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The remarkable clinical efficacy of the immune checkpoint blockade therapies has moti-
vated researchers to discover immunogenic epitopes and exploit them for personalized 
vaccines. Human leukocyte antigen (HLA)-binding peptides derived from processing and 
presentation of mutated proteins are one of the leading targets for T-cell recognition of 
cancer cells. Currently, most studies attempt to identify neoantigens based on predicted 
affinity to HLA molecules, but the performance of such prediction algorithms is rather 
poor for rare HLA class I alleles and for HLA class II. Direct identification of neoantigens 
by mass spectrometry (MS) is becoming feasible; however, it is not yet applicable to 
most patients and lacks sensitivity. In an attempt to capitalize on existing immunopep-
tidomics data and extract information that could complement HLA-binding prediction, 
we first compiled a large HLA class I and class II immunopeptidomics database across 
dozens of cell types and HLA allotypes and detected hotspots that are subsequences of 
proteins frequently presented. About 3% of the peptidome was detected in both class 
I and class II. Based on the gene ontology of their source proteins and the peptide’s 
length, we propose that their processing may partake by the cellular class II presentation 
machinery. Our database captures the global nature of the in vivo peptidome averaged 
over many HLA alleles, and therefore, reflects the propensity of peptides to be presented 
on HLA complexes, which is complementary to the existing neoantigen prediction 
features such as binding affinity and stability or RNA abundance. We further introduce 
two immunopeptidomics MS-based features to guide prioritization of neoantigens: the 
number of peptides matching a protein in our database and the overlap of the predicted 
wild-type peptide with other peptides in our database. We show as a proof of concept 
that our immunopeptidomics MS-based features improved neoantigen prioritization by 
up to 50%. Overall, our work shows that, in addition to providing huge training data to 
improve the HLA binding prediction, immunopeptidomics also captures other aspects of 
the natural in vivo presentation that significantly improve prediction of clinically relevant 
neoantigens.

Keywords: mass spectrometry, immunopeptidomics, antigen processing and presentation, human leukocyte 
antigen-binding prediction, neoantigens, cancer immunotherapy, personalized cancer vaccines
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introdUCtion

The adaptive immune system has the capacity to elicit anti-cancer 
CD4+ and CD8+ T-cell responses, which are triggered by the 
presentation of cancer-derived antigens as human leukocyte 
antigen-binding peptides (HLAp) and their recognition by 
cognate T-cell receptors. HLA class I (HLA-I) and HLA class II 
(HLA-II) complexes are distinct based on the type of cells that 
express them, their intracellular processing and loading, and by 
the type of T-cells that recognize them (1). A dedicated cellular 
machinery is responsible for the processing of mainly intracellu-
lar proteins and their loading on HLA-I complexes, which present 
these peptides to CD8+ T-cells. Similarly, a parallel machinery 
processes and loads mainly endocytosed extracellular proteins 
on HLA-II complexes for their presentation to CD4+ T-cells. The 
repertoire of HLA presented peptides (HLAp) is remarkably rich 
and is collectively called the immunopeptidome (2).

In cancer, HLAp derived from processing and presentation 
of cancer-specific proteins serve as the leading targets for T-cell 
recognition. Most antigens identified earlier as cancer-specific 
have been derived from self proteins. Investigated in hundreds 
of therapeutic clinical trials, these have been mostly clinically 
disappointing, partially due to central tolerance mechanisms and 
the elimination of high-avidity T-cells recognizing such normal 
proteins (3–6). In recent years, the remarkable clinical efficacy of 
the immune checkpoint blocking therapies has again motivated 
researchers to discover the immunogenic T-cell epitopes that 
mediate disease control or long-term cure (7). The observed cor-
relation between mutational load and clinical efficacy highlights 
the involvement of mutated neoantigens in tumor rejection, and 
there is now a growing interest in exploiting such targets in the 
development of personalized vaccines (8–11).

In recent years, significant technological improvements in 
genomics along with supportive bio-informatics and in  silico  
HLA-binding prediction tools have facilitated major break-
throughs in the discovery of neoantigens encoded by non- 
synonymous mutations that arise during the process of tumori-
genesis and are not expressed by normal cells. Mass spectrom-
etry (MS) technology has confirmed the in vivo presentation of 
neoantigens in murine cell line models (12, 13), human cell lines 
(14, 15), B-cell lymphomas (16), and melanoma tissues (17). 
In conjunction, the development of immunological screening 
techniques has facilitated the detection and isolation of T-cells 
reactive against such mutated epitopes (18–21). Several stud-
ies further showed substantial clinical benefit mediated by the 
administration of highly enriched populations of neoepitopes-
reactive CD4+ and CD8+ T-cells (22, 23) and neoantigen-based 
vaccines formulated as RNA (10) or peptides (9). These patients 
experienced no major toxicity, suggesting that T-cell responses 
against neoantigens are likely safe.

Currently, the performance of HLA-I ligand interaction 
prediction algorithms used for identifying potential neoantigens 
is still rather poor for infrequent HLA-I molecules, for which 
binding data are limited, and in general for HLA-II molecules 
(24, 25). Furthermore, predictors of immunogenicity are still 
immature (26). Inevitably, false positives are included among 
the predicted neoantigens, which are then included in a vaccine.  

MS analysis of HLA-I-binding peptides eluted from tissue 
samples is a promising approach to discover the actual in vivo 
presented immunopeptidome, including the neoantigens (17). 
The more specific targeted MS analysis may be used to further 
validate presentation of in silico predicted neoantigens (12). With 
the current MS instrumentation, MS-based immunopeptidomics 
approaches have limited sensitivity and are only applicable to a 
small fraction of patients due to the large amount of biological 
sample that is required (typically 1 cm3 of tissue or 1 × 108 cells in 
culture). Furthermore, they are currently performed in only a few 
professional labs due to the complexity of these experiments (27).

