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Safe, Efficient and Robust SDN Updates

by Combining Rule Replacements and Additions
Stefano Vissicchio, Luca Cittadini

Abstract—Disruption-free updates are a key primitive to ef-
fectively operate SDN networks and maximize the benefits of
their programmability. In this paper, we study how to implement
this primitive safely (with respect to forwarding correctness and
policies), efficiently (in terms of consumed network resources) and
robustly to unpredictable factors like delayed message delivery
and processing. First, we analyze the fundamental limitations
of prior proposals, which either (i) progressively replace initial
flow rules with new ones, or (ii) instruct switches to maintain
both initial and final rules. Second, we show that safe, efficient
and robust updates can be achieved by leveraging a more general
approach. We indeed unveil a dualism between rule replacements
and additions, that opens new degrees of freedom for supporting
SDN updates. Third, we demonstrate how to build upon this du-
alism. We propose FLIP, an algorithm that computes operational
sequences combining the efficiency of rule replacements with the
applicability of rule additions. FLIP identifies constraints on rule
replacements and additions that independently prevent safety
violations from occurring during the update. Then, it explores
the solution space by swapping constraints that prevent the same
safety violations, until it reaches a satisfiable set of constraints.
Fourth, we perform extensive simulations, showing that FLIP
can significantly outperform prior work: In the average case,
it guarantees a much higher success rate than algorithms only
based on rule replacements, and massively reduces the memory
overhead needed by techniques solely using rule additions.

I. INTRODUCTION AND RELATED WORK

The single most important function of an SDN controller

is deciding how packets are forwarded through the network,

and program the switches accordingly. Updates are often

needed to adapt forwarding paths to network dynamics, e.g., to

better balance load, steer flows through virtualized functions

or implement new security policies. During an update, the

controller has to instruct switches to add, change and remove

some of the flow rules that they use to forward packets.

Ideally, the controller should carry out any update in a

safe, efficient and robust way. By safety we mean that service

disruptions should be avoided, hence both forwarding cor-

rectness (i.e., packet delivery) and policies (i.e., requirements

on forwarding paths) have to be preserved throughout the

update. In addition, the update should be efficient in terms of

consumed network resources (from bandwidth to switch mem-

ory). Finally, the update strategy should be robust to factors

unpredictable a-priori, like non-deterministic processing time

for switches to install or modify rules, or (indefinitely) delayed
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message delivery between the controller and the switches.

This robustness requirement rules out the naive approach of

pushing the final rules to all switches at the same time, as

well as strategies based on simultaneously applying operations

on several switches [23]. Rather, the controller must apply a

carefully-computed operational sequence, so that it can either

perform the next operation or roll back the previous one, at

any time, while provably preserving the update safety.

Despite the abundant literature on SDN updates (see [6] for

an overview), no proposed techniques supports safe, policy-

preserving updates, in an efficient and robust way.

• Many proposals focus on congestion avoidance [3], [7],

[9], [15] or forwarding correctness [17], [19], [32], but

do not support policy preservation at all.

• Some techniques [18], [20] support policies by computing

a specific order to replace initial rules with final ones. We

will refer to them as ordered replacement techniques.

They are efficient but their applicability is limited: An

order that guarantees both forwarding and policy preser-

vation may not exist [18], and it is computationally hard

to even decide if such an order exists [16].

• Finally, two-phase commit techniques [12], [24], [28] in-

struct network devices to temporarily store the initial and

final version of every rule that has to be updated. Either

initial or final rules are applied consistently network-

wide, depending on tags that are explicitly set on each

packet at the ingress (like in [12], [28]) or implic-

itly inferred by switches (e.g., on the basis of packet

timestamps [24]). While natively preserving forwarding

correctness and policies, this approach is inefficient, up

to the point of being impractical [12], [21].1

In particular, two-phase commit techniques inefficiently use

device memory, which is a precious resource, so important

that its consumption is regarded as one of the key factors

for scalable routing systems [36]. Device memory is a pri-

mary concern for current SDN networks, since commercial

SDN switches employ Ternary Content Addressable Memory

(TCAM) to support programmability [22]: TCAM is expen-

sive, power-hungry [14], and scarce [34]. We expect that

memory consumption keep being an important concern in the

future, e.g., considering that IPv6 requires more bytes per

flow than IPv4. Even more fundamentally, device memory is

a resource that must be shared among all packet-processing

network applications. Instead of reserving memory for network

updates, operators might therefore need to use that memory

to support the always growing number of offered services,

1Note that works like [10] building upon two-phase commit techniques (to
guarantee higher-level properties) also inherit this limitation.
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and to guarantee good network performance – for example,

supporting fine-grained (i) traffic engineering [11], (ii) security

and monitoring tasks [25], or (iii) fast failure recovery [27].

In this paper, we propose a model and an algorithm to

compute operational sequences that preserve forwarding cor-

rectness and policies, using additional rules only if necessary.

Our contributions are complementary to works that optimize

the implementation of rule replacement and additions (e.g., by

avoiding unnecessary updates of rule priorities [34]).

We unveil the dualism between rule replacements and

additions, showing that forwarding disruptions and policy vio-

lations can be prevented by either adding rules or constraining

the order of their replacement. This dualism allows us to

explore the solution space with new degrees of freedom.

We show that combining replacements and additions is more

powerful than restricting to either of the two, as all previous

techniques do. Such combinations, indeed, enable new ways

to guarantee the update safety, e.g., by admitting harmless

forwarding loops that packets traverse exactly once before

being successfully forwarded to their destination.

Unsurprisingly, this additional expressiveness comes at a

cost: It makes the problem of finding a safe update sequence

more challenging. Indeed, it significantly increases the search

space, since many more solutions are possible (all combina-

tions of rule replacements and additions). Moreover, it requires

a deeper understanding of the interactions between rule re-

placements and additions performed on different switches, e.g.,

distinguishing (at computation time) loops that are crossed

only once from those that disrupt connectivity.

We address those challenges with an original algorithm,

called FLIP. To compactly represent the search space, FLIP

formalizes possibilities to avoid safety violations as constraints

on rule replacements and additions. Moreover, it discovers

relationships between those constraints: It identifies sets of

constraints that are alternative to each other, as they are

capable of preventing the same forwarding disruption or the

same policy violation. For example, given a potential policy

violation, FLIP can determine that either constraints A and B

must be enforced for certain rule replacements, or constraint

C must hold for a given rule addition. FLIP then explores the

search space by swapping constraints with their alternatives,

until it ends up with a satisfiable set of constraints.

FLIP supports safe updates that cannot be carried out with

only rule replacements or solely rule additions. Moreover, it

greatly reduces the number of added rules in the average case.

When combining replacements and additions is not advan-

tageous for safety or efficiency, FLIP degenerates to either

ordered replacement or two-phase commit. This guarantees

that: (i) FLIP always computes a zero-overhead sequence, if

one exists (as ordered replacement); and (ii) FLIP always

finds a solution whenever any of the previous techniques is

applicable, e.g., if all network nodes have space to install

one additional rule (as two-phase commit). In those cases,

though, FLIP inherits the limits of the approach to which it

degenerates. For example, it induces the same overhead as

two-phase commit techniques if it is not safe to perform any

rule replacement; also, FLIP may not support some update

scenarios if rules cannot be added on any network node.
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Fig. 1. An update scenario with a policy to be preserved.

The rest of the paper describes the following contributions.

Analysis (§II). We detail how combining rule replacements

and additions opens new degrees of freedom in the policy-

preserving update problem. Also, we show how those combi-

nations enable us to overcome limitations of prior techniques.

Modeling (§III). We formalize the safe update problem when

operational sequences can include rule replacements and ad-

ditions. We also describe how FLIP models the solution space

in terms of constraints and relationships between them.

Algorithms (§IV-V). We walk through the execution of FLIP,

and detail its core procedures to extract constraints, identify

their relationships, and compute safe operational sequences.

