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ABSTRACT
Knowing if and when a particular forwarding rule has been
installed in a switch is essential for understanding network
behavior. This knowledge is missing in current Software De-
fined Networks, where the controller needs to ensure correct
functioning of the network during forwarding state updates.
Studies show that an absolute certainty about a rule’s pres-
ence can be achieved only by exercising it in the data plane.
In this work we describe ProboScope, a transparent layer at
the controller that relies on carefully constructed data plane
packets to provide reliable acknowledgments of rule instal-
lations. Driven by the theoretical underpinnings of the way
probing rules and packets are constructed, we devise tech-
niques that can generate probe packets in a variety of sce-
narios, in parallel with simultaneous rule installations, all
while paying attention to the already installed rules. Our
evaluation shows ProboScope’s effectiveness and low over-
head. Moreover, it demonstrates two important findings: (i)
ProboScope can turn a buggy switch into a corrected one,
and perhaps surprisingly (ii) ProboScope can increase the
performance of a switch that delays barrier responses in an
effort to ensure correct behavior.

1. INTRODUCTION
Software De�ned Networking (SDN) owes its ever-

increasing acceptance to the simple, �exible concept:
allowing control over the installation of forwarding rules
in the network elements' �ow tables. Software running
in a logically centralized controller uses this functional-
ity to make it easy to extend and manage the network.
Arguably, reliable SDN forwarding rule installation is
the key building block of today's networks.
As the SDNs mature, researchers are paying more

attention to the critical transitions from one network-
wide forwarding state to another via a so-called network
update. All these approaches take as a given that the
forwarding rules are reliably installed. The OpenFlow
speci�cation does not provide positive acknowledgments
on a per-rule basis (it was even proposed and rejected1).
As such, the developers must resort to using the Bar-

1https://mailman.stanford.edu/pipermail/
openflow-discuss/2014-May/005352.html
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Figure 1: A theoretically consistent network update
exhibits prolonged packet drops on a real OpenFlow
switch. ProboScope eliminates this problem.

rier command to accomplish this task.2 As we have
pointed out [18], this is not the intended application of
the Barrier command. To make things worse, several
studies [15, 20] show that switches do not fully respect
barriers � a few hundred milliseconds can elapse be-
tween the barrier response being sent to the controller,
and time the rule is physically installed in the data plane
(also visible in Figure 1). As a result, serious violations
of network policies are possible and they can jeopar-
dize SDN acceptance. Moreover, the problem seems to
be persistent � although it was �rst reported 4 years
ago [20], it is still present in modern-day switches [7,12].
Therefore, we expect it to exist in the future as well. Fi-
nally, even if the next-generation switches provide reli-
able update acknowledgments, the existing deployments
will likely not replace all devices at once � they are
likely to use a mix of new and old (e.g., faulty) switches.
We argue that the critical part in ensuring the success

of ongoing and future SDN deployments is in providing
a simple primitive: reliable con�rmations of forwarding
rule installation in a switch data plane. Given all the
possible issues that can arise anywhere on the path from
the software running in the controller, via the switch
control plane, down to the switch data plane, the only
certain way of ensuring that a forwarding rule had in-
deed been installed is to exercise that rule in the data
plane of a switch. Our work on RUM [15] outlines the
vision for building such a mechanism, and demonstrates

2 In OpenFlow 1.4, it is also possible to use Bundles, but
they share many limitations with Barriers.
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Figure 2: For two overlapping rules with the same for-
warding actions, the high-priority (red stripes) rule can
be distinguished from a low-priority (blue waves) one
only if the probe belongs to A but not B. This distinc-
tion is not needed if the forwarding actions are di�erent.

how to provide correct Barrier behavior from otherwise
buggy OpenFlow network switches. In RUM, a probe
packet needs to be injected toward the switch with the
intention of matching on the installed (i.e., �probed�)
rule, and captured elsewhere in the network.
An integral part of such data plane testing is the task

of generating probe packets. The system described in
this paper, ProboScope, goes beyond the existing work
in that it dissects and solves the problem of probe packet
generation. We make several steps, starting with pro-
viding the theoretical underpinnings of the way probing
rules and packets are constructed. Next, we devise tech-
niques that can generate probe packets in a variety of
scenarios and in parallel with simultaneous rule instal-
lations, while paying attention to the already installed
rules. To generate the probe packet itself, ProboScope
leverages the reconstructed switch �ow table and the
probed rule to formulate the constraints that a probe
needs to satisfy, and encodes them as an SMT/SAT
problem. Finally, we minimize the network-wide over-
head (i.e., extra header �elds required for probing and
additional, probe �catching� rules) by formulating and
solving a vertex graph coloring problem.
Generating probe packets is challenging for a

number of reasons. First, it needs to be quick and
e�cient because the controller may wait for the rule
modi�cation to complete, for example during a multi-
stage network update. Moreover, the problem is com-
putationally intractable (NP-hard) � we prove that it
maps to the satis�ability problem (SAT) in our techni-
cal report [14]. The reason for this level of hardness is
because the probe packet needs to match the installed
rule and avoid certain other rules present in a switch.
Figure 2 depicts an example of overlapping rules that
needs to be carefully handled when rule actions are iden-
tical. This case routinely occurs with Access Control
rules, for which the common action is to drop packets.
Second, a big challenge is dealing with the multitude
of rules: drop rules, rule deletions, multicasting, equal-
cost multi-path routing (ECMP) etc. that all have to be
carefully dealt with. Third, minimizing the number of
rules that are required for network-wide probing among
multiple switches is another challenge by itself. Solving
this problem is important as we need to minimize the

overhead of the extra rules, as well as minimize any re-
quirements placed on the content in the packet headers.
To the best of our knowledge, ProboScope is the only

mechanism for ascertaining rule installation in the data
plane. ATPG [27] pre-computes the test packets with
one of the goals being exercising all reachable rules,
where our goal is to do rule installation probing on the
�y. Moreover, ATPG alone is not su�cient to generate
probes that distinguish the probed rule from underly-
ing lower-priority rules. For example, in the case of two
partially overlapping rules with the same action, one of
the probes generated by ATPG might belong to the in-
tersection of the rules (as shown in Figure 2) � such a
probe does not distinguish whether one or both rules are
installed. In contrast, ProboScope addresses this prob-
lem. Although VeriFlow [10] performs online checking
of policy compliance strictly in the control plane, one
could use its core engine to build functionality similar
to ProboScope. Besides requiring many solutions de-
scribed in this paper, a VeriFlow-based approach (that
works well for traditional forwarding rules) can be sig-
ni�cantly slower when rule sets match on various com-
binations of �elds.
The key contributions of this paper are as follows:

1. We formulate the theoretical underpinnings of the
way probing rules and packets are constructed. We
handle unicast, multicast, ECMP, drop rules, rule
deletions and modi�cations. When necessary, we pro-
vide proofs that our theoretical foundation is correct.

2. We go beyond the state-of-the-art by providing more
detail on how to translate the abstracted view into
real packets. In addition, we optimize the way of
converting the constraints into a form presented to
the o�-the-shelf SMT/SAT solvers.

3. We minimize the number of rules needed by Probo-
Scope by formulating and solving a graph vertex col-
oring problem. Our study shows that only several
extra rules per switch su�ce in most topologies.

4. Our evaluation demonstrates the ProboScope's e�-
ciency and its low overhead. On FatTree topologies
with a few tens of switches, ProboScope introduces
only a 7 ms delay per path during an update. In
more detail, ProboScope takes between 1.44 and 4.13
milliseconds on average to generate a probe packet
on two datasets. As a point of reference, Probo-
Scope is 1.76x to 44x times faster on average than
VeriFlow's core engine on datasets with overlapping
rules. Moreover, we show the bene�ts of using Probo-
Scope with fast but incorrect switches (e.g., no packet
drops when using ProboScope vs. thousands of pack-
ets dropped by a commercial switch, Figure 1), as
well as those that are slow but correctly-behaving.

Probes that con�rm rule installation enable building
systems that provide higher level functionality, such as:
Correct and timely Barrier responses. The barrier
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Flow Table:
1. (10.0.0.1, *) -> A ?
2. (*,*) -> B

Probe generation

Probe injection

Probe collection

Q: Is rule 1 in dataplane?

P=(src=10.0.0.1,
     dst=10.0.0.2)

A

B

Yes!

No

P

Figure 3: Overview of data-plane rule checking

command can now be correctly implemented. Our short
paper [15] outlines how to do that for switches that re-
spond too soon, or even reorder OpenFlow commands
beyond the barrier boundary. Moreover, ProboScope
makes it possible to avoid abusing the barrier command,
and obtain acknowledgments of rule installations.
Regression and interoperability testing. ProboScope

is also useful for systematically testing rule installation.
We have shown in our earlier work [13] that switches
might respond in unexpected ways to commands that
contain parameters that are underspeci�ed (e.g., mes-
sage with a VLAN ID larger than 4095). By using Pro-
boScope, a systematic testing tool can try to ensure
that the switch installed a tested rule and that it be-
haves as expected. Additionally, while running in a real
network, our system can also detect the aforementioned
problems with deployed switches.

