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Abstract

We introduce several new identities combining basic hypergeometric sums and integrals. Such identities 
appear in the context of superconformal index computations for three-dimensional supersymmetric dual 
theories. We give both analytic proofs and physical interpretations of the presented identities.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recently, there has been renewed interest in basic hypergeometric integrals because of their 
connection with various branches of mathematical physics, such as supersymmetric field theory, 
3-manifold invariants and integrable systems. The purpose of this paper is to state and prove 
new basic hypergeometric integral identities and give their physical interpretations in terms of 
superconformal indices.
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There is an interesting connection between partition functions of supersymmetric gauge the-
ories on different curved manifolds and certain classes of hypergeometric functions. The first 
observation of this relation was made by Dolan and Osborn [1]. They found that the supercon-
formal index of four-dimensional N = 1 supersymmetric gauge theory can be written via elliptic 
hypergeometric integrals. Similarly, three-dimensional superconformal indices can be expressed 
in terms of basic hypergeometric integrals (see e.g. [2–5]).

The superconformal index for a three-dimensional N = 2 supersymmetric field theory is de-
fined as

Tr

[
(−1)Fe−β{Q,Q†}q

1
2 (�+j3)

∏
i

t
Fi

i

]
, (1.1)

where the trace is taken over the Hilbert space of the theory, Q and Q† are supercharges, �, 
j3 are Cartan elements of the superconformal group and the fugacities ti are associated with the 
flavor symmetry group.

Studying the relation between basic hypergeometric integrals and superconformal indices is 
an important field of research from different points of view (see e.g. [6]). Non-trivial math-
ematical identities for superconformal indices provide a very powerful tool to check known 
supersymmetric dualities and to establish new ones. Such identities are also important for bet-
ter understanding the structure of the moduli of three-dimensional supersymmetric theories and 
supersymmetric dualities. On the other hand, there is an interesting relationship between three-
dimensional N = 2 supersymmetric gauge theories and geometry of triangulated 3-manifolds. 
The independence of a certain topological invariant of 3-manifolds on the choice of triangulation 
corresponds to equality of superconformal indices of three-dimensional N = 2 supersymmetric 
dual theories.

Besides their appearance in supersymmetric field theory, basic hypergeometric integrals dis-
cussed in this paper recently appeared in the theory of exactly solvable two-dimensional statisti-
cal models [7,8].

In this paper we extend the results of our previous work [4,5] on superconformal indices to 
a number of three-dimensional dualities. We provide explicit expressions for the generalized 
superconformal indices of some three-dimensional N = 2 supersymmetric electrodynamics and 
quantum chromodynamics in terms of basic hypergeometric integrals.

We will only consider confining theories, which means that the duality leads to a closed form 
evaluation of a sum of integrals (rather than a transformation between two such expressions). As 
an example, one of the resulting identities is

∞∑
m=−∞

∮ 6∏
j=1

(q1+m/2/aj z, q
1−m/2z/aj ;q)∞

(qNj +m/2aj z, q
Nj −m/2aj /z;q)∞

(1 − qmz2)(1 − qmz−2)

qmz6m

dz

2π iz

= 2∏6
j=1 q

(Nj
2

)
a

Nj

j

∏
1≤j<k≤6

(q/ajak;q)∞
(aj akq

Nj +Nk ;q)∞
, (1.2)

where |q| < 1, the parameters aj are generic and Nj are integers, subject to the balancing con-
ditions 

∏6
i=1 ai = q and N1 + · · · + N6 = 0. Here, we use the standard notation

(a;q)∞ =
∞∏

(1 − aqj ) ,
j=0
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(a1, . . . , am;q)∞ = (a1;q)∞ · · · (am;q)∞
and the integration is over a positively oriented contour separating sequences of poles going to 
infinity from sequences going to zero.

The organization of the paper is as follows.

• In Section 2 we outline the superconformal index technique for three-dimensional N = 2
supersymmetric gauge theories.

• In Section 3 we discuss supersymmetric dualities and present explicit expressions of super-
conformal indices for certain supersymmetric dual theories in terms of basic hypergeometric 
integrals. We present four examples, each leading to an integral evaluation similar to (1.2). 
Some of these evaluations generalize identities previously obtained in [2–4].

• In Section 4 we give mathematical proofs of the four integral evaluations that were derived 
using non-rigorous methods in Section 3. This gives a consistency check of the correspond-
ing supersymmetric dualities.

• We review the basic aspects of three-dimensional N = 2 supersymmetric gauge theories 
with focus on the necessary elements for the superconformal index computations and give 
some details of index computation in Appendices.

2. 3d superconformal index

In this section, we recall basic facts related to the superconformal index technique. The pre-
sentation closely follows that in [2,3,13].

The concept of the superconformal index was first introduced for four-dimensional theories in 
[14,15] and later extended to other dimensions. The superconformal index of three-dimensional 
N = 2 superconformal field theory is a twisted partition function defined on S2 × S1 as follows 
[13,16,17]

I (q, {ti}) = Tr

[
(−1)Fe−β{Q,Q†}q

1
2 (�+j3)

∏
i

t
Fi

i

]
, (2.1)

where

• the trace is taken over the Hilbert space of the theory on S2,
• F plays the role of the fermion number which takes value zero on bosons and one on 

fermions. In presence of monopoles one needs to refine this number by shifting it by e × m, 
where e and m are electric charge and magnetic monopole charge, respectively. See [18,19]
for a discussion of this issue.

• � is the energy (or conformal dimension via radial quantization), j3 is the third component 
of the angular momentum on S2,

• Fi is the charge of global symmetry with fugacity ti ,
• Q is a certain supersymmetric charge in three-dimensional N = 2 superconformal algebra 

with quantum numbers � = 1
2 and j3 = − 1

2 and R-charge R = 1. The supercharges Q† = S

and Q satisfy the anti-commutation relation1

1

2
{Q,S} = � − R − j3 . (2.2)

1 The full algebra can be found in many places, see e.g., [20].
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Only BPS states with � − R − j3 = 0 contribute to the superconformal index. Consequently, 
the index is β-independent but depends non-trivially on the fugacities ti and q . The superconfor-
mal index counts the number of BPS states weighted by their quantum numbers.

The superconformal index can be evaluated by a path integral on S2 × S1 via the localization 
technique [21], leading to the matrix integral [13,17]

I (q, {ti}) =
∑

m∈Zrank G

∫
1

|Wm|e
−S

(0)
CS eib0q

1
2 ε0

rank F∏
j=1

t
q0j

j

× exp

[ ∞∑
n=1

1

n
ind(zn

i , t
n, qn;m)

]
rank G∏
i=1

dzi

2π izi

. (2.3)

The sum in the formula is to be understood as follows. It is a sum over magnetic fluxes m =
(m1, . . . , mrank G) on the two-sphere with

mi = 1

2π

∫
S2

Fi , (2.4)

where mi parametrizes the GNO charge of the monopole configuration,2 in the examples we 
consider it runs over the integers. The prefactor |Wm| =∏k

i=1(rankGi)! is the order of the Weyl 
group of G which is “broken” by the monopoles into the product G1 × G2 × · · · × Gk . For 
instance, in case of U(N) gauge group |Wm| =∏Nk!.

