EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Exact real arithmetic with perturbation analysis and proof of
correctness

Citation for published version (APA):
Keshishzadeh, S., & Groote, J. F. (2015). Exact real arithmetic with perturbation analysis and proof of
correctness. (Computer science reports; Vol. 1505). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2015

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/2bffe86d-5393-4cd4-8019-60eccc0c23bd

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Exact Real Arithmetic with
Perturbation Analysis and Proof of Correctness

Sarmen Keshishzadeh and Jan Friso Groote

15/05

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra
prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 15-05
Eindhoven, October 2015

Exact Real Arithmetic with
Perturbation Analysis and Proof of Correctness

Sarmen Keshishzadeh and Jan Friso Groote

Department of Mathematics and Computer Science
Eindhoven University of Technology
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Abstract

In this article, we consider a simple representation for real numbers
and propose top-down procedures to approximate various algebraic and
transcendental operations with arbitrary precision. Detailed algorithms
and proofs are provided to guarantee the correctness of the approxima-
tions. Moreover, we develop and apply a perturbation analysis method
to show that our approximation procedures only recompute expressions
when unavoidable.

In the last decade, various theories have been developed and imple-
mented to realize real computations with arbitrary precision. Proof of
correctness for existing approaches typically consider basic algebraic op-
erations, whereas detailed arguments about transcendental operations are
not available. Another important observation is that in each approach
some expressions might require iterative computations to guarantee the
desired precision. However, no formal reasoning is provided to prove that
such iterative calculations are essential in the approximation procedures.
In our approximations of real functions, we explicitly relate the precision
of the inputs to the guaranteed precision of the output, provide full proofs
and a precise analysis of the necessity of iterations.

1 Introduction

Various scientific disciplines use computations involving real numbers to model
and reason about different phenomena in the world. Real numbers are typi-
cally approximated by floating point numbers in scientific calculations. Round-
off errors are inevitable in such approximations and they might build up into
catastrophic errors in some cases. Exact real arithmetic approaches address
this issue by devising computation procedures that given an expression and a
precision requested by the user produce an output that is guaranteed to meet
the precision requirement.

Several approaches [16], [13] to exact real arithmetic are based on iterative
bottom-up calculations. Given an expression and a desired precision, bottom-up
approaches typically start with calculating the inputs with an arbitrary precision
higher than the requested precision. Then, the sub-expressions are evaluated in
a bottom-up way. After evaluating the sub-expressions of each level, the guar-
anteed precision is passed to the higher level. These calculations proceed until
the main expression is calculated and its guaranteed precision is determined.
If the precision obtained for the expression is not adequate, the computation
restarts with increased precisions for the inputs.

In contrast, various authors [3], [I5] have proposed top-down approaches to
exact real arithmetic. In top-down approaches, the required precision of each
sub-expression is determined based on the precision required for its immediate
parent expression. For certain types of expressions, the required precision of the
sub-expressions can be calculated immediately. However, some expressions may
require to first obtain additional information about the magnitude of the values
of their sub-expressions before determining their required precision. Thus, in
general, it might be necessary to recompute certain expressions.

The main benefit of top-down approaches is that they exploit the structure
of a given expression to estimate the required precision of the sub-expressions.
In this context, one would ideally like to have top-down approximations for alge-
braic and transcendental functions such that 1) the approximations are proven
to be correct and 2) iterative calculations are avoided unless they are proven to
be necessary.

In several studies [3] [I7], proofs of correctness for algebraic operations are
available. However, the arguments about transcendental functions provide lit-
tle insight about the correctness of the approximations and the effect of these
operations on precision. Taylor expansions are the most prominent way to ap-
proximate transcendental functions. Calculations with Taylor expansions are
typically restricted to a base interval; range reduction identities are used to
extend the computations to the complete domain of a function. Proofs of cor-
rectness for transcendental functions are limited to the base interval [I8] [3, [17],
whereas little attention is given to the general case where the computations
introduced by range reduction identities influence the output precision.

The second desired property for a top-down approach is related to the itera-
tive nature of the computations. As discussed above, bottom-up and top-down
approaches rely on iterative computation schemes. However, no formal rea-
soning is provided to prove that such iterative calculations are essential in the
approximation procedures.

In this article, we consider a simple representation for real numbers and
propose a top-down approach to approximate various algebraic and transcen-
dental functions with arbitrary precision. For each operation, we describe an
approximation procedure and relate the precision of the inputs to the guaran-
teed precision for the output. To guarantee the correctness of our top-down
approach, we provide detailed proofs of correctness for the proposed approxi-
mations.

