
Research Article
Protein Remote Homology Detection Based on
an Ensemble Learning Approach

Junjie Chen,1 Bingquan Liu,2 and Dong Huang1,3

1School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School,
Shenzhen, Guangdong 518055, China
2School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
3Key Laboratory of Network Oriented Intelligent Computation, Harbin Institute of Technology Shenzhen Graduate School,
Shenzhen, Guangdong 518055, China

Correspondence should be addressed to Bingquan Liu; liubq@hit.edu.cn

Received 29 January 2016; Accepted 21 February 2016

Academic Editor: Xun Lan

Copyright © 2016 Junjie Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Protein remote homology detection is one of the central problems in bioinformatics. Although some computational methods
have been proposed, the problem is still far from being solved. In this paper, an ensemble classifier for protein remote homology
detection, called SVM-Ensemble, was proposed with a weighted voting strategy. SVM-Ensemble combined three basic classifiers
based on different feature spaces, including Kmer, ACC, and SC-PseAAC. These features consider the characteristics of proteins
from various perspectives, incorporating both the sequence composition and the sequence-order information along the protein
sequences. Experimental results on a widely used benchmark dataset showed that the proposed SVM-Ensemble can obviously
improve the predictive performance for the protein remote homology detection. Moreover, it achieved the best performance and
outperformed other state-of-the-art methods.

1. Introduction

In computational biology, protein remote homology detec-
tion is the classification of proteins into structural and
functional classes given their amino acid sequences, espe-
cially, with low sequence identities. Protein remote homology
detection is a critical step for basic research and practical
application, which can be applied to the protein 3D structure
and function prediction [1, 2]. Although remote homology
proteins have similar structures and functions, they lack
easily detectable sequence similarities, because the protein
structures aremore conserved than protein sequences.When
the protein sequence similarity is below 35% at the amino
acid level, the alignment score usually falls into a twilight
zone [3, 4]. Therefore, it is often a failure to detect protein
remote homology by computational approaches only based
on protein sequence features. To improve the specificity
and sensitivity of the detection, we proposed an ensemble
learning method, which can combine basic classifiers based
on different feature spaces.

Up to now, many methods for protein remote homology
detection have been proposed, which can be categorized into
three groups [5]: pairwise alignment algorithms, generative
models, and discriminative classifiers. Early computational
approaches for protein remote homology detection are pair-
wise alignment methods, which detect sequence similar-
ities between any given two protein sequences by using
Needleman-Wunsch global alignment algorithm [6, 7] and
Smith-Waterman local alignment algorithm [8]. Later, some
trade-offmethodswere proposed so as to trade reduced accu-
racy for improved efficiency, such as BLAST [9] and FASTA
[10]. PSI-BLAST [11] iteratively builds a probabilistic profile
of a query sequence and therefore a more sensitive sequence
comparison score can be calculated [12]. After pairwise
alignment methods, the predictive accuracy was significantly
improved by using the generative algorithms. Generative
models were iteratively trained by using positive samples of
a protein family or superfamily; for example, HHblits [13]
generates a profile hiddenMarkovmodel (profile-HMM) [14,
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15] from the query sequence and iteratively searches through
a large database.

Currently the discriminative methods achieve the state-
of-the-art performance [16–19]. Different frompairwise algo-
rithm and generative methods, the discriminative methods
can easily embed various characteristics of protein sequences
and learn the information from both positive and negative
samples in a given benchmark dataset. A key feature of
discriminative method is that its input requires fixed length
feature vectors.Therefore, some researchers proposed various
feature vectors for protein representation. Some methods
are based on sequence information, physical and chemical
properties of proteins [20–22], or secondary structure infor-
mation [23, 24], such as SVM-DR [25]. Some methods are
based on kernel method, such as SVM-Pairwise [5], SVM-LA
[26], motif kernel [27], mismatch [28], SW-PSSM [29], and
profile kernel [30]. Later, the performance of discriminative
approaches is further improved by Top-n-gram, because it
can transformprotein profiles into pseudo protein sequences,
which contain the evolutionary information [31–33].

Although many discriminative methods for protein
remote homology detection have been proposed based on
various feature extracting techniques, there is no attempt to
combine these methods using an ensemble learning method
to improve predictive performance. An ensemble classifier
[34, 35] is built by combining a set of basic classifiers in
weighted voting strategy to give a final determination in
classifying a query sample. Ensemble classifiers have achieved
great success in many fields, including protein-protein inter-
action sites [36], protein fold pattern recognition [22, 37],
tRNA detection [38, 39], microRNA identification [40–44],
DNA binding protein identification [45], and eukaryotic
protein subcellular location prediction [46], because they
are able to learn a more expressive concept in classification
compared to a single classifier and reduce the variance caused
by a single classifier.

