then β
qd

0 is a square root
of α0 different from β0, thus it is −β0. As a consequence, setting Q(z) = (z−β0)(z−β

q
0) · · · (z−

β
qd−1

0) would yield a polynomial that is not stable by the Frobenius endomorphism.
As such, we introduce a new variable y to represent the field L′ = L[y]/(y2 −x) and to compute

Q(z), we need to compute yqi(d+1)
effectively. Since yqi

= yyqi−1 = yx
qi−1

2 , we can compute the
following values in O(d log q) field operations in L:

u0 = 1,u1 = x
q−1

2 mod P(x), . . . ,ud−1 = u1 uq
d−2 = x

qd−1−1
2 mod P(x).

30

Consequently, Q(z) = (z− yu0)(z− yu1) · · · (z− yud−1).
As a first step, we compute in d operations, the dehomogenized polynomial in y,

Q̃(z) = (z−u0)(z−u1) · · · (z−ud−1) = zd +h1zd−1 + · · ·+hd−1z+hd.

Then, Q(z) = zd + yh1zd−1 + · · ·+ yd−1hd−1z + ydhd . But, denoting by i0 = i mod 2, we have

yi = yi0 yi−i0 = yi0 x
i−i0

2 . Hence we deduce:

Q(z) = zd + yh1zd−1 + xh2zd−2 + yxh3zd−3 + · · ·+ yd0x
d−d0

2 hd

= zd + y
⌊ d−1

2 ⌋
∑
i=0

h2 i+1 xi zd−2 i−1 +
⌊ d

2⌋
∑
i=1

h2 i xi zd−2 i.

Complexity analysis. Since the number of operations for computing the square root of a block of
size d is bounded by O(d logq) operations in L = Fqd , this is also bounded by O(d M(d) logq)
operations in K = Fq, where M(n) is a bound on the number of operations in K to multiply two
polynomials in K[x] of degree at most n− 1. As a consequence, the computation of W can be
done in no more than O(nω + nM(n) log q) operations in K. Let us assume that the characteristic
polynomial of Z has degree n and can be factored as Pe1

1 · · ·Pes
s with Pi and Pj coprime whenever

i , j, degPi = di and ei ≥ 1. From a computation point of view, in the worst case, one needs to
introduce a variable αi for one root of Pi and a variable βi for the square root of αi, assuming αi is
not a square. This yields a total number of 2s variables.

Computation in characteristic 2. The case of characteristic 2 is almost the same. From a poly-
nomial P(z) = zd + pd−1zd−1 + · · ·+ p0 = (z− ζ1) · · · (z− ζd), we want to compute Q(z) = zd +
qd−1zd−1 + · · ·+q0 = (z−ω1) · · · (z−ωd), with ω2

i = ζi for all 1 ≤ i ≤ d. As P(z2) = Q(z)2, this

yields qi =
√

pi = pq/2
i , for all 1 ≤ i ≤ d−1. Thus, Q can be computed in O(d log q) operations in

K and as a consequence, W in O(nω +n logq) operations in K.
However, let us recall that D is block diagonal if and only if the Jordan normal form is block

diagonal. As such, a square root of D is a polynomial in D if and only if D is block diagonal, see
Section 6.2.

Acknowledgements

We would like to thank Gabor IVANYOS for his helpful remarks and references on the irregular
case. We wish to thank Gilles MACARIO-RAT for the many discussions about isomorphism of
quadratic polynomials and Nitin SAXENA for those about graph isomorphism.

We thank the anonymous referees for their careful reading and their helpful comments.
This work has been partly supported by the French National Research Agency ANR-11-

BS02-0013 HPAC project.

31

References

Agrawal, M., Saxena, N., 2006. Equivalence of F-Algebras and Cubic Forms. In: Durand, B.,
Thomas, W. (Eds.), STACS. Vol. 3884 of Lecture Notes in Computer Science. Springer, pp.
115–126.

