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Abstract

Blind signature is the concept to ensure anonymity of e-coins. Untracebility and

unlinkability are two main properties of real coins and should also be mimicked

electronically. A user has to fulfill above two properties of blind signature for

permission to spend an e-coin.

During the last few years, asymmetric cryptosystems based on curve based

cryptographiy have become very popular, especially for embedded applications.

Elliptic curves(EC) are a special case of hyperelliptic curves (HEC). HEC operand

size is only a fraction of the EC operand size. HEC cryptography needs a group

order of size at least ≈ 2160. In particular, for a curve of genus two field Fq with p

≈ 280 is needeed. Therefore, the field arithmetic has to be performed using 80-bit

long operands. Which is much better than the RSA using 1024 bit key length. The

hyperelliptic curve is best suited for the resource constraint environments. It uses

lesser key and provides more secure transmisstion of data.

Keywords: Hyperelliptic curve cryptography, Proxy signature, Blind signature, Symmetric

key cryptography, Asymmetric cyptography.
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Chapter 1

Introduction

The study of information hiding and verification is called Cryptography. It includes

the protocols, algorithms and strategies to securely and consistently prevents access

of sensitive information from unauthorised person and enable verifiability of every

component in a communication.

Cryptanalysis is the study of how to circumvent the use of cryptography for

unintended recipients or called as code breaking. Cryptography and cryptanalysis

are sometimes grouped together under the umbrella coined cryptology, encompassing

the entire subject. In practice, cryptography is often used to refer the field as

a whole, especially as an applied science. Cryptography is an interdisciplinary

subject, drawing from several fields. Before the time of computers, it was very much

related to linguistics. Nowadays the emphasis has shifted and cryptography takes

extensive use of technical areas of mathematics, those areas collectively known as

discrete mathematics. This includes topics from information theory, number theory,

statistics, computational complexity and combinatorics. This is also a branch of

engineering but an unusual one as it must deal with malevolent opposition, intelligent

and active.

1



Chapter 1 Introduction

1.1 History of cryptography

Until a few decades ago, the information collected by an organization was stored on

physical files. The confidentiality of the files was achieved by restricting the access

to a few authorized and trusted people in th organization, In the same way, only a

few authorized people were allowed to change the contents of files. The availability

was achieved by designating at least one person who would have access to the files

at all times.

With the advent of computers information storage are now in electronic media.

Instead of being stored on physical media, it was stored in computers. The three

security requirements, however did not change. The files stored in computers

required confidentiality, integrity and availability. The implementation of these

requirements however is different and more challenging.

Some security mechanisms can be implemented using cryptography.

Cryptography used to refer to the science and art of transforming messages

to make them secure and protect from attacks. Although in past cryptography

referred only to the encryption and decryption of messages using secret keys,

now a days it is defined as involving three distinct mechanisms: symmetric key

cryptography and asymmetric key cryptography.

1.2 Symmetric key cryptography

An entity Alice can send a message to another entity Bob over an insecure channel

with the assumption that an adversary Eve can not understand the contents of the

message by simply eavesdropping over the channel. The original message form Alice

to Bob is called plaintext: the message that is sent through the channel is called the

ciphertext. To create the ciphertext from the plaintext, Alice uses an encryption

algorithm and a shared secret key. To create the paintext from ciphertext. Bob uses

a decryption algorithm and the same secret key. A key is a set of values(numbers)

that the encryption/decryption algorithms use for operations.

2



Chapter 1 Introduction

Note that the symmetric key encryption uses a single key(the key itself may be

a set of values) for both encryption and decryption. In addition, the encryption

and decryption algorithm are inverses of each other. If P is the plaintext, C is the

ciphertext, and k is the key, the encryption algorithm Ek(x) creates the ciphertext

from the plaintext; the decryption algorithm Dk(x) creates the plaintext form the

ciphertext. It is assumed that Ek(x) and Dk(x) are inverses of each other. They

cancel the effect of each other if they are applied one after the other on the same

input. [1]

Encryption : C = Ek(P )

Decryption : P = Dk(C)

In which, Dk(Ek(x)) = Ek(Dk(x)) = x

(1.1)

The popular modern symmetric key cryptography are

1. Data Encryption Standard (DES)

2. Advanceed Encryption Standard (AES)

The following sections describe the mathematics behind the asymmetric key

cryptography.

Groups A group (G) is a set of elements with a binary operation • that satisfies four

properties (or axioms) [1]. A commutative group, also called an abelian group if a

group in which operator satisfies the four properties for group plus an extra property,

commutative. The four properties for group plus commutative are defined as follows:

� Closure: If a and b are elements of G, then c=a•b is also element of G.

� Associativity: If a,b and c are elements of G, then (a•b)•c = a•(b•c)

� Commutativity: For all a and b in G, we have a•b=b•a.

� Existence of identity: For all a in G, there exists an element e called the

identity element such that e•a=a•e=a

3



Chapter 1 Introduction

� Existence of inverse: For each a in G, there exists an element a’, called

the inverse of a such that a•a’=a’•a=e

Finite Group A group is called a finite group if the set has a finite number of

elements; otherwise, it is an infinite group.

Order of a Group The order of a group —G— is the number of elements in the

group.

Subgroups: A subset H of a group G is a subgroup of G if H itself is a group with

respect to the operation on G. In other words, if G=< S, • > is a group, H=< T, • >

is a group under the same operation and T is a non empty subset of S, then H is a

subgroup of H.

Cyclic subgroups: If a subgroup of a group can be generated using the power of

an element, the subgroup is called the cyclic subgroup. The term power here means

repeatedly applying the group operation to the element:

an → a • a • a · · · •a (ntimes)

Cyclic Groups: A cyclic group is a group that is its own cyclic subgroup.

