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Summary 

Activation of CD8+ and CD4+ T cells through recognition of antigens presented by 

class I and class II human leukocyte antigen (HLA-I/HLA-II) molecules is crucial for 

immune responses against infected or malignant cells. In cancer, neoantigens can arise 

from cancer-specific genomic or proteomic alterations, including mutations and 

aberrant post-translational modification, such as phosphorylation. Identifying HLA 

ligands remains a challenging task that requires either heavy experimental work for in 

vivo identification or optimized bioinformatics tools for accurate predictions. While 

much work has been done on unmodified HLA-I and HLA-II ligands, only little is known 

about the presentation of phosphorylated peptides, in particular by HLA-II molecules. 

Moreover, none of the existing in silico models for predictions of HLA – ligand 

interactions are specifically trained on phosphorylated ligands.  

This thesis presents in-depth analyses of phosphorylated HLA-I and HLA-II ligands and 

introduces predictors for HLA – phosphorylated ligand interactions. The first part of this 

thesis comprises the curation of phosphorylated HLA-I ligands from several Mass 

Spectrometry – based peptidomics studies, identifying more than 2,000 unique 

phosphorylated peptides covering 72 HLA-I alleles. Furthermore, it was see that 

phosphorylated HLA-I ligands are shaped by a combination of HLA-I binding motifs, 

intrinsic HLA-I binding properties of phosphorylated ligands and kinase motifs. 

Combining phosphorylated HLA-I ligands with unmodified data for training a prediction 

model resulted in improved predictions of phosphorylated HLA-I ligands.  

The second part addresses phosphorylated HLA-II ligands presented by professional 

antigen presenting cells for CD4+ T cell activation. MS – based HLA-II peptidomics data 

resulted in the identification of binding motifs for more than 30 HLA-II alleles, 

comprising 2,473 unique phosphorylated ligands. These were used to retrain a 

predictor for HLA-II - ligand interactions and showed improved accuracy for 

phosphorylated ligands. The analysis of the phosphorylated HLA-II peptidomes 

revealed a more diverse repertoire of kinases responsible for the phosphorylation of 

peptides presented on HLA-II compared to HLA-I.  

In summary, the current work presents in-depth studies on phosphorylated HLA ligands 

as well as bioinformatics tools for the predictions of phosphorylated peptide 

interactions with HLA-I and HLA-II molecules.  
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Resumé 

L'activation des cellules T CD8+ et CD4+ suite à la reconnaissance d’antigènes 

présentés par les antigènes des leucocytes humains de classe I et II (HLA-I/HLA-II) est 

cruciale pour les réponses immunitaires contre les cellules infectées ou cancéreuses. 

Dans le cancer, les néoantigènes peuvent provenir d'altérations génomiques ou 

protéomiques spécifiques au cancer, par exemple des mutations ou des modifications 

post-traductionnelles aberrantes, telles que la phosphorylation. L'identification des 

ligands HLA reste une tâche difficile qui nécessite soit un travail expérimental lourd 

pour l'identification in vivo, soit des outils bio-informatiques optimisés pour des 

prédictions précises. Si beaucoup de travail a été réalisé sur les ligands HLA-I et HLA-II 

non modifiés, on ne sait que peu de choses sur la présentation des peptides 

phosphorylés, en particulier par les molécules HLA-II. De plus, aucun des modèles in 

silico existants pour la prédiction des interactions HLA - ligands n'est spécifiquement 

entraîné sur les ligands phosphorylés.  

Cette thèse présente des analyses détaillées sur les ligands HLA-I et HLA-II 

phosphorylés et introduit des prédicteurs pour les interactions HLA - ligands 

phosphorylés. La première partie de cette thèse comprend la curation des ligands HLA-I 

phosphorylés provenant de plusieurs études peptidiques de spectrométrie de masse, 

identifiant plus de 2’000 peptides phosphorylés uniques couvrant 72 allèles HLA-I. De 

plus, il a été constaté que les ligands HLA-I phosphorylés sont obtenus par une 

combinaison de motifs de liaison aux HLA-I, de propriétés intrinsèques de liaison entre 

les HLA-I et les ligands phosphorylés et de motifs de kinases. La combinaison de ces 

ligands HLA-I phosphorylés avec des données de ligands non modifiés pour 

l’entraînement du prédicteur a permis d'améliorer les prédictions des ligands HLA-I 

phosphorylés.  

La deuxième partie de cette thèse porte sur les ligands HLA-II phosphorylés qui sont 

présentés par des cellules présentatrices d'antigènes professionnelles pour l'activation 

des lymphocytes T CD4+. Les données peptidiques de HLA-II basées sur la 

spectrométrie de masse ont permis d'identifier des motifs de liaison pour plus de 30 

allèles HLA-II, comprenant 2’473 ligands phosphorylés uniques. Ces motifs ont été 

utilisés pour re-entraîner un prédicteur des interactions entre les ligands et HLA-II qui a 

montré une meilleure précision pour les ligands phosphorylés. En outre, l'analyse du 

peptidome HLA-II phosphorylé a révélé un répertoire plus diversifié de kinases 

responsables de la phosphorylation des peptides présentés par les HLA-II par rapport 

aux HLA-I.  

En résumé, cette thèse présente des études détaillées sur les ligands HLA phosphorylés 

ainsi que des outils bio-informatiques pour la prédiction des interactions des peptides 

phosphorylés avec les molécules HLA-I et HLA-II.  
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Chapter 1 Introduction 

The work presented in this thesis aims to contribute to the advancements of epitope 

predictions for vaccine and immunotherapy development by combining existing 

prediction methods with a new approach of including phosphorylated 

immunopeptidomics data. In this first chapter, the immune system is briefly introduced 

(Section 1.1), followed by a detailed discussion of antigen presentation and cancer 

antigens (Section 1.2). Thereafter, an overview over existing computational tools for 

epitope prediction is provided, including the most recent advances in the field (Section 

1.3). Lastly, post-translational modification, in particular phosphorylation, and its 

connection to malignancies, as well as previous studies on antigen presentation and 

recognition of phosphorylated peptides are discussed (Section 1.4). The introduction 

concludes with a detailed description of the aims and objectives of this thesis (Section 

1.5). 

1.1 Immune System 
The human body has developed efficient mechanisms to protect itself against intrinsic 

and extrinsic threats. Intruding pathogens or arising malignancies can be detected and 

eliminated by the immune system, which is composed of different cell types and 

molecules. Immune cells emerge from hematopoietic stem cells developed in the bone 

marrow and further differentiate into myeloid and lymphoid progenitors. Myeloid 

progenitor cells produce among others neutrophils and monocytes, the latter further 

differentiating into dendritic cells (DC) and macrophages. B cells, natural killer (NK) cells, 

and T cell progenitors are derived from the lymphoid lineage and T cell progenitors can 

further develop memory, cytotoxic, and helper T cells. Matured immune cells from the 

myeloid and lymphoid lineages are released into the blood or lymphatic system for 

immune surveillance and potential immune responses in periphery. The immune system 

can be divided into the innate and the adaptive immune system (extensively reviewed in 

(1)). Innate immunity provides a first line of defense for the human body against 

potential pathogens. Skin and other epithelial tissues, such as lung or gut epithelium 

with mucosal surfaces, act as a first physical barrier for pathogens (2). Pattern 

recognition receptors (PRRs) found in different subcellular compartments, including 

cellular and endosomal membranes, as well as in the bloodstream and interstitial fluids, 
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can recognize pathogen-associated molecular patterns frequently conserved in 

pathogens. Recognition of PRRs causes activation of different immune cells, such as 

dendritic cells and granulocytes, which induce phagocytosis of the pathogen as well as 

inflammation (3, 4). The innate immune response is fast but unspecific. Contrarily, 

adaptive immunity is a slow, but highly pathogen-specific response. The adaptive 

immune response is initiated through a process called antigen presentation which 

activates a response cascade involving B and T cells targeting the infected cells. 

Recognition of presented antigens by B cell receptors (BCRs) initiates further 

differentiation of B cells into plasma cells, producing and releasing antigen-specific 

antibodies (5). T cell receptors (TCRs) on the surface of T cells can directly interact with 

antigens and produce antigen-specific TCRs. Two types of T cells are active in antigen 

recognition expressing different cluster of differentiation (CD) co-receptors alongside 

the TCRs. Cytotoxic T cells, characterized by their CD8 co-receptors (alias CD8+ T cell), 

are responsible for elimination of infected cells, and helper T cells with CD4 co-

receptors (alias CD4+ T cell) play a role in the activation of other immune cells such as 

CD8+ T cells or macrophages (1, 6, 7). It was also observed that PRRs recognizing 

pathogen-associated molecular patterns can release signals controlling adaptive 

immunity (8). Furthermore, the adaptive immune system can develop immunological 

memory after first exposure to a pathogen through memory B and T cells, providing a 

fast response to re-infection with a previously seen pathogen (9).  

1.2 Antigen Presentation 
Antigen presentation is a crucial part in the fight against infected or malignant cells 

whereby short protein fragments are presented on the cell surface for T cell recognition 

(Section 1.2.1). The pool of presented peptides may be influence by the pathological 

state of a cell such as viral infections or malignancies like cancer (1.2.2).  

1.2.1 Human Leukocyte Antigen System 
Proteins of the major histocompatibility complex (MHC) are among the most important 

players in the protection against pathogens and malignancies. They present short 

peptide sequences, so-called antigens, on the cell surface to surrounding immune cells. 

T cells can recognize if a cell presents non-self or self but immunogenic antigens and 

subsequently initiate an immune response to effectively eliminate the infected or 

malignant cell. In contrast, healthy cells show a reflection of the proteome on the cell 
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surface and in healthy tissue T cells are tolerant towards such self-peptides (10). In 

humans, MHC is encoded by genes of the human leukocyte antigen (HLA) system. 

There are two classes of HLA molecules responsible for antigen presentation, HLA class 

I (HLA-I) and class II (HLA-II).  HLA-I molecules are encoded by three genes positioned 

on chromosome 6 (HLA-A, -B and -C) and cells are able to express up to six different 

HLA-I alleles. It was observed that HLA-C alleles are expressed at lower levels than HLA-

A and HLA-B alleles, due to several reasons including (post-)transcriptional control (11, 

12). Furthermore, genes coding for HLA-I are one of the most polymorphic genes in the 

human genome, resulting in a big variety of alleles for each gene and producing a huge 

variability within the human population. Up to now, approximately 20,000 alleles coding 

for more than 12,300 proteins were identified (13). HLA-II molecules are encoded by 

three pairs of genes on chromosome 6 (HLA-DPA/B, HLA-DQA/B, and HLA-DRA/B), 

which form heterodimers and can produce up to 12 different alleles. Polymorphism in all 

HLA-II genes except HLA-DRA have produced a pool of more than 4,800 known HLA-II 

proteins encoded by more than 7,400 different alleles (13). Additionally, the two classes 

of HLA molecules differ in the cells they are expressed by, in the antigen presentation 

pathway as well as in T cell recognition (14). Almost all nucleated cells express HLA-I, 

while HLA-II expression is restricted to so-called professional antigen presenting cells 

(APCs) including dendritic cells, macrophages, and B cells. The peptide repertoire of 

HLA-I constitutes mainly peptides resulting from intracellular proteins and the HLA-I – 

peptide complex is recognized by CD8+ T cells. In contrast, peptides that are 

presented by HLA-II are resulting from proteins of the extracellular compartment that 

are digested through endocytosis and are presented for recognition by CD4+ T cells. 

Noteworthy, studies have shown that through a mechanism called cross-presentation 

HLA-I molecules can also present peptides that underwent the endocytic pathway (15, 

16). Additionally, it was observed that a subset of peptides of the HLA-II peptide 

repertoire can result from intracellular proteins, processed for instance by autophagy 

(17), reflecting the complexity of the antigen presentation machinery.  

The HLA-I Antigen Presentation Pathway 

HLA-I is a heterodimer synthesized in the endoplasmic reticulum (ER) from an a 

polypeptide chain (a1 and a2 chains build up the binding region of the HLA and a 

transmembrane a3 chain) and complexed with b2-microglobulin (see Figure 1.1A). A 

peptide makes up the final component and provides the stability for the HLA-I. Prior to 

peptide binding, the HLA-I molecule is stabilized through the so-called peptide loading 

complex (PLC), consisting of the HLA-I molecule, the transporter associated with 
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antigen presentation (TAP) complex, two chaperones ERp57 and calreticulin as well as 

an additional chaperone called tapasin, which is playing a direct role in the peptide 

loading to the HLA (18–20) (see Figure 1.2A). Peptides are acquired through the antigen 

presentation pathway. This is initiated by proteasomal degradation of cytosolic or 

nucleic proteins into short peptide fragments. These peptides are translocated into the 

ER through TAP and can be further trimmed by aminopeptidases ERAP1 and ERAP2 in 

the ER lumen (21, 22). Tapasin regulates the binding of high-affinity peptides with 

suitable length and peptide sequence to the binding pocket of the HLA-I molecule (23) 

and the HLA-I – peptides complex is transported out of the ER lumen through the Golgi 

apparatus to the cell surface for antigen presentation to CD8+ T cells. Misfolded HLA-I 

molecules, that failed peptide binding for antigen presentation, are transported back 

into the cytosol for degradation by the ER-associated protein degradation (ERAD) 

system (24). While the main cleavage enzyme for the HLA-I peptidome is the 

proteasome, other non-proteasomal degradation pathways are also known to play a 

role in HLA-I antigen presentation, such as antigen cleavage by the insulin-degrading 

enzyme in the cytosol (25) or proteases of the endocytic pathway (26).  

 

Figure 1.1: Schematic representation of heterodimeric HLA molecules. (A) Membrane – bound 

HLA-I molecules are made up of a1, a2, and a3 chains in complex with b2-microglobulin. a1 and 

a2 make up the binding region of the HLA-I molecule and a3 contains the transmembrane 

element.  (B) Two chains (a and b) form the heterodimeric HLA-II molecules. Subdomains a1 and 

b1 contain the binding region for HLA-II peptides and a2 and b2 contain transmembrane regions 

of the HLA-II molecule. [Created with BioRender.com] 

 

The HLA-II Antigen Presentation Pathway 

Heterodimeric HLA-II molecules consist of an a and b chain made up by two domains 

each (a1/b1 domains with the peptide binding pocket and transmembrane a2/b2 

domains) (see Figure 1.1B). During synthesis in the ER, HLA-II molecules are paired with 
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an invariant chain (li), preventing early peptide binding (27–29), and the complex is 

transported to the endosomal MHC class II compartment (MIIC) (see Figure 1.2B). In the 

MIIC, li is digested by cysteine proteases cathepsins S and L into a shorter peptide, the 

class II associated li peptide (CLIP) (30). Prior to peptide loading into the HLA-II binding 

pocket, proteins are processed by the HLA-II presentation pathway. Initially, 

extracellular proteins are taken up into the cell through endosomal ingestion, 

fragmented into shorter peptides by endosomal proteases, and transported to the MIIC 

for binding with HLA-II (31). With the help of HLA-DM, CLIP is removed from the HLA-II 

binding pocket and substituted with a higher affinity peptide (32). Thereafter, vesicles 

translocate the HLA-II – peptide complex into the plasma membrane for presentation 

on the cell surface to CD4+ T cells.  

Figure 1.2: Antigen presentation pathway of HLA-I and HLA-II ligands. (A) HLA-I antigen 
presentation pathway starts with proteasomal degradation of intracellular proteins into peptides. 
Peptides can enter the ER through TAP, can be further digested by ERAAP, and are complexed 
with HLA-I molecules with the help of tapasin, ERp57, and calreticulin. HLA-I – ligand complexes 
are transported to the cell surface for recognition by CD8+ T cells. (B) In HLA-II antigen 
presentation exogenous proteins enter APCs through endocytosis and are transported to the 
MIIC. HLA-II molecules are synthesized in the ER, complexed with li, and translocated to the 
MIIC. In the MIIC, li is reduced to CLIP and with the help of HLA-DM CLIP is substituted with a 
suitable peptide. HLA-II – ligand complexes are transported to the cell surface and can be 
recognized by CD4+ T cells. [Antigen presentation pathways are depicted according to Neefjes 
et al. (14) and created with BioRender.com.] 

 

Finally, the binding pockets of HLA-I and HLA-II molecules show different 

characteristics. While HLA-I is composed of a closed binding pocket, limiting the size of 

peptides bound to the allele to 8 to 15 amino acids (33, 34), HLA-II have open binding 

pockets (see Figure 1.3A, B, D, E). The average length of peptides bound by HLA-II was 

(A) (B)
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observed to be between 12 and 20 amino acids (35–37). Furthermore, binding of 

peptides to HLA-I is shaped by two anchor positions P2 and PW and these positions are 

highly conserved in the peptide repertoire of most HLA-I alleles (see Figure 1.3A-C). 

Though, the HLA-I binding pocket is known to be closed, it was suggested that longer 

peptides, known to bind with a bulge (38), can also show C’-terminal extensions (39). 

The open binding pocket of HLA-II facilitates the binding of longer peptides with a 

peptide binding core of 9 amino acids (see Figure 1.3D). Within this binding core, there 

are two main anchor positions (P1 and P9) and additional secondary anchor positions 

that depend on the allele (mainly P4, P6, and P7) (see Figure 1.3D-F). It was estimated 

that approximately two percent of HLA-II ligands bind with a shorter or longer binding 

core (8- and 10-mers) to the allele (35). This could also be confirmed in another HLA-II 

immunopeptidomics dataset, where binding cores were observed to either be reduced 

to an 8-mer core or extended N- or C-terminally, while keeping anchor positions of the 

standard 9-mer binding core  (37). 

 

Figure 1.3: Binding pockets of HLA molecules. (A) Schematic representation of HLA-I binding 

pockets with a 9-mer ligand in dark grey, anchor positions P2 and P9 (pink circle), and in light 

grey shades 10- and 11-mer peptides binding with a bulge. (B) Crystal structure of HLA-A*02:01 

allele with a phosphorylated ligand (PDB accession code 4NNX). (C) Binding motif of HLA-

A*02:01 represented by sequence logo of HLA-A*02:01 peptide repertoire. (D) Schematic 

representation of the binding pocket of HLA-II molecules, here depicted binding a 16-mer 

ligand. The 9-mer binding core (dark grey), peptide flanking regions (PFR, light grey), and main 

(blue circle) and secondary (turquoise circle) anchor positions are shown. (E) Crystal structure of 

HLA-DRB1*01:01 in complex with a phosphorylated ligand (PDB accession code 3L6F). (F) 

Binding motif of HLA-DRB1*01:01. Sequence logos, a graphical representation of aligned 
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sequences with heights of letters corresponding to amino acid frequencies per position, were 

drawn using the R package ggseqlogo (40). 

 

The importance of antigen presentation for immune responses also is one of the critical 

points for infected or malignant cells. Many studies have presented evidence of direct 

connection between development of autoimmune diseases, susceptibility to viral 

infections, or progression of cancer and HLA alleles, HLA expression, and antigen 

repertoire (41). For instance, CD8+ T cell killing of islet beta cells in type 1 diabetes was 

shown to be attributed to the recognition of an HLA-A*02:01 – presented glucose-

sensitive preproinsulin peptide (42). Among others, HIV patients with high expression 

levels of HLA-C alleles resulting from a genetic variation 36 kilobase pairs upstream of 

the HLA-C genes, showed slower disease progression compared to patients with low-

expressing HLA-C alleles, likely due to better antigen presentation (43, 44). HLA 

genotypes were also seen to correlate with cancer susceptibility connected to HLA – 

presentation of mutations (45), immune evasion through cancer – induced loss of 

heterozygosity (46), response to immunotherapies (47), or overall survival (48). 

