2,872 research outputs found

    Proteome Sampling by the HLA Class I Antigen Processing Pathway

    Get PDF
    The peptide repertoire that is presented by the set of HLA class I molecules of an individual is formed by the different players of the antigen processing pathway and the stringent binding environment of the HLA class I molecules. Peptide elution studies have shown that only a subset of the human proteome is sampled by the antigen processing machinery and represented on the cell surface. In our study, we quantified the role of each factor relevant in shaping the HLA class I peptide repertoire by combining peptide elution data, in silico predictions of antigen processing and presentation, and data on gene expression and protein abundance. Our results indicate that gene expression level, protein abundance, and rate of potential binding peptides per protein have a clear impact on sampling probability. Furthermore, once a protein is available for the antigen processing machinery in sufficient amounts, C-terminal processing efficiency and binding affinity to the HLA class I molecule determine the identity of the presented peptides. Having studied the impact of each of these factors separately, we subsequently combined all factors in a logistic regression model in order to quantify their relative impact. This model demonstrated the superiority of protein abundance over gene expression level in predicting sampling probability. Being able to discriminate between sampled and non-sampled proteins to a significant degree, our approach can potentially be used to predict the sampling probability of self proteins and of pathogen-derived proteins, which is of importance for the identification of autoimmune antigens and vaccination targets

    Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.

    No full text
    HLA class I molecules reflect the health state of cells to cytotoxic T cells by presenting a repertoire of endogenously derived peptides. However, the extent to which the proteome shapes the peptidome is still largely unknown. Here we present a high-throughput mass-spectrometry-based workflow that allows stringent and accurate identification of thousands of such peptides and direct determination of binding motifs. Applying the workflow to seven cancer cell lines and primary cells, yielded more than 22,000 unique HLA peptides across different allelic binding specificities. By computing a score representing the HLA-I sampling density, we show a strong link between protein abundance and HLA-presentation (p < 0.0001). When analyzing overpresented proteins - those with at least fivefold higher density score than expected for their abundance - we noticed that they are degraded almost 3 h faster than similar but nonpresented proteins (top 20% abundance class; median half-life 20.8h versus 23.6h, p < 0.0001). This validates protein degradation as an important factor for HLA presentation. Ribosomal, mitochondrial respiratory chain, and nucleosomal proteins are particularly well presented. Taking a set of proteins associated with cancer, we compared the predicted immunogenicity of previously validated T-cell epitopes with other peptides from these proteins in our data set. The validated epitopes indeed tend to have higher immunogenic scores than the other detected HLA peptides. Remarkably, we identified five mutated peptides from a human colon cancer cell line, which have very recently been predicted to be HLA-I binders. Altogether, we demonstrate the usefulness of combining MS-analysis with immunogenesis prediction for identifying, ranking, and selecting peptides for therapeutic use

    Determination of a predictive cleavage motif for eluted major histocompatibility complex class II ligands

    Get PDF
    CD4+ T cells have a major role in regulating immune responses. They are activated by recognition of peptides mostly generated from exogenous antigens through the major histocompatibility complex (MHC) class II pathway. Identification of epitopes is important and computational prediction of epitopes is used widely to save time and resources. Although there are algorithms to predict binding affinity of peptides to MHC II molecules, no accurate methods exist to predict which ligands are generated as a result of natural antigen processing. We utilized a dataset of around 14,000 naturally processed ligands identified by mass spectrometry of peptides eluted from MHC class II expressing cells to investigate the existence of sequence signatures potentially related to the cleavage mechanisms that liberate the presented peptides from their source antigens. This analysis revealed preferred amino acids surrounding both N- and C-terminuses of ligands, indicating sequence-specific cleavage preferences. We used these cleavage motifs to develop a method for predicting naturally processed MHC II ligands, and validated that it had predictive power to identify ligands from independent studies. We further confirmed that prediction of ligands based on cleavage motifs could be combined with predictions of MHC binding, and that the combined prediction had superior performance. However, when attempting to predict CD4+ T cell epitopes, either alone or in combination with MHC binding predictions, predictions based on the cleavage motifs did not show predictive power. Given that peptides identified as epitopes based on CD4+ T cell reactivity typically do not have well-defined termini, it is possible that motifs are present but outside of the mapped epitope. Our attempts to take that into account computationally did not show any sign of an increased presence of cleavage motifs around well-characterized CD4+ T cell epitopes. While it is possible that our attempts to translate the cleavage motifs in MHC II ligand elution data into T cell epitope predictions were suboptimal, other possible explanations are that the cleavage signal is too diluted to be detected, or that elution data are enriched for ligands generated through an antigen processing and presentation pathway that is less frequently utilized for T cell epitopes.Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Jurtz, Vanessa. Technical University of Denmark; DinamarcaFil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; Argentina. Technical University of Denmark; DinamarcaFil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados Unido

    'Hotspots' of Antigen Presentation Revealed by Human Leukocyte Antigen Ligandomics for Neoantigen Prioritization.