In this study, inspired by the success of ensemble classifier
in the other fields, we proposed an ensemble classifier for
protein remote homology detection, called SVM-Ensemble,
which combined three state-of-the-art discriminative meth-
ods with a weighted voting strategy.The three basic classifiers
SVM-Kmer, SVM-ACC, and SVM-SC-PseAAC were con-
structed with Kmer, auto-cross covariance (ACC), and series
correlation pseudo amino acid composition (SC-PseAAC),
respectively. Experimental results on a widely used bench-
mark dataset [5] showed that SVM-Ensemble can obviously
improve the predictive performance by combining various
features. Moreover, SVM-Ensemble achieved an average
ROC score of 0.945, outperforming the other start-of-the-art
methods, indicating that it would be a useful computational
tool for protein remote homology detection.

2. Materials and Methods

2.1. Benchmark Dataset. A widely used superfamily bench-
mark [5] was used to evaluate the performance of ourmethod
for protein remote homology detection. The classification
problem definition and benchmark dataset are available
at http://noble.gs.washington.edu/proj/svm-pairwise/. The

same dataset has been used in a number of earlier studies
[26, 47–50], allowing us to perform direct comparisons to the
relative performance.

The benchmark contains 54 families and 4352 proteins,
which are derived from the SCOP database with version 1.53
and the similarities between any two sequences are less than
𝐸-value of 10−25. Remote homology detection can be treated
as a superfamily classification problem. For each family, the
proteins within the family were regarded as positive test sam-
ples, and the proteins outside the family but within the same
superfamily were taken as positive training samples. Negative
samples were selected from outside of the fold and split into
training and testing sets.This process was repeated until each
family had been tested. This yielded 54 families with at least
10 positive training examples and 5 positive test examples.

2.2. Profile-Based Protein Representation. Although some
methods have achieved certain degree of success only by
using amino acid sequence information, their performance is
not satisfying. Recent studies demonstrated that the methods
over profile-based protein sequences would show better
performance because a profile is richer than an individual
sequence as far as the evolutionary information is concerned
[50, 53].

The frequency profileM for protein P with 𝐿 amino acids
can be represented as

M =
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where 𝑚
𝑖,𝑗

(0 ≤ 𝑚
𝑖,𝑗

≤ 1) is the target frequency which
reflects the probability of amino acid 𝑖 (𝑖 = 1, 2, . . . , 20)
occurring at the sequence position 𝑗 (𝑗 = 1, 2, . . . , 𝐿) in
protein P during evolutionary processes. For each column
in M, the elements add up to 1. Each column can therefore
be regarded as an independent multinomial distribution.The
target frequency was calculated from the multiple sequence
alignments generated by running PSI-BLAST [11] against the
NCBI’s NR with default parameters except that the number
of iterations was set at 10 in the current study. The details of
how to build a frequency profile can be found in [50].

Given the frequency profileM for protein P, we can find
the amino acid with maximum frequency in each column of
M. These amino acids are combined to produce the profile-
based protein representation. In a frequency profile M, the
target frequencies reflect the probabilities of the correspond-
ing amino acids appearing in the specific sequence positions.
The higher the frequency is, the more likely the correspond-
ing amino acid occurs. Thus, the produced profile-based
protein sequence contains evolutionary information in the
frequency profile. We convert the frequency profiles into a
series of profile-based proteins. The existing sequence-based
methods can therefore be directly performed on the protein
representations for further processing.
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2.3. Feature Vector Representations for Protein Sequences.
In this study, three kinds of features have been employed
to construct the SVM-Ensemble predictor, including Kmer,
auto-cross covariance (ACC), and series correlation pseudo
amino acid composition (SC-PseAAC).

Suppose a protein sequence Pwith 𝐿 amino acid residues
can be represented as

P = 𝑅
1

𝑅
2

𝑅
3

𝑅
4

𝑅
5

𝑅
6

⋅ ⋅ ⋅ 𝑅
𝐿

, (2)

where 𝑅
𝑖

represents the amino acid residue at the sequence
position 𝑖, such that 𝑅

1

represents the amino acid residue
at the sequence position 1 and 𝑅

2

represents the amino acid
residue at position 2 and so on.The three used representation
methods can be described as follows.

2.3.1. Kmer. Kmer [56] is the simplest approach to represent
the proteins, in which the protein sequences are represented
as the occurrence frequencies of 𝑘 neighboring amino acids.

2.3.2. Auto-Cross Covariance (ACC). ACC transformation
[60–62] is to build two signal sequences and then calculate
the correlation between them. ACC results in two kinds
of variables: autocovariance (AC) transformation and cross
covariance (CC) transformation. AC variable measures the
correlation of the same property between two residues sep-
arated by a distance of lag along the sequence. CC variable
measures the correlation of two different properties between
two residues separated by lag along the sequence.

Autocovariance (AC) Transformation. Given a protein
sequence P in (2), the AC variable can be calculated by
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where 𝑢 is a physicochemical index, 𝐿 is the length of the
protein sequence, 𝑃
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In such a way, the length of AC feature vector is𝑁∗LAG,
where 𝑁 is the number of physicochemical indices. LAG is
the maximum of lag (lag = 1, 2, . . . , LAG).

Cross Covariance (CC) Transformation. Given a protein
sequence P in (2), the CC variable can be calculated by
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where 𝑢
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, 𝑢
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are two different physicochemical indices, 𝐿 is
the length of the protein sequence, and 𝑃
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along the whole
sequence and they can be calculated by (4).