In addition, interrogating the properties of the thousands of 
different source-proteins of HLA ligands has identified additional 
biological determinants, such as their level of translation and 
expression, turnover rate, proteasomal cleavage specificities, 
length, and biological functions. Integrating such variables into 
a single predictor further improves the accuracy of prediction 
(28, 29). Specifically, recent MS immunopeptidomics studies 
suggested that HLA-I ligands are not randomly distributed 
along the proteins’ sequences but are located within “hotspots” 
(17, 28), which fit proteasomal cleavage, peptide processing and 
HLA-binding rules.

In recent years, it has become common practice in proteomics 
research to submit MS/MS data to repositories in order to make 
them available for further research (30). More recently, this 
practice is also being followed in the field of immunopeptidom-
ics (17, 28, 31). So far, the large body of publically available MS/
MS data has been used for training of HLA-I binding prediction  
(29, 32–34) or to build spectral libraries (35). Although 
MS-based immunopeptidomics analysis can be directly 
applied today only to a small number of patients, its emerging 
use can reveal crucial information on the rules underlying the 
biogenesis of the immunopeptidome. Indeed, while hunting for 
neoantigens, such immunopeptidomics MS studies produce 
massive amount of highly valuable ligandomic data that can 
be used to refine known HLA-I-binding motifs and to reveal 
HLA-I-binding specificities of yet unexplored alleles (32, 33). 
Here, we propose another way to valorize available immun-
opeptidomics MS/MS data.

We first computationally overlaid HLA-II peptidomics data 
on top of HLA-I data to highlight the subpopulations of cellular 
proteins that are naturally accessible and presented by each of 
the HLA-I and HLA-II presentation machineries and those 
presented by both (HLA-I/II). Based on the functional annota-
tion of the source proteins and the peptide’s length we propose 
that the HLA-I/II peptides may be processed by the cellular 
class II presentation machinery within the endosome-lysosome 
compartments, in a proteasome-independent cross-presentation 
pathway. Since priming both CD8+ and CD4+ T cell responses 
would lead to optimal and long lasting immune response 
required for elimination of tumors in vivo, these cross-presented 
peptides are of particular importance. Next, we provide evidence 
that data-driven prioritization of predicted neoantigens based 
on observed “hotspots,” which are subsequences of proteins 
frequently detected in MS/MS immunopeptidomic datasets, will 
enrich the list of proposed targets with the most likely presented 
neoantigens. These hotspots reflect the propensity of protein 
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subsequences to produce HLA peptides averaged over many 
allotypes and provide complementary information to classical 
HLA-binding prediction. We show as a proof of concept that by 
including MS-based hotspot scores into the prioritization scheme 
we are able to improve the prediction by up to 50%. We envi-
sion that as MS-based HLA-I and HLA-II immunopeptidomics 
datasets become more exhaustive, “hotspot” driven prioritization 
will have a substantial impact on the selection of neoantigens for 
vaccination.

MateriaL and MetHods

Cell Lines, tissues, and antibodies
Detailed information about the biological samples that were 
included in this database is provided in Table S1 in Supplementary 
Material. Informed consent of the participants was obtained 
following requirements of the institutional review board [Ethics 
Commission, University Hospital of Lausanne (CHUV)]. W6/32 
(anti-pan-HLA-I) and IVA12 (anti-pan-HLA-II) monoclonal 
antibodies were purified from the supernatant of HB95 and 
HB145 cells, respectively, as previously described (17). We cross-
linked the antibodies to Protein-A Sepharose beads (Invitrogen, 
CA, USA) with 20 mM dimethyl pimelimidate in 0.2 M sodium 
borate buffer pH9.

purification of HLa-i Complexes
We included here also unpublished immunopeptidomics data 
of HLA-I and HLA-II peptides extracted from several biological 
replicates per cell line or patient material. The cell counts ranged 
from 1 × 108 to 5 × 108 cells or up to 2 g of tissue per replicate. 
Purification from these additional samples was performed as 
previously described (17, 33). Shortly, snap-frozen tissue samples 
were homogenized for 10 s on ice using ULTRA-TURRAX (IKA, 
Staufen, Germany) in a tube containing 5–10 ml of lysis buffer 
and incubated at 4°C for 1 h. Cell pellets were resuspended in 
5 ml lysis buffer and incubated similarly. Lysis buffer contained 
0.25% sodium deoxycholate (Sigma-Aldrich), 0.2 mM iodoaceta-
mide (Sigma-Aldrich), 1 mM EDTA, 1:200 Protease Inhibitors 
Cocktail (Sigma, MO, USA), 1 mM Phenylmethylsulfonylfluoride  
(Roche, Mannheim, Germany), 1% octyl-beta-D glucopyranoside  
(Sigma). The lysates were cleared by centrifugation with a table-
top centrifuge (Eppendorf Centrifuge 5430R, Schönenbuch, 
Switzerland) at 4°C at 14,200 rpm for 20 min. Immuno-affinity 
purification from tissues was performed by passing the cleared 
lysates through Protein-A Sepharose beads, then through 
Protein-A Sepharose beads covalently bound to W6-32 antibod-
ies, and finally through beads covalently bound to IVA12 anti-
bodies. Purification from cell line lysates required only the two 
last affinity columns. Affinity columns were then washed with at 
least 6 column volumes of 150 mM NaCl and 20 mM Tris–HCl 
(buffer A), 6 column volumes of 400 mM NaCl and 20 mM Tris–
HCl and lastly with another 6 column washes of buffer A. Finally, 
affinity columns were washed with at least 2 column volumes of 
20 mM Tris HCl, pH8. HLA complexes were eluted by addition 
of 1% trifluoroacetic acid (TFA, Merck, Darmstadt, Switzerland) 
for each sample. To further purify the peptides, the elution 

samples were loaded separately on Sep-Pak tC18 (Waters, MA, 
USA) cartridges, which were pre-washed with 80% acetonitrile 
(ACN, Merck) in 0.1% TFA and 0.1% TFA only. After loading, 
cartridges were washed twice with 0.1% TFA before separation 
peptides were eluted with 30% ACN in 0.1% TFA. The peptide 
samples were dried using vacuum centrifugation (Eppendorf 
Concentrator Plus, Schönenbuch, Switzerland) and re-suspended 
in a final volume of 12 μL 0.1% TFA. For MS analysis, we injected 
5 μL of these peptides per run.

