
Providing Reliable FIB Update Acknowledgments in SDN

EPFL Technical Report EPFL-REPORT-201823

Maciej Kuźniar
EPFL

maciej.kuzniar@epfl.ch

Peter Perešíni
EPFL

peter.peresini@epfl.ch

Dejan Kostić
KTH Royal Institute of

Technology
dmk@kth.se

ABSTRACT
In this paper, we first show that transient, but grave prob-
lems such as violations of security policies can occur with
real switches even when using consistent updates to Soft-
ware Defined Networks. Next, we present techniques that
are effective in ameliorating this problem. Our key insight is
in creating a transparent layer that relies on control and data
plane measurements to confirm rule updates only when the
rule is visible in the data plane.

1. INTRODUCTION
Software Defined Networks (SDNs) enable flexible net-

work configuration by allowing a centralized controller
to manipulate forwarding rules in switch flow tables.
This network update process is complicated and there
are many approaches that guarantee some correctness
properties [3, 7, 8, 10]. These all split an update into
many stages, and rely on knowing when a particular
rule modification was applied at the switch(es) before
issuing further modifications. This necessitates positive
acknowledgments confirming rule modifications.

Unfortunately, in OpenFlow, currently the most pop-
ular SDN protocol, there is no mechanism with a sole
purpose of acknowledging rule modifications. Instead,
there exists a Barrier command with a more general
functionality.1 However, older studies [11] as well as our
recent measurements [6] show that the current Open-
Flow switches do not satisfy the specification in this
crucial for correctness aspect. This may lead to tran-
sient but grave network problems such as security vio-
lations, broken bandwidth guarantees, or black holes –
an example of the first is depicted in Figure 1.

To demonstrate the magnitude of the problem, we
prepare a small end-to-end test2. Despite using consis-

1According to the specification, after receiving a barrier
request, the switch has to finish processing all previously-
received messages before executing any messages after the
barrier request. When the processing is complete, the switch
must send a barrier reply message [1].
2We set up a network in a triangle topology with the hard-
ware switch S2 and two software switches S1 and S3 (Fig-
ure 2a). We preinstall paths for 300 IP flows between hosts
H1 and H2 going through switches S1 and S3. Then, we

S1 S2

FIREWALL

Switch B rules:
Y: 10.0.0.1 -> S3
Z: 10.0.0.1 & http -> FIREWALL

Switch A rules:

X: 10.0.0.1 -> S2

Time

Update plan: X after Y, X after Z

Control plane
messages:

Data plane
updates:

XY Z

X-modY-mod

S3

X-ackY-ack Z-ack

Z-mod

for this time http traffic is NOT
going through a FIREWALL

Update execution

Figure 1: If switch B does not report data plane up-
dates correctly, the theoretically safe update that adds
rules for trusted and untrusted traffic from the same
host turns into a transient security hole.

S1 S3

S2

PATH
MIGRATION

(a)

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3
%

 o
f fl

ow
s

Broken time [s]

Measurement
precision 4ms

With working acks With OF Barriers

(b)

Figure 2: Consistent network update using a hardware
switch. Despite theoretical guarantees, for most flows
switch S1 gets updated before S2 and the network drops
packets for up to 290 ms.

tent updates, some flows drop packets for an extended
period of time (Fig. 2b). A detailed analysis shows that
the switch sends the barrier reply up to 290 ms before
the rule modification becomes visible to data plane traf-
fic. Other switch models not only reply to barriers too
early, but also reorder rule updates across barriers [6].

The consequences of this observation have great im-
pact –even thought provably correct in theory, none of
the consistent network update techniques work in prac-
tice with buggy switches, and all systems that build upon
these techniques are unsafe as well. If the issues that
we bring up here are not addressed (e.g., by adopting
one of our schemes) the SDN deployments that are in-

perform an update that modifies the paths to S1-S2-S3 in a
consistent manner, such that a given packet can follow the
old rules only or the new rules only [10]. We repeat the
experiment five times to verify the results.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148007141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

creasingly taking place in enterprises are in jeopardy.
While an incorrect barrier implementation may be

