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Abstract
We initiate the systematic study of probabilistic proofs in relativized worlds, where the goal is to
understand, for a given oracle, the possibility of “non-trivial” proof systems for deterministic or
nondeterministic computations that make queries to the oracle.

This question is intimately related to a recent line of work that seeks to improve the efficiency of
probabilistic proofs for computations that use functionalities such as cryptographic hash functions and
digital signatures, by instantiating them via constructions that are “friendly” to known constructions
of probabilistic proofs. Informally, negative results about probabilistic proofs in relativized worlds
provide evidence that this line of work is inherent and, conversely, positive results provide a way to
bypass it.

We prove several impossibility results for probabilistic proofs relative to natural oracles. Our
results provide strong evidence that tailoring certain natural functionalities to known probabilistic
proofs is inherent.
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1 Introduction

The study of relativized complexity classes originally aspired to shed light on the structural
relationships between unrelativized complexity classes. However, it was soon realized that
many interesting complexity classes have contradictory relativization results. For instance,
Baker et al. [9] showed that there exist oracles A and B such that PA = NPA and PB 6= NPB .

Subsequent works sought to circumvent this difficulty by considering relativized worlds
where the oracle is sampled from a “natural” distribution, and thereby avoid specially-crafted
oracles that can force an equality/inequality on the complexity classes being compared. For
instance, Bennett and Gill [20] proved that, with probability 1 over a random oracle R, it
holds that PR 6= NPR 6= co-NPR and PR = BPPR. Since these relativization results agreed
with what people believed to be true in the unrelativized case, Bennett and Gill proposed the
Random Oracle Hypothesis, which states that structural relationships between complexity
classes that hold with probability 1 over a random oracle also hold in the unrelativized case.
However, this hypothesis was later disproved by Chang et al. [22], who showed that, with
probability 1 over a random oracle R, IPR 6= PSPACER. (We know that, without oracles,
IP = PSPACE [34, 41].)
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57:2 On the Impossibility of Probabilistic Proofs in Relativized Worlds

These works indicate that, in general, relativization results are not helpful for under-
standing the relationships between unrelativized complexity classes. At best they provide us
with relativization barriers, which nowadays are not considered so strong since we know of
non-relativizing techniques.

1.1 New motivation: the efficiency of probabilistic proofs
We revisit relativization with a new motivation: the efficiency of probabilistic proofs. Super-
ficially, relativization and probabilistic proofs seem unrelated. Yet they are deeply connected,
as we explain.

Probabilistic proofs such as interactive proofs [28] and probabilistically checkable proofs [8]
have played important roles in the study of hardness of approximation since the seminal work
of [25]. In recent years, they became the subject of intense study due to their application to
constructing highly-efficient cryptographic proofs (such as succinct arguments), and a major
research goal today is to improve the efficiency of probabilistic proofs. We now illustrate,
via an example, how relativization results tell us important facts about the efficiency of
probabilistic proofs.

I Example 1. Let H = {Hs : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ be a family of “hash functions”
(the precise security property in this discussion is unimportant), and consider the following
NP language:

Ls = {(n, y) ∈ N× {0, 1}|s| | ∃x ∈ {0, 1}|s| s.t. Hn
s (x) = y} .

The efficiency measures (proof length, randomness complexity, query complexity, and
others) of a PCP for the language Ls typically depend on the size of an arithmetic circuit
that iteratively applies Hs, for n times, to a candidate witness x and checks if the result is y.
The size of such a circuit is Ω(n |Hs|), i.e., it depends on the size of a circuit for expressing
the computation of Hs. Since there are many NP languages of interest to practitioners that
involve cryptographic computations such as hash functions, researchers have been designing
specialized families of hash functions that can be represented via small arithmetic circuits
[6, 2, 29, 4, 3, 30].

We ask: is optimizing the arithmetic circuit complexity of hash functions necessary?
We now explain why the answer to this question is connected to relativization statements

about probabilistic proofs. Informally, suppose that for any family of hash functions H
it holds that NPH ⊆ PCPH. In other words, every language that can be decided by a
nondeterministic polynomial-time machine that makes oracle calls to a hash function has a
PCP verifier that may make oracle calls to the same hash function. Now the “oracle language”
L = {Ls}s∈{0,1}∗ , which is in the relativized complexity class NPH, can be decided via a
computation that involves n calls to the hash function but does not depend on the complexity
of the hash function itself (as this computation happens inside the oracle). Hence, since we
assumed that NPH ⊆ PCPH, we can obtain a probabilistic proof for L whose efficiency does
not depend on the complexity of the hash function (which is wonderful).

In sum, probabilistic proofs that “relativize with respect to hash functions” obviate
the need to design hash functions with small complexity and, conversely, negative results
about such relativizations provide strong evidence that efforts to design “PCP-friendly” hash
functions are inherent.

The above example illustrates a general connection. On the one hand, constructing
probabilisitic proofs in relativized worlds could provide drastic efficiency improvements to
probabilistic proofs. On the other hand, ruling out probabilistic proofs in relativized worlds



A. Chiesa and S. Liu 57:3

would provide a complexity-theoretic justification for why practitioners may be “stuck” with
the task of designing “PCP-friendly” realizations of various functionalities (hash functions,
signatures, encryption, and so on).

1.2 Our question: are there PCPs for computations in relativized
worlds?

We initiate the systematic study of probabilistic proofs for relativized computations.
In this work an oracle is a collection A = {An}n∈N where each An is a distribution over

functions on n-bit inputs. A sample from A is a function A : {0, 1}∗ → {0, 1}∗ obtained by
sampling a function fn from each An and then setting A to equal fn for n-bit inputs. (See
Section 2.1 for definitions.)

We wish to understand for what oracles A there are probabilistically checkable proofs
(PCPs) in a relativized world where all machines have oracle access to a sample from A. Below
we make this question more precise, distinguishing between the case of PCPs for relativized
nondeterministic computations (“do PCPs provide any savings in witness length?”) and the
case of PCPs for relativized deterministic computations (“do PCPs provide any savings in
computation length?”).

The complexity classes that we study are the natural relativized extensions of DTIME,
NTIME, and PCP. Note that complexity classes relative to an oracle A are sets of oracle
languages (see Definition 11) rather than sets of languages, because the sample from A affects
whether a particular instance is in the language or not. The informal definitions below are
made precise in Section 2.4.

DTIME(t(n))A oracle languages that are decidable by a deterministic machine that
runs in time O(t(n)) and has oracle access to a sample from A

NTIME(t(n))A oracle languages that are decidable by a nondeterministic machine that
runs in time O(t(n)) and has oracle access to a sample from A

PCP(t(n), q(n))A
oracle languages that are decidable by a PCP verifier that runs in time
O(t(n)), makes O(q(n)) queries to a proof string, and has oracle access
to a sample from A

We introduce two incomparable questions, which concern the (im)possibility of “non-
trivial” PCPs for relativized nondeterministic computations and for relativized deterministic
computations.
1. PCPs for NTIME. For every oracle A it holds that NTIME(t(n))A ⊆ PCP(t(n), t(n))A

because a PCP verifier can read in full a witness provided in the PCP proof, and then
run the nondeterministic decider on the witness. We ask: for what oracles A can we
have any non-trivial improvement on this trivial inclusion? Namely, we consider PCP
verifiers that may make o(t(n)) queries to the PCP proof, which in general prevents the
PCP verifier from reading a witness from the PCP proof. We additionally allow the PCP
verifier to incur a polynomial blow-up in running time: it may run in time poly(t(n)),
and in particular can make poly(t(n)) queries to the sample from A. (The queries to the
PCP proof are still o(t(n)).) This amounts to asking:

Given an oracle A, is it the case that NTIME(t(n))A ⊆ PCP(poly(t(n)), o(t(n)))A?
We will say that an oracle A separates NTIME and PCP if the answer to this question is
negative.

2. PCPs for DTIME. For every oracle A it holds that DTIME(t(n))A ⊆ PCP(t(n), 0)A
because a PCP verifier can simply run the deterministic decider. We similarly ask: for
what oracles A can we have any non-trivial improvement on this trivial inclusion? Namely,

ITCS 2020



57:4 On the Impossibility of Probabilistic Proofs in Relativized Worlds

we consider PCP verifiers that run in time o(t(n)), which in general prevents a PCP
verifier from simply running the deterministic decider. We additionally allow the PCP
verifier to ask any number of queries to the proof or to the sample from A (as bounded
by its running time). This amounts to asking:

Given an oracle A, is it the case that DTIME(t(n))A ⊆ PCP(o(t(n)), o(t(n)))A?
We will say that an oracle A separates DTIME and PCP if the answer to this question is
negative.

What is known? Recall that, for unrelativized complexity classes, we have excellent PCPs.
All nondeterministic computations have a constant-query PCP verifier that runs in polylogar-
ithmic time: NTIME(t(n)) ⊆ PCP(poly(n, log t(n)), O(1)) [24, 19, 37]. In particular, PCPs
simultaneously provide exponential savings in witness length and in computation length.

However, for relativized complexity classes, known relativization results tell us very little.
The main relevant prior work is by Hartmanis et al. [31], who claim that, with probability
1 over a random function R : {0, 1}∗ → {0, 1}, NPR 6⊆ PCP(poly(n), logn)R. This provides
a negative result for the special case where A is a “random oracle”, t(n) is polynomially
bounded, and the PCP verifier makes O(logn) queries to the PCP proof. (In Section 1.4 we
discuss other related work.)

However, even for the case of a random oracle, our goal is to rule out any non-trivial
PCP for any nondeterministic computation (ruling out any savings in witness length), and
also for any deterministic computation (ruling out any savings in computation length, even
if there is no witness).

More generally, we are interested to answer these questions for oracles beyond random
oracles.

Some intuition. If the PCP verifier could “learn” the oracle in a small number of queries,
then we may be able to rely on known techniques to construct PCPs for unrelativized
computations because each oracle call could be replaced by a subroutine that simulates the
learned oracle. Conversely, if the oracle is “hard” to learn, then known techniques do not
seem to apply because it is not clear how they could deal with oracle calls, and so we may
expect that non-trivial PCPs in this case are impossible. Our goal will be to show that, for
hard-enough oracles, non-trivial PCPs are indeed impossible (regardless of the techniques
that could be used to construct the PCPs).

Beyond PCPs. There are several models of probabilistic proofs beyond PCPs, such as
interactive proofs (IPs) [28], interactive PCPs (IPCPs) [33], and interactive oracle proofs
(IOPs) [18, 39]. One may ask: why do we focus only on PCPs in our presentation? The
answer is that, for the goals of this paper, the PCP model is equivalent to the IOP model
(see Remark 6), and the IOP model subsumes the other models as special cases. So, for the
goals of this paper, it suffices to study PCPs. All results in Section 1.3 directly translate to
IPs, IPCPs, and IOPs.