Albrecht, M., Bard, G., 2012. The M4RI Library – Version 20121224. The M4RI Team.
URL http://m4ri.sagemath.org

Bernardi, A., , Gimigliano, A. Idà, M., 2011. Computing symmetric rank for symmetric tensors. J.
Symb. Comput. 46 (1), 34–53.

Berthomieu, J., Hivert, P., Mourtada, H., 2010. Computing Hironaka’s invariants: Ridge and Direc-
trix. In: Arithmetic, Geometry, Cryptography and Coding Theory 2009. Vol. 521 of Contemp.
Math. Amer. Math. Soc., Providence, RI, pp. 9–20.

Bettale, L., Faugère, J.-C., Perret, L., 2013. Cryptanalysis of HFE, Multi-HFE and Variants for
Odd and Even Characteristic. Designs, Codes and Cryptography 69 (1), 1 – 52.

Bhattacharyya, A., Fischer, E., Lovett, S., 2013. Testing low complexity affine-invariant properties.
In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms.
pp. 1337–1355.

Bini, D., Pan, V. Y., 1994. Polynomial and Matrix Computations. Volume 1: Fundamental Algo-
rithms. Progress in Theoretical Computer Science. Birkhäuser Boston Inc., Boston, MA.

Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system. I. The user language.
J. Symbolic Comput. 24 (3-4), 235–265, computational algebra and number theory (London,
1993).

Bouillaguet, C., Faugère, J.-C., Fouque, P.-A., Perret, L., 2011. Practical cryptanalysis of the identi-
fication scheme based on the isomorphism of polynomial with one secret problem. In: Catalano,
D., Fazio, N., Gennaro, R., Nicolosi, A. (Eds.), Public Key Cryptography. Vol. 6571 of Lecture
Notes in Computer Science. Springer, pp. 473–493.

Bouillaguet, C., Fouque, P.-A., Véber, A., 2013. Graph-theoretic algorithms for the "isomorphism
of polynomials" problem. In: Johansson, T., Nguyen, P. N. (Eds.), EUROCRYPT. Vol. 7881 of
Lecture Notes in Computer Science. Springer, pp. 211–227.

Bürgisser, P., 2012. Prospects for geometric complexity theory. In: IEEE Conference on Computa-
tional Complexity. IEEE, p. 235.

Bürgisser, P., Ikenmeyer, C., 2011. Geometric complexity theory and tensor rank. In: Fortnow, L.,
Vadhan, S. P. (Eds.), STOC. ACM, pp. 509–518.

32

http://m4ri.sagemath.org

Bürgisser, P., Ikenmeyer, C., 2013. Explicit lower bounds via geometric complexity theory. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (Eds.), STOC. ACM, pp. 141–150.

Cai, J., 1994. Computing Jordan Normal forms Exactly for Commuting Matrices in Polynomial
Time. International Journal of Foundations of Computer Science 05 (03n04), 293–302.

Carlini, E., 2005. Reducing the number of variables of a polynomial. In: Algebraic geometry and
geometric modeling. Springer, pp. 237–247.

Carlitz, L., 03 1954. Representations by quadratic forms in a finite field. Duke Mathematical Jour-
nal 21 (1), 123–137.

Chen, X., Kayal, N., Wigderson, A., 2011. Partial derivatives in arithmetic complexity and beyond.
Foundations and Trends in Theoretical Computer Science 6 (1-2), 1–138.

Chistov, A. L., Ivanyos, G., Karpinski, M., 1997. Polynomial time algorithms for modules over
finite dimensional algebras. In: Char, B. W., Wang, P. S., Küchlin, W. (Eds.), ISSAC. ACM, pp.
68–74.

Cohn, H., Umans, C., 2013. Fast matrix multiplication using coherent configurations. In: Proceed-
ings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA.
SIAM, pp. 1074–1086.

Comon, P., Golub, G. H., Lim, L.-H., Mourrain, B., 2008. Symmetric tensors and symmetric tensor
rank. SIAM J. Matrix Analysis Applications 30 (3), 1254–1279.

de Seguins Pazzis, C., 2010. Invariance of simultaneous similarity and equivalence of matrices
under extension of the ground field. Linear Algebra and its Applications 433 (3), 618 – 624.