2. PROBOSCOPE OVERVIEW
In this section we provide an overview of Probo-

Scope's operation. ProboScope provides the basic
functionality of knowing when a forwarding rule has
been installed, modi�ed, or deleted in the data plane
of a switch. The treatment of di�erent cases is not the
same, and we discuss it later on in the paper.
ProboScope is positioned as a layer (proxy) between

the OpenFlow controller and the network elements
(switches). It receives OpenFlow commands from the
controller and passes them along to the switches, or
bu�ers them for a while. Also, it receives responses
to the commands and other messages originating from
the switches, and forwards them to the controller. We
allow ProboScope to modify the messages it intercepts,
as well as to create new messages. This introspective
nature of the system allows it to reconstruct a �ow
table at each switch, similarly to other systems [10,21].
Figure 3 shows the core mechanism that the system

uses to check for successful rule modi�cation. Pro-
boScope uses data plane probing as the ultimate test
for a rule's presence in the switch forwarding table.
Probing involves instructing an �upstream� switch to
inject a packet toward the switch that is being probed.
The �downstream� switch has a special catching rule in-
stalled which directs the switch to send the probe packet
back to the proxy. The receipt of the correctly modi�ed

Flow table rules

Constraints
1. match(R1)
2. ¬match(R2)
3. ….

SMT/SAT 
solver

Probe 
packet

Packet 
crafting

Figure 4: Steps involved in probe generation. Multi-
ple non-overlapping rules can generate probes indepen-
dently and in parallel.

probe packet, coming from the appropriate switch, con-
�rms a rule installation and triggers an acknowledgment
to the controller.
Before we let ProboScope to check for rule installa-

tions, we con�gure the network by assigning and in-
stalling the catching rules. To reliably separate pro-
duction and probing tra�c, the catching rule needs to
match on a value of a header �eld that is otherwise un-
used by rules in the network. The probe packet then has
this particular �eld set to a value chosen by ProboScope;
this value cannot be used by the production tra�c. In
a network that requires probing for rules at multiple
switches, several such catching rules are needed. It is
therefore important to minimize the number of extra
catching rules that have to be installed. We formulate
this problem as a graph vertex coloring problem and
solve it in Section 3.7.
Figure 4 outlines how the probe packets are created.

To reason about the probe packet, ProboScope uses an
abstract packet view [10, 27], structured as a collection
of header �elds. ProboScope leverages its knowledge
of the �ow table at the switch to create a set of con-
straints that a probe packet should satisfy. Next, our
system converts the constraints into a form that is un-
derstood by an o�-the-shelf satis�ability (SMT/SAT)
solver. Finally, ProboScope applies a packet generation
library to the output of the solver to create the real
probe packet.
While we use OpenFlow 1.0 as a reference when de-

scribing and evaluating the system, its usefulness is not
limited to this protocol. Presented techniques are more
general and apply to other types of matches and actions
(e.g., multiple tables, action groups, ECMP).

3. GENERATING PROBE PACKETS

3.1 Probing a single forwarding rule
The presence of a given rule on a switch can be

tested if and only if there exists a packet header that
gets transformed by a switch di�erently depending on
whether the probed rule is installed. Based on this
observation we formulate four constraints (summarized
in Table 1) that the probe packet has to satisfy.
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i) Matches(probe,Rprobed)
ii) Matches(probe,Rcatch)
iii) ∀R ∈ HigherPrio(Rules,Rprobed) : ¬Matches(probe,R)
iv) ∀R ∈ LowerPrio(Rules,Rprobed) : IsHighestMatch(probe,R,Rules)⇒ DiffOutcome(probe,Rprobed, R)

where
IsHighestMatch(pkt,R,Rules) :=Matches(pkt,R) ∧

(
∀S ∈ HigherPrio(Rules,R) : ¬Matches(pkt, S)

)
Table 1: Summary of constraints that probe packets needs to satisfy when probing for rule Rprobed.

Constraint 1: To probe for a presence of rule Rprobed,
probe packet P needs to match the given rule.
Only packets that match a rule can be a�ected by this

rule. Therefore, the match of rule Rprobed has to cover
the header of packet P which de�nes the �rst constraint.

Constraint 2: The probe packet P has to match a
probe catching rule at the downstream switch.3

ProboScope decides if a rule is present in the data
plane based on what happens (referred to as probe out-
come) to the probe packet. To gather this information
while trying to avoid a�ecting the production tra�c, we
pre-install a special �probe-catch� rule on each neighbor-
ing switch; this catching rule redirects probe packets to
the controller and needs to have the highest priority
among all rules.

Constraint 3: The probe P cannot match any rule
with a priority higher than the probed rule priority
Rprobed. The rules installed at a switch can have
di�erent priorities and if a packet header matches mul-
tiple rules, it is processed according to the one with
the highest priority. A probe packet has to avoid all
rules with a higher priority than the priority of the
probed rule 4. Otherwise, regardless of the probed rule
being installed, the probe will always follow the higher
priority rule. Additionally, when probing for rules on
multiple switches, the switch we are generating a probe
for might also contain a probe-catch rule that needs to
be avoided by the probe � in this case we simply treat
such a rule as an ordinary high-priority rule.

Constraint 4: Assuming Constraint 3 holds, in the
absence of rule Rprobed at the switch, the probe packet
P must be processed by a lower priority rule with a dif-
ferent outcome.
Finally, even the rules with priority lower than the

probed rule Rprobed can a�ect the probe generation. For
example, if the probe matches a low priority rule that
forwards packets to the same port as Rprobed, there is
no way to determine if Rprobed is installed. Thus the
probe has to avoid any such rule. However, there is an
intricate di�erence between a packet �matching� rule R

3 We discuss the cases when the probed rule drops packets
or forwards to multiple ports in Section 3.3 and our technical
report [14].
4 According to the OpenFlow speci�cation, the behavior
when overlapping rules have the same priority is unde�ned.
Therefore, we do not consider such a situation.

and �being processed� by rule R. Notably, if we just
prevent P from matching all lower-priority rules with
the same outcome, we may fail to generate a probe even
if such a packet exists as it is illustrated by the next
example:
• Rlowest := match(srcIP=∗, dstIP=∗) → fwd(1),
i.e., default forwarding rule
• Rlower := match(srcIP=10.0.0.1, dstIP=∗) →
fwd(2), i.e., tra�c engineering diverts some �ows
• Rprobed := match(srcIP=10.0.0.1, dstIP=10.0.0.2)
→ fwd(1), i.e., override speci�c �ow, e.g., for low
latency

If the constraint prevented P from matching rule
Rlowest (the same output port as Rprobed), we would be
unable to �nd any probe that matches Rprobed. How-
ever, there exists a valid probe P := (srcIP=10.0.0.1,
dstIP=10.0.0.2) as the behavior of the switch with
and without Rprobed is di�erent (Rlower overrides rule
Rlowest for such a probe).
The provided example demonstrates that care should

be taken to properly formulate the constraint. Formally,
we start by de�ning a predicate indicating whether
packet P will be processed according to the rule R as
IsHighestMatch(P,R,OtherRules) :=Matches(P,R)
∧
(
∀S ∈ OtherRules :

(S.priority > R.priority)⇒ ¬Matches(P, S)
)

Using this, the probe P is constrained as follows: ∀L ∈
LowerPrioRules(Rprobed) :

(
IsHighestMatch(P,L)⇒

DiffOutcome(P,Rprobed, L)
)
. Here the predicate

DiffOutcome(P,Rule1, Rule2) determines whether
Rule1 is distinguishable from Rule2 by sending probe
P and observing its forwarding result. One may think
about DiffOutcome simply as a test Rule1.outport 6=
Rule2.outport, but we later expand this de�nition to
accommodate rewrite and multicast rules.
Finally, a curious reader may wonder why we do not

use the �IsHighestMatch(probe, Rprobed,
HigherPrioRules(Rprobed))�

formulation instead of Constraints 1 and 3. The answer
is that the two formulations are equivalent and we chose
the version with an easier explanation.

3.2 Probing rules with rewrites
On top of forwarding, certain rules in the network

may rewrite portions of the header before outputting
the packet. Accounting for header rewrites a�ects the
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feasibility of probe generation for some rules. Consider
a simple example containing two rules:

• Rlow := match(srcIP=∗)→ fwd(1) and
• Rhigh := match(srcIP=10.0.0.1)→ fwd(1).