Ring: A ring R, denoted < {...}, •,� >, is a set of elements with two binary

operations. The first operation must satisfy all five properties required for an abelian

group. The second operation must satisfy only the first two. In addition, the second

operation must be distributed over the first. A commutative ring is a ring in which

the commutative property is also satisfied for the second operation.

Field: A field denoted by F=< {...}, •,� >, is a commutative ring in which the

second operation satisfies all five properties defined for the first operation except

that the identity of the first operation has no inverse. A finite field is a field with

finite number of elements. In Galois field the number of elements should be pn where

p is a prime number and n is a positive integer [1].

4



Chapter 1 Introduction

1.3 Asymmetric key cryptography

The conceptual differences between symmetric key system and asymmetric key

system are based on how these systems keep a secret. The advantages of one can

compensate for the disadvantafes of the other. In symmetric key cryptography, the

secret must be shared between two persons. In asymmetric key cryptography the

secret is personal(unshared); each person creates and keeps his or her own secret.

In a community of n people, n(n−1)
2

shared secrets are needed for asymmetric key

cryptography; only n personal secret are needed in asymmetric key cryptography.

symmetric key cryptography is based on substitution and permutation of

symbols(characters of bits), asymmetric key cryptography is based on applying

mathematical function to numbers. In symmetric key cryptography the plaintext

and ciphertext are thought of as a combination of symbols. Encryption and

decryption permute these symbols or substitute a symbol for another. In asymmetric

key cryptography the plaintext and ciphertext are numbers, encryption and

decryption are mathematical function that applied to numbers to create other

numbers.

In asymmetric key cryptography, the plaintext and ciphertext are numbers;

encryption and decryption are mathematical functions that are applied to create

other numbers.

Keys: Asymmetric key cryptography uses two separate keys: one private and

one public. If encryption and decryption are thought of as locking and unlocking

padlocks with keys, then the padlock that is locked with a public key can be unlocked

only with the corresponding private key. If Alice locks the padlock with Bob’s public

key, then only Bob’s private key can unlock it.

Plaintext/Ciphertext: Unlike in symmetric key cryptography, plaintext and

ciphertext are treated as integers in asymmetric key cryptography. The message

must be encoded as an integer(or set of integers) before encryption; the integer(or

set of integers) must be decoded into the message after decryption. Asymmetric

key cryptography is normally used to encrypt or decrypt small pieces of information
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Chapter 1 Introduction

such as the cipher key for ancillary goals instead of message encipherment. However,

these ancillary goals play a very important role in cryptography.

Encryption/Decryption: Encryption and decryption in asymmetric key

cryptography are mathematical functions applied over the numbers representing the

plaintext and ciphertext. The ciphertext can be thought of as C=F (Kpublic, P ); the

plaintext can be thought of as P = G(Kprivate, C). The function F is used only for

encryption; the decryption function G is used only for decryption. Next we show

that the function F needs to be a trapdoor one-way function to allow Bob to decrypt

the message but to prevent Eve form doing so.

Many algorithm has been proposed as asymmetric key cryptography. But the

following are best known for their complex mathmatics, difficult to attack and

popular.

1. RSA cryptosystem

2. Rabin cryptosystem

3. ElGamal cryptosystem

4. Elliptic Curve cryptosystem

1.4 Digital signature algorithm

A digital signature is a mathematical scheme for demonstrating the authenticity of

a digital message or document. A valid digital signature gives a recipient reason

to believe that the message was created by a known sender, such that the sender

cannot deny having sent the message (authentication and non-repudiation) and that

the message was not altered in transit (integrity). Digital signatures are commonly

used for software distribution, financial transactions, and in other cases where it is

important to detect forgery or tampering.

To create RSA signature keys, generate an RSA key pair containing a modulus

N that is the product of two large primes, along with integers e and d such that

6



Chapter 1 Introduction

e × d ≡ 1(mod ϕ(N)), where ϕ is the Euler phi-function. The signer’s public key

consists of N and e, and the signer’s secret key contains d.

To sign a message m, the signer computes σ ≡ md(modN). To verify, the receiver

checks that σe ≡ m(modN).

To prevent attacks, one can first apply a cryptographic hash function to the message

m and then apply the RSA algorithm described above to the result. This approach

can be proven secure in the so-called random oracle model. Most early signature

schemes were of similar type: they involve the use of a trapdoor permutation, such

as the RSA function, or in the case of the Rabin signature scheme, computing square

modulo composite n. A trapdoor permutation is a family of permutations, specified

by a parameter, that is easy to compute in the forward direction, but is difficult to

compute in the reverse direction without knowing the private key. However, for every

parameter there is a trapdoor (private key) which when known, easily decrypts the

message. Trapdoor permutations can be viewed as public-key encryption systems,

where the parameter is the public key and the trapdoor is the secret key, and where

encrypting corresponds to computing the forward direction of the permutation, while

decrypting corresponds to the reverse direction. Trapdoor permutations can also be

viewed as digital signature schemes, where computing the reverse direction with

the secret key is thought of as signing, and computing the forward direction is

done to verify signatures. Because of this correspondence, digital signatures are

often described as based on public-key cryptosystems, where signing is equivalent to

decryption and verification is equivalent to encryption, but this is not the only way

digital signatures are computed.

Usually, this type of signature scheme is vulnerable to a key-only existential

forgery attack. To create a forgery, the attacker picks a random signature σ and

uses the verification procedure to determine the message M corresponding to that

signature. In practice, however, this type of signature is not used directly, but rather,

the message to be signed is first hashed to produce a short digest that is then signed.

This forgery attack then only produces the hash function output that corresponds

7



Chapter 1 Introduction

to σ but not a message that leads to that value, which does not lead to an attack.

