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Abstract. Protein fold recognition (PFR) is considered as an important
step towards the protein structure prediction problem. It also provides
crucial information about the functionality of the proteins. Despite all
the efforts that have been made during the past two decades, finding
an accurate and fast computational approach to solve PFR still remains
a challenging problem for bioinformatics and computational biology. It
has been shown that extracting features which contain significant lo-
cal and global discriminatory information plays a key role in addressing
this problem. In this study, we propose the concept of segmented-based
feature extraction technique to provide local evolutionary information
embedded in Position Specific Scoring Matrix (PSSM) and structural
information embedded in the predicted secondary structure of proteins
using SPINE-X. We also employ the concept of occurrence feature to
extract global discriminatory information from PSSM and SPINE-X. By
applying a Support Vector Machine (SVM) to our extracted features,
we enhance the protein fold prediction accuracy to 7.4% over the best
results reported in the literature.
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1 Introduction

Protein Fold Recognition (PFR) is defined as assigning a given protein to a
fold (among a finite number of folds) that represents its functionality as well
as its major tertiary structure. Therefore, PFR is considered as an important
step towards the protein structure prediction problem. Despite all the efforts
that have been made so far to find an effective computational approach to solve
this problem, it still remains an unsolved problem for computational biology.
From the pattern recognition perspective, PFR is defined as solving a multi-
class classification task. Therefore, extracting features that capture significant
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global and local discriminatory information as well as the classification technique
being used play the main roles in solving this problem. During the past two
decades, a wide range of classification techniques have been used for PFR [1–9].
Among the classifiers employed to tackle this problem, Support Vector Machine
(SVM) based classifiers have attained the best results [10, 11]. However, the most
significant enhancement of PFR accuracy has been achieved by relying on the
feature extraction approaches rather than the classification techniques being used
[1, 9, 10, 12–14]. In most of the studies that addressed PFR by feature extraction
techniques, global discriminatory information has been represented using the
composition of the amino acids feature group (the occurrence of the amino acids
along the protein sequence divided by the length of protein sequence [1, 8]).
However, it has been shown that this feature group is not able to adequately
reveal global information [15]. Furthermore, composition feature group is not
able to capture information regarding the length of the protein sequence that
was shown as an effective feature for PFR [13].

Compared to the methods adopted to extract global discriminatory informa-
tion, a wider range of methods were used to extract local discriminatory infor-
mation for PFR such as, pseudo amino acid composition [3, 8, 9], cross covariance
[10], auto covariance [10], bi-gram [11, 14], and tri-gram [16]. Despite the signif-
icant local discriminatory information provided using these approaches, most of
these methods produce large number of features which makes them computation-
ally expensive for large protein data banks (e.g. cross covariance and tri-gram
[10, 16]). At the same time, in all these methods the whole protein sequence as
a single entity have been used to extract local information. In another words,
they aimed to extract local information by exploring whole protein sequence
as a global entity. Therefore, they could not appropriately explore local infor-
mation embedded in protein sequence. Furthermore, despite all the efforts have
been made to enhance the protein fold prediction accuracy so far, its prediction
accuracy remains limited especially when the sequential similarity rate is low.

In this study, we aim at enhancing protein fold prediction accuracy by ad-
dressing these limitations. We propose segmented-base feature extraction to ex-
tract local evolutionary information embedded in Position Specific Scoring Ma-
trix (PSSM) as well as structural information embedded in the predicted sec-
ondary structure using SPINE-X. We also employ the concept of an occurrence
feature of the transformed protein sequence using evolutionary and structural
information embedded in PSSM and SPINE-X to extract adequate global dis-
criminatory information for PFR. By applying SVM to our extracted features
we enhance the protein fold prediction accuracy to 7.4% better than the highest
reported results found in the literature.