    Get PDF
    The remarkable clinical efficacy of the immune checkpoint blockade therapies has motivated researchers to discover immunogenic epitopes and exploit them for personalized vaccines. Human leukocyte antigen (HLA)-binding peptides derived from processing and presentation of mutated proteins are one of the leading targets for T-cell recognition of cancer cells. Currently, most studies attempt to identify neoantigens based on predicted affinity to HLA molecules, but the performance of such prediction algorithms is rather poor for rare HLA class I alleles and for HLA class II. Direct identification of neoantigens by mass spectrometry (MS) is becoming feasible; however, it is not yet applicable to most patients and lacks sensitivity. In an attempt to capitalize on existing immunopeptidomics data and extract information that could complement HLA-binding prediction, we first compiled a large HLA class I and class II immunopeptidomics database across dozens of cell types and HLA allotypes and detected hotspots that are subsequences of proteins frequently presented. About 3% of the peptidome was detected in both class I and class II. Based on the gene ontology of their source proteins and the peptide's length, we propose that their processing may partake by the cellular class II presentation machinery. Our database captures the global nature of the in vivo peptidome averaged over many HLA alleles, and therefore, reflects the propensity of peptides to be presented on HLA complexes, which is complementary to the existing neoantigen prediction features such as binding affinity and stability or RNA abundance. We further introduce two immunopeptidomics MS-based features to guide prioritization of neoantigens: the number of peptides matching a protein in our database and the overlap of the predicted wild-type peptide with other peptides in our database. We show as a proof of concept that our immunopeptidomics MS-based features improved neoantigen prioritization by up to 50%. Overall, our work shows that, in addition to providing huge training data to improve the HLA binding prediction, immunopeptidomics also captures other aspects of the natural in vivo presentation that significantly improve prediction of clinically relevant neoantigens

    An Integrated Immunopeptidomics and Proteogenomics Framework to Discover Non-Canonical Targets for Cancer Immunotherapy