DeMillo, R., Lipton, R., 1978. A probabilistic remark on algebraic program testing. Information
Processing Letters 7 (4), 192–194.

Edmonds, J., 1967. Systems of distinct representatives and linear algebra. Journal of Research of
the National Bureau of Standards 718 (4), 242 – 245.

Faugère, J.-C., Lin, D., Perret, L., Wang, T., 2012. On enumeration of polynomial equivalence
classes and their application to MPKC. Finite Fields and Their Applications 18 (2), 283 – 302.

Faugère, J.-C., Perret, L., 2006. Polynomial Equivalence Problems: Algorithmic and Theoretical
Aspects. In: Vaudenay, S. (Ed.), EUROCRYPT. Vol. 4004 of Lecture Notes in Computer Sci-
ence. Springer, pp. 30–47.

Gantmacher, F., 1959. The Theory of Matrices, Vol. 1. Chelsea.

Giraud, J., 1972. Étude locale des singularités. U.E.R. Mathématique, Université Paris XI, Orsay,
cours de 3ème cycle, 1971–1972, Publications Mathématiques d’Orsay, No. 26.

33

Green, B. J., Tao, T., 2009. The distribution of polynomials over finite fields, with applications to
the gowers norms. Contributions to Discrete Mathematics 4 (2).

Grigorescu, E., Wimmer, K., Xie, N., 2013. Tight lower bounds for testing linear isomorphism.
Electronic Colloquium on Computational Complexity (ECCC), 17.

Hironaka, H., 1970. Additive groups associated with points of a projective space. Ann. of Math.
(2) 92, 327–334.

Kaltofen, E., 1989. Factorization of polynomials given by straight-line programs. In: Randomness
and Computation. JAI Press, pp. 375–412.

Kayal, N., 2011. Efficient algorithms for some special cases of the polynomial equivalence prob-
lem. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SIAM, Philadelphia, PA, pp. 1409–1421.

Kayal, N., 2012. Affine projections of polynomials: extended abstract. In: Karloff, H. J., Pitassi, T.
(Eds.), STOC. ACM, pp. 643–662.

Lang, S., 2002. Algebra, 3rd Edition. Vol. 211 of Graduate Texts in Mathematics. Springer-Verlag,
New York.

Lidl, R., Niederreiter, H., 1997. Finite fields, 2nd Edition. Vol. 20 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge, with a foreword by P. M. Cohn.

Macario-Rat, G., Plût, J., Gilbert, H., 2013. New Insight into the Isomorphism of Polynomial Prob-
lem IP1S and Its Use in Cryptography. In: Sako, K., Sarkar, P. (Eds.), Advances in Cryptology
- ASIACRYPT 2013. Vol. 8269 of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, pp. 117–133.

Mackey, D. S., Mackey, N., Tisseur, F., 2005. Structured factorizations in scalar product spaces.
SIAM J. Matrix Anal. Appl. 27 (3), 821–850.

Matsumoto, T., Imai, H., 1988. Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Advances in Cryptology – EUROCRYPT 1988. Vol.
330 of LNCS. Springer–Verlag, pp. 419–453.

Matthews, K. R., 1992. A rational canonical form algorithm. Math. Bohemica 117, 315–324.

Mulmuley, K., 2012. The GCT program toward the P vs. NP problem. Commun. ACM 55 (6),
98–107.

Mulmuley, K., Sohoni, M. A., 2001. Geometric Complexity Theory I: An Approach to the P vs.
NP and Related Problems. SIAM J. Comput. 31 (2), 496–526.

34

Newman, M., 1967. Two classical theorems on commuting matrices. J. Res. Nat. Bur. Standards
Sect. B 71B, 69–71.