2 Data sets

In this study, two data sets namely TG and EDD are used to investigate the
performance of our proposed methods. The TG data set introduced by [15]
consists of 1612 proteins belonging to 30 folds with less than 25% sequential



similarities. TG is extracted from Structural Classification of Proteins (SCOP)
1.73 which has been previously used to investigate the performance of proposed
methods for PFR when the sequential similarity is very low [13, 15, 17]. We also
extract EDD (extended version of DD data set [1] which is extracted from SCOP
1.75). This data set consists of 3418 proteins belonging to 27 folds that was used
originally in DD data set with less than 40% sequential similarities. The EDD
data set extracted from an older version of SCOP has been widely used for PFR
[5, 10, 11]. Using this data set enables us to directly compare our results with
previously reported results found in the literature.

3 Feature Extraction Method

In this study, we rely on PSSM and the predicted secondary structure using
SPINE-X to extract evolutionary and structural information respectively. PSSM
is calculated by applying PSIBLAST [18] to EDD and TG data sets (using
NCBI’s non redundant (NR) database with its cut off value (E) set to 0.001).
PSSM consists of an L×20 matrix (L is the length of a protein and the columns of
the matrices represent 20 amino acids). It provides the substitution probability
of a given amino acid based on its position along a protein sequence.

We also use predicted secondary structure using SPINE-X which was recently
proposed by [19] and attained better results (especially for the coded area) than
PSIPRED on predicting protein secondary structure [20]. Given a protein se-
quence, it returns an L×3 matrix (which will be referred to as SPINE-M for the
rest of this study) consisting of the normalized probability of contribution of a
given amino acid based on its position along the protein sequence to build one of
the three secondary structure elements namely, α-helix, β-strands, and coils. It
also returns a transformed version of the protein sequence (also extracted from
SPINE-M) in which each amino acid along the protein sequence is replaced with
H (represents helix), E (represents strand), or C (represents coil) based on its
tendency to incorporate in building one of these secondary structure elements.
In this study, we will refer to this sequence as the structural consensus sequence.
It is expected that predicted secondary structure using SPINE-X provides sig-
nificant structural information for PFR similar to or even better than PSIPRED
due to its better performance [19]. In continuation, the global and local features
extracted in this study will be explained in detail.

3.1 Global Features

To extract global discriminatory information embedded in PSSM and SPINE-M
we mainly relied on the concept of the occurrence feature. We extract evolution-
ary and structural consensus sequence-based occurrence from the transformed
protein sequence using PSSM and SPINE-M respectively. We also extract semi-
occurrence feature group directly from PSSM and SPINE-M which represents
the summation of the substitution probability of the amino acids and normalized
probability of secondary structure elements respectively.



Consensus Sequence-based Occurrence: In this method, we extract occur-
rence of the amino acids as well as occurrence of the secondary structure ele-
ments derived from the evolutionary-based and the structural-based consensus
sequences respectively. To extract the occurrence feature group from the evolu-
tionary consensus sequence, we first need to extract this sequence from PSSM.
In the evolutionary consensus sequence, amino acids along the original protein
sequence (O1, O2, ..., OL) are replaced with the corresponding amino acids with
the maximum substitution probability (C1, C2, ..., CL). This is done in the fol-
lowing two steps. In the first step, for a given amino acid, the index of the amino
acid with the highest substitution probability is calculated as follows:

Ii = argmax{Pij : 1 ≤ j ≤ 20}, 1 ≤ i ≤ L, (1)

where Pij is the substitution probability of the amino acid at location i with the
jth amino acid in PSSM. In the second step, we replace the amino acid at ith

location of original protein sequence by the Ith amino acid to form the consensus
sequence. After calculating the evolutionary consensus sequence, we count the
occurrence of each amino acid (for all the 20 amino acids) along this sequence and
produce the occurrence feature from the evolutionary based consensus sequence
which we call (AAO). Similarly, we calculate the occurrence of each secondary
structure elements (SSEO) (for all three elements) in the structural consensus
sequence and extract the corresponding feature group. The occurrence feature
group is used in this study as the global descriptor of the proteins since it
maintains the information regarding the length of protein sequence which is
disregarded using composition feature group [2, 5].

