671 research outputs found

    Protein Remote Homology Detection Based on an Ensemble Learning Approach

    Get PDF

    Using machine learning tools for protein database biocuration assistance

    Get PDF
    Biocuration in the omics sciences has become paramount, as research in these fields rapidly evolves towards increasingly data-dependent models. As a result, the management of web-accessible publicly-available databases becomes a central task in biological knowledge dissemination. One relevant challenge for biocurators is the unambiguous identification of biological entities. In this study, we illustrate the adequacy of machine learning methods as biocuration assistance tools using a publicly available protein database as an example. This database contains information on G Protein-Coupled Receptors (GPCRs), which are part of eukaryotic cell membranes and relevant in cell communication as well as major drug targets in pharmacology. These receptors are characterized according to subtype labels. Previous analysis of this database provided evidence that some of the receptor sequences could be affected by a case of label noise, as they appeared to be too consistently misclassified by machine learning methods. Here, we extend our analysis to recent and quite substantially modified new versions of the database and reveal their now extremely accurate labeling using several machine learning models and different transformations of the unaligned sequences. These findings support the adequacy of our proposed method to identify problematic labeling cases as a tool for database biocuration.Peer ReviewedPostprint (published version

    Protein Remote Homology Detection Based on an Ensemble Learning Approach

    Get PDF
    Protein remote homology detection is one of the central problems in bioinformatics. Although some computational methods have been proposed, the problem is still far from being solved. In this paper, an ensemble classifier for protein remote homology detection, called SVM-Ensemble, was proposed with a weighted voting strategy. SVM-Ensemble combined three basic classifiers based on different feature spaces, including Kmer, ACC, and SC-PseAAC. These features consider the characteristics of proteins from various perspectives, incorporating both the sequence composition and the sequence-order information along the protein sequences. Experimental results on a widely used benchmark dataset showed that the proposed SVM-Ensemble can obviously improve the predictive performance for the protein remote homology detection. Moreover, it achieved the best performance and outperformed other state-of-the-art methods

    Experimental and chemometric studies of cell membrane permeability

    Get PDF
    [Abstract] Cell membrane permeability (P) governs the molecules or ions to transport through the cell membrane. In this study, we measured P of ruminal microbes in different initial levels of surface tension (ST) and specific surface area (SSA). Data of P in present study and published data of pH, ammonia concentration, digestibility of neutral detergent fibre and gas production in two time scales (tk and ′tk) as input variables Vq(tk) were took into consideration for developing a predictive model. The ideas of Box–Jenkins Operators and Covariance Perturbation Theory Operators were used for the first time to establish a model to predict the variations of cellular permeability. The best model presented sensitivity, specificity and accuracy of > 0.89, and MCC > 0.78 for 77,781 cases (training + validation series). In addition, we also reported a simulation of ternary phase diagram with predicted values of cell permeability at various experimental conditions.National Natural Science Foundation of China; Grant No. 31172234Chinese Academy of Science and Technology Strategic Pilot Project; Grant No. XDA05020700Hunan Provincial Natural Science Foundation of China; Grant No. 12JJ3015Red Gallega de Investigación sobre Cáncer Colorrectal; Ref. R2014/03

    Identifying Plant Pentatricopeptide Repeat Coding Gene/Protein Using Mixed Feature Extraction Methods

    Get PDF
    Motivation: Pentatricopeptide repeat (PPR) is a triangular pentapeptide repeat domain that plays a vital role in plant growth. In this study, we seek to identify PPR coding genes and proteins using a mixture of feature extraction methods. We use four single feature extraction methods focusing on the sequence, physical, and chemical properties as well as the amino acid composition, and mix the features. The Max-Relevant-Max-Distance (MRMD) technique is applied to reduce the feature dimension. Classification uses the random forest, J48, and naïve Bayes with 10-fold cross-validation.Results: Combining two of the feature extraction methods with the random forest classifier produces the highest area under the curve of 0.9848. Using MRMD to reduce the dimension improves this metric for J48 and naïve Bayes, but has little effect on the random forest results.Availability and Implementation: The webserver is available at: http://server.malab.cn/MixedPPR/index.jsp

    Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation

    Get PDF
    Background: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation. There have been several computational methods proposed in the literature to deal with the DNA-binding protein identification. However, most of them can't provide an invaluable knowledge base for our understanding of DNA-protein interactions. Results: We firstly presented a new protein sequence encoding method called PSSM Distance Transformation, and then constructed a DNA-binding protein identification method (SVM-PSSM-DT) by combining PSSM Distance Transformation with support vector machine (SVM). First, the PSSM profiles are generated by using the PSI-BLAST program to search the non-redundant (NR) database. Next, the PSSM profiles are transformed into uniform numeric representations appropriately by distance transformation scheme. Lastly, the resulting uniform numeric representations are inputted into a SVM classifier for prediction. Thus whether a sequence can bind to DNA or not can be determined. In benchmark test on 525 DNA-binding and 550 non DNA-binding proteins using jackknife validation, the present model achieved an ACC of 79.96%, MCC of 0.622 and AUC of 86.50%. This performance is considerably better than most of the existing state-of-the-art predictive methods. When tested on a recently constructed independent dataset PDB186, SVM-PSSM-DT also achieved the best performance with ACC of 80.00%, MCC of 0.647 and AUC of 87.40%, and outperformed some existing state-of-the-art methods. Conclusions: The experiment results demonstrate that PSSM Distance Transformation is an available protein sequence encoding method and SVM-PSSM-DT is a useful tool for identifying the DNA-binding proteins. A user-friendly web-server of SVM-PSSM-DT was constructed, which is freely accessible to the public at the web-site on http://bioinformatics.hitsz.edu.cn/PSSM-DT/

    Advances in semi-supervised alignment-free classification of G protein-coupled receptors

    Get PDF
    G Protein-coupled receptors (GPCRs) are integral cell membrane proteins of great relevance for pharmacology due to their role in transducing extracellular signals. The 3-D s tructure is unknown for most of them, and the investigation of their structure-function relationships usually relies on the construction of 3-D receptor models from amino acid sequence alignment onto those receptors of known structure. Sequence alignment risks the loss of relevant information. Different approaches have attempted the analysis of alignment-free sequences on the basis of amino acid physicochemical properties. In this paper, we use the Auto-Cross Covariance method and compare it to an amino acid composition representation. Novel semi-supervised manifold learning methods are then used to classify the several members of class C GPCRs on the basis of the transformed data. This approach is relevant because protein sequences are not always labeled and methods that provide robust classification for a limited amount of labels are required.Peer ReviewedPostprint (published version

    Analysis of class C G-protein coupled receptors using supervised classification methods