just a temporary problem and not a fundamental limita-
tion (one of the tested switches does implement barriers
correctly), we see three main reasons why it should be
immediately addressed. First, there are many solutions
that rely on barriers and it cannot be expected that all
switches in a network will correctly function. Second,
even after five major revisions the OpenFlow specifica-
tion is unclear – it does not explicitly state that the
commands must be applied in the data plane, instead
it may be understood that the barrier enforces control
plane-ordering only. This in turn means that vendors
will have no incentive to provide data plane-level confir-
mations, and therefore the problem might not disappear
in future switch generations. Finally, we argue that con-
trollers need acknowledgments of each rule installation,
rather than only high level barriers [9]. Therefore, we go
one step further than just fixing barriers, and the solu-
tions we propose provide such fine grained rule update
acknowledgments. Providing this functionality entails a
few challenges: i) handling heterogeneous switches, ii)
dealing with the variable delay in installing rules in the
data plane, iii) ensuring low overhead.

In this work, we introduce a transparent layer below
an SDN controller that provides reliable acknowledg-
ments for rule modifications. In particular, when using
our scheme, the controller can never receive an acknowl-
edgment before a corresponding rule is installed in the
data plane. Our contributions include proposing various
methods, including data plane probing schemes, that
achieve the aforementioned goal depending on switch
capabilities. The effect of applying one of these tech-
niques is visible in Figure 2b: no packets get dropped.
Moreover, we explain how, at the cost of a higher over-
head, such a layer provides barrier-like guarantees to the
controller working with switches that do not implement
barriers correctly.

2. SYSTEM OVERVIEW
We have two main requirements in mind when design-

ing our system called RUM (Rule Update Monitoring).
First, it needs to work with existing switches and take
into account their capabilities and limitations. Second,
the system should provide reliable barrier commands
in a backward-compatible way without requiring any
modifications to the existing controllers and switches.
However, it should allow the RUM-aware controllers to
benefit from fine grained acknowledgments.
Acknowledging rule modifications. The first goal
of the system is to provide reliable rule modification ac-
knowledgments to the OpenFlow-speaking controllers.
We design RUM as a transparent layer between the
switches and the controller that intercepts and modifies
the communication between them similarly to FlowVi-

sor [12] or VeriFlow [5]. In contrast with these systems,
RUM plays a more active role in the interception, as it
can buffer, rate-limit, remove or add messages. To allow
easy deployment and transparency for controllers that
are not designed to work with the fine grained acknowl-
edgments, RUM adapts existing OpenFlow messages to
convey successful modifications (such notifications are
not available in OpenFlow). Depending on the required
precision and available switch properties, the techniques
(Section 3) rely only on the control plane communica-
tion with the tested switch, or may install additional
rules and involve the neighboring switches.
Providing reliable barriers. To provide reliable bar-
riers, RUM intercepts all barrier requests and replies.
After capturing a barrier request, RUM holds off send-
ing the corresponding barrier reply and following mes-
sages from the switch until it can ensure that the switch
completed all pending operations. An ability to cor-
rectly acknowledge commands issued to the switch is
therefore the key to reliable barriers. Additionally, when
working with switches that reorder modifications across
barriers, RUM buffers all commands that the controller
sends after the last unconfirmed barrier. It releases
them to the switch after acknowledging the barrier. The
barrier layer uses standard OpenFlow barrier commands
and is therefore transparent to any controller.

3. DATA PLANE ACKNOWLEDGMENTS
RUM aims to acknowledge rule modifications as soon

as the new rule is active in a switch data plane, but
not sooner. Because different switches have different
limitations and capabilities, we discuss several possible
solutions to the problem at hand.

3.1 Control-plane only techniques
The first class of techniques uses control plane infor-

mation only and requires modeling the switch behavior.
Using OpenFlow barrier commands. Relying on
barrier messages is a natural way to receive acknowl-
edgments in OpenFlow, therefore, we present it as a
baseline. A switch must send a barrier reply message
only after it finishes processing all previous commands.
However, our measurements show that some switches
respond to a barrier immediately, before the modifica-
tions were applied to the data plane, and as a result the
data plane is often between 100 and 300 ms behind what
may be assumed based on barrier replies [6]. Therefore,
barriers can not be trusted and should not be used as
rule update confirmations. In the rest of this section we
introduce techniques that still rely on the barriers, but
take into account the described issues.
Delaying barrier acknowledgments. The first tech-
nique relies on experiments prior to deployment. If the
maximum time between the barrier reply and the rule
modification being applied is bounded and can be mea-

2

sured, RUM waits for this time after receiving a reply
before confirming earlier modifications.