1.2.2 Cancer Antigens 
Malignancies such as cancer can influence the antigen repertoire presented by HLA-I 

and HLA-II molecules on the cell surface. Antigens generated by cancer can be 

categorized into two groups: tumor-associated antigens (TAAs) which are antigens that 

have a low tumor specificity and tumor-specific antigens (TSAs) also known as antigens 

with high tumor specificity (see Figure 1.4) (49). The latter describes antigens that are 

only seen on cancer cells caused by viral infection or cancer-specific genomic or 

proteomic alterations while TAAs can also be found on other cells but show specific 

features in cancer. For instance, TAAs resulting from overexpression are caused by 

aberrant gene expression that results in higher levels of presented antigens compared 

to normal cells. Another group of TAAs are differentiation antigens derived from 

specific proteins expressed in the specific tissue of origin from which the cancer cell 

originates. TSAs are grouped into cancer testis (CT), viral, and mutated antigens and 

have not been seen by the immune system before (so-called neoantigens). CT or cancer 

germline antigens result from cancer germline genes and have been found in various 

cancer types (50). These genes are normally not expressed in normal tissues except in 

germ cells which do not express HLA, thus making cancer-specific CT antigens potential 

neoantigens (51). Gene expression is regulated by epigenetic modifications, such as 
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methylation, and epigenetic changes have been observed in cancer (52). Furthermore, 

demethylation has been connected to expression of CT antigens in different cancers 

(53). Oncogenic viruses, such as the human papillomavirus (HPV) known to cause 

cervical carcinomas, insert DNA or RNA into cells resulting in cytosolic presence of viral 

proteins that are processed by the antigen presentation pathway (54). This results in 

viral non-self antigens that are unknown to the surrounding immune cells if no prior 

infection and recognition of these antigens occurred. Lastly, cancer-specific non-

synonymous mutations can either produce new peptide sequences that were not able 

to bind to any of the HLA alleles prior to the amino acid change or result in a peptide 

that could be bound and presented by HLA without the mutation but, due to the new 

amino acid, provides an unknown epitope for T cell – recognition (55). Besides 

mutations, neo-epitopes can also contain cancer-driven frameshift mutations (DNA 

insertion or deletion) resulting in novel protein sequences recognized as non-self, which 

were seen in various cancer types such as colorectal cancer or leukemia (56, 57). 

Additionally, it is known that the proteasome, the main cleavage enzyme of the HLA-I 

peptidome, can splice peptides and thereby create an additional source of potential 

neoantigens. It was suggested that these spliced peptides can make up between 13 to 

45 percent of the whole peptidome in studied cell lines (58, 59). This caused a 

controversial discussion in the field and different follow-up studies showed that these 

numbers were likely overestimated and that that spliced peptides constitute merely 

between 1 to maximal 11 percent of the HLA-I peptidome (60–62). 

Antigens with high tumor specificity are attractive candidates for the development of 

immunotherapeutic strategies. However, direct identification of antigens and in 

particular detection of neoantigens is still challenging. Pipelines including high-

sensitivity experimental workflows and cancer sequencing to identify cancer-specific 

genomic or proteomic alterations in combination with in silico models for prediction of 

HLA – ligand interactions have been introduced for (neo-)antigen detection (64–67). 
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Figure 1.4: Overview cancer antigens in cancerous and normal cells. Cancer antigens with low 

tumor specificity can result from gene overexpression or differentiation, resulting in a different 

presentation of such antigens in cancer cells than in healthy cells. Antigens with high tumor 

specificity can result from (1) expression of cancer testis antigens that are normally expressed in 

cells not expressing HLA or not expressed in healthy cells, (2) oncogenic viruses, or (3) non-

synonymous mutations that either create an antigen previously unable to be presented or give 

rise to a novel, unknown sequence for in a binder. [Cancer antigens adapted from N. Vigneron 

2015 (63) and created with Biorender.com]  

1.3 In silico Models to Predict HLA – Ligand Interactions 
Identification of HLA – ligand interactions is essential to understand mechanisms of the 

immune system such as antigen processing and presentation as well as recognition and 

elimination by T cells and furthermore help to identifying important targets for cancer 

immunotherapies or vaccines.  

HLA alleles have unique peptide binding repertoires, depicted by their binding motifs 

(see Figure 1.3C and F), and different methods have been established for identification 
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of HLA ligands. The HLA peptide repertoire, also known as the HLA peptidome or HLA 

immunopeptidome, can be identified using in vitro binding assays (68, 69) or by mass 

spectrometry (MS) of naturally presented HLA ligands (70–73). While identification of 

HLA ligands by binding assays requires a priori determination and synthesis of 

sequences for testing, thereby limiting and biasing screening of the binding repertoire, 

and furthermore only considers the binding affinity of the peptide to the alleles, MS 

immunopeptidomics data of naturally presented ligands also captures other stages of 

the antigen presentation pathway, such as proteasomal processing, transportation, and 

binding stability of the HLA – ligand complex. In recent years, technical advances 

established MS protocols, for instance based on immunoaffinity purification (IP), for high 

throughput, unbiased, and one-experiment identification of big sets of HLA ligands (73).  

Briefly, HLA – ligand complexes are eluted by IP followed by high resolution liquid 

chromatography – mass spectrometry (LC-MS) or liquid chromatography – tandem mass 

spectrometry (LC-MS/MS) to separate and analyze peptide sequences. Resulting MS 

spectra are then analyzed to identify sequences using in silico methods that compare 

MS spectra with computationally determined spectra of a reference database, such as 

the human proteome.  

One major challenge of MS-based immunopeptidomics data is to determine allelic 

restriction of HLA molecules expressed in a specific sample or cell line. This can be 

avoided by using mono-allelic cell lines, which are cell lines engineered to express only 

one allele, hence MS spectra from isolated HLA – ligand complexes of these cells 

correspond to the binding repertoire of one HLA allele (70, 71). However, antigen 

presentation might not be naturally reflected in mono-allelic cell lines since competition 

to bind a specific peptide between different alleles is lost and alleles potentially present 

lower affinity peptides (74). Processing of natural, unmodified multi-allelic cell lines or 

tissue samples of patients requires efficient and precise tools to assign the HLA 

peptidome to the corresponding allele. Different computational mechanisms have been 

established to solve this by assigning each peptide to its respective allele using 

predictors for HLA – ligand interactions or unsupervised clustering of the HLA 

peptidome to determine binding motifs. 

1.3.1 Predictors for HLA Ligand Interactions 
To reduce MS identification of HLA peptidomics data that requires effort- and cost-

intensive experimental work, in silico prediction methods for HLA – ligand interactions 

provide a faster and cheaper solution. HLA peptidomics data is accessible in databases 
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such as the immune epitope database (IEDB) (75) and present a powerful resource for 

training of computational models. Initially, predictors for HLA – ligand interaction were 

mainly trained on in vitro binding affinity ligands (76–78). With increasing accessibility of 

eluted HLA-I and HLA-II ligands as well as efficient tools to determine allelic restriction, 

predictors solely trained on eluted HLA ligands (33, 37, 70, 71, 79, 80) or on a 

combination of binding affinity and eluted ligands (81–88) were developed. It was 

shown that predictors trained on eluted, naturally presented HLA ligands identified HLA 

binding motifs more accurate than predictors trained on binding affinity data (81).  

Different predictors for HLA – ligand interactions were developed, among others motif – 

based predictors such as SYFPEITHI (89) or MixMHCpred (33, 90) as well as more 

complex machine learning models using neural networks, such as MHCFlurry (86, 87), 

MSIntrinsic (70), or different NetMHC predictors (88, 91–94). On the one hand, 

prediction methods can be trained separately for specific alleles, producing robust 

results for alleles with known peptide binding repertoires (37, 70, 71, 77, 79, 80). On the 

other hand, with the introduction of pan-specific models, which are trained 

simultaneously for multiple alleles, predictions could also be performed for alleles with 

little or unknown HLA binding repertoires (76, 78, 85–87). This is of particular interest for 

HLA – ligand interactions given the highly polymorphic HLA genes. Overall, it was 

shown that introducing pan-specific predictors improves prediction accuracy for HLA – 

ligand interaction (95, 96).  

The model NNAlign can use any kind of receptor – ligand data, such as HLA – peptide 

interactions, to identify sequence alignment and binding motifs and subsequently build 

an artificial neural network (ANN) framework for predictions of new ligands. NNAlign is 

the framework for all NetMHC HLA – ligand predictors (97). The ANN of the pan-

specific HLA-I – ligand predictor NetMHCpan is trained on MS as well as in vitro binding 

affinity ligands in combination with sequences of HLA molecules (94). Similarly, 

NetMHCII (92) and NetMHCIIpan (88), predicting HLA-II – ligand interactions, are allele- 

and pan-specific ANN – based models trained on human and murine data. MARIA, a 

recurrent neural network model, is trained on binding affinity as well as eluted MS 

peptidomics data in combination with expression levels of antigen source genes as well 

as signals of protease cleavage (83). For neonmhc2, the authors translated HLA-II 

ligands into amino acid proximity matrices. These were used to train a convolutional 

neural network separately for each allele in combination with additional binary encoded 

features on each amino acid, such as hydrophobicity, amino acid charge, and position in 
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the peptide sequence (71). Models based on HLA binding motifs use position weight 

matrices (PWMs), a mathematical way of describing sets of aligned sequences by 

representing each position by amino acid frequencies (i.e. a 9x20 matrix for a set of 

aligned 9-mer sequences over the alphabet of the 20 canonical amino acids), to 

describe HLA binding motifs. In addition to PWMs, MixMHC2pred further relies on 

information of the N- and C-terminus of HLA-II ligands by building allele-independent 

N-/C-terminal motifs of the HLA-II peptidome as well as peptide length distribution and 

peptide binding cores to train an allele-specific predictor (37). 

1.3.2 Identification of Binding Motifs in HLA Peptidomics Data 

DNA or protein binding sites are often characterized by very specific motifs and 

identification of these motifs has been an important and crucial issue to better 

understand how biological processes and signaling is monitored and regulated (98, 99). 

Efficient computational methods have been developed enabling identification of 

transcription factor binding sites or protein – protein and protein – ligand interaction 

sites without heavy experimental work of testing the binding of potential ligands (100–

102). Expectation maximization (EM) algorithms, such as MEME (103, 104), probabilistic 

frameworks based on PWMs (105, 106), or neural network models (107) are widely used 

methods to detect patterns in unaligned DNA or protein sequences.  

Unsupervised clustering of HLA peptidomics data is an efficient tool to identify binding 

motifs of HLA alleles without prior knowledge of the binding motif (33, 37, 79, 108, 

109). This is particularly useful to apply to samples containing more rare alleles without 

a widely established peptide binding repertoire. For instance, GibbsCluster uses the 

Gibbs sampling approach to align and cluster peptides simultaneously and can be 

applied, among other peptide data, to HLA-I or HLA-II peptidomes (108, 109). In short, 

GibbsCluster groups peptides into clusters, initially starting with a random cluster 

assignment, and in each iteration optimized clusters are found by (1) realigning peptide 

binding cores within a cluster, (2) moving peptides between clusters, or (3) shifting the 

binding core of an optimally aligned cluster to receive the best binding core. Using 

Kulback-Leibler divergance (KLD), the distance within peptide clusters is minimized and 

at the same time maximized between peptide clusters to identify the optimal alignment 

and clustering of the peptide data. For peptide sequences that do not match any of the 

clusters inferred by the algorithm, GibbsCluster further builds a so-called trash cluster, 

which can identify potential falsely identified peptides. Another tool developed to 

identify binding motifs in HLA-I peptidomics data is MixMHCp, a mixture model – based 
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motif deconvolution method (33, 79). MixMHCp identifies peptide clusters that 

correspond to HLA-I binding motifs, represented as PWMs, using a log likelihood 

framework and assigns so-called responsibility values to each peptide describing the 

likelihood of the peptide belonging to each peptide cluster. Similarly, the probabilistic 

machine learning model MoDec provides a powerful tool to identify HLA-II binding 

motifs and binding cores simultaneously with the advantage of not requiring peptide 

alignment a priori, which is a crucial step in identifying binding motifs of HLA-II ligands 

due to the preference for longer peptides and the open binding pocket of HLA-II 

molecules (37). MoDec detects optimal peptide clusters and peptide alignment by 

determining maximum likelihood using an EM algorithm.  

Annotation of identified peptide clusters can be either done manually relying on known 

binding motifs from previous studies or using fully unsupervised approaches based on 

Euclidean distances measured for PWMs of alleles (90) or KLD between different PWMs 

(37). These unbiased and automatic methods make use of co-occurring alleles between 

samples and can be applied to clusters of HLA binding motifs resulting from two or 

more different samples that (1) contain the same alleles except for one (to identify 

motifs of alleles that are only present in one of the samples) or (2) have only one allele in 

common, which can be used to identify the unknown motif of an allele by finding re-

occurring motifs in both samples. These approaches provide effective and unbiased 

models for the identification of HLA binding motifs from MS – based 

immunopeptidomics data.  

1.4 Phosphorylation 
Post-translational modifications (PTMs), such as acetylation, glycosylation, and 

phosphorylation, are reversible processes on proteins and play a role in establishing the 

diversity of the human proteome (110). PTMs regulate many cellular processes (111–

113), including protein localization, activation, de-activation, and degradation of 

proteins as well as mediating protein-protein interactions. Among others, glycosylation 

and ubiquitination are involved in the regulation of proteolysis (114, 115), protein 

folding is monitored by glycosylation of synthesized proteins in the ER (116), and 

phosphorylation, one of the most common PTMs, plays an important role in regulating 

signaling pathways as well as activation and deactivation of many proteins (117–119). 

For instance, the transcription factor OCT4, known to play an important role in 
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maintaining pluripotency and evading differentiation (120), is known to be regulated by 

phosphorylation (121). The mitogen-activated protein kinase (MAPK) signaling pathway 

is an important mediator for cell growth, proliferation, and survival (122, 123). The 

MAPK pathway is initiated by extracellular growth factors (GF) binding to growth factor 

receptors, such as the epidermal growth factor receptor (EGFR), and regulates the 

activity of intracellular receptor tyrosine kinases (RTKs). RTKs initiate the downstream 

signal transduction cascade of the MAPK signaling pathway which consists of 

succeeding phosphorylation events and results in the regulation of expression of 

effector genes (see Figure 1.5A). 

 

Figure 1.5: MAPK pathway and disruption in cancer. (A) Simplified representation of 

phosphorylation-driven MAPK pathway. Activated by binding of GF, intracellular RTK initiate a 

signaling cascade controlled by phosphorylation events on RAS, Raf, MEK, and ERK and 

resulting in transcription of cell growth and survival regulators. (B) Disruption of MAPK signaling 

in cancer through overexpression of growth factor receptors (left) or permanent binding of GTP 

to RAS resulting in activation of downstream signaling without GF activation.  

 

It was estimated that ~30% of proteins in the human proteome can contain temporary 

phosphorylation events (124) and a more recent analysis of the human 

phosphoproteome in vivo suggested that up to three-fourth of all proteins hold 

phosphosites (125). Protein phosphorylation is the ligation of an additional phosphate 

group from adenosine triphosphate (ATP) to the hydroxyl group of serine, threonine, 

(A) permanent activated(B) overexpression
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and tyrosine residues and is performed by protein kinases. Furthermore, kinase activity 

itself is regulated by phosphorylation (126). More than 500 different kinases are known 

and it was estimated that their coding genes make up approximated two percent of the 

human genome (127). Kinases show distinct substrate specificity, such as 

serine/threonine or tyrosine kinases, and further depend on distinct substrate binding 

motifs, for instance the proline-dependent serine/threonine kinase MAPK requiring a 

proline adjacent to the substrate residue ([pS/pT]P). Dephosphorylation, the enzymatic 

cleavage of the phosphate group from phosphorylated residues, is performed by so-

called phosphatases. Thus, phosphatases are important opposing players to kinases 

with a crucial role in regulating signaling pathways by resuming substrates to their pre-

phosphorylation functionality, and in maintaining homeostatic phosphorylation levels in 

cells (128).  

1.4.1 Phosphorylation in HLA Ligands 
Cancer-specific alterations resulting in upregulated kinase or downregulated phosphate 

activity can result in cancer-specific phosphosites, as it could be observed in a 

proteogenomics study of breast cancer (135). This suggests that phosphorylated HLA 

ligands should be considered as potential targets for the development of cancer 

immunotherapeutic strategies. Phosphorylation of serine, threonine, or tyrosine changes 

the biophysical properties of HLA ligands through the addition of a negatively charged 

phosphate moiety to the residue. Depending on the position of the phosphorylation in 

the peptide, this impacts the binding of the peptide to the allele or the surface 

potential for T cell recognition of the presented epitope.  

Phosphorylated HLA-I Ligands 

Multiple studies established that phosphorylated residues in peptides do not interfere 

with the HLA-I antigen presentation machinery and phosphorylated ligands can be 

naturally processed. Phosphorylated peptides were shown to be bound by HLA-I 

molecules, transported to the cell surface, and furthermore HLA-I – phosphorylated 

peptide complexes were recognized by CD8+ cells (136–140). It was observed that the 

addition of a phosphate moiety to the peptide provides a distinct peptide surface 

potential for T cell recognition compared to the unmodified version of the peptide 

(141–143). This as well as further experimental validation led to the conclusion that T 

cell recognition of phosphorylated HLA-I peptides was both, sequence-specific and 

phosphosite-dependent, i.e. specific T cells did not recognize other phosphorylated 
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peptides nor unmodified counterparts of the tested phosphorylated peptides (138, 139, 

141, 142, 144). This suggest, that phosphorylated HLA-I ligands can show specific 

immunogenicity and are of potential interest for the development of 

immunotherapeutic targets (140). This was supported by other work identifying cancer-

specific phosphorylated HLA-I ligands. For instance, phosphorylated peptides 

specifically found in tumor cells but not in healthy cell lines or tissue could be identified 

(137), the HLA-I phosphopeptidome of melanoma samples was determined (145), and 

specific immunity in healthy donors against a Leukemia – associated phosphorylated 

peptide was shown (144). Recently, a first clinical trial was performed on melanoma 

patients using two phosphorylated peptides in a vaccine (146). Prior to the 

development and testing of the vaccination, the phosphorylated peptides showed 

immunogenicity in HLA-A2 transgenic mice in vivo as well as in healthy human tissues in 

vitro. These results further outline the importance to include phosphorylated HLA-I 

ligands in the HLA-I immunopeptidome and therefore consider them in development of 

cancer immunotherapies. 

Additional specific characteristics of phosphorylated HLA-I peptides were identified and 

validated in many studies. For instance, in 9- to 12-mer ligands the phosphorylated 

residue was observed to be positioned mainly at P4 of the peptide (141, 144, 145, 147, 

148). Further, it was seen that phosphorylated HLA-I ligands often show enrichment of a 

basic residue at P1 (137, 138, 141, 144, 145, 147, 148). One group analyzed this further 

by performing crystallography of different phosphorylated HLA-I peptides in both 

unmodified and phosphorylated versions (141, 142). They saw that phosphorylated 

residues could enhance the stability of the HLA-I – bound peptides by interaction of the 

phosphate group with specific residues of the HLA-I binding pocket (Arg66 or Lys65) as 

well as intermolecular bonds between the basic residue at P1 and the phosphate-moiety 

at P4. When the conformation of the phosphorylated peptide was compared to its 

unmodified counterpart, two out of three phosphorylated peptides showed distinct 

conformational changes compared to the unmodified peptide, suggesting that this 

could help the binding of the phosphorylated peptide and explain higher binding 

affinity observed for peptides with phosphorylation compared to unmodified versions of 

the peptides (142).  Furthermore, enrichment of proline next to phosphorylated serine 

and threonine residues was detected in phosphorylated HLA-I ligands, a signal of the 

kinase binding motif of proline – dependent serine/threonine kinases such as CDK1 or 

MAPK1 (138, 141, 144, 145, 147, 149).  
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Studies on phosphorylated HLA-I ligands mostly identified a limited amount of ligands 

and predominantly focused on the common HLA-A*02:01 or HLA-B*07:02 alleles (138–

144, 150). Some work collected phosphorylated peptides for different mono- or multi-

allelic samples (70, 136, 137, 145, 147–149), but overall to date the allelic-coverage as 

well as the amount of identified phosphorylated HLA-I ligands from these studies are 

limited. 