    Get PDF
    Un Ă©lĂ©ment essentiel de l’immunothĂ©rapie appliquĂ©e au cancer est l’identification de peptides liant les antigĂšnes des leucocytes humains (HLA) et capables d’induire une puissante rĂ©ponse T anti-tumorale. La spectromĂ©trie de masse (MS) constitue actuellement la seule mĂ©thode non-biaisĂ©e permettant une analyse dĂ©taillĂ©e du panel d’antigĂšnes susceptibles d’ĂȘtre prĂ©sentĂ©s aux lymphocytes T in vivo. L’utilisation de cette mĂ©thode en clinique requiert toutefois des amĂ©liorations significatives de la mĂ©thodologie utilisĂ©e lors de l’identification des peptides HLA. Un consortium multidisciplinaire de chercheurs a rĂ©cemment mis en lumiĂšre les problĂšmes actuellement liĂ©s Ă  l’utilisation de la MS en immunopeptidomique, soulignant le besoin de dĂ©velopper de nouvelles mĂ©thodes et mettant en Ă©vidence le dĂ©fi que reprĂ©sente la standardisation de l’immuno-purification des molĂ©cules HLA. La premiĂšre partie de cette thĂšse vise Ă  optimiser les mĂ©thodes expĂ©rimentales permettant l’extraction des peptides apprĂȘtĂ©s aux HLA. L’optimisation de la mĂ©thodologie de base a permis des amĂ©liorations notables en terme de dĂ©bit, de reproductibilitĂ©, de sensibilitĂ© et a permis une purification sĂ©quentielle des molĂ©cules de HLA de classe I de classe II ainsi que de leurs peptides, Ă  partir de lignĂ©es cellulaires ou de tissus. En comparaison avec les mĂ©thodes existantes, ce protocole comprend moins d’étapes et permet de limiter la manipulation des Ă©chantillons ainsi que le temps de purification. Cette mĂ©thode, pour les peptides HLA extraits, a permis d’obtenir des taux de reproductibilitĂ© et de sensibilitĂ© sans prĂ©cĂ©dents (corrĂ©lations de Pearson jusqu'Ă  0,98 et 0,97 pour les HLA de classe I et de classe II, respectivement). De plus, la faisabilitĂ© d’études comparatives robustes a Ă©tĂ© dĂ©montrĂ©e Ă  partir d’une lignĂ©e cellulaire de cancer de l’ovaire, traitĂ©e Ă  l'interfĂ©ron gamma. En effet, cette nouvelle mĂ©thode a mis en Ă©vidence des changements quantitatifs et qualitatifs du catalogue de peptides prĂ©sentĂ©s aux HLA. Les rĂ©sultats obtenus ont mis en avant une augmentation de la prĂ©sentation de longs ligands chymotryptiques de classe I. Ce phĂ©nomĂšne est probablement liĂ© Ă  la modulation de la machinerie de traitement et de prĂ©sentation des antigĂšnes. Dans cette premiĂšre partie de thĂšse, nous avons dĂ©veloppĂ© une mĂ©thodologie robuste et rationalisĂ©e, facilitant la purification des HLA et pouvant ĂȘtre appliquĂ©e en recherche fondamentale et translationnelle. Bien que les nĂ©oantigĂšnes reprĂ©sentent une cible attractive, des Ă©tudes rĂ©centes ont mis en Ă©vidence l’existence des antigĂšnes non canoniques. Ces antigĂšnes tumoraux, bien que non mutĂ©s, sont aussi spĂ©cifiques aux cellules cancĂ©reuses et semblent jouer un rĂŽle important dans l’immunitĂ© anti-tumorale. La seconde partie de cette thĂšse a pour objectif le dĂ©veloppement d’une mĂ©thodologie d’analyse permettant l’identification ainsi que la validation de ces antigĂšnes particuliers. Les antigĂšnes non canoniques sont d'origine prĂ©sumĂ©e non codante et ne sont, par consĂ©quent, que rarement inclus dans les bases de donnĂ©es des sĂ©quences de protĂ©ines de rĂ©fĂ©rence. De ce fait, ils ne sont gĂ©nĂ©ralement pas pris en compte lors des recherches de MS utilisant de telles bases de donnĂ©es. Afin de palier ce problĂšme et de permettre leur identification par MS, le sĂ©quençage de l'exome entier, le sĂ©quençage de l'ARN sur une population de cellules et sur des cellules uniques, ainsi que le profilage des ribosomes ont Ă©tĂ© intĂ©grĂ©s aux donnĂ©es d’immunopeptidomique. Ainsi, NewAnce, un programme informatique permettant de combiner les donnĂ©es de deux outils de recherche MS en tandem, a Ă©tĂ© dĂ©veloppĂ© afin de calculer le taux d’antigĂšnes non canoniques identifiĂ©s comme faux positifs. L’utilisation de NewAnce sur des lignĂ©es cellulaires provenant de patients atteints de mĂ©lanomes ainsi que sur des biopsies de cancer du poumon a permis l’identification prĂ©cise de centaines de peptides HLA non classiques, spĂ©cifiques aux cellules tumorales et communs Ă  plusieurs patients. Le niveau de confirmation des peptides non canoniques a ensuite Ă©tĂ© testĂ© Ă  l’aide d’une approche de MS ciblĂ©e. Les peptides rĂ©sultant de ces analyses ont Ă©tĂ© minutieusement validĂ©s pour un des Ă©chantillons de mĂ©lanome disponibles. De plus, le profilage des ribosomes a rĂ©vĂ©lĂ© que les nouveaux cadres de lecture ouverts, desquels rĂ©sultent certains de ces peptides non classiques, sont activement traduits. L’évaluation de l’immunogenicitĂ© de ces peptides a Ă©tĂ© Ă©valuĂ©e avec des cellules immunitaires autologues et a rĂ©vĂ©lĂ© un Ă©pitope immunogĂšne non canonique, provenant d'un cadre de lecture ouvert alternatif du gĂšne ABCB5, un marqueur des cellules souches du mĂ©lanome. De maniĂšre globale, les rĂ©sultats obtenus au cours de cette thĂšse soulignent la possibilitĂ© d’inclure ce type d’analyse de proteogĂ©nomique dans un protocole d’identification de nĂ©oantigĂšnes existant. Cela permettrait d’inclure et prioriser des antigĂšnes tumoraux non classiques et de proposer aux patients en impasse thĂ©rapeutique des immunothĂ©rapies anti-tumorales personnalisĂ©es. -- A central factor to the development of cancer immunotherapy is the identification of clinically relevant human leukocyte antigen (HLA)-bound peptides that elicit potent anti-tumor T cell responses. Mass spectrometry (MS) is the only unbiased technique that captures the in vivo presented HLA repertoire. However, significant improvements in MS-based HLA peptide discovery methodologies are necessary to enable the smooth transition to the clinic. Recently, a consortium of multidisciplinary researchers presented current issues in clinical MS-based immunopeptidomics, highlighting method development and standardization challenges in HLA immunoaffinity purification. The first part of this thesis addresses improvements to the experimental method for HLA peptide extraction. The approach was optimized with several new developments, facilitating