101,205 research outputs found

    On the Impossibility of Probabilistic Proofs in Relativized Worlds

    Get PDF
    We initiate the systematic study of probabilistic proofs in relativized worlds, where the goal is to understand, for a given oracle, the possibility of "non-trivial" proof systems for deterministic or nondeterministic computations that make queries to the oracle. This question is intimately related to a recent line of work that seeks to improve the efficiency of probabilistic proofs for computations that use functionalities such as cryptographic hash functions and digital signatures, by instantiating them via constructions that are "friendly" to known constructions of probabilistic proofs. Informally, negative results about probabilistic proofs in relativized worlds provide evidence that this line of work is inherent and, conversely, positive results provide a way to bypass it. We prove several impossibility results for probabilistic proofs relative to natural oracles. Our results provide strong evidence that tailoring certain natural functionalities to known probabilistic proofs is inherent

    Computer-Assisted Proofs and Symbolic Computations

    Get PDF
    We discuss some main points of computer-assisted proofs based on reliable numerical computations. Such so-called self-validating numerical methods in combination with exact symbolic manipulations result in very powerful mathematical software tools. These tools allow proving mathematical statements (existence of a fixed point, of a solution of an ODE, of a zero of a continuous function, of a global minimum within a given range, etc.) using a digital computer. To validate the assertions of the underlying theorems fast finite precision arithmetic is used. The results are absolutely rigorous. To demonstrate the power of reliable symbolic-numeric computations we investigate in some details the verification of very long periodic orbits of chaotic dynamical systems. The verification is done directly in Maple, e.g. using the Maple Power Tool intpakX or, more efficiently, using the C++ class library C-XSC.* This work is partially supported by DFG: KR1612/7-1

    Basic hypergeometry of supersymmetric dualities

    Get PDF
    We introduce several new identities combining basic hypergeometric sums and integrals. Such identities appear in the context of superconformal index computations for three-dimensional supersymmetric dual theories. We give both analytic proofs and physical interpretations of the presented identities.Comment: 25 pages, v2: minor corrections and comment

    Effect of Legendrian Surgery

    Full text link
    The paper is a summary of the results of the authors concerning computations of symplectic invariants of Weinstein manifolds and contains some examples and applications. Proofs are sketched. The detailed proofs will appear in our forthcoming paper. In the Appendix written by S. Ganatra and M. Maydanskiy it is shown that the results of this paper imply P. Seidel's conjecture equating symplectic homology with Hochschild homology of a certain Fukaya category.Comment: v.4 is significantly extended, especially Sections 6 and 8. Several other sections, including Appendix are rewritte

    Exact Real Arithmetic with Perturbation Analysis and Proof of Correctness

    Get PDF
    In this article, we consider a simple representation for real numbers and propose top-down procedures to approximate various algebraic and transcendental operations with arbitrary precision. Detailed algorithms and proofs are provided to guarantee the correctness of the approximations. Moreover, we develop and apply a perturbation analysis method to show that our approximation procedures only recompute expressions when unavoidable. In the last decade, various theories have been developed and implemented to realize real computations with arbitrary precision. Proof of correctness for existing approaches typically consider basic algebraic operations, whereas detailed arguments about transcendental operations are not available. Another important observation is that in each approach some expressions might require iterative computations to guarantee the desired precision. However, no formal reasoning is provided to prove that such iterative calculations are essential in the approximation procedures. In our approximations of real functions, we explicitly relate the precision of the inputs to the guaranteed precision of the output, provide full proofs and a precise analysis of the necessity of iterations

    The uses of Connes and Kreimer's algebraic formulation of renormalization theory

    Get PDF
    We show how, modulo the distinction between the antipode and the "twisted" or "renormalized" antipode, Connes and Kreimer's algebraic paradigm trivializes the proofs of equivalence of the (corrected) Dyson-Salam, Bogoliubov-Parasiuk-Hepp and Zimmermann procedures for renormalizing Feynman amplitudes. We discuss the outlook for a parallel simplification of computations in quantum field theory, stemming from the same algebraic approach.Comment: 15 pages, Latex. Minor changes, typos fixed, 2 references adde

    Quantitative Models and Implicit Complexity

    Full text link
    We give new proofs of soundness (all representable functions on base types lies in certain complexity classes) for Elementary Affine Logic, LFPL (a language for polytime computation close to realistic functional programming introduced by one of us), Light Affine Logic and Soft Affine Logic. The proofs are based on a common semantical framework which is merely instantiated in four different ways. The framework consists of an innovative modification of realizability which allows us to use resource-bounded computations as realisers as opposed to including all Turing computable functions as is usually the case in realizability constructions. For example, all realisers in the model for LFPL are polynomially bounded computations whence soundness holds by construction of the model. The work then lies in being able to interpret all the required constructs in the model. While being the first entirely semantical proof of polytime soundness for light logi cs, our proof also provides a notable simplification of the original already semantical proof of polytime soundness for LFPL. A new result made possible by the semantic framework is the addition of polymorphism and a modality to LFPL thus allowing for an internal definition of inductive datatypes.Comment: 29 page
    • 

    corecore