The term

S
(0)
CS = ik

4π

∫
trCS(A(0)dA(0) − 2i

3
A(0)A(0)A(0))

= 2itrCS(gm) , (2.5)

is the contribution of the Chern–Simons term if the action contains such term and

b0 = −1

2

∑
�

∑
ρ∈R�

|ρ(m)|ρ(g) (2.6)

is the 1-loop correction to the Chern–Simons term. The trCS stands for the trace containing the 
Chern–Simons levels, k is the Chern–Simons level and 

∑
� and 

∑
ρ∈R�

are sums over all chiral 
multiplets and all weights of the representation R�, respectively. We give the contribution (2.5)
for completeness; in all our examples we will consider theories without the Chern–Simons term.3

The term q0j in (2.3) is the zero-point contribution to the energy,

q0j (m) = −1

2

∑
�

∑
ρ∈R�

|ρ(m)|fj (�) . (2.7)

In addition, there is the contribution from the Casimir energy of the vacuum state on the two-
sphere with magnetic flux m,

ε0(m) = 1

2

∑
�

(1 − ��)
∑

ρ∈R�

|ρ(m)| − 1

2

∑
α∈G

|α(m)| , (2.8)

2 The operators creating magnetic fluxes are not completely understood yet, for details, see e.g. [17].
3 Note that even in this case the term b0 is not absent since the gauge fields generate the one-loop correction to the 

Chern–Simons term, see Appendix B.
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where 
∑

α∈G represents summation over all roots of G, �� is the superconformal R-charge of 
the chiral multiplet �.

One can calculate the single letter index

ind(zj = eigj , tj , q;mj) = −
∑
α∈G

eiα(g)q
1
2 |α(m)| (2.9)

+
∑
�

∑
ρ∈R�

⎡
⎣eiρ(g)

∏
j

t
fj

j

q
1
2 |ρ(m)|+ 1

2 ��

1 − q
− e−iρ(g)

∏
j

t
−fj

j

q
1
2 |ρ(m)|+1− 1

2 ��

1 − q

⎤
⎦ .

Here, the first term is the contribution of the vector multiplets and the second line is the contribu-
tion of matter multiplets, labeled by �, where j runs over the rank of the flavor symmetry group. 
Given the single letter index it is a combinatorial problem [22,23] to compute the full multi-letter 
index. The result is given by the so-called “plethystic” exponential

exp

( ∞∑
n=1

1

n
ind(zn, tn, qn;m)

)
. (2.10)

For instance, let us consider the N = 2 theory with U(N) gauge group. Then, the chiral multi-
plet � with R-charge r in the fundamental representation of the gauge group contributes to the 
single-letter index as

N∑
i=1

⎡
⎣zi t

f (�) q
r
2 + |mi |

2

1 − q
− z−1

i t−f (�) q
1− r

2 + |mi |
2

1 − q

⎤
⎦ . (2.11)

After the “plethystic” exponential one obtains the contribution of the chiral multiplet to the index

N∏
i=1

(q1− r
2 + |mi |

2 t−f (�)z−1
i ;q)∞

(q
r
2 + |mi |

2 tf (�)zi;q)∞
. (2.12)

Similarly the contribution of the vector multiplet to the single-letter index is

−
∑

i,j=1,...,N, i �=j

q
1
4 |mi−mj | zi

zj

, (2.13)

and the multi-letter index gets the form

q
−∑1≤i<j≤N

|mi−mj |
2

∏
i,j=1,...,N, i �=j

(
1 − zi

zj

q
|mi−mj |

2

)
. (2.14)

Our main interest is the so-called generalized superconformal index which includes integer 
parameters corresponding to global symmetries. In [3] Kapustin and Willett pointed out that one 
can generalize the superconformal index of three-dimensional supersymmetric gauge theory by 
considering the theory in a non-trivial background gauge field coupled to the global symmetries 
of the theory. As a result the superconformal index includes new discrete parameters for global 
symmetries; we do not sum over these parameters. In case of the generalized superconformal 
index the contribution (2.12) has the form

N∏ (q1− r
2 + |mi+f (�)n�|

2 t−f (�)z−1
i ;q)∞

r
2 + |mi+f (�)n�|

2 f (�)

, (2.15)

i=1 (q t zi;q)∞
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where the parameters n� are new discrete variables. It is convenient to express the index as a 
product of contributions from chiral and vector multiplets

I (q, {ta}, {na}) =
∑

m1,...,mrank(G)

1

|Wm|
∮ rank G∏

j=1

dzj

2π izj

Zgauge(zj ,mj ;q)

×
∏
�

Z�(zj ,mj ; ta, na;q) , (2.16)

where

Zgauge(zj ,mj ;q) =
∏

α∈ad(G)

q− 1
2 |α(m)| (1 − eα(g)q

|α(m)|
2

)
(2.17)

and

Z� =
∏

ρ∈R�

⎛
⎝q

1−rφ
2
∏
j

e−iρ(g)t (�)−f (�)

⎞
⎠

1
2 |ρ(m)+f (�)n(�)|

× (e−iρ(g)t (�)−f (�)q
1
2 |ρ(m)+f (�)n(�)|+ 1−r�

2 ;q)∞
(eiρ(g)t (�)f (�)q

1
2 |ρ(m)+f (�)n(�)|+ r�

2 ;q)∞
. (2.18)

Here ad(G) stands for the adjoint representation of the gauge group G. Note that we do not write 
the contribution of the Chern–Simons term in (2.16), since as we mentioned before we consider 
theories without this term.

It is worth to mention that the three-dimensional superconformal index can be constructed 
from the so-called holomorphic blocks [24] due to its factorization property [2,25–29], i.e. the 
superconformal index can be expressed in terms of two identical 3d holomorphic blocks B(x; q)

as4 ∑
c

Bc(x;q)Bc(x̃; q̃) . (2.19)

It is possible to obtain the factorized superconformal index directly from the localization tech-
nique via the so-called Higgs branch localization [30,31].

3. Integral identities from 3d dualities

In [32] Seiberg found that there exist pairs of different four-dimensional N = 1 supersym-
metric gauge theories which describe the same physics in the infrared limit. This is called 
supersymmetric duality. Since its proposal a large number of dualities in various dimensions 
have been found.