Patarin, J., 1996. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two
New Families of Asymmetric Algorithms. In: Maurer, U. M. (Ed.), EUROCRYPT. Vol. 1070 of
Lecture Notes in Computer Science. Springer, pp. 33–48.

Patarin, J., Goubin, L., Courtois, N., 1998. Improved algorithms for isomorphisms of polynomials.
In: Nyberg, K. (Ed.), EUROCRYPT. Vol. 1403 of Lecture Notes in Computer Science. Springer,
pp. 184–200.

Perret, L., 2004. On the computational complexity of some equivalence problems of polynomial
systems of equations over finite fields. Electronic Colloquium on Computational Complexity
(ECCC) 116.

Perret, L., 2005. A fast cryptanalysis of the isomorphism of polynomials with one secret problem.
In: Cramer, R. (Ed.), EUROCRYPT. Vol. 3494 of Lecture Notes in Computer Science. Springer,
pp. 354–370.

Saxena, N., 2006. Morphisms of Rings and Applications to Complexity. Ph.D. thesis, Indian Insti-
tute of Technology Kanpur.

Shanks, D., 1973. Five number-theoretic algorithms. In: Proceedings of the Second Manitoba Con-
ference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972). Utilitas Math.,
Winnipeg, Man., pp. 51–70. Congressus Numerantium, No. VII.

Singla, P., 2010. On representations of general linear groups over principal ideal local rings of
length two. Journal of Algebra 324 (9), 2543–2563.

Storjohann, A., 1998. An O(n3) algorithm for the Frobenius normal form. In: Proceedings of the
1998 International Symposium on Symbolic and Algebraic Computation. ISSAC ’98. ACM,
New York, NY, USA, pp. 101–105.

Strassen, V., 1969. Gaussian elimination is not optimal. Numer. Math. 13, 354–356.

Tang, S., Xu, L., 2012. Proxy signature scheme based on isomorphisms of polynomials. In: Xu, L.,
Bertino, E., Mu, Y. (Eds.), NSS. Vol. 7645 of Lecture Notes in Computer Science. Springer, pp.
113–125.

Tang, S., Xu, L., 2014. Towards provably secure proxy signature scheme based on isomorphisms of
polynomials. Future Generation Computer Systems 30, 91 – 97, special Issue on Extreme Scale
Parallel Architectures and Systems, Cryptography in Cloud Computing and Recent Advances in
Parallel and Distributed Systems, ICPADS 2012.

Valiant, L. G., 1979. The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201.

35

von zur Gathen, J., Gerhard, J., 1999. Modern computer algebra. Cambridge University Press, New
York.

Wallenborn, L. A., 2013. Berechnung des Hilbert Symbols, quadratische Form-Äquivalenz und
Faktorisierung ganzer Zahlen. Master’s thesis, Rheinische Friedrich-Wilhelms-Universität.

Wolf, C., Preneel, B., 2011. Equivalent keys in multivariate quadratic public key systems. Journal
of Mathematical Cryptology 4 (4), 375–415.

Yang, G., Tang, S., Yang, L., 2011. A novel group signature scheme based on mpkc. In: Bao, F.,
Weng, J. (Eds.), ISPEC. Vol. 6672 of Lecture Notes in Computer Science. Springer, pp. 181–195.

Zippel, R., 1979. Probabilistic algorithms for sparse polynomials. In: Symbolic and algebraic com-
putation (EUROSAM’79), Internat. Sympos. Vol. 72 of Lecture Notes in Computer Science.
Springer Verlag, pp. 216–226.

Appendix A. Proofs of #IP1S

In this appendix, we shall prove the dimension of the centralizer of a matrix J, a Jordan normal
form. This dimension, a consequence of (Singla, 2010, Lemma 4.11), is used in Section 4 to
determine an upper bound on the counting problem of quadratic-IP1S. As stated by Singla, the
proofs only involve matrix multiplications are given in order for the paper to be self-contained.