1.3 Our results
We prove that, for several oracles of cryptographic interest, non-trivial PCPs for relativized
computations do not exist – this holds both for deterministic computations (DTIME) and for
nondeterministic computations (NTIME). Moreover, we establish several structural results
about “hard oracles” for PCPs. These initial results provide us with valuable insights into the
efficiency limitations of PCPs, and provide a useful starting point for further investigations
into this new direction.
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We now summarize our results in more detail.

(1) Random functions. We begin with the oracle that intuition suggests is the “hardest”
oracle for PCPs because it is “maximally unlearnable”, the random oracle. Namely, we
consider the oracle R = {Rn}n∈N where each Rn is the uniform distribution over all functions
Rn : {0, 1}n → {0, 1}.1 Our first result shows that the intuition is correct, i.e., we prove that
the oracle R separates DTIME and PCP and also separates NTIME and PCP.

I Theorem 2 (informal). Let R be the random oracle. For any t : N→ N,

DTIME(t)R 6⊆ PCP(o(t), o(t))R and NTIME(t)R 6⊆ PCP(poly(t), o(t))R .

The above theorem tells us that we cannot, in general, expect to construct PCPs for
cryptographic computations that involve random oracles, such as Fiat–Shamir signatures
[26]. The natural alternative would be to somehow instantiate the random oracle, and incur,
within the PCP, the cost of the hash function used in place of the random oracle. This
is indeed what Valiant [43] did in his construction of incrementally verifiable computation
(IVC): Valiant needed to construct a PCP for the computation of a SNARK verifier that
uses random oracles and, lacking suitable PCPs for this relativized computation, considered
instead the SNARK verifier obtained by instantiating the random oracle. Our Theorem 2
rules out PCPs for computations that use random oracles, and in particular gives strong
evidence that Valiant’s approach was in some sense justified.

One may argue that, while they give us useful insights, random oracles do not tell us much
about other oracles because they are too special in that they have no structure. We now
consider two oracles with structure: one with group structure and another with low-degree
structure.

(2) Random generic groups. Many group-based cryptographic primitives are stated (and
sometimes also analyzed) with respect to a generic group. This means that the primitive
relies only on the fact that a certain prime-order group is available but does not rely on
whether the group is instantiated, say, with a multiplicative subgroup of a finite field or an
elliptic curve group. This motivates the question of whether there are PCPs with respect
to a random (generic) group oracle, which is the oracle O = {On}n∈N where each On is a
random presentation of a group of order n. We prove that the answer is negative, i.e., that
the oracle O separates NTIME and PCP.

I Theorem 3 (informal). Let O be the random group oracle. For any t : N→ N,

NTIME(t)O 6⊆ PCP(poly(t), o(t))O .

The above theorem tells us that, in general, the representation of a group matters to a
PCP. For example, if we return to the iterative hash computation of Example 1 and set the
hash function to be the Pedersen hash function (a function that is collision resistant over
any group where extracting discrete logarithms is hard), we should pick a group tailored to
the PCP at hand. This is consistent with the fact that applied cryptographers working with
probabilistic proofs have had to carefully design group instantiations for such computations.

1 More generally, we consider the uniform distribution over functions Rn : {0, 1}n → {0, 1}`(n) for some
`(n).
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E.g., Jubjub [44] is an elliptic curve in the Zcash cryptocurrency that is used to instantiate
a Pedersen hash function in a way that is “friendly” to probabilistic proofs. Our theorem
provides strong evidence that these efforts are necessary.

(3) Random low-degree functions. Probabilistic proofs are typically achieved by relying
on low-degree functions that encode information associated to the computation being checked.
This fact extends to relativized complexity classes in the sense that results such as IP =
PSPACE algebrize with respect to every oracle [1]. In the language of this paper, this means
that for every oracle A, it holds that PSPACEA ⊆ IPÂ where Â is the low-degree extension
of A (each sample in A is replaced with some low-degree extension of it).

However in this paper we are interested to understand relativization results, not algebriz-
ation results, and the above discussion raises the question of what happens when we compare
DTIME/NTIME and PCP in a relativized world where the oracle is a random low-degree
function. Namely, we consider the oracle P = {Pn}n∈N where Pn is the uniform distribution
over all low-degree polynomials on n variables (for given field and degree parameters). Note
that P can be viewed as a low-degree extension of the random oracle R.

We prove that P separates NTIME and PCP.

I Theorem 4 (informal). Let P be the random low-degree oracle. For any t : N→ N,

NTIME(t)P 6⊆ PCP(poly(t), o(t))P .

Interlude on separation types. We have so far considered relativized complexity classes in
which a single machine is granted oracle access to a sample A : {0, 1}∗ → {0, 1}∗ from the
oracle A, and is required to “work” for the language defined by A with probability 1 over
the choice of A. For example, DTIME(t)A is the class of all oracle languages L = {LA}A∈A
for which there exists a deterministic machine M , which runs in time O(t(n)), such that

Pr
A←A

[
MA decides the language LA

]
= 1 .

We use analogous definitions for NTIME and PCP, as discussed in Section 2.4. We consider
these definitions to be the natural ones to use for the goals of this paper. We sometimes
refer to separations between these complexity classes as uniform separations, to distinguish
them from those below.

We could alternatively study separations where all machines are allowed to non-uniformly
depend on A, thereby granting all machines more power. In this direction, there are two
natural definitions.

Somewhere separation. We say that A provides a somewhere separation for DTIME and
PCP if there exists A ∈ A such that DTIME(t)A 6⊆ PCP(o(t), o(t))A. And similarly for
NTIME.
Almost-everywhere separation. We say that A provides an almost-everywhere separation
for DTIME and PCP if DTIME(t)A 6⊆ PCP(o(t), o(t))A holds with probability 1 over a
random choice of sample A← A. (Note that this leaves open the possibility that there is
no separation for a set of functions of measure 0 in A.) And similarly for NTIME.

An almost-everywhere separation is, in general, strictly stronger than an a somewhere
separation. However, the relation between these and uniform separations is not a priori clear.

We provide clarity on this comparison: in the full version we prove that uniform separations
are equivalent to somewhere separations, at least when comparing DTIME/NTIME and
PCP. Namely, we prove that, for any oracle A, DTIME(t)A 6⊆ PCP(o(t), o(t))A if and only
if there exists a function A in A such that DTIME(t)A 6⊆ PCP(o(t), o(t))A. And similarly
for NTIME.
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Almost-everywhere separation for random functions. For the random oracle R, we streng-
then the separations in Theorem 2 to almost-everywhere separations (via a different, longer
proof). We learn that the random oracle R is particularly “hard” for PCPs.

I Theorem 5 (informal). Let R be the random oracle. For any t : N→ N,

Pr
R←R

[
DTIME(t)R 6⊆ PCP(o(t), o(t))R

]
= 1

and Pr
R←R

[
NTIME(t)R 6⊆ PCP(poly(t), o(t))R

]
= 1 .

The above theorem also directly improves on the classical work of Hartmanis et al. [31],
who showed that PrR←R[ NPR 6⊆ PCP(poly(n), logn)R ] = 1. The improvement is that our
result rules out any non-trivial PCP for any nondeterministic computation, and also rules
out any non-trivial PCP for any deterministic computation.

We prove Theorem 5 by building on techniques of Chang et al. [22] that were used to
prove that PrR←R[ IPR 6= PSPACER ] = 1. These techniques rely on the fact that every
function R in R has many other functions in R that are close to it in all but finitely many
points.

We do not know how to extend these techniques to oracles such as the random group
oracle O or the random low-degree oracle P, because in these cases any two samples are far
from one another. In this light, we view the techniques that we use to prove Theorems 2
to 4 as more flexible. Moreover, we consider the separations proved in these theorems as
sufficient for our motivations.

Structural results: beyond R, O, P. Our results thus far concern separations for specific
oracles of interest. There are other oracles of interest that demand understanding (e.g.,
pseudorandom functions) and, more generally, the study of separations could benefit from
general statements. In Section 3 we prove several useful structural results about oracles that
are “hard” for PCPs.
1. Robustness. We prove that the separating property is “robust” with respect to small pertur-

bations. In more detail, we prove that for every oracle A that separates DTIME/NTIME
and PCP there exists a distance function ε such that any other oracle that is ε-close
to A also separates DTIME/NTIME and PCP. This statement can also be viewed as
telling us that the set of separating oracles is open with respect to statistical distance
(see Definition 8).
We can apply the above result to any of the separations that we have proved. For example,
if apply it to Theorem 2 then we learn that all oracles that are “almost” uniformly random
(close enough to the random oracle R) separate DTIME/NTIME and PCP. In fact, in
the full version, we use additional techniques to quantify (a bound on) this distance
threshold, proving that all oracles that are 1

3e -close to uniformly random separate NTIME
and PCP.

2. Monotonicity. We prove that the separating property is “monotone” in that, for every
oracle A that separates DTIME/NTIME and PCP, if another oracle B contains A as a
marginal distribution then B also separates DTIME/NTIME and PCP. I.e., B inherits
the hardness of A.
We rely on monotonicity in the proof of Theorem 4, where we reduce the problem
of showing separation for random low-degree polynomials to the problem of showing
separation for random multilinear polynomials (which we then solve).
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3. Conditioning. We prove that the separating property is preserved by (finite) conditioning.
Namely, given an oracle A and a function f : D → {0, 1}∗ over a finite domain D, we
denote by AD,f the oracle where samples are conditioned to equal f on D. We prove that
if A separates DTIME/NTIME and PCP then AD,f also separates DTIME/NTIME and
PCP.

I Remark 6 (beyond PCPs). Research in the last few years has shown that using known
PCPs is not the best choice for constructing efficient succinct arguments. Instead, it
is better to construct succinct arguments from IOPs [18, 39], which are a multi-round
generalization of PCPs that enables significant improvements in asymptotic and concrete
efficiency [15, 14, 13, 10, 12, 11, 17, 16, 40]. So the reader may rightfully ask: why did we
prove all of our results for PCPs instead of IOPs, if these latter are more powerful?

The answer is that all of our results extend, in a generic way, to IOPs as well. This
is because our results about PCPs only consider the PCP verifier’s time complexity and
query complexity, and IOPs do not provide any benefits over PCPs when only considering
these complexity measures. Indeed, any IOP can be “unrolled” into a PCP, possibly of
exponentially larger size, while preserving the verifier’s time complexity and query complexity,
regardless of oracle. In particular, for every oracle A, the complexity class IOP(T, q)A (oracle
languages for A decidable by an IOP verifier with time complexity T and query complexity q)
equals the complexity class PCP(T, q)A (oracle languages for A decidable by a PCP verifier
with time complexity T and query complexity q).