    Get PDF
    G protein-coupled receptors (GPCRs) are cell membrane proteins with a key role in regulating the function of cells. This is the result of their ability to transmit extracellular signals, which makes them relevant for pharmacology and has led, over the last decade, to active research in the field of proteomics. The current thesis specifically targets class C of GPCRs, which are relevant in therapies for various central nervous system disorders, such as Alzheimer’s disease, anxiety, Parkinson’s disease and schizophrenia. The investigation of protein functionality often relies on the knowledge of crystal three dimensional (3-D) structures, which determine the receptor’s ability for ligand binding responsible for the activation of certain functionalities in the protein. The structural information is therefore paramount, but it is not always known or easily unravelled, which is the case of eukaryotic cell membrane proteins such as GPCRs. In the face of the lack of information about the 3-D structure, research is often bound to the analysis of the primary amino acid sequences of the proteins, which are commonly known and available from curated databases. Much research on sequence analysis has focused on the quantitative analysis of their aligned versions, although, recently, alternative approaches using machine learning techniques for the analysis of alignment-free sequences have been proposed. In this thesis, we focus on the differentiation of class C GPCRs into functional and structural related subgroups based on the alignment-free analysis of their sequences using supervised classification models. In the first part of the thesis, the main topic is the construction of supervised classification models for unaligned protein sequences based on physicochemical transformations and n-gram representations of their amino acid sequences. These models are useful to assess the internal data quality of the externally labeled dataset and to manage the label noise problem from a data curation perspective. In its second part, the thesis focuses on the analysis of the sequences to discover subtype- and region-speci¿c sequence motifs. For that, we carry out a systematic analysis of the topological sequence segments with supervised classification models and evaluate the subtype discrimination capability of each region. In addition, we apply different types of feature selection techniques to the n-gram representation of the amino acid sequence segments to find subtype and region specific motifs. Finally, we compare the findings of this motif search with the partially known 3D crystallographic structures of class C GPCRs.Los receptores acoplados a proteínas G (GPCRs) son proteínas de la membrana celular con un papel clave para la regulación del funcionamiento de una célula. Esto es consecuencia de su capacidad de transmisión de señales extracelulares, lo que les hace relevante en la farmacología y que ha llevado a investigaciones activas en la última década en el área de la proteómica. Esta tesis se centra específicamente en la clase C de GPCRs, que son relevante para terapias de varios trastornos del sistema nervioso central, como la enfermedad de Alzheimer, ansiedad, enfermedad de Parkinson y esquizofrenia. La investigación de la funcionalidad de proteínas muchas veces se basa en el conocimiento de la estructura cristalina tridimensional (3-D), que determina la capacidad del receptor para la unión con ligandos, que son responsables para la activación de ciertas funcionalidades en la proteína. El análisis de secuencias de amino ácidos se ha centrado en muchas investigaciones en el análisis cuantitativo de las versiones alineados de las secuencias, aunque, recientemente, se han propuesto métodos alternativos usando métodos de aprendizaje automático aplicados a las versiones no-alineadas de las secuencias. En esta tesis, nos centramos en la diferenciación de los GPCRs de la clase C en subgrupos funcionales y estructurales basado en el análisis de las secuencias no-alineadas utilizando modelos de clasificación supervisados. Estos modelos son útiles para evaluar la calidad interna de los datos a partir del conjunto de datos etiquetados externamente y para gestionar el problema del 'ruido de datos' desde la perspectiva de la curación de datos. En su segunda parte, la tesis enfoca el análisis de las secuencias para descubrir motivos de secuencias específicos a nivel de subtipo o región. Para eso, llevamos a cabo un análisis sistemático de los segmentos topológicos de la secuencia con modelos supervisados de clasificación y evaluamos la capacidad de discriminar entre subtipos de cada región. Adicionalmente, aplicamos diferentes tipos de técnicas de selección de atributos a las representaciones mediante n-gramas de los segmentos de secuencias de amino ácidos para encontrar motivos específicos a nivel de subtipo y región. Finalmente, comparamos los descubrimientos de la búsqueda de motivos con las estructuras cristalinas parcialmente conocidas para la clase C de GPCRs

    Protein classification from primary structures in the context of database biocuration

    Get PDF
    En col·laboració amb la Universitat de Barcelona (UB) i la Universitat Rovira i Virgili (URV)The problem of automatic protein classification using only their primary structures plays an important role in modern bioinformatics research, especially for proteins whose 3-D structures are yet unknown. One of these types of proteins, at the center of this thesis, is class C of the G-Protein Coupled Receptors super-family. This class is of a great interest in pharmacoproteomics, from the point of view of drug design, because of their involvement in signaling pathways in cells of the central nervous system. The automatic classification of protein sequences may improve the understanding of their function and be a basis for the prediction of their 3-D structure, which is an information of interest for drug research. This thesis compares classification results for different versions of the same database, including the most recent ones. This exploration of the evolution of classification provides relevant information about its capabilities and limitations. Furthermore, and given that several data transformations are investigated, it also provides strong evidence concerning the robustness of these transformations. The other important contribution of the thesis is the investigation oriented towards the definition of approaches for semi-automatized database curation by using the automatic evaluation of the database changes between versions with advanced machine learning techniques. The thesis shows the consistency in improvements of the quality of the data between three versions of the database across different classification techniques and different primary structure transformations. It also validates the recently introduced continuous distributed representation for protein sequences, originally developed for natural text processing. This new representation is shown to be adequate and robust for the task of primary structure classification

    Enhancing protein fold prediction accuracy using evolutionary and structural features

    Get PDF
    Protein fold recognition (PFR) is considered as an important step towards the protein structure prediction problem. It also provides crucial information about the functionality of the proteins. Despite all the efforts that have been made during the past two decades, finding an accurate and fast computational approach to solve PFR still remains a challenging problem for bioinformatics and computational biology. It has been shown that extracting features which contain significant local and global discriminatory information plays a key role in addressing this problem. In this study, we propose the concept of segmented-based feature extraction technique to provide local evolutionary information embedded in Position Specific Scoring Matrix (PSSM) and structural information embedded in the predicted secondary structure of proteins using SPINE-X. We also employ the concept of occurrence feature to extract global discriminatory information from PSSM and SPINE-X. By applying a Support Vector Machine (SVM) to our extracted features, we enhance the protein fold prediction accuracy to 7.4% over the best results reported in the literature
    • …
    corecore