The main drawback of this method is that it requires
precise delay measurements or overestimation. We ob-
serve that in practice the delay depends on many, of-
ten difficult to predict factors and therefore providing
strong guarantees is difficult [6]. For example, if the
data plane is typically delayed by up to 100 ms, but
there are cases of a 300-ms delay, one needs to always
wait for 300 ms. Even then, in hard to predict corner
cases, the delay may reach several seconds, which is im-
practical to use as the upper bound. Therefore, waiting
for a timeout after each barrier has a negative impact
on update performance and rule modification rate.
Adaptive delay. Adaptive timeout improves the per-
formance of the previous technique, but requires even
more detailed measurements to develop a precise switch
model. Based on such models and knowing the rate at
which a controller issues modification commands, RUM
estimates when a particular rule modification will take
place in the switch. Thus, the timeout is adjusted ac-
cordingly. However, this method requires building de-
tailed switch performance models, which is difficult [6].

3.2 Data plane probes
The basic idea of data plane probes is to inject spe-

cial packets into the network and use these packets, as
well as special probing rules, to monitor which rules
are active in the data plane. There are two aspects
of OpenFlow barrier commands: (i) a switch should re-
spond with a barrier reply after it processed all previous
commands, and (ii) a switch should never reorder com-
mands separated by barriers. In practice some switches
violate either the first of these properties (because they
process commands in the control plane, but push the
rules to the data plane later), or both. The two tech-
niques presented in this section are design to work cor-
rectly with such two classes of switches.

3.2.1 Sequential probing
If a switch violates only the first barrier property (re-

sponds to barriers too early) two modifications sepa-
rated by a barrier are never reordered in the data plane.
Therefore, a strawman solution follows each real rule
modification with a barrier and an additional rule in-
stallation for probing. By the time the probing rule
is determined to be active (i.e., it forwards a probing
packet), the original rule must be in place as well.

Implementation-wise, the probing rule matches only
the specially selected probe packets and has a high pri-
ority so that no other rule can override it. The probing
rule sends the matching packets to the controller. RUM
then repetitively injects probe packets (using a Pack-
etOut message) into the switch forwarding pipeline and
when the probe arrives back to RUM, it means that the

PacketOut:
pkt=probe

match(probe) -> fwd(ctrl)match(probe) -> fwd(C)

A B C

RUM

Figure 3: Probing the data plane at switch B. The con-
troller (RUM) sends a probe packet from switch A to
switch B. If B installed the probing rule, it forwards the
packet to switch C which sends it back to the controller.

probe rule is installed and therefore the corresponding
real rule is active as well. Finally, after probing rule is
confirmed, it is no longer needed and can be removed.

There are, however, technical details of the strawman
solution that make it impractical and require improve-
ments. First, from the correctness perspective, it as-
sumes that the PacketOut processing and probe rule
matching are performed in hardware. Unfortunately,
this might not be the case – rules sending packets to
the controller are often kept in software and may start
forwarding traffic before the previous hardware rules are
pushed into the data plane. As such, we modify our so-
lution to use hardware-only probing rules – we use two
additional switches3 as depicted in Figure 3.

Second, inserting one probe rule after each normal
rule is prohibitively expensive. Instead, we notice that
a single probe rule installed after a batch of several rule
modifications acknowledges the whole batch at the same
time. This way the probing overhead gets amortized
over more rules at the expense of a longer acknowledg-
ment delay. Moreover, the probe rules can be optimized
even more – instead of installing a new probe rule for
each batch and then deleting it, we use a single prob-
ing rule which rewrites a particular field in the packet
header (e.g., ToS or VLAN) with a version number of
this probing rule. Then, we just update the rule to write
the new version number to the probe packet header.
RUM recognizes the last version of probe rule based on
the probing packet headers it receives back.
Multi-switch deployment. The approach described
so far requires setting up different probe rules matching
different packets for each probed switch, because oth-
erwise forwarding the probe packet on the next switch
will interfere with probe collection on that switch. We
overcome this problem by choosing two header fields
H1 and H2 to be used by probing. These can be any
rewritable fields in a packet header. Additionally, we
reserve two special values of H1; we call these values
preprobe and postprobe. In our solution, all switches
install a high priority probe-catch rule that sends all
packets with H1 == postprobe to the controller. We
also install one probing rule per each switch. It matches
packets with H1 == preprobe and rewriting them to

3In principle, switches A and C can be the same switch. We
keep them separated for the presentation purposes.