In this section, we study three-dimensional N = 2 supersymmetric dualities [12,33–35] and 
demonstrate the matching of the superconformal index for dual theories. The superconformal 
index technique is one of the main tools for establishing and checking supersymmetric dualities.

In this work, we consider only confining theories, i.e. theories whose infrared limit can be 
described in terms of gauge invariant composites (mesons and baryons) and without dual quarks. 

4 Geometrically it means that the index can be obtained by gluing two solid tori. In this context Bc(x; q) are partition 
functions on solid tori.
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There are definitely more confining supersymmetric theories in three dimensions (for recent dis-
cussions, see [36,37]). We restrict our attention to samples of theories with U(1) (supersymmetric 
quantum electrodynamics) and SU(2) (supersymmetric quantum chromodynamics) gauge sym-
metry. We also limit ourselves to the cases of vanishing Chern–Simons term; however, one can 
add such a term to the action of the theories considered in the paper.

Note that similar results for N = 1 supersymmetric gauge theories in four dimensions were 
intensively studied in [1,38,39]. All 3d dualities considered in the next section can be obtained 
via dimensional reduction from 4d dualities. However, obtaining the right duality in three dimen-
sions is more tricky (for details see [19,40]). The main issue is that the reduction procedure and 
renormalization group flow from ultraviolet to infrared do not commute with each other. This 
happens because of an anomalous U(1) symmetry in 4d , which one needs to break in 3d theory. 
This can be done by adding a monopole operator to the 3d Lagrangians. To be more precise 
we need to add the effective superpotential W = ηX to the Lagrangian of electric theory and 
W = η̃X̃ to the magnetic theory (dual theory), where X is a monopole operator and η is the 4d

instanton factor.
In our examples we give only the necessary input to compute the superconformal index and 

do not discuss other aspects of dual theories. As for many other dualities in physics, systematic 
proofs of supersymmetric dualities are absent and the superconformal index computations do 
not constitute a proof of the duality. There are other important arguments for three-dimensional 
supersymmetric dualities, i.e. study of superpotentials for interactions among chiral multiplets 
[19], brane construction (see e.g., [35,41]), contact terms (see e.g., [42,43]) and other powerful 
methods very much in the spirit of the superconformal index such as study of sphere partition 
functions [44,45], ellipsoid partition functions [40,46,47], lens partition functions [48,49], etc.

The ’t Hooft anomaly matching conditions which played a central role in checking Seiberg 
dualities for N = 1 supersymmetric gauge theories become useless in three dimensions since, 
unlike four-dimensional gauge theories, in three dimensions there are no chiral anomalies. In 
three dimensions it is possible to have a classical Chern–Simons term which breaks parity. One 
can then use the matching condition for the parity anomaly; however, conditions for discrete 
anomalies are weaker than those for continuous anomalies.

In what follows, we omit the R-charges for chiral multiplets, since the superconformal indices 
of dual theories match for arbitrary assignment of the R-charge [13]. The correct R-charges 
for matter fields in the infrared fixed points can be obtained by the so-called Z-extremization 
procedure [45].

As a final remark, let us comment that the matching of superconformal indices for dual pairs 
were studied mainly by expanding in terms of fugacities [13,50–52] and only in a few works 
[2–4] authors give rigorous proofs of the index identities.

Below we give explicit expressions of generalized superconformal indices for some theories. 
Equality of indices for dual theories leads to integral evaluations, which will be proved rigorously 
in Section 4.

Example 1. We first consider a Theory A and its low-energy description Theory B which can 
be described purely in terms of composite gauge singlets.

• Theory A: Supersymmetric Quantum Chromodynamics with SU(2) gauge group and with 
SU(6) flavor group, chiral multiplets in the fundamental representation of the gauge group 
and the flavor group, a vector multiplet in the adjoint representation of the gauge group. Note 
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that in case of SU(2) gauge theories the fundamental and antifundamental representations 
are equivalent, therefore we have SU(6) flavor group rather than SU(3) × SU(3) × U(1).

• Theory B: no gauge symmetry, fifteen chiral multiplets in the totally antisymmetric tensor 
representation of the flavor group.

This duality was considered in [53] where the authors presented the sphere partition functions 
for dual theories. It is analogous to the four-dimensional duality for similar theories [1] and can 
be obtained by dimensional reduction.

Using the group-theoretical data (see Appendix B) it is straightforward to compute explicitly 
the generalized superconformal indices, and due to the supersymmetric duality we find the basic 
hypergeometric integral identity∑

m∈Z

∮
dz

4π iz
q−|m|(1 − q |m|z2)(1 − q |m|z−2) (−q

1
2 )
∑6

i=1(
|ni+m|

2 + |ni−m|
2 )

× z−∑6
i=1(

|ni+m|
2 − |ni−m|

2 )
6∏

j=1

a
− |nj +m|

2 − |nj −m|
2

j

(q1+ |nj +m|
2 /aj z, q

1+ |nj −m|
2 z/aj ;q)∞

(q
|nj +m|

2 aj z, q
|nj −m|

2 aj /z;q)∞

= (−q
1
2 )
∑

1≤j<k≤6
|nj +nk |

2
∏

1≤j<k≤6

(aj ak)
− |nj +nk |

2
(q1+ |nj +nk |

2 a−1
j a−1

k ;q)∞

(q
|nj +nk |

2 ajak;q)∞
(3.1)

with the balancing conditions

6∏
i=1

ai = q and
6∑

i=1

ni = 0 . (3.2)

This identity describes confinement without breaking of the “chiral symmetry”. The left side 
of the expression (3.1) includes the contributions of twelve chirals and a vector multiplet, while 
the right hand side contains the contribution of fifteen chirals. From the fact that all physical 
degrees of freedom of Theory B are gauge invariant there is no integration on the right hand side.

It is worth mentioning that the duality considered in the example is a special case of the 
duality claimed in [19], where the theory A is the three-dimensional SP (2N) SQCD with 2Nf

fundamentals and theory B is the SP (2Nf − 2N − 4) theory with 2Nf fundamentals. Such 
duality is qualitatively similar to SU(N) duality with matter in the fundamental representation 
of the gauge group. In case of N = 2 one can consider the theory A as SU(2) gauge theory since 
SP (2) � SU(2).

Note that the balancing conditions are imposed by the effective superpotential and the theories 
described above are dual only in the presence of certain superpotentials. We refer the interested 
reader to [19] for more details related to the study of superpotentials for three-dimensional dual-
ities.