Phosphorylated HLA-II Ligands 

Phosphosites presented on HLA-II ligands have been less well studied than 

phosphorylated HLA-I peptides and so far, only three studies directly analyzed 

phosphorylated HLA-II ligands. The first study to identify naturally presented 

phosphorylated HLA-II ligands used an EBV – transformed B-lymphoblastoid and a 

melanoma cell line and collected 27 and 20 different phosphorylated HLA-DRB1 

peptides in these samples, respectively (137). They saw that source proteins for more 

than half of these phosphorylated peptides were transmembrane proteins, while the 

rest resulted from cytoplasmic and nucleic proteins, outlining that phosphorylated 

peptides can be processed by the endocytic pathway for presentation by HLA-II 

molecules.  

Another study investigated the mutant melanoma antigen BRAFV600E (BRAF mut), a 

mutation common in more than 60% of melanoma patients (151), and reported CD4+ T 

cell recognition of the phosphorylated BRAF mut antigen (152). Furthermore, they saw 

that CD4+ T cells specific against the non-phosphorylated BRAF mut failed to recognize 

the phosphorylated version of the antigen, while phosphorylation – specific T cells 

against the BRAF antigen could detect it. However, in vitro testing of phosphorylated 

BRAF mut – specific T cells against melanoma cell lines could not be observed, 

potentially caused by failed processing or HLA-II – binding of phosphorylated BRAF 

mut. The study further identified 150 unique phosphorylated HLA-II peptides from four 

cell lines (two melanoma and two EBV-B cell lines) using MS. Within these 

phosphorylated peptides, ~30% of the phosphosites were previously reported, all 

peptides except one contained one phosphosite, and the phosphorylation was 

distributed with 93.0, 5.3, and 1.7 percent among serine, threonine, and tyrosine 

residues, respectively. The analysis of source proteins of the HLA-II phosphopeptidome 

supported evidence that lysosomal HLA-II pathways can process intracellular proteins 

through autophagy (17, 26). In the two melanoma samples a phosphosite could be seen 

in the melanocytic antigen Melan-A/MART-1, which in its unmodified version is known 
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to be immunogenic and therefore of interest for immunotherapeutic strategies (153–

155). T cell recognition of the phosphorylated Melan-A/MART-1 (pMelan-A/pMART-1) 

peptide was seen in vitro and the specificity of the peptide could be attributed to the 

phosphorylated serine, as unmodified Melan-A/MART-1 did not result in INF-g 

secretion. 

Finally, the third study looked into structural properties of phosphorylated HLA-II 

ligands and performed crystallography of the pMelan-A/pMART-1 antigen (156). Crystal 

structures of a 15-mer pMelan-A/pMART-1 in complex with HLA-DRB1*01:01 revealed 

that the peptide’s conformation at anchor positions (P1, P4, P6, and P9 for DRB1*01:01) 

was conserved as expected from unmodified ligands. Furthermore, the phosphorylated 

residue was positioned at a non-anchor position (P5) and could therefore be in direct 

contact with the T cell for recognition. The authors tested the binding and recognition 

of different peptide versions of pMelan-A/pMART-1 with various length and 

phosphosite position, and concluded that this can affect both, HLA-II binding and T cell 

recognition of the pMelan-A/pMART-1 antigen. These results illustrate the restrictions 

for ligand binding imposed by main and secondary anchor positions to HLA-II alleles, 

which is also crucial for the binding of phosphorylated ligands. 

Cancer-specific phosphosites comprised in the HLA-I and HLA-II immunopeptidomes 

can potentially act as attractive targets for the development of cancer immunotherapies. 

The presented studies on phosphorylated HLA-I and HLA-II ligands showed the 

importance of including phosphorylated ligands in the understanding of HLA-I and HLA-

II ligand presentation as well as outlines the need to integrate phosphorylated HLA 

ligands in identification protocols of HLA peptidomes as well as prediction methods for 

HLA-I and HLA-II ligand interaction.  

1.5 Aim and Objective of this Thesis 
Little is known about the role of phosphorylated peptides in HLA ligand repertoires, 

despite the advancements in experimental and computational workflows for HLA ligand 

identification, the increasing growth of HLA immunopeptidomics data available in 

public databases as well as the clear evidence of processing, presentation, and T cell 

recognition of phosphorylated HLA-I and HLA-II ligands. This thesis builds on these 

findings and aims to contribute to a better understanding of HLA-I and HLA-II 
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phosphopeptidomes as well as provide prediction models for phosphorylated HLA 

ligands. 

Identification of the HLA-I phosphopeptidome and the development of a 

predictor for phosphorylated HLA-I – ligand interaction 

Extensive knowledge on phosphorylated HLA-I ligands are valuable contributions to 

fully comprehensive understanding of HLA immunopeptidomes and expand the pool of 

potential immunotherapeutic targets. Until now, binding motifs of phosphorylated HLA-I 

ligands are undefined, specific phosphorylation – dependent features in HLA-I ligands 

unknown, and none of the existing tools for HLA-I – ligand prediction are specifically 

trained on modified sequences, thus potentially lacking relevant information for the 

prediction of phosphorylated HLA-I ligands.  

The first objective of this thesis is to curate MS – based immunopeptidomics data to 

identify the phosphorylated HLA-I binding repertoire at a high allelic – coverage and 

further analyze this data to detect specific characteristics in the HLA-I 

phosphopeptidome. Secondly, this thesis aims to exploit the identified HLA-I 

phosphopeptidome to develop a predictor for HLA-I – phosphorylated ligand 

interactions.  

Understanding and prediction of phosphorylated HLA-II ligands 

The second core aim of this thesis focusses on a better understanding of 

phosphorylated ligands presented by HLA-II molecules on professional APCs. As 

presented above in section 1.4.1, only few studies worked on phosphorylated HLA-II 

ligands, thus to date little is known about the HLA-II phosphopeptidome. Taking 

advantage of HLA-II immunopeptidomics data of multiple samples, phosphorylated 

HLA-II peptides will be collected and analyzed for the identification of phosphorylated 

HLA-II binding motifs as well as phosphorylation – specific characteristics in the HLA-II 

phosphopeptidome. The final objective is to retrain a model for HLA-II – ligand 

interaction specifically on the curated HLA-II phosphopeptidome for prediction of 

phosphorylated ligands. 

Overall, defining the space of HLA-I and HLA-II phosphopeptidomes contributes to a 

better understanding of HLA presentation of phosphorylated ligands. This enables the 

development of prediction models specifically trained on phosphorylated ligands, 
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providing tools for future studies on T cell epitope identification in infections and 

malignancies. 
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Chapter 2 Manuscript “Mass Spectrometry – 
Based Immunopeptidomics Leads to Robust 
Predictions of Phosphorylated HLA Class I 

Ligands” 

The first part of my thesis comprised the identification and analysis of phosphorylated 

HLA-I ligands and the development of a prediction method for HLA-I – phosphorylated 

peptide interactions. This work was published in Molecular and Cellular Proteomics in 

February 2020 and is attached in its published version as Appendix A. Figure references 

in this chapter refer to the original article. 
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including curation of phosphorylated HLA-I binding motifs, data analysis, and the 

development of the predictor, was performed by myself under the supervision and 
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guidance of Prof. David Gfeller. The manuscript was written by myself together with 

Prof. David Gfeller and Dr. Michal Bassani-Sternberg. Furthermore, Dr. Philippe 

Guillaume contributed to the manuscript with a detailed description of the experiments 

he performed. 

2.1 Summary of Results 
The newly processed HLA-I peptidomics data from six additional samples in this study 

together with the curation of several publicly available immunopeptidomics studies (33, 

72, 145, 157–159) resulted in the identification of 2,190 unique phosphorylated 

peptides. To determine allelic – restriction of identified HLA-I ligands for each of the 61 

samples, the previous published motif deconvolution algorithm MixMHCp (33, 79) was 

expanded to be able to process phosphorylated residues. We could identify binding 

motifs of phosphorylated HLA-I ligands without a priori information on their interactions 

with HLA-I alleles through applying MixMHCp to the combined dataset of 

phosphorylated and unmodified HLA-I ligands. We saw direct similarity in binding 

motifs of phosphorylated HLA-I ligands compared to unmodified HLA-I ligands, in 

particular at the second and final position, which are anchor positions of HLA-I ligands 

(Figure 1). With the addition of phosphorylated HLA-I ligands with known allelic-

restriction from previous studies (70, 137, 149, 160–163, 138, 139, 141–144, 147, 148), 

this work comprised in total 2,066 unique phosphorylated peptide sequences and 2,585 

unique HLA-I-phosphorylated peptide interactions with 72 different HLA-I alleles.  

The analysis of the HLA-I phosphopeptidome showed a higher frequency of 

phosphorylated peptides detected in HLA-C alleles (Figure 2A). This is likely explained 

by human phosphosites fitting binding motifs of HLA-C alleles better than those of HLA-

A or HLA-B alleles. This was further supported by the fact that we could also see a 

higher fraction of phosphosites from the human phosphoproteome (125) in unmodified 

HLA-C ligands (see Figure 2C). Different characteristics of phosphorylated peptides in 

the HLA-I peptidome could be observed. We saw a similar length distribution to what 

was expected from unmodified HLA-I ligands (Figure 2D), a similar distribution of 

phosphorylated residues compared to the human phosphoproteome (Figure 2D), and a 

clear preference for phosphorylated residues at P4 (Figure 3A). The latter could be 

supported by binding assay of multiple peptides showing that other positions lacked 

good binding to the alleles (Figure 3B). Furthermore, we could confirm previous 



 43 

observations of enrichment of proline next to phosphorylated residues, which is 

explained by the very frequent binding motif [pS/pT]P of proline-dependent kinases 

such as MAPK1 (Figure 4A). We further detected a preference for arginine at the first 

position of phosphorylated HLA-I ligands (Figure 4D). Results of binding assays outlined 

that this is most likely due to the RXX[pS/pT] binding motif of kinases such as the family 

of protein kinase A (PKA) or B (PKB) (Figure 4E and F). 

Finally, we used the identified and curated binding motifs of phosphorylated HLA-I 

ligands to train the first predictor for HLA-I interactions with phosphorylated peptides. 

Training of the model on a combined set of phosphorylated and unmodified ligands 

outperformed training solely on unmodified ligands, showing that information on 

phosphorylated residues can improve the predictions of phosphorylated HLA-I ligands 

(Figure 5). 
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Chapter 3 Deciphering the landscape of 
phosphorylated HLA-II ligands 

The following chapter presents the first in-depth analysis of phosphorylated HLA-II 

ligands as well as the first method to predict HLA-II – phosphorylated ligand 

interactions specifically trained on phosphorylated peptides. The manuscript of this 

study is currently prepared for submission. 

Authors and Affiliations 

Marthe Solleder1,2, Julien Racle1,2, Philippe Guillaume1, George Coukos1,3, Michal 

Bassani-Sternberg1,3, and David Gfeller1,2 

1 Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University 

of Lausanne, Switzerland 
2 Swiss Institute of Bioinformatics, Lausanne, Switzerland 
3 Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University 

Hospital of Lausanne, Lausanne, Switzerland 

Author Contributions 

Analysis of raw MS data to identify phosphorylated HLA-II peptides was run by Dr. 

Michal Bassani-Sternberg and binding assays of HLA-II – ligand interactions were 

performed by Dr. Philippe Guillaume. Data curation, the computational analysis of 

phosphorylated HLA-II ligands, and the expansion of computational tools for motif 

deconvolution and prediction of phosphorylated HLA-II ligands, was performed by 

myself under the supervision and guidance of Dr. Julien Racle and Prof. David Gfeller. 

The manuscript was written by myself with contributions and revisions by Dr. Michal 

Bassani-Sternberg, Dr. Philippe Guillaume, Dr. Julien Racle and Prof. David Gfeller. 

3.1 Introduction 
CD4+ T cells play a central role in adaptive immune responses against viral infections 

and cancer through the recognition of non-self peptides (i.e., from pathogens) or tumor-

specific antigens (i.e., genetic/proteomic alterations in cancer). Antigen presentation to 
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CD4+ T cells is performed by HLA-II molecules, which are expressed on the cell surface 

of professional APCs such as dendritic cells or B lymphocytes. HLA-II molecules form 

heterodimers and are encoded by three pairs of genes (HLA-DRA/B, -DPA/B, -DQA/B). 

Except for HLA-DRA, these genes are highly polymorphic and thousands of alleles have 

been discovered in humans. HLA-II molecules bind mostly peptides of 12 to 20 amino 

acids with a 9-mer peptide binding core (see Figure 3.1A) (14, 36). HLA-II ligands can 

originate from both exogenous and intracellular proteins processed by endocytic 

pathways (164). Recently, HLA-II ligands have been shown to play an important role in 

the response to personalized cancer vaccines (165–168). Most HLA-II ligands are 

unmodified peptides, although PTMs can also be displayed on HLA-II molecules (169). 

Being able to identify post-translationally modified HLA-II ligands is therefore promising 

to expand the range of potential targets for cancer immunotherapy. HLA-II ligands can 

either be directly identified by MS, although such experiments are technically 

challenging (170), or using prediction methods followed by experimental validation. 

Several different predictors of HLA-II ligands have been developed (37, 71, 83, 94) and 

can contribute to reduce cost and efforts to identify novel HLA-II ligands, including class 

II neoantigens. However, none of these predictors specifically integrate PTMs. 

PTMs of proteins are essential regulators in many biological processes (112, 113, 118). 

PTMs like phosphorylation were shown to be deregulated in cancer cells, causing 

aberrant cellular behavior (171–173). Therefore, phosphorylated peptides presented on 

HLA molecules provide potential targets for the development of immunotherapeutic 

strategies (137, 146, 150, 174). While many studies analyzed phosphorylated peptides 

presented on HLA-I molecules (136, 139, 141, 143, 144, 147, 175), phosphorylated 

HLA-II ligands have received much less attention. The first naturally presented 

phosphorylated HLA-II ligands were identified from an EBV – transformed B-

lymphoblastoid and a tumor cell line (137). Shortly after, the first CD4+ T cell 

recognition of a phosphorylated HLA-II ligand was shown using the melanoma antigen 

Melan-A/MART-1 (152). Structural analysis of a phosphorylated peptide bound to HLA-

DRB1 showed that the phosphorylated residue can in this case directly interact with the 

T-cell receptor (156). While these studies provide evidences for HLA-II presentation of 

phosphorylated peptides and show potential application as targets for 

immunotherapies, further characteristics such as binding motifs of phosphorylated HLA-

II ligands on a large allelic coverage remain unknown and no HLA-II ligand predictor is 

specifically trained on modified sequences. Recently, we have shown that including the 
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HLA-I phosphopeptidome in the training of HLA-I ligand predictors could significantly 

improve the accuracy of HLA-I phosphorylated ligand predictions (175). 

In this work, we capitalized on high quality MS HLA-II peptidomics datasets and 

identified 2,473 novel phosphorylated HLA-II ligands. Based on this data, we defined 

phosphorylated binding motifs of HLA-II alleles, identified specific molecular properties 

of phosphorylated HLA-II ligands, and investigated differences in kinase motifs between 

phosphorylated HLA-II and HLA-I ligands. Furthermore, we developed the first HLA-II 

ligand prediction method specifically considering phosphorylated peptides and 

demonstrated improved accuracy. 

3.2 Results 

MS-based HLA-II peptidomics identifies multiple phosphorylated HLA-II 

ligands 

To identify a broad spectrum of phosphorylated HLA-II ligands across a wide range of 

HLA-II alleles, we reanalyzed raw MS HLA-II peptidomics data of 23 poly-allelic samples 

(37) with MaxQuant, allowing for phosphorylation on serine, threonine, and tyrosine as 

variable modifications (see Methods in 3.4). A total of 2,800 unique phosphorylated 

peptides were identified. To determine HLA-II allelic restriction, predict binding cores, 

and remove potential wrongly identified peptides, we expanded the motif 

deconvolution method MoDec (37) to phosphorylated residues and applied it to the 

pool of phosphorylated and unmodified HLA-II ligands for each sample (see Figure 3.1B 

and Methods in 3.4). 327 phosphorylated peptides were assigned to the flat motif and 

we consider these as co-eluted contaminants or wrongly identified peptides, as 

expected in HLA-II peptidomics studies (37). To support this hypothesis, we compared 

the score for peptide spectrum matches from the Andromeda search engine (peptide 

score, higher values for higher confidence in peptide identification) with the score 

difference to the second best peptide spectrum match (delta score, higher values for 

unambiguous distinction from other peptides). The distribution of these two scores for 

all 2,800 phosphorylated peptides is shown in Figure 3.1C. As expected, 

phosphorylated peptides that were assigned to the flat motif by MoDec showed lower 

peptide and delta scores than those that were assigned to other motifs. These peptides 

were therefore excluded from downstream analyses, similarly to what has been done for 

HLA-I (175). The remaining phosphorylated HLA-II ligands showed a length distribution 
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similar to the one of unmodified HLA-II ligands (Figure 3.1D) and the majority contained 

one phosphorylation, with ~16% double phosphorylated and less than 3% triple 

phosphorylated (Figure 3.1E). Furthermore, phosphorylated residues were observed 

with 57.13, 28.74, and 14.13% for phosphorylated serine, threonine, and tyrosine, 

respectively. 

Phosphorylated peptides bind to HLA-II molecules with specific motifs. 

To assign phosphorylated peptides to their cognate HLA-II alleles and determine 

binding motifs of phosphorylated HLA-II ligands, we curated the output from MoDec for 

each sample (see Methods in 3.4 and example in Figure 3.1B). 1,579 unique 

phosphorylated peptides could be unambiguously assigned to 32 different alleles 

(including the bispecific binding allele HLA-DRB1*08:01), for a total of 1,644 unique 

interactions between phosphorylated peptides and HLA-II alleles. Binding motifs of 

phosphorylated HLA-II ligands showed conserved specificity at anchor residues P1, P4, 

P6, and P9 for most alleles (see Figure 3.2). The remaining 894 phosphorylated 

peptides came from motifs that could not be assigned to one specific allele (e.g., 

ambiguous motifs mixing multiple alleles) and were therefore not considered in allele-

specific analyses to minimize the risk of wrong allelic assignment. We observed similar 

frequency of phosphorylated peptides for different HLA-II genes, with the only 

exception of the two HLA-DRB4 alleles which had higher fraction of phosphorylated 

ligands (Supplemental Figure 3.1). This enrichment may be explained by the presence 

of an anchor position at P7 in both HLA-DRB4 alleles that shows strong specificity for 

negatively charged residue (D, and to a lower extend E) (Figure 3.2). 
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Figure 3.1: MS-based HLA-II peptidomics identifies multiple phosphorylated HLA-II ligands. (A) 

Representative crystal structure of HLA-DRB1*01:01 molecule in complex with a phosphorylated 

ligand (PDB identification code 3L6F (Li et al., 2010)). The binding core of the peptide is shown 

in turquoise, the flanking regions in dark grey, the phosphorylated residue in pink, and the HLA-

DR in light grey. Anchor positions P1, P4, P6, and P9 are underlined in the peptide sequence 

and point towards the HLA-II binding site. (B) HLA-II peptidomics MS spectra were analyzed for 

each sample separately to identify HLA-II ligands, including phosphorylated peptides. The 

peptides were then processed by MoDec and assigned to specific motifs, including a flat motif 

used to identify contaminants or wrongly identified peptides (yellow box) (Racle et al., 2019). 