In the random oracle model, this hash-then-sign form of signature is existentially

unforgeable, even against a chosen-message attack.

Here RSA cryptosystem is used. We can use different other available

cryptosystems.

1.5 Proxy signature

In proxy signature scheme, an original signer delegates its signing capability to

a proxy signer, and the proxy signer creates a digital signature on behalf of the

original signer. Actually, most of the proposed proxy signature schemes are not

feasible in practice because the security of those schemes cannot be really proved

without adopting standard signature like DSA. Most of them are not strong, secure,

and unbreakable sufficiently against some unknown intentional attacks; in addition,

they are not base on standard signature. To conquer those disadvantages, therefore,

proxy-protected signature scheme combining standard signature DSA which is pretty

well-known by their security properties to reinforce the proxy signature. Combining

DSA, proxy signature and PKI mechanism, this work could be used in practice.

The participants are an original signer and a proxy signer. Let p be a prime

number and q be a prime division of p − 1. g is an element of order q in Z∗
p .

The tuple (p, q, g) is public and the basic protocol of this scheme uses the following

algorithms:

Key generation: The original signer selects a random number x ∈ Z∗
q as the

private key and the corresponding public key is y = gxmodp. Then, the original

signer publishes (p, q, g, y).

Proxy key generation: The original signer should do following steps:

1. Select a random number kA ∈ Z∗
q .

2. Compute rA = gkA mod p, and sets sA = (x+ kArA)mod q.

8
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3. Forward (rA, sA) to the proxy signer.

On receiving the (rA, sA), the proxy signer should verify the validity by checking

equation gsA = yrA
rAmodp. The proxy signer accepts sA, if the equation holds, and

continues following steps. Moreover, the proxy key is sA.

Proxy signature: The proxy signer can sign a message m on behalf of the original

signer to create a signature S(sA,m) using the proxy key sA.

Proxy signature verification: The verification of proxy signatures is carried out

by using the implicit public key gsA = yrA
rA mod p to replace public key in the

verification process. The verification is to check if V (yrA
rA , S(sA,m),m) =True or

false.

1.6 Blind signature

Sometimes we have a document that we want to get signed without revealing the

contents of the document to the signer. David Chaum has developed some patented

blind digital signature schemes for this purpose. The main idea is as follows:

1. Bob creates a blind message and sends to Alice.

2. Alice signs the blinded message and returned the signature on the blinded

message.

3. Bob unblinds the signature to obtain a signature on the original message.

Blind signature based on the RSA scheme: Let us briefly describe a blind

digital signature scheme developed by David Chaum. Blinding can be done using

a variation of the RSA scheme. Bob selects a random number b and calculates the

blinded message B =M×bemodn where e is Alice’s public key and n is the modulus

defined in RSA digital signature scheme. Here b can be called a blinding factor. Bob

sends B to Alice.

Alice signs the blinded message using the signing algorithm defined in the RSA

9



Chapter 1 Introduction

digital signature Sb = Bd mod n where d is Alice’s private key. Sb is the signature

on the blind version of the message. Bob simply uses the multiplicative inverse

of his random number b to remove the blind from the signature. The signature is

S = Sbb
−1 mod n. We can prove that S is the signature on the original message as

defined in the RSA digital signature scheme.

S ≡ Sbb
−1 ≡ Bdb−1 ≡ (M × be)db−1 ≡Mdbedb−1 ≡Mdb−1 ≡Md

S is the signature if Bob has sent the original message to be signed by Alice.

1.7 Problem statement

Keeping the research directions in view, it has been realised that there exists enough

scope to implement hyperelliptic curve in different areas of cryptography. Though

hyperelliptic curve cryptography is mainly used to key exchange process, our goal is

to implement digital signature algorithm using hyperelliptic curve cryptography.

In particular, the objectives are narrowed to the use of proxy blind signature in

hyperelliptic curve cryptography. This proxy blind signature has already been

implemented using elliptic curve cryptography. From here we conceived the idea

of implementing it on hyperelliptic curve.

1.8 Thesis layout

The rest of the thesis is organized as follows:

Chapter 2: Literature review This chapter contains the abstracts of some

selected research papers in the area of hyperelliptic curve cryptography, blind

signature and proxy signature. These research papers helped us to gain knowledge

regarding the research area.

Chapter 3: Arithmatics of hyperelliptic curve In this chapter all arithmatics

are discussed which are needed for hyperelliptic. This chapter decribes about group

laws, divisor class group, ideal class group, isomorphisms and isogenies, torison

10
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elements and jacobians.

Chapter 4: Proxy blind signature This chapter includes the proposed scheme.

Here we have proposed a proxy blind signature. The different equations are also

proved when needed.

11



Chapter 2

Literature review

2.1 High Performance Arithmetic for special

HECC

Regarding the overall speed and power consumption, cryptographic applications in

embedded environments like PDAs or mobile communication devices can benefit

from specially designed cryptosystems with fixed parameters. Here ahighly

efficient algorithm is proposed by them for a hyperelliptic curve cryptosystem

(HECC) of genus 2, well suited for their proposed applications on constrained

devices. Their work presents a major improvement of HECC arithmetic for certain

non-supersingular curves. And these curves are defined over fields of characteristic

two. They optimized the group doubling operation and managed to speed up the

whole cryptosystem by approximately 27% compared to the previously known most

efficient case. Furthermore, an actual implementation of the new formulae on an

embedded processor shows its practical relevance. A scalar multiplication can be

performed in approximately 50ms on an 800MHz embedded device. [8]

12
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2.2 Parallel Coprocessor Design for Genus-2

HECC

Hardware accelerators are often used in cryptographic applications for speeding up

the highly arithmetic intensive public key primitives, e.g. in high-end smart cards.