Experimental evaluation (§VI). We evaluate our implemen-

tation of FLIP by simulating 50, 000 random update scenarios

for realistic networks: FLIP systematically outperforms previ-

ous techniques in terms of efficiency and success rate.

II. UNEXPLORED DEGREES OF FREEDOM

FOR SDN UPDATES

Fig. 1 shows a case where the SDN controller (not depicted

to help the reader focus on forwarding paths) has to update the

controlled network. For the sake of the example, the controller

has to modify the forwarding only for the flow f1 of packets

sourced at s and destined to d. Dashed and solid arrows

respectively represent the initial and final states, i.e., the paths

used before and after the update.

To perform the update, the controller can apply atomic

operations on switches. Specifically, it can add, modify or

delete the flow rules used by any switch to process packets

belonging to f1. We distinguish three types of operations, read-

ily supported by SDN switches. A rule replacement operation

rep(s, f) instructs a switch s to replace all its current rules for

any flow f with the final rule. A tagging operation tag(s, f, θ)
requires switch s to mark packets in flow f with a tag θ. A

matching operation match(s, f, θi, θf ) requests switch s to

install both the initial and final rules for flow f , and apply the

initial (final, resp.) rule to packets tagged as θi (θf , resp.). In

our notation, ∅ is a valid value for any tag, and represents the

absence of a tag. Both rule replacement and tagging operations

modify an existing rule, hence they do not change the number

of installed rules. Conversely, a matching operation involves

adding a new rule, and consumes an additional slot in the

TCAM memory of the corresponding switch. We denote with

app(op) the time at which operation op is applied.

We say that the controller produces a safe update if (i) pack-

ets are guaranteedly delivered to d; and (ii) input policies are
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satisfied throughout the update. In our example, the policy

P(f1) (see left side of Fig. 1) imposes that packets belonging

to f1 must traverse link (v, z) in either of the two directions.

We obviously assume that properties (i) and (ii) hold in the

initial and final states (otherwise no update can be safe).

Update safety depends on the sequence of operations ap-

plied to the switches. In Fig. 1, for instance, if the first

operation is replacing the rule on z, i.e., rep(z, f1), then

packets for flow f1 are trapped in a permanent loop between

v (that applies its initial rule) and z (that applies its final rule)

after app(rep(z, f1)). The loop persists until app(rep(v, f1)).
Instead, if rep(u, f1) is the first operation, then f1 is forwarded

over path [s, u, z, w, d], hence violating the policy P(f1).

A. Previous approaches have limitations

To achieve safe updates, prior work either relies on ordered

replacements or on two-phase commit. The former approach

consists in computing a proper sequence of rule replacements,

when it exists (see, e.g., [18], [20]). The latter one works in

two phases: In the first phase, it applies matching operations

on all internal switches (u, v and z in Fig. 1), in the second

phase it applies tagging operations on flow entry points (s in

Fig. 1) so that all switches use final rules (see, e.g., [12], [28]).

Both approaches are limited in applicability or inefficiency,

since they focus either only on rule replacements or exclu-

sively on tagging and matching operations.

Ordered replacement cannot always be applied. Fig. 1

proves that an ordering of rule replacements preserving both

forwarding correctness and given policies (P (f1) in this case)

does not always exist. Consider possible orderings of rule

replacements at u, v, and z. We have three cases. If we start

from u and rep(u, f1) is the first operation to be applied

by the controller, then f1 is forwarded on path [s, u, z, w, d]
upon app(rep(u, f1)), which immediately violates P(f1). If

we start from v, then f1 is forwarded on path [s, u, v, w, d]
upon app(rep(v, f1)), which also violates P(f1). Finally, if

rep(z, f1) is the first operation, packets of f1 are trapped in

a permanent loop between v and z.

Simultaneous operations are not robust to unpredictable

delays. One may be tempted to impose that some rules

are replaced simultaneously [23], for example on u, v and

z. Unfortunately, it is practically impossible to ensure that

those replacements are actually executed at the same time on

the respective switches. For example, z may be slower (by

seconds [10]) than u to replace its initial rule with its final

one, which would lead to the violation of P(f1). Further, v

can keep using its initial rules for an undefined time, e.g.,

because of a lost message in the communication between the

controller and v itself: This would trigger the loop between v

and z (potentially, even after the previous policy violation).

Hence, simultaneous operations provide no guarantees on

update safety in practice. On the contrary, they can cause all

the forwarding and policy violations (potentially, one after the

other) raised by unsafe rule-replacement orderings.

Two-phase commit techniques are inefficient. They are

based on applying tagging and matching operations on internal

u
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Fig. 2. FLIP operational sequence for the scenario in Fig. 1: The overhead
is only one additional rule (due to matching operation on z) versus the three
additional rules needed by two-phase commit techniques like [28].

switches in the network. This comes with two possible

consequences. First, the technique is not applicable if there

are switches (say u) that cannot accept additional rules – e.g.,

if their memory is fully used by rules generated (possibly at

runtime) for (i) dynamic load-balancing and fine-grained traffic

engineering [11], (ii) detailed monitoring and troubleshooting

for security tasks [25], or (iii) fast failure reaction through pre-

provisioned backup rules [27]. Second, even if the technique

is applicable, it can require an unnecessarily high number of

additional rules, consuming memory resources on the switches

and potentially inhibiting other applications as dynamic traffic

engineering or fine-grained monitoring during the update.

B. Combining operations is more powerful

The key intuition exploited by our algorithm, FLIP, is that

we can profitably combine rule replacement, tagging and

matching operations. To this end, we build upon properties

that hold if given operations are applied in a certain order. In

Fig. 1, for instance, matching on z ensures that the (v, z) link

is traversed at least once, while tagging on v with z matching

v’s tags ensures that packets exit the potential loop between v

and z after traversing z at most twice. From those guarantees,

we can compute a safe update (e.g., with v tagging and z

matching v’s tags throughout the process).

The exact operational sequence computed by FLIP on the

scenario in Fig. 1 is reported at the top of Fig. 2. It consists of

a sequence of update steps, so that operations in one step have

to be applied after those in the previous step. This means that

the controller must start the operations in a step only after it

is sure that all the operations in the previous step are applied

(e.g., after receiving an acknowledgment from switches [13]).

Operations in the same step can be sent simultaneously to

the switches. This does not mean that they are executed

simultaneously, rather that their relative order does not matter.

FLIP admits correct paths impossible in other approaches.

The bottom part of Fig. 2 provides an illustration of the paths

followed by packets of f1 in any possible state derived from

the application of the FLIP sequence. It visually proves that

both packet delivery and policy compliance (i.e., traversal of

the link between v and z) are guaranteed. Indeed, packets

either follow the initial paths (see Fig. 2(a)), are forwarded

over final paths (see Fig. 2(c)), or traverse link (v, z) in both

directions before exiting the loop between v and z after one

lap (see Fig. 2(b)). Note that the intermediate state in Fig. 2(b)
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can only be setup by conveniently interleaving rule replace-

ments and additions, hence it is structurally impossible for

both ordered replacement and two-phase commit techniques

(including those relying on time-based tags like [24]).

This ability of installing additional paths leads to the fol-

lowing key benefits with respect to previous approaches.

FLIP can carry out updates that are not supported by any

previous technique. For example, if the memory of u is fully

used, Fig. 1 shows a scenario solved by FLIP, while neither

ordered replacement nor two-phase commit techniques can be

used (see discussion in §II-A). Contrary to time-dependent

techniques [23], FLIP updates are robust to unpredictable

delays in message delivery and operation application. The

controller only has to check that all the operations in one

step have been correctly applied before starting the next step.

Indeed, operations in each single step can be applied safely

irrespective of their relative order.