Motifs were annotated to the HLA-II alleles present in each sample based on the similarity with 

known HLA-II binding motifs or left as ‘ambiguous’ when this annotation could not be 

unambiguously performed. (C) Distribution of Andromeda search engine peptide spectrum 

match scores (‘Peptide score’) vs. score differences to the second-best peptide spectrum match 

(‘Delta scores’) of the phosphorylated HLA-II ligands. Those assigned to the flat motif are shown 

in yellow, the others are shown in blue. (D) Comparison of length distribution of unmodified and 

phosphorylated HLA-II ligands. (E) Amount of detected phosphorylated residues per 

phosphorylated peptide in the HLA-II phosphopeptidome.  
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Figure 3.2: Phosphorylated peptides bind to HLA-II molecules with specific motifs. List of alleles 

with phosphorylated peptides. For each allele, the HLA-II motif based on unmodified ligand is 

shown on top, and the motif of phosphorylated HLA-II ligands determined in this work is shown 

below. Numbers correspond to the number of peptides (unmodified peptides / all 
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phosphorylated peptides / only phosphorylated peptides with the phosphorylated residue in the 

core). Phosphorylated residues are shown in pink.  

 

Phosphorylated residues show positional specificity in HLA-II ligands 

To investigate if there is any preference for phosphorylated residues in the peptide 

binding core and the peptide flanking regions (PFRs), we computed the amount of 

phosphorylated residues detected in these different parts of the peptide and compared 

it to the total amount of residues. We could see that phosphorylation is enriched 

outside of the peptide binding core, with 53.5% of all phosphorylated residues found in 

PFRs, while PFRs cover only ~41% of the positions of phosphorylated HLA-II ligands 

(Figure 3.3A). We then analyzed the occurrences of phosphorylation in PFRs and in 

particular how they are distributed in the first and last three amino acids of the PFRs at 

the N- and C-terminus of the phosphorylated peptides. Specific preferences for amino 

acids in these regions have been attributed to peptide processing and cleavage (37, 82, 

176). Phosphorylation at the N-terminal region of phosphorylated HLA-II ligands are 

mostly found at P3 (49.5%), followed by P2 (29%) and P1 (21.5%) which stands in 

contrast to the evenly distributed phosphorylated residues at the C-terminal PFR (Figure 

3.3B). We then looked at the distribution of phosphorylated residues within the 9-mer 

binding core. We could clearly see less phosphorylated residues at the main anchor 

positions P1 and P9, which is consistent with the higher specificity observed at these 

positions in unmodified HLA-II ligands (Figure 3.3C). Less expectedly, a relatively high 

frequency of phosphorylated residues was observed at secondary anchor positions 

(especially P4 and P6).  

To further investigate the preference for phosphorylated residues at specific positions in 

the core, we performed competitor binding assays for two different HLA-DR alleles 

testing different versions of the same peptide containing the phosphorylated residues 

at all possible positions within the core (see Methods in 3.4). The two peptides were 

selected among the set of phosphorylated HLA-II ligands identified by MS with the 

phosphorylated residue at the non-anchor positions P2 and P5, respectively. The results 

of the binding assays showed that for both alleles, the version of the peptide that was 

found in our MS data showed good binding (see Figure 3.3D for HLA-DRB1*01:01 with 

pS at P2 and Figure 3.3E for HLA-DRB1*07:01 with pS at P5). Furthermore, the 

unmodified version of the peptide bound similarly well. The presence of the 

phosphorylated residue at other positions showed inferior binding, especially at anchor 
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positions P1, P4, P6, and P9 (Figure 3.3D, E). These positions could clearly be identified 

as anchor positions of the alleles (see binding motifs Figure 3.3D, E left panels). We 

then selected a second peptide for HLA-DRB1*01:01 that was found in our MS data 

with a phosphorylated residue predicted at the secondary anchor position P4. The low 

binding with the phosphorylated residue at P1 and P9 could be confirmed. However, for 

other core positions the results did not fully recapitulate those of Figure 3.3D and 

showed a good binding of this peptide with a phosphorylated residue only at P2 and P4 

(Figure 3.3F). Overall, these observations suggest that the preference for the position of 

the phosphorylated residue in the middle of the core may be different for different 

peptides, which could explain the relatively broad distribution in Figure 3.3C, and the 

lack of exclusion of P4 and P6 secondary anchor positions. 

The preference for the negatively charged aspartic acid (D) at secondary anchor 

positions (e.g., P4 and P6) in several HLA-II alleles and the ability to bind peptides with 

phosphorylated residues at these positions (see example of Figure 3.3F) may further 

explain why the distribution of phosphorylated residues in the middle of the core does 

not show a strong preference for non-anchor positions only. To understand if there is a 

relationship between the specificity for aspartic acid at anchor positions and the ability 

to bind phosphorylated residues at these positions, we computed the frequency of 

aspartic acid and of phosphorylated residues found at secondary anchor positions (see 

Methods in 3.4). We could see a trend of higher frequency of phosphorylated residues 

at these secondary anchor positions for alleles with aspartic acid in their unmodified 

HLA-II peptidome (Figure 3.3G). These results suggest that alleles with aspartic acid at 

secondary anchor positions are especially prone to accommodate phosphorylated 

residues at these positions, as can be seen for HLA-DRB3*02:02 at P4 or HLA-

DRB4*01:01 at P7 (Figure 3.3H). 
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Figure 3.3: Phosphorylated residues show positional specificity in HLA-II ligands. (A) Distribution 

of phosphorylated residues and total residues in the binding core vs PFRs of phosphorylated 

HLA-II ligands. (B) Distribution of phosphorylated residues in the first and last three residues of 

N- and C-terminal PFRs, respectively. (C) Positional distribution of phosphorylated residues in the 
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binding core of phosphorylated HLA-II ligands. (D-F) Competitor binding assays for peptides 

with a phosphorylated residue at each of the different core positions (turquoise box) and without 

phosphorylated residue (black box). The peptide initially found by MS is marked by a pink 

asterisk and the core predicted by MoDec is underlined. (G) Frequencies of phosphorylation at 

secondary anchor position for positions with an aspartic acid frequency lower or higher than 5%. 
(H) Binding motifs of HLA-DRB3*02:02 and HLA-DRB4*01:01 showing specificity for aspartic acid 

in unmodified peptides and phosphorylated residues in phosphorylated peptides. 

 

HLA-II ligands are phosphorylated by a broader repertoire of kinases than 

HLA-I ligands 

To investigate the presence of kinase motifs in the HLA-II phosphopeptidome, we 

specifically searched for known kinase motifs from the PhosphoMotif Finder of the 

Human Protein Reference Database (177) in phosphorylated and unmodified HLA-II 

ligands as well as in the human proteome and the human phosphoproteome (125) (see 

Methods in 3.4). Most kinase motifs are present at a similar or lower frequency than in 

the human phosphoproteome with only a few exceptions (see Figure 3.4A, e.g. 

[K/R]X[pS/pT] or [pS/pT]X[K/R]). In particular, the very frequent kinase motif [pS/pT]P 

that is seen at ~32% of phosphorylated serine and threonine in the human 

phosphoproteome was only detected for 7.9% of phosphorylated serine and threonine 

in phosphorylated HLA-II ligands. This reflects roughly the frequency of proline after 

serine or threonine in the human proteome (7.2%). As expected from binding motifs of 

phosphorylated HLA-II ligands (see Figure 3.2), no clear motif enrichment was found 

comparing phosphorylated and unmodified HLA-II ligands (Figure 3.4B). In our previous 

work on phosphorylated HLA-I ligands, we could see a high enrichment of [pS/pT]P 

motifs, which are phosphorylated by proline-dependent serine/threonine kinases such 

as MAPK1, as well as an enrichment of the RXX[pS/pT] motif (Figure 3.4B), which 

corresponds to kinases such as PKA or PKB (175). To assess what could be the reasons 

for the lack of enrichment of these motifs in the HLA-II phosphopeptidome, we 

investigated if this may reflect a gene bias of source proteins in the HLA-II peptidome 

(i.e., peptides coming from proteins with such phosphorylation sites are under-

represented in HLA-II ligands, irrespective of the phosphorylation status). To explore 

this hypothesis, we computed the overlap between the source genes of all 

phosphorylated HLA-II ligands with source genes of proteins containing phosphosites 

with the [pS/pT]P/RXX[pS/pT] motifs in the human phosphoproteome. This overlap was 

either as expected (odds ratio: 1.01 for [pS/pT]P-motifs), or slightly higher than 
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expected (odds ratio: 1.22 for RXX[pS/pT]-motifs). Thus, we conclude that the lack of 

enrichment of [pS/pT]P and RXX[pS/pT] phosphorylation sites in phosphorylated HLA-II 

ligands is not due to a source gene bias and hypothesize that such phosphosites are 

present without phosphorylation in the pool of HLA-II – bound peptides.  

 

Figure 3.4: HLA-II ligands are phosphorylated by a broader repertoire of kinases than HLA-I 

ligands. (A) Kinase motif frequency in the HLA-II phosphopeptidome and the human 

phosphoproteome. (B) Kinase motif frequency in the HLA-II peptidome (1st column, frequency in 

phosphorylated / unmodified peptides) and the HLA-I peptidome (2nd column, frequency in 

phosphorylated / unmodified peptides). Heatmap colors show the log2 fold change between 

phosphorylated and unmodified peptides. In A and B, kinase motifs are sorted according to the 

frequency in the human phosphoproteome. 

 

The HLA-II phosphopeptidome improves prediction of phosphorylated HLA-

II ligands 

We then used our HLA-II phosphopeptidome to expand our HLA-II ligand prediction 

method MixMHC2pred (37) to phosphorylated peptides. To this end, MixMHC2pred 

was retrained combining both unmodified and phosphorylated peptides (see Methods 

in 3.4). To benchmark its performance, we performed a 5-fold cross-validation with each 

HLA-II allele for which we could find at least five phosphorylated ligands in our dataset. 

We then compared the new version of MixMHC2pred with the existing tools 

NetMHCIIpan4.0 (88) and MARIA (83) (see Methods in 3.4). Our results show that the 

predictions of phosphorylated peptides significantly improved with the new version of 
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MixMHC2pred (Figure 3.5A and Supplemental Figure 3.2A). Similar results were 

obtained when predicting the same set of peptides with phosphorylated residues 

substituted by glutamic acid. As a second benchmarking, we performed a leave-one-

sample-out cross-validation by excluding all the phosphorylated peptides found in one 

sample from the training of MixMHC2pred and using them as test set. Predictions with 

MixMHC2pred were compared to those with NetMHCIIpan4.0 and MARIA and results 

showed significantly improved predictions with the new version of MixMHC2pred 

(Figure 3.5B and Supplemental Figure 3.2B). 

 

Figure 3.5: The HLA-II phosphopeptidome improves prediction of phosphorylated HLA-II 

ligands. (A) AUC values for all alleles in the cross-validation of the new version of MixMHC2pred 

(v1.3) trained on a combination of phosphorylated and unmodified peptides. For comparison 

AUC values of NetMHCIIpan4.0 and MARIA are shown. (B) AUC values for leave-one-sample-out 

cross-validation for all samples in this work. AUC values of MixMCH2pred1.3 are shown in 

comparison to AUCs of NetMHCIIpred4.0 and MARIA. P-values between the different predictors 

were calculated using the paired two-sided Wilcoxon signed rank-test. 

3.3 Discussion  
A better understanding of the repertoire and the properties of HLA-II ligands is 

promising for the development of personalized cancer immunotherapies such as cancer 

vaccines (166–168). As cancer can cause aberrant PTMs which can be presented on 

HLA-II molecules and recognized by CD4+ T cells (137, 152, 156), including PTMs such 

as phosphorylation in HLA-II ligand predictions is powerful to expand the list of 

potential targets for cancer immunotherapy. 
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In this work, we provided an in-depth analysis of the HLA-II phosphopeptidome. We 

could identify binding motifs of phosphorylated HLA-II ligands for more than 30 alleles. 

These binding motifs showed high similarity with those of unmodified HLA-II ligands at 

anchor positions, in particular the main anchors at P1 and P9. 

Our analysis of the position of phosphorylated residues in HLA-II ligands revealed a 

preference of phosphorylation either at PFRs or in the middle of the core, and a very 

low frequency of phosphorylated residues at the main anchor positions P1 and P9 

(Figure 3.3A, C). These results could be confirmed with binding assays and are 

consistent with the low frequency of phosphorylated residues at anchor positions in 

HLA-I ligands (175). The presence of phosphorylated residues at secondary anchor 

positions (mainly P4 and P6) was less expected. However, our binding assays confirmed 

that specific peptides can accommodate phosphorylated residues at such anchor 

positions, especially when negatively charged residues (mainly aspartic acid) are present 

in the binding motifs based on unmodified ligands (Figure 3.3F). This clearly shows that 

the charged properties of phosphorylated residues also play a role in the binding of 

phosphorylated HLA-II ligands. We speculate that a lower frequency of phosphorylation 

at P2 and P8 compared to central positions could possibly be due to some kinase motifs 

at these positions being less compatible with HLA-II binding motifs. For instance, the 

phosphorylated residues corresponding to the [pS/pT]P kinase motif are unlikely to be 

found at P8 since HLA-II motifs strongly disfavor Pro at P9. Overall, our results suggest 

that the preference for phosphorylated residues at positions middle positions of the 

core may be context dependent and that phosphorylation is not depleted at anchor 

positions P4 and P6. The low frequency of phosphorylated residues at the N-terminus of 

the HLA-II ligands (Figure 3.3C) could suggest that this may not be favorable for protein 

cleavage or transport, although additional work will be warranted to confirm this 

hypothesis. 

Our analysis of kinase motifs did not detect a strong over-representation of common 

kinase motifs seen in the intracellular phosphoproteome or the HLA-I 

phosphopeptidome (e.g., [pS/pT]P or RXX[pS/pT]). We speculate that many of these 

potential phosphosites are simply not phosphorylated in the pool of ligands available 

for loading onto HLA-II molecules or that these are efficiently removed by phosphatases 

before or after binding to the HLA-II molecules. This supports the idea that 

phosphorylated residues observed among HLA-II ligands come from a more diverse 

repertoire of kinases compared to the one observed in both the phosphoproteome and 
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the HLA-I phosphopeptidome. This hypothesis is consistent with the differences 

between class I and class II antigen presentation pathways and the fact that many HLA-II 

ligands come from endocytosis of proteins in the extracellular matrix, which may 

undergo phosphorylation by different sets of kinases compared to intracellular proteins 

displayed on HLA-I molecules. 

Finally, we used our data to build a predictor for phosphorylated HLA-II ligands by 

including the HLA-II phosphopeptidome in the training data of our HLA-II ligand 

prediction method MixMHC2pred. The results of the cross-validation showed that our 

expanded HLA-II ligand predictor could improve predictions for phosphorylated HLA-II 

ligands compared to existing tools (Figure 3.5A, B). The motifs of phosphorylated HLA-

II ligands suggest that binding of phosphorylated peptides is shaped by the binding 

motif of the HLA-II allele and some positional specificity for the phosphorylated residues 

(e.g., exclusion of P1 and P9). 

Altogether, our work represents the first in-depth analysis of the repertoire of 

phosphorylated HLA-II ligands. We anticipate that this unique resource and the 

associated computational tools to predict phosphorylated HLA-II ligands in different 

contexts will facilitate the discovery of potential new targets for CD4+ T-cell recognition 

in infectious diseases and cancer immunotherapy. 

3.4 Methods 

Curation of immunopeptidomics HLA-II MS datasets 

The MaxQuant platform (178) version 1.5.5.1 was employed to search the MS peak lists 

of 23 samples from (37) against a fasta file containing the human proteome 

(Homo_sapiens_UP000005640_9606, the reviewed part of UniProt, with no isoforms, 

including 21,026 entries downloaded in March 2017) and a list of 247 frequently 

observed contaminants. Peptides with a length between 8 and 25 amino acids were 

allowed. The second peptide identification option in Andromeda was enabled and the 

enzyme specificity was set as unspecific.  A false-discovery rate of 5% was required for 

peptides and no protein false-discovery rate was set. The initial allowed mass deviation 

of the precursor ion was set to 6 ppm and the maximum fragment mass deviation was 

set to 20 ppm. Methionine oxidation, N-terminal acetylation and phosphorylation on 

serine, threonine, and tyrosine were set as variable modifications. The resulting list of 
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msms identifications were further filtered to include phosphorylated peptides with 

identification score ≥ 40, score difference to the second best peptide spectrum match 

(delta score) ≥ 10, and localization probability for phosphorylation of >0.75 as well as 

peptide lengths restricted to 12 to 25 amino acids. To obtain better specificity for 

unmodified peptides, sample-specific unmodified sequences identified with 1% FDR 

were obtained from (37). 

HLA-II Motif Deconvolution for identification of HLA-I binding motifs 

To determine allelic restriction and identify phosphorylated HLA-II binding motifs, the 

motif deconvolution method MoDec (37) was expanded to allow for phosphorylated 

residues within sequences. This was done by expanding the alphabet from 20 essential 

amino acids to include the three phosphorylated residues, giving an alphabet of size 23. 

For each sample, MoDec was applied to the combined set of phosphorylated HLA-II 

ligands identified in this work and unmodified HLA-II ligands (37). Motifs were manually 

assigned to alleles by using previously identified binding motifs of unmodified HLA-II 

ligands (see example in Figure 3.1B). For some samples, some motifs could not be 

unambiguously assigned to a single allele, as previously observed with unmodified HLA-

II ligands (37). The corresponding peptides were not assigned to any allele and were 

not considered in the allele-specific analyses. MoDec also includes a flat motif that is 

useful to model potential contaminants or wrongly identified peptides (37, 175). 

Peptides assigned to this flat motif were not considered in any analysis. Sequence logos 

including phosphorylated ligands were drawn with the extended version of ggseqlogo 

(https://github.com/GfellerLab/ggseqlogo) (40) and phosphorylated residues are shown 

in purple (Figure 3.2). 

General analysis of phosphorylated HLA-II ligands 

The frequency of phosphorylated residues inside of the binding core and in PFRs were 

compared to the fraction of positions in these two regions of the peptides and a two-

sided Fisher’s exact test was applied to calculate the p-value (Figure 3.3A). Only 

peptides with phosphorylated residues in the first three position of the N-terminal 

region or in the last three positions of the C-terminal region were used to compute the 

distribution of phosphorylation in PFRs (Figure 3.3B). The distribution of phosphorylated 

residues per position in the core was computed position-wise for all peptides that 

contained at least one phosphorylation in the binding core (Figure 3.3C).  
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To analyze the correlation between aspartic acid and phosphorylated residues at anchor 

positions, each allele with at least 20 phosphorylated peptides was considered. Anchor 

positions per allele were identified in unmodified peptides if any of the secondary 

anchor positions (positions 4, 6, or 7) had an entropy higher than the median entropy of 

all positions of the allele. At these allele-specific anchor positions the frequency of 

aspartic acid in unmodified peptides and the frequency of phosphorylated residues in 

phosphorylated peptides was measured. p-value was calculated with independent two-

sample t-test (Figure 3.3G). 