Finally, we additionally obtain analogous impossibility results for interactive proofs (IPs)
[28] and interactive PCPs (IPCPs) [33], as both are special cases of IOPs.

1.4 Related work

NP vs. PCP in relativized worlds. Fortnow [27] uses diagonalization to obtain a function
R : {0, 1}∗ → {0, 1} such that, for every k ∈ N, NPR 6⊆ PCP(poly(n), nk)R. Hartmanis et al.
[31] report a stronger result: with probability 1 over a random function R : {0, 1}∗ → {0, 1},
NPR 6⊆ PCP(poly(n), logn)R. We do not know of a version of [31] that contains a proof of
this result, so we cannot comment on the techniques used to prove it. As already discussed,
our Theorem 5 strengthens this latter result to hold for any non-trivial PCP.

Barriers for relativization and others. PCP constructions involve the use of non-relativizing
techniques. A line of works [27, 5, 1, 32, 7] has developed frameworks that seek to capture
the class of such techniques, along with other non-relativizing ones, within formal models, in
order to prove barriers for these techniques (e.g., to show that they do not suffice to resolve
the P vs. NP question or other difficult questions in complexity theory).

The emphasis and techniques in this work are complementary to the foregoing line of works.
Our emphasis is on establishing impossibility results for PCPs regardless of techniques

used, as opposed to proving barriers for the PCP techniques that are known today.
Moreover, the axiomatic approaches employed in some of the works cited above cannot

be used to even formulate questions that involve PCP verifiers with specific running times or
query complexities. E.g., they rely on Cobham’s axiomatization of the notion of polynomial
time [23], so cannot express exact running times. This means that we would not be able to
phrase questions about non-trivial PCPs (as we do in Section 1.2).
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1.5 Open problems
The separations that we prove in this paper are for “information-theoretic” oracles A. What
can be said about hard “cryptographic” oracles A? E.g., if A is a pseudo-random function,
then must it be the case that A separates DTIME/NTIME and PCP? What about if A is a
decryption oracle?

More generally, the holy grail in this research direction would be to distill a crisp, and
operationally useful, criterion that gives sufficient and necessary condition for an oracle A
that separates DTIME/NTIME and PCP.

2 Definitions

2.1 Oracles
An oracle is a collection of distributions over functions, with one distribution per input
length.

I Definition 7. An oracle with output length ` : N → N (with `(n) > 0 for every n ∈ N)
is a collection A = {An}n∈N where each An is a distribution over functions f : {0, 1}n →
{0, 1}`(n).

We can obtain a sample A : {0, 1}∗ → {0, 1}∗ from A by sampling a function fn from
each An and then setting A to equal fn for inputs of size n. We write “A← A” to denote
that A is a sample that follows this distribution, and “A ∈ A” to denote that A is in the
support of this distribution. We denote by supp(A) the support of A.

An oracle A induces a corresponding probability measure µA over the space of functions
from binary strings to binary strings: given a subset S ⊆ {0, 1}∗ and a set X of functions
from S to {0, 1}∗, µA(X) is the probability that the restriction to S of a sample A from A
belongs to X.

I Definition 8. Two oracles A = {An}n∈N and B = {Bn}n∈N have (statistical) distance
ε : N→ N if, for every n ∈ N, the statistical distance between the distributions An and Bn is
at most ε(n).

We write “g ← A≤n” to denote that g is a function on {0, 1}≤n that is sampled from the
distribution A≤n := A1 × · · · × An. We write “g ∈ A≤n” to denote that g is in the support
of this distribution, and denote by supp(A≤n) the support of A≤n.

I Definition 9. An oracle B contains an oracle A if for all n ∈ N it holds that
µB(supp(A≤n)) > 0 and, for every f ∈ supp(A≤n), µB(f) = µB(supp(A≤n)) · µA(f).

The definition below provides an operation to condition an oracle to take known values.

I Definition 10. Fix a subset D ⊆ {0, 1}∗ and function f : D → {0, 1}∗.
Given a function A : {0, 1}∗ → {0, 1}∗, we define AD,f : {0, 1}∗ → {0, 1}∗ to be the
function obtained by setting the values of A on D to f:

AD,f =
{
f(x) if x ∈ D
A(x) if x 6∈ D

.

Given an oracle A = {An}n∈N (such that there exists some A ∈ supp(A) agreeing with f

on D), we define AD,f = {AD,fn }n∈N to be the oracle where samples are conditioned to
equal f on D. In more detail, each distribution AD,fn equals the distribution An conditioned
on the event that the sampled function agrees with f on D ∩ {0, 1}n.
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2.2 Languages and oracle languages
A language L is a subset of {0, 1}∗. We denote by L(x) the bit that specifies whether a
string x ∈ {0, 1}∗ is in L (L(x) = 1) or not (L(x) = 0).

We also consider oracle languages because we study relativized complexity classes.

I Definition 11. Let U := {F : {0, 1}∗ → {0, 1}∗} be the set of all functions on binary
strings. An oracle language L is a collection of languages indexed by functions F ∈ U ,
namely, L = {LF }F∈U where each LF is a subset of {0, 1}∗.

A language L can be viewed as a special case of an oracle language {LF }F∈U where each
LF = L.

I Definition 12. Let ` : N→ N be a computable function. An oracle language L = {LF }F∈U
is `-bounded if, for all functions F ∈ U and inputs x ∈ {0, 1}∗, whether x ∈ LF only
depends on F ’s values at locations of size at most `(|x|). Namely, LF (x) = LF ′(x) for every
F ′ that agrees with F on the set

⋃
1≤i≤`(|x|){0, 1}i.

2.3 Machines that query oracles
We consider several notions of (Turing) machines that query oracles, as defined below.
Informally, an oracle machine is given black-box access to a function A : {0, 1}∗ → {0, 1}∗,
which the machine can query, any number of times, at any input of its choice. Each query
costs the machine a single computational step, regardless of the function A. In more detail,
we consider the following definition.

I Definition 13. An oracle machine M is a machine that has two special tapes called
oracle query tape and oracle answer tape, and two special states called Query and Answer.
The special tapes are in addition to the machine’s regular read/write tapes (of which there
can be one or multiple) and the special states are in addition to the machine’s regular start,
accept, reject, and other states. We denote by MA(x) the output of M on input x ∈ {0, 1}∗
and with access to oracle A : {0, 1}∗ → {0, 1}∗, which is computed as follows. The input x
is written in a designated read/write tape, and execution proceeds as normal except if the
machine enters the Query state. Let y ∈ {0, 1}∗ be the contents of the oracle query tape
when this happens. In the following step, the contents of the oracle answer tape are replaced
with A(y) ∈ {0, 1}∗, and the machine enters the Answer state.

Definition 13 considers deterministic oracle machines. In Section 2.4 we use these machines
to extend the notion of languages decidable in deterministic bounded time to work with
oracles.

We also use nondeterministic oracle machines, which are defined similarly as above except
that they can, in any computational step, choose to make a nondeterministic choice as in the
standard definition of a nondeterministic machine. In Section 2.4 we use these machines to
extend the notion of languages decidable in nondeterministic bounded time to work with
oracles.

We also use probabilistic oracle machines that use randomness and can make queries to a
proof string π ∈ {0, 1}∗ (in addition to the oracle A). These machines are defined similarly
as above except that they can, in any computational step, receive a bit of randomness, or
query a location of the proof string π via two dedicated tapes (a proof query tape and a proof
answer tape). In Section 2.4 we use these machines to extend the notion of probabilistic
proofs to work with oracles.
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Throughout this paper we call oracle machines simply “machines”, as it will be clear from
context when we are referring to an oracle machine (of one of the foregoing types).

I Remark 14. Oracle machines are often defined with one special tape, instead of two as
in Definition 13. The machine writes its query to the oracle in this one tape, and in the
following step the tape’s contents are replaced with the oracle’s answer. Note that, with one
oracle tape, the machine has to write each query “from scratch” because the prior query was
deleted. This difference is not significant, because writing each query from scratch is at most
quadratically slower than not having to do that (due to having two oracle tapes). However,
this difference matters when studying questions that are sensitive to such costs. Thus in this
paper we use machines with two oracle tapes.

2.4 Complexity classes with oracles
We define, for a given oracle A, the complexity classes DTIME(t)A, NTIME(t)A, and
PCP(t, q)A.

Deterministic time. A deterministic machine M is a D-decider for a language L if for
every x ∈ {0, 1}∗ it holds that M(x) = L(x). The complexity class DTIME(t) consists of all
languages L for which there exists a deterministic machine M that runs in time O(t(n)) and
is a D-decider for L. We now provide a definition that considers the more general case of
oracle languages that are decidable by deterministic machines with access to an oracle.

I Definition 15. Let A = {An}n∈N be an oracle and let t : N→ N be a function. DTIME(t)A
is the class of all oracle languages L = {LA}A∈A for which there exists a deterministic
machine M , which runs in time O(t(n)), such that

Pr
A←A

[
MA is a D-decider for LA

]
= 1 .

Nondeterministic time. A nondeterministic machine M is a ND-decider for a language L
if for every x ∈ {0, 1}∗ it holds that M(x) = L(x). The complexity class NTIME(t) consists
of all languages L for which there exists a nondeterministic machine M that runs in time
O(t(n)) and is a ND-decider for L. We now provide a definition that considers the more
general case of oracle languages that are decidable by nondeterministic machines with access
to an oracle.

I Definition 16. Let A = {An}n∈N be an oracle and let t : N→ N be a function. NTIME(t)A
is the class of all oracle languages L = {LA}A∈A for which there exists a nondeterministic
machine M , which runs in time O(t(n)), such that

Pr
A←A

[
MA is a ND-decider for LA

]
= 1 .

Probabilistic proofs. A probabilistic machine M is a PCP-verifier for a language L if: for
every x ∈ L there exists π ∈ {0, 1}∗ such that Pr[Mπ(x) = 1] ≥ 2/3; for every x 6∈ L and
π ∈ {0, 1}∗ it holds that Pr[Mπ(x) = 0] ≥ 2/3. The complexity class PCP(t, q) consists of
all languages L for which there exists a probabilistic machine M that runs in time O(t(n)),
makes O(q(n)) queries to the proof string, and is a PCP-verifier for L. Below we consider
the more general case of oracle languages that are decidable by probabilistic machines with
access to an oracle.
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I Definition 17. Let A = {An}n∈N be an oracle and let t, q : N→ N be functions. PCP(t, q)A
is the class of all oracle languages L = {LA}A∈A for which the there exists a probabilistic
machine M , which runs in time O(t(n)) and makes O(q(n)) queries to the proof string, such
that

Pr
A←A

[
MA is a PCP-verifier for LA

]
= 1 .