Semi-Occurrence: In this method, we calculate semi-occurrence feature group
from both PSSM and SPINE-M. It is called semi-occurrence because instead of
using the protein sequence directly to calculate the occurrence of each amino
acid, we calculate the summation of the substitution probability for each amino
acid from the PSSM or normalized frequency of each secondary structure element
from SPINE-M. The semi-occurrence derived from the PSSM (PSSM AAO) is
calculated as follows:

PSSM-AAOj =

L∑
i=1

Pij , (j = 1, ..., 20). (2)

In a similar manner, we calculate the semi-occurrence of the normalized fre-
quency of the secondary structure elements from SPINE-M (SPINE SSEO) as
follows:

SPINE-SSEOj =
L∑

i=1

Sij , (j = 1, 2, 3), (3)

where Sij is the normalized probability of the occurrence of the jth secondary
structure element for the ith amino acid in the SPINE-M. These feature groups



are able to provide important global discriminatory information about the sub-
stitution probability of the amino acids as well as normalized frequency of sec-
ondary structure elements based on PSSM and SPINE-M. For the rest of this
study, the combination of all these four global feature groups (AAO + SSEO +
PSSM-AAO + SPINE-SSEO) will be referred as Fglobal (consisting of 46 features
in total).

3.2 Local Features

To extract these features, we extract distribution and auto covariance features
using segmentation method. In this manner, we are able to provide more local
information compared to use of whole protein sequence as a global entity to
extract these features.

Segmented Distribution: This method is specifically proposed to extract
more local discriminatory information for PFR based on the amino acids’ sub-
stitution probability with each other (extracted from PSSM) as well as their
tendency to incorporate in one of the secondary structure elements (extracted
from SPINE-M). For PSSM, for the jth column, we first calculate the total sum

of substitution probability Tj =
∑L

i=1 Pij . Then, starting from the first row of
PSSM (which corresponds to the first amino acid in the protein sequence) we
sum the substitution probabilities corresponding to the jth column until reach-

ing to less than or equal to FP (segmentation factor) of Tj (S1 =
∑I1

j

i=1 Pij).
I1
j is the number of amino acids such that the summation of their substitution

probability is equal to S1 and is the corresponding feature for this segment.
We calculate I2

j by summing the substitution probability of amino acids (again,

starting from the first row of PSSM) until reaching 2×FP of Tj . Similarly, I2
j is

the number of amino acids such that the summation of their substitution prob-
ability is equal to S2 (2 × FP of Tj) and is the corresponding feature for this
segment. In this study FP is set to 25% since it attained similar performance as
adopting 10% and 5% for this parameter. In other words, dividing the protein
sequence into four segments provide similar local discriminatory information in
comparison with dividing it to 10 or 20.

We also calculate I3
j , I4

j features for the jth column of PSSM. Dissimilar to

I1
j and I2

j , we start from the last row of PSSM (corresponding to the last amino

acids of the protein sequence). To calculate I3
j , starting from the last row of

PSSM, we sum the substitution probabilities of amino acids until reaching less
than or equal to FP of Tj . In the similar manner, we calculate I4

j , summing
substitution probability of amino acids (starting from the last row of PSSM)
until reaching to 2× FP of total sum (Tj). In this manner, we also cover whole
protein sequence as well (50% of Tj is covered by starting from the first row
and 50% of Tj is covered by starting from the last row). Therefore, for a given
column in PSSM we calculate 4 segmented distribution features (which in total
4 × 20 = 80 features are extracted corresponding to 20 columns in PSSM) to
build segmented distribution feature group (called PSSM SD).



In a similar manner, we calculate the segmented distribution feature group
of the normalized frequency of the secondary structure elements from SPINE-
M (called SPINE SD) using FS = 25% (where Fs is used as the distribution
factor for SPINE-M equivalent to FP used for PSSM) and respectively extract
3× 4 = 12 features in total for all three elements.