It is impossible to create a probe for the high-
priority rule Rhigh because it forwards packets to the
same port as the underlying low-priority rule. How-
ever, if Rhigh is replaced by a di�erent rule Rhigh2 :=
match(srcIP=10.0.0.1)→ rewrite(ToS ← voice), fwd(1)
that marks certain tra�c with a special type of service,
we can distinguish it from Rlow based on the rewrit-
ing action. The outcome of the switch processing a
probe P := (srcIP=10.0.0.1, T oS 6= voice) unambigu-
ously determines if Rhigh2 is installed.
In general we can distinguish probes either based

on ports they appear on, or by observing the mod-
i�cations done by the rewrites. Therefore, we de-
�ne DiffOutcome(P,R1, R2) := DiffPorts(R1, R2)∨
DiffRewrite(P,R1, R2).
However, unlike for output ports, checking if the

rewrites are di�erent requires special attention. A
strawman solution that checks if both rewrite actions
modify the same header �elds to the same values does
not work. Consider a combination of a forwarding rule
with another that is also modifying the header:

• R1 := match(srcIP=∗, dstIP=∗)→ fwd(1), i.e.,
default forwarding rule; and
• R2 := match(srcIP=10.0.0.2, dstIP=∗)→
rewrite(ToS ← 0), fwd(1), i.e., host 10.0.0.2 is
not allowed to use type of service

While the rewrites are structurally di�erent (e.g.,
rewrite(None) 6= rewrite(ToS ← 0)), they produce
the same outcome if the probe packet uses ToS = 0.
Therefore, to compare the outcome of rewrite actions,
we need to take into account not only the rewrites them-
selves but also the header of probe packet P and how
it is transformed by the rules in question. Formally,
we say that the rewrites of two rules are equal for a
given packet (i.e., rewrite(P,R1) = rewrite(P,R2))
if they rewrite each bit of the packet the same way,
i.e., ∀i ∈ 1 . . . headerlen :

(
BitRewrite(P [i], R1) =

BitRewrite(P [i], R2)
)
and BitRewrite(P [i], R) is ei-

ther P [i], 0 or 1, depending if the rewrite from rule R
leaves the bit unchanged or sets it to a �xed value. Af-
ter this change, our DiffRewrite de�nition is sound as
it captures exactly the rewrite behavior of the switch.
Finally, the rules in the network must not rewrite the

header �eld reserved for probing. This assumption is
required for two reasons: (i) if the probed rule rewrites
the probe tag value, the downstream switch will be un-
able to distinguish and catch the probes; and addition-
ally (ii) the headers of ordinary (non-probing) pack-
ets could be rewritten as well and afterward treated as
probes; this breaks the data plane forwarding.

3.3 Probing with drop rules
Since drop rules do not output any packets, we can

easily distinguish them from unicast rules based on out-
put ports � the downstream switch either receives the
probe or not. However, acknowledging drop rule instal-
lations brings in a new challenge. It requires detecting
when the probes stop arriving back at the controller.
We call such a situation negative probing.
Negative probing carries a risk of prematurely ac-

knowledging drop rule installations. If the rule is not
installed but probe packets get lost or delayed for other
reasons (e.g. overloaded link, packets damaged during
transmission or any other type of failure), ProboScope
is unable to determine the di�erence and con�rms the
installation. While we believe the presented solution is
su�cient in most use cases, we present a fully reliable
method in Section 5.

3.4 Handling of multicast / ECMP rules
After discussing the rules that modify header �elds

and send packets to a single port or drop them, the
only remaining type are rules that may forward pack-
ets to several ports (e.g., multicast / broadcast and
ECMP). Both cases can be easily incorporated into our
formal framework just by modifying the de�nition of
DiffPorts. The only remaining rule types are those
that may forward packets to several ports (e.g., mul-
ticast / broadcast and ECMP). We easily incorporate
them into our formal framework by modifying the def-
inition of DiffPorts. These rules de�ne a forwarding
set of ports and send a packet to all ports in this set
(multicast/broadcast), or a di�erent port from this set
at di�erent times (ECMP). For simplicity, we assume
that the rewriting actions are the same for all ports in
the forwarding set.
Moreover, note that drop and unicast rules are just

special cases of multicast with zero and one element in
their forwarding sets. This way we only need to dis-
cuss three combinations of rules � 2×multicast, 2×
ECMP, and multicast + ECMP. In all of these cases,
we can distinguish rules based on either rewrites (i.e.,
DiffRewrite is True) 5 or based on their forwarding
sets (i.e., DiffPorts is True).
If both rules are multicast, a packet will appear on

all ports from one of the forwarding sets. Therefore, if
there exists any port that distinguishes these forward-
ing sets, we can use it to con�rm a rule. As such,
DiffPorts(R1, R2) := (F1 6= F2) where F1 and F2 de-
note forwarding sets of R1 and R2 respectively.
If both rules are ECMP, since each rule can send a

packet to any port in its forwarding set, we can dis-
tinguish them only if the forwarding sets do not inter-

5 Since drop rules do not output packets, their rewrites
are meaningless. We de�ne DiffRewrite(P,Rdrop, R

′) :=
False to �t our theory.
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sect (a probe appearing at a port in the intersection
does not distinguish the rules as both rules can send a
packet there). Thus, in this caseDiffPorts(R1, R2) :=(
(F1 ∩ F2) = ∅

)
.

If only one of the rules (assume R1) is multicast, we
are sure that a packet will either appear on all ports in
F1, or on only one (unknown) port in F2. We can simply
capture the probe on any port that does not belong to
F2. Therefore, DiffPorts(R1, R2) :=

(
(F1 \ F2) 6= ∅

)
.

There is an additional way to distinguish a multicast
rule that is not unicast (i.e., |F1| 6= 1) from an ECMP
rule. We can di�erentiate them by counting received
probes (an ECMP rule always sends a single probe).
This way of counting the expected number of probes on
the output is applicable in general and can extend the
de�nitions of DiffOutcome, but since it is practically
useful only in the presented scenario, we treat it as an
exception rather than a regular constraint.
Now we analyze a situation when a rule may ap-

ply di�erent rewrite actions to packets sent to di�erent
ports. We again need to consider the three combina-
tions of rules R1, R2 with forwarding sets F1, F2 and
adjust the de�nition of DiffRewrite for each of them.
When considering DiffRewrite, we take into account
only actions that precede sending a packet to a port
that belongs to F1 ∩ F2 since if a packet appears at
any other port, the location is su�cient to distinguish
the rules. Additionally, we will need a new predicate:
RewriteOnPort(pkt,R, port) de�ned as the outcome of
processing a packet pkt by rule R observed on port port.
With the aforementioned observations we consider pos-
sible cases.
If both rules are multicast, there is going to be

a probe packet at each output port in one of the
forwarding sets. Thus, it is su�cient if there is a
single port in the F1 ∩ F2 on which the probe is
di�erent depending which rule processed it. There-
fore, DiffRewrite :=

(
∃probe : ∃x ∈ F1 ∩ F2 :

RewriteOnPort(probe,R1, x) 6= RewriteOnPort(probe,R2, x)
)

If both rules are ECMP, we need to be able to distin-
guish them regardless of which output port one of them
chooses. This means that in this case DiffRewrite :=(
∃probe : ∀x ∈ F1∩F2 : RewriteOnPort(probe,R1, x) 6=
RewriteOnPort(probe,R2, x)

)
.

Finally, if only one of the rules (assume R1) is mul-
ticast, we still do not know which port will be selected
by R2. Thus, for the same reason as in the previ-
ous case, DiffRewrite :=

(
∃probe : ∀x ∈ F1 ∩ F2 :

RewriteOnPort(probe,R1, x) 6= RewriteOnPort(probe,R2, x)
)
.

3.5 Flow modifications and deletions
Probing for rule deletions and modi�cations is done

using the same methods as probing for additions. A
rule modi�cation has to keep the match and the priority

unchanged. This means that the probe will always hit
the original or the new version of the rule, regardless
of other lower priority rules in the �ow table. As such,
we simply make a copy (of the logical view) of the �ow
table and adjust it by removing all lower-priority rules,
as well as decreasing the priority of the original rule.
Afterward, we can use the standard probe generation
technique on this altered version of the �ow table to
probe for the new rule version.
Further, rule deletion can be treated as an opposite

of a rule installation. We look for a probe that satis�es
the same conditions. However, we know that the rule
deletion was successful when the probe starts hitting
actions of underlying lower-priority rule.
Finally, a single OpenFlow command can modify or

delete multiple rules. Probing in such a case is simi-
lar to probing for concurrent modi�cation of multiple
overlapping rules at the same time and reliable probe
generation for such cases is a part of our future work
(we describe complications of concurrent probing in Sec-
tion 5). However, knowing the content of switch �ow
table, it is possible (at a performance cost) to translate
a single command that changes many rules to a set of
commands changing these rules one by one and con�rm
them separately.