FLIP is more efficient than two-phase commit. Consider

again the example in Fig. 1. FLIP’s overhead is a single

additional rule on z. This overhead is much less than the one

of two-phase commit techniques, as the latter ones (when they

can be used) would install additional rules on u, v, and z.

One may argue that two-phase commit techniques have been

introduced to support strong consistency [6], i.e., to guarantee

that only the initial or the final paths are used throughout an

update, for every flow. Not only does FLIP support strong

consistency too, but it also uses fewer rules than two-phase

commit techniques to provide such support. In Fig. 1, for

instance, FLIP adds rules only on v and z. Indeed, packets

in f1 are forwarded on either the initial or the final path if v

and z apply the initial or final rule consistently with u. FLIP

ensures this property by (i) instructing u to add a tag θf when

it uses its final rule, and (ii) forcing v and z to apply their

final rules when matching θf .

FLIP’s gains tend to be even bigger with a higher number

of flows to update. Table I details how previous techniques

and FLIP perform when u has a limited number of free

memory slots and rules for N flows have to be updated as

in Fig. 1.

Ordered replacement techniques are still not applicable.

The original two-phase commit algorithm [28] cannot handle

updates unless u has at least N free slots. In that case, it

completes the update in only 3 steps (i.e., installing matching

rules on internal switches, instructing border switches to tag

packets, and removing old rules). However, it is even more

memory inefficient than in the single-flow case: It consumes

exactly N entries on u, v and z, for a total of 3N rules

versus the N rules added by FLIP (e.g., on z only). A

workaround [12] to support safe updates of multiple flows

when u has X<N free slots is to shard the update in rounds, so

that at most X flows are updated in each round. This dilutes the

memory overhead over time: the total number of rules added

during the update remains 3N, but each round adds only a

fraction of them (at most 3X). Such workaround, however,

has a detrimental impact on the speed of the update: Each

round is performed in 3 steps (as for the original two-phase

Free memory slots on u
N/100 N/10 N

ordered replacement - - -

two-phase commit (base)
- update steps

- -
3

- estimated update time*
- -

seconds
- total number of added rules 3N

two-phase commit (progressive)
- update steps 300 30 3
- estimated update time* tens of minutes minutes seconds
- total number of added rules 3N 3N 3N

FLIP (this paper)

- update steps 5 5 5
- estimated update time* seconds seconds seconds
- total number of added rules N N N

* based on performance of current SDN switches (e.g., see [10])

TABLE I
FEATURES OF UPDATES COMPUTED BY DIFFERENT TECHNIQUES, WHEN

PATHS FOR N ≥ 100 FLOWS HAVE TO BE CHANGED AS IN FIG. 1.

commit algorithm), with each step realistically taking order of

seconds. Indeed, to complete any update step, environmental

factors (like propagation delay between the SDN controller and

switches, rule installation, reception of acknowledgements,

and error recovery) can easily account for hundreds of mil-

liseconds in a geographically-distributed network. Even more

importantly, recent works (e.g., [10], [35]) have shown that any

current OpenFlow device can take a few seconds to install

a hundred rules. As a final result, sharding an update in a

few tens (hundreds, resp.) steps increases the update time

from order of seconds to order of minutes (hours, resp.). By

reducing the number of added rules, FLIP achieves a superior

memory-time trade-off (e.g., see Table I).

Table I remains exactly the same if v or z are also memory

constrained: In the first case, FLIP would still compute the

sequence shown in Fig. 2; in the latter case, it would compute

a symmetric update sequence where z tags and v matches.

We finally note that the percentage of rule saved by FLIP

with respect to two-phase techniques is much higher in our

experiments (90-98%) than the one shown in the table (66%).

III. SYSTEMATICALLY COMBINING RULE

REPLACEMENTS AND ADDITIONS

Fig. 3 overviews FLIP. We now describe FLIP’s input

(§III-A), output (§III-B), and algorithmic core (§III-C). Since

we publicly released our FLIP implementation [31], we omit

its formalization (i.e., pseudo-code) and provide a plain-text

description. We use the terms switch and node interchangeably.

A. FLIP Input

FLIP takes as input an update problem, which is defined by

the pair of initial and final states, and the properties that have

to preserved during the update.

Initial and final states are defined by per-flow rules used by

switches before and after the update, respectively. We consider

the concept of flow in its broadest sense, as the collection of all
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internal procedures, and text boxes for the corresponding input and output.

packets whose headers match a specific bitmask consistently

across switches. In Fig. 1, all switches match packets based on

a bitmask that captures the source address s and the destination

address d; hence, packets sourced at s and destined to d

belong to the same flow f1. Each flow is associated to a

destination to which packets have to be delivered and a set of

sources, e.g., switches attached to the origin of the packets. We

define the forwarding paths for a flow f as the network paths

[s0, s1, s2, . . . , d], where s0 is a source, each si is a switch,

and d is the destination. We admit multiple forwarding paths

(e.g., equal-cost multipath, ECMP), between a source and a

destination for the same flow.

Properties to be guaranteed include forwarding correctness

and preservation of input policies.

Forwarding correctness means that every packet is deliv-

ered to the destination. Even assuming that the initial and

final states are forwarding correct, two types of incorrectness

can be triggered in intermediate states, installed during the

update: blackholes and evil loops. A blackhole occurs when a

forwarding path [s, . . . , b] terminates in a switch b, different

from the destination and without a rule to forward the packet

further. An evil loop occurs when packets of a given flow are

bounced back and forth indefinitely, among a finite number of

switches. In other words, evil loops make a forwarding path

infinite. Note that the loop in Fig. 2(b) is not evil since the

forwarding path used for f1, i.e., [s, u, z, v, z, w, d], is finite.

In the following we use the term loop to indicate an evil loop

occurring during the update, unless otherwise specified.

Policy preservation means that a set of input policies,

satisfied in both the initial and final states, are not violated

in any intermediate state. With respect to previous works

that either support strong consistency [10], [28] or single-

node traversal [18], FLIP can preserve a larger variety of

practical policies. Policies supported by FLIP include traver-

sal of single nodes or links (e.g., for firewalling [28]), but

also of sub-paths (e.g., for distributed middleboxing [26],

service chaining [8] or QoS-based traffic engineering [1]).

Generalizing the notation in Fig. 1, we define a policy as a

set of non-empty paths, called policy paths. An input policy

P({f1, . . . , fk}) = [P1, . . . , Pm], with k,m ≥ 1, imposes

that every forwarding path of any flow fi, with i = 1, . . . , k,

includes at least one of the policy paths P1, . . . , Pm. If this

condition holds, we say that the policy is satisfied; otherwise,

we say that it is violated. We assume that only one policy is

defined for any flow. This, however, does not prevent us from

forcing the same flow through multiple sub-paths (e.g., for

service chaining). For example, if a given flow has to traverse

both sub-paths P1 and P2, we can express this requirement

with a single policy including all paths P1QiP2, where Qi is

a path between P1 and P2.

B. FLIP Output

FLIP returns a partial order between operations. This par-

tial order represents an operational sequence, including rule

replacement, tagging and matching operations. A returned

sequence [G1, . . . , Gn] is such that (i) every Gi, with i =
1, . . . , n, is a group of operations; (ii) operations in each group

Gi guarantee preservation of forwarding correctness and input

policies independently of the relative order in which they are

actually applied by switches (i.e., they can be sent by the

controller in any order or in parallel); and (iii) no operation

of a group Gi+1 should be executed before any operation in

Gi. We refer to any group Gj as j-th update step.

The above properties of FLIP sequences guarantee maxi-

mum robustness to uncontrollable factors: The resulting up-

dates are indeed safe even if any message between the con-

troller and switches is subject to an arbitrary large but finite

delay (e.g., they will be retransmitted if lost), and any switch

takes a non-deterministic time [10] to apply an operation after

receiving the corresponding message from the controller. This

is because all intermediate states are safe irrespectively of the

execution order of operations in the same step – see property

(ii). Hence, the controller can always pause the update for an

arbitrary amount of time, or even roll-back to a previous state

(undoing all the operations in the current update step).