3

A B C

RUM

PacketOut:
H1=pre

H2=undef

match(H1=post,H2=*)
-> fwd(ctrl)

match(H1=pre,H2=*) ->
set(H1=post,H2=ver),fwd(C)

extract H2 to identify current
version of probe rule in data plane

Figure 4: Network-wide probing solution. There are
two rules preinstalled at each switch and only the ver-
sion of the probing rule is updated over time.

post-probes while also storing the per-switch unique
probe rule version in H2 (H1 ← postprobe, H2 ← ver).
To do the probing, RUM sends a probe packet with
H1 = preprobe inside a PacketOut message through
switch A towards switch B as depicted in Figure 4.

This technique comes with two sources of overhead.
First, a switch needs to install the probe rules which
reduces its usable rule update rate. Further, the probe
rules are probed by data plane packets, which affects the
neighboring switches’ control planes though the Pack-
etOut and PacketIn messages. Thus, there is a trade-off
between notification delay and the usable update rate.

3.2.2 General probing
The final strategy addresses the problem of switches

that reorder rule modifications despite the use of bar-
riers. In such a case, confirming that the last update
took place is insufficient to acknowledge all previous
updates. Specifically, it means that we cannot rely on
probe rules described previously. Instead RUM needs to
confirm each modification separately, where a modified
rule may match an arbitrary set of header fields.

In this strategy, we need to reserve a header field H
that is not used in the network, meaning that all normal
rules have it wildcarded and no packet has it set to a
value used by RUM (e.g., VLAN, MPLS or ToS depend-
ing on the deployment). At the beginning, each switch i
gets assigned a unique value Si of field H. Each switch
i then installs a high priority probe-catching rule that
sends all packets that match on H == Si to the con-
troller. Figure 5 shows a scenario where RUM confirms
the installation of the rule that matches packets with an
IP source Rs and IP destination Rd and forwards them
to switch C. Because the action of the probed rule is to
send the traffic to switch C, we use switch C with its
probe-catch rule matching on H == Sc to receive the
probes. To create the probe packet, RUM computes an
intersection of the probed rule on switch B and probe-
catch rule on switch C. In our example, the probe packet
has IPsrc = Rs, IPdst = Rd, H = Sc and arbitrary re-
maining header fields. This probe gets injected through
any neighbor of switch B (e.g., switch A). As soon as
the tested rule gets installed, the controller observes the
probe packet coming from switch C inside a PacketIn
message. The same method can detect rule deletions
(probes stop arriving at the controller or arrive from a

PacketOut:
IPsrc=Rs,IPdst=Rd

H=Sc

match(IPsrc=*,IPdst=*,H=Sc)
-> fwd(ctrl)

match(IPsrc=Rs,IPdst=Rd,H=*)
-> fwd(C)

A B C

RUM

Figure 5: Probing for a rule matching IP packets with
source Rs and destination Rd. A probe packet matches
the tested rule at B and a send-to-controller rule at C.

different switch if there are other low priority rules that
match the same packets but have different actions) or
rule modifications (probes reach the controller from a
different neighbor of B or have header fields modified to
new values in case of header rewriting rules).
Overlapping rules. The previous, simplified descrip-
tion does not take into account the fact that there is
more than one rule installed at a given switch. When
creating a probe packet for a particular rule, RUM needs
to take into account other rules such that the probe does
not get forwarded by any other, already installed rule.
While in a general case finding a probing packet that
hits the tested rule is NP, others [4, 16] show that in
practice the problem can be solved quickly for real for-
warding tables. If no suitable probe exists, RUM falls
back to one of the control plane-based techniques. For
example, if the probed rule is fully covered by higher pri-
ority rules, or if it covers other, already installed lower
priority rules that have exactly the same actions, prob-
ing cannot reveal when the rule got installed.
Reducing the number of switch-specific values.
This technique relies on using a header field and values
that are unused by the live traffic in the network. Be-
cause there may be few such fields and values, it is essen-
tial to reduce the number of required values. However,
to prevent the tested switch from sending the probe di-
rectly to the controller, each two adjacent switches need
to have different identifiers. Thus, instead of using a
network-wide unique value of Si for each switch i, one
can solve an instance of the vertex coloring problem for
which there are well known heuristics [14].