The emerging and very promising public key scheme is based on HyperElliptic Curve

Cryptosystems (HECC). Their contribution appears to be the first one to propose

architectures for the latest findings in efficient group arithmetic on HECC. The group

operation of HECC allows parallelization at different levels: bit-level parallelization

and arithmetic operation level parallelization. The authors investigate the trade-offs

between both parallelization options and identify the speed and time area optimized

configurations. They have found that a coprocessor using a single multiplier (D = 8)

instead of two or more is best suited. This coprocessor is able to compute group

addition and doubling in 479 and 334 clock cycles, respectively. Providing more

resources it is possible to achieve 288 and 248 clock cycles, respectively [14].

2.3 Optimal Tower Fields for HECC

Since the development of asymmetric cryptosystems based on elliptic and

hyperelliptic curves, it has been a challenging task to implement ECC and HECC

over fields of odd characteristic. With the advent of Optimal Extension Fields(OEF),

Processor Adequate Finite Fields(PAFF), and more recently OTF, the performance

of ECC and HECC over prime(extension) fields increased drastically. For a fixed

security level, OTFs offer different field extensions. Thus, the structure of the field

can be varied and adapted to the processor word size which yields to an efficient field

arithmetic. Our implementation of HECC over OTF shows the practical relevance

of OTF in cryptographic implementations. The arithmetic over OTFs allows for

a very efficient implementation. On a typical 32-bit embedded microprocessor,

namely the ARM7TDMI, a scalar multiplication for a 160-bit group order can be

13
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performed in 44.2ms. Compared to the currently fastest implementation over fields

of characteristic two, namely genus-2 HECC over GF(281) on the same processor,

this is an improvement of approximately 57%. The implementation on the Pentium

4 processor computes a scalar multiplication over a group order of 160 bit in

2.13ms [15].

2.4 Divisor Class Addition-Subtraction

Here the authors proposed efficient algorithms for the τ -adic sliding window method

and applied the algorithms to Koblitz elliptic curve cryptosystem. In this paper,

authors extend their ideas to hyperelliptic curve cryptosystem. We give respectively

explicit formulae of simultaneous divisor class addition-subtraction algorithm for

genus 2 hyperelliptic curves in affine and projective coordinate system and analyze

the case of genus 3 hyperelliptic curves. Using this idea and Montgomery trick,

we can reduce the number of inversions, multiplications and squares. In addition,

they have applied the idea to speed up the precomputation part of two scalar

multiplication algorithms for hyperelliptic curve cryptosystem and discuss the

efficiency of improved algorithms in detail [5].

2.5 Cantor versus Harley: Optimization and

Analysis of Explicit Formulae for HECC

Hyperelliptic curves (HEC) look promising for cryptographic applications. The

reason is their short operand size compared to other public-key schemes. The

operand sizes seem well suited for small processor architectures, where memory

and speed are constrained. However, the group operation has been believed to be

too complex and, thus, HEC have not been used in this context so far. In this

paper, the authors have tried to increase the efficiency of the genus-2 and genus-3

hyperelliptic curve cryptosystems. For certain genus-3 curves, they have gained
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almost 80 percent performance for a group doubling. This work not only improves

Gaudry and Harleys algorithm, but also improves the original algorithm introduced

by Cantor. Contrary to common belief, they have shown that it is also practical

for certain curves to use Cantors algorithm to obtain the highest efficiency for the

group operation. In addition, they have introduced a general reduction method for

polynomials according to Karatsuba. They have implemented most efficient group

operations on Pentium and ARM microprocessors [16].

2.6 Hyperelliptic Curve Crypto Coprocessor

This paper presents a microcode instruction set coprocessor. It is designed

to work with an 8-bit 8051 microcontroller which implements a Hyperelliptic

Curve Cryptosystem (HECC). The microcode coprocessor is performs a range

of Galois Field operations using a dual multiplier/dual adder datapath and

storing the intermediate results in the local storage unit of the coprocessor

(RAM). This coprocessor is programmed using the software routines from the 8051

microcontroller. It implements the HECC divisors doubling and addition operations.

The Jacobian scalar multiplication was computed in a 656 msec (7.87 Mcycles) at

12 MHz clock frequency.

In this paper the authors presented a microcode crypto coprocessor. It is

designed to accelerate the Hyperelliptic Curve scalar multiplication using the 8051

microcontroller. The microcode coprocessor is performing the combination of

GF(283) operations. The divisors addition and doubling operations are implemented

using software routines based on the coprocessors microcode instructions. The

scalar multiplication is developed in C and compiled into 8051 assembly instructions.

The total delay of 656 msec (7.8Mcycles) was achieved for the 83-bit HECC scalar

multiplication at 12MHz. [9]
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2.7 Fast explicit formulae for genus-2 HEC

In accordance with this paper, there was developed a method of arithmetic

transforms in Jacobian genus 2 HEC in projective coordinates which provides a

lower complexity if compared to the most efficient methods known thus allowing for

increase in the efficiency of scalar multiplication. This modification is characterized

by:

� reduction of the number of recomputable values

� changes in the sequence of the computational steps

� using dependencies between polynomials in the resultant computation

The suggested modification of method of arithmetic transforms in Jacobian

genus 2 HEC results in 3 to 15% reduction of complexity dependant on arithmetic

operations used and curve type. Thus, applying the introduced group operation

reduces the complexity of the HECC scalar multiplication by 4% compared to the

best known formulae [17].