Competition Binding Assays 

To test binding of different phosphorylated HLA-II ligands, competition assays were 

performed for HLA-DRB1*01:01 and HLA-DRB1*07:01 with two and one different 

peptides detected by MS in the samples, respectively. The competition assays were 

performed by mixing in v-bottom 96-well plate (Greiner Bio-One) in a citrate saline 

buffer (100 mM citrate, pH 6.0), with 0.2% β-octyl-glucopyranoside (Calbiochem), 

1×complete protease inhibitors (Roche), and 1 mg of the biotinylated empty allele with 

a FLAG-tagged peptide at fixed concentration of 2 µM (Influenza HA307-319 for HLA-

DRB1*01:01 and NY-ESO-187-99 for HLA-DRB1*07:01). The peptide of interest was 

added to this mix into each well at a final concentration of 0, 0.13, 0.41, 1.3, 3.7, 11.1, 

33.3, and 100 µM. For the control, untagged peptide (Influenza HA307-319 or NY-ESO-187-

99) were added at the respective concentrations to the mix of allele and FLAG-tagged 

peptide. After incubation at 37°C overnight, the binding of the tagged peptides to 

HLA-II molecule was measured by ELISA. The mix was transferred to a plate coated with 

avidin and the FLAG-peptide was detected with an anti-FLAG-alkaline phosphatase 

conjugate (Sigma), developed with pNPP SigmaFAST substrate and absorbance was 

read with a 405nm – filter (Figure 3.3D-F). 

Kinase motifs 

To detect enrichment of kinase motifs in phosphorylated HLA-II ligands, occurrences of 

all motifs from the PhosphoMotif Finder of the Human Protein Reference Database (177) 

were searched in phosphorylated as well as unmodified HLA-II ligands (Figure 3.4A, B). 

To be able to search each motif on all peptides, including those that had the 

phosphorylated residue at the first or last positions, resulting in the motif not to be 

entirely contained in the HLA-II ligands, each phosphorylated and unmodified peptide 

was mapped to its source protein and N’- and C’-terminally extended. Occurrences of 

kinase motifs were normalized by the amount of phosphorylated residues of the 



 61 

corresponding motif in all phosphorylated peptides (e.g., amount of pS in 

phosphorylated peptides for motif pSP, amount of pS and pT in all phosphorylated 

peptides for motif [pS/pT]P). Similarly, frequencies of kinase motifs in unmodified 

peptides were determined by normalization with the amount of the unmodified 

counterpart of the phosphorylated resides of the corresponding motif in all unmodified 

peptides (e.g., amount of S in unmodified peptides for motif SP, amount of S and T in 

unmodified peptides for motif [S/T]P). For comparison, the same analysis was also 

performed on phosphorylated HLA-I peptides from our previous work (175) as well as 

the human proteome (Uniprot accession number UP000005640) and a human 

phosphoproteome (125). The most common and non-redundant kinase motifs that 

showed a p-value p ≤ 0.01 between phosphorylated and unmodified HLA-II peptides 

(computed with one-sided Fisher’s exact test) are shown in Figure 3.4A, B. To analyze 

whether the difference in kinase motifs between phosphorylated HLA-II and HLA-I 

ligands is due to a gene bias of source proteins, a universal set of source genes of MS-

detected sequences was defined. This universal gene set contained all source genes of 

phosphorylated and unmodified HLA-II sequences, source genes from a 

phosphoproteome (125), and a MS-based human proteome (179).  Next, source genes 

of known phosphosites from the phosphoproteome containing the [pS/pT]P or 

RXX[pS/pT] motif were identified and the overlap with unmodified HLA-II ligands was 

computed. p-values were computed with one-sided Fisher’s exact tests. 

Predictor 

Predictions of interactions between HLA-II alleles and phosphorylated peptides were 

based on the previously developed HLA-II prediction method MixMHC2pred (37). 

Following our previous work on phosphorylated HLA-I ligands (175), the MixMHC2pred 

training framework was extended to consider 23 amino acids and the phosphorylated 

peptides were added to the training set used in (37). MixMHC2pred was then retrained 

on this combined dataset of both phosphorylated and unmodified HLA-II ligands. A 5-

fold cross-validation was performed for each allele with at least five phosphorylated 

peptides by splitting the phosphorylated peptides randomly into testing and training 

data (one fifth and four fifth of the phosphorylated peptides, respectively). In each 

round of the cross-validation, the set of phosphorylated peptides used for training was 

added to the existing (unmodified) training data previously used (37). For the leave-one-

sample-out cross-validation, each sample from the dataset was iteratively used as test 

set and all phosphorylated peptides that were found in this sample were removed from 

the training data of MixMHCpred. Five times the amount of positive phosphorylated 
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peptides were added to the testing data as negative peptides. Peptides used as 

negative in the test set were of lengths 12 to 25 amino acids and contained a 

phosphosite from the human phosphoproteome (the phosphosite itself, the length of 

the peptide as well as the position of the phosphosite in the 12 to 25-mer were 

randomly chosen). 

Other existing HLA-II predictors (MARIA (83) and NetMHCIIpan4.0 (88)) were used to 

benchmark the prediction results (Figure 3.5 and Supplemental Figure 3.2). MARIA was 

used with the unmodified version of the phosphorylated peptides (S, T, Y instead of pS, 

pT, pY) as well as gene names of the peptides’ source proteins for all available alleles 

and only applied to alleles given in the list of alleles supported by MARIA. 

Phosphorylated residues in HLA-II ligands were substituted by ‘X’ for predictions with 

NetMHCIIpan4.0. For comparison of the predictions with each method, the area under 

the curve (AUC) of the receiver operating characteristic (ROC) was computed for each 

allele and each predictor. Due to limited allele availability, MARIA was only applied to 

the HLA-DR alleles (Figure 3.5A and Supplemental Figure 3.2A) and HLA-DR specific 

samples (Figure 3.5B and Supplemental Figure 3.2B). 

3.5 Supplemental Figures 

 

Supplemental Figure 3.1: HLA-II alleles present similar fractions of phosphorylated ligands. 

Frequency of phosphorylated peptides in the HLA-II peptidome for the alleles of each gene (-

DR, -DP, or -DQ). 
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Supplemental Figure 3.2: The HLA-II phosphopeptidome improves prediction of phosphorylated 

HLA-II ligands. (A) Heatmap showing AUC values from the 5-fold cross-validation for each allele 

and each predictor. NaN for MARIA denotes alleles not available for predictions. (B) Heatmap 

showing AUC values from leave-one-sample-out cross-validation for each sample and each 

predictor. MARIA was only applied to HLA-II peptidomics samples analyzed with HLA-DR 

antibodies. 
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Chapter 4 Conclusions & Discussion 

Ever since the first discovery on how to use mechanisms of the immune system to treat 

malignancies, immunotherapies have received increasing interested for the 

development of targeted and efficient cancer treatments and have been rapidly 

advancing over the last decade (180). Cancer immunotherapies, including immune 

checkpoint inhibitors or chimeric antigen receptor (CAR) T cell therapies, have shown 

promising results (181–183). Identification of neoantigens for clinical application is 

crucial for the development of antigen-specific therapeutic strategies and is facilitated 

by efficient pipelines based on high-throughput sequencing data and bioinformatics 

models to predict HLA – ligand interactions (67). The presented thesis summarizes two 

in-depth analyses of (1) phosphorylated HLA-I and (2) HLA-II ligands as well as (3) 

prediction models for HLA – ligand interactions specifically trained on HLA-I/HLA-II 

phosphopeptidomes and concludes the following: 

Phosphorylated HLA-I binding motifs can be identified from MS – based 

immunopeptidomics data and are shaped by a combination of HLA-I binding 

motifs, intrinsic HLA-I binding properties of phosphorylated peptides, and 

kinase motifs 

The first part of this thesis comprises a comprehensive analysis of phosphorylated HLA-I 

ligands with a large allelic-coverage using different MS – based immunopeptidomics 

studies. Motif deconvolution in combination with unmodified HLA-I ligands enabled the 

determination of allelic restriction for each sample and allowed us to identify HLA-I 

binding motifs of phosphorylated ligands. The data used in this study was collected with 

a less conservative FDR of 5% in contrast to the usually applied FDR of 1%. However, to 

maintain peptide spectrum matches with relatively high confidence, stringent cutoffs of 

identification parameters were employed. Our results showed that less stringent FDR of 

5% together with motif deconvolution resulted in high confidence HLA-I ligands. Thus, 

we propose that motif deconvolution acts as additional filtering for the identification of 

high confidence peptides, including those containing phosphorylation.  

Clear properties of HLA-I binding of phosphorylated ligands could be detected in the 

HLA phosphopeptidome. For instance, a strong enrichment of phosphorylation at P4 

was seen in peptides of length 8-12 amino acids. Previous studies observed interactions 
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between the phosphate moiety at P4 of the peptide with different positions in the heavy 

chain of the allele (142, 147). One study on phosphorylated HLA-B peptides concluded 

that the interaction between the phosphorylated ligand and Arg62 of the HLA heavy 

chain, a position highly conserved in HLA-B alleles, was specific for phosphorylated 

ligands (147). Comparable results were observed for HLA-A*02:01, where 

phosphorylated ligands interacted with Arg65 of the heavy chain of the allele (142). 

Additionally, these studies concluded that the high frequency of basic residues at P1 of 

the phosphorylated peptides provided additional binding stability for the peptides 

through intermolecular bonds between the phosphate moiety and the basic residue and 

further suggested that this was linked to the structure of the HLA binding pocket. Here, 

the analysis of the HLA-I phosphopeptidome could confirm an enrichment of 

phosphorylation at P4 as well as arginine at P1 in phosphorylated ligands beyond HLA-

A*02:01 and HLA-B alleles. Binding assays performed for multiple phosphorylated 

ligands with HLA-A*02:01 and HLA-B*07:02 showed no difference for peptides with or 

without arginine at P1. Furthermore, [K/R]XX[pS/pT] is the binding motif for different 

kinases, thus we propose that the enrichment of basic residues at P1 in phosphorylated 

HLA-I ligands is likely a result of kinase motifs. Nevertheless, we cannot exclude that 

some peptides show improved binding due to intermolecular bonds between the basic 

residue at P1 and the phosphate moiety at P4. 

While it was shown that HLA-A and HLA-B alleles are expressed at higher levels than 

HLA-C alleles (11, 12), we observed that HLA-C alleles expressed on average the 

highest fraction of phosphorylated ligands. This suggests that while HLA-C expression 

and peptide binding are usually limited due to different factors, phosphorylated 

peptides actually fit the binding motifs of HLA-C alleles better than those of HLA-A or 

HLA-B alleles. For instance, unmodified binding motifs of some HLA-C alleles including 

HLA-C*07:01 show an enrichment for arginine at P1 and thus are a good fit for peptides 

containing phosphosites with the very frequent [K/R]XX[pS/pT] kinase motif.  

Differences in HLA binding properties and kinase motifs in the HLA-II 

phosphopeptidome compared to the HLA-I phosphopeptidome 

Chapter 3 presents the first comprehensive work on the HLA-II phosphopeptidome 

including the identification of binding motifs of phosphorylated HLA-II ligands for more 

than 30 alleles. In line with what was observed for HLA-I, phosphorylated HLA-II binding 

motifs show high similarities to unmodified HLA-II ligands at anchor positions, in 

particular the main anchors P1 and P9, as well as low frequencies of phosphorylation at 
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these main anchor positions. Contrarily, phosphorylated residues within the binding 

core of HLA-II ligands are evenly distributed among central positions and no preference 

for one specific position was observed. Furthermore, phosphorylation was also seen at 

secondary anchor positions (particularly P4 and P6) of HLA-II ligands. Binding assays of 

one HLA-DRB1*01:01 – restricted peptide with a phosphorylated residue at P4 showed 

that phosphorylation at this position did not interfere with the binding, potentially a 

result of the preference for negatively charged aspartic acid for the allele at P4. 

Additionally, only little amount of phosphorylation was observed at P2 and P8 in HLA-II 

ligands, which stands in contradiction to phosphorylation observed at higher levels at 

other non-anchor positions of HLA-II. Similarly, in HLA-I ligands a low frequency of 

phosphorylation was observed at non-anchor position P8. Furthermore, binding assays 

of HLA-I ligands with phosphorylation at P8 showed better binding compared to other 

non-anchor positions (i.e. P3, P5, P6, and P7). These observations are possibly explained 

by phosphorylation – specific characteristics influencing the binding of phosphorylated 

ligands to HLA molecules. In particular, the very frequently observed kinase motif 

[pS/pT]P and the incompatibility of proline at P9 in both, HLA-I and HL-II binding motifs, 

could likely explain the lack of phosphorylation at P8 in HLA ligands. This outlines that 

in addition to the HLA binding motifs, the binding of phosphorylated ligands to HLA 

molecules is restricted by phosphorylation – specific properties. 

Additionally, and in contrast to what could be observed in the HLA-I 

phosphopeptidome, phosphorylated HLA-II ligands did not show any clear enrichment 

of kinase binding motifs compared to the unmodified HLA-II peptidome. In particular, 

the very frequently observed motifs [pS/pT]P and [K/R]XX[pS/pT] showed no enrichment 

in phosphorylated compared to the unmodified HLA-II peptidome. This suggests that a 

broader repertoire of kinases is responsible for the phosphorylation of source proteins 

of HLA-II – presented ligands. This is most likely explained by HLA-II molecules 

expressing peptides from endocytosed proteins as well as different kinases responsible 

for the extracellular phosphoproteome. For instance, recent studies have identified a 

secreted kinase which is active in the extracellular matrix as well as a secretory pathway 

kinase that is responsible for phosphorylation of secreted proteins in the Golgi 

apparatus (184, 185).  

Training on HLA-I and HLA-II phosphopeptidomes results in robust 

predictions of HLA – phosphorylated peptide interactions 
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The identified HLA-I and HLA-II phosphopeptidomes enabled us to specifically train 

prediction models for HLA – ligand interactions. Comparing the prediction model for 

phosphorylated HLA-I ligands trained on both phosphorylated and unmodified peptides 

with a model trained only on the unmodified HLA-I peptidome showed that the 

additional information derived from the phosphorylated residues in the training data 

improved the predictions of such phosphorylated peptides. Similarly, the existing HLA-II 

ligand predictor (37) was expanded by including the HLA-II phosphopeptidome in the 

training data and showed robust predictions of phosphorylated HLA-II ligands. Both 

prediction models are the first to specifically train on post-translationally modified HLA 

ligand data and show promising results to include HLA-I and HLA-II 

phosphopeptidomes in future developments of such tools for comprehensive methods 

to further study HLA ligand interaction.  

Limitations and Future Perspectives 

The limited amount of phosphorylated HLA ligands as well as the smaller allelic-

coverage compared to unmodified HLA ligands presents one of the main constraint of 

this work. This lack of phosphorylated HLA ligands in combination with the allele-

specificity of the prediction models for HLA – ligand interactions limits their application 

in future research on phosphorylated HLA ligands. Previous HLA peptidomics studies 

either did not include phosphorylated peptides in the identification of HLA ligands or 

focused on specific alleles or phosphorylated peptides. Here we saw that 

phosphorylated ligands curated in the course of this study on average make up less 

than two percent of the HLA-I peptidome, with some variations for different alleles. 

Similarly, searching for known phosphosites in the unmodified HLA-I peptidome 

resulted in a comparable number, outlining that the HLA-I phosphopeptidome is 

naturally limited by the phosphorylation events of the phosphoproteome. Nevertheless, 

considering post-translationally modified ligands in future identification of HLA 

peptidomes will further add to phosphorylated HLA binding motifs as well as establish 

phosphorylation – specific characteristics of phosphorylated HLA ligands, such as kinase 

motifs, and therefore contribute to the training data of the prediction models. 

Furthermore, pan-specific predictors have been shown to improve predictions of 

unmodified ligands by overcoming the lack of or the limited availability of training data 

for rare and less studied alleles (78). Thus, the development of robust models for pan-

allelic and pan-length predictors is one the main objectives in the field of HLA – ligand 

predictions, providing models applicable to a wide range of patient data independent 

of HLA typing. Predictors for phosphorylated HLA-I and HLA-II ligands would likewise 
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benefit from robust pan-specific models, since HLA-I and HLA-II phosphopeptidomes 

have been sparsely studied, and help improve in particularly predictions for less 

frequent alleles. 

Lastly, the thesis focused on the identification and prediction of phosphorylated HLA 

ligands, one of the most common and well-studied PTMs, also in regard to antigen 

processing, presentation and T cell recognition. However, other PTMs have also been 

observed in HLA peptidome, including deamidated HLA-I ligands, citrullinated self-

peptides bound to HLA-DR alleles, or glycosylated HLA-II ligands in melanoma cell lines 

(169, 186, 187). Future work on other post-translationally modified HLA peptides can 

take advantage of motif deconvolution and prediction models presented in this work. 

This is of particular interest for PTMs that have been seen to play a role in malignancies, 

such as arginine methylation in cancer (188). Further exploring the space of post-

translationally modified HLA-I and HLA-II ligands can contribute to a better 

understanding of antigen processing and HLA immunopeptidomes of modified ligands 

as well as their role in the development for therapeutic strategies.  

One of the main challenges for applying the presented predictors in future studies on 

phosphorylated HLA ligands lies in confidently determining immunogenicity of potential 

phosphorylated HLA ligands for the development of immunotherapies. It was shown 

that T cell recognition of phosphorylated HLA-I ligands are both sequence-specific and 

phosphorylation-dependent (138, 139, 141, 142, 144). However, the question remaining 

is can a phosphosite be exclusively cancer-specific and can HLA ligands containing this 

site therefore be robust targets for immunotherapies? Phosphorylation is actively 

involved in many cell regulatory processes and expression of phosphorylated ligands by 

HLA-I and HLA-II molecules was observed in healthy as well as tumor tissue, thus T cell 

tolerance against phosphorylated HLA ligands exists. With somatic mutation creating a 

novel phosphorylation event (189), HLA – presented antigens containing this cancer-

specific phosphosite can be potentially immunogenic. Recent work to determine 

immunogenicity of phosphorylated HLA-I ligands, derived from proteins linked to cell 

growth and survival, observed decelerated tumor growth in vivo (140) and further lead 

to a first clinical trial for vaccines with cancer-associated phosphorylated peptides in 

melanoma patients (146). Various methods and databases to study the phosphorylation 

landscape to detect differences caused by malignancies have been proposed and 

provide useful tools for the identification of cancer-specific phosphosites (189–192). 
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From a global perspective, providing access to robust tools for direct identification of 

phosphorylated HLA ligands without performing intensive experimental work will 

facilitate future research on phosphorylated HLA ligands as well as help defining their 

role in cancer-specific antigen presentation and T cell recognition. The most recent 

advancement in immunotherapies have reshaped cancer therapies in the last years. 

Future developments will further benefit from efficient pipelines for antigen 

identification including time- and effort-reduced methods such as in silico predictors. 

Identification of cancer-specific antigens, including antigens containing cancer-specific 

phosphosites, expand the pool of potential targets for immunotherapeutic approaches 

and show promising potential for the development of a more targeted and specific 

treatment.  
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No HLA-I ligand predictor is
available today for post-transla-
tionally modified ligands. We cu-
rated phosphorylated HLA-I li-
gands from immunopeptidomics
studies and retrieved 2066
unique sequences. We ex-
panded our motif deconvolution
tool to identify precise binding
motifs of phosphorylated HLA-I
ligands, found enrichment of
phosphorylated peptides among
HLA-C ligands, and demon-
strated a prevalent role of both
HLA-I and kinase motifs on
presentation of phosphorylated
peptides. We further developed
and validated the first predictor
of interactions between HLA-I
molecules and phosphorylated
peptides.
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• Curation of 2066 phosphorylated HLA class I peptides from immunopeptidomics data.

• Determination of 22 HLA class I binding motifs for phosphorylated peptides.

• Observation of a higher frequency of phosphorylated ligands binding HLA-C molecules.