In such way, the length of the CC feature vector is 𝑁 ∗
(𝑁 − 1) ∗ LAG, where 𝑁 is the number of physicochemical
indices. LAG is the maximum of lag (lag = 1, 2, . . . , LAG).

Therefore, the length of the ACC feature vector is 𝑁 ∗
𝑁 ∗ LAG. In current implementation, three physicochem-
ical properties were employed, including hydrophobicity,
hydrophilicity, and mass (see Table S1 in Supplementary file,
available online at http://dx.doi.org/10.1155/2016/5813645)
extracted from AAindex [57, 63].

2.3.3. Series Correlation Pseudo Amino Acid Composition (SC-
PseAAC). SC-PseAAC [64] is an approach incorporating the
contiguous local sequence-order information and the global
sequence-order information into the feature vector of the
protein sequence. Given a protein sequence P in (2), the SC-
PseAAC [64] feature vector of P is defined:
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where 𝑓
𝑖

(𝑖 = 1, 2, . . . , 20) is the normalized occurrence
frequency of the 20 native amino acids in the protein P; the
parameter 𝜆 is an integer, representing the highest counted
rank (or tier) of the correlation along a protein sequence; 𝑤
is the weight factor ranging from 0 to 1; and 𝜏

𝑗

is the 𝑗-tier
sequence-correlation factor that reflects the sequence-order

correlation between all of the most contiguous residues along
a protein sequence, which is defined as
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where we use R
𝑖

(𝑖 = 1, 2, . . . , 20) to represent the 20 native
amino acids.The symbols ℎ1(𝑅

𝑖

), ℎ2(𝑅
𝑖

), and𝑚(𝑅
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) represent
the original hydrophobicity, hydrophilicity, and mass values
(see Table S1 in Supplementary file) of the amino acid 𝑅

𝑖

.
These aforementioned features can be generated by a

web-server called Pse-in-one [56], which can be used to
generate the desired feature vectors for protein/peptide and
DNA/RNA sequences according to the need of user’s studies.
It covers a total of 28 differentmodes, of which 14 are forDNA
sequences, 6 are for RNA sequences, and 8 are for protein
sequences.

2.4. Support VectorMachine. Support vectormachine (SVM)
is a supervised machine learning technique for classification
task based on statistical theory [65, 66]. Given a set of fixed
length training vectors with labels (positive and negative
input samples), SVM can learn a linear decision boundary to
discriminate the two classes. The result is a linear classifica-
tion rule that can be used to classify new test samples. When
the samples are linearly nonseparable, the kernel function can
be used to map the samples to a high-order feature space in
which the optimal hyper plane as decision boundary can be
found. SVM has exhibited excellent performance in practice
[54, 58, 67–73] and has a strong theoretical foundation of
statistical learning.

In this study, the publicly available Gist SVM pack-
age (http://www.chibi.ubc.ca/gist/) is employed. The SVM
parameters are used by default of the Gist Package except that
the kernel function is set as radial basis function.

2.5. Ensemble Classifier. The ensemble classifier is able to
learn a more expressive concept in classification compared
to a single classifier and reduces the variance caused by a
single classifier.Therefore, it was employed inmany fields and
achieved great success [36, 37].

In this paper, we proposed a weighted voting strategy for
protein remote homology detection, as shown in Figure 1.The
ensemble framework of SVM-Ensemble was constructed by
combining SVM-Kmer, SVM-ACC, and SVM-SC-PseAAC
with weighted factors. The processing can be formulated as
below.

Suppose the ensemble classifier is expressed by

C = max {C
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with
weighted voting strategy. In (12), the symbol ⊕ denotes the
weighted voting operator.

The three basic classifiers can be combined by using the
following equation:
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where C
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) is the belief function or supporting degree
for P belonging to 𝑆
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is the weighted factor assigned with the average ROC
score of the 𝑖th basic classifier on superfamily 𝑆
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.

2.6. Performance Metrics for Evaluation. We evaluated the
performance of different methods by employing the receiver
operating characteristic (ROC) scores [55, 74–78]. Because
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Figure 1: Flowchart to show how the ensemble classifier is formed by combining three basic classifiers on superfamily-level. The ensemble
strategy is first employed on superfamily-level, and then the query protein P is predicted belonging to the superfamily type with which its
score is the highest.

the test sets have more negative than positive samples, simply
measuring error-rates will not give a good evaluation of the
performance. For the case, the best way to evaluate the trade-
off between the specificity and sensitivity is to use ROC score.
ROC score is the normalized area under a curve that is
plotted with true positives as a function of false positives for
varying classification thresholds. ROC score of 1 indicates a
perfect separation of positive samples from negative samples,
whereas ROC score of 0.5 denotes that random separation.
ROC50 score is the area under the ROC curve up to the first
50 false positives.

3. Results and Discussion

3.1. The Influence of Parameters on the Predictive Performance
of Basic Predictors. There are several parameters for each
basic predictor, which should be optimized. For more infor-
mation of these parameters, please refer to Materials and
Method. In this study, we optimized them by using grid
search.The influence of these parameters on the performance
was shown in Figure 2, and the optimized values of the
parameters and their results were shown in Table 1, from
which we can see that SVM-Kmer achieved the best perfor-
mance, followed by SVM-SC-PseAAC.