C. Algorithmic Overview

At a high-level, FLIP adopts a divide-and-conquer approach

(see top of Fig. 3). It divides the input update problem into

sub-problems, one per impacted flow. For every sub-problem,

FLIP independently computes a sequence. Per-flow sequences

are finally merged into the output operational sequence.

Problem decomposition and solution composition are easy.

Flows are by definition independent of each other, so we

decompose the problem by simply considering one flow at

a time. For the same reason, per-flow sequences can be

arbitrarily merged without impacting forwarding correctness

and policy preservation. FLIP relies on a simple yet generic

strategy in which per-flow sequences are merged on a per-

step basis. Starting from a set of per-flow sequences, FLIP

computes the i-th step of the final operational sequence as

the union of the i-th step of all per-flow sequences with at

least i steps. This implies that the final sequence is as long

as the longest per-flow sequence. Note that more sophisticated

merging strategies are possible. For example, we could treat

each per-flow sequences as a set of dependencies and use a

scheduling algorithm in [10] to optimize the update speed.

Computation of policy-preserving per-flow sequences is the

most novel part of FLIP. It is based on two core procedures,

which are detailed in the following two sections (§IV-V).
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The constraint extraction procedure takes as input a per-

flow problem and performs two tasks.

First, for each possible forwarding incorrectness or policy

violation, the procedure identifies the constraints that (if sat-

isfied) ensure a safe update. We distinguish between replace-

ment and tag-and-match constraints. A replacement constraint

imposes a certain ordering between rule replacements. A tag-

and-match constraint forces some switches to tag packets

consistently with the applied rule (initial or final), and other

switches to match those tags. For example, to avoid the loop

between v and z in Fig. 1, the replacement constraint generated

by FLIP is app(rep(v, f1)) < app(rep(z, f1)). The tag-and-

match constraint for the same loop imposes that v tags and z

matches until all the switches use their final rules. To setup

packet tagging and tag matching, the latter constraint requires

that tag(v, f1, τ) and match(z, f1, τ, ∅) are respectively in G1

and G2, i.e., the first and second update steps. Also, to force

z to match throughout the update, the constraint mandates

app(rep(z, f1)) > app(rep(n, f1)) for any switch n 6= z.

Second, the constraint extraction procedure infers relation-

ships between constraints. Namely, it pinpoints alternative and

dependent constraints. A set of constraints A is alternative to

another set of constraints B if satisfying A prevents all the

potential correctness violations that would be prevented by

satisfying B. For example, applying a rule replacement on v

before z, applying a matching operation on z (with v tagging),

and applying a matching operation on v (while z tags) are all

alternative constraints to avoid the evil loop between z and

v in Fig. 1. In contrast, one constraint c1 depends on another

constraint c2 if every time we want to impose c1 we must also

impose c2. We will discuss dependencies in more detail in §V.

After having extracted constraints, FLIP selects all rule

replacement constraints and marks them as active. FLIP then

translates the set of active constraints into a linear program

(LP) where the objective function is to minimize the number

of update steps. FLIP tries to solve this LP with standard

optimization algorithms. If a solution can be found, FLIP out-

puts the corresponding operational sequence. Otherwise, FLIP

applies the constraint swapping procedure to replace some

active constraints with alternative ones and their dependencies.

Whenever a rule can be added to all switches, matching con-

straints are always satisfiable, hence FLIP eventually reaches

a combination of active constraints for which a solution exists.

IV. FLIP CONSTRAINT EXTRACTION

We now describe the constraint extraction procedure, using

Fig. 4 for illustration.

We start by defining the concept of crucial predecessors,

which is used in the entire procedure. Intuitively, crucial

predecessors of node n are those predecessors of n that

can interrupt an initial or final forwarding path traversing n,

depending on whether they are updated or not. More precisely,

given a node n, a flow f , and a state σ which is either the

initial state or the final state, i.e., σ ∈ {init, fin}, we define

crucial predecessors of n for f in σ a set C of nodes such

that for every forwarding path Q = [s . . . n . . . d] in σ, Q

can be written as [s . . . p,m . . . n . . . d], with possibly m = n,

w

v z

d state: initial final

e c b a

g lh

P(f2) = [[a, b, c, e], [a, b, h, c, z, w], [l, g, h]]policies:

LEGEND:

Fig. 4. Update scenario used to illustrate FLIP constraint extraction.

p ∈ C, possibly p = s, and m next-hop of p only in σ (but

not in {init, fin} \ {σ}). Crucial predecessors are initial if

σ = init, and final otherwise. In Fig. 4, a set of initial crucial

predecessors of w for the considered flow f2 is {z}. Indeed,

initial source-destination paths [x . . . w, d], with x ∈ {l, a},

can all be rewritten as [x . . . z, w, d] and w is not the next-

hop of z in the final state. A node can have multiple sets

of crucial predecessors. For example, {z} and {c} are two

distinct sets of initial crucial predecessors of w for f2 in Fig. 4.

Whenever this case holds, we always consider a specific set of

crucial predecessors which we denote as cpreds(n, f, σ). This

set has the additional property that for every forwarding path

Q = [s . . . p . . . n . . . d], with p ∈ cpreds(n, f, σ), every node

in the sub-path of Q from p to n (if any) uses the same next-

hop in both the initial and the final states for f . As a result,

cpreds(w, f2, init) = {z} in Fig. 4, because the subpath from

z to w does not contain any intermediate node. On the other

hand, the subpath from c to w contains z and z has different

next-hops in the initial and final state. FLIP computes crucial

predecessors with a single backward visit (from n to flow

sources) of the graph associated to σ.

We also denote the graphs corresponding to the initial and

final state for a flow f respectively as Gi
f and Gt

f .

A. Forwarding correctness constraints

A blackhole is defined as the absence of rules for a flow

f on a switch b traversed by a forwarding path. Given that

the initial and final states are forwarding correct, blackholes

can occur during an SDN update if and only if (i) b has

no rule for f in either the initial or final state, and (ii) in

an intermediate state, a forwarding path for f traverses b

while it has no rule for f . Following this observation, for

each node b with no rule for a flow f in the state SB ∈
{init, fin} but with a rule only in S̃B = {init, fin} \ SB ,

we generate a replacement constraints of the form ∀p ∈
cpreds(b, f, S̃B) app(rep(b, f)) < app(rep(p, f)) if SB =
init and app(rep(b, f)) > app(rep(p, f)) otherwise. This

ensures that (i) if b has no rule before the update (SB = init),

it is ready to apply its final rule when any of its final crucial

predecessors has installed its final rule, hence whenever a

forwarding path can cross b; and (ii) if b has no rule after

the update (SB = fin), it keeps its initial rule until all its

initial crucial predecessors apply their respective final rules,

and a forwarding path cannot cross b anymore. FLIP generates
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no tag-and-match constraint to avoid blackholes. Indeed, since

switches responsible for blackholes do not have rules in the

initial or final states, matching operations would coincide with

replacement constraints, forcing the application of that single

rule throughout the update.

Extracting constraints to avoid evil loops is also quite

intuitive. Consider any potential evil loop L for flow f , as

obtained by enumerating cycles in the graph Gi
f ∪ Gt

f . For

replacement constraints, we adopt an approach similar to [30]:

We identify the set Linit of nodes such that their respective

next-hops in L are next-hops in the initial but not in the final

state. Similarly, the set Lfin includes nodes whose next-hop

in L is a final but not initial next-hop for the considered flow.