LC–Ms/Ms analysis of HLa-i peptides
Measurements of HLA-I and HLA-II peptidomics samples were 
acquired using the nanoflow UHPLC Easy nLC 1200 (Thermo 
Fisher Scientific, Germering, Germany) coupled online to a Q 
Exactive or Q Exactive HF Orbitrap mass spectrometers (Thermo 
Fischer Scientific, Bremen, Germany) with a nanoelectrospray 
ion source as previously described (33). We packed an uncoated 
PicoTip with diameter of 50 cm × 75 µm and 8 µm tip opening 
with a ReproSil-Pur C18 1.9 µm particles and 120 Å pore size 
resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) 
resuspended in Methanol. The analytical column was heated to 
50°C using a column oven. Peptides were eluted with a linear 
gradient of 2–30% buffer B (80% ACN and 0.1% formic acid) at a 
flow rate of 250 nL/min over 90 min.

Data were acquired with data-dependent “top10” method, 
which isolates the ten most intense ions and fragments them by 
higher-energy collisional dissociation with a normalized colli-
sion energy of 27%. The MS scan range was set to 300–1,650 
m/z with a 60,000 (200 m/z) resolution and a target value of 3e6 
ions. The ten most intense ions were sequentially isolated and 
accumulated to an AGC target value of 1e5 with a maximum 
injection time of 120 ms and MS/MS resolution was 15,000 (200 
m/z). The peptide match option was disabled. Dynamic exclusion 
was set for 20 s.

data analysis of HLa peptides
We employed the MaxQuant computational proteomics platform 
(36) version 1.5.3.2 to search the peak lists against the UniProt 
database (Human 85,919 entries, May 2014) and a file contain-
ing 247 frequently observed contaminants. All MS/MS datasets 
were processed in one batch using a global spectrum level false 
discovery rate (37) cutoff of 1%. Protein N-terminal acetylation 
(42.010565 Da) and methionine oxidation (15.994915 Da) were 
set as variable modifications. The second peptide identification 
option in Andromeda was enabled. The enzyme specificity was 
set as unspecific. The initial allowed mass deviation of the pre-
cursor ion was set to 6 ppm and the maximum fragment mass 
deviation was set to 20 ppm.

Compiling the immunopeptidomics 
database
An in-house Java program1 based on the MzJava class library (38) 
was used to parse the MaxQuant results and organize them in a 

1 www.java.com.
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database (ipMSDB). The matching and scoring between ipMSDB 
and query peptides was done by another in-house Java program 
and all further data analysis and visualization was performed in 
R2 if not otherwise indicated.

Gene ontology (Go) enrichment analysis 
and tree-Map Visualization
The GO enrichment analysis of the source proteins of the pre-
sented HLA peptides was performed on the Panther webpage3 
(39). All human proteins were taken as a background and com-
pared to the different protein lists based on the biological process 
classification. Proteins were quantified by their type I, II, or I/II  
peptide counts, respectively. A statistical overrepresentation test 
was performed and the resulting p-values were corrected for 
multiple testing and a p-value threshold of 0.05 was applied.

For visualizing of the protein lists, we used the Proteomaps 
tool4 (40), which is based on the KEGG protein annotation.  
We used the same protein lists and the same protein peptide 
counts as for the GO analysis. The resulting Veronoi-tree-map 
images were slightly edited for better visibility of the text.

HLa-i, HLa-ii, and HLa-i/ii density profiles 
and Correlation between them
HLA-I, HLA-II, and HLA-I/II density profiles were calculated 
from ipMSDB by summing up for each amino acid in a protein 
sequence the number of HLA-I, HLA-II, and HLA-I/II peptides 
covering this amino acid. In order to display profiles of HLA-I 
peptides of typical length, HLA-I peptides shorter than 15 amino 
acids were also considered separately. The correlation between 
profiles was calculated in a way that reflects the overlap of the 
main peaks in a profile ignoring smaller peaks.

Profiles for NetMHCpan version 3.0 (25) HLA-I-binding 
affinity prediction for the GILT, SEM4D, and MITF proteins were 
obtained from the web page.5 All HLA supertype representatives 
and peptides of length 9–11 were selected. All predicted strongly 
or weakly binding peptides were retained. The profiles are the 
NetMHCpan scores of the representative binders summed up 
over all strong or weak binding peptides for each amino acids of 
the protein.

training predictor and Cross Validation
In order to test whether our ipMSDB based features are able to 
improve the prioritization of predicted immunogenic peptides, 
we used data from a recent publication by Stronen et  al. (41): 
1,034 HLA-I peptides of length 9–11 carrying non-synonymous 
somatic mutations were obtained by genome sequencing from 
3 melanoma patients and were screened with T-cell assays for 
immune recognition. 16 out of 1,034 neoantigens turned out to 
be immunogenic. Stronen et  al. calculated several features for 
both mutated and wild-type (wt) peptides to enable prioritization 

2 www.r-project.org.
3 http://www.pantherdb.org/.
4 www.proteomaps.net.
5 http://www.cbs.dtu.dk/services/NetMHCpan/.

of neoantigens: best predicted binding affinity to one of the 
patients HLA-I alleles (mutAffinity, wtAffinity), predicted HLA- 
I-peptide complex stability (mutPeptideStability, wtPeptideStability), 
proteasomal cleavage probability (mutCleavProb, wtCleavProb), 
number of mutated and wt reads (mutReads, wtReads), and RNA 
abundance (rnaExpr). Here, we added three MS-based prediction 
scores, which evaluate how well the wt counterpart of the pre-
dicted mutated peptide is represented in ipMSDB. The first score 
(nrMatchingPeptides_I) operates on the protein level and counts 
the number of all wt HLA-I peptides per protein in ipMSDB. 
The other two scores (matchScore_I and exactMatchScore_I) 
operate on the peptide level. In order to calculate matchScore_I 
for a peptide, we sum up the HLA-I density profile height over 
the position of the peptide. If the peptide is found on multiple 
proteins and/or several times on the same protein in ipMSDB, we 
take the highest of all the matchScore_I values. exactMatchScore_I 
is equal to matchScore_I if there is an exact wt peptide match in 
ipMSDB and 0 otherwise.