3.2. Performance of Ensemble Classifier Based on Various
Feature Combinations with Weighted Voting Strategy. As
discussed above, predictors based on different feature sets
showed different performance. In this study, in order to fur-
ther improve the performance of protein remote homology

Table 1: The performance of three basic predictors with optimal
parameters on benchmark dataset.

Methods Optimal parameters ROC[a] ROC50[a]

SVM-Kmer 𝑘 = 2 0.912 0.785
SVM-ACC LAG = 14 0.787 0.483
SVM-SC-PseAAC 𝜆 = 5, 𝑤 = 0.2 0.911 0.657
[a]Average ROC and ROC50 scores.

detection, we employed an ensemble learning approach to
combine various predictors. The performance of ensemble
classifier combined various feature combinations was shown
in Table 2. The best performance (ROC = 0.943, ROC50
= 0.744) can be achieved with the combination of all the
three basic predictors and obviously outperformed all the
three basic predictors in terms of both ROC score and
ROC50 score. These results were not surprising. The three
basic predictors were based on different features, and their
predictive results are complementary. The performance can
be improved by combining them with an ensemble learning
method.

3.3. Feature Analysis for Discriminative Power. To further
study the discriminative power of features in the three
basic predictors, we employed a feature extraction method,
called principal component analysis (PCA) [79], to calculate
the discriminative weight vectors in the feature space. The
process of PCA for extracting significant features can be
found in [32, 80].
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Figure 2: The performance of three basic predictors with all parameter combinations. 𝑘 value of 2 and the LAG value of 14 were used in
SVM-Kmer and SVM-ACC. SVM-SC-PseAAC achieves the best performance with 𝜆 = 5 and 𝑤 = 0.2. Parameter 𝑤 is mainly impact factor.
However, parameter 𝜆 has minor impact on the performance.

For each basic predictor, the top 10 most discriminative
features in the feature space were shown in Table 3, from
which we can see that, for the Kmer features, six of the most
discriminative features contain the amino acid𝑀, indicating
the importance of this amino acid. For ACC features, the
hydrophobicity (ℎ1) has important impact on the feature dis-
crimination. For SC-PseAAC features, the amino acid𝑀 has
themost discriminative power and featureswith small𝜆 value
are more important. Both ACC and SC-PseAAC features
with strong discriminative power incorporate the sequence-
order effects. These three kinds of features consider both
sequence composition and sequence order effects. Therefore,
SVM-Ensemble can further improve the performance by
combining them in an ensemble learning approach.

3.4. Comparison with Other Related Predictors. Some state-
of-the-art methods for protein remote homology detection
were selected to compare with the proposed SVM-Ensemble.
SVM-Pairwise [5] represents each protein as a vector of pair-
wise similarities to all proteins in the training set. The kernel
of SVM-LA [26] measures the similarity between a pair of
proteins by taking into account all the optimal local align-
ment scores with gaps between all possible subsequences.
Mismatch kernel [28] is calculated based on occurrences of
(𝑘,𝑚)-patterns in the data. Monomer-dist [47] constructs
the feature vectors by the occurrences of short oligomers.
SVM-DR is based on the distance-pairs; PseAACIndex is
based on the pseudo amino acid composition (PseAAC).
disPseAAC constructs the feature vectors by combining the



BioMed Research International 7

Table 2: Performance of ensemble classifier combining various predictors with weighted voting. The best performance was achieved by
combining SVM-Kmer, SVM-ACC, and SVM-SC-PseAAC. The symbol ⊕ denotes the weighted voting operator.

Ensemble methods with superfamily-level strategy ROC[a] ROC50[a]

SVM-Kmer ⊕ SVM-ACC 0.929 0.767
SVM-Kmer ⊕ SVM-SC-PseAAC 0.937 0.715
SVM-ACC ⊕ SVM-SC-PseAAC 0.922 0.691
SVM-Kmer ⊕ SVM-ACC ⊕ SVM-SC-PseAAC 0.943 0.744
[a]Average ROC and ROC50 scores.

Table 3: Top 10 most discriminative features in three feature spaces. These features describe the characteristics of proteins from various
perspectives.

Rank Kmer ACC SC-PseAAC
1 MH CC

ℎ

1
ℎ

2
,lag=9 𝑀

2 WC AC
ℎ

1
,lag=5 𝑌

3 IM CC
ℎ

1
ℎ

2
,lag=8 𝜏

ℎ

2
,𝜆=1

4 MC AC
ℎ

1
,lag=4 𝜏

ℎ

2
,𝜆=4

5 MY CC
ℎ

1
ℎ

2
,lag=7 𝐻

6 VM AC
ℎ

1
,lag=14 𝜏

ℎ

1
,𝜆=4

7 YW AC
𝑚,lag=13 𝐺

8 YR CC
ℎ

1
𝑚,lag=13 𝜏

ℎ

1
,𝜆=1

9 HW CC
ℎ

1
ℎ

2
,lag=10 𝜏

𝑚,𝜆=1

10 MQ AC
ℎ

1
,lag=8 𝜏

𝑚,𝜆=3

Note: the subscript indexes in ACC features and SC-PseAAC features mean hydrophobicity (ℎ1), hydrophilicity (ℎ2), and mass (𝑚).