I Definition 18. Let L = {LA}A∈A be an oracle language. An oracle machine M fails
on an input x ∈ {0, 1}∗ and function A ∈ A for L if the following holds: if x ∈ LA then
Prr[MA,π(x; r) = 1] < 2

3 for every proof π; else if x 6∈ LA then Prr[MA,π(x; r) = 1] > 1
3 for

some proof π.

We conclude this section with several technical remarks.
I Remark 19 (bounded oracle languages). For every oracle A and oracle language L in the
complexity class DTIME(t)A, NTIME(t)A, or PCP(t, q)A, there exists a O(t)-bounded oracle
language L∗ such that for every oracle A ∈ A it holds that LA = L∗A. The language L∗ is
naturally defined by L’s DTIMEA decider, NTIMEA decider, or PCPA verifier. In particular,
we can assume without loss of generality that oracle languages in these complexity classes
are O(t)-bounded.
I Remark 20 (index over A instead of U). We sometimes define an oracle language L in
DTIME(t)A or in NTIME(t)A only for functions in (the support of) an oracle A. In this
case it is understood that LF is defined by the DTIMEA or NTIMEA decider of {LA}A∈A
for all functions F ∈ U \ A.
I Remark 21 (relativized classes for a single function). Definitions 15 to 17 capture, as a special
case, relativized classes where the oracle is a single function A : {0, 1}∗ → {0, 1}∗ rather than
a distribution over functions (let A be the oracle that puts all the probability mass on A).
In this case the relativized classes can be “collapsed” to sets of languages rather than sets of
oracle languages.

3 Structural properties of separation

We prove structural properties about the non-containments DTIME(t)A 6⊆ PCP(T, q)A
(Theorem 22) and NTIME(t)A 6⊆ PCP(T, q)A (Theorem 23). We use these in later sections.

I Theorem 22 (DTIME & PCP). Let t, T : N→ N be time bound functions and q : N→ N a
query bound function. Let A be an oracle such that DTIME(t)A 6⊆ PCP(T, q)A. Then the
following holds.
1. Robustness: there exists a positive function ε : N→ R (ε(n) > 0 for every n ∈ N) such

that, for every oracle B that is ε-close to A, it also holds that DTIME(t)B 6⊆ PCP(T, q)B.
2. Monotonicity: for every oracle B that contains A, it also holds that DTIME(t)B 6⊆

PCP(T, q)B.
3. Conditioning: for every function f : D → {0, 1}∗, it also holds that DTIME(t)AD,f 6⊆

PCP(T, q)AD,f .

I Theorem 23 (NTIME & PCP). Theorem 22 also holds with NTIME(t) in place of
DTIME(t).

The above theorems are direct corollaries of general properties that we prove, as we now
explain.
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For the rest of this section we fix: (a) an oracle language L that is `-bounded for some
` : N→ N; (b) a time bound function T : N→ N; (c) a query bound function q : N→ N; (d)
an oracle A.

We shall provide an equivalent formulation for the condition “L 6∈ PCP(T, q)A ” (Claim 26),
and then use it to derive several general properties about this condition: robustness
(Lemma 27), monotonicity (Lemma 28), and conditioning (Lemma 29).

By taking L to be an oracle language in either DTIME(t)A or NTIME(t)A (which implies
that the oracle language is O(t)-bounded), we can then derive the corresponding property
in Theorem 22 or Theorem 23 respectively. We are left to state and prove the claim and
lemmas mentioned above.

I Definition 24. We denote by MT,q the set of probabilistic oracle machines that, on inputs
of length n, read O(q(n)) proof bits and run in O(T (n)) time.

I Definition 25. For every n ∈ N, s(n) := max{`(n), 2T (n)} and Sn :=
⋃

1≤i≤s(n){0, 1}i.

B Claim 26. The following two conditions are equivalent:
1. L 6∈ PCP(T, q)A.
2. For every machine M ∈ MT,q there exist an input x ∈ {0, 1}∗ and function f : S|x| →
{0, 1}∗ with µA(f) > 0 such that, for every function F : {0, 1}∗ → {0, 1}∗ that agrees
with f on S|x|, M fails on input x and function F for L. (The function F need not be in
supp(A).)

Proof. We separately consider the two directions.
(1) ⇒ (2). If L 6∈ PCP(T, q)A, then for every M ∈ MT,q there exists a function

F ∈ supp(A) such that MF fails to verify LF on some input x. Consider the function
f : S|x| → {0, 1}∗ obtained by restricting F to S|x|. Since the running time of MF on input x
is at most O(T (|x|)), it cannot distinguish between having access to the function F and access
to any other function F ′ that agrees with f. Moreover, since L is `-bounded, LF (x) = LF ′(x)
for every F ′ that agrees with f. Therefore, MF ′(x) fails for every F ′ that agrees with f. The
set of all such oracles has positive measure in A (i.e., µA(f) > 0), because any finite prefix of
any function in A has positive measure.

(2) ⇒ (1). The condition directly implies that, for every M ∈ MT,q, MA is not
a PCP-verifier for LA for a set of functions A with positive measure in A. Therefore
L 6∈ PCP(T, q)A. J

I Lemma 27 (robustness). If L 6∈ PCP(T, q)A, then there exists a positive function ε : N→ R
(ε(n) > 0 for every n ∈ N) such that, for every oracle B that is ε-close to A, L 6∈ PCP(T, q)B.

Proof. For every n ∈ N, define Xn := {f : Sn → {0, 1}∗ | µA(f) > 0} to be the set of all
functions over Sn that have positive measure in A. We define the distance function as
ε(n) := minf∈Xn

µA(f).
By Claim 26, from L 6∈ PCP(T, q)A we deduce that for any M ∈ MT,q there exist

an input x and function f : S|x| → {0, 1}∗ with µA(f) > 0 such that, for every function
F : {0, 1}∗ → {0, 1}∗ that agrees with f on S|x|, M fails on input x and function F for L.
Since the oracle B is ε-close to A we deduce, from the definition of ε, that µB(f) > 0 as well.

Since the above holds for everyM ∈MT,q, by Claim 26 we conclude that L 6∈ PCP(T, q)B.
J

I Lemma 28 (monotonicity). If L 6∈ PCP(T, q)A, then, for every oracle B that contains A,
it holds that L 6∈ PCP(T, q)B.
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Proof. From Claim 26, since L 6∈ PCP(T, q)A, we know that for every M ∈ MT,q there
exist an input x and function f : S|x| → {0, 1}∗ with µA(f) > 0 such that, for every function
F : {0, 1}∗ → {0, 1}∗ that agrees with f on S|x|, M fails on input x and function F for L.
Due to containment (Definition 9), since f ∈ supp(A≤s(|x|)), we deduce that

µB(f) = µB
(
supp(A≤s(|x|))

)
· µA(f) > 0 .

Since the above holds for everyM ∈MT,q, by Claim 26 we conclude that L 6∈ PCP(T, q)B. J

I Lemma 29 (conditioning). Let I ⊆ N be finite, and set D :=
⋃
i∈I{0, 1}i. If L 6∈

PCP(T, q)A, then there exists a function g : D → {0, 1}∗ such that, letting Lg := {Lg
F }F∈U

where each Lg
F := LFD,g , for every f : D → {0, 1}∗ in the support of A it holds that Lg 6∈

PCP(T, q)AD,f .

Proof. Consider the following set of functions over D:

GD,A := {g : D → {0, 1}∗ | ∃A ∈ supp(A) that agrees with g on D} .

First, we argue that, since L 6∈ PCP(T, q)A, there exists g ∈ GD,A such that L 6∈
PCP(T, q)AD,g . Suppose by way of contradiction that L ∈ PCP(T, q)AD,g for every g ∈ GD,A.
Then every oracle AD,g has a PCP-verifier Mg ∈ MT,q for L. We use the PCP-verifiers
{Mg}g∈GD,A to construct a PCP-verifierM that shows that L ∈ PCP(T, q)A (a contradiction):
MA,π(x) first queries all locations in D to identify which g ∈ GD,A is consistent with A;
then it rules according to MA,π

g (x). By construction, the machine M is in MT,q because
querying all locations in D takes a constant amount of time and involves a constant number
of queries. (The size of D is a finite constant.)

Next, we use L 6∈ PCP(T, q)AD,g to argue that Lg 6∈ PCP(T, q)AD,f . By definition of
Lg, for every F ∈ supp(AD,g) we have LF = Lg

FD,f . Moreover, since D is the union of
binary strings of certain lengths, there is a bijection between functions F ∈ supp(AD,g)
and functions FD,f ∈ supp(AD,f), and µAD,g(F ) = µAD,f(FD,f). This means that if the
oracle AD,f has a PCP-verifier Mf ∈MT,q for Lg, then we can construct a machine Mg that,
relative to the oracle AD,g, is a PCP-verifier for L: MA,π

g (x) runs Mf(x) except that Mg

answers any query y ∈ D from Mf with f(y) instead of A(y). One can verify that Mg ∈MT,q,
which means that L ∈ PCP(T, q)AD,g , a contradiction. J

4 Separations for random functions

We define the notion of a random oracle and then state our separation results for it.

I Definition 30. A random oracle with output length ` : N→ N is the oracle R = {Rn}n∈N
where each Rn is the uniform distribution over functions f : {0, 1}n → {0, 1}`(n).

The probability measure of R is uniform, in the sense that, for any choice of distinct
binary strings x1, . . . , xm of lengths n1, . . . , nm and choice of binary strings b1, . . . , bm of
lengths `(n1), . . . , `(nm), the set S := {A |A(x1) = b1, . . . , A(xm) = bm} has measure
µR(S) = 1/(Πm

i=12`(ni)).

I Theorem 31. Let R be the random oracle with output length ` : N→ N.
1. For any function t : N→ N with t(n) ∈ Ω(n),

NTIME(t)R 6⊆ PCP(poly(t), o(t))R .

2. For any function t : N→ N with t(n) ∈ Ω(n)
⋂
o(2n),

DTIME(t)R 6⊆ PCP(o(t), o(t))R .
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I Remark 32. In Section 7 we prove a stronger (almost-everywhere) separation result. We
provide a standalone proof of Theorem 31 because the techniques used to prove it can be
modified to apply to other oracles. We do not know how to prove stronger separations for
other oracles.

4.1 Proof of Part 1 of Theorem 31
We exhibit an oracle language L that is in NTIME(t)R but not in PCP(poly(t), o(t))R.

Oracle language. Let ek,i denote the dlog ke-bit string that represents the index i ∈ [k].
The oracle language L = {LR}R∈R is defined as follows:

LR :=

0n

∣∣∣∣∣∣∣∣∣ ∃w ∈ {0, 1}
t(n) s.t.

R(w‖et(n),1)1 = 0
R(w‖et(n),2)1 = 0

...