3.6 Unacknowledgeable rules
For some combinations of rules it is impossible to

�nd a probe packet that satis�es all the aforementioned
constraints, as can be seen in the following examples.
First, a rule cannot be probed if it is completely hid-

den by higher-priority rules. For example, one cannot
probe for the presence of a backup rule if the primary
rule is actively forwarding packets. Similarly, a rule is
impossible to probe if it overrides lower priority rules
but it does not change the forwarding behavior, e.g., a
high-priority exact match rule cannot be distinguished
from default forwarding if the output port is the same.
Finally, it is impossible to probe for rules that send
packets to the network edge as they simply exit the
network. While it is impossible to probe for such rules,
this might not be an issue depending on a particular
scenario: (i) datacenter deployments typically use hard-
ware switches only in the network core and use software
switches (which can correctly report rule installations)
at the edge (e.g., at the VM hypervisor), or (ii) edge
switches with a spare port can be con�gured to mirror
all egress tra�c to this spare port which would allow us
to catch copies of all probes exiting the network.
In all cases of unacknowledgeable rules, ProboScope

falls back to one of the less reliable control-plane tech-
niques (such as timeouts [15]) to acknowledge the rule.

3.7 Multi-switch probing
The presented solution requires all downstream
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switches of the probed switch to recognize probe pack-
ets and send them to a controller. Therefore, they must
have a catching rule installed with a priority higher than
other rules, to ensure that the probes are intercepted
and not treated as normal tra�c.
In practice, a network consists of many intercon-

nected switches and potentially each of them has to be
probed. Thus, a probed switch is a downstream switch
for other switches and has a catching rule as well, and
switches need to have di�erent catching rules. Oth-
erwise, the high priority catching rule at the probed
switch would intercept all probes instead of letting
them match the probed rule.
We propose two solutions that overcome this di�-

culty and o�er a tradeo� between the number of header
�elds that need to be reserved for probing and the ad-
ditional load imposed on the control channel. Initially,
both strategies require assigning each switch i a network
wide unique identi�er Si. We later explain a possible
optimization to both methods.
The �rst strategy reserves for probing one packet

header �eld H and a set Reserved of values of this �eld,
Reserved = {Si : i is a switch}. The assumption is
that real tra�c never uses these values in the reserved
�eld and that no rule can rewrite this �eld. Then, each
switch i installs several catching rules: a rule matching
on match(H = Sj) for each Sj ∈ Reserved\{Si}. Ac-
cording to Constraints 2 and 3 in Table1, the value of
�eld H in a probing packet has to equal Si � it can-
not match any high priority catching rule at the probed
switch, but must be intercepted by a catching rule at
the downstream switch. Unfortunately, this method
causes all probes (except for ones dropped at the probed
switch) to return to the controller even if they were
forwarded by rules other than the probed one. This
increases control-channel load as well as forces Probo-
Scope to analyze more returned probes.
The second solution addresses the problem of over-

loading the control channel with probes at the cost of re-
serving two header �eldsH1 andH2 for probing. Switch
i preinstalls two types of rules used during probing:
1. a (high priority) probe-catch rule Rcatch :=
match(H1 = ∗, H2 = Si)→ fwd(controller), and

2. (slightly lower priority) rules

Rfilter(j) := match(H1 = Sj , H2 = ∗)→ drop

for all Sj ∈ Reserved\{Si}.
The generated probe needs to have H1 = Sprobed, H2 =
Snext where Sprobed and Snext are identi�ers of the
probed and desired downstream switch, respectively.
Such a probe is not a�ected by any catching rule on
the probed switch but gets sent to the controller only
if it reaches the correct downstream switch. The probe
gets dropped by other neighbors of the probed switch

so the controller sees it only once6 , which con�rms the
rule modi�cation.
Thus far, both presented solutions have a potential

downside: the number of reserved values of �eld(s) H
is equal to the number of switches in the network. Fur-
ther, each switch has to have as many catching rules
installed as well. However, what really matters for the
�rst method is that no two neighboring switches have
the same identi�er. Finding an assignment of labels to
nodes in a graph such that no two connected nodes have
the same label value and the total number of values is
minimum is a well-known vertex coloring problem [17].
While �nding an exact solution to this problem is NP-
hard, doing so is (as our evaluation in Section 7.3.2
suggests) feasible for real-world topologies. Our study
of publicly available network topologies [11, 22] shows
that at most 9 distinct values are required in networks
of up to 11800 switches. Moreover, the time required
is not crucial as it is a rare e�ort. Network topology
changes such as addition of new switches or links trig-
ger catching rule recomputation. Network failures do
not require recomputation; the setup may simply no
longer be optimal but it is still working.
The number of identi�ers used by the second method

can also be reduced in a similar fashion. In this case,
however, it is not enough to ensure that two directly
connected switches have distinct numbers assigned. Ad-
ditionally, any pair of switches that have a common
neighbor must also have di�erent identi�ers. Otherwise
the method loses the guarantee that the controller does
not receive a probe until the probed rule is modi�ed. As
such, the method works best on topologies which do not
contain �central� switches with high number of peers.
Algorithm-wise, we can reuse vertex-coloring solver �
we take original graph and for each switch, we add fake
edges between all pairs of its peers, essentially adding
a clique to the graph. Afterward we solve the vertex
coloring problem on this modi�ed graph.

4. SOLVING CONSTRAINTS AND PACKET
CRAFTING

As discussed in Section 3, probe generation involves
creating a probe packet that satis�es a given set of con-
straints. Here we describe how to perform this task by
leveraging the existing work on SMT/SAT solvers.

4.1 Abstracting packets
While constraints from Table 1 are relatively sim-

ple, their complexity is hidden behind predicates such
as Matches(P,R) or DiffRewrite(P,R1, R2). In par-
ticular, when dealing with real hardware, the imple-
mentation of packet matching is performing much more
than a simple per-�eld comparison. Instead, a hardware
6 Unless there are many probes in �ight or the modi�cation
a�ect only rewrite actions, not the output port.
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switch needs to parse respective header �elds and val-
idate them before proceeding further. For example, a
switch may drop packets with a zero TTL or an invalid
checksum even before they reach the �ow table match-
ing step. As such, it is important to generate only valid
probe packets.
While the �wire-format� packet correctness can be

achieved by enforcing packet validity constraints, doing
so is undesirable as such constraints are too complex
(e.g., checksums, variable �eld start positions depend-
ing on other �elds such as VLAN encapsulation, etc.)
to be solved by o�-the-shelf solutions. Instead, simi-
larly to other work in this �eld (e.g., VeriFlow, HSA,
ATPG), we use an abstract view of the packet � in-
stead of representing a packet as a stream of bits with
complex dependencies, we abstract out the dependen-
cies and treat the packet as a series of (abstract) �elds
where each �eld corresponds to a well-de�ned protocol
�eld (similarly to the de�nition of OpenFlow rules).
By introducing abstracted �elds, we can solve the

probe generation problem without dealing with the
packet wire-format details. However, we cannot avoid
generating the real probe packet and therefore as a �nal
step we need to �translate� the abstracted view into a
real packet. As we show in the rest of this section,
this process contains some technical challenges. While
previous work (e.g., ATPG) uses a similar translation,
its authors do not go into the details of how to deal
with this task.

4.2 Creating raw packets
The process of creating a raw probe packet given an

abstracted header can be handled by the existing packet
crafting libraries. The library can handle all relevant
assembly steps (computing protocol headers, lengths,
checksums, etc.). The only remaining task is providing
consistent data to the library. In particular, there are
two requirements on the abstract data that we provide
to the library: (i) limited domains of some �elds and
(ii) conditionally present �elds.
Limited domain of possible �eld values. Some

(abstract) packet header �elds cannot have arbitrary
values because the packet would be deemed invalid
by the switch (e.g., DL_TYPE or NW_TOS �elds in
OpenFlow). Therefore, we need to make sure that our
abstract probe contains only valid values. A basic so-
lution is to add an additional �must be one of following
values� constraint on the abstract �eld. This solution
is preferred for small domains (e.g., input port). For
domains that are big, we have an alternative solution:
Assume that �eld fld can be only fully wildcarded or
fully speci�ed. Moreover, assume that the domain of
fld contains at least one spare value, i.e., a valid value
which is currently not used by any rule in the �ow table.
Then, we can run the probe generation step without

any additional constraints and look at the result probe.
If probe[fld] contains a valid value for the domain, we
leave it as is. However, if the probe[fld] contains an
invalid value, we replace it by the spare value.
Lemma: Previous substitution does not a�ect the va-

lidity of probe.
Proof: Assume probe[fld] contains an invalid (e.g.,

out-of-domain) value. As all rules in the �ow table
can contain only valid values from the domain, it is
clear that for each rule R in the �ow table either
probe[fld] 6= R.match[fld] or R.match[fld] = ∗. Set-
ting probe[fld] := spare does not change inequalities
to equalities and vice versa as we assume spare is a
value not used by any rule. Thus, the substitution does
not a�ect the Matches(probe,R) test and therefore it
preserves validity of the solution with the respect to
the given constraints.
Some (abstract) packet header �elds are in-

cluded only conditionally. For example, one cannot
include TCP source/destination port unless IP.proto=
0x06. We use a term conditionally-included to denote a
header �eld that can be present in the header only when
another �eld is present and has a particular value (e.g.,
TCP source port if the transport protocol is TCP). Sim-
ilarly, a �eld that cannot be in the header because of the
value of another �eld (e.g., UDP source port if trans-
port protocol is TCP) is called conditionally-excluded.
While it is easy to remove all conditionally-excluded
�elds from the probe solution (e.g., by ignoring their
values), we need to make sure that the solution remains
valid. A particular concern is whether for any rule R
the value of Matches(probe,R) stays the same. Fortu-
nately, we can show that if rules are well-formed (i.e.,
they respect conditionally-included �elds as required by
the OpenFlow speci�cation ≥ 1.0.1).
Lemma: Eliminating all conditionally-excluded �elds

from any valid solution does not change the validity of
Matches(probe,R) for any well-formed rule R.
Proof: We will eliminate all conditionally-excluded