Table 4: Performance comparison of different methods on the benchmark dataset.

Methods ROC[a] ROC50[a] Source
SVM-Ensemble 0.943 0.744 This study
SVM-Pairwise 0.896 0.464 Liao and Noble, 2003 [5]
SVM-LA (𝛽 = 0.5) 0.925 0.649 Saigo et al., 2004 [26]
Mismatch 0.925 0.649 Leslie et al., 2004 [28]
Monomer-dist 0.919 0.508 Lingner and Meinicke, 2006 [47]
SVM-WCM 0.904 0.445 Lingner and Meinicke, 2008 [51]
SVM-Ngram-LSA 0.859 0.628 Dong et al., 2006 [48]
SVM-Pattern-LSA 0.879 0.626 Dong et al., 2006 [48]
SVM-Motif-LSA 0.859 0.628 Dong et al., 2006 [48]
SVM-Top-n-gram-combine-LSA 0.939 0.767 Liu et al., 2008 [4]
PseAACIndex (𝜆 = 5) 0.880 0.620 Liu et al., 2013 [31, 52]
PseAACIndex-Profile (𝜆 = 5) 0.922 0.712 Liu et al., 2013 [31, 52]
SVM-DR 0.919 0.715 Liu et al., 2014 [50, 53–55]
disPseAAC 0.922 0.721 Liu et al., 2015 [2, 32, 44, 45, 56–59]
[a]Average ROC and ROC50 scores.

occurrences of amino acid pairs within Chou’s pseudo amino
acid composition.

Experimental results of various methods on SCOP 1.53
benchmark dataset were shown in Table 4. The SVM-
Ensemble achieved the best performance, indicating that it
is correct to combine different predictors via an ensemble
learning approach.

4. Conclusions

In this study, we have proposed an ensemble classifier for
protein remote homology detection, called SVM-Ensemble.
It was constructed by combining three basic classifiers with
a weighted voting strategy. Experimental results on a widely
used benchmark dataset showed that our method achieved
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ROC score of 0.943, which is obviously better than the
three basic predictors, including SVM-Kmer, SVM-ACC,
and SVM-SC-PseAAC. Compared with some other state-
of-the-art methods, the SVM-Ensemble achieved the best
performance. Furthermore, by analyzing the discriminative
power of these features, some interesting patterns were
discovered.

For the future work, more effective features and machine
learning techniques will be explored. And evolutionary com-
putation [81], the ensemble learning techniques, and neural-
like computing models [82–87] would be applied to other
bioinformatics problems, such as gene-disease relationship
prediction [52, 88–92] and DNAmotif identification [59, 93].
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lightning-fast iterative protein sequence searching by HMM-
HMM alignment,” Nature Methods, vol. 9, no. 2, pp. 173–175,
2012.

[14] S. R. Eddy, “Profile hiddenMarkovmodels,” Bioinformatics, vol.
14, no. 9, pp. 755–763, 1998.

[15] K. Karplus, C. Barrett, and R. Hughey, “HiddenMarkovmodels
for detecting remote protein homologies,” Bioinformatics, vol.
14, no. 10, pp. 846–856, 1998.

[16] H. Ding, H. Lin,W. Chen et al., “Prediction of protein structural
classes based on feature selection technique,” Interdisciplinary
Sciences: Computational Life Sciences, vol. 6, no. 3, pp. 235–240,
2014.

[17] H. Ding, L. Liu, F.-B. Guo, J. Huang, and H. Lin, “Identify
golgi protein types with modified mahalanobis discriminant
algorithm and pseudo amino acid composition,” Protein and
Peptide Letters, vol. 18, no. 1, pp. 58–63, 2011.

[18] H. Lin, W. X. Liu, J. He, X. H. Liu, H. Ding, and W. Chen,
“Predicting cancerlectins by the optimal g-gap dipeptides,”
Scientific Reports, vol. 5, Article ID 16964, 2015.

[19] B. Liu, X. Wang, Q. Chen, Q. Dong, and X. Lan, “Using amino
acid physicochemical distance transformation for fast protein
remote homology detection,” PLoS ONE, vol. 7, no. 9, Article ID
e46633, 2012.

[20] X. Zhao, Q. Zou, B. Liu, and X. Liu, “Exploratory predicting
protein folding model with random forest and hybrid features,”
Current Proteomics, vol. 11, no. 4, pp. 289–299, 2014.

[21] L. Song, D. Li, X. Zeng, Y.Wu, L. Guo, andQ. Zou, “nDNA-prot:
Identification of DNA-binding proteins based on unbalanced
classification,” BMC Bioinformatics, vol. 15, article 298, 2014.