high-throughput, reproducible, scalable, and sensitive sequential immunoaffinity purification of HLA class I and class II peptides from cell lines and tissue samples. The method showed increased speed, and reduced sample handling when compared to previous methods. Unprecedented depth and high reproducibility were achieved for the obtained HLA peptides (Pearson correlations up to 0.98 and 0.97 for HLA class I and HLA class II, respectively). Additionally, the feasibility of performing robust comparative studies was demonstrated on an ovarian cancer cell line treated with interferon gamma. Both quantitative and qualitative changes were detected in the cancer HLA repertoire upon treatment. Specifically, a yet unreported and interesting phenomenon was the upregulated presentation of longer and chymotryptic-like HLA class I ligands, likely related to the modulation of the antigen processing and presentation machinery. Taken together, a robust and streamlined framework was built that facilitates peptide purification and its application in basic and translational research. Furthermore, recent studies have shed light that, along with the highly attractive mutated neoantigens, other non-mutated, yet tumor-specific, non-canonical antigens may also play an important role in anti-tumor immunity. Non-canonical antigens are of presumed non-coding origin and not commonly included in protein reference databases, and are therefore typically disregarded in database-dependent MS searches. The second part of this thesis develops an analytical workflow enabling the confident identification and validation of non- canonical tumor antigens. For this purpose, whole exome sequencing, bulk and single-cell RNA sequencing and ribosome profiling were integrated with MS-based immunopeptidomics for personalized non-canonical HLA peptide discovery. A computational module called NewAnce was designed, which combines the results of two tandem MS search tools and implements group-specific false discovery rate calculations to control the error specifically for the non-canonical peptide group. When applied to patient-derived melanoma cell lines and paired lung cancer and normal tissues, NewAnce resulted in the accurate identification of hundreds of shared and tumor-specific non-canonical HLA peptides. Next, the level of non-canonical peptide confirmation was tested in a targeted MS-based approach, and selected non-canonical peptides were extensively validated for one melanoma sample. Furthermore, the novel open reading frames that generate a selection of these non- canonical peptides were found to be actively translated by ribosome profiling. Importantly, these peptides were assessed with autologous immune cells and a non-canonical immunogenic epitope was discovered from an alternative open reading frame of melanoma stem cell marker gene ABCB5. This thesis concludes by highlighting the possibility of incorporating the proteogenomics pipeline into existing neoantigen discovery engines in order to prioritize tumor-specific non-canonical peptides for cancer immunotherapy. -- Maladie trĂšs hĂ©tĂ©rogĂšne et multifactorielle, le cancer reprĂ©sente Ă  ce jour la seconde cause de dĂ©cĂšs dans le monde. Bien que le systĂšme immunitaire soit capable de reconnaĂźtre puis d’éliminer les cellules cancĂ©reuses, ces derniĂšres peuvent Ă  leur tour s’adapter et accumuler des mutations leur permettant d’échapper Ă  cette reconnaissance. L’immunothĂ©rapie anti-tumorale dĂ©montre le rĂŽle clĂ© de l’immunitĂ© dans l’éradication des tumeurs. Cependant, ces thĂ©rapies prometteuses ne sont efficaces que chez une petite proportion des patients traitĂ©s. Une Ă©tape majeure dans l’établissement d’une rĂ©ponse immunitaire anti-tumorale est la reconnaissance d’antigĂšnes associĂ©s aux tumeurs. Des Ă©tudes rĂ©centes ont montrĂ© que les antigĂšnes tumoraux issus de rĂ©gions non-codantes du gĂ©nome (antigĂšnes non-canoniques) peuvent jouer un rĂŽle clĂ© dans l’induction de rĂ©ponses immunitaires. Ainsi, l’identification de ces antigĂšnes tumoraux particuliers permettrait de guider le dĂ©veloppement d’immunothĂ©rapies anti-cancĂ©reuses personnalisĂ©es telles que la vaccination ou encore le transfert adoptif de lymphocytes T reconnaissant ces cibles. La spectromĂ©trie de masse (MS) est une technique non biaisĂ©e permettant l’identification et l’analyse du rĂ©pertoire des antigĂšnes prĂ©sentĂ©s in vivo. Cependant, cette technique nĂ©cessite d’ĂȘtre optimisĂ©e et standardisĂ©e afin d’ĂȘtre utilisĂ©e en clinique. Ainsi, la premiĂšre partie de ces travaux de thĂšse a Ă©tĂ© dĂ©diĂ©e Ă  l’optimisation expĂ©rimentale de cette mĂ©thode Ă  partir d’échantillons de tissus et de lignĂ©es cellulaires. En comparaison avec les protocoles standards, cette technique permet une couverture plus complĂšte, rapide et reproductible du rĂ©pertoire de peptides apprĂȘtĂ©s aux HLA. La seconde partie de cette thĂšse a Ă©tĂ© consacrĂ©e au dĂ©veloppement d’une mĂ©thode permettant l’identification d’antigĂšnes tumoraux non-canoniques via le sĂ©quençage d’ARN cellulaire, ribosomique et l’utilisation de notre mĂ©thode d’immunopeptidomique optimisĂ©e. Afin de contrĂŽler l’identification de faux positifs, nous avons Ă©laborĂ© un nouveau module computationnel. Ce module a permis l’identification de plusieurs centaines de peptides-HLA non-canoniques, partagĂ©s et spĂ©cifiques au mĂ©lanome et au cancer du poumon. Le sĂ©quençage des ARN ribosomiques a mis en Ă©vidence la traduction de nouveaux cadre ouverts de lecture desquels sont traduits de nouveaux peptides non-canoniques. Cette technique nous a permis de mettre en Ă©vidence un Ă©pitope immunogĂšne issu du gĂšne ABCB5, un marqueur de cellules souches cancĂ©reuses prĂ©alablement identifiĂ© dans le mĂ©lanome. De maniĂšre globale, ces travaux de thĂšse, alliant immunopeptidomique et protĂ©ogĂ©nomique, ont permis la mise au point d’une mĂ©thode expĂ©rimentale permettant une meilleure identification d’antigĂšnes tumoraux. Nous espĂ©rons que ces rĂ©sultats amĂ©lioreront l’identification et la priorisation de cibles pertinentes pour l’immunothĂ©rapie anti-cancĂ©reuse en clinique