�elds one by one. For a contradiction, assume that
there exists a conditionally-excluded �eld exclfld which
changes the validity of Matches(probe,R) during the
elimination for some rule R. Clearly, exclfld cannot be
wildcarded inR otherwise the validity ofMatches(probe,R)
would not change. Because rule R is well-formed and
there is an exact match for exclfld, R has to also in-
clude an exact match for parfld � a parent �eld of
exclfld (i.e., the �eld which determines conditional
inclusion of exclfld). However, if probe[parfld] 6=
R.match[parfld], value of Matches(probe,R) is False
regardless of the value of probe[exclfld] which con-
tradicts the assumptions. Further, if probe[parfld] =
R.match[parfld], �eld exclfld is conditionally-included
which also contradicts the assumptions. Finally, parfld
itself might be conditionally-excluded in probe; in such

8



case we perform the same reasoning leading to contra-
diction on its parent recursively.

4.3 Solving constraints
The last step for constructing a real probe packet

is solving the constraints that it needs to satisfy. As
it turns out (see Appendix section of technical re-
port [14]), the problem of probe generation is NP-
hard. Therefore, our goal is to reuse the existing work
on solving NP-hard problems, in particular work on
SAT/SMT solvers. While this requires some work
(e.g., eliminating for-all quanti�ers in Constraints 3
and 4), our constraint formulation is very convenient
for SAT/SMT conversion. In particular, we con-
vert Constraint 3 to a simple conjunction of several
¬Matches terms and Constraint 4 as a chain of if-then-
else expressions: If(m1, d1, If(m2, d2, If(m3, d3, ...)))
where mi and di are in the form of Matches(P,R)
and DiffOutcome(probe,Rprobed, R) for some rule R;
this e�ectively mimics priority-matching of a switch's
TCAM. The only remaining part is a way to model
Matches andDiffOutcome predicates. DiffOutcome
consists of DiffRewrite and DiffPorts. Basic set
operations allow us to evaluate DiffPorts to ei-
ther True or False before encoding to SAT. Both
DiffRewrite and Matches are similar in nature.
Therefore, due to space limitations, we use a simple
example to present the encoding only for Matches in
context of the �rst three constraints. For example,
assume that all header �elds are 2-bit wide (including
IP source and destination). The goal is then to gen-
erate a probe packet for a low-priority rule Rlow :=
match(srcIP=1, dstIP=∗) → fwd(1) while using
probe-catching rule Rcatch := match(V LAN=3) and
assuming a high-priority ruleRhigh := match(srcIP=1,
dstIP=2) → fwd(2). We represent probe packet
as a sequence of 6 bits p1p2 . . . p6 where bits 1-2
correspond to IP source, bits 3-4 to IP destination
and bits 5-6 to VLAN. Then, Constraints 1-3 to-
gether are Matches(P,Rcatch) ∧ Matches(P,Rlow) ∧
¬Matches(P,Rhigh) which �eld-wise corresponds to
(p5,6 = 0b11)∧(p1,2 = 0b01)∧¬ (p1,2 = 0b01 ∧ p3,4 = 0b10).
(where pre�x 0b means binary representation). This
can be further expanded to (p5 ∧ p6) ∧ (¬p1 ∧ p2) ∧
(p1 ∨ ¬p2 ∨ ¬p3 ∨ p4), which is a SAT instance.

5. IMPROVEMENTS TO THE BASIC SCHEME
Consider only overlapping rules Probe packet gen-
eration involves generating a long list of constraints
which need to be satis�ed in order to �nd the probe
packet. To increase solving speed, we strive to simplify
the constraints based on the following observation:
Lemma: Let R be a rule that does not overlap with

Rprobed. Then the presence/absence of R in a switch
�ow table does not a�ect results of probe generation.

Proof: By de�nition, rules Rprobed and R overlap if
and only if there exists a packet x that matches both.
The negation (i.e., non-overlapping condition) is there-
fore ∀x : ¬Matches(x,Rprobed) ∨ ¬Matches(x,R). As
the expression holds for all packets, it must hold
for probe P as well, i.e., ¬Matches(P,Rprobed) ∨
¬Matches(P,R) holds. Combined with the assump-
tion Matches(P,Rprobed), it implies ¬Matches(P,R).
Therefore, Constraints 3 and 4 are trivially satis�ed for
any probe that satis�es Constraint 1. As a corollary it
follows that all rules that do not overlap with Rprobed

can be �ltered out before building constraints. This is
a powerful optimization, as typically rules only overlap
with a handful of other rules.
Probing of multiple rules at the same time The
explanation so far considered only probing for a single
rule at a time. However, this is highly ine�cient as the
switch gets underutilized while ProboScope is waiting
for probe con�rmation. Therefore, it is desired to install
and probe for multiple rules at the same time. This
approach imposes two challenges.
First, ProboScope needs to distinguish probes con-

�rming di�erent rules. To solve this problem, we in-
clude metadata such as the rule under test, and the ex-
pected result to the probe packet payload that cannot
be touched by the switches. This allows us to pinpoint
which rule was supposed to be probed by the received
probe packet, and limit the number of possibilities to
only two: either probed rule is installed and is match-
ing, or a lower-priority rule is matching.
Second, ProboScope needs to generate probes that

work correctly for all already con�rmed rules and at
the same time for all subsets of rules which were sent
to the switch but are not yet con�rmed. This is re-
quired because the probe must work correctly even in
case when the switch updates its data plane while other
probes are still traveling through the network. As long
as the uncon�rmed rules are non-overlapping, our ap-
proach works because based on the previous lemma, we
know that non-overlapping rules have no impact on each
other's probe packets. Unfortunately, in a general case
the problem is more challenging. As an example, con-
sider the controller issuing three rules (in this order):

• low priority R1 := match(srcIP=10.0.0.1,
dstIP=∗)→ fwd(1)
• high priority R2 := match(srcIP=∗,
dstIP=10.0.0.2)→ fwd(2)
• middle priority R3 := match(srcIP=10.0.0.0/24,
dstIP=10.0.0.3)→ drop

After ProboScope sees the rule R1, it sends it
to the switch, generates a valid probe (e.g., P1 :=
(10.0.0.1, 10.0.0.2)) and starts injecting it. Next, the
controller wants to install rule R2. On top of gener-
ating the probe packet P2, ProboScope also needs to
re-generate P1 as it is no longer a valid probe for R1

9



1. match(*,P) -> rewrite(bad), fwd(A)
2. match(*,*) -> fwd(B)

A

P

1. match(catch) -> ctrl
2. match(bad) -> drop
3. other rules ...

x
Figure 5: Illustration of the drop-postponing method
to reliably probe for drop rules.

(if the switch installs R2 before R1, P1 will always
be forwarded by R2, and therefore become unable to
con�rm R1). In particular, this requires invalidating
all in-�ight probes P1. Next, ProboScope cannot send
rule R3 to the switch until R1 is con�rmed, otherwise
(re-)generating P1 becomes impossible. Finally, until
rule R2 is con�rmed, probe for R3 needs to consider
both possibilities of R2 being installed or not. The
number of such combinations rises exponentially, e.g.,
5 rules require considering 25 outcomes.
Our current implementation handles uncon�rmed

overlapping rules by queuing rules that overlap with
any yet uncon�rmed rule until it is con�rmed. Natu-
rally, rules that do not overlap with any yet uncon�rmed
rule can skip the queue and we send them to the switch
unless there is a barrier command forcing the order. On
top of that, ProboScope can start solving for probes
even while holding the overlapping rules in the queue
� ProboScope just assumes that we will install and
con�rm the rules in order in which they were queued
and thus can compute the content of the switch �ow ta-
ble in advance. We leave concurrent probing for several
uncon�rmed overlapping rules as future work.
Drop-postponing The �nal improvement is a way to
reliably acknowledge drop rules (rather than relying on
negative probing) presented in Figure 5. Instead of in-
stalling a drop rule on a switch, we can install a modi�ed
version of the rule which matches the same packets but
instead of dropping, it rewrites the packet to a special
header and forwards it to one of the switch's neigh-
bors. Switches need to have a preinstalled drop rule
which matches this special header and drops all match-
ing tra�c. Moreover, this drop rule has a priority lower
than the priority of probe-catching rule but su�ciently
high that it dominates other rules. This way, all non-
probe tra�c is dropped one hop later while probe pack-
ets are still forwarded to ProboScope but with a mod-
i�ed header, which allows it to realize when the drop
rule is installed. Finally, after successfully acknowledg-
ing the �drop� rule, ProboScope can update the rule to
be a real drop rule as probing is no longer necessary;
this change does not modify the end-to-end network
behavior for real (non-probing) tra�c.
While this method allows for most precise acknowl-

edgments of drop rule installation, it has drawbacks:
First, it (temporarily) increases the utilization of a link
to the neighboring switch because it forwards all to-be-

dropped tra�c there for some time. Second, it adds
an additional rule modi�cation to really drop packets
after acknowledging the temporary �drop� rule. De-
pending on the frequency of drop-rules issued by the
controller, this might result in up to 50% control-plane
performance degradation (if the controller is installing
only drop rules, the ProboScope will double the number
of rule modi�cations).