To identify computational problems that require iterative calculations in our

top-down approach, we have developed a perturbation analysis method. Our
analysis describes the influence of errors in the inputs of a computational prob-
lem on the output precision. We apply perturbation analysis to show that our
approximation procedures only recompute expressions when this is unavoidable.

Overview We discuss different approaches to defining computability of func-
tions in Section [2| In Section [3] we introduce a representation for real numbers
and specify the syntax of the expressions that we consider in our computa-
tions. To analyze computational problems in this setting, a perturbation anal-
ysis method is introduced in Section [l In Section [f] we discuss our approxima-
tions of algebraic operations. We approximate transcendental functions using
Riemann sums and Taylor expansions in Section [6]and [7] respectively. Section|[g]
contains discussions about related work. In Section [0l we draw some conclusions
and suggest directions for future research.

2 Computable Real Functions

Real arithmetic is concerned with performing computations on real numbers.
In order to do calculations with real numbers, it is necessary to define what
it means for an operation to be computable. In this section we briefly discuss
different approaches to defining computability.

Since real numbers are infinite objects, one can use infinite streams from
a finite alphabet ¥ to represent them. This gives rise to a definition of com-
putability called Type-2 Theory of Effectivity (TTE, [21]). In TTE computable
operations are defined in terms of functions f : X% — 3 that receive infinite
words as input and produce infinite words as output. An essential property
of a Type-2 computable function is the finiteness property [21]. This property
indicates that for a computable function f, any finite prefix of the output f(x)
is computable by some finite portion of the input .

An alternative definition of computability has been introduced by the Rus-
sian school of constructive analysis [I4], [I2]. In this definition, computable op-
erations are defined in terms of functions f : 3* — ¥* that receive finite words
as input and produce finite words as output. This approach is sometimes re-
ferred to as Type-1 computability. A function f is Type-1 computable if there
is a Turing machine that transforms any finite input string x € ¥* to the finite
output strings f(z) € ¥*. Type-1 machines provide a natural way to define
computability on, for instance, rational numbers and finite graphs.

In both Type-1 and Type-2 approaches, ¥ depends on the concrete represen-
tation that we use for input/output objects. For instance, one can use the binary
signed-digit representation to represent real numbers in the inputs/outputs of
computations.

The relation between Type-1 and Type-2 computable functions has been in-
vestigated in various studies. It is known that restricting the domain of a Type-2
computable function to finite streams results in a Type-1 computable function
[4,[T9]. However, not every Type-1 function can be obtained by restricting some

Type-2 computable function [19, [I1]. To illustrate this, we consider a function
f1:{0,1}* — {0,1}* defined as follows:

0 ifs=0k
fils) = {1 if 5= 0F1s'

where k € N is the length of the longest prefix of zeros in s and s’ € ¥* is
a finite suffix of s in the second case. The function f; performs computations
on finite strings and one can construct a Type-1 Turing machine to compute
this function. By extending the domain of f; to infinite strings, we obtain

f2 1 X% — 3¢ such that:
0 ifs=0v
fals) = {1 if s = 0F1s’

The function fo is not computable with a Type-2 Turing machine; it is not
possible to write 0 in the output after reading a finite prefix from the input.
The interested reader can refer to [4] for more details about the relation between
Type-1 and Type-2 computable functions.

In addition to Type-1 and Type-2, one can also consider a third approach
to defining computability based on certain finite structures that provide precise
descriptions for specific classes of real numbers. For instance, Lagrange’s the-
orem on continued fractions indicates that the real numbers whose continued
fraction is periodic are the quadratic irrationals. Based on this observation, one
can define computability in terms of functions f that given a finite and precise
representation of = produce a finite and precise representation of f(x).

The exact real arithmetic approach that we introduce in this article is based
on Type-2 computability. In Section [3| we discuss a representation for real
numbers in terms of rational numbers that are coupled with a notion of precision.
Our approximations for arithmetic operations rely on the finiteness property
of computable functions. Thus, for a given computational problem, a desired
precision for the output is obtained based on sufficiently good approximations
of the inputs.

3 Real Numbers: Representation & Operations

In this section we first discuss our representation of real numbers and then
describe the syntax of the expressions that we aim to calculate in our setting.