In (3.1) we used the absolute values of monopole charges as in the definition of the supercon-
formal index. It is possible to eliminate all absolute values using the elementary identity [18]

(q1+|m|/2/z;q)∞
(q |m|/2z;q)∞

= (−q− 1
2 z)

|m|−m
2

(q1+m/2/z;q)∞
(qm/2z;q)∞

. (3.3)

After such simplification, (3.1) takes the form
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∞∑
m=∈Z

∮ 6∏
j=1

(q1+(m+nj )/2/aj z, q
1+(nj −m)/2z/aj ;q)∞

(q(nj +m)/2aj z, q
(nj −m)/2aj /z;q)∞

(1 − qmz2)(1 − qmz−2)

qmz6m

dz

4π iz

= 1∏6
j=1 a

nj

j

∏
1≤j<k≤6

(q1+(nj +nk)/2/ajak;q)∞
(q(nj +nk)/2ajak;q)∞

.

After replacing (aj , nj ) �→ (aj q
Nj /2, Nj), this is (1.2). We give a rigorous mathematical proof 

of this identity in Theorem 4.1.
The most intriguing physical interpretation of the formula (3.1) stems from the role it plays 

as a star-triangle relation [7,8] for a certain two-dimensional statistical model.
The integral identity (3.1) can be obtained by reduction [8,54,55] from the similar identity 

for four-dimensional lens indices. In [8] such reduction was made in the context of integrable 
statistical models.

The q → 1 limit of (3.1) was discussed in [8]. This limit also has an interpretation in terms 
of exactly solvable statistical models [56]. From the viewpoint of supersymmetric dualities such 
reduction [55,57] gives the equality of the sphere partition functions of dual two-dimensional 
N = (2, 2) supersymmetric gauge theories.

Example 2. Our second example is again a supersymmetric quantum chromodynamics with a 
weakly coupled magnetic dual.

• Theory A: Supersymmetric Quantum Chromodynamics with SU(2) gauge group and four 
flavors, chiral multiplets in the fundamental representation of the gauge group and the flavor 
group, the vector multiplet in the adjoint representation of the gauge group.

• Theory B: no gauge degrees of freedom, with six mesons and a singlet chiral field.

According to the supersymmetric duality we have the following integral identity for the gen-
eralized superconformal indices:∑

m∈Z

∮
dz

4π iz
q−|m|(1 − q |m|z2)(1 − q |m|z−2) (−q

1
2 )
∑4

i=1(
|ni+m|

2 + |ni−m|
2 −ni )

× z−∑4
i=1(

|ni+m|
2 − |ni−m|

2 )
4∏

j=1

a
− |nj +m|

2 − |nj −m|
2 +nj

j

(q1+ |nj +m|
2 /aj z, q

1+ |nj −m|
2 z/aj ;q)∞

(q
|nj +m|

2 aj z, q
|nj −m|

2 aj/z;q)∞

= (−q
1
2 )
∑

1≤j<k≤4
|nj +nk |

2 −∑4
i=1 ni− |∑4

i=1 ni |
2 (a1a2a3a4)

|∑4
i=1 ni |−

∑4
i=1 ni

2

× (q
|∑4

i=1 ni |
2 a1a2a3a4)∞

(q1+ |∑4
i=1 ni |

2 /a1a2a3a4)∞

∏
1≤j<k≤4

(aj ak)
− |nj +nk |+(nj +nk)

2
(q1+ |nj +nk |

2 /ajak;q)∞

(q
|nj +nk |

2 ajak;q)∞
. (3.4)

The ordinary index of the theory A was considered in [58] in the context of global symmetry 
enhancement. It was shown that the superconformal index of the theory has an extended SO(10)

flavor symmetry when coupled to 4d multiplets with specific boundary conditions.
Note that one can deform dual theories from Example 1 by adding mass terms for some of 

the quarks. After integrating out one flavor (massive modes) the theory with the remaining four 
flavors confines with “chiral symmetry breaking” [7] if we keep a certain superpotential for the 
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theory giving the balancing conditions similar to (3.2). Here the theory A has no superpotential 
and therefore we obtain the duality (3.4).

Eliminating the absolute values as before, (3.4) can be expressed as

∑
m∈Z

∮
dz

4π iz

(1 − qmz2)(1 − qmz−2)

qmz4m

4∏
j=1

(q1+ nj +m

2 /aj z, q
1+ nj −m

2 z/aj ;q)∞
(q

nj +m

2 aj z, q
nj −m

2 aj /z;q)∞

= (q

∑4
i=1 ni

2 a1a2a3a4)∞

(q1+
∑4

i=1 ni
2 /a1a2a3a4)∞

∏
1≤j<k≤4

(q1+ nj +nk
2 /ajak;q)∞

(q
nj +nk

2 ajak;q)∞
. (3.5)

This can be recognized as a special case of Proposition 4.2. More precisely, Proposition 4.2
states that (3.5) holds even with the integers nj replaced by generic complex parameters.

In contrast to four dimensions, there exist supersymmetric dualities for abelian gauge theories 
in three dimensions. For details of such dualities see e.g. [59]. Below we consider two examples 
of such dualities.

Example 3.

• Theory A: d = 3 N = 2 supersymmetric electrodynamics with U(1) gauge symmetry and 
six chiral multiplets, half of them transforming in the fundamental representation of the 
gauge group and another half transforming in the anti-fundamental representation.

• Theory B: no gauge degrees of freedom, nine gauge invariant “mesons” transforming in the 
fundamental representation of the flavor group.

Supersymmetric duality leads to the following identity for the generalized superconformal 
indices:∑

m∈Z

∮
dz

2π iz
(−q

1
2 )
∑3

i=1(
|mi+m|

2 + |ni−m|
2 )z−∑3

i=1(
|mi+m|

2 − |ni−m|
2 )

×
3∏

i=1

a
− |mi+m|

2
i b

− |ni−m|
2

i

(q1+ |mi+m|
2 /aiz, q

1+ |ni−m|
2 z/bi;q)∞

(q
|mi+m|

2 aiz, q
|ni−m|

2 bi/z;q)∞

= (−q
1
2 )
∑3

i,j=1
|mi+nj |

2

3∏
i,j=1

(aibj )
− |mi+nj |

2
(q1+ |mi+nj |

2 /aibj ;q)∞

(q
|mi+nj |

2 aibj ;q)∞
, (3.6)

where the fugacities ai and bi stand for the flavor symmetry SU(3) × SU(3), z is the fugacity 
for the U(1) gauge group and the balancing conditions are

3∏
i=1

ai =
3∏

i=1

bi = q
1
2 and

3∑
i=1

ni =
3∑

i=1

mi = 0 . (3.7)

Eliminating the absolute values, this identity takes the form

∞∑ ∮ 3∏ (q1+(m+mi)/2/aiz, q
1+(ni−m)/2z/bi;q)∞

(q(m+mi)/2aiz, q(ni−m)/2bj/z;q)∞
1

z3m

dz

2π iz

m=−∞ i=1
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= 1∏3
i=1 a

mi

i b
ni

i

3∏
i,j=1

(q1+(mi+nj )/2/aibj ;q)∞
(q(mi+nj )/2aibj ;q)∞

.