2.8 ID-based Blind Signature

The blind signature scheme is a protocol obtains a signature from a signer, but the

signer is unable to read the contents of the message he signs. It is very important

technologies in secure e-commerce. The bilinear pairing such as Weil or Tate

pairing on elliptic curves and hyperelliptic curves has been found various applications

in cryptography. Several ID-based cryptosystems using bilinear pairings were

presented. ID-based public key cryptosystem is a good choice for certificate-based

public key infrastructures especially when efficient key management and moderate

security are required. This paper presents a new ID-based blind signature scheme

from bilinear pairings. Also they analyzed their efficiency and security. The scheme

proposed by them is more efficient than Zhang and Kim’s scheme [18].
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2.9 Hybrid Security Model for E-Commerce

Channel

The prime requirements for any e-commerce or m-commerce transactions are privacy,

authentication,integrity maintenance and non-repudiation. These are the crucial

and significant issues in recent times for trade which are transacted over the

internet through e-commerce and m-commerce channels. To overcome these issues,

various security mechanisms related to symmetric and asymmetric type have been

designed. Digital Envelope is one of the practices to attain the prime requirements in

e-commerce channels. In this paper, the authors suggest a software implementation

of a digital envelope for a secure e-commerce channel that combines the hashing

algorithm of MD5, the symmetric key algorithm of AES and the asymmetric key

algorithm of Hyperelliptic Curve Cryptography (HECC). The result illustrates that

HECC is the best alternative asymmetric key technique rather than ECC and RSA

in the digital envelope hybrid cryptosystem [19].

2.10 Ring Signature Scheme Based on

Hyper-elliptic Curves

In the paper, authors have analyzed the security problems of ring signature, such as

the improper selection of private keys and the low efficiency in software and hardware

application. Then they presented an improved ring signature scheme with private

key optimization based on HECC. The adaptive optimization and probabilistic

encryption of the scheme avoids the indefinite security problem in ring signature and

effectively diminish the relevance of different signature generated by the same singer

or ring group. So the adversaries can not attack the ring signature or the signature

system with effective polynomial algorithms. The trapdoor function of public key

cryptosystem in the scheme is based on HCDLP (Hyperelliptic Curve Discrete
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Logarithm Problem), and the algorithms make full use of the superiority of HCC,

such as short key length, low system overheads etc. The optimization designing

strategy reinforces the stability and security of ring signature and also effectively

improves the efficiency of group cryptosystem for engineering application [25].
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Chapter 3

Arithmatics Of Hyperelliptic

Curve

The hyperelliptic curves, which can be seen as a generalization of elliptic curves.

In the applications, group elements must be stored and transmitted. For restricted

environments or restricted bandwidth it might be useful to use compression even

though recovering the original coordinates needs some efforts.

The main emphasis of this chapter is put on the arithmetic properties, i.e., on

algorithms to perform the group operation.

For cryptographic purposes on imaginary quadratic hyperelliptic curves given by

an equation 3.1.

C : y2 + h(x)y = f(x),

h, f ∈ K[x],

deg(f) = 2g + 1,

deg(h) ≤ g, f monic

(3.1)

This equation is hyperelliptic curve of genus g over K if no point on the curve

over the algebraic closure K of K satisfies both partial derivatives 2y + h = 0 and

f ′ − h′y = 0.

The last condition ensures that the curve is nonsingular. The negative of a
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Figure 3.1: Hyperelliptic curve

point P = (x, y) is given by −P = (x,−y − h(x)). The points fixed under this

hyperelliptic involution are called Weierstraβ points. Elliptic curves are subsumed

under this definition as curves of genus one [4].

3.1 Group Laws for hyperelliptic curves

For elliptic curves one can take the set of points together with a point at infinity

as a group. For curves of genus larger than one this is no longer possible. The

way out is to take finite sums of points as group elements and perform the addition

coefficient-wise like (P +Q)⊕ (R+Q) = P +2Q+R. This would lead to an infinite

group and longer representations of the group elements. The group one actually

uses is the quotient group of this group by all sums of points that lie on a function.

Before stating this as a formal definition we give a pictorial description for a

genus 2 curve over the reals given by an equation y2 = f(x) with f monic of degree

5. As for elliptic curves, f is not allowed to have multiple roots over the algebraic

closure to satisfy the condition of the definition.
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The figure 3.1 demonstrates, this one cannot continue using the

chord-and-tangent method from elliptic curves as a line intersects in 5 instead of

3 points. To build a group we take the quotient of the group of sums of points

on the curve by the subset of those sums where the points lie on a function, e.g.

R1 = (xR1, yR1) and −R1 = (xR1,−yR1) lie on the curve given by x = xR1 and

hence R1 ⊕ (R1) = 0. Likewise the six points P1, P2, Q1, Q2,−R1,−R2 on the cubic

add up to zero in the quotient group it concedered.

This way one sees that each element can be represented by at most two points

that do not have the same (x, y) coordinate. Namely, any n > 1 points give rise to a

polynomial of degree n−1. There are max{5, 2(n−1)}–n other points of intersection.

As soon as n > 2 the inverse of this sum of points, obtained by inflecting all points

at the x-axis, contains fewer points. Repeating this process gives a reduced group

element with at most 2 points. The second condition can be seen to hold as points

(x1, y1) and (x1, y1) both lie on the function x = x1. Adding two elements is done

in two steps. First the formal sum is formed and then it is reduced. In the general

case both group elements consist of 2 points given by P1 + P2 and Q1 +Q2 and the

4 points are all different. A function y = s(x) of degree 3 in x passes through all of

them having 2 more points of intersection with C. The two new points R1 and R2

are inflected and give the result of the addition (P1 + P2)⊕ (Q1 +Q2) = R1 +R2.

As in the case of elliptic curves, one can derive the group law from this description

by making all steps explicit. If h 6= 0 there are still two points with equal x −

coordinate but the opposite of P = (x1, y1) is given by P = (x1,−y1 − h(x1)) [4].