    Computational characterization of the peptidome in transporter associated with antigen processing (TAP)-deficient cells

    Get PDF
    The transporter associated with antigen processing (TAP) is a key element of the major histocompatibility complex (MHC) class I antigen processing and presentation pathway. Nonfunctional TAP complexes impair the translocation of cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen. This drastic reduction in the available peptide repertoire leads to a significant decrease in MHC class I cell surface expression. Using mass spectrometry, different studies have analyzed the cellular MHC class I ligandome from TAP-deficient cells, but the analysis of the parental proteins, the source of these ligands, still deserves an in-depth analysis. In the present report, several bioinformatics protocols were applied to investigate the nature of parental proteins for the previously identified TAP-independent MHC class I ligands. Antigen processing in TAP-deficient cells mainly focused on small, abundant or highly integral transmembrane proteins of the cellular proteome. This process involved abundant proteins of the central RNA metabolism. In addition, TAP-independent ligands were preferentially cleaved from the N- and C-terminal ends with respect to the central regions of the parental proteins. The abundance of glycine, proline and aromatic residues in the C-terminal sequences from TAP-independently processed proteins allows the accessibility and specificity required for the proteolytic activities that generates the TAP-independent ligandome. This limited proteolytic activity towards a set of preferred proteins in a TAP-negative environment would therefore suffice to promote the survival of TAP-deficient individuals.This work was supported by the Spanish Ministry of Economy (MINECO/FEDER) grant SAF2014-58052 and Acción Estratégica en Salud 2019 to DL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptS

    Expanding the immune self : impact of non-canonical translation on the repertoire of MHC I-associated peptides