After the change of variables z �→ −z, one may check that this is equivalent to Theorem 4.3
below. This identity was first proved in [4] in the special case of ordinary superconformal in-
dices,5 that is, mi ≡ ni ≡ 0. The general case was presented without proof in [5].

The expression (3.6) can be written as an integral pentagon identity. Following [4], we intro-
duce the function

Bm[a,n;b,m] = (−q
1
2 )

|n|
2 + |m|

2 − |n+m|
2 a− |n|

2 b− |m|
2 (ab)

|n+m|
2

× (q1+ |n|
2 a−1, q1+ |m|

2 b−1, q
|n+m|

2 ab;q)∞
(q

|n|
2 a, q

|m|
2 b, q1+ |n+m|

2 (ab)−1;q)∞
, (3.8)

and rewrite the equality (3.6) in terms of this function. We obtain the following integral pentagon 
identity in terms of B functions:

∑
m∈Z

∮
dz

2π iz

3∏
i=1

B[aiz, ni + m;biz
−1,mi − m]

= B[a1b2, n1 + m2;a3b1;n3 + m1] B[a2b1, n2 + m1;a3b2, n3 + m2] , (3.9)

with the balancing conditions (3.7).
The integral identity (3.9) is interesting from the following point of view. There is a re-

cently proposed relation called 3d/3d correspondence between 3d N = 2 supersymmetric gauge 
theories and 3-manifolds [62,63] (see also [18,64] and earlier works [65,66]) in similar spirit 
as the AGT correspondence [67]. This correspondence translates the ideal triangulation of the 
3-manifold into mirror symmetry for three-dimensional supersymmetric theories. The indepen-
dence of the corresponding 3-manifold invariant on the choice of triangulation corresponds to 
the equality of superconformal indices of mirror dual theories [18]. In this context the identity 
(3.9) encodes a 3–2 Pachner move for 3-manifolds.

Example 4. Let us consider another example of abelian duality, namely the well-known 
XYZ/SQED mirror symmetry [11,12,35].

• Theory A: N = 2 supersymmetric quantum electrodynamics, with a single U(1) vector 
multiplet and two chiral multiplets charged oppositely under the gauge group.

• Theory B: free Wess–Zumino theory with three chiral multiplets. This theory is often is 
called the XYZ model in the literature.

In this example we wish to turn on the contribution to the generalized superconformal index of 
the topological symmetry U(1)J , which is not explicit in the Lagrangian. This hidden symmetry 
is generated by the current

Jμ = εμνρFνρ . (3.10)

The current Jμ is topologically conserved6 due to the Bianchi identity.

5 Note that the identity of sphere partition functions for this duality was presented in [60,61].
6 The corresponding charge is carried by the Abrikosov–Nielsen–Olesen vortices in the Higgs branch of N = 2 theory.
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In this case we have a special duality called mirror symmetry which exchanges the Coulomb 
branch of a theory with the Higgs branch of its mirror dual and vice versa. The duality implies 
the identity∑

s∈Z

∮
dz

2π iz
(−1)s+m+ |s+m|

2 + |s−m|
2 znws(q

1
4 zα−1)

|s−m|
2 (q

1
4 z−1α−1)

|s+m|
2

× (z±α−1q
|s∓m|

2 + 3
4 ;q)∞

(z±αq
|s±m|

2 + 1
4 ;q)∞

= (−1)n+m+ |n+m|
2 + |n−m|

2 (q
1
4 αw)

|m−n|
2 (q

1
4 αw−1)

|m+n|
2 α−2|m|

× (αw±q
|m±n|

2 + 3
4 , α−2q |m|+ 1

2 ;q)∞
(α−1w±q

|m∓n|
2 + 1

4 , α2q |m|+ 1
2 ;q)∞

, (3.11)

where the fugacity α and the monopole charge m denote the parameters for the axial U(1)A
symmetry, ω and n denote the parameters for the topological U(1)J symmetry and the discrete 
parameter s stands for the magnetic charge corresponding to the U(1) gauge group. The factors 
containing ± should be interpreted as the product over both choices; for instance,

(z±α−1q
|s∓m|

2 + 3
4 ;q)∞ = (zα−1q

|s−m|
2 + 3

4 ;q)∞(z−1α−1q
|s+m|

2 + 3
4 ;q)∞.

Here, we explicitly write the R-charges of chiral multiplets. Due to the permutation symmetry 
of the superpotential W = q̃Sq for the theory B, where q, q̃ , S are three chiral multiplets of the 
theory, one can fix the R-charges.7

The case m = n = 0 of (3.11) was presented in [2,13] and proven in [2]. The general case was 
presented, with a slight mistake,8 in [3], where a proof was given for the special case m = 0. In 
Section 4 we give an analytic proof of the general case. More precisely, eliminating the absolute 
values in (3.11) gives

∑
s∈Z

∮
dz

2π iz
(−w)szn−s (z±α−1q

m∓s
2 + 3

4 ;q)∞
(z±αq

m±s
2 + 1

4 ;q)∞

= (−w)n
(αw±q

m±n
2 + 3

4 , α−2qm+ 1
2 ;q)∞

(α−1w±q
m±n

2 + 1
4 , α2qm+ 1

2 ;q)∞
,

which can be recognized as the special case a = b = q
1
4 − m

2 α, c = d = q
1
4 + m

2 α of Proposition 4.4.
The identity (3.11) and related identities can also be written as pentagon identities. In fact, 

introducing the tetrahedron index [18,63]

Iq [m,z] = (q1− m
2 /z;q)∞

(q− m
2 z;q)∞

,

7 In the infrared limit the superpotential W must have the R-charge 2, then the R-charge of chiral multiplets of theory 
B must be 2

3 .

8 We have an additional phase factor (−1)
s+m+ |s+m|

2 + |s−m|
2 , which is due to the definition of the fermion number 

operator F in the definition of the superconformal index [18] (see also [19,29]). In fact, in general the superconformal 
indices match for dual theories in presence of this corrected phase factor [19]. Without the phase factor the identity 
presented by Kapustin and Willett [3] is incorrect. It is actually a good example where the naive choice of the fermion 
number as 2J3 does not work.
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it follows from Proposition 4.4 that

∑
s∈Z

∮
(−w)szN−s Iq [m − s;q1/4αz]Iq [n + s;q1/4β/z] dz

2π iz

= (−w)NIq [m + n;q 1
2 αβ]Iq [n + N;q1/4w/β]Iq [m − N;q1/4/αw].

Special cases with m = n = N = 0 and m = n (corresponding to (3.11)) were presented earlier 
in [4,5], respectively.