R(w‖et(n),t(n))1 = 0

 .

Note that LR does not contain any string that is not all-zeros. Strings of the form 0n may or
may not be in LR, depending on the answers from R.

In NTIME. We argue that L is in NTIME(t)R. Consider the nondeterministic machine
that, for inputs of the form 0n, expects as nondeterministic witness a string w ∈ {0, 1}t(n)

and checks, via t(n) calls to R, if R returns a string whose first bit is zero on input w‖et(n),i
for every i ∈ {1, . . . , t(n)}. The machine rejects any input not of the form 0n. This machine,
for any given R, decides the language LR on every input. The machine’s running time is
O(t(n)): writing the first query costs O(t(n)) steps and updating the query tape with each
new subsequent query costs O(1) steps.

Not in PCP. We argue that L is not in PCP(poly(t), o(t))R. Suppose by way of contradic-
tion that L has a PCP-verifier M ∈Mpoly(t),o(t), and denote by T (n) the running time of
M on input of size n. For every n ∈ N, define the domain Sn :=

⋃
1≤i≤T (n){0, 1}i and the

following set Xn of functions over Sn:

Xn =

f : Sn → {0, 1}∗
∣∣∣∣∣∣
∃ !w ∈ {0, 1}t(n) such that both conditions below hold
• ∀i ∈ [t], f(x‖et,i) = 01`(t+dlog te)−1

• ∀y 6∈ {w‖et,j}j∈[t], f(y) = 1`(|y|)

 .

Note that, for every n ∈ N, every function f ∈ Xn has measure µR({f}) > 0.
We also use 1 to denote the all-one function that on an input z ∈ {0, 1}∗ returns 1`(|z|).
We derive a contradiction from the following two (contradicting) statements.
Lemma 33: For every n ∈ N and function R agreeing with some f ∈ Xn there exists
a proof π such that M1,π(0n) queries 1 at some “witness location” w‖et(n),i of R with
probability at least 1

3 .
Lemma 34: For every n ∈ N there exists a function R agreeing with some f ∈ Xn such
that for any proof π it holds that M1,π(0n) queries 1 at some “witness location” w‖et(n),i
of R with probability only o(1).

We are left to prove the lemmas. We abbreviate t(n) with t as the choice of n is clear from
context.
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I Lemma 33. If M ∈Mpoly(t),o(t) is a PCP-verifier for L, then for every n ∈ N and function
R agreeing with some f ∈ Xn there exists a proof π s.t.

Pr
r

[
M1,π(0n; r) queries 1 at some w‖et,i s.t. R(w‖et,i)1 = 0

]
>

1
3 .

Proof. By definition of Xn, 0n ∈ LR for any R agreeing with some f ∈ Xn. Therefore, for
every such R, there exists a proof π such that MR,π(0n) accepts with probability at least
2
3 . We also note that since MR,π(0n) has running time T (n), it cannot make oracle queries
outside the set Sn.

We now argue that for every R agreeing with some f ∈ Xn there exists a proof π such
that

Pr
r

[
MR,π(0n; r) queries R at some w‖et,i s.t. R(w‖et,i) = 0

]
>

1
3 . (1)

Suppose Equation (1) does not hold. Then more than 2
3 of the time MR,π(0n; r) does not

query the witness bits. If we change R slightly by flipping the first bit of R(w‖et,i) from 0 to 1,
and denote the new oracle by Ri, then 0n 6∈ LRi

. However, the machine MRi,π(0n; r) cannot
detect the change in more than 2

3 of the time. So MRi,π(0n; r) accepts with probability at
least 1

3 . Moreover, MR′i,π(0n; r) makes the same mistake for any function R′i that agrees
with Ri on Sn. This conclusion contradicts the fact that M verifies LR′

i
on 0n for all such

functions R′i. So Equation (1) holds.
Furthermore, if w‖et,i is the first query made by MR,π(0n; r) such that R(w‖et,i) =

01`(t+dlog te)−1, then M1,π(0n; r) would also make the query w‖et,i. This is because M has
the same view in the two cases at the time it makes the query w‖et,i. The lemma follows. J

I Lemma 34. If M ∈Mpoly(t),o(t) is a PCP-verifier for L, then for every n ∈ N there exists
R agreeing with some f ∈ Xn such that for every proof π ∈ {0, 1}∗,

Pr
r

[
M1,π(0n; r) queries 1 at some w‖et,i s.t. R(w‖et,i)1 = 0

]
∈ o(1) .

Proof. For the sake of contradiction, suppose there exists some n ∈ N such that for every R
agreeing with some f ∈ Xn there exists a proof π for which the above probability is Ω(1).
Then, by averaging, there exists some randomness r∗ such that, for a Ω(1)-fraction of the
functions R agreeing with some f ∈ Xn, there exists a proof π such that M1,π(0n; r∗) queries
some w‖et,i s.t. R(w‖et,i)1 = 0. So across all possible proofs, M1,·(0n; r∗) need to make at
least Ω(|Xn|) = Ω(2t) distinct queries.

However, since the randomness is fixed and M is in Mpoly(t),o(t), M1,·(0n; r∗) can only
make at most 2o(t) · poly(t) distinct queries, which leads to a contradiction because Ω(2t)�
2o(t) · poly(t). J

4.2 Proof of Part 2 of Theorem 31
We exhibit an oracle language L that is in DTIME(t)R but not in PCP(o(t), o(t))R.

Oracle language. Let un,i denote the n-bit string whose i-th bit is 1 and all other bits are
zero. The oracle language L = {LR}R∈R is defined as follows:

LR :=
{

(x, y) ∈ {0, 1}n × {0, 1}n
∣∣∣∣F t(n)

n

R (x) = y

}
,

where FR(x) := R(x⊕ un,1)1‖R(x⊕ un,2)1‖ . . . ‖R(x⊕ un,n)1.
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In DTIME. We argue that L is in DTIME(t)R. Consider the deterministic machine that
on input (x, y): (a) copies x0 := x to the query tape; (b) for j ∈ {1, . . . , t(n)/n}, calls R on
inputs {xj−1 ⊕ un,i}i∈[n] to get xj := FR(xj−1), and copies xj to the query tape; (c) accepts
if y = xt(n)/n. Each of the t(n)/n iterations takes time O(n), so the running time of the
machine is O(t(n)).

Not in PCP. We argue that L is not in PCP(o(t), o(t))R. We begin with a combinatorial
claim and some notation.

Recall that the entropy function H : [0, 1]→ [0, 1] is H(z) := −z log2(z)− (1− z) log2(1−
z). For every ε ∈

(
0, 1

2
)
and n ∈ N, there exist a list Cε,n = {a0, a1, . . . , ak} of

Ω
(√
n2(1−H(ε))n) distinct n-bit binary strings such that the relative hamming distance

between any two distinct strings in Cε,n is at least εn. These binary strings are the code-
words obtained by the greedy approach of constructing a code in {0, 1}n with minimum
distance εn.
Choose ε∗ ∈

(
0, 1

2
)
such that for all large enough n ∈ N it holds that |Cε∗,n| > t(n)

n .
Define the domain Sn := ∪1≤i≤t(n){0, 1}i and a set of functions Xn on Sn:

Xn := {g : Sn → {0, 1}∗ | ∀ ai ∈ Cε∗,n, ai+1 = g(ai ⊕ un,1)1‖ · · · ‖g(ai ⊕ un,n)1} .

Therefore for every g ∈ Xn and ai ∈ Cε∗,n it holds that Fg(ai) = ai+1, and F
t(n)

n
g (a0) =

at(n)/n.
For every i ∈ [k] and g ∈ Xn, define the function g(i) : Sn → {0, 1}∗ to be

g(i)(z) :=
{

(a0)j‖0`(|z|)−1 if z = ai ⊕ un,j for some j ∈ [n]
g(z) if z 6= ai ⊕ un,j for every j ∈ [n]

.

Therefore for every i′ 6= i and ai′ ∈ Cε∗,n, Fg(i)(ai′) = ai′+1, and Fg(i)(ai) = a0.
We argue that any PCP-verifier M for L must have running time Ω(t(n)).

Since M is a PCP-verifier for L, for every n ∈ N and every g ∈ Xn there exists a proof
π such that Mg,π(a0, at(n)/n) accepts with probability at least 2

3 . Then, via Lemma 35
below, we deduce that for every n large enough there exists a randomness r such that
Mg,π(a0, at(n)/n; r) makes at least t(n)

3n queries of the form F ig(a0) for some i ∈ [ t(n)
n ].

Since the relative hamming distance between each pair of queries F ig(a0) and F jg (a0) is at
least εn, the running time of Mg,π(a0, at(n)/n; r) is at least t(n)

3n · εn ∈ Ω(t(n)).
We have shown that any PCP-verifier for L has running time in Ω(t(n)), and so L 6∈
PCP(o(t), o(t))R.

I Lemma 35. If M is a PCP-verifier for L then, for every large enough n ∈ N and every
g ∈ Xε∗,n, there exists a proof π and randomness r such that Mg,π(a0, at(n)/n; r) makes at
least t(n)

3n queries of the form F ig(a0) for some i ∈ [ t(n)
n ].

Proof. Since M is a PCP-verifier for L, for large enough n, (a0, at(n)/n) ∈ LR for every
R that agrees with some g ∈ Xn. So for every g ∈ Xn there exists a proof π such that
Mg,π(a0, at(n)/n) accepts with probability at least 2

3 . If we change one assignment of g to
obtain g(i), then F t(n)/n

g(i) (a0) 6= at(n)/n. So Mg(i),π(a0, at(n)/n) should accept with probability
at most 1

3 . This implies that for at least 1
3 fraction of randomness r, Mg,π(a0, at(n)/n; r)

queries ai. By averaging, there exists r∗ such that Mg,π(a0, at(n)/n; r∗) makes t(n)
3n distinct

queries of the form F ig(a0). J
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5 Separation for random low-degree functions

We define the notion of a random low-degree oracle and then state our separation result for it.

I Definition 36. Let q be a prime power, Fq the finite field of size q, and d ∈ N a degree
bound. The random oracle over Fq with degree d is the oracle P [q, d] = {Pn}n∈N where
each Pn is the uniform distribution over polynomials f : Fnq → Fq of degree at most d in each
variable. (In particular, P[2, 1] equals the random oracle R from Definition 30.)

I Theorem 37. For any function t : N → N with t(n) ∈ Ω(n), prime power q ∈ N, and
degree bound d ∈ N

NTIME(t)P[q,d] 6⊆ PCP(poly(t), o(t))P[q,d] .