First, let us recall that the centralizer of J, a Jordan block of size s is the set of upper triangular
Toeplitz matrices of size s× s. Indeed, if X commutes with J, XJ− JX is as such

X J − J X =





−x2,1 x1,1−x2,2 ... x1,n−1−x2,n

...
...

...
−xn,1 xn−1,1−xn,2 ··· xn−1,n−1−xn,n

0 xn,1 ... xn,n−1



= 0.

This small result is used in the following Lemma to determine the centralizer of a Jordan normal
form.

Lemma 22. Let J be a Jordan normal form. For 1 ≤ i ≤ r, let us denote Ji the ith block of J
and let us assume it is associated with eigenvalue ζi and it is of size si. Let X = (Xi, j)1≤i, j≤r be a
block-matrix, with Xi, j ∈ L(ζ1, . . . ,ζr)

si×s j , that commutes with J. If ζi = ζ j, then Xi, j is an upper
triangular Toeplitz matrix whose nonnecessary zero coefficients are the one on the first min(si,s j)
diagonals. Otherwise, Xi, j = 0.

Proof. We assume that r = 2. If X J − J X =
(

X1,1 J1−J1 X1,1 X1,2 J2−J1 X1,2
X2,1 J1−J2 X2,1 X2,2 J1−J1 X2,2

)

= 0, then X1,1 commutes

with J1 = Jζ1,s1
and X2,2 with J2 = Jζ2,s2

. Thus they are upper triangular Toeplitz matrices.
From X2,1 J2−J1 X2,2, one deduces that (ζ1−ζ2)xs1+s2,1 = 0, hence either ζ1 = ζ2 or xs1+s2,1 =

0. If ζ1 , ζ2, then step by step, one has X1,2 = 0. Assuming ζ1 = ζ2, then step by step, one has
xs1+i,1 = 0 for i > 1 and since xs1+i+1, j+1 − xs1+i, j = 0 for all i, j, one has in fact that X1,2 is a upper

36

triangular Toeplitz matrix with potential nonzero coefficients on the first min(s1,s2) diagonals. The
same argument applies to X2,1.

The case r > 2 is an easy generalization of this result.

From this lemma, we can deduce easily the dimension of the centralizer of a matrix.

Lemma 23. Let H ∈ Kn×n be a matrix and let J be its normal Jordan form. Assuming the blocks
of J associated to ζi are Jζi,si,1

, . . . ,Jζ1,si,d1
with si,1 ≤ ·· · ≤ si,di for i,1 ≤ i ≤ r, then the centralizer

of H is a K-vector subspace of Kn×n of dimension no more than ∑1≤i≤r ∑1≤ j≤di
(2di −2 j+1)si, j.

Proof. Let L be the smallest field over which J is defined. It is clear that the centralizer of H over
L, denoted W , contains C (H)⊗L. Hence, dimKC (H) = dimL(C (H)⊗L)≤ dimLW .

Now, let X = (Xi, j)1≤i, j≤d1+···+dr ∈ V . From Lemma 22, there are ∑1≤i≤r ∑1≤ j≤di
si, j free pa-

rameters for the diagonal blocks of X and 2 ∑1≤i≤r ∑1≤ j<k≤di
min(si, j,si,k) = 2∑1≤i≤r ∑1≤ j≤di

(di−
j)si, j free parameters for the off-diagonal blocks of X . This concludes the proof.

As a consequence, the number of invertible matrices in C (H) is bounded from above by

q(∑1≤i≤r ∑1≤ j≤di
(2di−2 j+1)si, j)−1,

as stated in Corollary 16.

37

	Introduction
	Normalization - Canonical form of IP1S
	Quadratic IP1S
	Existence of a D-Orthogonal Solution
	Computing the D-Orthogonal Solution
	Probabilistic and Deterministic Algorithms
	The binary Case
	Benchmarks

	Counting the Solutions: #IP1S
	Special Case of the general IP Problem
	Square Root of a Matrix
	The square root as a polynomial in characteristic not 2
	Matrices with square roots in characteristic 2
	Computation in characteristic p2

	Proofs of #IP1S