• Development of a predictor of phosphorylated peptide interactions with HLA class I.
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The presentation of peptides on class I human leukocyte
antigen (HLA-I) molecules plays a central role in immune
recognition of infected or malignant cells. In cancer, non-
self HLA-I ligands can arise from many different altera-
tions, including non-synonymous mutations, gene fusion,
cancer-specific alternative mRNA splicing or aberrant
post-translational modifications. Identifying HLA-I ligands
remains a challenging task that requires either heavy ex-
perimental work for in vivo identification or optimized
bioinformatics tools for accurate predictions. To date, no
HLA-I ligand predictor includes post-translational modifi-
cations. To fill this gap, we curated phosphorylated HLA-I
ligands from several immunopeptidomics studies (includ-
ing six newly measured samples) covering 72 HLA-I al-
leles and retrieved a total of 2,066 unique phosphorylated
peptides. We then expanded our motif deconvolution tool
to identify precise binding motifs of phosphorylated HLA-I
ligands. Our results reveal a clear enrichment of phospho-
rylated peptides among HLA-C ligands and demonstrate a
prevalent role of both HLA-I motifs and kinase motifs on
the presentation of phosphorylated peptides. These data
further enabled us to develop and validate the first pre-
dictor of interactions between HLA-I molecules and phos-
phorylated peptides. Molecular & Cellular Proteomics
19: 390–404, 2020. DOI: 10.1074/mcp.TIR119.001641.

Human leukocyte antigen class I (HLA-I)1 molecules medi-
ate cell surface presentation of peptides originating from in-
tracellular protein degradation. Proteins are fragmented by
the proteasome into short peptides. These peptides can enter
the endoplasmic reticulum through the transporter associated
with antigen processing (TAP) protein complex, where they
are loaded onto HLA-I molecules and transported to the cell
surface (1). HLA-I molecules are encoded by three genes
(HLA-A, HLA-B, and HLA-C) and these genes are among the
most polymorphic of the human genome, resulting in currently

more than 17,000 different alleles (2). HLA-I molecules have
specific binding motifs and different alleles typically bind dis-
tinct sets of peptides (3). Foreign or altered-self HLA-I ligands
can be recognized by CD8! T cells and induce an immune
response to eliminate infected or malignant cells. These non-
self HLA-I ligands can have various origins, such as viral
proteins or genetically or post-translationally modified pro-
teins in cancer. Identification of peptides presented HLA-I
molecules is labor intensive because it relies either on chal-
lenging immunopeptidomics experiments, or predictions of
HLA-I ligands followed by experimental validation. Currently,
many optimized algorithms are available for predicting un-
modified HLA-I ligands (4–7), but none of them include spe-
cifically post-translational modifications.

Multiple studies have identified post-translational modifica-
tions (PTMs) showing aberrant behavior in cancer (8–11),
resulting for instance in abnormal cellular signaling, one of the
hallmarks of cancer (12). Phosphorylation of serine, threonine,
and tyrosine is one of the most frequent and best studied
PTMs (13), and is carried out by different types of protein
kinases, consisting mainly of serine/threonine- and tyrosine-
specific protein kinases. There are over 500 known kinases in
the human genome (14, 15) and different phosphorylation
motifs, such as [pS/pT]P for CDK1 or MAPK1 or Rxx[pS/pT]
for PKA or PKB, characterize individual kinases. It has been
shown that aberrant phosphorylation can occur in cancer
cells because of a deregulated balance between phosphoryl-
ation and dephosphorylation events (16), thereby altering key
signaling pathways and processes within cells. A recent study
estimated that phosphorylation-related single nucleotide vari-
ants are present in "90% of tumor genomes (17) and pre-
dicted that 29% of these variants affect signaling pathways.
Further, phosphosite-specific signature analysis showed to
be able to identify dysregulation of phosphorylation-regulated
pathways in cancer (18).
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Peptides with phosphorylated residues can be processed
by the antigen presentation pathway, bind to HLA-I mole-
cules, and be presented on the cell surface (19, 20, 29, 30,
21–28). Several studies reported that phosphorylated pep-
tides could induce immune responses through T cell recog-
nition. For instance, T cells were shown to recognize phos-
phorylated peptides presented on primary tumors and normal
tissues and kill tumor cell lines (24, 31). Studies have reported
a clear preference for the phosphorylation at position 4 on
HLA-I ligands and revealed an increased presence of arginine
at P1 as well as an enrichment of proline after the phosphosite
caused by proline-dependent kinases (20, 22, 24–29, 32, 33).
However, so far, only a handful of phosphorylated HLA-I
ligands were determined for a small number of HLA-I alleles
and no method is available to specifically predict their bind-
ing. As a result, predictions of HLA-I interactions with phos-
phorylated ligands are performed without including the mod-
ified amino acid (either by using the unmodified version of the
residue or by substituting it with “X”), which is likely sub-
optimal because no information about phosphorylation is in-
cluded in the training set of the predictors.

To fill this gap, we first measured the immunopeptidome of
6 new samples and reprocessed existing immunopeptidomics
raw data for 55 other samples, in order to search for phos-
phorylated HLA-I ligands. We complemented these data with
a small subset of HLA-I restricted phosphorylated peptides
identified previously by mass spectrometry (MS), some of
which came from phospho-enrichment protocols, and cu-
rated a large data set of 2,066 unique phosphorylated HLA-I
ligands experimentally determined by MS. This enabled us to
accurately determine phosphorylated motifs for 22 of the
most frequent HLA-I alleles and revealed clear discrepancies
among alleles in terms of propensity to bind phosphorylated
peptides. We observed a much higher frequency of phospho-
rylated ligands for HLA-C alleles. We further analyzed several
properties of phosphorylated HLA-I ligands and performed
binding assays to validate and interpret these results. Using
these data, we then developed the first predictor of phospho-
rylated HLA-I ligands.

EXPERIMENTAL PROCEDURES

HLA Typing—High-resolution 4-digit HLA-I typing was experimen-
tally determined before this work and is provided for all samples in
this study (supplemental Data S1). DNA was extracted from the
samples for HLA typing with the DNeasy Blood & Tissue Kit (Qiagen,
Germantown, Maryland), following the manufacturer’s protocols. The
amplification of the HLA genes was conducted with the TruSight HLA
v2 Sequencing Panel kit (CareDx, Brisbane, California) according to
the manufacturer’s protocol. Sequencing was performed on the Illu-
mina® MiniSeq™ System (Illumina, San Diego, California) using
paired-end 2 ! 150 bp protocol. The data was analyzed with the
Assign TruSight HLA v2.1 software (CareDx).

Preparation of HLA Class I Peptide Samples—Several tissue sam-
ples, 3993, 4052-BA, 3989-HT, OE37–1N, OVZW-1P, and OXVD-09,
were provided by the biobank of the Center of Experimental Thera-
pies at the CHUV after informed consent of the participants was
obtained following requirements of the institutional review board (Eth-
ics Commission, CHUV). 2–5 biological replicates per tissue were
processed using our previously described protocol (34). Briefly, tis-
sues were homogenized on ice in lysis buffer with Ultra Turrax ho-
mogenizer (IKA, Staufen, Germany) for 10 s at maximum speed, and
then incubated on ice for 1 h. Lysis buffer contained 0.25% sodium
deoxycholate (Sigma-Aldrich, St. Louis, Missouri), 0.2 mM iodoacet-
amide (Sigma-Aldrich), 1 mM EDTA, 1:200 Protease Inhibitors Mixture
(Sigma-Aldrich), 1 mM Phenylmethylsulfonylfluoride (Roche, Mann-
heim, Germany), 1% octyl-beta-D glucopyranoside (Sigma-Aldrich) in
PBS. Subsequently, 20 min centrifugation for clearance (table-top
centrifuge, Eppendorf Centrifuge 5430R, Schönenbuch, Switzerland)
was performed at 4 °C at 14,200 rpm. Immuno-affinity purification
through Protein-A Sepharose beads covalently bound to W6–32 an-
tibodies was performed in a format of 96-well single-use micro plate
with 10 !m polypropylene membranes (SeaHorse Bioscience, North
Billerica, Massachusetts). The plates were then washed 4 times with
2 ml 150 mM NaCl and 20 mM Tris HCl (buffer A), 4 times with 2 ml 400
mM NaCl and 20 mM Tris Hcl, further 4 times 2 ml buffer A and final
twice with with 20 mM Tris HCl, pH 8. HLA molecules and peptides
were eluted with 1% trifluoroacetic acid (TFA, Merck, Darmstadt,
Germany) directly into Sep-Pak tC18 100 mg Sorbent 96-well plates
(Waters, Milford, Massachusetts) pre-conditioned with 80% acetoni-
trile (ACN) in 0.1% TFA and with 0.1% TFA only. Wells were washed
twice with 0.1% TFA and then the peptides were eluted with 28%
ACN in 0.1% TFA. Peptides were dried using vacuum centrifugation
(Eppendorf Concentrator Plus, Schönenbuch, Switzerland) and were
resuspended in a final volume of 12 !l 0.1% formic acid. 3 !l of these
peptides were used for each MS run.

Mass Spectrometry Analysis of HLA Class I Peptides—HLA pep-
tides were separated by a nanoflow HPLC (Proxeon Biosystems,
Thermo Fisher Scientific, Odense, Denmark) on 50 cm long column
(75 !m inner diameter) self-packed with ReproSil-Pur C18-AQ 1.9 !m
resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) in 0.1%
formic acid coupled on-line to a Q Exactive HF-X mass spectrometers
(Thermo Fisher Scientific, Bremen, Germany) with a nanoelectrospray
ion source (Proxeon Biosystems). HLA-I peptides were eluted with a
linear gradient of 2–30% of 80% ACN and 0.1% formic acid at a flow
rate of 250 nl/min over 125 min. MS spectra were acquired from
m/z " 300–1,650 in the Orbitrap with a resolution of 60,000 (m/z "
200) and ion accumulation time of 80 ms. The auto gain control was
set to 3e6 ions. MS/MS spectra were acquired on 10 most abundant
precursor ions with a resolution of 15,000 (m/z " 200), ion accumu-
lation time of 120 ms and an isolation window of 1.2 m/z. The auto
gain control was set to 2e5 ions. Dynamic exclusion to 20 s and a
normalized collision energy of 27 was used for fragmentation. The
peptide match option was disabled. No fragmentation was performed
in case of assigned precursor ion charge states of four and above.

Identification of HLA Class I Peptides—We employed the Max-
Quant platform (35) version 1.5.5.1 to search the MS peak lists
against a fasta file containing the human UniProt database containing
42,170 entries including isoforms (March 2017) and a list of 247
frequently observed contaminants. Peptides with a length between 8
and 15 amino acids were allowed. The second peptide identification
option in Andromeda was enabled. The enzyme specificity was set as
unspecific and FDR of 5% was required for peptides and no protein
FDR was set. As a large score difference to the second best match
(delta score) is important for identification of phosphorylated peptides
(36), the delta score was set to a minimum of 10 for both modified and
unmodified peptides (see Results and supplemental Fig. S1 for com-

1 The abbreviations used are: HLA-I, human leukocyte antigen
class I; TAP, transporter associated with antigen processing; PTM,
post-translational modifications; FDR, false discovery rate.
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parison among different delta score thresholds). The initial allowed
mass deviation of the precursor ion was set to 6 ppm and the
maximum fragment mass deviation was set to 20 ppm. Methionine
oxidation (15.994915 Da), N-terminal acetylation (42.010565 Da) and
phosphorylation (79.9663304 Da) on serine, threonine and tyrosine
were set as variable modifications.

Experimental Design and Statistical Rationale—In addition to the
six novel samples mentioned above, 38 MS samples from published
immunopeptidomics studies were reanalyzed together, 209 raw files
in total (6, 26, 34, 37, 38) (see supplemental Data S1 and S2). For each
sample, at least two technical replicates of raw MS files were in-
cluded. In a separate run, the MaxQuant platform was employed with
the same parameters on 85 MS raw files of 17 monoallelic samples
with five technical replicates of raw MS files for each sample (39)
(supplemental Data S3), and the data was similarly filtered to obtain
peptide spectrum matches with high confidence.

Curation of Immunopeptidomics HLA-I MS Data Sets—We filtered
the list of identified phosphorylated HLA-I peptides listed in the Max-
Quant MSMS output table by removing reverse hits and peptides
matching contaminants. To maintain peptide spectrum matches with
high confidence, the list was further filtered by restricting the identi-
fication score !70, and the localization probabilities to !0.75. Only
unique modified and unmodified sequences were further analyzed
(see supplemental Data S4 for all identified phosphorylated HLA-I
peptides and supplemental Data S5 for all alleles for which phospho-
rylated HLA-I peptides were found).

Additionally, data from various publications (20, 21, 33, 40–43,
22–25, 27–29, 32) was added to our data set, using from each sample
both, known phosphorylated as well as unmodified HLA-I binders if
available. Identified phosphorylated HLA-I peptides from enrichments
studies (20–22, 25, 28) (see supplemental Data S4 for details) were
included in the determination of phosphorylated HLA-I binding motifs
and the training of the predictor, but not in the comparison of the
fraction of phosphorylated ligands for different HLA-I molecules.

HLA-I Motif Deconvolution for Identification of HLA-I Binding Mo-
tifs—To determine allelic restriction among HLA-I ligands found by
MS, including phosphorylated peptides, we expanded our motif de-
convolution tool MixMHCp (6, 44) to allow for additional non-standard
amino acids. Briefly speaking, the motif deconvolution method infers
with Expectation-Maximization algorithm K different position weight
matrices that optimally model the list of peptides. In this extended
version of the motif deconvolution algorithm, phosphorylated resi-
dues are treated as additional amino acids, leading to an alphabet of
size 23 (i.e. position weight matrices of size 9 ! 23, instead of 9 ! 20
as described in our previous manuscript (44)). Finally, motifs were
assigned to their respective HLA-I allele using the approach de-
scribed in (6, 37). Briefly, binding motifs from our samples were first
annotated by identifying common motifs across samples sharing the
same alleles, and these motifs were further compared with those from
previous studies or from IEDB (45). These results were manually
checked to exclude ambiguous cases, which were excluded from our
data, both in terms of unmodified and phosphorylated peptides. Of
note, MixMHCp also contains a flat motif to which peptides that do not
match any of the motifs inferred by the algorithm are assigned. The
command-line script to run the motif deconvolution (MixMHCp2.1) can
be obtained at https://github.com/GfellerLab/MixMHCp.

Visualization of HLA-I Phosphorylated Motifs—Binding motifs of
HLA-I alleles were visualized by sequence logos. The sequence logos
were generated by modifying the R package ggseqlogo (46) in a way
to include sequences with modified amino acids. Purple letters were
used to visualize phosphorylated residues in sequence logos of HLA-I
binding motifs. Phosphorylated motifs for HLA-I alleles with more
than 22 phosphorylated ligands are displayed in Fig. 1. The modified

version of ggseqlogo to plot sequence logos including modified res-
idues is provided at https://github.com/GfellerLab/ggseqlogo.

Analysis of Phosphorylated HLA-I Ligands—After assigning un-
modified and phosphorylated peptides to alleles through motif de-
convolution, peptides were pooled from all samples for each allele
and merged into a unique set of peptides per allele. Phosphorylated
and unmodified binding motifs for each HLA-I allele were built. The
overall frequency of phosphorylated peptides per allele was analyzed
by computing the fraction of phosphorylated peptides among all
discovered peptides per allele from any length and for each peptide
length ranging from 8 to 12 amino acids separately. To identify
potential structural differences between binding regions of alleles with
high and low frequency of phosphorylated peptides, alleles were split
into two groups based on the median frequency in HLA-A, -B, or -C
alleles, respectively. HLA-I binding sites were analyzed by (1) select-
ing positions of the binding regions that show interaction with the
peptide in the 3D structure (28 positions in total) and (2) computing
the Euclidean distances for these selected positions of the binding
regions between the two groups. For each group of alleles, the block
of binding site sequences was transformed into position weight mat-
rices (Mij) with i " 1, . . . ,20 and j " 1, . . . , 28 by calculating the
frequency of each amino acid i at each position j. For each position j,
the Euclidean distance between the columns of the matrices (M(1) and
M(2)) was computed as:

!"i"1
20 #Mij

#1$ " Mij
#2$$2#1/ 2

(Eq. 1)

Sequence logos were used to visualize the ten most different
positions in each comparison for binding sites of alleles with high
frequency versus alleles with low frequency of phosphorylated
peptides.

For each allele in the underlying data set, we calculated how many
unmodified ligands contained phosphosites from the phosphopro-
teome (47). Phosphosites positioned at P4 in unmodified HLA-I
9-mers were counted for all alleles with more than 50 unmodified
ligands. The frequency of known phosphosites per allele was com-
puted as the fraction of detected phosphosites at P4 within the
unmodified 9-mer HLA-I ligands. The correlation between phospho-
rylated HLA-I ligands per allele and the amount of detected phospho-
sites within unmodified HLA-I ligands was measured using the Pear-
son correlation coefficient.

The length distribution ranging from 8- to 12-mers was computed
for phosphorylated and unmodified HLA-I ligands per allele and error
bars show the variability across alleles.

The distribution of phosphorylated amino acids (pS, pT, and pY) in
the human phosphoproteome was obtained from (47) and compared
with the one observed in the whole phosphorylated immunopep-
tidome and separately for each length 8 to 12. p values were calcu-
lated by t-tests. Further, among all unique phosphorylated HLA-I
ligands, we measured how often each position in any 8- to 12-mer
was phosphorylated.

To test if proline enrichment exists in our data set, the proline
frequency in phosphorylated and unmodified HLA-I ligands was an-
alyzed. First, the frequency of proline occurring next to a phos-
phorylated residue was measured in all phosphorylated peptides per
allele, for all alleles with at least 5 phosphorylated peptides. Second,
the overall proline frequency in unmodified HLA-I peptides at non-
anchor positions (3 to 8 for HLA-I 9-mers) was extracted allele-wise.
As a third measurement, the proline frequency in the human proteome
(UniProt as of October 2017) was also included as a comparative
means in the analysis of proline enrichment. p values were computed
by t-tests among the different groups of data.

To compute the enrichment in arginine at P1, for each allele with at
least 5 phosphorylated HLA-I ligands the occurrence of arginine at P1
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was calculated among all phosphorylated peptides with a phos-
phorylated P4 (phosphorylated serine, threonine or tyrosine), which is
the most frequent phosphorylated position within 9-mers. These val-
ues were compared with (1) the frequency of arginine at P1 in un-
modified HLA-I ligands with serine, threonine, or tyrosine at P4 and (2)
the overall frequency of arginine in the human proteome (UniProt as of
October 2017). p values comparing the different measurements were
computed with t-tests.

Binding motifs of different kinases were determined with the Phos-
pho.ELM data set (48) and sequence logos of 3 positions upstream
and 3 positions downstream of the phosphosite were visualized with
the modified version of ggseqlogo.

Experimental Testing of HLA-I–Phosphorylated Ligand Binding—
Experimental testing of HLA-I ligands was performed as described
before (6), consisting of refolding assays, followed by ELISA assays.
ELISA absorbance signals were used to define binding stabilities of
phosphorylated and unmodified versions of several peptides and
several alleles. Two replicates per experiment were performed and
negative controls correspond to experiments performed in the ab-
sence of a peptide. Measured absorbance of the binding assays were
normalized by t ! 0 h of the positive controls. Half-lives were com-
puted as ln(2)/koff. The background signal (i.e. measurements from the
negative controls) was removed from the measured ELISA absorb-
ance values and koff was determined through fitting exponential
curves to absorbance values.

Mutation of position 69 for arginine to alanine in the heavy chain of
HLA-C*06:02 was done by site-directed mutagenesis by overlap ex-
tension using the polymerase chain reaction (PCR). Two PCR prod-
ucts are obtained from the HLA-C*06:02 BSP coding sequence using
as forward primer 5"-GATATACATATGTGCTCCCACTCCATGAGG-3"
(primer A) and reverse primer containing the mutation (in bold and
underlined) 5"-CACTCGGTCAGCCTGTGCCTGGGCCTTGTACTTCT-
GTGTCTCCCG-3" (primer B) and second PCR with forward primer
containing the mutation (in bold and underlined) 5"-CGGGAGACACA-
GAAGTACAAGGCCCAGGCACAGGCTGACCGAGTG-3" (primer C)
and reverse primer 5"-GGCCGCAAGCTTTTAGTGCCATTCGATT-
TTCTGAGC-3" (primer D). The two PCR products are mixed in a third
PCR with primer A and D. The coding sequence was cloned between
NdeI and HindIII sites in plasmid pET-23a. Expression of mutated
R69A HLA-C*06:02 was performed by using the Escherichia coli
strain BL21(DE3)(pLysE).