In order to compare our ipMSDB predictors to the features 
described in Stronen et al. individually, all the 1,018 control and 
16 immunogenic peptides were used. We applied a support vector 
machine (SVM) regression (42) with Gaussian kernel to compare 
the predictive power of feature sets. The R package e1071, which 
is an interface to the LIBSVM SVM implementation (43), was 
used for this purpose. Other than kernel selection no optimiza-
tion was performed and all SVM parameters were kept at their 
default values. Combining several features means that each pep-
tide is represented by a feature vector in a N-dimensional space, 
where N is the number of features. The task of the SVM regressor 
is to grade this feature space with values between −1 and 1, 
where values close to one represent “immunogenic” regions of 
the feature space. To calculate this peptide immunogenicity 
grading, the SVM needs to learn from training data, and in order 
to evaluate the quality of this learning, the grading is compared 
to independent test data. If the immunogenic test peptides lie in 
regions in the feature space with grade close to 1 and the control 
test peptides in regions with grade close to −1, the learning has 
worked well. To perform the learning and independent testing, 
the control and immunogenic peptide lists were both randomly 
split into equally sized training and test parts. One part of the 
control and one part of the immunogenic peptide list go to the 
training set (half of all peptides), the other parts to the test set 
(the other half of all peptides). The SVM was trained on the 
training set and the trained SVM regression was used to rank the 
peptides in the test set. The number of immunogenic peptides in 
the 20 top ranked test peptides was calculated as the prediction 
performance (value between 0 and 8). The process was repeated 
2,000 times in order to calculate average performance values and 
their standard deviations.

resULts and disCUssion

assembling Large-scale Human 
immunopeptidomics database
The experimental extraction procedure of HLA peptides highly 
enriches for the true HLA ligands. More than 95% of the HLA-I 
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peptides we identified by MS matched the typical properties 
of sequence length and binding motifs that are necessary for 
binding to the different HLA-I allotypes (31). In order to build 
the ipMSDB database of HLA peptides, we compiled data from 
our recent published immunopeptidomics experiments (17, 31,  
33, 44) and we added unpublished data (Table S1 in Supplementary 
Material). Altogether, ipMSDB represents an in-depth repertoire 
of HLA-I and HLA-II peptides purified separately from dozens 
of different human cell lines and tissues covering many HLA 
allotypes. Currently, our ipMSDB includes 15,422 protein groups 
with at least one valid peptide match (only MaxQuant leading 
razor proteins were considered) identified from 67 different bio-
logical samples, mainly B-cells (13 samples), T-cells (4 samples), 
and melanoma tissues (35 samples). At the peptide level, this cor-
responds to 131,402 unique peptides detected in HLA-I peptide  
samples and 66,420 unique peptides detected in HLA-II 
peptide samples. The length distribution (mostly 9 to 11 -mer  
peptides) of the identified HLA-I peptides highlights the purity 
of the peptidome (Figure 1A). Unlike HLA-I complexes, HLA-II 
complexes presented families of longer peptides (mainly 13–17 
amino acids) (Figure  1A), sharing the core binding region of 
typically 9 amino acids. The binding restrictions of HLA-II pep-
tides are still rather poorly understood and technically it is more 
challenging to retrieve them directly from immunopeptidomics 
data as a way to estimate the purity of HLA-II peptidome samples. 
We expect that the HLA-II peptidomes have similar high purity 
level because we purified them similarly to the HLA-I. Also, 
when cells lack HLA-II expression no peptides are detected (17). 
Interestingly, 6,819 unique HLA-I/II peptide sequences (3.4%) 
in ipMSDB were detected in both HLA-I and HLA-II samples. 
Figure 1B reveals that their length distribution is a mixture of the 
class I and class II modes.

Remarkably, the broad distribution of the number of peptides 
presented as HLA-I and HLA-II peptides per source protein 
implies that the proteins are not randomly selected for pres-
entation (Figure  1C; Figure S1A in Supplementary Material).  
As we have shown previously (31), the number of HLA-I pep-
tides per protein depends on the protein length (Figure S1B in 
Supplementary Material), but the HLA presentation of proteins 

also depends on many other factors. The assembly of the above 
database has allowed preliminary observations that provide 
important hints on the biogenesis of the immunopeptidome. 
These could be exploited in the development of algorithms for 
optimizing the prediction of neoantigens. Our main working 
hypotheses are presented below.

Hint 1: the proteome is selectively 
sampled for antigen presentation
We compared the characteristics of the source proteins presented 
as HLA-I and HLA-II peptides in terms of the biological process 
GO annotations (see Materials and Methods for details). We fur-
ther visualized the data with the Proteomaps tool (see Materials 
and Methods), which is based on the KEGG protein annotation. 
The Proteomaps tree-map visualization tool shows quantitative 
composition of proteomes arranged in multiple levels. As a 
pseudo quantitative score we used the number of assigned HLA 
peptides per protein in ipMSDB. On the lowest level, each protein 
is represented by a polygon, whose area reflects the number of 
HLA-I, HLA-II or HLA-I/II peptides, times the protein length, 
respectively. Functionally related proteins according to a KEGG 
hierarchy tree were arranged in adjacent and similarly colored 
regions. On higher levels, similar proteins were grouped into 
regions. We investigated cellular proteins separately for the fol-
lowing groups:

 1. Cellular proteins presented as HLA-I peptides, collectively 
named “type I.” A large fraction comprising 93.2% of the 
source proteins in ipMSDB were presented as HLA-I peptides. 
HLA-I molecules present most of the cellular proteome. GO 
annotation enrichment analysis (Table S2 in Supplementary 
Material) revealed that compared to the reference human 
proteome, “type I” were enriched in the following biologi-
cal processes: nuclear chromosomes (p-value  =  2.93E−02), 
nucleus (7.02E−10), and nuclear envelope (2.10E−03) 
and also lysosome (1.01E−02), endosome (4.67E−04) the 
Golgi apparatus (4.42E−02), vacuole (2.69E−04) and more 
general annotation like the ribosome (3.54E−23) and the 
cytoskeleton (6.81E−07). The MHC protein complex was 
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enriched (6.88E−03), while membrane proteins in general 
were depleted (3.87E−02). The proteomaps were in agreement 
with the GO annotations enrichment analysis (Figure  2A 
and in more details in Figure S2 in Supplementary Material). 
This pattern was independently observed in B-cells, T-cells 
and in melanoma tissues. Differences were partially related to 
differences in protein expression between cell lineages and/
or between in vivo tissues and cells growing in culture. For 
example, ribosomal and cytoskeleton proteins were more 
prominent in melanoma tissues than in B- and T-cells, while 
proteins related to DNA replication were presented more 
in rapidly dividing cells growing in culture (Figure S3A in 
Supplementary Material).