    Full text link
    Les molĂ©cules du complexe majeur d’histocompatibilitĂ© de classe I (MHC I) sont des glycoprotĂ©ines de surface exprimĂ©es par la majoritĂ© des cellules nuclĂ©Ă©s de notre organisme. Ces molĂ©cules servent Ă  exposer une vue intĂ©grative de l’état interne de nos cellules (soi immunitaire) via la prĂ©sentation de courts peptides (MAPs) gĂ©nĂ©rĂ©s lors de la dĂ©gradation des protĂ©ines cytosoliques par le protĂ©asome. Le rĂ©pertoire des MAPs de chaque cellule, vĂ©ritable carte d’identitĂ© peptidique, est constamment passĂ© en revue par nos lymphocytes T CD8+, cellules centrales du systĂšme immunitaire, afin de dĂ©busquer et d’éliminer toute cellule anormale, e.g., celles prĂ©sentant des MAPs d’origine virale ou tumorale (TSAs). Au vu du nombre grandissant d’articles dĂ©montrant que des ARNs autres que les ARNs messagers peuvent ĂȘtre traduits, nous avons dĂ©cidĂ© d’évaluer l’impact de ces mĂ©canismes de traduction non-canonique sur le rĂ©pertoire des MAPs prĂ©sentĂ©s par des cellules B. En dĂ©veloppant une approche protĂ©ogĂ©nomique, i.e., combinant spectromĂ©trie de masse et sĂ©quençage d’ARN Ă  haut-dĂ©bit, nous avons pu dĂ©montrer qu’environ 10 % des MAPs prĂ©sentĂ©s par nos cellules B dĂ©rivent d’évĂšnements de traduction non-canonique incluant (i) la traduction d’ARNs messagers dans un cadre de lecture alternatif ou (ii) la traduction de rĂ©gions ou ARNs supposĂ©s non-codants. L’analyse subsĂ©quente des caractĂ©ristiques de ces MAPs dits « cryptiques » suggĂšre que leur biogenĂšse diffĂšre de celle des MAPs conventionnels, les MAPs cryptiques Ă©tant principalement encodĂ©s par des ARNs instables produisant de courtes protĂ©ines dont la dĂ©gradation ne semble pas exiger l’intervention du protĂ©asome. Sachant que la dĂ©mĂ©thylation globale du gĂ©nome des cellules cancĂ©reuses permet l’expression d’un plus grand bassin d’ARNs non-codants, nous avons supposĂ© que ces cellules pourraient prĂ©senter de nombreux MAPs (et TSAs) cryptiques. En adaptant notre approche protĂ©ogĂ©nomique, nous avons pu analyser le rĂ©pertoire des MAPs de cellules cancĂ©reuses, incluant celui de deux lignĂ©es tumorales de souris (EL4 et CT26) et sept Ă©chantillons primaires humains (quatre leucĂ©mies aigues lymphoblastiques B et trois biopsies de cancer du poumon). Cette analyse nous a permis de dĂ©couvrir qu’environ 90% des TSAs sont des TSAs cryptiques. Ayant observĂ© que la plupart de ces TSAs dĂ©rivent de sĂ©quences normales dont l’expression est restreinte aux cellules tumorales, comme les retroĂ©lĂ©ments endogĂšnes, il est plausible que ces TSAs soient partagĂ©s par plusieurs patients. Enfin, nos Ă©tudes chez la souris nous ont permis de dĂ©montrer qu’au moins deux facteurs influencent positivement le potentiel protectif d’un TSA in vivo : l’expression de cet antigĂšne par les cellules cancĂ©reuses et la frĂ©quence des lymphocytes T capables de le reconnaĂźtre. En conclusion, le recours Ă  la protĂ©ogĂ©nomique pour analyser les MAPs prĂ©sentĂ©s par les cellules normales et cancĂ©reuses nous a permis de dĂ©montrer que les MAPs cryptiques contribuent significativement au bassin de peptides constituant le soi immunitaire et qu’ils permettent aux lymphocytes T CD8+ d’effectuer une surveillance immunitaire plus efficace.On their surface, nucleated cells present major histocompatibility complex class I (MHC I) molecules in complex with short peptides, that we will refer to as MHC I-associated peptides (MAPs). These MAPs derive from the degradation of cytosolic proteins by the proteasome and provide an integrative view of the inner state of cells to CD8+ T cells, which can, in turn, eliminate abnormal cells, e.g., those presenting viral MAPs or tumor-specific antigens (TSAs). With the growing body of evidence suggesting that translation does occur outside of protein-coding transcripts, we tried to evaluate the impact of non-canonical translation on the repertoire of MAPs. Combining RNA-sequencing and mass spectrometry to analyze the MAP repertoire of B-lymphoblastoid cell lines, we uncovered that ~ 10 % of the MAP repertoire derives from such non-canonical translation events, including (i) the out-of-frame translation of protein-coding transcripts or (ii) the translation of non-coding regions (UTRs, introns, etc.) or transcripts (antisense, pseudogene, etc.). Interestingly, our data suggest that the biogenesis of cryptic and conventional MAPs differs, as cryptic MAPs derive from unstable transcripts generating short proteins that might be degraded in a proteasome-independent fashion. Because the global DNA hypomethylation observed in cancer cells tend to de-repress non-coding transcripts, we developed another proteogenomic approach to probe the cryptic MAP repertoire of two murine cancer cell lines (EL4 and CT26) and seven humor primary tumor samples (four B-lineage acute lymphoblastic leukemias and three lung tumor biopsies). This second analysis revealed that ~ 90% of TSAs are cryptic TSAs. Interestingly, most of those TSAs derived from cancer-restricted yet non-mutated sequences, such as endogenous retroelements, thereby suggesting that such TSAs could be shared between patients. Lastly, our validation study in mice demonstrated that at least two parameters can influence the in vivo protective effect of TSAs, namely TSA expression in cancer cells and the frequency of TSA-specific T cells. Altogether, our proteogenomic studies on the MAP repertoire of normal and cancer cells demonstrate that cryptic MAPs significantly expand the immune self and, consequently, the scope of CD8+ T cell immunosurveillance