[22] C. Lin, Y. Zou, J. Qin et al., “Hierarchical classification of protein
folds using a novel ensemble classifier,” PLoS ONE, vol. 8, no. 2,
Article ID e56499, 2013.

[23] L. Wei, M. Liao, X. Gao, and Q. Zou, “An improved protein
structural classes prediction method by incorporating both
sequence and structure information,” IEEE Transactions on
Nanobioscience, vol. 14, no. 4, pp. 339–349, 2015.

[24] L. Wei, M. Liao, X. Gao, and Q. Zou, “Enhanced protein
fold prediction method through a novel feature extraction



BioMed Research International 9

technique,” IEEE Transactions on Nanobioscience, vol. 14, no. 6,
pp. 649–659, 2015.

[25] J. Xu, Q. Zou, R. Xu, X. Wang, and Q. Chen, “Using distances
between Top-n-gram and residue pairs for protein remote
homology detection,” BMC Bioinformatics, vol. 15, supplement
2, p. S3, 2014.

[26] H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu, “Protein homology
detection using string alignment kernels,” Bioinformatics, vol.
20, no. 11, pp. 1682–1689, 2004.

[27] A. Ben-Hur and D. Brutlag, “Remote homology detection: a
motif based approach,” Bioinformatics, vol. 19, supplement 1, pp.
i26–i33, 2003.

[28] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble,
“Mismatch string kernels for discriminative protein classifica-
tion,” Bioinformatics, vol. 20, no. 4, pp. 467–476, 2004.

[29] H. Rangwala and G. Karypis, “Profile-based direct kernels for
remote homology detection and fold recognition,” Bioinformat-
ics, vol. 21, no. 23, pp. 4239–4247, 2005.

[30] R. Kuang, E. Ie, K. Wang et al., “Profile-based string kernels
for remote homology detection and motif extraction,” Journal
of Bioinformatics and Computational Biology, vol. 3, no. 3, pp.
527–550, 2005.

[31] B. Liu, X. Wang, Q. Zou, Q. Dong, and Q. Chen, “Protein
remote homology detection by combining chou’s pseudo amino
acid composition and profile-based protein representation,”
Molecular Informatics, vol. 32, no. 9-10, pp. 775–782, 2013.

[32] B. Liu, J. Chen, and X. Wang, “Protein remote homology
detection by combining Chou’s distance-pair pseudo amino
acid composition and principal component analysis,”Molecular
Genetics and Genomics, vol. 290, no. 5, pp. 1919–1931, 2015.

[33] Y. Zhang, B. Liu, Q. Dong, and V. X. Jin, “An improved
profile-level domain linker propensity index for protein domain
boundary prediction,” Protein and Peptide Letters, vol. 18, no. 1,
pp. 7–16, 2011.

[34] T. G. Dietterich, “Ensemble methods in machine learning,” in
Multiple Classifier Systems, pp. 1–15, Springer, Berlin, Germany,
2000.

[35] C. Lin, W. Chen, C. Qiu, Y. Wu, S. Krishnan, and Q. Zou,
“LibD3C: ensemble classifiers with a clustering and dynamic
selection strategy,”Neurocomputing, vol. 123, pp. 424–435, 2014.

[36] L. Deng, J. Guan, Q. Dong, and S. Zhou, “Prediction of protein-
protein interaction sites using an ensemble method,” BMC
Bioinformatics, vol. 10, no. 1, article 426, 2009.

[37] H.-B. Shen andK.-C. Chou, “Ensemble classifier for protein fold
pattern recognition,” Bioinformatics, vol. 22, no. 14, pp. 1717–
1722, 2006.

[38] Q. Zou, J. Guo, Y. Ju, M. Wu, X. Zeng, and Z. Hong, “Improv-
ing tRNAscan-SE annotation results via ensemble classifiers,”
Molecular Informatics, vol. 34, no. 11-12, pp. 761–770, 2015.

[39] B. Liu, F. Liu, L. Fang, X. Wang, and K.-C. Chou, “repRNA:
a web server for generating various feature vectors of RNA
sequences,”Molecular Genetics and Genomics, vol. 291, no. 1, pp.
473–481, 2016.

[40] C. Y. Wang, L. Hu, M. Z. Guo, X. Y. Liu, and Q. Zou, “imDC:
an ensemble learningmethod for imbalanced classificationwith
miRNAdata,”Genetics andMolecular Research, vol. 14, no. 1, pp.
123–133, 2015.

[41] L. Wei, M. Liao, Y. Gao, R. Ji, Z. He, and Q. Zou, “Improved
and promising identification of human microRNAs by incor-
poratinga high-quality negative set,” IEEE/ACMTransactions on
Computational Biology and Bioinformatics, vol. 11, no. 1, pp. 192–
201, 2014.

[42] J. Chen, X. Wang, and B. Liu, “iMiRNA-SSF: improving the
identification of MicroRNA precursors by combining negative
sets with different distributions,” Scientific Reports, vol. 6,
Article ID 19062, 2016.

[43] B. Liu, L. Fang, F. Liu, X. Wang, and K.-C. Chou, “iMiRNA-
PseDPC: microRNA precursor identification with a pseudo
distance-pair composition approach,” Journal of Biomolecular
Structure and Dynamics, vol. 34, no. 1, pp. 220–232, 2016.