4. PROTOTYPE
We implement a RUM prototype that works as a TCP

proxy between the switches and the controller. The
switches connect to a proxy as if it were a controller,
and the proxy then connects to a real controller using
multiple connections, impersonating the switches. This
design allows us to modularly compose RUM as a chain
of proxies to add functionality and freely replace com-
ponents. For example, a barrier layer built on top of the
acknowledgment layer is just another proxy. We imple-
ment the proxies using the POX controller platform.

In the current implementation we assume IP-only traf-
fic and rely on the ToS field for probing. Because there
are only 64 ToS values, we need to periodicaly recy-

4

cle them in longer experiments. Moreover, we assume
that the rules do not overlap,4 and therefore, selecting
a probing packet degrades to using the same source and
destination addresses as in the rule’s match.

While the OpenFlow specification lacks messages to
confirm that a rule modification was successfully ap-
plied, it defines error messages used when something
goes wrong. We reuse an error message with a newly de-
fined (unused) error code for positive acknowledgments.
Alternatively, one could potentially add vendor-specific
messages to the protocol.

Finally, the hardware switch we use does not support
priorities but takes the rule installation order to define
the rule importance. Therefore, we carefully place the
low priority rules early, and make sure that other rules
do not hide the high priority ones.

5. EVALUATION
We evaluate RUM using the same end to end experi-

ment as presented before, and using a hardware Open-
Flow switch that incorrectly implements barrier mes-
sages.5 Further, we use low level benchmarks to analyze
the properties and trade-offs in our techniques. Admit-
tedly, these are just small scale experiments. However,
a large scale test would require a testbed built of hard-
ware switches because emulators that work using soft-
ware switches perform differently than the real ones.
We do not have access to such a testbed.

5.1 End to end experiment
We first show that the presented techniques solve the

dropped packets problem described in Section 1. The
setup is as in Section 1 and we send data plane traffic
at a rate of 250 packets/s per flow (75000 packets/s in
total). We use the previously described control plane-
only techniques and in Figure 6 plot the times when
the last data plane packet following the old path and
the first packet going along the updated path arrives at
the destination. The area between the two lines visually
represents the periods when packets get dropped.6

An update with barrier messages is the fastest, but
because the barrier replies are arriving too soon, rules
at switch S1 get updated before rules at switch S2 are in
place, which leads to extensive periods of packet drops
(a total of 6000-7500 packets got lost in each of multiple
runs of this experiment). The three visible steps in flow
installation times are an artifact of the way how the
switch synchronizes the data and control plane [6].

Using a 300-ms timeout solves a packet drop prob-
lem, but increases the average time it takes before a flow

4 Except a low priority drop-all and high priority probe rules
5 We do not reveal the switch name to protect its vendor.
The precise characteristics can be found in [6] (SwitchC).
6 If the delay between the two packets is lower than our
measurement precision, we plot a single line.

starts following a new path from 592 ms to 815 ms. Fi-
nally, while the 300-ms timeout is sufficient when there
are up to 300 rules in the switch flow table, it becomes
too short when the table occupation grows [6].

Based on the measurements, we set the adaptive time-
out to assume that a switch performs 200 and 250 rule
modifications per second. We see that the technique of-
fers a stable performance over time, however when flow
table occupancy increases and the assumed update rate
is overestimated (250), the acknowledgments arrive too
early and the network starts dropping packets.

Figure 7 shows the results of the same experiment but
when using the data plane probing techniques, which
guarantee no packet drops. For comparison, we plot
the result when all flow modifications are issued at once
to all the switches. It shows the shortest update dura-
tion one can get, limited only by the slowest switch
update rate, but also offers no theoretical consistency
guarantees. The sequential probing technique requires
additional rule modifications (we modify a probing rule
after every 10 real modifications). This fact is notice-
able, because the data plane synchronization steps [6]
are more frequent which hurts the update performance.
On the other hand, the general probing technique does
not require additional rule updates, but only sending
and receiving data plane probes. If probing up to 30
oldest flow modifications at once, every 10 ms, the flows
get updated almost as quickly as the lower bound.

