4,786 research outputs found

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    IoT Platform for COVID-19 Prevention and Control: A Survey

    Full text link
    As a result of the worldwide transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has evolved into an unprecedented pandemic. Currently, with unavailable pharmaceutical treatments and vaccines, this novel coronavirus results in a great impact on public health, human society, and global economy, which is likely to last for many years. One of the lessons learned from the COVID-19 pandemic is that a long-term system with non-pharmaceutical interventions for preventing and controlling new infectious diseases is desirable to be implemented. Internet of things (IoT) platform is preferred to be utilized to achieve this goal, due to its ubiquitous sensing ability and seamless connectivity. IoT technology is changing our lives through smart healthcare, smart home, and smart city, which aims to build a more convenient and intelligent community. This paper presents how the IoT could be incorporated into the epidemic prevention and control system. Specifically, we demonstrate a potential fog-cloud combined IoT platform that can be used in the systematic and intelligent COVID-19 prevention and control, which involves five interventions including COVID-19 Symptom Diagnosis, Quarantine Monitoring, Contact Tracing & Social Distancing, COVID-19 Outbreak Forecasting, and SARS-CoV-2 Mutation Tracking. We investigate and review the state-of-the-art literatures of these five interventions to present the capabilities of IoT in countering against the current COVID-19 pandemic or future infectious disease epidemics.Comment: 12 pages; Submitted to IEEE Internet of Things Journa

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months

    SeizeIT: SEIZURE victims are no longer leashed

    Get PDF
    Seizure considered to be one of the severe and most common type of neurological disorders. Despite the availability of numerous anti-seizure drugs, it is often difficult to control the disease completely and effectively. Lack of close supervision and failure in providing urgent medical care during and after seizure episodes, leads to serious injuries or even death. On the other hand, Use of wireless sensor networks in everyday applications have rapidly increased due to decreased technology costs and improved product reliability. Therefore developing a wearable device to monitor seizure may complete the anamnesis, help medical staff in diagnosing and acute treatment while preventing seizure related accidents. There are number of seizure detection systems available in the market. Still their performance is far from perfect. This paper explores an application of biomedical wireless sensor networks, which attempts to monitor patients in a completely non-invasive and non-intrusive manner. It describes a wearable device together with seizure prediction and alerting system, which is designed to address some issues with seizure detection systems in the market. Its functional block diagram and operating modes are detailed. Possible application areas of the device are also discusse

    Love thy neighbour? Coronavirus politics and their impact on EU freedoms and rule of law in the Schengen Area. CEPS Paper in Liberty and Security in Europe No. 2020-04, April 2020

    Get PDF
    Restrictions on international and intra-EU traffic of persons have been at the heart of the political responses to the coronavirus pandemic. Border controls and suspensions of entry and exist have been presented as key policy priorities to prevent the spread of the virus in the EU. These measures pose however fundamental questions as to the raison d’être of the Union, and the foundations of the Single Market, the Schengen system and European citizenship. They are also profoundly intrusive regarding the fundamental rights of individuals and in many cases derogate domestic and EU rule of law checks and balances over executive decisions. This Paper examines the legality of cross-border mobility restrictions introduced in the name of COVID-19. It provides an in-depth typology and comprehensive assessment of measures including the reintroduction of internal border controls, restrictions of specific international traffic modes and intra-EU and international ‘travel bans’. Many of these have been adopted in combination with declarations of a ‘state of emergency’

    The role of health preconditions on COVID-19 deaths in Portugal: evidence from surveillance data of the first 20293 infection cases

    Get PDF
    Background: It is essential to study the effect of potential co-factors on the risk of death in patients infected by COVID-19. The identification of risk factors is important to allow more efficient public health and health services strategic interventions with a significant impact on deaths by COVID-19. This study aimed to identify factors associated with COVID-19 deaths in Portugal. Methods: A national dataset with the first 20,293 patients infected with COVID-19 between 1 January and 21 April 2020 was analyzed. The primary outcome measure was mortality by COVID-19, measured (registered and confirmed) by Medical Doctors serving as health delegates on the daily death registry. A logistic regression model using a generalized linear model was used for estimating Odds Ratio (OR) with 95% confidence intervals (95% CI) for each potential risk indicator. Results: A total of 502 infected patients died of COVID-19. The risk factors for increased odds of death by COVID-19 were: sex (male: OR = 1.47, ref = female), age ((56-60) years, OR = 6.01; (61-65) years, OR = 10.5; (66-70) years, OR = 20.4; (71-75) years, OR = 34; (76-80) years, OR = 50.9; (81-85) years, OR = 70.7; (86-90) years, OR = 83.2; (91-95) years, OR = 91.8; (96-104) years, OR = 140.2, ref = (0-55)), Cardiac disease (OR = 2.86), Kidney disorder (OR = 2.95), and Neuromuscular disorder (OR = 1.58), while condition (None (absence of precondition); OR = 0.49) was associated with a reduced chance of dying after adjusting for other variables of interest. Conclusions: Besides age and sex, preconditions justify the risk difference in mortality by COVID-19.info:eu-repo/semantics/publishedVersio