In Fig. 1, v ∈ Linit since z is an initial but not final next-hop

of v, and z ∈ Lfin for symmetrical reasons. We then generate

a replacement constraint forcing any of the nodes in Linit to

be updated before any of the nodes in Lfin. This has already

been proved to prevent evil loops during the update [30]. Also,

we generalize the intuition used in Fig. 2, and generate tag-

and-match constraints imposing that one node in Linit ∪Lfin

matches tags used by its crucial predecessors. Indeed, since

both the initial and final states are correct, matching on a

single node m in Linit ∪ Lfin provably avoids the evil loop

corresponding to L, since m will force packets out of the loop

after at most one lap in the loop (as in Fig. 2(b)).

B. Policy preservation constraints

Policy-preservation constraints are the trickiest to identify:

No previous work actually provides means to enumerate and

formalize them. Abstractly, for every flow f subject to an

input policy, FLIP separately colors Gi
f and Gt

f . It then

generates constraints based on those colors. In the following,

we textually explain how constraints are extracted for any flow

f subject to a policy P(f) and why they are semantically

correct. As a reference for explanations, colors assigned by

FLIP for cases in Fig. 1 and 4 are reported in Fig. 5 and 6.

First, we color nodes. Given any graph G such that G = Gi
f

or G = Gt
f , colors are assigned using the following algorithm.

First, FLIP identifies all the nodes not having a rule for f in G,

and colors them as blue. Moreover, by analyzing forwarding

paths for f in G, it assigns the yellow color to nodes that

are not part of any forwarding path (from any source of the

flow) even if they have a rule for f . For instance, in the initial

graph of Fig. 4, e is blue since it has no rule for f , as shown

by Fig. 6; Moreover, v is yellow since it has a rule for f

but it is not traversed by any path from a or l (sources of

the flow) to d. To determine other colors, FLIP removes from

G all the edges part of a satisfied policy path for f (e.g.,

(v, z) in Fig. 5). Since policies must be satisfied by any path

in G, this disconnects G, separating sources and destination

into different connected components. FLIP colors all the nodes

reachable from any source as green, and all the nodes in the

connected component of the destination as white. Consistently,

Fig. 5 shows that FLIP colors s, u and v as green in the initial

graph, and z and w as white. By definition, a node g is green

if and only if all the paths from g to the destination satisfy

P(f). Symmetrically, a node w is white if and only if all the

w

v z

initial state Gi
f1

final state Gt
f1

u v zu

P(f1) = [[v, z], [z, v]]POLICY:

ws s

Fig. 5. Graph coloring performed by FLIP when run on the case in Fig. 1.

w

v z

e

c b a

g lh

initial state Gi
f2

final state Gt
f2

POLICY:

w

v z

e

c b a

g lh

P(f2) = [[a, b, c, e], [a, b, h, c, z, w], [l, g, h]]

Fig. 6. Graph coloring performed by FLIP when run on the case in Fig. 4.

paths from a source of f to w satisfy P(f). All the nodes in

a connected component that does not include neither sources

nor the destination are colored as cyan. For example, nodes

that are in the middle of a policy path (i.e., excluding the first

and the last ones) used to satisfy P(f) from some sources are

cyan. Fig. 6 shows that g, h, b, c and z are cyan in Gi
f2

for

the example in Fig. 4.

Second, we extract constraints from colored graphs. From

node-colored graphs, FLIP extracts several sets of constraints

for P(f), according to Table II. In the table, we use expres-

sions as n < cpreds(n, f, S) instead of ∀p ∈ cpreds(n, f, S)
app(rep(n, f)) < app(rep(p, f)) for brevity.

Table II shows that FLIP does not generate constraints for

nodes which are either (i) green in both Gi
f and Gt

f , or

(ii) white in both Gi
f and Gt

f . Indeed, those nodes cannot

be responsible for possible policy violations. Consider a node

g which is green in both Gi
f and Gt

f . By definition of green

node, P(f) has to be satisfied by successors of g in both

the initial and final state, hence updating g cannot create a

violation of P(f). The same applies to any node w which

is white in both Gi
f and Gt

f , since P(f) has to be satisfied

before reaching w in both the initial and final state.

In contrast, constraints are needed for nodes with different

colors in Gi
f and Gt

f . Consider, for example, any node r which

is white in Gi
f and green in Gt

f , like z in Fig. 5. A rule
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green cyan white, yellow

green -
n>cpreds(n,f,Gt

f
) n>cpreds(n,f,Gt

f
)

match on n match on n

cyan
n<cpreds(n,f,Gi

f
)

enum
n>cpreds(n,f,Gt

f
)

match on n match on n

white, n<cpreds(n,f,Gi
f

) n<cpreds(n,f,Gi
f

)
-

yellow match on n match on n

n=analyzed node, f=flow, Gi
f

=initial state, Gt
f

=final state

TABLE II
FLIP CONSTRAINT EXTRACTION FOR ANY NODE n, WITH INITIAL AND

FINAL COLORS SPECIFIED BY ROWS AND COLUMNS, RESPECTIVELY. NO

CONSTRAINT IS GENERATED IF n IS BLUE IN THE INITIAL OR FINAL STATE.

replacement on r can induce a policy violation from a given

source in Gi
f : Indeed, the initial policy path can be bypassed

via the final path from the source to r (e.g., [s, u, z]), and

the final policy path can be circumvented with the initial path

from r to the destination (e.g., [z, w]). FLIP constrains the

rule replacement on r to be applied before replacements on

any of its initial crucial predecessors. This guarantees that no

source can reach r with a final path before r uses its final

rule; in turn, this prevents policy paths to be bypassed, as in

the example above. In Fig. 5, FLIP indeed adds a replacement

constraint app(rep(z, f1)) < app(rep(u, f1)). If respected,

this constraint ensures that during the update either (i) u uses

its initial rule, and the initial, policy-compliant path is followed

from u to z; or (ii) u uses its final rule and z uses its own final

rule as well, hence the policy is satisfied after z (since it is

green in the final state). With a similar rationale, we generate

a tag-and-match constraints in which r matches tags added by

its initial and final crucial predecessors.

Similar arguments prove the need for constraints for nodes

with other combinations of (different) colors in Gi
f and Gt

f .

FLIP only makes one exception, for nodes that are cyan in

both Gi
f and Gt

f (like b and c in Fig. 6) since they have to be

treated differently. For those nodes, even computing whether

constraints are needed is not obvious, because their presence

in paths violating of P(f) depends on possible next-hops of

both their respective predecessors and successors. Hence, FLIP

enumerates all paths in Gi
f ∪Gt

f that contain at least one node

which is cyan in both states. This is a sort of limited path

enumeration, which is restricted on the basis of potentially-

dangerous nodes (cyan in both states) belonging to complex

policy paths (with more than two nodes). This enables FLIP

to pinpoint the paths among the enumerated ones that violate

P(f). This way, FLIP detects that [a, b, c, z, w, d] is a possible

forwarding path for f2 which violates P(f2) in Fig. 4. Once a

policy-violating path V is found, FLIP generates a replacement

constraint on a specific node s, such that the sub-path of V

ending in a next-hop of s is not included in any policy path for

the considered flow. In Fig. 4, c is the constrained switch for

V = [a, b, c, z, w, d], since [a, b, c, z] is not included in any

policy path in P(f2). In particular, FLIP constrains c’s rule

replacement to be applied before its crucial predecessor on V ,

i.e., b in this case. With a similar rationale, FLIP also adds a

tag-and-match constraint in which the same switch used for

the replacement constraint (c in our example) matches and all

its crucial predecessors in both Gi
f and Gt

f tag.

C. Tracking relationships between constraints

FLIP also identifies alternative and dependent constraints.

FLIP stores constraints generated by the same potential

violation as alternative. This generalizes the intuition used in

§II to produce the operational sequence shown in Fig. 2. In the

generation of that sequence, a key observation is that the evil

loop between v and z can be broken by either (i) replacing v’s

rule before replacing z’s one, (ii) tagging on v and matching

on z, or (iii) tagging on z and matching on v. Consistently,

FLIP records those constraints as alternative. More generally,

FLIP stores as alternative all the set of constraints generated

for the same blackhole, evil loop or policy violation.