6. IMPLEMENTATION
We design ProboScope as a set of Python proxies.

Such proxy-based design enables chaining many proxies
to simplify the system and provide various functionali-
ties (e.g., modify switch behavior and provide acknowl-
edgments in this case). Moreover, it makes system in-
herently scalable � each ProboScope proxy is responsi-
ble for intercepting only a single switch-controller con-
nection and can be run on a separate machine if needed.
ProboScope consists mainly of two proxies � Multi-

plexer and Prober. Multiplexer connects to Probers of
all neighboring switches and is responsible for forward-
ing their PacketOut/In messages to/from the switch.
Prober is the main proxy and is responsible for tracking
the switch �ow table, generating the necessary probes
for the new rules and sending acknowledgments to the
controller. In order to o�oad latency from the critical
path, Prober forwards the FlowMod messages as soon
as it receives them, and delegates the probe computa-
tion to one of its workers.
ProboScope can use conventional SMT solvers for the

probe generation. In particular, we implement con-
version for Z3 [4] and STP [5] solvers. However, our
measurements indicate that these solvers are not fast
enough for our purposes (they are 3-5 times slower than
our custom-built solver in experiments presented in Sec-
tion 7.2). While we do not know the exact cause, it is
likely that (i) Python version of bindings is slow, and
(ii) SMT solvers often try too hard to reduce the prob-
lem size to SAT (e.g., by using optimizations such as
bit-blasting [5]). While such optimizations pay o� well
for large problems, they might be an overkill and cre-
ate as major bottleneck for the probe generation task.
Thus, we wrote our own, optimized, conversion to plain
SAT (we use PicoSAT [1] as a solver). The conversion
is written in Cython (to be on par with plain C code
speed) and we use the DIMACS format [3] to represent
the CNF formulas as one-dimensional vectors of inte-
gers. We use such a single-dimensional representation
instead of a more intuitive two-dimensional one (vector
of vectors of integers, inner vectors representing dis-
junctions) because such representation resulted in poor
performance � in particular, it necessitated malloc()-
ing of too many small objects, which was the major
bottleneck for the conversion.
Finally, since we do not have access to a real PICA8
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switch while evaluating ProboScope (we borrowed it in
the past), we create and use an additional proxy placed
in front of an OpenVSwitch in one of the experiments.
This proxy intercepts and modi�es control plane com-
munication between a controller and a correctly work-
ing, fast switch to mimic the behavior (rule reordering
and premature barrier responses) and update speeds of
the PICA8 switch as described in [12]. We plan to open
source our code, and leave implementing multicast and
ECMP support for future.

7. EVALUATION
Since we used formal proofs and step by step con-

straint construction, we leave the validity checking of
the generated probes to our unit-tests. Instead, we
showcase one use-case for probe generation, and for the
remainder of this section we focus on performance. In
particular, we perform a simple end-to-end experiment
to show the bene�ts of having reliable rule acknowledg-
ments in one possible use case where ProboScope pre-
vents dropping 8297 packets during a network update.
Further, we concentrate on performance/overhead mea-
surements both at the controller and the switch.The re-
sults show that: 1) the current prototype running on a
single core needs less than 5 ms on average to generate
a probe, and 2) modern switches can handle an addi-
tional load imposed by injecting and handling probes
at a rate of up to 1000 probes per second.

7.1 End to end benefits
We �rst apply ProboScope in a scenario involving an

end-to-end network update. The network consists of
three switches S1, S2 and S3 connected in a triangle.
There are two end hosts: H1 connected to S1, and H2
connected to S2. Switch S3 is the probed switch. Ini-
tially, we install 300 paths that are forwarding pack-
ets belonging to 300 IP �ows from H1 to H2 through
switches S1 and S2. We send tra�c that belongs to
these �ows at a rate of 300 packets/s per �ow. Then,
we start a consistent network update [19] of these 300
paths, with the goal of rerouting tra�c to follow the
path S1-S3-S2. For each �ow, we install a forwarding
rule at S3 and when it is con�rmed, we modify the
corresponding rule at S1. We repeat the experiments
using three di�erent switches in the role of a probed
switch (S3): HP ProCurve 5406zl, Dell S4810, and an
OpenVSwitch with a proxy that modi�es its behavior to
mimic the Pica8 switch described in [12]. We always use
OpenVSwitch as S1 and S2. When using ProboScope,
based on the results of measurements in Section 7.3 we
use a conservative rate of sending 500 probes/s.
We observe two distinct situations. The �rst observed

behavior is that HP 5406zl and Pica8 report rule instal-
lation too early. As a result, a rule at upstream switch
S1 gets updated too soon and tra�c gets forwarded

Data set
ProboScope VeriFlow core

avg max probes avg max
[ms] [ms] found [ms] [ms]

Campus 4.13 5.46 10642 / 10958 10.47 85.10
Stanford 1.44 24.52 2442 / 2755 67.19 86.16

Table 2: Time it takes to generate a probe in Probo-
Scope and equiv. classes in Veri�ow for a single rule.

to a temporary blackhole (because the corresponding
rule at S3 is not yet ready). Figures 1 and 6b show
when the packets for a particular �ow stop following
the old path, and when they start following the new
path. The gap between the two lines shows the periods
when packets end in a blackhole. In the experiment, a
theoretically consistent network update led to 8297 and
4857 dropped packets at HP and Pica8 respectively. In
contrast, ProboScope ensures reliable rule installation
acknowledgments so both lines are almost overlapping
and there are no packet drops. The total update time
is comparable to the time without ProboScope.
Figure 6a shows a di�erent switch problem. While

Dell S4810 sends barrier replies reliably, it also delays
them and batches in large groups. Using ProboScope
allows us to con�rm rule installations much quicker (as
soon as they are active in the data plane). This exper-
iment shows the somewhat unexpected bene�t of using
ProboScope: it turns a correctly functioning, but slow
(in terms of barrier responses) switch into a better per-
forming one, while retaining correct behavior.

7.2 Controller-side performance
In the following sections we evaluate performance of

our system. First, we answer the question if ProboScope
can generate probes fast enough to be usable in practice.
Having access to a dataset containing rules from an

actual Open�ow deployment is hard. We observe that
the ACL rules are the most similar to Open�ow rules,
since they match on various combinations of header
�elds. Hence we report the times ProboScope takes to
generate probes for rules from two publicly available
data sets with ACLs: Stanford backbone router �yoza�
con�guration [9] (called Stanford, with 2755 rules),
and ACL con�gurations from a large-scale campus net-
work [23] (Campus, 10958 rules).
For each dataset we construct a full �ow table and

then ask ProboScope to generate a probe for each rule.
In Table 2 we report average and maximum per-rule
probe generation time. For comparison, we report the
average and maximum per-rule equivalence class gen-
eration time in VeriFlow (for each rule, we remove it,
compute classes with this rule and add it back). Note,
that in order to compete with ProboScope, after �nd-
ing the equivalence classes, VeriFlow would need to do
additional work to �nd the probes.
On average, ProboScope needs between 1.44 and 4.13

milliseconds to generate a probe on a single core of an
2.93-GHz Intel Xeon X5647. This time depends mostly
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Figure 6: Time when �ows move to an alternate path in an end-to-end experiment. For Dell, ProboScope performs
better than Barriers for many �ows because the switch batches Barrier responses, which forces the controller to wait
longer before updating switch S1. For the two other switches (see also Figure 1), ProboScope prevents packet drops.

on the number of rules, and not on the rule composition
and header �elds used for matching. This is the case
because the SAT solver is very e�cient and the most
time-consuming part is to check for the rule overlaps
and to send all constraints to the solver. In contrast,
VeriFlow performs well on simple, nonoverlapping for-
warding rules, but struggles for complex rules matching
on various header �elds. Further, our solution can be
easily parallelized both across the switches (separate
proxy and probe generator for each switch) and across
the rules sent to a particular switch (each probe gener-
ation in SAT is independent).
Finally, we also show how many probes compared to

the number of rules ProboScope is able to �nd (for rea-
sons why ProboScope may fail to �nd a probe see Sec-
tion 3.6). In the measured scenarios, our system was
able to generate probes for the majority of rules. An
example of an unacknowledgeable rule is a low-priority
deny ACL rule (dropping packets), that is indistinguish-
able from the default drop all nonmatching tra�c rule
in the switch. For these rules, ProboScope can fall back
to using timeouts [15].