    Deciphering the Landscape of HLA class-I and class-II Phosphopeptidomes leads to Robust Predictions of Phosphorylated HLA ligands

    Get PDF
    Activation of CD8+ and CD4+ T cells through recognition of antigens presented by class I and class II human leukocyte antigen (HLA-I/HLA-II) molecules is crucial for immune responses against infected or malignant cells. In cancer, neoantigens can arise from cancer-specific genomic or proteomic alterations, including mutations and aberrant post-translational modification, such as phosphorylation. Identifying HLA ligands remains a challenging task that requires either heavy experimental work for in vivo identification or optimized bioinformatics tools for accurate predictions. While much work has been done on unmodified HLA-I and HLA-II ligands, only little is known about the presentation of phosphorylated peptides, in particular by HLA-II molecules. Moreover, none of the existing in silico models for predictions of HLA – ligand interactions are specifically trained on phosphorylated ligands. This thesis presents in-depth analyses of phosphorylated HLA-I and HLA-II ligands and introduces predictors for HLA – phosphorylated ligand interactions. The first part of this thesis comprises the curation of phosphorylated HLA-I ligands from several Mass Spectrometry – based peptidomics studies, identifying more than 2,000 unique phosphorylated peptides covering 72 HLA-I alleles. Furthermore, it was see that phosphorylated HLA-I ligands are shaped by a combination of HLA-I binding motifs, intrinsic HLA-I binding properties of phosphorylated ligands and kinase motifs. Combining phosphorylated HLA-I ligands with unmodified data for training a prediction model resulted in improved predictions of phosphorylated HLA-I ligands. The second part addresses phosphorylated HLA-II ligands presented by professional antigen presenting cells for CD4+ T cell activation. MS – based HLA-II peptidomics data resulted in the identification of binding motifs for more than 30 HLA-II alleles, comprising 2,473 unique phosphorylated ligands. These were used to retrain a predictor for HLA-II - ligand interactions and showed improved accuracy for phosphorylated ligands. The analysis of the phosphorylated HLA-II peptidomes revealed a more diverse repertoire of kinases responsible for the phosphorylation of peptides presented on HLA-II compared to HLA-I. In summary, the current work presents in-depth studies on phosphorylated HLA ligands as well as bioinformatics tools for the predictions of phosphorylated peptide interactions with HLA-I and HLA-II molecules. -- L'activation des cellules T CD8+ et CD4+ suite Ă  la reconnaissance d’antigĂšnes prĂ©sentĂ©s par les antigĂšnes des leucocytes humains de classe I et II (HLA-I/HLA-II) est cruciale pour les rĂ©ponses immunitaires contre les cellules infectĂ©es ou cancĂ©reuses. Dans le cancer, les nĂ©oantigĂšnes peuvent provenir d'altĂ©rations gĂ©nomiques ou protĂ©omiques spĂ©cifiques au cancer, par exemple des mutations ou des modifications post-traductionnelles aberrantes, telles que la phosphorylation. L'identification des ligands HLA reste une tĂąche difficile qui nĂ©cessite soit un travail expĂ©rimental lourd pour l'identification in vivo, soit des outils bio-informatiques optimisĂ©s pour des prĂ©dictions prĂ©cises. Si beaucoup de travail a Ă©tĂ© rĂ©alisĂ© sur les ligands HLA-I et HLA-II non modifiĂ©s, on ne sait que peu de choses sur la prĂ©sentation des peptides phosphorylĂ©s, en particulier par les molĂ©cules HLA-II. De plus, aucun des modĂšles in silico existants pour la prĂ©diction des interactions HLA - ligands n'est spĂ©cifiquement entraĂźnĂ© sur les ligands phosphorylĂ©s. Cette thĂšse prĂ©sente des analyses dĂ©taillĂ©es sur les ligands HLA-I et HLA-II phosphorylĂ©s et introduit des prĂ©dicteurs pour les interactions HLA - ligands phosphorylĂ©s. La premiĂšre partie de cette thĂšse comprend la curation des ligands HLA-I phosphorylĂ©s provenant de plusieurs Ă©tudes peptidiques de spectromĂ©trie de masse, identifiant plus de 2’000 peptides phosphorylĂ©s uniques couvrant 72 allĂšles HLA-I. De plus, il a Ă©tĂ© constatĂ© que les ligands HLA-I phosphorylĂ©s sont obtenus par une combinaison de motifs de liaison aux HLA-I, de propriĂ©tĂ©s intrinsĂšques de liaison entre les HLA-I et les ligands phosphorylĂ©s et de motifs de kinases. La combinaison de ces ligands HLA-I phosphorylĂ©s avec des donnĂ©es de ligands non modifiĂ©s pour l’entraĂźnement du prĂ©dicteur a permis d'amĂ©liorer les prĂ©dictions des ligands HLA-I phosphorylĂ©s. La deuxiĂšme partie de cette thĂšse porte sur les ligands HLA-II phosphorylĂ©s qui sont prĂ©sentĂ©s par des cellules prĂ©sentatrices d'antigĂšnes professionnelles pour l'activation des lymphocytes T CD4+. Les donnĂ©es peptidiques de HLA-II basĂ©es sur la spectromĂ©trie de masse ont permis d'identifier des motifs de liaison pour plus de 30 allĂšles HLA-II, comprenant 2’473 ligands phosphorylĂ©s uniques. Ces motifs ont Ă©tĂ© utilisĂ©s pour re-entraĂźner un prĂ©dicteur des interactions entre les ligands et HLA-II qui a montrĂ© une meilleure prĂ©cision pour les ligands phosphorylĂ©s. En outre, l'analyse du peptidome HLA-II phosphorylĂ© a rĂ©vĂ©lĂ© un rĂ©pertoire plus diversifiĂ© de kinases responsables de la phosphorylation des peptides prĂ©sentĂ©s par les HLA-II par rapport aux HLA-I. En rĂ©sumĂ©, cette thĂšse prĂ©sente des Ă©tudes dĂ©taillĂ©es sur les ligands HLA phosphorylĂ©s ainsi que des outils bio-informatiques pour la prĂ©diction des interactions des peptides phosphorylĂ©s avec les molĂ©cules HLA-I et HLA-II