 2. Cellular proteins presented as HLA-II peptides were collec-
tively named “type II.” “Type II” proteins were enriched in 
the lysosome (p-value  =  7.05E−04), endosome (1.22E−06) 
Golgi apparatus (1.41E−05), vacuole (2.72E−06), ribosome 
(6.08E−32), and the cytoskeleton (2.55E−03) biological 
processes (Table S2 in Supplementary Material). The MHC 
protein complex was also similarly enriched (3.31E−04) as it 
was in “type I,” while the SNARE complex (1.37E−02) and 
the vesicle coat (3.37E−02), the proton-transporting ATP 
synthase complex located to the mitochondria (2.3E−02) 
were uniquely enriched in “type II” (Figure 2B; Figure S4 in 
Supplementary Material). Some proteins differed in their pres-
entation as HLA-II peptides in melanoma tissues compared 
to cells growing in culture. For example, complement and 
coagulation cascade proteins and hemoglobin were detected 
only in the tissues (Figure S3A in Supplementary Material).

 3. Cellular proteins presented by both machineries, in which 
at least one HLA-I/II peptide sequence was detected are 
called “type I/II” proteins. This group of proteins was 
similar to the “type II,” as they were enriched in the lysosome 
(p-value = 9.86E−05), Golgi apparatus (6.79E−03), vacuole 
(7.59E−05), vesicle coat (1.61E−02), ribosome (4.38E−45), 

and MHC protein complex (3.76E−06) biological processes, 
while uniquely to the “type I/II” the extracellular space was 
enriched (5.57E−05) (Table S2 in Supplementary Material). 
The typical chromosome or nucleus related proteins that are 
characteristic for “type I” were not significantly enriched 
here. Compared to “type I” proteins, “type I/II” proteins 
comprised of less DNA association, and similarly to the “type 
II,” they included more proteins related to vesicular transport 
(Figure 2C; Figures S3A and S5 in Supplementary Material).

Collectively, these results indicate that the sampling of the self 
proteome for presentation on HLA-I and on HLA-II complexes 
is not random and the cellular localization of proteins, possibly 
also related to the mechanism of their degradation, has an impact. 
More than that, a subset of the proteome is presented by both 
machineries and resembles “type II” source proteins.

Hint 2: HLa-i/ii peptides suggest a  
Cross-talk between HLa-i and  
HLa-ii presentation pathways
3.4% of peptide sequences in ipMSDB were detected as HLA-I/II 
peptides. Such long peptides detected in HLA-I peptidome could 
also be a technical artifact of contaminating HLA-II peptides that 
occurs during the purification. However, several main observations 
argue against this option: first, a significant part of the long HLA-I 
peptides fit the P2/PΩ-anchor mode of binding to the expressed 
HLA-I allotypes. We showed this for the UWB289 ovarian cancer 
cells that do not express HLA-II, and melanoma tissues from 
Mel15 and Mel16 patients form which both HLA-I and HLA-II 
peptidomes were obtained (Figure S6 in Supplementary Material). 
The remaining peptides could still bind with alternative internal 
anchors leaving the ends of the peptides to protrude beyond the 
binding groove (45, 46). Second, we calculated the proportion of 
long peptides (equal or longer than 14-mers) detected in cell lines 
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or tissue samples that express HLA-II, and those that lack HLA-II 
expression, i.e., in which no or only sparse amounts of less than 100 
HLA-II peptides could be detected by MS. The average proportion 
of longer HLA-I peptides in the group expressing HLA-II peptides 
was 5.6%, whereas the average proportion in the group lacking 
HLA-II peptides was 4.8% which was not significantly different 
(standard deviation is 3%). Therefore, it is very unlikely that the 
long HLA-I peptides were contaminations from HLA-II peptides. 
Furthermore, HLA-II peptides were purified from the lysates after 
the HLA-I had been purified, which minimized the chance that 
HLA-II peptides would contaminate class I peptidome samples. 
No HLA-II peptides could be detected in samples from which 
thousands of HLA-I were identified, which supports the claim 
that there is no significant cross contamination related to sample 
handling. We further elaborate on the possible biogenesis of the 
HLA-I/II peptides below.

Cross-presentation has been investigated for many years and  
it has been shown to be central for the priming of naïve T-cells 
against exogenous antigens. These antigens are taken up by profes-
sional antigen-presenting cells that process and consequently pre-
sent them on HLA-I molecules (47). Cross-presentation happens 
via two orthogonal routes: a proteasome- and TAP-independent 

route where proteins digested in endosomes are loaded on HLA-I 
molecules imported into the endosomes, and a proteasome- and 
TAP-dependent route where endosomal proteins are exported 
to the cytosol and processed by the HLA class I presentation 
machinery (Figure 3).

Several lines of evidence, which we discuss below, led us to 
propose that “type I/II” source proteins are processed partially by 
the machinery involved in cross-presentation in the endosome-
lysosome compartments. We hypothesize that cross-presentation 
of peptides cleaved in the endosomes consequently leads to the 
generation and loading of longer HLA-I peptides that are likely 
to be in common with the peptides generated by the class II 
processing machinery, and stem from the same source proteins 
(Figure 3). It is important to note that cross-presented peptides 
may also be generated after the polypeptides have been trans-
ferred from the lysosome–endosome compartments into the 
cytosol. Following the conventional class I presentation pathway 
that is proteasome- and TAP-dependent, these peptides will 
then become indistinguishable from the normal pool of HLA-I 
peptides characterized with a typical length (9–11 aa) (47).