3.2 Divisor class group and ideal class group

The group we described so far is called the divisorclassgroup P ic0c ofC. To formally

define the group law we need to take into account a further point P∞ called the point

at infinity.

Let C be a hyperelliptic curve of genus g over K given by an equation of the
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form. The group of divisors of C of degree 0 is given by equation 3.2

Div0c = {D =
∑
P∈C

npP | np ∈ Z, np = 0 for all most all P ∈ C,

∑
P∈C

np = 0, and such that σ(D) = D for all σ ∈ Gk}
(3.2)

This latter condition means that the divisor is defined over K. This is equivalent

to nσ(P ) = nP for all σ ∈ GK , the Galois group of K.

The divisor class group Pic0c of C is the quotient group of Div0c by the group of

principal divisors, that are divisors of degree zero resulting from functions [4].

Each divisor class can be uniquely represented by a finite sum as given in equation

3.3
r∑

i=1

Pi − rP∞, PiεC {P∞} , r ≤ g (3.3)

where for i 6= j we have Pi = (xi, yi) 6= (xj,−yj − h(xj)) = −Pj.

The following introduces a different representation that is more useful for

implementations, and for which one can simply read off the field of definition of

the group elements. The theoretical background for this alternative representation

is the fact that for hyperelliptic curves the divisor class group is isomorphic to the

ideal class group of the function field K(C). Furthermore, the divisor class group

is isomorphic to the group of K-rational points of the Jacobian JC of C. Mumford

representation makes explicit this isomorphism and we will use the representation

as an ideal class group for the arithmetic. To fix names we keep speaking of the

divisor class group and call the group elements divisor classes even when using the

notation as ideal classes.

Mumford representation

Let C be a genus g hyperelliptic curve given by C : y2 + h(x)y = f(x), where

h, f ∈ K[x], deg f = 2g + 1, deg h ≤ g. Each nontrivial divisor class over K can be
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represented via a unique pair of polynomials u(x) and v(x), u, v ∈ K[x] , where

1. u is monic,

2. deg v < deg u ≤ g,

3. u | v2 + vhf

Let D =
∑r

i=1 Pi − rP∞, where Pi 6= P∞, Pi 6= −Pj for i 6= j and r ≤ g. Put

Pi = (xi, yi). Then the divisor class of D is represented by equation 3.4

u(x) =
r∏

i=1

(x− xi) (3.4)

and if Pi occurs ni times then(
d

dx

)j [
v(x)2 + v(x)h(x)− f(x)

]
|x=x1

= 0 for 0 ≤ j ≤ ni − 1 (3.5)

A divisor with at most g points in the support satisfying Pi 6= P∞, Pi 6= −Pj

for i 6= j is called a reduced divisor. The first part states that each class can be

represented by a reduced divisor. The second part of the theorem means that for

all points Pi = (xi, yi) occurring in D we have u(xi) = 0 and the third condition

guarantees that v(xi) = yi with appropriate multiplicity.

We denote the class represented by u(x) and v(x) by [u(x), v(x)]. To unify notation

we denote the neutral element of the group by [1,0]. There are basically two ways for

finding a K-rational divisor class. This can be done by building it from K-rational

points on the curve. For instance, choose a random x1 ∈ K, and try to find y1 ∈ K

such that

y21 + h(x1)y1 − f(x1) = 0

In odd characteristic or characteristic zero when h = 0, the problem reduces to

computing a square root when there exists one. This can be checked with the
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Legendre symbol. Already a single point gives rise to a divisor and [x − x1, y1] is

a valid representative of a divisor class D̄. Unless y1 = 0 (or in general ord(D̄)

small) the multiples [n]D̄ will have the first polynomial of full degree g for n ≥ g.

For applications it suggested to implement only the most frequent cases of inputs

which implies that the first polynomial u has to have degree g before one can start

computing scalar multiples. To build such class of full degree one takes g random

distinct points and combines them using Lagrange interpolation to the points P1 =

(x1, y1), . . . , Pg = (xg, yg) correspond the polynomials

u (x) =

g∏
i=1

(x− x1) and v (x) =
t∑

i=g

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

yi (3.6)

The resulting classes are not completely random as they are built from points

defined over K while a K-rational class may also contain points defined over an

extension field L/K of degree [L : K] ≤ g. One chooses a random monic polynomial

u(x) ∈ K[x] of degree g by randomly choosing its g free coefficients. Using the

decompression techniques one tries to recover a polynomial v satisfying uv̄2 + vhf .

If this fails one starts a new with a different choice of u. The tuple [u, v] represents

a divisor class. The amount of work to find v is equal to solving the g quadratic

equations in the first approach. However, checking if a u belongs to a class requires

more effort. Hence, for an implementation one can trade off the generality of the

class for less work.

Using this compact description of the elements, one can transfer the group law

that was derived above as a sequence of composition and reduction to an algorithm

operating on the representing polynomials and using only polynomial arithmetic

over the field of definition K. This algorithm was described by Cantor [CAN 1987]

for odd characteristic and by Koblitz [KOB 1989] for arbitrary fields.