[44] B. Liu, L. Fang, S. Wang, X. Wang, H. Li, and K.-C. Chou,
“Identification of microRNA precursor with the degenerate K-
tuple or Kmer strategy,” Journal of Theoretical Biology, vol. 385,
pp. 153–159, 2015.

[45] B. Liu, S.Wang, and X.Wang, “DNA binding protein identifica-
tion by combining pseudo amino acid composition and profile-
based protein representation,” Scientific Reports, vol. 5, Article
ID 15479, 2015.

[46] L. Li, Y. Zhang, L. Zou et al., “An ensemble classifier for
eukaryotic protein subcellular location prediction using gene
ontology categories and amino acid hydrophobicity,” PLoS
ONE, vol. 7, no. 1, Article ID e31057, 2012.

[47] T. Lingner and P.Meinicke, “Remote homology detection based
on oligomer distances,” Bioinformatics, vol. 22, no. 18, pp. 2224–
2231, 2006.

[48] Q.-W. Dong, X.-L. Wang, and L. Lin, “Application of latent
semantic analysis to protein remote homology detection,”Bioin-
formatics, vol. 22, no. 3, pp. 285–290, 2006.

[49] L. Liao andW. S. Noble, “Combining pairwise sequence similar-
ity and support vector machines for remote protein homology
detection,” in Proceedings of the 6th Annual International Con-
ference on Computational Biology (RECOMB ’02), pp. 225–232,
Washington, DC, USA, April 2002.

[50] B. Liu, D. Zhang, R. Xu et al., “Combining evolutionary infor-
mation extracted from frequency profiles with sequence-based
kernels for protein remote homology detection,”Bioinformatics,
vol. 30, no. 4, pp. 472–479, 2014.

[51] T. Lingner and P. Meinicke, “Word correlation matrices for
protein sequence analysis and remote homology detection,”
BMC Bioinformatics, vol. 9, no. 1, article 259, 13 pages, 2008.

[52] B. Liu, J. Yi, A. Sv et al., “QChIPat: a quantitative method to
identify distinct binding patterns for two biological ChIP-seq
samples in different experimental conditions,” BMC Genomics,
vol. 14, supplement 8, article S3, 2013.

[53] B. Liu, B. Liu, F. Liu, and X. Wang, “Protein binding site pre-
diction by combining hidden markov support vector machine
and profile-based propensities,” The Scientific World Journal,
vol. 2014, Article ID 464093, 6 pages, 2014.

[54] W.-X. Liu, E.-Z. Deng, W. Chen, and H. Lin, “Identifying the
subfamilies of voltage-gated potassium channels using feature
selection technique,” International Journal ofMolecular Sciences,
vol. 15, no. 7, pp. 12940–12951, 2014.

[55] B. Liu, J. Xu, X. Lan et al., “IDNA-Prot—dis: identifying DNA-
binding proteins by incorporating amino acid distance-pairs
and reduced alphabet profile into the general pseudo amino acid
composition,” PLoS ONE, vol. 9, no. 9, Article ID e106691, 2014.

[56] B. Liu, F. Liu, X. Wang, J. Chen, L. Fang, and K.-C. Chou, “Pse-
in-One: a web server for generating various modes of pseudo
components of DNA, RNA, and protein sequences,” Nucleic
Acids Research, vol. 43, no. 1, pp. W65–W71, 2015.

[57] B. Liu, J. Xu, S. Fan, R. Xu, J. Zhou, and X. Wang, “PseDNA-
Pro: DNA-binding protein identification by combining chou’s
PseAAC and Physicochemical distance transformation,”Molec-
ular Informatics, vol. 34, no. 1, pp. 8–17, 2015.



10 BioMed Research International

[58] B. Liu, L. Fang, J. Chen, F. Liu, and X. Wang, “MiRNA-dis:
MicroRNA precursor identification based on distance structure
status pairs,”Molecular BioSystems, vol. 11, no. 4, pp. 1194–1204,
2015.

[59] B. Liu, F. Liu, L. Fang, X. Wang, and K.-C. Chou, “repDNA: a
Python package to generate variousmodes of feature vectors for
DNA sequences by incorporating user-defined physicochemi-
cal properties and sequence-order effects,” Bioinformatics, vol.
31, no. 8, pp. 1307–1309, 2015.

[60] D.-S. Cao, Q.-S. Xu, and Y.-Z. Liang, “Propy: a tool to generate
various modes of Chou’s PseAAC,” Bioinformatics, vol. 29, no. 7,
pp. 960–962, 2013.

[61] Q. Dong, S. Zhou, and J. Guan, “A new taxonomy-based pro-
tein fold recognition approach based on autocross-covariance
transformation,” Bioinformatics, vol. 25, no. 20, pp. 2655–2662,
2009.

[62] X. Liu, L. Zhao, and Q. Dong, “Protein remote homology
detection based on auto-cross covariance transformation,”
Computers in Biology and Medicine, vol. 41, no. 8, pp. 640–647,
2011.