We originally send packets belonging to each of the
updated flows every 4 ms and observe no drops. To
verify that there are no transient periods shorter than 4
ms when packets are dropped, we randomly select a sin-
gle flow ten times and send traffic for the flow at 10000
packets a second. Once again we observe no drops.
Barrier Layer Performance. To validate the over-
head of a full barrier layer, we rerun the same exper-
iment with our reliable barrier layer introduced before
and sending a barrier after every 10 flow modifications.
When a switch does not reorder modifications across
barriers, the total update time and the particular curve
of flow update times is the same as for the normal se-
quential probing technique. On the other hand, if the
switch can reorder modifications and RUM needs to
buffer them to ensure correct ordering, the overhead
is big and the total update time is twice that of the
general probing technique. Understandably, this time
increases even more (up to 5 times) if the barriers are
more frequent (up to a barrier after each command).

5.2 Low level benchmarks
After observing that RUM achieves its main high level

goal - allowing for reliable network updates with con-
sistency guarantees even on unreliable switches, we an-
alyze how changing variables in each technique affects
various aspects of the update.

5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 50 100 150 200 250 300

Ti
m

e
[s

]

Flow number
timeout

adaptive 200
adaptive 250

barriers

Figure 6: Flow update times when
using control-plane only techniques.

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 50 100 150 200 250 300

Ti
m

e
[s

]

Flow number

sequential general no wait

Figure 7: Flow update times with
probing. There are no packet drops.

 0

 50

 100

 150

 200

 250

 300

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Fl
ow

 ra
nk

Delay [s]

Incorrect
behavior

barriers
adaptive 250

general
sequential

adaptive 200
timeout

Figure 8: Delay between data plane
and control plane activation.

The setup in the next two experiments is the same.
Initially, there is a single, low priority drop-all-packets
rule at the switch. Then, a controller modifies R rules in
the switch in a way that at most K modifications are un-
confirmed at any time. When a modification confirma-
tion comes, the controller issues a new update. Mean-
while, we send data plane traffic matching the modified
rules again at a rate of 250 packets/s for each rule.
Data plane delay. First, we measure when packets
matching a particular rule start arriving at the desti-
nation (data plane activation) and when the controller
receives a confirmation that the rule was installed (con-
trol plane activation). In Figure 8 we plot the delay
between the data plane and control plane activations
for various techniques for R = 300 and K = 300 (send
all rules at once). All values below zero mean incorrect
behavior and positive values cause a delay during an up-
date. Thus, the ideal behavior would be a vertical line
at x = 0. We see that, as mentioned in the introduc-
tion, barrier replies arrive even 300 ms before the rule
gets applied. Using a 300-ms timeout fixes the correct-
ness problem in this case, but is very inefficient – for the
median the update wastes 230 ms on each barrier. The
adaptive timeout technique achieves very good results,
however, it requires precise models, otherwise the delay
can fall below zero (possible inconsistencies). Finally,
both probing techniques never incur a negative delay
and, accordingly, are within 70 ms and 30 ms after the
data plane modification for 90% of modifications.
Impact of probing rules. A technique that relies on
installing probing rules to confirm that previous modi-
fications took place requires finding a balance between
the frequency of such confirmations and measurement
precision. In this experiment we issue R = 4000 mod-
ifications and vary the number of modifications after
which RUM sends a probing rule, as well as the num-
ber of allowed, unconfirmed modifications (K). Table 1
shows that the usable modification rate (rate of real
modifications, not counting probes) is proportional to
the number of rules probed at once and is usually close
to the expected rate. When the number of allowed un-
confirmed messages is low compared to the number of
rules confirmed at once, the controller does not receive

Probing frequency K = 20 K = 50 K = 100
after 1 update 51% 51% 51%
after 2 updates 64% 68% 68%
after 5 updates 74% 86% 86%
after 10 updates 76% 93% 94%
after 20 updates 74% 95% 98%

Table 1: Usable rule update rate with the sequential
probing technique (normalized to a rate with barriers).

the confirmations quickly enough to saturate the switch.
Number of probes a switch can process. Send-
ing data plane probes requires a switch to process two
types of messages. First, an injecting switch receives a
PacketOut and forwards a probe packet to the required
port. Then, the receiving switch gets the packet, en-
capsulates it in a PacketIn message, and sends it to the
controller. In the previous experiments, we used soft-
ware switches as sending and receiving switches. Here,
we instead benchmark the performance of a real hard-
ware switch. We measure the PacketOut rate by issuing
20000 PacketOut messages and observe when the cor-
responding packets arrive at the destination. Similarly,
we install a rule forwarding all traffic to the controller
and inject traffic to the switch to measure the PacketIn
rate. The rates are 7066 PacketOut/s and 3176 Pack-
etIn/s, averaged over 5 runs. Both of these values are
sufficient to allow RUM to probe the rules frequently.