Predictor and Cross Validation—For each HLA-I allele with at least
20 phosphorylated HLA-I 9-mer ligands, position weight matrices
(PWM) were built. PWMs are then used to calculate a peptide score
for each peptide (X1, . . . ,XL):

S !
1
L!i!1

L log"pxi,i

qxi
# (Eq. 2)

The peptide score describes for a peptide with which frequency
each amino acid occurs at its position in the binding motif of the allele.
L corresponds to the length of the predicted peptide, pxi,iis the PWM
entry at position i for amino acid Xi, and qxiis a background frequency.
Here, average frequencies of each amino acid within the human
phosphoproteome are used as background frequencies. For each
allele, peptides are ranked according to their score to identify most
likely binders.

Before calculating the peptide score S, a pseudocount is added to
the PWM, as described in (49). This is done to prevent zero occur-
rence of any amino acid at any position in the PWM, which may arise
especially for small training data sets. The pseudocount for phos-
phorylated PWMs (PWMs of size 9 # 23 for 9-mers) is based on the
work on the BLOSUM62 alignment score (50). The transition proba-
bilities from the original BLOSUM62 were used for unmodified amino
acids. BLOSUM62 was then expanded to include the three phospho-

rylated residues (phosphorylated serine, phosphorylated threonine,
and phosphorylated tyrosine), based on the BLOSUM62 transition
probabilities of unmodified serine, threonine and tyrosine. The phos-
phorylated-BLOSUM62 was extended by (1) transition probabilities
from each phosphorylated amino acid to any of the three phospho-
rylated as well as any of the 20 unmodified amino acid, and (2)
transition probabilities from any unmodified amino acid into each of
the three phosphorylated residues. In more details, for phosphoryl-
ated residues p"(s,t,y) and unmodified residues U"(A,C,D,. . .,Y)
BLOSUM62 was extended into phospho-BLOSUM62 in the following
way: transitions b from any phosphorylated amino acid p1 to any
other phosphorylated amino acid p2 were defined as

bp1 ,p2
!

Bp1
!,p2

!

Bp1
!,p1

!
bp1 ,p1

(Eq. 3)

with p! denoting the corresponding unmodified amino acid of phos-
phorylated amino acid p and B corresponding to transition probabil-
ities from the original BLOSUM62. Further,

!
p2!1

3 bp1 ,p2
! 0.9 (Eq. 4)

was defined to strengthen the transition probability of a phosphoryl-
ated amino acid p1 to stay phosphorylated and to have only little
probability to transform into any unmodified residue (sum of transition
probability into unmodified residues being 0.1). The transition b from
phosphorylated residue p1 to any unmodified amino acid U was set to

bp1 , U !
Bp1

!,U

10 (Eq. 5)

Transitions of the unmodified counterpart of p1 to U from the
original BLOSUM62 were used to reflect the relationship between two
amino acids also in the transitions from the phosphorylated version of
the amino acid into all unmodified residues, but only contributing with
a reduced weight to the total transitions for a phosphorylated amino
acid (factor 10 is used to reduce the row sum of the original
BLOSUM62 from 1 to 0.1, considering Eq. 4). For any unmodified
amino acid U the transition probability into a phosphorylated residue
p was defined as

bU, p !
BU, p!

10 (Eq. 6)

Reduced transition probabilities were defined to provide a low
transition probability from unmodified into phosphorylated amino ac-
ids yet modeling a similar proportion for the transitions into phospho-
rylated versions of the amino acids like the transitions into unmodified
serine, threonine, and tyrosine. For each unmodified amino acid, a
row-wise normalization over the transitions to all unmodified and all
phosphorylated amino acids was performed. The phosBLOSUM62
matrix is given in supplemental Data S6.

Various versions of the predictor with different training data com-
positions were developed to find the best prediction method. One
predictor was trained only on phosphorylated peptides. A second
predictor included all unmodified HLA-I ligands of the allele in addition
to the phosphorylated peptides in the training set. In addition, to avoid
over-fitting of the predictor, if the unmodified version of a phospho-
rylated peptide in the testing data was present among unmodified
HLA-I ligands, it was removed from the training data set. A third
predictor was trained exclusively on unmodified HLA-I binders. In this
version of the predictor every phosphorylated residue in the predic-
tion data was treated like an unmodified amino acid, because no
information about phosphorylated residue occurrence was given in
the PWM. Further, the performance of the different versions of
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the predictor is also benchmarked against NetMHCpan4.0 (5).
NetMHCpan was carried out on the same prediction data replacing
the phosphorylated residues by “X” and peptides were ranked ac-
cording to their Rank score.

To validate the performance of the above-described predictors
with varying training data, a 5-fold cross validation was performed on
all alleles with more than 20 phosphorylated HLA-I peptides of length
9 and run 100 times. For each allele the set of phosphorylated
peptides was randomly divided into five groups, four were used as
training data for the predictor and the remaining one was used as
positive testing data. In addition, four times the amount of positive
peptides was added as negative data to the testing data. Negative
peptides were randomly selected from a pool of all known phospho-
sites of the human proteome, excluding phosphosites at anchor
positions 2 and 9. The Area Under the ROC Curve (AUC), AUC0.1 as
well as precision of the top 20% of predicted phosphorylated pep-
tides (corresponding to recall as four fifth of the prediction data was
negative data) were used to measure the performance of the different
prediction models (51) and shown as a mean over all 100 runs
averaged over all alleles and for each allele separately. p values
comparing the results of the cross validation were computed using
Wilcoxon signed-rank test.

The code of the predictor of phosphorylated HLA-I ligands is
available at https://github.com/GfellerLab/PhosMHCpred.

RESULTS

Identification of Phosphorylated HLA-I Ligands Uncovers
Phosphorylated HLA-I Binding Motifs—We collected data
from six new samples and curated 55 publicly available im-
munopeptidomics studies (6, 26, 34, 37–39) comprising both
pooled and mono-allelic data sets (see supplemental Data S1,
S2, and S3). None of these MS studies were performed with
phospho-enrichment protocols. Raw MS data were repro-
cessed allowing for phosphorylation on serine, threonine and
tyrosine as variable modifications (see Experimental Proce-
dures). To gain sensitivity while maintaining peptide spectrum
matches with relatively higher confidence that is typically
achieved with the more conservative false discovery rate
(FDR) of 1%, we applied FDR of 5% and considered peptides
identified with Andromeda search engine score !70, score
difference to the second best peptide spectrum match (delta
score) !10 and localization probability !0.75. This resulted in
2,190 unique phosphorylated peptides in total for all 61 sam-
ples. Supplemental Fig. S1A shows the distribution of An-
dromeda search engine peptide spectrum match score and
delta score for phosphorylated peptides with different local-
ization probabilities. To determine allelic restriction, we ex-
panded our motif deconvolution algorithm MixMHCp (6, 44) to
consider both the phosphorylated and unmodified peptides in
each sample (see “Experimental procedures”). MixMHCp re-
moves potentially wrongly identified peptides that do not
match the inferred motifs by assigning them to a so-called flat
motif (6). 1,841 unique phosphorylated peptides (84.1%) were
assigned to HLA-I motifs following this deconvolution step,
the remaining phosphorylated peptides were assigned to the
flat motif and excluded from downstream analyses. 31% of
the peptides identified with delta score !20 were assigned to
the flat motif compared with only "12% of the relatively more

reliable identifications of peptides with delta score !20 (see
supplemental Fig. S1B). We then compared different proper-
ties (i.e. peptide length, position of the phosphosite and fre-
quency of the different phosphorylated residues) among
phosphorylated HLA-I ligands with delta score !10 or !20.
Peptides assigned to HLA-I motifs by MixMHCp displayed
very similar properties across different choices of delta score
thresholds (supplemental Fig. S1C). Reversely, peptides as-
signed to the flat motif showed a dramatically different be-
havior in the aforementioned properties (supplemental Fig.
S1C). Together with the fact that these peptides were en-
riched in low delta scores, this suggests that the filtering with
MixMHCp efficiently removes several wrongly identified pep-
tides and can act as additional filter for phosphorylated im-
munopeptidomics data. Similar properties were observed be-
tween phosphorylated peptides assigned to HLA-I motifs
when using FDRs of 5% or 1% (supplemental Fig. S1D).
Finally, binding motifs of phosphorylated peptides were ro-
bust to different choices of thresholds on delta scores and
FDRs (see supplemental Fig. S2).

We further curated phosphorylated HLA-I ligands with
known allelic restriction reported in earlier studies (20, 21, 33,
40–43, 22–25, 27–29, 32), including phosphorylated peptides
from five samples analyzed with phospho-enrichment proto-
cols (20–22, 25, 28). In the final step, we restricted HLA-I
peptides to length 8–12 for further analysis. Altogether, a total
number of 2,066 unique phosphorylated peptide sequences
were retrieved, representing 2,585 unique HLA-I-phosphoryl-
ated peptide interactions with 72 different HLA-I alleles (20
HLA-A, 30 HLA-B, 21 HLA-C alleles and 1 HLA-G allele, see
supplemental data 4 for all identified phosphorylated pep-
tides). 740 of the 2,585 (28.63%) unique HLA-I-phosphoryl-
ated peptide interactions had been reported in previous stud-
ies. Phosphorylation occurred mostly once per peptide
(97.77%) and very few multiple phosphorylated peptides were
found (2.23% double phosphorylated peptides, see also sup-
plemental Fig. S3A). Among the 2,066 phosphosites, 800
(38.7%) were not observed in phosphosite databases (dbPAF,
phosphoELM, and phosphositePLUS (52–54)), which is in line
with what had been previously reported (26). Comparison of
binding motifs of all phosphorylated peptides with binding
motifs excluding unknown phosphosites showed that these
were very similar (see supplemental Fig. S2, column 1 and 4).
171 unique phosphorylated HLA-I ligands (8.3%) were only
found in the five phosphorylation-enriched samples from pre-
vious studies (20–22, 25, 28) and not in any of the other
unenriched samples included in our work (see supplemental
Data S5 for details). This demonstrates that many phosphor-
ylated HLA-I ligands can be detected in samples that are not
specifically enriched in phosphorylation residues, as already
shown in previous studies (26). "30% of the unique interac-
tions between HLA-I alleles and phosphorylated peptides
were also detected in their unmodified version. A GO enrich-
ment analysis of source proteins of all HLA-I ligands showed
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very similar proteins of origin for phosphorylated and unmod-
ified peptides (supplemental Fig. S3B).

22 HLA-I alleles had more than 20 unique phosphorylated
9-mer ligands and their phosphorylated and unmodified bind-
ing motifs are shown in Fig. 1. These 22 alleles were later used
to develop the predictor for HLA-I-phosphorylated peptide
interactions and have a population frequency of 91.76% on
average worldwide (99.41% in Europe).

Phosphorylated Peptides are Enriched Among HLA-C Li-
gands—We analyzed the fraction of phosphorylated HLA-I
ligands for alleles derived from each gene (HLA-A, HLA-B,
and HLA-C). Phosphorylation-enriched samples (20–22, 25,
28) (see supplemental Data S4 and S5 for detailed informa-
tion) were not considered in this analysis to prevent biases in
the estimation of the frequency of phosphorylated HLA-I li-
gands. For all peptide lengths combined, we observed varia-
bility across different alleles and a significant enrichment of
phosphorylated peptides among HLA-C alleles compared
with HLA-A and HLA-B (Fig. 2A and see supplemental Fig.
S4A for separate lengths). To show that this could not be
ascribed to the peptides from the monoalleleic HLA-C sam-
ples (39), we performed the same analysis without these
samples, and obtained similar results (supplemental Fig. S4B,
left panel). Further, we could see that these results were also
robust when only analyzing phosphorylated peptides identi-
fied with delta score !20 (supplemental Fig. S4B, right panel).
To investigate why specific alleles, and especially HLA-C
alleles, show a higher fraction of phosphorylated peptides in
our data set, we measured the binding stability differences
(i.e. half-life ratio) between phosphorylated and unmodified
peptides for several HLA-A, -B, and -C alleles (HLA-A*01:01,
HLA-A*25:01, HLA-B*07:02, HLA-B*18:01, HLA-C*06:02, and
HLA-C*07:02) with both high and low phosphorylated peptide
frequency in immunopeptidomics data (arrows in Fig. 2A).
Overall, the results indicate significantly higher half-life ratio
for HLA-C alleles compared with HLA-A or HLA-B alleles (Fig.
2B). However, the selected HLA-A and HLA-B alleles showed
opposite binding preference compared with what would have
been expected from the frequency of phosphorylated pep-
tides in the immunopeptidome (Fig. 2B, compare HLA-
A*01:01 and HLA-A*25:01, HLA-B*07:02, and HLA-B*18:01).

HLA-C molecules are characterized by the specific pres-
ence of R at position 69 (A/T in HLA-A or -B), which may
interact with phosphorylated residues (supplemental Fig.
S4C). However, R69A mutation did not show a sharper de-
crease in binding affinity for phosphorylated ligands (supple-
mental Fig. S4D), suggesting that this residue is not respon-
sible for the preference of HLA-C alleles for phosphorylated
peptides. Moreover, comparison of binding sites between
alleles with high and low fractions of phosphorylated ligands
did not suggest clear differences that could favor the binding
of phosphorylated peptides (supplemental Fig. S4E).

The lack of correlation between stability measurements and
fraction of phosphorylated peptides in MS data within alleles

from the same gene and the lack of molecular features ex-
plaining the variability observed across alleles (Fig. 2A–2B and
supplemental Fig. S4A–S4E) led us to hypothesize that this
variability may be related to a better compatibility of specific
HLA-I motifs with phosphorylation motifs. To explore this
hypothesis, we analyzed the unmodified ligands of each allele
in our data set by checking for the occurrence of human
phosphosites from the phosphoproteome (47). The results
showed that the frequency of unmodified ligands containing
known phosphosites at P4 is on average higher in HLA-C than
in HLA-A or HLA-B alleles (Fig. 2C). We could further detect a
significant positive correlation between the amount of phos-
phosites of the human phosphoproteome found within un-
modified ligands and the frequency of phosphorylated ligands
detected per allele (supplemental Fig. S4F). These results
support the hypothesis that HLA-I alleles that preferentially
bind phosphorylated peptides (especially HLA-C alleles) have
motifs that are better suited to bind peptides coming from
known phosphosites. (Fig. 2A and supplemental Fig. S4A).
Overall, our analysis shows large variability in the fraction of
phosphorylated ligands across alleles and suggest that some
of this variability comes from a better compatibility between
the HLA-I motifs of specific alleles and phosphorylation
motifs.

When we compared the fraction of phosphorylated pep-
tides for different lengths, we could observe that longer
peptides are enriched with phosphosites (Fig. 2D and supple-
mental Fig. S4A). Further, phosphorylated residues (phospho-
rylated serine, threonine, and tyrosine) were observed at sim-
ilar frequencies as in the human phosphoproteome (47) (Fig.
2E), and binding assays indicated no difference in binding
stability for different phosphorylated residues (Fig. 2F).

Phosphorylated HLA-I Ligands Show a Preference for
Phosphosites at P4 Which Does Not Only Result From Higher
Binding Stability—Fig. 3A shows the distribution of phospho-
rylated positions for peptides of lengths 8 to 12 in our phos-
phorylated immunopeptidome. Like what has been shown
before (24, 26, 28, 32, 33), we could detect a clear preference
for phosphorylation at P4 in all lengths and an additional
preference for P6 in 10- and 12-mer phosphorylated HLA-I
ligands. To explore the biochemical reason for this preference
at P4, the binding of 9-mer peptides with phosphorylated
serine at non-anchor positions 3 to 8 was tested. As ex-
pected, HLA-A*02:01 and HLA-B*07:02 binding peptides with
a phosphorylated P4 bind more stably compared with pep-
tides with phosphorylated positions 3 and 5 to 7. This trend
was also observed for a peptide that was originally found in
the MS data with a phosphorylated P3 (third peptide of HLA-
B*07:02 in the panel). Further and less expectedly, the results
demonstrated that phosphorylation at P8 also shows an in-
creased binding compared with phosphorylated positions
3 and 5 to 7 (Fig. 3B), especially for ligands tested for
HLA-B*07:02.
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FIG. 1. Overview of 9-mer HLA-I binding motifs of unmodified (top) and phosphorylated (bottom) ligands for HLA-I alleles with at least
20 phosphorylated ligands (9-mers) determined in this work. Phosphorylated residues are shown in purple.
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Proline Adjacent to the Phosphorylated Residue and Argi-
nine at P1 are a Result of Kinase Motifs—Previous studies
reported proline enrichment next to phosphorylated residues

in phosphorylated HLA-I ligands as a consequence of the
[pS/pT]P phosphorylation motif (20, 24–26, 28, 33). Our anal-
ysis with a much larger allelic coverage confirmed these re-

FIG. 2. Analysis of phosphorylated peptides across HLA-I alleles. A, Frequency of phosphorylated peptides per HLA-A, -B, and -C alleles
for peptides of any length. Numbers in the plot indicate alleles tested in panel B. B, Ratio of half-lives between the phosphorylated (pS/pT) and
the unmodified (S/T) peptides for several alleles. The colors of the bars correspond to alleles with high and low frequency of phosphorylated
peptides in A. For HLA-A*01:01, HLA-B*07:02, HLA-C*06:02 and HLA-C*07:02 phosphorylated HLA-I binding motifs are shown, for HLA-
A*25:01 and HLA-B*18:01 binding motifs of unmodified HLA-I ligands are given because too few phosphorylated peptides were observed in
MS data for these alleles. C, Fraction of unmodified HLA-I 9-mer ligands containing a phosphosite at P4 for HLA-A, -B, and -C alleles. Arrows
indicate the same alleles as in panel A. D, Length distribution of phosphorylated and unmodified ligands of HLA-A, HLA-B, and HLA-C alleles.
E, Frequency of the different phosphorylated residues within phosphorylated HLA-I ligands of length 8 to 12 and within the human
phosphoproteome (47). F, Dissociation assay (absorbance from ELISA) for unmodified and phosphorylated peptides (with phosphorylated
serine, phosphorylated threonine, and phosphorylated tyrosine). (*, p ! 0.05; **, p ! 0.01.)

FIG. 3. Phosphorylated positions in HLA-I ligands. A, Distribution of the position of phosphorylated residues in phosphorylated HLA-I
ligands of lengths 8 to 12. B, Half-lives of HLA-I ligands for peptides with positions 3 to 8 substituted by phosphorylated serine. Green squares
mark the position of the phosphosite (phosphorylated serine) for peptides found in MS data. Lack of green square indicates one unmodified
peptide observed in MS data (APSSSSSSL) or one synthetic peptide (RLSSSSSSV) used in this in vitro assay.
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sults. In particular, we observed a significantly higher fre-
quency of proline next to phosphorylated residues in HLA-I
ligands compared with unmodified HLA-I ligands or to the
human proteome (see Experimental Procedures and Fig. 4A
and supplemental Fig. S5A). To support the hypothesis that
the higher frequency of proline next to phosphorylated resi-
dues in HLA-I ligands reflects kinase phosphorylation motifs
(Fig. 4B), we performed binding assays for three alleles (HLA-
A*02:01, HLA-A*11:01, HLA-B*07:02) and four peptides with
or without a phosphorylated residue at P4 and with or without
proline at P5. The results of these binding assays show that
proline or alanine at P5 did not change the binding stability,
both for phosphorylated and unmodified peptides, consistent
with the hypothesis that the proline enrichment is mainly
because of kinase phosphorylation motifs (Fig. 4C).