FLIP tracks dependencies between constraints. Such depen-

dencies are needed to guarantee that a tag τ is not overwritten

or removed before reaching the node which has to match τ –

an implicit assumption behind tag-and-match constraints.

To avoid harmful tag overwriting, FLIP creates a depen-

dency between the original tag-and-match constraint and a

tag-and-match constraint involving the node that can incor-

rectly modify the tag. More precisely, whenever a tag may

traverse a node n that can overwrite it before reaching all its

corresponding matching nodes, FLIP introduces a constraint

dependency to impose that n matches and preserves the tag.

Tags can be potentially overwritten en route in two cases.

The first case is represented by nodes that are critical to

prevent both a loop L and a violation of a policy P . For

example, consider again Fig. 1, and assume that we need to

preserve strong consistency, i.e., ensure that either the initial

path [s, u, v, z, w] or the final one [s, u, z, v, w] is followed.

A tag-and-match constraint in which v tags and z matches

avoids the evil loop between v and z. However, the tag set by

v (to exit the evil loop) may overwrite the one set by u (to

enforce strong consistency). This is exactly what happens in

Fig. 2(b): In that case, however, the tag set by u was intended

to enforce the policy subpath [z, v], hence to be propagated up

to v. In contrast, overwriting the tag at v would disrupt strong

consistency, as the latter requires that all nodes consistently

match the tag set by u until the destination is reached. Hence,

FLIP stores the tag-and-match constraint with v matching as

dependent on the tag-and-match constraint where z matches.

More complex scenarios involving nodes cyan in both the

initial and final states are identified during the enum procedure

in the extraction of policy constraints (see Table II).

The second case where dependencies are needed is repre-

sented by nodes participating in nested evil loops. Consider

Fig. 7. There are two nested evil loops here: [a, b, c, e, a] and

[a, b, e, a]. When FLIP extracts the tag-and-match constraint

where e matches, it also detects that the tags may be overwrit-

ten. Indeed, both b and c are crucial predecessors of e, hence

they are selected as taggers. However, because of their relative

position in the sub-path [a, b, c, e], c could override a tag set

by b. To avoid such an overwriting, FLIP introduces constraint

dependencies that force tags to be propagated throughout

any loop. In the example of Fig. 7, FLIP therefore creates

a dependency between the tag-and-match constraint where e

matches and those where b and c match.
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c w

e

P(f3) = []

state:
init
final

LEGEND:

policy:
d

b

a

Fig. 7. Example of a topology where dependencies are needed.

V. FLIP CONSTRAINT SWAPPING

Starting from a set of active constraints, this procedure

swaps an active constraint with one of its alternatives. Select-

ing the constraints to swap can be done in different ways. FLIP

uses a heuristic approach that efficiently finds a safe sequence

with few matching operations, to limit the memory overhead.

This heuristic does not guarantee to find an update sequence

with the minimum number of extra rules – which remains

an open research problem. Nevertheless, it shows very good

performance in practice (see §VI). Details follow on how

FLIP constraint swapping ensures efficiency and correctness.

FLIP always swaps replacement constraints with tag-and-

match ones, never the opposite. This means that replacement

constraints are never added back, i.e., swapping a replacement

constraint translates into permanently discarding it. This strat-

egy is guaranteed to eventually converge because all matching

constraints are set as active in an extreme case. Also, it implies

that FLIP falls back to the two-phase commit approach [28]

in the worst case.

FLIP selects constraints to be swapped so that it quickly

finds a solvable set of constraints. Indeed, at each invocation

of the constraint swapping procedure, FLIP selects a pair of

constraints (R,M), where R is the replacement constraint

to be swapped with the M tag-and-match one, in such a

way that (i) R is in an Irreducible Infeasible Set [5] of the

active constraints, i.e., a minimal set of active constraints that

cannot be satisfied simultaneously; and (ii) M has the minimal

number of dependent constraints among the alternatives for R.

FLIP preserves the semantics of all constraints after any

swap. After having selected the pair of constraints (R,M) to

be swapped, FLIP updates all active constraints to take into

account the effect of the swap. This involves multiple actions.

First, any replacement constraint R′ with M as an alter-

native is removed from the active constraints. Indeed, the

potential anomalies that R′ avoids are now prevented by M .

Second, FLIP adds all M ’s dependencies to the set of

active constraints, i.e., respecting the meaning itself of such

dependencies. This also implies removing other replacement

constraints having one of M ’s dependencies as alternatives.

Note that the need for setting dependent constraints as active

intuitively justify our selection heuristic that selects the alter-

native to R with a minimal number of dependencies.

Third, FLIP rewrites replacement constraints (if any) in-

volving the switch r which matches in M . More precisely,

each replacement constraint app(rep(x, f)) < app(rep(r, f)),

w

a b c
P(f4) = [[a, b, c], [e, b, w]]

state:
init final

LEGEND:

policy:

d

switch dest

source
s1 e

Fig. 8. Example where a constraint swap requires rewriting of a replacement
constraint.

where x is a switch different from r, is replaced by a set of

constraints app(rep(x, f)) < app(rep(y, f)), one for every

crucial predecessor y of r. This is needed to preserve the

semantics of the original constraint, that is, to prevent r from

using its final rule if x was still using its initial one. Since r

uses either its initial or final rule depending on packet tags, the

new constraints indeed impose that the final rule is installed on

x before y installs its final rule (and adds final tags), therefore

indirectly forcing r to use its final rule too. We apply a similar

rewriting for constraints app(rep(x, f)) > app(rep(r, f)).

Fig. 8 exemplifies a constraint rewriting performed by FLIP

and illustrates why it is necessary. The input policy is meant

to enforce strong consistency (only the initial or final paths

are acceptable). For s1 to use its final path upon its rule

replacement, we would need constraints app(rep(b, f4)) <

app(rep(e, f4)) and app(rep(e, f4)) < app(rep(s1, f4)) to

be satisfied. Also, for s1 to keep using the initial path before

its rule is replaced, app(rep(s1, f4)) < app(rep(b, f4)) must

hold. This implies that a safe update cannot carried out

with rule replacement only. Thus, FLIP swaps one of those

replacement constraints with an alternative tag-and-match one.

Assume that FLIP selects app(rep(e, f4)) < app(rep(s1, f4))
as the constraint to be swapped: Its alternative is to tag on

s1 and match on e. Now, the rule applied by e depends on

the tag set by s1. Hence, FLIP rewrites app(rep(b, f4)) <

app(rep(e, f4)) as app(rep(b, f4)) < app(rep(s1, f4)). Such

a rewriting is fundamental to maintain correctness, i.e., to keep

the property that s1 uses its final path upon its rule is replaced.

Indeed, without rule rewriting, we would have left with

replacement constraints app(rep(b, f4)) < app(rep(e, f4))
and app(rep(s1, f4)) < app(rep(b, f4)): According to those

constraints, we could have started with a rule replacement at

s1, which however would have installed path [s1, e, b, c, w, d]
(since e matches the final tag set by s1) and violated the

input policy P4. In contrast, the rule rewriting leaves FLIP

with constraints app(rep(b, f4)) < app(rep(s1, f4)) and

app(rep(s1, f4)) < app(rep(b, f4)), which are still unsat-

isfiable and for which we need another constraint swap.

Eventually, FLIP finds a safe sequence based on matching on

both e and b and tagging on s1.