One can also consider this duality as a mirror symmetry between N = 4 supersymmetric 
electrodynamics with a single flavor and its dual theory with a free hypermultiplet. Then we 
obtain instead of (3.11) the mathematically equivalent identity

α2|m| (α2q |m|+ 1
2 ;q)∞

(α−2q |m|+ 1
2 ;q)∞

∑
s∈Z

∮
dz

2π iz
(−1)s+m+ |s+m|

2 + |s−m|
2

× znws(q
1
4 zα−1)

|s−m|
2 (q

1
4 z−1α−1)

|s+m|
2

(z±α−1q
|s∓m|

2 + 3
4 ;q)∞

(z±αq
|s±m|

2 + 1
4 ;q)∞

= (−1)n+m+ |n+m|
2 + |n−m|

2 (q
1
4 αw)

|m−n|
2 (q

1
4 αw−1)

|m+n|
2

(αw±q
|m±n|

2 + 3
4 ;q)∞

(α−1w±q
|m∓n|

2 + 1
4 ;q)∞

. (3.12)

4. Mathematical proofs of identities

In this section we will use the standard notation of [9]. In particular, the basic hypergeometric 
series is [9, Ex. (1.2.22)]

rφs

[
a1, . . . , ar

b1, . . . , bs
;q, z

]
=

∞∑
j=0

(a1;q)j . . . (ar ;q)j

(b1;q)j . . . (bs;q)j

[
(−1)j q

(j
2

)]1+s−r

zj , (4.1)

and the bilateral basic hypergeometric series is [9, Ex. (5.1.1)]

rψs

[
a1, . . . , ar

b1, . . . , bs
;q, z

]
=

∞∑
j=0

(a1;q)j . . . (ar ;q)j

(b1;q)j . . . (bs;q)j
(−1)(s−r)j q(s−r)

(j
2

)
zj , (4.2)

where

(a;q)n =
n∏

j=0

(1 − aqj ) .

The very-well-poised basic hypergeomeric series is defined as [9, Ex. (2.1.11)]

r+1Wr(a1, a4, a5, . . . , ar+1;q, z) = r+1φr

⎡
⎣ a1, qa

1
2
1 ,−qa

1
2
1 , a4, . . . , ar+1

a
1
2
1 ,−a

1
2
1 , qa1/a4, . . . , qa1/ar+1

;q, z

⎤
⎦ . (4.3)

We will assume that |q| < 1. We will also write

θ(z;q) = (z, q/z;q)∞ .

This theta function satisfies the quasi-periodicity
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θ(zqN ;q) = (−1)N

q
(N

2

)
zN

θ(z;q) , N ∈ Z . (4.4)

We will formulate four fundamental identities, which evaluate a combination of a basic hy-
pergeometric integral and sum. In each case, we assume that the parameters are generic, so that 
the poles of the integrand split naturally into geometric sequences converging to 0 and to ∞. The 
integration is over a positively oriented contour separating these two types of poles.

To prove the first identity, we use the Nasrallah–Rahman integral and the nonterminating 
Jackson summation, which are top level results for basic hypergeometric integral evaluations 
and summations, respectively. Consequently, we expect that Theorem 4.1 is a top level result for 
evaluations of the type considered here, with combined integration and summation.

Theorem 4.1. Let aj be generic numbers and Nj integers satisfying a1 · · ·a6 = q and N1 +· · ·+
N6 = 0. Then,

∞∑
m=−∞

∮ 6∏
j=1

(q1+m/2/aj z, q
1−m/2z/aj ;q)∞

(qNj +m/2aj z, q
Nj −m/2aj /z;q)∞

(1 − qmz2)(1 − qmz−2)

qmz6m

dz

2π iz

= 2∏6
j=1 q

(Nj
2

)
a

Nj

j

∏
1≤j<k≤6

(q/ajak;q)∞
(aj akq

Nj +Nk ;q)∞
. (4.5)

Proof. Let L denote the left-hand side of (4.5). Note that the poles of the integrand are situated 
at fixed values of zqm/2. Thus, we may replace z by zq−m/2 and interchange the sum and the 
integral. This gives

L =
∮ 6∏

j=1

(qz±/aj ;q)∞
(qNj aj z±;q)∞

(1 − z2)(1 − z−2)

× 8ψ8

(
q/z,−q/z, a1/z, . . . , a6/z

1/z,−1/z, q/a1z, . . . , q/a6z
;q, q

)
dz

2π iz
. (4.6)

By [9, Eq. (III.38)], we may write

6∏
j=1

(qz±/aj ;q)∞(1 − z2)(1 − z−2) 8ψ8

(
q/z,−q/z, a1/z, . . . , a6/z

1/z,−1/z, q/a1z, . . . , q/a6z
;q, q

)

= (q;q)∞
∏4

j=1(qa±
5 /aj ;q)∞θ(a6z

±;q)(z±2;q)∞
(qa2

5, a6a
±
5 ;q)∞

× 8W7(a
2
5;a5a1, a5a2, a5a3, a5a4, a5a6;q, q) + idem(a5;a6) , (4.7)

where the second term means that the first term is repeated with a5 and a6 interchanged. Using 
(4.4) to write

θ(a6z
±;q)∞ = q2

(N6
2

)
a

2N6
6 θ(a6q

N6z±;q)∞ ,

this leads to
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L = q2
(N6

2

)
a

2N6
6

(q;q)∞
∏4

j=1(qa±
5 /aj ;q)∞

(qa2
5, a6a

±
5 ;q)∞

8W7(a
2
5;a5a1, a5a2, a5a3, a5a4, a5a6;q, q)

×
∮

(z±2, q1−N6a−1
6 z±;q)∞∏5

j=1(q
Nj aj z±;q)∞

dz

2π iz
+ idem

(
(a5,N5); (a6,N6)

)
.

Applying the Nasrallah–Rahman identity [9, Eq. (6.4.1)]

∮
(z±2,Bz±;q)∞∏5

j=1(bj z±;q)∞
dz

2π iz
= 2

∏5
j=1(B/bj ;q)∞

(q;q)∞
∏

1≤j<k≤5(bj bk;q)∞
, B = b1 · · ·b5 ,

we conclude that

L = 2q2
(N6

2

)
a

2N6
6

∏4
j=1(qa±

5 /aj ;q)∞
∏5

j=1(q
1−N6−Nj /aja6;q)∞

(qa2
5, a6a

±
5 ;q)∞

∏
1≤j<k≤5(q

Nj +Nkajak;q)∞
× 8W7(a

2
5;a5a1, a5a2, a5a3, a5a4, a5a6;q, q) + idem((a5,N5); (a6,N6)) .

By the non-terminating Jackson summation [9, Eq. (II.25)], this can be simplified to the right-
hand side of (4.5). �

If one formally replaces 6 by 4 in Theorem 4.1, it is possible to replace the discrete parameters 
Nj by generic complex numbers. The proof of the corresponding identity is in fact very easy.