Previous studies have shown that some phosphorylated
HLA-I ligands show a preference for basic amino acids at P1
(20, 22, 24, 26, 28, 32, 33). For several alleles, we could see
the same trend in our data when comparing phosphorylated
and unmodified binding motifs (Fig. 1, e.g. HLA-B07:02 or
HLA-C06:02). Comparisons between the frequency of argi-
nine at P1 in phosphorylated HLA-I ligands with the frequency
of arginine at P1 in unmodified HLA-I ligands and in the
human proteome confirmed that the enrichment is statistically
significant (see Experimental Procedures and Fig. 4D and
supplemental Fig. S5B). We then asked whether this is be-
cause of enhanced binding of phosphorylated HLA-I ligands
in the presence of R at P1 or to a signature of the known
Rxx[pS/pT] phosphorylation motifs of protein kinases (see
examples for PKA and PKB in Fig. 4E). To this end, we
measured the binding stability of six different peptides with or
without phosphorylated serine at P4 and with or without ar-
ginine at P1. For multiple alleles and peptides, the peptides
with R at P1 have a similar binding compared with the pep-
tides with A at P1, for both the phosphorylated and unmodi-
fied versions (Fig. 4F), suggesting that the preference for R at
P1 does not affect the binding of phosphorylated ligands, but
rather results from the phosphorylation motifs of specific ki-
nases. Supplemental Table S1 shows phosphorylated HLA-I
ligands that correspond to known phosphosites from the
phosphoELM database (53) and were identified to be phos-
phorylated by kinases CDK1, PKA, and PKB.

Training Predictors on HLA-I Phospho-peptidomes Im-
proves Predictions of Phosphorylated HLA-I Ligands—We
then used our large curation of eluted phosphorylated pep-

tides to train a predictor of phosphorylated HLA-I ligands. In
particular, we explored different alternatives consisting of
training the predictor (1) combining both the phosphorylated
and non-phosphorylated peptides, (2) considering only un-
modified peptides or (3) considering only phosphorylated
peptides (see Experimental Procedures). For validation, we
focused on the 9-mer peptides and performed a 5-fold cross
validation on the 22 alleles with at least 20 phosphorylated
peptides. Phosphorylated ligands per allele were divided into
training and testing data set and negative peptides were
added by randomly selecting peptides from the human phos-
phosite reference database (see Experimental Procedures).
Fig. 5A–5C show the area under the receiver operating char-
acteristics (ROC) curve (AUC), AUC0.1, and the precision for
the top 20% of predicted phosphorylated peptides, respec-
tively, of the cross validations for each version of training data
for each allele separately (see supplemental Fig. S6A–S6C for
average values over all 22 alleles). The results indicate that
training the predictor with a combination of phosphorylated
and unmodified HLA-I ligands performs best (1st bar, Fig.
5A–5C and supplemental Fig. S6A–S6C). When comparing
the AUC values of the predictor trained with a combined data
set (1st bar) and the predictor trained only with unmodified
peptides (2nd bar), we can see that training only on unmodified
HLA-I ligands and ignoring modification on a residue is also
not as good as training on a combined data set for the
prediction of HLA-I-phosphorylated peptide interactions. Fi-
nally, we observed that our predictor trained on a combined
data set of phosphorylated and unmodified HLA-I ligands
outperforms the state-of-the-art predictor NetMHCpan4.0 (4th

bar in Fig. 5A–5C and supplemental Fig. S6A–S6C) (phos-
phorylated residues were substituted with “X” because Net-
MHCpan cannot take phosphorylated amino acids as input).
This further confirms that including phosphorylated residues
within the training data set of HLA-I ligand predictors im-
proves their accuracy for predicting phosphorylated peptides.

To test the robustness of our predictor to the presence of
some level of wrongly identified phosphorylated peptides, we
included 5% phosphorylated decoy peptides in the training
data. We did not observe significant changes in predictions,
which demonstrates that our predictor can tolerate some level
of contaminants or wrongly identified peptides (supplemental
Fig. S6D). To exclude potential batch effects in our data, we
trained the predictor on the newly curated data and tested it
on previously reported HLA-I-restricted phosphorylated pep-

FIG. 4. Proline and arginine enrichment in phosphorylated HLA-I ligands. A, Frequency of proline next to phosphorylated residues in
phosphorylated HLA-I ligands, proline at non-anchor positions in unmodified HLA-I ligands, and proline frequency in the human proteome. B,
Kinase binding motifs for kinases CDK1 and MAPK1, three positions up- and downstream of the phosphosite (PS). C, Dissociation of peptides
with proline or alanine next to phosphorylated serine (top) and next to unmodified serine in unmodified versions of the peptides (bottom). D,
Frequency of arginine at P1 in phosphorylated HLA-I ligands, in unmodified HLA-I ligands, and in the human proteome. E, Kinase binding motifs
for kinases PKA and PKB, three positions up- and downstream of the phosphosite (PS). F, Dissociation of peptides with arginine at P1
compared with peptides with alanine at P1 for both the phosphorylated (top) and unmodified (bottom) versions of the peptides. (***, p ! 0.001)
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FIG. 5. Cross validation of the predictor for each HLA-I allele with more than 20 phosphorylated 9-mer peptides. A, AUC values for
phosphorylated HLA-I 9-mer peptides when trained on both phosphorylated and unmodified ligands (1st bar), trained only on unmodified
ligands (2nd bar, treating phosphorylated residues as their unmodified counterpart), or when trained only on phosphorylated HLA-I ligands (3rd

bar). For comparison, AUC values are also shown when using NetMHCpan4.0 and replacing phosphorylated residues by “X” in the input (4th

bar). B, Results of the 5-fold cross validation measured by AUC0.1. C, Precision measured for the top 20% of the predicted peptides
(equivalent to recall of the prediction data).
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tides. This was done for two alleles (HLA-A*02:01 and HLA-
B*07:02) with enough previously reported HLA-I restricted
phosphorylated peptides. Supplemental Fig. S6E shows that
the results from these predictions are like the case where the
training and testing data are selected from the whole pool of
peptides (i.e. without distinguishing our newly curated data from
previously reported data). A similar analysis was performed for
ligands from phospho-enriched samples. Supplemental Fig.
S6F shows that prediction of enriched samples trained on data
from non-enriched samples performs equally well than ran-
domly selected training and testing data of the same size.
Finally, a saturation analysis with different number of phospho-
rylated ligands in the training data was performed for HLA-
A*02:01 (supplemental Fig. S6G), showing that the choice of 20
phosphorylated peptides is already providing good prediction
accuracy.

DISCUSSION

Aberrant phosphorylation is frequent in malignant cells.
However, prediction of the presentation of phosphorylated
peptides on HLA-I molecules has been poorly explored,
mainly because of the lack of training data. Here, we curated
phosphorylated HLA-I ligands across many immunopeptido-
mics studies to investigate molecular properties of interac-
tions between phosphorylated peptides and HLA-I molecules
and developed the first predictor for HLA-I interactions with
phosphorylated peptides.

Our unsupervised approach to assign allelic restriction and
infer binding motifs based on motif deconvolution (6, 37, 44) is
especially appropriate for phosphorylated peptides because it
does not require a priori information on their interactions with
HLA-I alleles. In addition, it enabled us to use relatively permis-
sive thresholds and subsequently filter potentially wrongly iden-
tified peptides that did not match the inferred motifs. As ex-
pected, the resulting phosphorylated motifs show similarity with
those derived from unmodified peptides, especially at anchor
positions (second and last positions for most HLA-I alleles).

Our results outlined a clear preference for phosphorylated
peptides to bind to HLA-C alleles compared with HLA-A and
-B alleles (Fig. 2A). Yet, differences in the binding site, such as
R69 in the HLA heavy chain, do not appear to determine the
preference for phosphorylated peptides of HLA-C alleles. Pre-
vious work (28) identified the interaction between R62 in HLA-
B*40 and the phosphate moiety of the phosphorylated HLA-I
ligand to support the binding of the phosphorylated peptide to
this allele. All HLA-C but also most HLA-B alleles in our data
set, including those with low fractions of phosphorylated li-
gands, contain arginine at position 62 (supplemental Fig.
S4G). This suggests that, at least for the alleles studied in this
work, arginine at position 62 does not necessarily favor the
binding of phosphorylated HLA-I ligands. The analysis of un-
modified ligands showed a higher fraction of human phos-
phosites in HLA-C ligands, suggesting that phosphosites fit
the binding motifs of HLA-C alleles on average better than

those of HLA-A and HLA-B alleles (Fig. 2C). This hypothesis is
further supported by the correlation between the number
of detected phosphosites per allele and the number of phos-
phorylated HLA-I ligands (supplemental Fig. S4F). This could
explain, at least partly, the higher fraction of phosphorylated
HLA-C ligands observed in immunopeptidomics data (Fig. 2A).

Our results demonstrated a clear preference for phospho-
rylated residues at P4 in phosphorylated HLA-I ligands, con-
firming previous observations (26, 28, 32). However, binding
assays for HLA-B*07:02 pointed out that peptides with phos-
phorylation at P8 show a similar binding stability as peptides
with phosphorylation at P4 (Fig. 3B). 9-mer binding motifs of
alleles shown in Fig. 1 indicate that proline at P9 is not
favorable for binding. This can explain why peptides with
phosphorylation at P8 are less often observed in MS data,
because the common kinase motif with proline next to the
phosphorylated residue is not compatible with the binding
motifs of HLA-I alleles. This suggests that the clear specificity
of phosphorylation at P4 is because of (1) better binding of
these phosphorylated peptides and (2) incompatibility of kinase
motifs for phosphorylated peptides with phosphorylation at P8.

Consistent with what has been shown in previous studies (20,
22, 24, 26, 28, 29, 32, 33), we observed a clear preference for
arginine at P1 for several alleles (Fig. 4D and supplemental Fig.
S5B). Basic residues at P1 were observed to interact with the
negatively charged phosphorylated residue at P4 and were
suggested to improve the general stability of the phosphoryl-
ated peptide with the HLA-I molecule through this intramolec-
ular bond (28, 29). However, when we tested the binding of
phosphorylated and unmodified peptides with both arginine or
alanine at P1, we observed very similar binding stability, sug-
gesting that arginine does not specifically strengthen the bind-
ing of phosphorylated peptides in these alleles. Of course, we
cannot exclude that the intramolecular bridge may be present
and enhance binding of phosphorylated peptides to other al-
leles. Moreover, some alleles show preference for arginine at P1
for both phosphorylated and unmodified peptides, which could
explain why arginine at P1 was reported to enhance binding of
phosphorylated peptides (28, 29). Yet, the analysis of different
kinase binding motifs indicates that many serine/threonine-ki-
nases have a binding motif with arginine three positions up-
stream of the phosphorylated residue (Fig. 4E). This, together
with the results of binding assays in Fig. 4F, provides a more
likely explanation for the enrichment in arginine at P1 observed
in Fig. 1 and Fig. 4D. Of note, arginine at P1 is not observed in
all alleles (e.g. HLA-A*68:01 where P1 serves as an additional
anchor residue, see Fig. 1).

Our results demonstrated that a combined training data set
of phosphorylated and unmodified peptides outperforms
training that is based solely on unmodified peptides. Hence,
we can conclude that without phosphorylated peptides in the
training data the predictor lacks important information about
the phosphorylated residue (especially the preference for the
phosphorylated residue at P4).
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Overall, our analysis of phosphorylated immunopeptidomes
shows that the presentation of phosphorylated peptides on
HLA-I molecules is governed by a combination of HLA-I bind-
ing motifs (specificity mainly at P2 and P!), intrinsic HLA-I
binding properties of phosphorylated peptides (specificity at
P4) and kinase motifs (specificity at P1 and Pphospho"1). Our
ability to integrate these different features into a robust predictor
of phosphorylated HLA-I ligands explains the improvement over
existing tools and provides a rationale for training on both
unmodified and phosphorylated HLA-I ligands. In this work, we
have leveraged existing immunopeptidomics data for the iden-
tification of a large collection of phosphorylated HLA-I ligands,
mostly originating from un-enriched samples. To develop the
predictor for as many alleles as possible, we applied relatively
permissive filters and thresholds for interpretation the MS im-
munopeptidomic data set because motif deconvolution can
filter many potentially wrongly identified peptides (6) (see also a
related strategy for general immunopeptidomics experiments
(55)) and our computational approach can handle some level of
false positives. This contrasts with other applications of MS
based immunopeptidomics studies aimed at directly identifying
novel epitopes, where high-confidence peptide identification is
crucial. We anticipate that this predictor will facilitate the iden-
tification of phosphorylated T cell epitopes for researchers that
do not have access to high-quality but expensive MS immuno-
peptidomics technology and will foster future research on their
role in immune recognition of infected or malignant cells.
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Supplemental Information 

Supplementary Figures 

Figure S1: (A) Distribution of Andromeda search engine scores vs. score differences to the 

second best peptide spectrum match (delta scores) for MaxQuant search with FDR of 5% 

(left) and with FDR of 1% (right). Blue dots mark phosphorylated peptides with localization 

probability of ≥0.75, orange dots mark phosphorylated peptides with localization probability 

<0.75. (B) Distribution of Andromeda search engine scores vs. delta scores for all peptides 

assigned to HLA-I alleles (blue dots) and the flat motif (red dots) in the motif 

deconvolution.  (C) Distribution of phosphorylated residues ([pS/pT/pY]), peptide lengths, 
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and phosphorylated positions in 9-mers for phosphorylated peptides assigned to HLA-I 

alleles with delta scores ≥10 (blue) and delta scores ≥20 (cyan), and for peptides assigned to 

the flat motif by MixMHCp (red). (D) Distribution of phosphorylated residues 

([pS/pT/pY]), peptide lengths, and phosphorylated positions in 9-mers for phosphorylated 

peptides assigned to HLA-I alleles with FDR of 5% (blue) and FDR of 1% (grey). 
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Figure S2: Comparison of binding motifs for different choices of parameters used to search 

the MS data. Column 1 shows the motifs based on phosphorylated peptides with FDR of 5% 

(same data as in Figure 1). Column 2 shows the motifs based on phosphorylated peptides 

with FDR of 1%. Column 3 shows the motifs based on phosphorylated peptides with delta 
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score ≥20. Column 4 shows the motifs based only on phosphorylated peptides containing 

known phosphosites. Column 5 shows the motifs based on unmodified peptides.  
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Figure S3: (A) Amount of phosphorylated residues per HLA-I ligand. (B) GO enrichment 

analysis with biological process classification for the source proteins of all phosphorylated 

and unmodified HLA-I ligands (performed with Panther tool [1]). 	
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Figure S4: Analysis of phosphorylated peptides per HLA-I allele. (A) Frequency of 

detected phosphorylated peptides per allele for different lengths. (B) Frequency of 

phosphorylated peptides per HLA-A, -B, and -C alleles for peptides of any length without 

monoallelic HLA-C samples (left panel) and for HLA-I ligands with delta score ≥20 (right 
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panel). Arrows indicate same alleles as in Fig. 2A and C and correspond to alleles tested in 

Fig. 2E. (C) Sequence logos of position 69 in HLA-A, -B, and -C alleles (1). Crystal 

structure of HLA-C*06:02 (PDB code: 5w67) superimposed to HLA-A*02:01 (PDB code: 

4nnx) with phosphorylated ligand RQA[pS]LSISV. R69 of HLA-C*06:02 is shown in green 

(2). (D) Dissociation assays of phosphorylated peptides with HLA-C*06:02 wt (R at P69) 

and mutated (R69A) alleles. (E) Frequency of phosphorylated peptides per allele grouped 

into high and low alleles. Sequence logos of the ten most different positions of the HLA-I 

binding site (measured by Euclidean distance between the groups with high and low alleles) 

for high and low alleles of HLA-A, HLA-B and HLA-C separately. (F) Correlation of 

phosphosites from the human proteome found in unmodified ligands and the frequency of 

phosphorylated HLA-I ligands per allele. (G) Sequence logos of position 62 in HLA-A, 

HLA-B, and HLA-C alleles. (*: p <= 0.05; **: p<= 0.01; ***: p <= 0.001) 
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Figure S5: Analysis of arginine and proline enrichment for 8- to 12-mers. (A) Frequency of 

proline next to phosphorylated serine in phosphorylated HLA-I peptides (1), proline 

frequency at non-anchor positions in unmodified HLA-I ligands (2), and proline frequency 

in the human proteome (3). (B) Frequency of arginine at P1 in phosphorylated HLA-I 

ligands (1), at P1 in unmodified HLA-I ligands (2) and overall arginine frequency in the 

human proteome (3) for different lengths. (*: p <= 0.05; **: p <= 0.01; ***: p <= 0.001)  
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Figure S6: 5-fold cross validation of the predictor trained with different training datasets as 

mean over all alleles shown as (A) AUC values, (B) AUC0.1, (C) Precision of the top 20% 

of predicted peptides. Training of the predictor was performed with both, phosphorylated 

and unmodified ligands (1st bar), with only unmodified ligands (2nd bar), and with 

phosphorylated HLA-I ligands (3rd bar). 4th bar shows AUC values using NetMHCpan4.0 
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(***: p <= 0.001). (D) The predictor was trained on phosphorylated and unmodified HLA-I 

ligands (left bars); in a second run the predictor was trained on phosphorylated and 

unmodified HLA-I ligands with additional 5% phosphorylated decoy peptides (right bars). 

Results are shown as AUC values. (E) Predicting previously published phosphorylated 

HLA-I ligands for HLA-A*02:01 and HLA-B*07:02. The predictor is trained on 

phosphorylated HLA-I ligands detect by MS in this study. Testing data are HLA-I restricted 

ligands from previous studies (left bars). As comparison, predictions with random division 

of training and testing dataset from the combined set of peptides are performed (right bars). 

(F) Prediction of HLA-A*02:01 and HLA-B*07:02. The predictor is trained on 

phosphorylated HLA-I ligands only found in non-enriched samples and tested on ligands 

found in enriched samples (left bars). As comparison, predictions with random division of 

training and testing dataset from the combined set of peptides are performed (right bars). 

(G) Prediction of 10 randomly selected HLA-A*02:01 ligands performed with training data 

of increasing size. 
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Supplementary Tables 

 

Table S1: All phosphorylated HLA-I ligands from this study that are known to be 

phosphorylated by CDK1 or PKA/B from the phosphosite database phosphoELM [3]. 	

  

Phosphorylated PeptideKinase Allele

HLA-A*02:01CDK1

CDK1

VLL[pS]PVPEL
LQL[pS]PLKGLSL
ITT[pS]PITVRK
EVP[pT]PKRPR
YAS[pS]PGGVYATR
RPI[pT]PPRNSA

SPK[pS]PTAAL

SPRTPV[pS]PVKF

EPKRR[pS]ARL
RPRSL[pS]SPTV
RPRSL[pS]SPTVTL
RRK[pS]HEAEV

RAH[pS]SPASL

RHK[pS]DSISL

HLA-A*02:06, HLA-B*55:01

HLA-A*11:01

HLA-A*68:01

HLA-A*68:01

HLA-B*07:02, HLA-B*55:01

HLA-B*07:02

HLA-B*07:02

HLA-B*07:02

HLA-B*07:02

HLA-C*06:02

HLA-B*07:02, HLA-B*35:03, 
HLA-C*01:02, HLA-C*03:03,
HLA-C*03:04, HLA-C*03:32,
HLA-C*12:03
HLA-B*39:01

CDK1

CDK1

CDK1

CDK1

CDK1

CDK1

PKA

PKA

PKA

PKA

PKB

PKB

CDK1 HLA-B*07:02SPR[pT]PVSPVKF

HLA-B*07:02, HLA-B*55:01, 
HLA-C*03:32
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