We observed that HLA-I/II peptides stemmed mainly 
from self proteins localized within the endosome-lysosome 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Müller et al. HLA Ligandomics for Neoantigens Prioritization

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1367

compartments and were enriched with phagosomal structural 
proteins and phagosomal cargo proteins that are degraded by 
autophagy (Figure 2). Among them are ribosomal proteins and 
mitochondrial proteins that may be selectively degraded and 
eliminated in the processes called ribophagy (48) and mitophagy 
(49), respectively. Previously, we studied HLA-I presentation in 
several cell lines and we have shown that ribosomes and mito-
chondrial proteins are presented to a higher extent than what 
would be expected from their abundance (31). One example 
of a protein that belongs to the “type I/II” group is the “prob-
able serine carboxypeptidase” (CPVL) localized in phagosomes.  
It may be involved in the digestion of phagocytosed particles in 
the lysosome and in trimming of peptides for antigen presenta-
tion (50). Another example is the PMEL protein from which 
several peptides were detected to be presented on HLA-I and 
HLA-II complexes. PMEL is involved in melanosome formation 
and disintegration of melanosomes is assumed to take place in 
the lysosomes (51). Furthermore, the autophagic pathway has a 
substantial role in the degradation of melanosomes in keratino-
cytes (52). The confined space within the endosome-lysosome 
compartments may indeed favor cross-presentation of this set of 
proteins and could also explain how low abundant proteins may 
still be presented with multiple ligands and out-compete very 
abundant proteins. Furthermore, HLA-I/II peptides seem to be 
more prominent in B-cells and T-cells compared to melanoma 
tissues where class II presentation machinery might not be fully 
functional (Figure S3B in Supplementary Material).

Based on these observations, we hypothesize that in cancer 
or upon infection, professional antigen presenting cells that take 
up antigens released by dying cells and degrade them in the 
endosome-lysosome compartments, would present their longer 
peptides as either HLA-II or HLA-I peptides generated through 
the proteasome-independent pathway (Figure 3). Furthermore, 
in case cells are directly infected with intracellular pathogens 
or at a steady state condition, autophagy may lead to the pres-
entation of longer HLA-I peptides from the pathogens or from 
the self-proteome. For example, a recent study investigated the 
HLA-I peptidome of cells upon infection with the intracellular 
pathogen Toxoplasma gondii (45), and reported that the T. gondii 
ligands were significantly longer than host ligands. The average 
length of T. gondii ligands was 14.6 amino acids compared to 
11.4 amino acids of host ligands for infected and 9.8 amino acids 
for uninfected cells. Furthermore, they observed that the long 
ligands did not follow the P2/PΩ-anchor binding mode of HLA-I 
but instead were predicted to bind via a canonical N-terminal 
binding core preceding the C-terminal extension. Both the length 
preference and the mode of binding of these peptides may be 
explained by the alternative processing we describe here. Notably, 
the 9–11-mers could potentially be mainly driven by ER-resident 
chaperones and peptidases that are known to play a role in the ER 
conventional class I presentation pathway.

Hint 3: protein Hotspots are selectively 
sampled for antigen presentation
Interestingly, we have noticed that there are “hotspots” of 
antigen presentation within proteins, and that domains within  

proteins are presented at a higher extent. We separately aligned  
HLA-I, HLA-II, and HLA-I/II peptides to the protein sequences. 
As an example, we show the hotspots we detected for the 
gamma-interferon-inducible lysosomal thiol reductase (GILT) 
protein (UniProt P13284), the semaphorin-4D (SEM4D) 
protein (Uniprot Q92854), and the microphthalmia-associated 
transcription factor (MITF, Uniprot O75030) (Figures  4A–C, 
respectively). More examples are provided in Figures S7A–F 
in Supplementary Material. GILT is the only enzyme known 
to catalyze disulfide bond reduction in the endocytic pathway.  
It facilitates presentation of a subset of HLA peptides from disulfide 
bond-containing antigens (53). GILT is expressed constitutively 
in antigen-presenting cells and is induced by gamma-interferon 
in other cell types. It has an important role in HLA-II-restricted 
antigen processing and was reported to be expressed in most of 
primary and metastatic melanomas (54). Indeed, we also detected 
GILT in B- and T-cells and in melanoma tissues (Figure 4A, right 
inset). SEM4D belongs to the semaphorin family and it regulates 
the sensitivity of the B-cell antigen receptor that is required for 
proper B-cell homeostasis (55). We observed that SEM4D was 
mainly presented in B-cells and also in T-cells (Figure 4B). The 
length distribution of peptides derived from GILT and SEM4D 
(left insets in Figures  4A,B) reveals that the longer HLA-I 
peptides were also detected as HLA-II peptides. Therefore, these 
peptides were mainly HLA-I/II (gray line). Globally, such HLA-I/
II hotspots overlapped significantly more often with HLA-II 
hotspots than with HLA-I hotspots (Figure S8 in Supplementary 
Material).

Naturally, tissue specificity will further restrict the presenta-
tion of the antigens. For example, MITF is a transcription factor 
that regulates the expression of genes with essential roles in cell 
differentiation, proliferation and survival (56). MITF plays an 
important role in melanocyte development by regulating the 
expression of tyrosinase (TYR) and tyrosinase-related protein 
1 (TYRP1) (56). Indeed, we also identified MITF, TYR, and 
melanocyte protein PMEL ligands almost exclusively in the 
melanoma tissues (Figure 4C; Figures S7D,E in Supplementary 
Material).

