5 research outputs found

    Providing Reliable FIB Update Acknowledgments in SDN

    Get PDF
    Impairment of biliverdin reductase-A (BVR-A) is an early event leading to brain insulin resistance in AD. Intranasal insulin (INI) administration is under evaluation as a strategy to alleviate brain insulin resistance; however, the molecular mechanisms underlying INI beneficial effects are still unclear. We show that INI improves insulin signaling activation in the hippocampus and cortex of adult and aged 3×Tg-AD mice by ameliorating BVR-A activation. These changes were associated with a reduction of nitrosative stress, Tau phosphorylation, and Aβ oligomers in brain, along with improved cognitive functions. The role of BVR-A was strengthened by showing that cells lacking BVR-A: (i) develop insulin resistance if treated with insulin and (ii) can be recovered from insulin resistance only if treated with a BVR-A-mimetic peptide. These novel findings shed light on the mechanisms underlying INI treatment effects and suggest BVR-A as potential therapeutic target to prevent brain insulin resistance in AD

    Safe, Efficient, and Robust SDN Updates by Combining Rule Replacements and Additions

    Get PDF
    IEEE Disruption-free updates are a key primitive to effectively operate SDN networks and maximize the benefits of their programmability. In this paper, we study how to implement this primitive safely (with respect to forwarding correctness and policies), efficiently (in terms of consumed network resources) and robustly to unpredictable factors, such as delayed message delivery and processing. First, we analyze the fundamental limitations of prior proposals, which either: 1) progressively replace initial flow rules with new ones or 2) instruct switches to maintain both initial and final rules. Second, we show that safe, efficient, and robust updates can be achieved by leveraging a more general approach. We indeed unveil a dualism between rule replacements and additions that opens new degrees of freedom for supporting SDN updates. Third, we demonstrate how to build upon this dualism. We propose FLIP, an algorithm that computes operational sequences combining the efficiency of rule replacements with the applicability of rule additions. FLIP identifies constraints on rule replacements and additions that independently prevent safety violations from occurring during the update. Then, it explores the solution space by swapping constraints that prevent the same safety violations, until it reaches a satisfiable set of constraints. Fourth, we perform extensive simulations, showing that FLIP can significantly outperform prior work. In the average case, it guarantees a much higher success rate than algorithms only based on rule replacements, and massively reduces the memory overhead needed by techniques solely using rule additions

    Transition to SDN is HARMLESS: Hybrid ARchitecture for Migrating Legacy Ethernet Switches to SDN

    Get PDF
    Software-Defined Networking (SDN) offers a new way to operate, manage, and deploy communication networks and to overcome many long-standing problems of legacy networking. However, widespread SDN adoption has not occurred yet due to the lack of a viable incremental deployment path and the relatively immature present state of SDN-capable devices on the market. While continuously evolving software switches may alleviate the operational issues of commercial hardware-based SDN offerings, namely lagging standards-compliance, performance regressions, and poor scaling, they fail to match the cost-efficiency and port density. In this paper, we propose HARMLESS, a new SDN switch design that seamlessly adds SDN capability to legacy network gear, by emulating the OpenFlow switch OS in a separate software switch component. This way, HARMLESS enables a quick and easy leap into SDN, combining the rapid innovation and upgrade cycles of software switches with the port density and cost-efficiency of hardware-based appliances into a fully dataplane-transparent and vendor-neutral solution. HARMLESS incurs an order of magnitude smaller initial expenditure for an SDN deployment than existing turnkey vendor SDN solutions while, at the same time, yields matching, or even better, data plane performance for smaller enterprises

    Providing Reliable FIB Update Acknowledgments in SDN

    Get PDF
    In this paper, we rst show that transient, but grave problems such as violations of security policies can occur with real switches even when using consistent updates to Software Dened Networks. Next, we present techniques that are eective in ameliorating this problem. Our key insight is in creating a transparent layer that relies on control and data plane measurements to conrm rule updates only when the rule is visible in the data plane.QC 20141106</p
    corecore