[63] S. Kawashima and M. Kanehisa, “AAindex: amino acid index
database,” Nucleic Acids Research, vol. 28, no. 1, p. 374, 2000.

[64] K.-C. Chou, “Using amphiphilic pseudo amino acid composi-
tion to predict enzyme subfamily classes,” Bioinformatics, vol.
21, no. 1, pp. 10–19, 2005.

[65] C.-C. Chang and C.-J. Lin, “LIBSVM: a Library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, article 27, 2011.

[66] L. Fang, F. Liu, X. Wang, J. Chen, K.-C. Chou, and B. Liu,
“Identification of real microRNA precursors with a pseudo
structure status composition approach,” PLoS ONE, vol. 10, no.
3, Article ID e0121501, 2015.

[67] H. Ding, E.-Z. Deng, L.-F. Yuan et al., “ICTX-type: a sequence-
based predictor for identifying the types of conotoxins in
targeting ion channels,” BioMed Research International, vol.
2014, Article ID 286419, 10 pages, 2014.

[68] H. Ding, S.-H. Guo, E.-Z. Deng et al., “Prediction of Golgi-
resident protein types by using feature selection technique,”
Chemometrics and Intelligent Laboratory Systems, vol. 124, pp.
9–13, 2013.

[69] S.-H. Guo, E.-Z. Deng, L.-Q. Xu et al., “INuc-PseKNC: a
sequence-based predictor for predicting nucleosome position-
ing in genomes with pseudo k-tuple nucleotide composition,”
Bioinformatics, vol. 30, no. 11, pp. 1522–1529, 2014.

[70] H. Lin, E.-Z.Deng,H.Ding,W.Chen, andK.-C.Chou, “IPro54-
PseKNC: a sequence-based predictor for identifying sigma-
54 promoters in prokaryote with pseudo k-tuple nucleotide
composition,” Nucleic Acids Research, vol. 42, no. 21, pp. 12961–
12972, 2014.

[71] H. Lin, H. Ding, F.-B. Guo, A.-Y. Zhang, and J. Huang,
“Predicting subcellular localization of mycobacterial proteins
by using Chou’s pseudo amino acid composition,” Protein and
Peptide Letters, vol. 15, no. 7, pp. 739–744, 2008.

[72] L.-F. Yuan, C. Ding, S.-H. Guo, H. Ding, W. Chen, and H.
Lin, “Prediction of the types of ion channel-targeted conotoxins
based on radial basis function network,”Toxicology in Vitro, vol.
27, no. 2, pp. 852–856, 2013.

[73] B. Liu, L. Fang, R. Long, X. Lan, and K.-C. Chou, “iEnhancer-
2L: a two-layer predictor for identifying enhancers and their
strength by pseudo k-tuple nucleotide composition,” Bioinfor-
maitcs, vol. 32, no. 3, pp. 362–369, 2016.

[74] T. Fawcett, “An introduction to ROC analysis,” Pattern Recogni-
tion Letters, vol. 27, no. 8, pp. 861–874, 2006.

[75] H. Ding, P.-M. Feng, W. Chen, and H. Lin, “Identification of
bacteriophage virion proteins by the ANOVA feature selection
and analysis,” Molecular BioSystems, vol. 10, no. 8, pp. 2229–
2235, 2014.

[76] H. Ding, L. Luo, and H. Lin, “Prediction of cell wall lytic
enzymes using chou’s amphiphilic pseudo amino acid compo-
sition,” Protein and Peptide Letters, vol. 16, no. 4, pp. 351–355,
2009.

[77] B. Liu, X. Wang, L. Lin, B. Tang, Q. Dong, and X. Wang,
“Prediction of protein binding sites in protein structures using
hidden Markov support vector machine,” BMC Bioinformatics,
vol. 10, article 381, 2009.

[78] B. Liu and L. Fang, “Identification of microRNA precursor
based on gapped n-tuple structure status composition kernel,”
Computational Biology and Chemistry, 2016.

[79] S. Wold, K. Esbensen, and P. Geladi, “Principal component
analysis,” Chemometrics and Intelligent Laboratory Systems, vol.
2, no. 1–3, pp. 37–52, 1987.

[80] Q.-S. Du, Z.-Q. Jiang, W.-Z. He, D.-P. Li, and K.-C. Chou,
“Amino acid principal component analysis (AAPCA) and its
applications in protein structural class prediction,” Journal of
Biomolecular Structure and Dynamics, vol. 23, no. 6, pp. 635–
640, 2006.

[81] X. Zhang, Y. Tian, and Y. Jin, “A knee point driven evolutionary
algorithm for many-objective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 19, no. 6, pp. 761–776, 2015.

[82] T. Song and L. Pan, “On the universality and non-universality
of spiking neural P systems with rules on synapses,” IEEE
Transactions on NanoBioscience, vol. 14, no. 8, pp. 960–966,
2015.

[83] X. Zeng, X. Zhang, T. Song, and L. Pan, “Spiking neural P
systems with thresholds,”Neural Computation, vol. 26, no. 7, pp.
1340–1361, 2014.
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