    Just Plain Dumb?: How Digital Contact Tracing Apps Could’ve Worked Better (And Why They Never Got the Chance)

    Get PDF
    This essay describes how the privacy debate that emerged over digital contact tracing and Google’s and Apple’s decisions to strictly limit apps permitted to use their platforms resulted in undercutting their potential usefulness as a tool to combat the pandemic while still failing to engender trust in these tools as intended

    Revisiting the Technology Challenges and Proposing Enhancements in Ambient Assisted Living for the Elderly

    Get PDF
    Several social and technical trends support the elderly’s desire to live independently in their preferred environment, despite their increasing medical needs, and enhance their quality of life at home. Ambient-assisted living (AAL) has the capabilities to support the elderly and to decrease their dependency on formal or informal caregivers. We provide a review of the technological challenges that were identified as inhibiting factors in the past decade and then present recent technological advances, e.g., cloud computing, machine learning, artificial intelligence, the Internet of Things. We also fill the gap in the current literature in regard to specific AAL solutions and propose fourth-generation AAL technology design. We find that most informal caregivers are family members who are medically untrained and that the use of advanced analytical processes on AAL-generated data could significantly increase symptom identification. We also present the implications and remaining challenges along with recommendations for future research

    Remote Screening And Self-Monitoring For Vision Loss Diseases Based On Smartphone Applications

    Get PDF
    Remote Healthcare Monitoring System (RHMS) represents remote observing of patient’s well-being and providing therapeutic services. Sensors play an essential part in RHMs. They measure the physical parameters and give continuous information to health organizations, doctors. The presence of Smartphones and other portable devices have allowed us to utilize remote healthcare monitoring system for an assortment of structures. Also, Wireless Sensor Network (WSN) advances considered as one of the critical research factor healthcare application for enhancing the standard of living. In this dissertation, I have presented three tiers operating in the remote healthcare monitoring system; the Body Area Network (BAN), the PAN Coordinator and the Back- Medical End System (BMEsys). The three tiers focused on several patients PAN coordinators include the Wireless Sensor Network. The Wireless Sensor Network can be used at the fixed tale-monitor location and periodic measurements. The Personal Digital Assistant (PDA) can be used in patients own home or community setting with continuous measurements and smartphones can be utilized anywhere with full range parameters, and I have provided a meaningful utilization comparison between Wireless Sensor Network, PDA and smartphone in Remote Healthcare Monitoring System (HRMs) architecture design. Evaluate the approaches of the healthcare monitoring system architecture and investigate the use of advanced technologies enabling the patient vital signs and diagnostic medical team in real-time. This dissertation demonstrates that how a Smartphone can be used for medical treatment in the field of Ophthalmology and discussed how a Smartphone and its technology could be used to diagnose loss of eye vision. Most recent smartphones have been equipped with a featured camera with high megapixels and advanced sensors which can be used to record fundus photographs through a slit lamp or record videos from an operating microscope and display images from optical coherence tomography systems and other high-tech devices. The ophthalmologists can share these images and analyze with their colleagues utilizing media sharing applications and make the optimal diagnostic and therapeutic results to diagnose the low vision of patients. At present, three widely used pocket-sized adapters can improve the magnification and lighting of the camera, which enables the smartphones to capture high-quality images of the eye. These are Portable Eye Examination Kit (PEEK), EyeGo, and D-Eye. Peek Adapter consists of a smartphone application and retina adapter which can be clipped onto the device and synchronized with the peek application for sharing and analyzing the images. This adapter can be used by anyone and anywhere in the world to examine eyes. EyeGo is an adapter intended to allow ophthalmologists and healthcare specialists to capture high-quality images of the eye using an ophthalmic lens. D-Eye Adapter is one of the extensively used adapters which yield excellent results. It consists of a portable eye and retinal system that fits onto a smartphone creating a retinal camera for evaluation and screening of the eye. It uses LED lights as a light source and requires no extra power, making it an ideal solution for portable diagnostics. The medical field has widely accepted these adaptors with the smartphones for diagnosing low vision and eye-related infections. In this dissertation, I also provide a meaningful utilization comparison between the smartphone adapters: D-Eye, EyeGo and Portable Eye Examination Kit (PEEK). In this dissertation, I have developed a new App (Remote Healthcare-Monitoring Mobile App) to help patients who have low vision and who are suffering from the diseases which may cause a vision loss. This app is capable of a process, evaluate, interact and store health data which is continuously measured by (Personal Health Monitors). This App can exchange the information directly to the Smartphone users (patients) and the doctor who allows more security and privacy. The idea of the App consists of the following: A Smartphone Application, a Data Collection Center, and Professionals in Ophthalmology. The patient should be registered in the system, for example, (Retina Michigan Center or Glaucoma Michigan Center). After registration, the patient is instructed on how to take photos of his/her eyes correctly, and then use the Smartphone application. The patient takes photos of his/her eyes and sends them to the data collection center, the specialists get access to these data and help in the treatment according to the analysis. Finally, I completed the development of the Mobile app (including the Skype and Viber links), which can help in exchanging the information between the patient and the doctor
    corecore