Proposition 4.2. For aj and bj generic,

∞∑
m=−∞

∮ 4∏
j=1

(q1+m/2/aj z, q
1−m/2z/aj ;q)∞

(qm/2bj z, q−m/2bj/z;q)∞
(1 − qmz2)(1 − qmz−2)

qmz4m

dz

2π iz

= 2(b1b2b3b4;q)∞
(q/a1a2a3a4;q)∞

∏
1≤j<k≤4

(q/ajak;q)∞
(bj bk;q)∞

. (4.8)

Proof. With L the left-hand side of (4.8), the identity (4.6) is replaced by

L =
∮ 4∏

j=1

(qz±/aj ;q)∞
(bj z±;q)∞

(1 − z2)(1 − z−2)

× 6ψ6

(
q/z,−q/z, a1/z, . . . , a4/z

1/z,−1/z, q/a1z, . . . , q/a4z
;q,

q

a1 · · ·a4

)
dz

2π iz
.

Applying Bailey’s summation [9, Eq. (II.33)] gives

L = (q;q)∞
∏

1≤j<k≤4(q/ajak;q)∞
(q/a1a2a3a4;q)∞

∮
(z±2;q)∞∏4

j=1(bj z±;q)∞
dz

2π iz
,

which reduces the result to the Askey–Wilson integral [9, Eq. (6.1.4)]. �
The next result was obtained in [4] for Mj ≡ Nj ≡ 0 and announced in [5] in general.
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Theorem 4.3. Let aj , bj be generic numbers and Mj , Nj integers satisfying a1a2a3 = b1b2b3 =
q1/2 and M1 + M2 + M3 = N1 + N2 + N3 = 0. Then,

∞∑
m=−∞

∮ 3∏
j=1

(q1+m/2/aj z, q
1−m/2z/bj ;q)∞

(qMj +m/2aj z, q
Nj −m/2bj /z;q)∞

(−1)m

z3m

dz

2π iz

= 1∏3
j=1 q

(Mj
2

)+(Nj
2

)
a

Mj

j b
Nj

j

3∏
j,k=1

(q/ajbk;q)∞
(aj bkq

Mj +Nk ;q)∞
. (4.9)

Proof. This can be proved similarly as the special case treated in [4], so we will be very brief. 
Shrinking the contour of integration to zero, we pick up residues at the poles

z = qk− m
2 +Nj bj , j = 1,2,3, k ≥ max(0,m − Nj) .

Working out the sum of residues explicitly, the left-hand side of (4.9) can be written

L = (−1)N1

q
3
2 N2

1 b
3N1
1

(qb1/b2, qb1/b3;q)∞
(qN2−N1b2/b1, qN3−N1b3/b1;q)∞

3∏
j=1

(q/ajb1;q)∞
(qN1+Mj ajb1;q)∞

× 3φ2

(
qM1+N1a1b1, q

M2+N1a2b1, q
M3+N1a3b1

q1+N1−N2b1/b2, q
1+N1−N3b1/b3

;q, q

)
3φ2

(
a1b1, a2b1, a3b1
qb1/b2, qb1/b3

;q, q

)
+ idem

(
(b1,N1); (b2,N2), (b3,N3)

)
. (4.10)

Let

x1 = b1(qb1/b2, qb1/b3;q)∞
3∏

j=1

(aj b2, aj b3;q)∞ 3φ2

(
a1b1, a2b1, a3b1
qb1/b2, qb1/b3

;q, q

)

and let x2 and x3 be defined by the same expression with b1 interchanged by b2 and b3, respec-
tively. Then, by the nonterminating q-Saalschütz summation [9, Eq. (II.24)],

x2 − x1 = b2θ(b1/b2;q)

3∏
j=1

θ(aj b3;q) . (4.11)

Let x̃j denote the result of replacing aj by ajq
Mj and bj by bjq

Nj in xj . By (4.4), under the same 

change of variables, the right hand side of (4.11) is divided by C =∏3
j=1 q

(Mj
2

)+2
(Nj

2

)
a

Mj

j b
2Nj

j . 
Thus, if we define yj = Cx̃j , then y2 − y1 = x2 − x1. By symmetry, yj = xj + D, where D is 
independent of j . It follows that

(x3 − x2)x1y1 + (x1 − x3)x2y2 + (x2 − x1)x3y3 = (x2 − x1)(x3 − x2)(x3 − x1) .

After simplification, this identity reduces to the desired result. �
We conclude with the following identity. Note that the parameter t can be removed by scaling 

z �→ tz, but it seems useful to keep it.

Proposition 4.4. For a, b, c, d and t generic parameters and integer N , such that |q N+1
2 a−1| <

|t | < |q N−1
2 b|,
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∞∑
m=−∞

∮
(q1+m/2/az, q1−m/2z/b;q)∞

(qm/2cz, q−m/2d/z;q)∞
tmzN−m dz

2π iz

= tN
(q/ab,−q

1+N
2 ct,−q

1−N
2 d/t;q)∞

(cd,−q
1+N

2 /at,−q
1−N

2 t/b;q)∞
. (4.12)

Proof. Replacing z by zq−m/2 and changing the order of summation, we find that the left-hand 
side is given by

L =
∮

(q/az, qz/b;q)∞
(cz, d/z;q)∞

zN
1ψ1

(
b/z

q/az
;q,−q

1−N
2 t

b

)
dz

2π iz
.

Applying Ramanujan’s summation [9, Eq. (II.29)] gives

L = (q, q/ab;q)∞
(−q

1+N
2 /at,−q

1−N
2 t/b;q)∞

∮
θ(−q

N+1
2 z/t;q)

(cz, d/z;q)∞
zN dz

2π iz

(the restriction on t is needed here for convergence). It remains to prove that

∮
θ(−q

N+1
2 z/t;q)

(cz, d/z;q)∞
zN dz

2π iz
= tN

(−q
1+N

2 ct,−q
1−N

2 d/t;q)

(q, cd;q)∞
. (4.13)

To this end, we expand the integral as the sum of residues at the points z = qkd , k ≥ 0. By [9, 
Eq. (4.10.8)], under the additional assumption |q 1+N

2 t/d| < 1, the sum of residues converges and 
can be computed by the q-binomial theorem [9, Eq. (II.3)]. Since the left-hand side of (4.13) is 
analytic in t for t �= 0, the result holds also without the restriction |q 1+N

2 t/d| < 1. �
Using (3.3), it is easy to see that the case a = b = c = d , N = 0 is equivalent to the identity 

proved in Appendix A1 of [2]. It may be remarked that our proof of the general case is simpler.