Proof. We first focus on the special case of d = 1, i.e., the case of random multilinear
polynomials. We show in Lemma 38 that P[q, 1] separates NTIME and PCP. Next, we
simply observe that for any field Fq and degree d, the low degree random oracle P[q, d]
contains the multilinear random oracle P [q, 1]. Therefore, by Lemma 28, P [q, d] also separates
NTIME and PCP. J

Now we prove the separation for the special case of d = 1.

I Lemma 38. For any function t : N→ N with t(n) ∈ Ω(n), and any prime power q ∈ N,

NTIME(t)P[q,1] 6⊆ PCP(poly(t), o(t))P[q,1] .

Proof. We exhibit L that is in NTIME(t)P[q,1] but not in PCP(poly(t), o(t))P[q,1].
Let ek,i denote the vector in Fkq that has 1 in the i-th coordinate and 0 everywhere else.

Let L = {LP }P∈P[q,1] be the oracle language where

LP :=

0n

∣∣∣∣∣∣∣∣∣ ∃x ∈ Ft(n)
q s.t. P (x) = 1 and

P (x+ et(n),1) = 0
P (x+ et(n),2) = 0

...

P (x+ et(n),t(n)) = 0

 .

It’s clear that LP is in NTIME(t)P for every P ∈ P[q, 1]. Let q : N→ N be some superpoly-
nomial function. For every n ∈ N, we define the following set of functions over the domain
Sn = {Fiq | i ≤ q(t(n))}.

Xn =
{
f : Sn → Fq

∣∣∣∣∣ ∀x ∈ Ft(n)
q , f(x) =

∏t(n)
i=1 (bi − xi) where b ∈ Ft(n)

q

∀x ∈ Sn \ Ft(n)
q , f(x) = 0

}
.

Note for every n ∈ N, every function f ∈ Xn has its measure µP[q,1]({f}) > 0.
We also use 0 to denote the all zero function.
Suppose by way of contradiction that L has a PCP-verifier M ∈Mt. Use T (n) to denote

the running time of M on input of size n. Note that T (n) ∈ poly(t(n)), so there exists a
number n∗ ∈ N such that ∀n ≥ n∗, q(t(n)) ≥ T (n). We derive a contradiction from the
following two steps. First in Claim 39, we show that for every n ≥ n∗ and oracle polynomial P
agreeing with some f ∈ Xn there exists some proof π such that the PCP-verifier M0,π, which
has oracle access to 0 and π, queries 0 at some x satisfying P (x) 6= 0 with probability at least
1
3 . Next, in Claim 40, we show that for every n ≥ n∗ there exists some oracle polynomial



A. Chiesa and S. Liu 57:19

P agreeing with some f ∈ Xn such that for any proof π ∈ {0, 1}∗, the PCP-verifier M0,π,
which has oracle access to 0 and π, queries P at some x satisfying P (x) 6= 0 with probability
only o(1). These two statements are in contradiction. Thus L does not have a PCP-verifier.
Therefore P[q, 1] separates NTIME and PCP. J

In the proofs of the two lemmas we abbreviate t(n) with t whenever the choice of n is
clear from the context.

B Claim 39. If M ∈ Mt is the PCP-verifier for L, then for every n ≥ n∗ and oracle
polynomial P agreeing with some f ∈ Xn, there exists π s.t.

Pr
r

[M0,π(0n; r) queries 0 at some y ∈ Ft(n)
q s.t. P (y) 6= 0] > 1

3 .

Proof. We first observe that for every function f(x) =
∏t(n)
i=1 (bi − xi) in Xn, the element

y = (b1−1)‖ . . . ‖(bt(n)−1) ∈ Ft(n)
q satisfies f(y) = 1 and f(y+et(n),i) = 0 for every i ∈ [t(n)].

Therefore for every P agreeing with f over Ft(n)
q , 0n ∈ LP . As a result, for every such P ,

there exists some proof π ∈ {0, 1}∗ such that MP,π(0n) accepts with probability at least 2
3 .

We also note that since MP,π(0n) has running time T (n) ≤ q(t(n)), M cannot make oracle
queries outside the set Sn.

For every P agreeing with some f ∈ Xn, use πP to denote the accepting proof for P . We
additionally note that for every oracle P ′ agreeing with 0 over Sn, it holds that 0n 6∈ LP ′ .
So for any πP , MP ′,πP (0n) accepts with probability at most 1

3 .
This implies that

Pr
r

[MP,πP (0n; r) queries P at x s.t. P (x) 6= 0(x) = 0] ≥ 1
3 . (2)

Let y be the first oracle query made by MP,πP (0n; r) such that P (y) 6= 0(y) = 0. If we
replace P with 0, M0,πP (0n; r) would still make the oracle query y. We deduce that

Pr
r

[M0,πP (0n; r) queries P0 at x s.t. P (x) 6= 0(x) = 0] ≥ 1
3 . C

B Claim 40. If M ∈Mt is the PCP-verifier for L, there exists P agreeing with some f ∈ Xn

s.t. for all π ∈ {0, 1}∗,

Pr
r

[M0,π(0n; r) queries 0 at x s.t. P (x) 6= 0] ∈ o (1) .

Proof. Suppose for every P agreeing with some f ∈ Xn there exists a proof π that the
aforementioned probability is Ω(1). Then, by an averaging argument, there exists some
randomness r∗ such that for Ω (1) fraction of oracles P agreeing with some f ∈ Xn, there
exists π s.t. M0,π(0n; r∗) queries some x s.t. P (x) 6= 0. Additionally, for any x ∈ Ft(n)

q , there
are exactly (q− 1)t(n) multilinear functions f ∈ Xn such that f(x) 6= 0. So across all possible
proofs, M0,·(0n; r∗) need to make at least Ω(|Xn| /(q − 1)tpoly(t)) = Ω((q/(q − 1))t) ∈
Ω(exp(t)) distinct queries.

However, since the randomness is fixed and M is in Mt, M0,·(0n; r∗) can make at
most 2o((t) · poly(t) distinct queries. However, Ω(exp(t)) � 2o(t) · poly(t), so we derive a
contradiction. C
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6 Separation for random generic groups

We present the definition of the generic group model (GGM) [38, 42, 21, 35, 36].

I Definition 41 (groups and their representations). An abelian group of order p is a pair
G = (S,+) where S is a set of size p and +: S × S → S is a function that satisfies the
axioms of a group operation. We denote by 0 the identity of G. A representation of G is
an injective function σ : S → {0, 1}dlog2 pe, and its inverse σ−1 : {0, 1}dlog2 pe → S maps each
image σ(g) ∈ {0, 1}dlog2 pe to its pre-image g ∈ S and each string s ∈ {0, 1}dlog2 pe \ σ(S) to
the identity 0 ∈ S.

I Definition 42 (group oracles). Let G be a group of order p, and σ a representation of
G. The group oracle corresponding to (G, σ) is the function O : {0, 1}4dlog2 pe → {0, 1}dlog2 pe

such that O(ca, cb, a, b) = σ(ca × σ−1(a)+cb × σ−1(b)). To obtain the identity element of the
group simply query O(0dlog2 pe, 0dlog2 pe, a, b) = σ(0).

I Definition 43. The random group oracle is the oracle O = {Op}p∈N where each Op is
the uniform distribution over all group oracles for groups of size p. Namely, a sample from Op
is obtained as follows: sample a random group G of order p, sample a random representation
σ of G, and output the group oracle O : {0, 1}4dlog2 pe → {0, 1}dlog2 pe corresponding to (G, σ).

I Theorem 44. In the generic group model, t : N→ N with t(n) ∈ Ω(n),

NTIME(t)O 6⊆ PCP(poly(t), o(t))O .

Proof. We exhibit an oracle language L that is in NTIME(t)O but not in PCP(poly(t), o(t))O.
Oracle language.

Define p(n) to be the largest prime number no larger than 2t(n), so we know that
p(n) ∈ (2t(n)−1, 2t(n)]. Let L = {LO}O∈O be the oracle language where

LO :=
{

0n
∣∣∣ ∃x ∈ {0, 1}t(n), x < p(n)− 1, s.t. σ−1(x) + σ−1(x⊕t(n)) = 0

}
,

where x⊕t(n) is the string identical to x everywhere except for the t(n)-th bit.
In NTIME. We note that numbers in [p(n)] can be represented by binary strings of length
Θ(t(n)). So it’s clear that LO is in NTIME(t)O for every O ∈ O.
Not in PCP. We argue that L is not in PCP(poly(t), o(t))O. Consider an oracle O s.t.
0n 6∈ LO. We show that for any PCP-verifier M ∈Mt, if MO is correct on 0n then we can
construct another oracle O′ for which MO′ is not correct on 0n (Lemma 45). Therefore
there exists some O∗ for which MO∗ is not correct on 0n. Additionally, the language L is by
definition 4t-bounded and the running time of M is bounded by 2t(n). Since MO∗ fails on
0n, for every function F that agrees with O∗ on

⋃
1≤i≤2t(n){0, 1}i, MF also fails on 0n. So

by Claim 26, we conclude that L 6∈ PCP(poly(t), o(t))O. J

I Lemma 45. For any PCP-verifier M ∈Mt and any oracle O ∈ O such that 0n 6∈ LO, if
MO is correct on 0n then there exists O′ for which MO′ is not correct on 0n.

Proof. Use σ to denote O’s representation of the order p(n) group. Define the set of pairs of
strings

I(O) := {(u, v) ∈ ({0, 1}t(n))2 | u, v < p(n)− 1, σ−1(u) + σ−1(v⊕t(n)) = 0} .
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Note that if we use O(u,v) to denote the oracle identical to O except for its permutation
function for the group of order p(n), which is defined as

σ(u,v)(g) :=


u if σ(g) = v

v if σ(g) = u

σ(g) otherwise
.

Note that for any (u, v) ∈ I(O), we have (σ(u,v))−1(v) + (σ(u,v))−1(v⊕t(n)) = 0. So 0n ∈
LO(u,v) .

Consider the pairs of strings (u, v) ∈ I(O) for which MO queries all of (u, v) with “low”
probability:

X?(O) :=

(u, v) ∈ I(O)

∣∣∣∣∣∣ for i = u, v,
∑

π∈{0,1}∗
Pr
r

[
MO,π(0n; r) queries O at i
or gets back i from O

]
<

1
6

 .

We argue that |X?(O)| > 0, and for every (u, v) ∈ X?(O) it holds that MO(u,v) is not correct
on 0n.

Consider the set of strings u ∈ {0, 1}dlog2 p(n)e, u < p(n)− 1 that MO queries with “high”
probability:

Xc(O) :=

u ∈ {0, 1}t(n)

∣∣∣∣∣∣ u < p(n)− 1 ,
∑

π∈{0,1}∗
Pr
r

[
MO,π(0n; r) queries O at u
or gets back u from O

]
≥ 1

6

 .