A complete illustration of how constraint swapping works

for the case in Fig. 1 is reported in Fig. 9. This constraint

swap leads to the solution displayed in Fig. 2. In the figure,

the first set of constraints (top left of the figure) is the one

extracted by FLIP from the original update problem. Initially,
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app(rep(v, f1)) < app(rep(z, f1))loop (v, z)

app(rep(u, f1)) < app(rep(v, f1))

active constraints

policy P

alternatives

rv < rz
ru < rv

min ru + rv + rz + rw

ru, rv, rz, rw > 0app(rep(z, f1)) < app(rep(u, f1))

match on z

match on v

match on v

match on z

cause

LPconstraints

swap app(rep(v, f1)) < app(rep(z, f1))

rz < ru

loop (v, z)

app(rep(u, f1)) < app(rep(v, f1))

active constraints

policy P

alternatives

match on z

match on v

cause
ru < rv

min ru + rv + rz + rw

ru, rv, rz, rw > 0
rz > ru, rv, rw

with match on z

Fig. 9. A constraint swapping solving the scenario in Fig. 1.

all and only replacement constraints are active. FLIP translates

active constraints into the linear program (LP) shown at the

top right of Fig. 9, where rx stands for app(rep(x, f1)),
with x ∈ {u, v, z}. Such an LP has no solutions. The swap-

ping procedure selects app(rep(v, f1)) < app(rep(z, f1))
as constraint to be swapped, since it is in the set of con-

tradictory constraints. Hence, it updates the set of active

constraints by removing the constraint to be swapped and

adding one of its alternatives, namely match on z. Further,

app(rep(z, f1)) < app(rep(u, f1)) is also removed from the

active constraints, since match on z was an alternative to

it. No other constraint is added or modified because match

on z does not have dependencies and z is not involved in

any other replacement constraint. The LP deriving from the

new set of active constraints is shown in the bottom right

part of the figure. In this LP, rz > ru, rv, rw derives from

the formalization of the match-and-tag constraints on z, as

discussed in §III-C. Note that match on z also implies other

constraints, imposing that tag(v, f1, τ) and match(z, f1, τ, ∅)
must be in the first two update steps. Since they do not impose

constraints on any other operation, FLIP does not include the

latter constraints into the LP but accommodate them by post-

processing the LP solution, i.e., adding those operations to the

very first steps of the returned sequence.

VI. EVALUATION

We evaluate FLIP by performing 50, 000 experiments. In

each experiment, we generate an update problem; on each

problem, we run our FLIP implementation, which is available

at http://inl.info.ucl.ac.be/softwares/flip. We verify that the op-

erational sequence computed by FLIP is correct by simulating

its application to the corresponding network. To this end,

we apply one operation at the time, following the sequence

generated by FLIP, and we check forwarding correctness and

policy preservation after each operation. For efficiency reason,

we apply operations in the same step in a random order

rather than simulating all possible permutations. While this can

theoretically lead to false positives (i.e., sequences accidentally

considered correct), the sheer number of experiments provides

statistical confidence on the absence of false positives. We

focus on single-flow updates, since FLIP works on a per-flow

basis (see Fig. 3).

A. Setup

As dataset, we use all the publicly available Rocketfuel

topologies [29], denoted by their identifiers (1221, 1239, 1755,

3257, 3967, 6461) in the following. Their sizes range from 79

nodes and 294 edges to more than 300 nodes and almost 2,000

edges. For each topology, we select uniformly at random a

node as destination, and a random 10% of the nodes as sources.

All the equal-cost (ECMP) shortest paths from any source to

the destination in the original topology are taken as the initial

state. Further, we randomly pick 80% of the links and set

their weight to a value chosen uniformly at random among

the weights of the original topology (possibly its initial one).

The ECMP shortest paths from the sources to the destination

in this reweighted graph are taken as the final state.

This methodology provides qualitatively diverse update sce-

narios. Depending on the selected links and new weights,

reweighting links at random statistically tends to generate

(i) cases where only a few paths change, (ii) major routing

modifications where most nodes change next-hop, and (iii)

intermediate scenarios between those two extremes. Table III

shows that this is indeed the case in our experiments: In half of

them, the nodes changing next-hop are roughly between 60%
(first quartile) and 45% (third quartile), although only 20% of

them need to be updated in 5% of the experiments.

experiments
5th 25th 50th 75th 95th

(percentile)

next-hop
66.67% 59.42% 50.63% 45.34% 20.19%

changes

TABLE III
PERCENTAGE OF NODES CHANGING NEXT-HOPS IN OUR EXPERIMENTS

Finally, we add random policies so that every path from a

source to the destination complies with at least one policy.

We choose non-trivial policies composed of paths longer than

2 nodes, which also shows FLIP’s support for more complex

policies than single-node traversal ones considered by [18].

B. Results

The results of our experiments are summarized in Fig. 10-

11. We now discuss those results in more details.

FLIP always computes safe updates. It prevents any possible

blackhole, evil loop or policy violation in each and every ex-

periment. FLIP’s 100% success rate marks an important differ-

ence with previous ordered replacement techniques, like [20],

that preserve policies by ensuring strong consistency, i.e.,

using either the initial or the final paths for each flow. We run

an exhaustive search approach to compute the number of cases

in which strong consistency can be guaranteed by ordered rule

replacements. Results are displayed in Fig. 10(a). They show

that ordered replacement techniques cannot find an operational

sequence in more than ≈ 25% of our experiments. Even worse,

their success rate greatly depends on the specific topology,

and larger topologies (e.g., 1239) are virtually impossible to

tackle. In contrast, FLIP finds a safe sequence in all our

update scenarios. This is because FLIP explores a much larger

solution space, including operational sequences tailored to
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Fig. 10. FLIP outperforms previous approaches in our 50,000 experiments on Rocketfuel topologies.

guarantee the input policy (rather than strong consistency)

and combining rule replacements with tagging-and-matching

operations (rather than restricting to the former ones).

FLIP hugely reduces the number of added rules. In the

99.9th percentile of the experiments, FLIP adds one rule to

8.7% of the nodes. We now compare FLIP’s overhead with the

one of two-phase commit techniques. For each experiment, we

compute the number NDUP of additional rules added by [28],

and the number NFLIP of additional rules added by FLIP. To

be fair, we assume that the two-phase commit approach does

not match on nodes with the same next-hops in the initial

and final states, as also suggested in [28]. We then calculate

the percentage of rules saved by FLIP as NDUP−NFLIP

NDUP

×
100. This percentage expresses the relative comparison of

the overhead induced by FLIP and two-phase commit, with a

metric normalized with respect to topology sizes.

Fig. 10(b) shows the Cumulative CDF of such percentage in

our experiments. A data point (x, y) in the plot indicates that

for a fraction y of the experiments, FLIP saves at least x% of

the rules that would be used by [28]. Across all topologies,

in 98% of the experiments (y = 0.98) FLIP saves at least

94% (x = 94) of the rules added by [28]. Across all our

experiments, at least 87.8% of the rules are saved by FLIP.

Note that FLIP’s savings are fundamentally different from

those of previous variants of two-phase commit techniques.

Prominently, [12] proposes to reduce the update overhead

by updating groups of flows in different rounds. In contrast

to FLIP, this workaround does not avoid rule additions, but

only distributes them over time (e.g., see Table I and the

corresponding discussion). Moreover, [12] degenerates to [28]

in our experiments, since a single flow is updated in them.

FLIP computes fast updates. Fig. 11 shows a CDF of

the number of update steps in our experiments. In all our

experiments, the median number of update steps is 5, the 95th

percentile is 8, and the 99.9th percentile 12. This distribution

does not vary excessively across the different topologies. The

only exception is represented by 1221, the smallest topology,

where FLIP’s sequences have less than 4 steps in 95% of the

experiments. As a comparison, the most generally applicable
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Fig. 11. FLIP sequences are composed of a few steps, a dozen at most.

two-phase commit technique [12] computes updates with 3

steps per round, where each round updates a subset of the flows

(see Table I and its discussion). The number of rounds (hence,

of steps) is determined by the additional memory available at

the most constrained switch involved in the update. If 1,000

flows have to be updated and there is at least one switch

involved in the update which cannot accept 1,000 additional

entries, then at least 2 rounds are needed, i.e., 6 steps (already

more than FLIP’s median). If there is at least one switch which

cannot accept 500 entries, then at least three rounds and 9 steps

are needed, and so on.