Segmented Auto Covariance: The concept of auto covariance have been
widely used in the literature to capture local discriminatory information and
has attained better results compared to similar methods used for this task such
as bi-gram [14, 11] or tri-gram features [16]. Pseudo amino acid composition
based features are good examples of these types of features [3, 21]. These fea-
tures have been computed using the whole protein sequence as a single entity
for feature extraction. Therefore, they could not adequately explore the local
discriminatory information embedded in protein sequence [10]. In the present
study, we extend the concept of segmented distribution features as described in
the previous subsection to compute the auto covariance features. This provides
more local evolutionary and structural information from PSSM and SPINE-M.
First for PSSM, we segment the protein sequence using FP = 25%. Using a pro-
cedure similar to the one described in the previous subsection, for the jth column
in PSSM we divide the protein sequence into 4 segments (from first amino acid
corresponding to first row of PSSM until reaching I1

j ; from first amino acid

corresponding to first row of PSSM until reaching I2
j ; from last amino acid cor-

responding to the last row of PSSM until reaching I3
j ; and from last amino acid

corresponding to the last row of PSSM until reaching I4
j ). we calculate auto

covariance feature using KP (distance factor used for PSSM for each segment)
as follows:

PSSM-segn,m,j =
1

(In
j −m)

Inj −m∑
i=1

(Pi,j − Pave,j)× (P(i+m),j − Pave,j),

(n = 1, 2, 3, 4 & m = 1, ..., KP & j = 1, ..., 20), (4)

where, Pave,j is the average substitution probability for the jth column in PSSM.
We also compute the global auto covariance coefficient (KP features) as follows:

PSSM-ACm,j =
1

(L−m)

L−m∑
i=1

(Pi,j − Pave,j)× (P(i+m),j − Pave,j),

(m = 1, ..., KP & j = 1, ..., 20). (5)

Thus, we extract a total of ( 2KP + 2KP + KP = 5KP ) auto covariance
features (2KP features for segments corresponding to I1

j and I2
j , 2KP features

for segments corresponding to I3
j and I4

j and KP features corresponding to global
auto covariance) in this manner. Then by combining PSSM-AC and PSSM-seg
(extracted for all 20 columns of PSSM) we build the corresponding feature group
which is called PSSM-SAC (20× (5×KP )) features in total).



This procedure is also repeated for SPINE-M in the same way (KS is used as
the distance factor for SPINE-M equivalent to KP used for PSSM) for all three
columns of SPINE-M and segmented auto covariance of normalized frequency of
secondary structure elements are extracted as follows:

SPINE-segn,m,j =
1

(In
max −m)

Inmax−m∑
i=1

(Si,j − Save,j)× (S(i+m),j − Save,j),

(n = 1, 2, 3, 4 & m = 1, ..., KS & j = 1, 2, 3), (6)

where, Save,j is the average substitution probability for the jth column in SPINE-
M. Similarly, the global auto covariance is computed as follows:

SPINE-ACm,j =
1

(L−m)

L−m∑
i=1

(Si,j − Save,j)× (S(i+m),j − Save,j),

(m = 1, ..., KS & j = 1, 2, 3). (7)

The combination of SPINE-seg and SPINE-AC builds SPINE-SAC consisting
of 3× (5KS) features in total (extracted for all three columns of SPINE-M).

4 Support Vector Machine

In pattern recognition, SVM is considered as the-state-of-the-art classification
technique. It was introduced by [22] aiming at finding the Maximum Margin
Hyper-plane (MMH) based on the concept of support vector theory to minimize
classification error. It transforms the input data to higher dimensionality using
the kernel function to find support vectors. The classification of some known
points in input space xi is yi which is defined to be either -1 or +1. If x′ is a
point in input space with unknown classification then:

y′ = sign

( n∑
i=1

aiyiK(xi,x
′) + b

)
, (8)

where y′ is the predicted class of point x′. The function K() is the kernel function;
n is the number of support vectors and ai are adjustable weights and b is the
bias. The best results reported in the literature for PFR was attained using this
classifier [10, 11, 4, 16]. In this study, the SVM classifier implemented in LIBSVM
(C-SVC type) toolbox with Radial Basis Function (RBF) as its kernel function
is used [23]. RBF kernel is adopted here due to its better performance than other
kernels functions (e.g. polynomial kernel, linear kernel, and sigmoid [10]). In this
study, the width parameter γ in addition to the cost parameter C of the SVM
are optimized using grid search algorithm implemented in the LIBSVM package.