Observe that

|Xc(O)| ≤
(
c · t(n)

)
·
(

2o(t(n)) · poly(t(n))
)

= 2o(t(n)) . (3)

This is because, in any given execution, M can make at most poly(t(n)) queries to O (also
can get at most poly(t(n)) symbols from O) and o(t(n)) queries to the given proof string,
which means that∑

u∈{0,1}t(n), u<p(n)−1

∑
π∈{0,1}∗

Pr
r

[
MO,π(0n; r) queries O at u
or gets back u from O

]
≤ 2o(t(n))poly(t(n)) .

We deduce that |X?(O)| is large:

|X?(O)| ≥ (p(n)− 3)− 2 · 2|Xc(O)| = 2t(n) − 2o(t(n)) .

Next, for every (u, v) ∈ X?(O) it holds that

∀π ∈ {0, 1}∗, for i = u, v, Pr
r

[
MO,π(0n; r) queries O at i
or gets back i from O

]
<

1
6 .

Therefore,

∀π ∈ {0, 1}∗, Pr
r

[MO,π(0n; r) queries O at u or v]

≤
∑
i=u,v

Pr
r

[
MO,π(0n; r) queries O at i
or gets back i from O

]
< 2 · 1

6 = 1
3 .

This means that for every (u, v) ∈ X?(O) it holds that M cannot distinguish between O and
Ou,v with probability greater than or equal to 1

3 .
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We know thatMO is correct on 0n, namely, for every proof string π it holds thatMO,π(0n)
accepts with probability no more than 1/3. We also know that for every (u, v) ∈ I(O) it
holds that 0n is in LO(u,v) . But the foregoing argument tells us that for every (u, v) ∈ X?(O)
it holds that for every proof string π we have that MO(u,v),π(0n) accepts with probability
less than 1/3 + 1/3 = 2/3. We deduce that, for every (u, v) ∈ X?(O), MO(u,v) is not correct
on 0n. J

7 Almost-everywhere separation for random functions

We strengthen the separation for random functions in Theorem 31. The difference is that
now the choice of machine M , which is the candidate PCP-verifier for LR, depends on the
sample R.

I Theorem 46. Let R be a random oracle with output length ` : N→ N.
1. For any function t : N→ N with t(n) ∈ Ω(n),

Pr
R←R

[
NTIME(t)R 6⊆ PCP(poly(t), o(t))R

]
= 1 .

2. For any function t : N→ N with t(n) ∈ Ω(n)
⋂
o(2n),

Pr
R←R

[
DTIME(t)R 6⊆ PCP(o(t), o(t))R

]
= 1 .

7.1 Proof of Part 1 of Theorem 46
We prove the statement by arguing that, for every oracle R in a certain set of measure 1 (de-
rived below), there exists a language LR that is in NTIME(t)R but not in PCP(poly(t), o(t))R.

We first define the language LR ⊆ {0, 1}∗ for any R ∈ R. The language is defined as
follows:

LR =

0n

∣∣∣∣∣∣∣∣∣ ∃w ∈ {0, 1}
t(n) s.t.

R(w‖et(n),1)1 = 0
R(w‖et(n),2)1 = 0

...

R(w‖et(n),t(n))1 = 0

 .

The language LR is in NTIME(t)R for every R ∈ R (via the same argument as in Section 4.1).
We are left to argue that LR is not in PCP(poly(t), o(t))R for R in a certain set of measure
1. For this, we state a lemma (which we prove later on below), and then conclude the proof
of the theorem.

I Lemma 47. For every M ∈Mpoly(t),o(t), PrR←R
[
MR is a PCP-verifier for LR

]
= 0.

Let SM be the set of oracles R ∈ R for which MR is a PCP-verifier for LR. Lemma 47
tells us that SM has measure zero, that is, µR(SM ) = 0. Since the set Mpoly(t),o(t) is
countable (it is a subset of the countable set of all machines) and measures are countably
sub-additive, we deduce that

µR

 ⋃
M∈Mpoly(t),o(t)

SM

 ≤ ∑
M∈Mpoly(t),o(t)

µR(SM ) = 0 .
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We conclude that

Pr
R←R

[
∃M ∈Mpoly(t),o(t) s.t. MR is a PCP-verifier for LR

]
= 0 ,

which shows that LR is not in PCP(poly(t), o(t))R for all R in a set of measure 1.
This completes the proof, and so we are only left with proving Lemma 47.

Before proving Lemma 47, we define two disjoint sets of oracles, Sn,0 and Sn,1, and then
prove certain properties about them (see Lemmas 50 to 52 below).

I Definition 48. For every n ∈ N, function R ∈ Rn, and string w ∈ {0, 1}t(n), we define
the function F[R,w] : {0, 1}∗ → {0, 1}∗ to be

F[R,w](z)j :=
{

0 if j = 1 and z = w‖et(n),i for some i ∈ [t(n)]
R(z)j otherwise

.

Moreover, given S ⊆ Rn, we define F[S, {0, 1}t(n)] to be the set {F[R,w] |R ∈ S , w ∈
{0, 1}t(n)}.

I Definition 49. For every n ∈ N, Sn,0 is the set of functions R ∈ Rn for which 0n 6∈
LR, that is, for which for every w ∈ {0, 1}t(n) there exists an index i ∈ [t(n)] such that
R(w‖et(n),i)1 6= 0. Also, Sn,1 equals the set F[Sn,0, {0, 1}t(n)], which is disjoint from Sn,0
(since 0n ∈ LR for every R ∈ Sn,1).

I Lemma 50. For every subset S ⊆ Sn,0, we have µR(S) ≤ µR(F[S, {0, 1}t(n)]).

Proof. Each R ∈ S yields 2t(n) distinct functions F[R,w] as w ranges over {0, 1}t(n). On the
other hand, each R′ ∈ F[S, {0, 1}t(n)] has at most 2t(n) − 1 “pre-images” in S: there exists
precisely one w such that R(w‖et(n),i)1 = 0 for all i ∈ {1, . . . , t(n)}. So if R′ = F[R,w],
R and R′ can only be different in the first bit at locations of the form w‖et(n),i for i ∈
{1, . . . , t(n)}. There are 2t(n) − 1 different assignments to the first bits at w‖et(n),i each of
which gives rise to a preimage of R′ in S (we exclude the all-zero assignment). We deduce
that 2t(n)µR(S) ≤

(
2t(n) − 1

)
µR(F[S, {0, 1}t(n)]), and so µR(S) ≤ µR(F[S, {0, 1}t(n)]). J

I Lemma 51. limn→∞ µR(Sn,0) = 1/e.

Proof. For any n ∈ N the measure of Sn,0 in R is µR(Sn,0) = (1− 1
2t(n) )2t(n) . Therefore:

lim
n→∞

µR(Sn,0) = lim
N→∞

(
1− 1

N

)N
= lim
N→∞

eN(1− 1
N ) = lim

N→∞
e(1− 1

N )′/( 1
N )′ = 1/e . J

I Lemma 52. For every function R ∈ Sn,0, if MR is correct on 0n then there are at least
2t(n) − 2o(t(n)) strings w ∈ {0, 1}t(n) for which MF[R,w] is not correct on 0n. (Note that
F[R,w] ∈ Sn,1.)

Proof. Fix a constant c > 0 to be determined later. Consider the set of strings w ∈ {0, 1}t(n)

for which MR queries all of {w ⊕ et(n),1, . . . , w ⊕ et(n),t(n)} with “low” probability:

X?(R) :=

{
w ∈ {0, 1}t(n)

∣∣∣∣∣ ∀ i ∈ [t(n)] ,
∑

π∈{0,1}∗

Pr
r

[MR,π(0n; r) queries R at w ⊕ et(n),i] <
1

c · t(n)

}
.

We argue that |X?(R)| is large, and for every w ∈ X?(R) it holds that MF[R,w] is not correct
on 0n.
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Consider the set of strings w ∈ {0, 1}t(n) that MR queries with “high” probability:

Xc(R) :=

w ∈ {0, 1}t(n)

∣∣∣∣∣∣
∑

π∈{0,1}∗
Pr
r

[MR,π(0n; r) queries R at w ] ≥ 1
c · t(n)

 .

Observe that

|Xc(R)| ≤
(
c · t(n)

)
·
(

2o(t(n)) · poly(t(n))
)

= 2o(t(n)) . (4)

This is because, in any given execution, M can make at most poly(t(n)) queries to R and
o(t(n)) queries to the given proof string, which means that∑

w∈{0,1}t(n)

∑
π∈{0,1}∗

Pr
r

[MR,π(0n; r) queries R at w] ≤ 2o(t(n))poly(t(n)) .

We deduce, via Equation (4), that |X?(R)| is large:

|X?(R)| ≥ 2t(n) − t(n)|Xc(R)| = 2t(n) − 2o(t(n)) .

Next, for every w ∈ X?(R) it holds that

∀π ∈ {0, 1}∗, ∀ i ∈ [t(n)], Pr
r

[MR,π(0n; r) queries R at w ⊕ et(n),i] <
1

c · t(n) .

Therefore,

∀π ∈ {0, 1}∗, Pr
r

[MR,π(0n; r) queries R at any w ⊕ et(n),i]

≤
∑

i∈[t(n)]

Pr
r

[MR,π(0n; r) queries R at w ⊕ et(n),i]

< t(n) · 1
c · t(n) = 1

c
.

This means that for every w ∈ X?(R) it holds that M cannot distinguish between R and
R′ := F[R,w] with probability greater than 1

c (the probability is over M ’s randomness r).
We know thatMR is correct on 0n, namely, for every proof string π it holds thatMR,π(0n)

accepts with probability less than 1/3. We also know that for every w ∈ {0, 1}t(n) it holds
that 0n is in LF[R,w]. But the foregoing argument tells us that for every w ∈ X?(R) it holds
that for every proof string π we have that MF[R,w],π(0n) accepts with probability less than
1/3 + 1/c.

Choosing c ≥ 3, we deduce that, for every w ∈ X?(R), MF[R,w] is not correct on 0n. J

Proof of Lemma 47. Fix M ∈Mpoly(t),o(t). It suffices to show that, for some ε ∈ [0, 1) and
every n ∈ N, MR is correct on input 0n for at most an ε-fraction of oracles R. Indeed, this
fact would imply that:

Pr
R←R

[
MR is a PCP-verifier for LR

]
≤ Pr
R←R

[
∀n ∈ N, MR is correct on 0n

]
=
∏
n∈N

Pr
R←R

[
MR is correct on 0n

∣∣MR is correct on 0i for all i < n
]

=
∏
n∈N

Pr
R←R

[
MR is correct on 0n

]
≤ lim
n→∞

εn = 0 ,
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as claimed. Above “correct” on input 0n means that if 0n ∈ LR then there exists a proof
string π such that MR,π(0n) accepts with probability at least 2/3, and if 0n 6∈ LR then for
every proof string π it holds that MR,π(0n) rejects with probability at least 2/3.