It is important to note that HLA-binding affinities cannot 
accurately predict the hotspots we detected for these proteins 
(Figures  4D–F). Therefore, the immunopeptidomics data 
provide critical additional information to capture the true 
in vivo presented ligandome. The height of the hotspots and the 
distribution of hotspots along the protein sequence reflect the 
level of its presentation. Hotspots may be related to sequence 
and structure dependent proteasomal or endosomal cleavage 
preferences. Alternatively, hotspots may be merely the outcome 
of de facto presentation of the rather more stable polypeptides 
surviving the highly proteolytic cytosolic environment as the 
expected half life of peptides in the cytosol of living cells is 
6–10  s (57). Furthermore, some posttranslational modifica-
tions may interfere with protein cleavage and with binding 
of the modified peptides to the HLA, eliminating them from 
the presented repertoire. Currently, no prediction algorithms 
incorporate these factors. Since our database comprises of 
peptidomes of dozens of different HLA allotypes and binding 
specificities, these hotspots reflect an average propensity of a 
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protein sub-sequence to be presented on a HLA molecule. 
Hotspots may encompass HLA peptides with N′ or C′ terminal 
extensions of several amino acids to accommodate peptides 
that fit a variety of HLA-binding specificities. Hotspots of 
“type I” proteins are highly enriched in 9–11 HLA-I peptides 
(Figures S7A,B in Supplementary Material). Similarly, hotspots 
of “type II” proteins are longer, and the length distribution of 
their peptides is centered on 15-mer peptides (Figure S7C in 
Supplementary Material).

Hints on immunopeptidomics Biogenesis 
Can Be applied for prioritization of 
neoantigens
MS-based immunopeptidomics is a powerful approach to 
shed light on the selective sampling of the proteome. Because 
it captures the actual presented peptidome, it may bypass the 
need to computationally predict ligands. Therefore, it is also a 
promising method to directly identify presented neoantigens. 
However, enough tumor tissue is available only for the minority 
of patients and only rarely such neoantigens can be detected due 
to current limitation in sensitivity. Therefore, the widespread 
approach for identification of neoantigens for personalized 
cancer vaccines is still based on in silico predictions of the bind-
ing affinity to the respective HLA class I allotypes of 9–11-mer 
peptide sequences harboring the non-synonymous mutations. 
RNA expression data are further interrogated to exclude non-
expressed genes. This in silico approach has high false positive 
rate and, consequently, the list of proposed targets must be 
further filtered to enrich for true positives. In addition, as we 
have just discussed above, some HLA ligands are longer and do 
not conform to the classical binding mode, hence are expected 
to be false negatives. All the hints presented above could be 
incorporated into predictors for neoantigen immunogenicity. 
Here, we focus on Hints 1 and 3.

We propose that large-scale and in-depth peptidomics  
MS/MS data of naturally presented ligands can be used to 
complement existing predictors and to improve HLA-I neo-
antigen prioritization. We test this concept using the Stronen 
et  al. data (see Materials and Methods for more details). To 
develop this approach, we first defined three immunopeptid-
omics MS-based features. The first feature, at the protein level, 
is the number of HLA-I peptides per protein in our database 
(nrMatchingPeptides_I). We anticipate that proteins that are 
highly presented in their wild-type form will have a better chance 
to present neoantigens once they are mutated. On the peptide 
level, a match between a predicted peptide and our database can 
be exact, included or partial (Figure 5A). We expect that if the 
mutation is in a position in the source protein that is naturally 
presented, then we have evidence that the neoantigens could also 
be presented. Obviously, this will not hold if the mutation falls on 
a HLA-binding site or otherwise strongly weakens HLA binding, 
but for this proof of concept we will not consider these events. 
We added two additional features that quantify the overlap of the 
predicted wild-type (wt) -peptide with other HLA-I peptides in 
our database, exactMatchScore_I and matchScore_I (Table S3 in 
Supplementary Material). Please refer to Section Materials and 

Methods for a more detailed description of these scores. These 
scores reflect the propensity of the wt-peptide to be presented 
as a HLA-I peptide. As a simplification, we assume that a muta-
tion does not completely obfuscate this propensity, just as the 
wt-affinity is still a good predictor for the mutated peptide affinity 
and immunogenicity.

Applying all predictors to the data published by Stronen et al. 
(see Materials and Methods), we show that the MS-based features 
provide valuable information for the prioritization of the neoanti-
gens (Figure 5B). The performance of a single MS-based feature 
was slightly better than the RNA abundance feature, but lower 
than the affinity and stability features. Overall, 16 out of 1,034 
peptides were immunogenic (1.5%), whereas 3 out of 66 peptides 
with a positive matchScore I (4.5%) and 1 out of 7 (14.2%) with a 
positive exactMatchScore I were immunogenic, i.e., the MS-based 
scores are able to enrich immunogenic peptides. One striking 
observation was that all 16 immunogenic peptides belonged to 
proteins that were present in ipMSDB, which is unlikely to hap-
pen by chance (872 out of all 1,034 peptides did match ipMSDB, 
which corresponds to a probability of 0.065 = (872/1,034)16 that 
the 16 immunogenic peptides are present in ipMSDB by chance). 
Therefore, we improve prediction based on binding affinity of 
mutated peptides if we remove all predicted sequences which do 
not belong to any protein in our database. Figure 5C shows how 
many immunogenic peptides are correctly predicted as a func-
tion of the rank of the mutAffinity score before (gray line) and 
after such removal (red line).

Furthermore, we used the Stronen et al. data and the cross-
validation scheme outlined in Section Materials and Methods 
to evaluate how much predictive power the ipMSDB features 
add in combination with non-MS features. We trained a SVM 
regression on the set of training peptides in order to rank the 
test peptides according to their SVM-predicted immunogenic-
ity. We then calculated the number of correctly predicted 
peptides within the 20 top-ranked peptides (see Materials and 
Methods for more details). We examined how the incorporation 
of the MS-based features into the SVM prediction improves the 
number of correctly predicted peptides. When the non-MS 
scores were mutAffinity, mutPeptideStability, and rnaExpr, we 
improved the prediction by 15.9% (group 1). 38.3% prediction 
improvement was obtained when the non-MS scores were the 
scores from group 1 plus wtAffinity and wtPeptideStability 
(group 2). The best improvement of 50.9% was obtained when 
the non-MS scores were the scores from group 1 plus diffAffin-
ity, diffPeptideStability, which incorporate the differences in 
the binding affinity and in the binding stability, respectively, of 
the wt and the mutant peptides (Group 3; where diffAffinity is 
mutAffinity-wtAffinity and diffPeptideStability is mutPeptideSta-
bility-wtPeptideStability) in Figure  5D. These results indicate 
that our ipMSDB based features are complementary to the 
affinity based features.