Cantor’s algorithm

Input: Two divisor classes D̄1 = [u1, v1] and D̄2 = [u2, v2] on the curve

C : y2 + h(x)y = f(x)
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Output: The unique reduced divisor D such that D̄ = D̄1 ⊕ D2 initialization

1 d1 ← gcd(u1, u2) [d1 = e1u1 + e2u2]

2 d← gcd(d1, v1 + v2 + h) [d = c1d1 + c2(v1 + v2 + h)]

3 s1 ← c1e1, s2 ← c1e2 and s3 ← c2

4 u← u1u2

d2
and v ← s1u1v2+s2u2v1+s(v1v2+f)

d
mod u

5 Repeat

6 u’← f−vh−v2

u
and v′ ← (−h− v)mod u′ .. u← u′ and v ←′

7 Untill deg u ≤ g

8 make u monic

9 return [u,v]

3.3 Isomorphisms and isogenies

Some changes of variables do not fundamentally alter the hyperelliptic curve. More

precisely, let the hyperelliptic curve C/K of genus g be given by C : y2 + h(x)y =

f(x). The maps

y 7−→ u2g+1y′ + agx
′g + ... + a1x

′+a0 and x 7−→ u2x′ + b with (ag, ..., a1, a0, b, u) ∈

kg+2 ×K∗

are invertible and map each point of C to a point of C ′ : y′2 + h̄(x′)y′ = f̄(x′),

where h̄, f̄ are defined over K and can be expressed in terms of h, f, a, b, c, d and u.

Via the inverse map we associate to each point of C ′ a point of C showing that

both curves are isomorphic. These changes of variables are the only ones leaving

invariant the shape of the defining equation and, hence, they are the only admissible

isomorphisms.

Even if the curves are not isomorphic, the Jacobians of C and C’ might share

some common properties. One calls JC and J ′
C isogenous if there exists a morphism

ψ : JC → J ′
C mapping [1, 0] to the neutral element of J ′

C . One important property of
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isogenies is that for every isogeny there exists a unique isogeny ψ̂ : J ′
C → JC called

the dual isogeny such that

ψ̂ ◦ ψ = [n] and ψ ◦ ψ̂ = [n]′

where [n]′ denotes the multiplication by n map on J ′
C . The degree of the isogeny

ψ is equal to this n. For more background on isogenies.Two curves C/K and C ′/K

are called isogenous if the corresponding Jacobian varieties JC and J ′
C are isogenous.

3.4 Torsion elements

Definition The kernel of [n] on JC is denoted by JC [n]. An element D̄ ∈ JC [n] is

called an element of n− torsion.

Let C be a hyperelliptic curve defined over K. If the characteristic of K is either

zero or prime to n then

JC [n] ' (Z/nZ)2g.

Otherwise, when char(K) = p and n = pe then

Jc[p
e] ' (Z/peZ)r

n with 0 ≤, for all e ≥ 1

An elliptic curve E is called supersingular if it has E[pe] ' P∞, i.e. if it has

p − rank 0. A Jacobian of a curve is called supersingular if it is the product of

supersingular elliptic curves. Thus especially the p-rank of a supersingular Jacobian

variety is 0 but the converse does not have to hold. One also uses the term

supersingular curve to denote that the Jacobian of this curve is supersingular.
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3.5 Jacobian variety of elliptic curves and group

law

Assume that E is an elliptic curve with function field K(E). Hence, Ecan be given

as plane projective cubic without singularities and with (at least) one K − rational

point P∞. Clearly E1/S1 = E.

Let D̄ ∈ Pic0E be a divisor class of degree 0, D ∈ D̄ a K − rational divisor.

By the RiemannRoch theorem the space L(D + P∞) has dimension 1. So there is

an effective divisor in the class of D + P∞ and since this divisor has degree 1 it is

a prime divisor corresponding to a point P ı E(K), and φK(P ) = D̄. So, E(K) is

mapped bijectively to Pic0E, the preimage of a divisor class D̄ is the point P on E

corresponding to the uniquely determined prime divisor in the class of D + P∞ with

D ∈ D̄.

This implies that E is isomorphic to its Jacobian as projective curve. So E(K) itself

is an abelian group with the chosen point P∞ as neutral element, and the addition

of two points is given by rational functions in the coordinates in the points. Hence

E is an abelian variety of dimension 1 (and vice versa) and we can apply all the

structural properties of abelian varieties discussed above to study the structure of

E(K) (in dependence of K). This and the description of the addition with respect

to carefully chosen equations for E will be among the central parts of the algorithm.

Let P = (x1, y1) and Q = (x2, y2) be two points with x1 6= x2 of the affine curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

The isomorphism maps them to divisor classes with representatives DP = PP∞

and DQ = QP∞ of degree 0. The space L(DP + DQ + P∞) has dimension 1 by

RiemannRoch. Hence there exists a function passing through P and Q and having a

pole of order at most 1 in P∞. Such a function is given by the line l(x, y) = yλxµ = 0

connecting P and Q. It has
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λ = y2−y1
x2−x1

and µ = y1 − λx1

As DP + DQ + P∞ = P + Q P∞ has degree 1 and l ∈ L(DP + DQ + P∞), there

exists an effective divisor in this class that we denote by R and which is a prime

divisor. Hence, in the divisor class group we have D̄P + D̄Q = R̄ + P̄∞, which is

equivalent to P ⊕Q = R on E using the isomorphism from above. Choosing P 6= Q

with x1 = x2 we apply the same geometric construction and get as connecting line

the parallel to the y − axis x = x1 . Hence, the third intersection point has to be

interpreted as the point P∞. This associates to each point P ∈ E an inverse point

−P which has the same x− coordinate.

In the remaining case P = Q one can use the considerations above. The function

lL(2PP∞) passes through P with multiplicity 2, i.e., it is the tangent line to the

curve at P . In formulas this means

λ =
3x2

1 +2a2x1 + a4−a1y1
2y1 + a1x1 + a3

and µ = y1 − λx1

3.6 Division polynomials

The structure of the group of n-torsion points on E. In that context we showed

that for each n there exists a polynomial ψn such that the x-coordinates of n-torsion

points are the roots of ψn. These polynomials are called division polynomials.