We are left to argue that MR is correct on input 0n for at most an ε-fraction of oracles
R. Consider the following sets of oracles:

Un,all :=
{
R ∈ R |MR is incorrect on 0n

}
,

Un,0 :=
{
R ∈ Sn,0 |MR is incorrect on 0n

}
,

Un,1 :=
{
R′ ∈ Sn,1 |MR′ is incorrect on 0n

}
.

Note that Un,0 ∪ Un,1 ⊆ Un,all. Also, Un,0 and Un,1 are disjoint, because Sn,0 and Sn,1 are
disjoint.

We want to prove that µR(Un,all) > 1− ε. We do so as follows:
µR(Un,all) ≥ µR(Un,0) + µR(Un,1)

≥
(
µR(Sn,0)− µR(Sn,0 \ Un,0)

)
+ µR(Un,1)

≥[a]

(
µR(Sn,0)− µR(Sn,0 \ Un,0)

)
+ 2t(n) − 2o(t(n))

2t(n) · µR
(
F[Sn,0 \ Un,0, {0, 1}t(n)]

)
≥[b]

(
µR(Sn,0)− µR(Sn,0 \ Un,0)

)
+ 2t(n) − 2o(t(n))

2t(n) · µR(Sn,0 \ Un,0)

= µR(Sn,0)− 2o(t(n))

2t(n) · µR(Sn,0 \ Un,0)

≥ µR(Sn,0)− 2o(t(n))

2t(n) · µR(Sn,0)

=
(

1− 2o(t(n))

2t(n)

)
· µR(Sn,0) .

Above, the third inequality (labeled [a]) follows from Lemma 52; the fourth inequality
(labeled [b]) follows from Lemma 50 applied to the set Sn,0 \ Un,0.

Finally, by Lemma 51 we know that limn→∞ µR(Sn,0) = 1/e > 1/3, so if we set ε := 2/3
then the above expression is greater than 1− ε for large enough n. J

7.2 Proof of Part 2 of Theorem 46
We prove the statement by arguing that, for every oracle R in a certain set of measure 1
(derived below), there exists a language LR that is in DTIME(t)R but not in PCP(o(t), o(t))R.

We first define the language LR ⊆ {0, 1}∗ for any R ∈ R. The language is defined as
follows:

LR := {(x, y) ∈ {0, 1}n × {0, 1}n |FR,n(x) = y} ,

where FR,n(x)i :=
⊕

j∈
{

(i−1) t(n)
n +1,...,i t(n)

n

}R(x‖et(n),j)1 for i ∈ {1, . . . , n}.

We argue that the language LR is in DTIME(t)R for every R ∈ R. Consider the
deterministic machine that on input (x, y): (a) copies x‖et(n),1 to the query tape; (b) for
i ∈ {1, . . . , n}, calls R on inputs {x‖et(n),j}j∈

{
(i−1) t(n)

n +1,...,i t(n)
n

} to get zi := FR,n(x)i; (c)
accepts if y = z. Writing down x takes time n, querying all bits of the form x‖et(n),j takes
O(t(n)) time, computing z and comparing it with y takes O(t(n)) time. So the running time
of the machine is O(t(n)). We are left to argue that LR is not in PCP(o(t), o(t))R for R in a
certain set of measure 1. For this, we state a lemma (which we prove later on below), and
then conclude the proof of the theorem.
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I Lemma 53. For every M ∈Mo(t),o(t), PrR←R
[
MR is a PCP-verifier for LR

]
= 0.

Using the same arguement as in the proof of Theorem 46, we conclude that

Pr
R←R

[
∃M ∈Mo(t),o(t) s.t. MR is a PCP-verifier for LR

]
= 0 ,

which shows that LR is not in PCP(o(t), o(t))R for all R in a set of measure 1.
This completes the proof, and so we are only left with proving Lemma 53.

Before proving Lemma 53, we define for every n ∈ N 2n disjoint sets of oracles, Sn,y where
y ∈ {0, 1}n, and then prove certain properties about them (see Remark 56 and Lemma 57
below).

I Definition 54. For every n ∈ N and y ∈ {0, 1}n, Sn,y is the set of functions R ∈ Rn for
which (0n, y) ∈ LR, that is, for which FR,n(0n) = y. We note that by definition the sets are
disjoint.

I Definition 55. For every n ∈ N, function R ∈ Rn, index i ∈ [n] and coordinate index
j ∈

[
t(n)
n

]
, we define the function F[R, i, j] : {0, 1}∗ → {0, 1}∗ to be

F[R, i, j](z)k :=
{

1−R(z)k if k = 1 and z = 0n‖e
t(n),(i−1) t(n)

n +j

R(z)k otherwise
.

Moreover, given S ⊆ Rn, we define F[S, i, j] to be the set {F[R, i, j] |R ∈ S}.

From the definitions of the set Sn,y and the map F[ , , ], we immediately obtain the
following claim.
I Remark 56. We note that for any R ∈ Sn,y, i ∈ [n] and j ∈ [t(n)/n], (a) F[R, i, j] 6∈ Sn,y,
since flipping the first bit at 0n‖et(n),(i−1)t(n)/n+j results in FR,n(0n)i 6= FF[R,i,j],n(0n)i; (b)
the number of preimages of R under the maps {F[ , i, j]}i∈[n],j∈[t(n)/n] is exactly t(n).

I Lemma 57. For every function R ∈ Sn,y, if MR is correct on (0n, y) then there are at
least t(n)− o(t(n)) pairs (i, j)i∈[n],j∈[t(n)/n] for which MF[R,i,j] is not correct on (0n, y).

Proof. Fix a constant c > 0. Let π be the proof such that Prr[MR,π(0n, y; r)] ≥ 2
3 . Consider

the set of t(n) queries

X(R) :=
{

0n‖et(n),(i−1)t(n)/n+j
∣∣ i ∈ [n], j ∈ [t(n)/n]

}
.

Define the subset of X(R) which MR,π queries with “low” probability:

X?(R) :=
{
w ∈ X(R)

∣∣∣∣ Pr
r

[MR,π(0n; r) queries R at w] < 1
c

}
.

We argue that |X?(R)| is large, and for every w ∈ X?(R), w = 0n‖et(n),(i−1)t(n)/n+j it holds
that MF[R,i,j],π is not correct on (0n, y).

Consider the set of strings w ∈ X(R) that MR queries with “high” probability:

Xc(R) :=
{
w ∈ X(R)

∣∣∣∣ Pr
r

[MR,π(0n; r) queries R at w ] ≥ 1
c

}
.

Observe that

|Xc(R)| ≤ c · o(t(n)) ∈ o(t(n)) . (5)
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This is because, in any given execution, M can make at most o(t(n)) queries to R which
means that∑

w∈X(R)

Pr
r

[MR,π(0n; r) queries R at w] ≤ o(t(n)) .

We deduce, via Equation (5), that |X?(R)| is large:

|X?(R)| ≥ t(n)− |Xc(R)| = t(n)− o(t(n)) .

Next, for every w ∈ X?(R) it holds that

Pr
r

[MR,π(0n; r) queries R at w] < 1
c
.

This means that for every w ∈ X?(R), w = 0n‖et(n),(i−1)t(n)/n+j , it holds that M cannot
distinguish between R and R′ := F[R, i, j] with probability greater than 1

c (the probability
is over M ’s randomness r).

We know that MR,π is correct on (0n, y), namely, MR,π(0n) accepts with probability
at least 1/3. We also know that for every (i, j) ∈ [n] × [t(n)/n] it holds that (0n, y) 6∈
LF[R,i,j] (part (a) of Remark 56). But the foregoing argument tells us that for every
0n‖et(n),(i−1)t(n)/n+j ∈ X?(R) it holds that MF[R,i,j],π(0n) accepts with probability greater
than 1/3 + 1/c.

Choosing c ≥ 3, we deduce that, for every 0n‖et(n),(i−1)t(n)/n+j ∈ X?(R), MF[R,i,j] is not
correct on (0n, y). J

Proof of Lemma 53. Fix M ∈ Mo(t),o(t). It suffices to show that, for some ε ∈ [0, 1) and
every n ∈ N, MR is correct on inputs (0n, y)y∈{0,1}n for at most an ε-fraction of oracles R.
Indeed, this fact would imply that:

Pr
R←R

[
MR is a PCP-verifier for LR

]
≤ Pr
R←R

[
∀n ∈ N, MR is correct on (0n, y)y∈{0,1}n

]
=
∏
n∈N

Pr
R←R

[
MR is correct on (0n, y)y∈{0,1}n

∣∣MR is correct on (0i, y)y∈{0,1}i for all i < n
]

=
∏
n∈N

Pr
R←R

[
MR is correct on (0n, y)y∈{0,1}n

]
≤ lim
n→∞

εn = 0 ,

as claimed. Above “correct” on input (0n, y) means that if (0n, y) ∈ LR then there exists a
proof string π such thatMR,π(0n, y) accepts with probability at least 2/3, and if (0n, y) 6∈ LR
then for every proof string π it holds that MR,π(0n, y) rejects with probability at least 2/3.

We are left to argue that MR is correct on inputs (0n, y)y∈{0,1}n for at most an ε-fraction
of oracles R. Consider the following sets of oracles:

Un,all :=
{
R ∈ R |MR is incorrect on (0n, y) for some y ∈ {0, 1}n

}
,

Uy,all :=
{
R ∈ Sn,y |MR is incorrect on (0n, y′) for some y′ ∈ {0, 1}n

}
,

Uy,y :=
{
R ∈ Sn,y |MR is incorrect on (0n, y)

}
.
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We want to prove that µR(Un,all) > 1− ε = 1/3. We do so as follows:

µR(Un,all) =
∑

y∈{0,1}n

µR(Uy,all)

≥[a]
1
t(n) ·

∑
y∈{0,1}n

µR(Sn,y \ Uy,y) · (t(n)− o(t(n)))

≥
∑

y∈{0,1}n

µR(Sn,y \ Uy,all) ·
t(n)− o(t(n))

t(n)

= (1− µR(Un,all)) ·
t(n)− o(t(n))

t(n)

≥ t(n)− o(t(n))
2t(n) >

1
3

In the inequality labeled [a], the 1
t(n) term comes from part (b) of Remark 56 that each

R ∈ Rn has t(n) preimages under the maps {F[ , i, j]}i∈[n],j∈[t(n)/n]; the term µR(Sn,y \
Uy,y) · (t(n)− o(t(n))) is the measure of all R′ ∈ ∪i,jF[Sn,y, i, j] for which MR′,π(0n, y) fails
(Lemma 57). J
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