5 Results and Discussion

We construct the input feature vector to use with SVM consisting of our ex-
tracted feature (Fglobal + PSSM-SD + SPINE-SD + PSSM-SAC + SPINE-



Fig. 1. The general architecture of our proposed feature extraction model. The number
of features extracted in each feature group is shown in the brackets below the feature
groups’ names.

SAC). The architecture of our proposed system is shown in Figure 1. To evalu-
ate the performance of our proposed methods, 10-fold cross validation evaluation
criterion is adopted in this study as it was often used for this task in the liter-
ature [1, 5, 11, 15]. We first investigate the impact of our proposed method for
PFR with respect to the Kp and Ks parameters in PSSM-SAC and SPINE-SAC
respectively. Then we investigate the impact of each of the proposed feature
groups in this study separately on the achieved prediction accuracy. Finally, we
compare our achieved results with previously reported results for the PFR.

5.1 Investigating the Impact of Kp and Ks

As it was mentioned earlier, Kp and Ks values between 1 and 10 are investigated
here (since it was shown in [10] that using a distance factor larger than 10 to
extract auto covariance feature group attains similar results with using 10 for
PFR). To do this, in 10 different experiments, we apply SVM to our proposed
feature vector while Kp and Ks are monotonically increased from 1 to 10 (Kp = 1
and Ks = 1, Kp = 2 and Ks = 2, ... , Kp = 10 and Ks = 10). The results for
this experiment is shown in Figure 2. We also calculate the SVM parameters on
EDD data set (where Kp = 10 and Ks = 10) for our proposed feature vector
using the grid search algorithm. Calculated parameters are used for the rest of
this study (to avoid over tuning parameters) for both TG and EDD data sets
(where C = 0.07 and γ = 100). Note that the TG data sets have not been used
at all for parameter tuning.

As we can see, increasing the Kp and Ks, prediction accuracy almost mono-
tonically increases as well. Using Kp = 10 and Ks = 10, we reach 88.1% and
73.1% prediction accuracies for EDD and TG data sets respectively. However,
it is not clear which one of Kp and Ks has the main impact on the achieved



Fig. 2. The results achieved for TG and EDD data sets with respect to Kp and Ks which are
monotonically increase from 1 to 10.

results. To investigate the effectiveness of Kp and Ks, two different experiments
are conducted on the EDD data set. First, we set the value of Kp = 1 and in
10 different experiments, increase the value of Ks from 1 to 10 (Figure 3.a).
As we can see, increasing Ks monotonically increases the prediction accuracy
and setting Ks = 10 attain the best result for this task. In a different experi-
ment, we set the value of Ks = 10 and in 10 different experiments, increase the
value of Kp from 1 to 10. As we can see in Figure 3.b, the performance does
not change by increasing the Kp. As it is shown in Figure 3.a and 3.b, similar
results are achieved for the TG data set. In other words, using segmented auto
covariance approach, we are able to reveal more local discriminatory information
from PSSM and SPINE-M based on the concept of auto covariance compared
to previous studies (KP = 1 and KS = 10). It is dramatically lower than the
number of features used in [10] and [11] to reveal this information. Therefore,
for the rest of this study Kp and Ks are set to 1 and 10 respectively.

(a) The impact of increasing Ks from 1 to 10

while Kp = 1 for EDD and TG data sets

(b) The impact of increasing Kp from 1 to 10

while Ks = 10 for EDD and TG data sets

Fig. 3. Investigating the effective values for Ks and Kp in our proposed feature extraction method.



5.2 Determining the Effect of the Proposed Feature Groups on the
Protein Fold Prediction Accuracy

In continuation, we investigate the effectiveness of each of the feature groups
used in this study separately to our reported protein fold prediction accuracy.
The results are shown in Table 1. As we can see, all the feature groups used to
reveal global and local discriminatory information are effectively contribute to
the achieved protein fold prediction enhancement.

Table 1. The impact of proposed feature groups proposed in this study (using SVM classifier) to
enhance protein structural class prediction accuracy (in %). For PSSM-SAC and SPINE-SAC, the
values of Kp and Ks are respectively set to 1 and 10.