7.3 Switch-side performance
The technique introduced in this paper requires in-

stalling catching rules and active probing of the switch
states. Therefore, we need to make sure that the act
of sending probes does not overload the switches, and
that the catching rules do not occupy too much of the
limited TCAM space in the switches.

7.3.1 PacketIn and PacketOut processing overhead
While it is theoretically possible to inject probes via

data plane tunnels (e.g., VXLANs) to and from a de-
sired switch, the approach we selected is to rely on the
control channel. Therefore, it is essential to make sure
that the switch's control plane can handle the additional
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Figure 7: Impact of PacketOut messages on rule modi�-
cation rate normalized to the rate with no PacketOuts.
Following each FlowMod with up to 5 PacketOut mes-
sages has small impact on switch performance.

load imposed by the probes without negatively a�ect-
ing other functionalities. To quantify the overhead, we
�rst measure the maximum PacketOut rate by issuing
20000 PacketOut messages, and recording when they
arrive at the destination. To measure the maximum
PacketIn rate, we install a rule forwarding all tra�c to
the controller, send tra�c to the switch, and observe
the message rate at the controller. The rates are 7006
PacketOut/s and 5531 PacketIn/s, averaged over 5 runs
on an older, HP ProCurve 5406zl switch. The observed
throughputs are 850 and 401 respectively on a modern,
production grade, Dell S4810 switch, and 9128 and 1105
on Dell 8132F with experimental OpenFlow support (in
all cases the standard deviation is lower than 3%). If
the packet arrival rate is higher than maximum Pack-
etIn rate available at a given switch, both switches start
dropping PacketIns.
These values assume no other load on the switch. In

the second experiment, we mix PacketOut messages and
�ow modi�cations using the k : 2 ratio (to keep the total
number of rules stable, the 2 modi�cations are: delete
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Figure 8: Impact of PacketIns on rule modi�cation rate
normalized to the rate with no PacketIns. Except for
Dell S4810 with all rules having equal priority, Pack-
etIns have negligible impact on switches.

an existing rule and add a new one). We vary k and
observe how it a�ects the �ow modi�cation rate.
The results presented at Figure 7 show that the per-

formance of all switches is only marginally a�ected by
the additional PacketOut messages as long as these mes-
sages are not too frequent. All switches maintain 85%
of their original performance if each �ow modi�cation
is accompanied by up to �ve PacketOut messages. Dell
S4810 with all rules having the same priority (marked
with ** in Figure 7) is more easily a�ected by Pack-
etOuts because its baseline rule modi�cation rate is
higher in such a con�guration.
Similarly, we perform an update while injecting data

plane packets at a �xed rate of r packets/s causing r
PacketIn messages/s and observe how they a�ect the
rule update rate. Figure 8 shows that all switches are al-
most una�ected by the additional load caused by Pack-
etIn messages. Again, Dell S4810 performance drops by
up to 60% when the baseline modi�cation rate is high
(all rules have the same priority, ** in Figure 8).

7.3.2 Number of catching rules required
Recall that our approach requires distinct switch IDs,

and these e�ectively introduce rule overhead. To quan-
tify this overhead, we compute the number of distinct
switch IDs required for probing in the network topolo-
gies from Internet Topology Zoo [11] and Rocketfuel [22]
datasets. We use an optimal vertex-coloring solution
computed using an integer linear program formulation;
solving takes only a couple of minutes to compute the
results for all 261+10 topologies. The results presented
in Figure 9 are for Topology Zoo, and show how many
topologies require a particular number of IDs in the ba-
sic version where each switch has a distinct ID, as well
as with coloring optimizationfor the both previously ex-
plained strategies.
There are a couple of interesting observations. First,

both vertex coloring optimizations signi�cantly de-
crease the number of the required values. Moreover,
the technique that requires just one reserved �eld works

with a very low number of IDs in practice. Up to 9
values are su�cient for networks as big as 754 switches.
The �nal, somewhat unexpected, conclusion is another
tradeo� introduced by the technique with two reserved
�elds. Since the number of IDs it requires is at least
as large as the largest node-degree in the network,
the number is sometimes high (the maximum is 59).
Rocketfuel topologies con�rm these observations �
for networks of up to 11800 switches, the technique
with a single reserved �eld requires at most 8 values
while the second technique needs to use up to 258 val-
ues (note that we use greedy coloring heuristic for the
second technique as our ILP formulation runs out-of-
memory on our machine). Taking these observations
into account, the most practical solution is the one that
requires a single reserved �eld for probing.

7.4 Larger networks
Finally, we show that ProboScope can work in larger

networks without prohibitive overheads. We do not
have access to a large network, therefore, we set up an
experiment that consists of a FatTree network built of
20 OpenVSwitches. As before, we add a proxy emulat-
ing Pica8 behavior to each of these switches. Further,
each ToR switch is connected to a hypervisor switch,
that implements reliable rule update acknowledgments
(also implemented as a proxy on top of OvS). For com-
parison, we construct the same FatTree, but consisting
of 28 (ideal) switches with reliable acknowledgments.
We ignore the data-plane tra�c to avoid overloading
the 48-core machine we use for the experiment. Probo-
Scope is realized as a chain of three proxies per switch.
As already mentioned, the proxies are highly indepen-
dent and the problem can be easily parallelized. Probe
generation for each switch is done in two threads.
We perform two experiments to show how Probo-

Scope copes under high load and what is its impact
on update latency. In both cases the controller issues
an update installing 2000 random paths in the network.
Each update has two phases: (i) install all rules except
for the ingress switch rule, and (ii) update the remain-
ing rule. In the �rst scenario, we modify all paths in
large batches, starting 40 new path updates (5-7 rule
updates each) every 10 ms. Figure 10 shows that Probo-
Scope performs comparably to the network built of the
ideal switches. Even though the probes have to compete
for the control plane bandwidth with rule modi�cations,
the entire update takes only 350 ms longer.
In the second scenario we determine the delay in-

duced by a proxy-based system. We start updating the
next path only when the current path was completely
updated. This way, any additional delay in update con-
�rmation is clearly visible at the end of the experiment.
In Figure 11, we see that ProboScope consistently falls
behind the ideal switches. However, after 2000 path
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a large network. ProboScope in-
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7 ms compared to ideal switches.

updates, the di�erence is 14 seconds, which means less
than 7 ms per path update.

8. RELATED WORK
This paper dissects and solves the key problem of

probe packet generation �rst described in our short pa-
per on RUM [15]. Other systems, such as ATPG [27]
have also used probe packets as their focal point but
there are some fundamental di�erences. As explained
in Section 1, ATPG tries to test all rules assuming they
are installed, while ProboScope can reliably detect if a
particular rule is installed. VeriFlow [10] is similar to
ProboScope in its online nature, but its goal is di�er-
ent. Namely, it relies on its control-plane view to per-
form policy compliance checking, while ProboScope of-
fers the missing piece of checking whether the data plane
re�ects the control plane. In addition, unlike VeriFlow
which explicitly slices the packet header space into a
set of equivalence classes (sets of packets with the same
behavior), ProboScope maps the probe packet gener-
ation to the satis�ability problem (SAT) which �nds
equivalence classes implicitly. As we show in the evalua-
tion, o�-the-shelf SAT solvers are well-suited for solving
probe generation problem especially for complex rule
sets. Moreover, VeriFlow �nds equivalence classes, but
�nding a probe requires additional work.
Other works [6, 16] have used SAT solvers and the-

orem provers to check network policy compliance.
SecGuru [6] works on a control-plane network view
and is unable to generate probes to determine if a par-
ticular rule is installed in the data plane. Anteater [16]
performs static analysis of forwarding tables collected
from the data plane, but does not check for rule in-
stallation per se. In contrast with these works, we
concentrate on checking if/when rules get installed on
a single switch. SDN traceroute [2] concentrates on
mechanisms to inject and catch packets in an SDN
network. This system aims to observe switch behavior
for a particular, given, packet. Our goal is to generate
a correct packet. Many systems place a proxy between

the controller and the switches [8, 21, 25] to achieve
various goals. We take their presence as an additional
con�rmation that such proxies are a viable design.