6. RELATED WORK AND CONCLUSIONS
To the best of our knowledge, our work is the first to

look at the network update consistency from the prac-
tical point of view, using the real switches. There is a
large body of work that guarantees particular proper-
ties during an update [3,7,8,10,13], but they all assume
correctly-functioning switches. We show that this as-
sumption does not hold and propose a workaround, that
allows the aforementioned solutions to work correctly.

ATPG [16] is a system that determines and injects
packets that exercise all rules in a network. It is however
an end to end solution designed to work on a coarser
granularity than RUM. Its main goal is testing network
correctness in a stable state, not during an update.

Finally, there are efforts to build switch models [2,15].
This work can be help RUM to better estimate timeouts
and optimize the probing.

6

7. ACKNOWLEDGMENTS
The research leading to these results has received

funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreement 259110.

8. REFERENCES
[1] OpenFlow Switch Specification.

http://www.openflow.org/documents/

openflow-spec-v1.0.0.pdf.
[2] D. Y. Huang, K. Yocum, and A. C. Snoeren.

High-fidelity switch models for software-defined
network emulation. In HotSDN, 2013.

[3] N. P. Katta, J. Rexford, and D. Walker.
Incremental Consistent Updates. In HotSDN,
2013.

[4] P. Kazemian, G. Varghese, and N. McKeown.
Header Space Analysis: Static Checking for
Networks. In NSDI, 2012.

[5] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and
P. B. Godfrey. VeriFlow: Verifying Network-Wide
Invariants in Real Time. In NSDI, 2013.

[6] M. Kuźniar, P. Pereš́ıni, and D. Kostić. What you
need to know about SDN control and data planes.
In Under submission to IMC 2014. Available as a
Technical report at http://goo.gl/kZXEGN.

[7] H. H. Liu, X. Wu, M. Zhang, L. Yuan,
R. Wattenhofer, and D. A. Maltz. zUpdate :
Updating Data Center Networks with Zero Loss.
In SIGCOMM, 2013.

[8] R. Mahajan and R. Wattenhofer. On Consistent
Updates in Software Defined Networks. In
HotNets, 2013.

[9] P. Pereš́ıni, M. Kuźniar, M. Canini, and
D. Kostić. OpenFlow Needs You! A Call for a
Discussion about a Cleaner OpenFlow API. In
EWSDN. IEEE, 2013.

[10] M. Reitblatt, N. Foster, J. Rexford,
C. Schlesinger, and D. Walker. Abstractions for
Network Update. In SIGCOMM, 2012.

[11] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and
A. W. Moore. Oflops: An open framework for
openflow switch evaluation. In PAM, 2012.

[12] R. Sherwood, G. Gibb, K.-K. Yap,
G. Appenzeller, M. Casado, N. McKeown, and
G. Parulkar. Can the Production Network Be the
Testbed? In OSDI, 2010.

[13] S. Vissicchio, L. Vanbever, L. Cittadini, G. Xie,
and O. Bonaventure. Safe Updates of Hybrid SDN
Networks. Technical report, UCL, 2013.

[14] D. J. Welsh and M. B. Powell. An upper bound
for the chromatic number of a graph and its
application to timetabling problems. The
Computer Journal, 10(1), 1967.

[15] M. Yu, A. Wundsam, and M. Raju. NOSIX: A

Lightweight Portability Layer for the SDN OS.
ACM SIGCOMM Computer Communication
Review, 44(2), 2014.

[16] H. Zeng, P. Kazemian, G. Varghese, and
N. McKeown. Automatic Test Packet Generation.
In CoNEXT, 2012.

7

http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://goo.gl/kZXEGN

	Introduction
	System Overview
	Data plane acknowledgments
	Control-plane only techniques
	Data plane probes
	Sequential probing
	General probing

	Prototype
	Evaluation
	End to end experiment
	Low level benchmarks

	Related Work and conclusions
	Acknowledgments
	References