5. Conclusions

Similarly to four-dimensional dualities [38,39], equality of the superconformal indices for 
dual theories in three dimensions leads to new non-trivial integral identities [2–4]. We have pre-
sented four new identities for basic hypergeometric integrals. More concretely, we studied the 
generalized superconformal index of confining theories in three dimensions that has the form 
of a basic hypergeometric integral. This kind of result is important for better understanding the 
structure of three-dimensional supersymmetric dualities. Most dualities discussed in the work 
are known in the literature, but the verification of these dualities using the superconformal index 
technique is new.

We also presented so-called pentagon identities. They are especially interesting from the ge-
ometrical point of view, which interprets the pentagon relation as the 3–2 Pachner move in the 
context of the 3d–3d correspondence. This relates different decompositions of a polyhedron with 
five ideal vertices into ideal tetrahedra.

It would be interesting to study more general SU(N) gauge theories, other gauge groups and 
other confining theories.



764 I. Gahramanov, H. Rosengren / Nuclear Physics B 913 (2016) 747–768
Acknowledgements

IG wishes to thank the Chalmers University of Technology for warm hospitality where this 
work started. The research of IG is supported in part by the SFB 647 “Raum-Zeit-Materie. Ana-
lytische und Geometrische Strukturen”, the Research Training Group GK 1504 “Mass, Spectrum, 
Symmetry” and the International Max Planck Research School for Geometric Analysis, Gravi-
tation and String Theory. IG is partially supported by an ESF Short Visit Grant 6454 within the 
framework of the “Interactions of Low-Dimensional Topology and Geometry with Mathematical 
Physics (ITGP)” network. HR is supported by the Swedish Science Research Council. We are 
particularly grateful to Jonas Pollok for valuable comments on a preliminary version of the paper.

Appendix A. A short review of 3d N = 2 theories

The subject is very broad, and we only discuss basic facts needed to obtain our results in 
Section 2. We refer the reader to [10–12] for more details.

A.1. Conventions

The Clifford algebra in 2 + 1 dimensions with metric gμν is

{γμ, γν} = 2gμν, (A.1)

[γμ, γν] = −2iεμνλγλ. (A.2)

As a convenient representation we choose γ μ as

(γ 1)αβ = iσ2 , (γ 2)αβ = σ3 , (γ 3)αβ = σ1 , (A.3)

where α, β are spinor indices in the defining representation of SL(2, R). Spinor indices are con-
tracted, raised and lowered with the anti-symmetric matrix

Cαβ = −Cβα = Cβα =
(

0 −i
i 0

)
. (A.4)

A.2. N = 2 SUSY algebra

Besides the ordinary generators of the Poincaré algebra, the three-dimensional N = 2 SUSY 
algebra (as for N = 1 SUSY in four dimensions) has four real supercharges. They can be com-
bined into a complex supercharge and its Hermitian conjugate

Qα and Q̄α , (A.5)

where α is a spinor index which goes from 1 to 2(= N ). The part of the N = 2 SUSY algebra 
involving the supercharges can be written [11]{

Qα,Qβ

}= {Q̄α, Q̄β

}= 0, (A.6){
Qα, Q̄β

}= 2γ i
αβPi + 2iεαβZ, (A.7)

where the bosonic generator Pμ is the momentum generator and Z is a central charge which 
can be thought of as the reduced component of four-dimensional momentum. The automorphism 
group of the algebra is U(1) R-symmetry which rotates the supercharges
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[R,Qα] = −Qα . (A.8)

Here we are interested in superconformal theories. In this case, we have two additional 
bosonic generators, special conformal transformations Kμ and dilatations D and two fermionic 
generators, Sα and S̄α . The N = 2 superconformal algebra in three dimensions takes the form of 
the supergroup [45]

SO(3,2)conf × SO(2)R ⊆ OSp(2|4) . (A.9)

In Euclidean signature it is

SO(4,1)conf × SO(2)R ⊆ OSp(2|2,2) . (A.10)

The first factor is the conformal group and the second one is the R-symmetry. Note that in the 
superconformal case the algebra has a distinguished R-symmetry. The important relation of the 
superconformal algebra for our purposes is

{Q̄α, S̄β} = Mμν[γ μ, γ ν]αβ + 2εαβD − 2εαβR . (A.11)

In particular, we will use the commutation relation

{Q̄1, S̄1} = 2� − 2R − 2j3 . (A.12)

A.3. Multiplets

The supersymmetry representations of 3d N = 2 theories are closely related to the represen-
tations of 4d N = 1 theories and can be directly obtained from these by dimensional reduction.

To obtain irreducible representations one must impose constraints. In order to do so it is useful 
to define supercovariant derivatives:

Dα = ∂

∂θα

− i(γ μθ̄)α∂μ , (A.13)

D̄α = ∂

∂θ̄α

− i(γ μθ)α∂μ . (A.14)

The simplest type of superfield is a chiral multiplet �. It satisfies the constraint

D̄α� = 0 . (A.15)

It can be expanded as

� = φ(y) + √
2θψ(y) + θ2F(y) , (A.16)

where φ is a complex scalar field, ψ is a complex Dirac fermion, F is an auxiliary complex 
scalar, θ is a Grassmann coordinate and yμ = xμ + iθσμθ̄ .

The vector multiplet consists of a real scalar field σ , a vector field Aμ, a complex Dirac 
fermion λ and a real auxiliary scalar field D. Its expansion in Wess–Zumino gauge is given by

V = −θσμθ̄Aμ(x) − θ θ̄σ + iθθ θ̄ λ̄(x) − iθ̄ θ̄ θλ(x) + 1

2
θθ θ̄ θ̄D(x) , (A.17)

The appearance of a real scalar field σ is due to the component of the four-dimensional vector 
field in the reduced direction.
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Appendix B. Details of Example 1

All contributions to the superconformal indices in Example 1 are as follows:

• Contribution of the chiral multiplets

ind� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
zai

q
|ni+m|

2

1−q
− z−1a−1

i
q

1+ |ni+m|
2

1−q

]

+
[
z−1ai

q
|ni−m|

2

1−q
− za−1

i
q

1+ |nj −m|
2

1−q

]
: Theory A,

[
aiaj

q

|ni+nj |
2

1−q
− a−1

i a−1
j

q
1+ |ni+nj |

2

1−q

]
: Theory B.

(B.1)

• Contribution of the vector multiplet

indgauge =
{−q

1
2 |mi |z2 − q

1
2 |mi |z−2 : Theory A,

no vector multiplet : Theory B.
(B.2)

• Other contributions

q0(m) =
{

−|nj +m|
2 − |nj −m|

2 : Theory A,

−|ni+nj |
2 : Theory B.

(B.3)

eib0 =
{

z−∑6
i=1(

|ni+m|
2 − |ni−m|

2 ) : Theory A,

0 : Theory B.
(B.4)
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