9. CONCLUSIONS
In this paper we address one of the key issue in ensur-

ing reliability in Software De�ned Networking: knowing
when a forwarding rule has been successfully installed in
the data plane. In particular, we show how data plane
probe packets should be constructed in a quick and e�-
cient manner. Our system, ProboScope, is the �rst such
system, and it exhibits signi�cantly better performance
than the core of a control-plane only veri�cation tool
that could be adapted for checking rule installation.
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APPENDIX
A. PROBE GENERATION IS NP-HARD
Lemma: Probe-generation is an NP-hard problem.
We prove this by providing a polynomial reduc-

tion from SAT problem, i.e., by producing a probe-
generation problem for a given SAT problem. In partic-
ular, let I be an instance of SAT problem, i.e., I is a for-
mula in conjunctive normal form. Let x1, x2, ..., xn be
variables of I. Our reduction uses exactly n header
�elds (or, equivalently, n bits of a header �eld which
can use an arbitrary wildcard). The reduction is best il-
lustrated on an example I = (x1∨x2)∧(¬x2∨x3)∧¬x3.
We create three high-priority rules, one rule for each
disjunction in I. In particular, i-th disjunction logically
corresponds to Ri by requiring that the disjunction is
true if and only if the probe packet is not match-
ing rule Ri, i.e., header �elds of rule must match bit
0 for each positive variable, bit 1 for each negative
variable and contain wildcard for each variable not
present in the disjunction. In our case, R1 := (0, 0, ∗),
R2 := (∗, 1, 0) and R3 := (∗, ∗, 1). Then, we ask for
a probe packet matching low-priority all-wildcard rule
Rlow := (∗, ∗, ∗) excluding all higher-priority rules.
Lemma: A probe packet is a valid solution to the

aforementioned probe-generation problem if and only if
values of probe �elds interpreted as values of variables
are a valid solution to the original SAT instance I.
We will leave the details of the proof as an exercise for

the reader � the only step required is to recognize that
the conversion from probe-generation to SAT described
in Section 4.3 yields exactly the original SAT problem.

B. ENCODING CONSTRAINTS AS CNF
EXPRESSIONS

In this section we brie�y describe how to encode con-
straints into conjunctive normal form (CNF) which is
used as an input to all o�-the-shelf SAT solvers.
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De�nition: A formula is in CNF form if it is a con-
junction of terms where each term is a disjunction of lit-
erals (variables and their negations). An example CNF
is ϕ := x1 ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2).
Let ϕ1, . . . , ϕn be formulas in CNF form. Then, we

can perform following operations and obtain CNF for-
mula as a result
• Conjunction ϕ := ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn: The formula
is already in CNF form (for math purists: we need
to eliminate implicit parentheses around each sub-
formula)

• Disjunction ϕ := ϕ1∨ϕ2∨· · ·∨ϕn: One can repeat-
edly apply distribution theorem (ψ1 ∧ ψ2) ∨ ψ3 ⇔
(ψ1 ∨ ψ3) ∧ (ψ2 ∨ ψ3) to expand the formula into
CNF. However, in general, such expansion may
lead to an exponential formula size making it im-
practical. A better approach is to create an equi-
satis�able formula, i.e., a formula which is satis�ed
under given valuation of variables if and only if the
original formula is satis�ed. The idea is to create
a new formula by introducing new fresh variables
and is usually referred to as Tseitin transform [24].
As an example, consider ϕ := ϕ1 ∨ ϕ2 and a fresh
new variable v. We can write ϕ′ := (v∨ϕ1)∧ (¬v∨
ϕ2) and observe that it is satis�ed if and only if at
least one of ϕ1 and ϕ2 is satis�ed. It should be men-
tioned that while it looks that we only swept the
problem of disjunctions one level deeper, disjunc-
tions v ∨ϕi with v being a literal can be expanded
to CNF without an exponential blowup. For longer
disjunctions ϕ1 ∨ϕ2 ∨ · · · ∨ϕn, we use an extended
form ϕ′ := (v1 ∨ ϕ1) ∧ (v2 ∨ ϕ2) ∧ · · · ∧ (vn ∨ ϕn) ∧
(¬v1 ∧ ¬v2 ∧ · · · ∧ ¬vn)
• Implication: ϕ := ϕ1 → ϕ2 is equivalent to ¬ϕ1 ∨
ϕ2

• Substitution with variable ϕ := x ↔ ϕ1 is simply
(x→ ϕ1)∧(ϕ1 → x) or using previous point: (¬x∨
ϕ1) ∧ (x ∨ ¬ϕ1)

• Negation ¬ϕ: It turns out that we need to support
only several special cases of negation:
� negation of a literal: ¬(v) = ¬v, ¬(¬v) = v
� negation of a CNF consisting only of single dis-
junction: ϕ := ¬(l1∨l2∨· · ·∨ln) is equivalent to
¬l1 ∧¬l2 ∧ · · · ∧¬ln where l1, . . . , ln are literals

� negation of a CNF where each disjunction is
trivial: ϕ := ¬(l1 ∧ l2 ∧ · · · ∧ ln) is equivalent to
(¬l1 ∨ ¬l2 ∨ ... ∨ ¬ln)

• If-then-else chain substitution

ϕ :=
(
s = if(i1, t1, if(i2, t2, if(. . . , if(in,tn, else)) . . . ))

)
First, we substitute all subexpressions as new fresh
variables. Then, we use the following construction

R[i] i-th bit of P matches R i�
0 ¬P [i]
1 P [i]
* True

Table 3: ConvertingMatches(P,R) to a CNF formula.
Resulting formula is a conjunction of per-bit terms and
is satis�ed if and only if P matches R.

from [26]:

ϕ =
(
¬i1 ∨ ¬t1 ∨ s

)∧
(
¬i1 ∨ t1 ∨ ¬s

)∧
(
i1 ∨ ¬i2 ∨ ¬t2 ∨ s

)∧
(
i1 ∨ ¬i2 ∨ t2 ∨ ¬s

)∧
· · ·
∧

(
i1 ∨ i2 ∨ · · · ∨ in−1 ∨ ¬in ∨ ¬tn ∨ s

)∧
(
i1 ∨ i2 ∨ · · · ∨ in−1 ∨ ¬in ∨ tn ∨ ¬s

)∧
(
i1 ∨ i2 ∨ · · · ∨ in−1 ∨ in ∨ ¬else ∨ s

)∧
(
i1 ∨ i2 ∨ · · · ∨ in−1 ∨ in ∨ else ∨ ¬s

)
Note that the construction is quadratic in size and
therefore very long if-then-else chains should be
split by repeatedly substituting some post�x of the
chain by a fresh variable.

• Predicate Matches(P,R) is simply a conjunction
per-bit terms de�ned in Table 3. When encoding
into SAT, we perform trivial simpli�cation by ex-
cluding all True terms from the conjunction.

• PredicateDiffOutcome is a disjunction ofDiffRewrite
andDiffPorts. Note that truth value ofDiffPorts
can be determined in a preprocessing step and as
such we can simplify DiffOutcome to either True
or DiffRewrite.

• Predicate DiffRewrite(P,R1, R2) (which repre-
sents expression rewrite(P,R1) 6= rewrite(P,R2))
is a disjunction (over all bits of P ) of expres-
sions from Table 4 (where P [i] represent the vari-
able holding the value of i-th header bit (see
Matches() de�nition) and R[i] is 0, 1 or * de-
pending on whether rule R rewrites bit to 0, 1 or it
does not update the bit). Finally, we can perform
trivial simpli�cations on the returned disjunction
� remove all False sub-expressions as well as re-
turn simply True if one of the sub-expressions is
True.
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R1[i] R2[i] Bit rewrites are di�erent i�
0 0 False
0 1 True
1 0 True
1 1 False
* 0 P [i] (e.g., bit needs to be set to 1)
* 1 ¬P [i] (e.g., bit needs to be set to 0)
0 * P [i]
1 * ¬P [i]
* * False

Table 4: Converting DiffRewrite(P,R1, R2) to a
CNF formula. Resulting formula is a disjunction of per-
bit terms and is satis�ed if and only if R1 rewrites at
least one bit of P di�erently than R2.

17



Acknowledgments
The research leading to these results has received
funding from the European Research Council under
the European Union's Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement 259110.

18


	Introduction
	ProboScope overview
	Generating probe packets
	Probing a single forwarding rule
	Probing rules with rewrites
	Probing with drop rules
	Handling of multicast / ECMP rules
	Flow modifications and deletions
	Unacknowledgeable rules
	Multi-switch probing

	Solving constraints and packet crafting
	Abstracting packets
	Creating raw packets
	Solving constraints

	Improvements to the basic scheme
	Implementation
	Evaluation
	End to end benefits
	Controller-side performance
	Switch-side performance
	PacketIn and PacketOut processing overhead
	Number of catching rules required 

	Larger networks 

	Related work
	Conclusions
	References
	Probe generation is NP-hard
	Encoding constraints as CNF expressions