Since real numbers are infinite objects, a finite representation of an arbi-
trary real number x can only approximate x with a certain precision. In sci-
entific measurements and calculations, the amount of error that we commit in
approximations is measured by an absolute or relative error. In practice, an
absolute error is of little use. Since numbers tend to have very different orders
of magnitude, it is the relative error that shows the significance of the lost digits
in measurements or calculations. Hence, in our setting we use a representation
based on the relative error.

Definition 1. A real number x is represented by a tuple (m,n,p) such that:
| m| < |m 1
r— — g
n n 2P
where m,n € Z\ {0},p € N.

The representation (m,n,p) for x means that ™ approximates = and the
relative error of this approximation does not exceed 2%

In this article, we focus on calculating expressions that can be described
with the following grammar:

1
E :=c| —E|E-E|E|E+E|\/E|6E\
In(E) | arctan(FE) | cos(E) | sin(E)

(1)

where c represents a rational constant.
The following identities show that other interesting operations can be de-
scribed in terms of the operations of this grammar:

oy = 2
cot(z) = tanl(x)

x
V1—22

arccos(z) = arctan(@)
)

arcsin(z) = arctan(

)

T

V1+ 22

arccot(x) = arccos(

4 Sensitivity of Operations to Perturbations in
the Arguments

Our goal is to develop a top-down exact real arithmetic approach based on the
representation of Definition Thus, for a given computational problem, it is
essential to estimate the required precision of the inputs based on the desired
precision in the output. Moreover, we would like to investigate to what extend
the operations of grammar can be calculated in a top-down manner without
iterations.

To analyze the operations of grammar , we introduce a pertubation anal-
ysis method for measuring the sensitivity of the operations to perturbations
in their arguments. We consider two general cases in our analysis. First, we
consider a function f(z) in one variable and show how errors in the input in-
fluence the output (Section [4.1). Then, we consider a function f(z,y) with
two arguments and investigate the effect of errors in the inputs on the output

(Section [4.2).

4.1 Perturbation Analysis for Unary Functions

Let f(z) be a differentiable function that we want to calculate in point = = a.
Suppose that Aa is a perturbation in the argument a. The relative error in the
calculation of f(a) caused by this perturbation is:

fla+ Aa) — f(a)
f(a)
We want to relate this relative error to the relative error of the argument, namely

|%| To this end, we use the following approximation of the function f in point
T =a+ Aa:

fla+Aa)~ f(a) + f'(a)Aa
We can approximate the relative error of f as follows:

|f(a+Aa)—f(a) f'(a)Aa| |af(a), A
f(a) f(a) f(a)

From equality (2 . one can see that the quantity | f(a) | determines the effect of

|~ | |I7| (2)

the relative error |A“| on the output. In numerical analysis and linear algebra

the quantity | f((x) | is usually referred to as the condition number of f(x) [5,6].

4.2 Perturbation Analysis for Binary Functions

Let f(x,y) be a differentiable function that we want to calculate in point
(z,y) = (a,b). Suppose Aa and Ab are perturbations in the arguments a and
b, respectively. The relative error of f(a,b) caused by these perturbations can
be calculated as follows:

fla+ Aa,b+ Ab) — f(a,b)
f(a,b)

To find an upper-bound for , we use the following first-order approximation
of the function f in point (z,y) = (a + Aa, b+ Ab):

fla+ Aa,b+ Ab) = f(a,b) + fz(a,b)Aa + fy(a,b)Ab

| | (3)

where f,(a,b) and fy(a,b) are the partial derivatives of f with respect to z and
y in (a,b), respectively. We relate the relative error in the calculation of f to
the relative errors |22| and |§2| as follows:

fla+Dab+Ab) = f(a,b), _ fola,b)Aa+ f,(a,b)Ab

| f(a,b) |~ f(a,b) =
af(@b) Ao bly(b) Ab
If(a’b) Ha\+|f()H | <
afs(a,b), bfy(ab) . Aa Ab
s ' s ! e =15 @

The quantity |a§’€(§ab;’)| + \bjﬁ?((;éw determines the upper-bound calculated in

inequality and we use this quantity to measure the effect of erroneous ar-
guments on the output. It should be noted that in inequality we have
considered |22| and |42| as independent factors that can influence the relative
error of f. This way of reasoning about the sensitivity of f(x,y) is related to
componentwise analysis of perturbation in numerical analysis and linear algebra
[7], which we use in this article.