    Predicting Antigen Presentation-What Could We Learn From a Million Peptides?

    Get PDF
    Antigen presentation lies at the heart of immune recognition of infected or malignant cells. For this reason, important efforts have been made to predict which peptides are more likely to bind and be presented by the human leukocyte antigen (HLA) complex at the surface of cells. These predictions have become even more important with the advent of next-generation sequencing technologies that enable researchers and clinicians to rapidly determine the sequences of pathogens (and their multiple variants) or identify non-synonymous genetic alterations in cancer cells. Here, we review recent advances in predicting HLA binding and antigen presentation in human cells. We argue that the very large amount of high-quality mass spectrometry data of eluted (mainly self) HLA ligands generated in the last few years provides unprecedented opportunities to improve our ability to predict antigen presentation and learn new properties of HLA molecules, as demonstrated in many recent studies of naturally presented HLA-I ligands. Although major challenges still lie on the road toward the ultimate goal of predicting immunogenicity, these experimental and computational developments will facilitate screening of putative epitopes, which may eventually help decipher the rules governing T cell recognition

    Molecular Characterization of the Onset and Progression of Colitis in Inoculated Interleukin-10 Gene-Deficient Mice: A Role for PPARα

    Get PDF
    The interleukin-10 gene-deficient (Il10−/−) mouse is a model of human inflammatory bowel disease and Ppara has been identified as one of the key genes involved in regulation of colitis in the bacterially inoculated Il10−/− model. The aims were to (1) characterize colitis onset and progression using a histopathological, transcriptomic, and proteomic approach and (2) investigate links between PPARα and IL10 using gene network analysis. Bacterial inoculation resulted in severe colitis in Il10−/− mice from 10 to 12 weeks of age. Innate and adaptive immune responses showed differences in gene expression relating to colitis severity. Actin cytoskeleton dynamics, innate immunity, and apoptosis-linked gene and protein expression data suggested a delayed remodeling process in 12-week-old Il10−/− mice. Gene expression changes in 12-week-old Il10−/− mice were related to PPARα signaling likely to control colitis, but how PPARα activation might regulate intestinal IL10 production remains to be determined
    • 

    corecore