11,729 research outputs found

    Protecting resources and regulating access in cloud-based object storage

    Get PDF
    Cloud storage services offer a variety of benefits that make them extremely attractive for the management of large amounts of data. These services, however, raise some concerns related to the proper protection of data that, being stored on servers of third party cloud providers, are no more under the data owner control. The research and development community has addressed these concerns by proposing solutions where encryption is adopted not only for protecting data but also for regulating accesses. Depending on the trust assumption on the cloud provider offering the storage service, encryption can be applied at the server side, client side, or through an hybrid approach. The goal of this chapter is to survey these encryption-based solutions and to provide a description of some representative systems that adopt such solutions

    Online privacy: towards informational self-determination on the internet : report from Dagstuhl Perspectives Workshop 11061

    Get PDF
    The Dagstuhl Perspectives Workshop "Online Privacy: Towards Informational Self-Determination on the Internet" (11061) has been held in February 6-11, 2011 at Schloss Dagstuhl. 30 participants from academia, public sector, and industry have identified the current status-of-the-art of and challenges for online privacy as well as derived recommendations for improving online privacy. Whereas the Dagstuhl Manifesto of this workshop concludes the results of the working groups and panel discussions, this article presents the talks of this workshop by their abstracts

    Secure Cloud Storage: A Framework for Data Protection as a Service in the Multi-cloud Environment

    Get PDF
    This paper introduces Secure Cloud Storage (SCS), a framework for Data Protection as a Service (DPaaS) to cloud computing users. Compared to the existing Data Encryption as a Service (DEaaS) such as those provided by Amazon and Google, DPaaS provides more flexibility to protect data in the cloud. In addition to supporting the basic data encryption capability as DEaaS does, DPaaS allows users to define fine-grained access control policies to protect their data. Once data is put under an access control policy, it is automatically encrypted and only if the policy is satisfied, the data could be decrypted and accessed by either the data owner or anyone else specified in the policy. The key idea of the SCS framework is to separate data management from security management in addition to defining a full cycle of data security automation from encryption to decryption. As a proof-of-concept for the design, we implemented a prototype of the SCS framework that works with both BT Cloud Compute platform and Amazon EC2. Experiments on the prototype have proved the efficiency of the SCS framework

    Link Before You Share: Managing Privacy Policies through Blockchain

    Full text link
    With the advent of numerous online content providers, utilities and applications, each with their own specific version of privacy policies and its associated overhead, it is becoming increasingly difficult for concerned users to manage and track the confidential information that they share with the providers. Users consent to providers to gather and share their Personally Identifiable Information (PII). We have developed a novel framework to automatically track details about how a users' PII data is stored, used and shared by the provider. We have integrated our Data Privacy ontology with the properties of blockchain, to develop an automated access control and audit mechanism that enforces users' data privacy policies when sharing their data across third parties. We have also validated this framework by implementing a working system LinkShare. In this paper, we describe our framework on detail along with the LinkShare system. Our approach can be adopted by Big Data users to automatically apply their privacy policy on data operations and track the flow of that data across various stakeholders.Comment: 10 pages, 6 figures, Published in: 4th International Workshop on Privacy and Security of Big Data (PSBD 2017) in conjunction with 2017 IEEE International Conference on Big Data (IEEE BigData 2017) December 14, 2017, Boston, MA, US

    Data security issues in cloud scenarios

    Get PDF
    The amount of data created, stored, and processed has enormously increased in the last years. Today, millions of devices are connected to the Internet and generate a huge amount of (personal) data that need to be stored and processed using scalable, efficient, and reliable computing infrastructures. Cloud computing technology can be used to respond to these needs. Although cloud computing brings many benefits to users and companies, security concerns about the cloud still represent the major impediment for its wide adoption. We briefly survey the main challenges related to the storage and processing of data in the cloud. In particular, we focus on the problem of protecting data in storage, supporting fine-grained access, selectively sharing data, protecting query privacy, and verifying the integrity of computations

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator

    Developing a Cloud Computing Framework for University Libraries

    Get PDF
    Our understanding of the library context on security challenges on storing research output on the cloud is inadequate and incomplete. Existing research has mostly focused on profit-oriented organizations. To address the limitation within the university environment, the paper unravels the data/information security concerns of cloud storage services within the university libraries. On the score of changes occurring in the libraries, this paper serves to inform users and library managers of the traditional approaches that have not guaranteed the security of research output. The paper is built upon the work of Shaw and the cloud storage security framework, which links aspects of cloud security and helps explain reasons for university libraries moving research output into cloud infrastructure, and how the cloud service is more secured. Specifically, this paper examined the existing storage carriers/media for storing research output and the associated risks with cloud storage services for university libraries. The paper partly fills this gap by a case study examination of two (2) African countries’ (Ghana and Uganda) reports on research output and cloud storage security in university libraries. The paper argues that in storing university research output on the cloud, libraries consider the security of content, the resilience of librarians, determining access levels and enterprise cloud storage platforms. The interview instrument is used to collect qualitative data from librarians and the thematic content analysis is used to analyze the research data. Significantly, results show that copyright law infringement, unauthorized data accessibility, policy issues, insecurity of content, cost and no interoperable cloud standards were major risks associated with cloud storage services. It is expected that university libraries pay more attention to the security/confidentiality of content, the resilience of librarians, determining access levels and enterprise cloud storage platforms to enhance cloud security of research output. The paper contributes to the field of knowledge by developing a framework that supports an approach to understand security in cloud storage. It also enables actors in the library profession to understand the makeup and measures of security issues in cloud storage. By presenting empirical evidence, it is clear that university libraries have migrated research output into cloud infrastructure as an alternative for continued storage, maintenance and access of information

    Access control technologies for Big Data management systems: literature review and future trends

    Get PDF
    Abstract Data security and privacy issues are magnified by the volume, the variety, and the velocity of Big Data and by the lack, up to now, of a reference data model and related data manipulation languages. In this paper, we focus on one of the key data security services, that is, access control, by highlighting the differences with traditional data management systems and describing a set of requirements that any access control solution for Big Data platforms may fulfill. We then describe the state of the art and discuss open research issues

    The future of social is personal: the potential of the personal data store

    No full text
    This chapter argues that technical architectures that facilitate the longitudinal, decentralised and individual-centric personal collection and curation of data will be an important, but partial, response to the pressing problem of the autonomy of the data subject, and the asymmetry of power between the subject and large scale service providers/data consumers. Towards framing the scope and role of such Personal Data Stores (PDSes), the legalistic notion of personal data is examined, and it is argued that a more inclusive, intuitive notion expresses more accurately what individuals require in order to preserve their autonomy in a data-driven world of large aggregators. Six challenges towards realising the PDS vision are set out: the requirement to store data for long periods; the difficulties of managing data for individuals; the need to reconsider the regulatory basis for third-party access to data; the need to comply with international data handling standards; the need to integrate privacy-enhancing technologies; and the need to future-proof data gathering against the evolution of social norms. The open experimental PDS platform INDX is introduced and described, as a means of beginning to address at least some of these six challenges
    corecore