Combination of features EDD TG
Fglobal 74.7 58.7
Fglobal + PSSM-SD 79.4 62.6
Fglobal + SPINE-SD 79.1 63.6
Fglobal + PSSM-SD + SPINE-SD 82.3 66.7
Fglobal + PSSM-SAC 80.1 64.0
Fglobal + SPINE-SAC 84.1 68.2
Fglobal + PSSM-SAC + SPINE-SAC 86.1 71.8
Fglobal + PSSM-SD + SPINE-SD + PSSM-SAC 87.5 72.6
Fglobal + PSSM-SD + SPINE-SD + SPINE-SAC 87.1 72.8
PSSM-SD + SPINE-SD + PSSM-SAC + SPINE-SAC 85.9 71.1
Fglobal + PSSM-SD + SPINE-SD + PSSM-SAC + SPINE-SAC 88.2 73.8

5.3 Comparison with the Existing Methods

We compared the results achieved by applying SVM to the combination of
features proposed in this study (Fglobal, PSSM-SAC, PSSM-SD, SPINE-SAC,
SPINE-SD where Kp and Ks are set to 1 and 10 respectively) which will be
referred as PSSM-SPINE-S (388 features in total) with the best results reported
in the literature. The results are shown in Table 2. As we can see, we report up
to 73.8% and 88.2% prediction accuracies for TG and EDD data sets respec-
tively. These results are up to 7.4% and 2.3% better than the highest reported
results for these two data sets that are achieved by reproducing the results re-
ported in [10] for TG and EDD data sets respectively. The enhancement achieved
compared to other similar approaches to reveal more local information such as
bi-gram [11] and tri-gram [16] is much more significant (over 11% for EDD and
TG data sets). The higher enhancement achieved for TG data set compared to
[10] shows that our method is more effective when the sequential similarity rate
is very low (up to 25%). It is also important to highlight that we outperformed
[10] using 388 features compared to 4000 features used in that study. Therefore,
our proposed methodology is able to significantly enhance protein fold predic-
tion accuracy compared to the state-of-the-art methods found in the literature
and at the same time reduce the number of features used for this task dramati-
cally. In other words, we are able to provide more local and global information
from PSSM and SPINE-X for PFR compared to previously proposed approaches
found in the literature.



Table 2. Comparison of the results reported EDD and TG data sets (in %). Note that column
named No. is referring to the number of features.

Ref. Features No. Method EDD TG
[15] AAO (from original protein sequence) 20 LDA 46.9 36.3
[15] AAC (from original protein sequence) 20 LDA 40.9 32.0
[1] Physicochemical Features + AAC 125 SVM 50.1 39.5
[13] Physicochemical Features + AAC 220 ANN(RBF) 52.8 41.9
[17] Threading - Naive Bayes 70.3 55.3
[16] PF (bi-gram) 400 SVM 75.2 52.7
[16] TF (Tri-gram) 8000 SVM 71.0 49.4
[11] Combination of bi-gram features 2400 SVM 69.9 55.0
[5] PSIPRED and PSSM features 242 SVM 77.5 60.1
[10] ACCfold-AC 200 SVM 80.1 58.8
[10] ACCfold-ACC 4000 SVM 85.9 66.4
This study PSSM-SPINE-S 388 SVM 88.2 73.8

6 Conclusion

In this study, we have proposed two novel segmentation based feature extraction
techniques to reveal more local discriminatory information embedded in PSSM
and SPINE-X. We also employed the concept of occurrence feature group and
extend it to provide more global discriminatory information from PSSM and
SPINE-X for PFR compared to previously used methods for this task. Then
by applying SVM to the combination of our features extracted we significantly
enhanced protein fold prediction accuracy compared to previously reported re-
sults in the literature. We achieved up to 73.8% and 88.2% prediction accuracies,
up to 7.4% and 2.3% better than the highest results reported for TG and EDD
data sets respectively [10]. These enhancements were achieved by using less than
1/10 of features used previously in [10]. In other words, we were able to extract
more potential local and global discriminatory information for PFR compared
to previously proposed methods found in the literature using fewer features.
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