If char(K) 6= 2, put

f0(x) = 0, f1(x) = 1, f2(x) = 1,

f3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8,

f4(x) = 2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b8)x + (b4b8 − b26)
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Proxy blind signature scheme

using hyperelliptic curve

D. Chaum introduced the concept of a blind signature scheme in 1982. An user

A can obtain the signature of B by using this scheme on any given message,

without revealing any in formation about the message or its signature. Apart from

unforgeability, the scheme ensures untraceability and unlinkability. A lot of work

has been done in field of blind signature schemes since Chaum.

For example, in production of coins, the user makes the bank blindly sign a coin

using blind signature schemes. The user is in possession of a valid coin such that the

bank itself cannot recognize nor link with the user. Whenever a user goes through a

valid branch to withdraw a coin, he needs the branch to make proxy blind signature

on behalf of the signee bank. This application leads to the need of proxy blind

signature schemes [5].

In 1996 Mambo et al [6, 7] introduced the concept of proxy signature. In this

scheme an original signer delegates his signing authority to another (proxy) signer in

such a way that the proxy signer can sign any message on behalf of the original signer

and the verifier can verify and distinguish between normal (original) signature and

proxy signature. Here also elaborated the two types of scheme: proxy unprotected
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(proxy and original signer both can generate a valid proxy signature) and proxy

protected (only proxy can generate a valid proxy signature). These schemes ensures

among other things, non-repudiation and unforgeability.

Tan et al. [7] introduced a proxy blind signature scheme, which ensures security

properties of both the schemes, viz., the blind signature schemes and the proxy

signature schemes. The scheme is based on Schnorr blind signature scheme.

4.1 Proposed scheme: Proxy blind signature

In this section we have presented our proposed scheme. This scheme is based on

hyperelliptic curve cryptography and proxy blind signature.

The proposed scheme is depicted as follows

Let a hyperelliptic curve C of genus g be defined over field Fq of finite order defined

by equation 4.1

y2 + h(x)y = f(x)mod q (4.1)

Where

h(x)is a polynamial and degree of h(x) ≤ g

and f(x) is a monic polynamial of degree ≤ 2g + 1

The divisor D is defined as follows:

D =
∑

miPi (4.2)

is a formal weighted sum of points Pi of the curve C (and the integers mi are the

wights)

A reduced divisor can be represented as a pair of polynomials {u(x), v(x)}. Reduced

divisors can be added (group addition). e.g. D3 = D1 + D2, or doubled (group

doubling), e.g. D2 = 2D1 = D1 +D1 , and hence the scalar multiplication kD = D

+. . .+ D for k times is defined. The scalar multiplication kD is the basic operation

of HECC.
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Parameter initialization

A = Sender Alice

B = Receiver Bob

P = a large prime number

q = large prime factor of (p-1)

g = an element of Z∗
p of order q

xA = secret key of original signer A

yA = public key of A = xAD

D = Divisor

4.1.1 Proxy phase:

1. Proxy generation: The original signer A randomly chooses k ∈ Z∗
q , k 6= 1

R = kD

S = xA + k. [D]x

Yp = S.D

(4.3)

2. Proxy delivery: The original signer sends (S,R) to a proxy signer B in a

secure way. And makes YP public.

3. Proxy verification: After receiving the secret key (S,R) the proxy signer B

checks the validity of the secret key with the following equation

YP = yA + [D]x ·R (4.4)

Proof:

YP = S.D
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= (xA + k[D]x)D

= xAD + k[D]xD

= yA + [D]xR

If received (S,R) satisfies the equation 4.4 then B accepts it as valid proxy.

4.1.2 Signing phase

1. B chose random number k1 ∈ Z∗
q such that k1 6= 1

compute : RB = k1D

Now B sends RB to C

2. C chooses randomly α, β ∈ Z∗
q

Rc = RB ‖ βYp
If Rc = 0 choose another set of α, β

else

ec=H(r,m)

e=ec+β

C sends e to B

3. B computes S’=k1 − Se

B sends S’ to C

4. C computes

Sp = S ′ + α

The proxy blind signature is (m,Sp,ec)

4.1.3 Varificaion:

Recipient of the proxy blind signature computes

e�=h(SpD ‖ ecYP ‖ M)
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Where YP is the public value.

Check e�= ec

If and this statement true then tuple(m,SP ,ec) is a valid proxy signature.

4.2 Security Analysis

Hyperelliptic curve cryptography is used as the fundamental scheme for this research.

The hyperelliptic curve cryptography is more secure than elliptic curve cryptography.

It with stand many cryptographic attack. Therefore the security analysis of proxy

blind signature is described in following section.

1. A different equation has been used for checking of original signatures and

the proxy signatures in our proposed scheme. Thus original signature is

distinguishable from the proxy signature.

2. In our scheme to put a valid proxy signature S (in case proxy protected xB

too) is needed. With out knowing XB or S or both this is impossible to create

a valid signature. This is the reason why proxy signature cannot be forged.

Furthermore, original signer have no knowledge about xB though he creates S

in case of proxy protected scheme. Hence the proxy signer cannot deny later

that the proxy signature not created by him.

3. The public key YP has been calculated from the original signers public key

yA. Hence the original signer cannot deny his agreement later. The public key

of Proxy signer is also involved in the public key (in case proxy protected).

Therefore the proxy signer can be identified from the signature.

33



Chapter 5

Conclusion

In this thesis we have proposed the proxy blind signature basd on hyperelliptic

curve cryptography. Three phases, namely proxy phase, signing phase, varification

phase are there in our proposed scheme. In proxy phase the proxy is generated and

delivered. In signing phase the signature obtained form previous phase is used to

sign. In third phase which is called varification phase, the obtained proxy blind is

varified. All these techniques are implemented over hyperelliptic curve cryptography.

HECC uses minimum key size less than ECC. This is more suitable than ECC in

resource constraint environments.
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