Interesting interactions between the MS-based features 
and affinity-based features emerged, but given the small size 
of the dataset the following interpretations are speculative. 
Figure S9 in Supplementary Material shows that almost all 
immunogenic peptides (blue dots) had a low mutAffinity 
score (low values are good), and that MS-based features were 
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FiGUre 5 | (a) Examples of matches of confirmed immunogenic neoantigens from Stronen et al., with peptides in ipMSDB. Predicted neoantigen sequences 
are in red, overlapping amino acids within peptides detected by mass spectrometry (MS) are in blue and mutation are in cyan. Matches can be “exact,” 
signifying that the exact wild-type (wt) counterpart of the neoantigen sequence was detected by MS, “included,” i.e., the neoantigen is included within the 
sequence of a longer wt peptide detected by MS, or “partial,” i.e., the neoantigen is partially overlapping at the position of the mutation with the wt counterpart 
detected by MS. *HLA-I peptides, **HLA-II peptides. (B) The higher the −log10 of Wilcox-test p-values, (i.e., the smaller the pValue), the more different the 
distribution of immunogenic peptide values is to the distribution of non-immunogenic peptide values. See Ref. (41) for details about the non-MD scores.  
(C) Predicted peptides were ranked by mutAffinity score (HLA-binding affinity of mutated peptide) and the number of correctly predicted immunogenic peptides 
(maximally 16) is plotted against the rank. Gray line represents before and red line after removal of proteins not present in ipMSDB. The main figure shows the 
first 100 ranks, whereas the inset shows all 1,034 ranks with the y-axis ranging from 0 to 16. (d) Average number of correctly predicted immunogenic peptides 
in the top 20 peptides ranked by support vector machine regression. Vertical small bars represent ± 2 times the standard deviation of the average values. 
msScores are exactMatchScore_I and matchScore_I. In group 1, non-MS scores were mutAffinity, mutPeptideStability, and rnaExpr. In group 2, the non-MS 
scores were the scores from group 1 plus wtAffinity and wtPeptideStability that take into consideration also aspects related to the wt peptide counterparts. In 
group 3, non-MS scores were the scores from group 1 plus diffAffinity, diffPeptideStability, which incorporate the differences in the binding affinity and in the 
binding stability, respectively, of the wt and the mutant peptides. diffAffinity = mutAffinity−wtAffinity and 
diffPeptideStability = mutPeptideStability−wtPeptideStability.
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able to rescue the two peptides with the higher mutAffinity 
value (larger orange diamond and red square). Peptides with 
an exact match to the immunopeptidomics MS database (red 
points) lied close to the diagonal, i.e., had similar mutAffinity 
and wtAffinity scores in which the mutation does not seem to 
change HLA binding. On the other hand, included or partial 
matches can also identify peptides which had different affini-
ties in their mutational and wild type state. In order to confirm 
these interactions, refine them or find new ones, many more 
datasets will be required. Also, more work is needed to extend 
the prediction to peptides, which are often missed by MS/MS 
analysis such as very hydrophobic peptides or peptides that 
fragment very poorly.

One of the advantages of our approach is that it may mitigate 
the limitation of predicting binding affinity for very rare HLA-I 
alleles and for HLA-II molecules. We deduced information from 
hundreds of thousands of ligands detected in tens of different 
individual donors, representing the overall distribution of HLA 
allotypes in the human population. As the binding specificities 
of different HLA allotypes may be redundant, in the future, an 
exhaustive database will provide a good approximation to the 
definite immunopeptidome. As we know from many studies, 
immunogenicity of peptides is not highly correlated with binding 
affinity (26, 58, 59), and peptides with (measured) low affinity 
may still induce an immune response, especially upon vaccina-
tion. However, the peptides should still be naturally presented on 
the target cells to induce an effective T-cell response. We envision 
that the pan-HLA-peptide interaction predictors will provide 
estimation of the binding affinity, and together with an exhaustive 
immunopeptidomics database, the prioritization of neoantigens 
will include hotspot features, which capture other aspects of the 
natural in vivo presentation.

In this preliminary, proof of concept study we showed how 
immunopeptidomics database comprising many melanoma tis-
sue samples contained information that enabled prioritization of 
neoantigens predicted in similar melanoma samples. We anticipate 
that the same tumor type will have to be adequately represented 
in the database to overcome and reflect tissue specific expression 
signatures. The scoring scheme we introduced here may already 
be implemented providing large in-depth immunopeptidom-
ics data matching the investigated tumor is present. Yet, much 
more data from T  cell based assays of both immunogenic and 
confirmed non immunogenic neoantigens from multiple patients 
across different tumor types will be critical to sorely benchmark 
and optimize this algorithm.

ConCLUsion

Given the rise in the number of research labs performing large-
scale immunopeptidomics and the growing interest in detecting 
neoantigens by MS, it is very likely that within the coming years, 
comprehensive databases of naturally presented immunopep-
tidomes from thousands of donors and HLA allotypes will be 
characterized. This will inevitably lead to a deeper understanding 
not only of the binding specificities of each of the HLA molecules  
(28, 29, 32–34) but also of the rules governing sampling of pro-
teins and of the cellular machineries that are involved, in a cell 

type specific manner (28). The immunopeptidomics data do not 
contribute to the understanding of immunogenicity seen from 
a tolerance perspective, since they do not provide information 
about which neoepitopes are sufficiently “foreign” to induce a 
T  cell response. Therefore, high-throughput functional T-cell 
screening assays will be fundamental in resolving the propensity 
of these presented peptides to induce the CD8+ and CD4+ immune 
response (20). We envision that combining improved HLA-binding 
predictions together with information about in vivo presentation 
and their recognition by effector T-cells will significantly improve 
the accuracy of neoantigen prediction algorithms. Consequently, 
more patients could benefit from the promising personalized 
neoantigen-based treatments.
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