The small number of update steps in FLIP sequences is

due to the very design of our algorithm. When computing

rule-replacement orderings, FLIP minimizes the sum of the

steps to which rule replacements are assigned (e.g., see the

objective function of the LPs in Fig. 9). This also implies that

FLIP sequences have the same number of steps with respect

to an optimal sequence computed by ordered replacement

techniques, when such a sequence exists. Fig. 10(a) indicates

that this is the case in about 10% of our experiments.

FLIP often terminates in sub-seconds. Fig. 12 shows a CDF

of FLIP running times in our experiments. FLIP’s median

execution time is 0.176 seconds when run on a commodity
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Fig. 12. FLIP execution time is often sub-second.

server (8-core 2.66GHz CPU2 and 16 GB of RAM). Also, 94%

of the instances are solved in less than 1 second, and 99% in

less than 4 seconds. The topology with the worst performance

is 1239, the largest one, where the 95th percentile of the

execution time is 3.38 seconds and the 99th is 15 seconds.

Those results show that FLIP readily supports many up-

date scenarios, from deployment of policy changes to online

traffic engineering (typically performed at the timescale of

few minutes [8]) to pre-computation of failure reaction. Code

optimization and more powerful hardware likely improve FLIP

runtime, and make the algorithm suitable for bigger networks.

Another important observation is that FLIP execution time

does not dominate the overall time of an update. In fact, the

total time to complete an update is the sum of computing the

operational sequence (FLIP execution time, in our case) and

applying such operations in the network. The latter is equal to

the number of update steps (see Fig. 11 for FLIP) multiplied

by the time to apply the operations in each step, which in

turn depends on factors such as network latency, message

processing time at the switches, rule installation time at the

switches, reception of acknowledgements at the controller,

and possibly error recovery and retransmissions (e.g., for lost

messages). Since those factors are network-specific, it is hard

to give a general estimation of the sequence application time;

however, recent studies (e.g., [10], [35]) suggest that it is

realistically in the order of seconds per step (irrespective of

the update technique used to compute the migration plan), that

is, much more than the FLIP execution time.

VII. DISCUSSION

We now discuss FLIP limitations, and possibilities to miti-

gate them through variants of the current algorithm.

Scope. While FLIP is a general algorithm that can be used in

any network setting and update scenario, it may be an over-

sophisticated solution in some cases.

First, FLIP is not necessarily advantageous for specific

subsets of policies. For instance, more specialized and efficient

algorithms [4], [33] have been recently proposed for the

2Our FLIP implementation is single-threaded, but the used LP solver
libraries rely on parallel code

special case of updates solely admitting initial and final paths

for every flow throughout the update (strong consistency).

Second, FLIP provides the most benefits when initial and

final paths for the same flow can differ arbitrarily, as for

generic updates of enterprise, wide area (WAN) or service

provider networks (see §VI). In contrast, initial and final paths

for the same flow tend not to form cycles in data center (DC)

networks, because of the structural regularity of typical DC

topologies (like fat trees [2]). For example, the case depicted

in Fig. 1 is topologically impossible in a fat tree topology. This

tends to make replacement-only techniques always applicable,

and FLIP’s main features (like modeling and swapping of

constraints on rule replacements and additions) unnecessary.

We double-checked the limited benefits of our approach for

DC updates by running FLIP on 100 update scenarios on syn-

thetic fat tree topologies. In our experiments, we significantly

reshuffled paths assigned to traffic flows by reweighting 80%
of the links (randomly extracted), i.e., multiplying the weight

of each of those links by a value randomly extracted among

2, 5, 10, or 25. In all those experiments, FLIP always returned

a sequence with only rule replacements.

Flexibility on update constraints and objectives. A multi-

tude of constraints and objectives may be desirable for real-

world updates. FLIP currently focuses on minimization of the

update sequence, subject to its guaranteed safety.

Nevertheless, by internally relying on LPs, FLIP readily

supports several customizations of update constraints and

objectives. For example, different weights can be assigned to

LP constraints in order to privilege early update of certain

switches over others, e.g., depending on their operational

importance (volumes of carried traffic) or reactivity [10].

FLIP can also be extended to provide additional flexibility.

By tweaking constraint extraction and swapping procedures,

it can be customized to support higher-level preferences on

the returned update sequences. For example, we can forbid

rule additions on specific nodes by never generating matching

constraints on those nodes. Similarly, we can avoid adding

rules to prevent specific policy violations (e.g., enforcing low

latency paths) by never swapping ordering constraints for such

policies with any matching constraint.

Time complexity. FLIP includes sub-functions whose com-

plexity is not polynomial with respect to the size of the input.

In particular, the constraint extraction procedure sometimes

requires to enumerate paths between sets of nodes (see Ta-

ble II). Also, in the swapping phase, FLIP computes minimal

sets of LP constraints that cannot be satisfied together, which

is a computationally hard problem [5].

Our evaluation on Rocketfuel topologies (§VI) shows that

worst-case time complexity tends not to be a problem for rela-

tively sparse topologies like WANs (see Fig. 12). Nevertheless,

potential time inefficiency may become more critical for real-

time updates (e.g., reaction to failures). Also, it can lead to

limited practicality in very dense topologies, like data center

ones (which however are not the settings where FLIP is mostly

useful, see above): While the median execution time has been

91ms in our DC experiments, FLIP constraint extraction took

several minutes in a few cases, because nested loops induced
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many dependencies between loop constraints.

Whenever time efficiency is critical, slight algorithmic vari-

ations (e.g., based on domain knowledge) can improve FLIP

performance. For instance, we can cut down the time needed

to deal with loop-constraint dependencies by discovering

those dependencies at runtime (when a constraint swap is

needed), rather than beforehand. This works especially well

for data-center networks, where constraints are rarely or never

swapped (see above). Additionally, we can trade optimality

and flexibility for shorter execution time. For example, we

could internally replace LPs with dependency graphs, having

one node per rule replacement and one edge per constraint

between replacements. We would then extract a sequence by

using a topological sorting algorithm instead of an LP solver.

The dependency graph model would enable us to replace the

expensive IIS procedure with a polynomial-time visit on the

graph where we check for a single loop. This performance

gain would however come at the cost of (i) potential sub-

optimality of the solution returned by the topological sorting

algorithm, e.g., in terms of sequence length; (ii) less flexibility

with respect to custom constraints and objectives (see previous

discussion); and (iii) impossibility to guarantee that the set of

infeasible constraints is minimal, which may eventually lead to

swap more constraints. A full investigation of those variations

is left for future work.

VIII. CONCLUSIONS

In this paper, we studied how to achieve safe, efficient and

robust updates of SDN networks, that preserve both forwarding

correctness and input policies. We unveiled the power of com-

bining rule replacements and additions, demonstrating how

such combinations can overcome the limitations of existing

approaches. Also, we showed how to systematically exploit

this power. We presented FLIP, an algorithm that interleaves

rule replacements and additions to create safe operational

sequences. Our extensive evaluation shows the entity of the

gain achieved by FLIP with respect to previous approaches. In

our WAN experiments, FLIP is 90% more efficient than two-

phase commit techniques in terms of memory overhead, and it

supports 90% more update scenarios than ordered replacement

ones. Our experiments also show that FLIP quickly computes

updates terminating in a very limited number of steps.

The model that FLIP uses to reason about combinations of

rule replacement and additions makes FLIP extensible. For

instance, FLIP can easily support domain-specific constraints

such as memory restrictions on specific switches. We success-

fully tested one of such cases, in which we prevented any

rule addition on a specific switch by manually injecting an

additional constraint to FLIP’s model.
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