Another possibility is to relate the relative error of to the quantity:

Il

18l

This type of analysis is usually referred to as normwise analysis of perturba-
tion [7].

In the following sections, we provide a top-down approach for approximating
various algebraic and transcendental functions. Perturbation analysis will be
used to show that in our approximations we only recompute expressions when
essential.

5 Approximating Algebraic Operations

In this section we calculate the algebraic operations of grammar using a top-
down approach. We formulate and prove theorems that allow us to calculate ex-
pressions involving unary negation (Section, multiplication (Section, in-
verse (Section [5.3), addition (Section [5.4), and square root (Section[5.5]). Based
on the theorems, we provide different implementations of COMPUTE(expr, p) to
calculate algebraic operations. These implementations receive an algebraic ex-
pression expr and a desired precision p and produce an output with the desired
precision. In each case, we also apply the perturbation analysis of Section [4 and
show that we avoid unnecessary iterations in our approximations.

5.1 Unary Negation

Theorem 5.1. Let x be a real number represented by (m,n,p). Then —x can
be represented by (—m,n,p).

Proof. Since z is represented by (m,n,p) we can write:

m ‘m‘1< <m+‘m1
I el P g Ml
n 2p n 2P
m ‘m‘1< < m+|m1
v e 2=
n n 2°p n 2P

Thus, we can represent —z by (—m,n,p).

Algorithm [1] applies Theorem and approximates —x based on a represen-

tation (m,n,p) of z. To confirm that —z can be approximated with arbitrary
zf'(z)

precision in one pass, we calculate | ie) | for the function f(x) = —u:
|If/<.'1/')| — | (.Z’)(—l) | -1
f(x) —

zf'(x)
f(=)
amount of precision that we lose in unary negation (which is 0 in the case of
Theorem 5.1]) can be calculated independently of x.

The quantity | | is small and independent of the argument x and hence the

Algorithm 1 Unary Negation

Require: ezpr has the shape —x
1: procedure COMPUTE(ezpr, p)
2: ™ < COMPUTE(z, p)

3: return ="

5.2 Multiplication x -y

Theorem 5.2. Let © and y be two real numbers represented by (m,n,p) and
(m/,n’,p), respectively. Then x -y can be represented by (mm',nn’,p — 2).

Proof. From Definition [T] we can write:

m m, 1 m m, 1 5
n ol < T)
m' m' 1 m’ m' 1
w ol <<ty (6)

We consider three cases:

1. Suppose mm’ - (. We can multiply inequalities and @ as follows:

nn’

mm’ 1.5 mm/’ 1.5
" (1—2—1)) <z-y< - (1—!—277)

If 2 - y can be represented by (mm’',nn’,p — 2) then it must be the case
that:

mm'’ 1 mm'’ 1

(1- 2p_2) <@ y< o (1+ 2p_2)

nn'

To see that this is valid, we need to show that:

mm/ 1 mm’ 1
1+ —)2< 14+ ——
nn’ 1+ 21’) - nn’ (1+ 21"—2>
mm/ 1 mm/ 1.5
_ < _
nn' (1 21’—2) - nn' (1 21’)

But ™2 > (and from Proposition |1| (see Appendix | we know that

nn

both inequalities hold.

2. Suppose 7+ > 0, =~ " < 0. We can rewrite inequalities and @ as follows:

7nl

M- gp) << T4 o) (7)
Mt) <y< - o) 0

Multiplying inequalities ([7]) and . we get:
mm/ 1 mm/ 1.5
(1+2p) <z-y< nn/(1—2—p)

If x -y is representable by (mm’,nn’, p — 2) then it must be the case that:

nn'

mm/’ 1 mm'’ 1

lI+—)<z-y< /(1—W)

nn’ 2r—2 nn
To show that this is valid, it suffices to prove that:

mm/ 1 mm’ 1
1-—)2< 1— —
nn’ (21’) - nn/ (2?’—2)
mm’ 1 mm’ 1
1 < 1
nn' (I+ 21’*2) - nn' (I+ 21’)

But ™% < 0 and from Proposition |1| (see Appendix we know that

“nn’

both inequalities hold.

3. Suppose 7> < 0, ZL—,/ > 0. This case can be proved similarly to the second
case.

O

Algorithm 2 Multiplication

Require: expr has the shape x -y
1: procedure COMPUTE(ezpr, p)

2: o < COMPUTE(z,p + 2)
3: ﬂ/ — COMPUTE(y,p +2)
4: return mm’

Algorithm [2| depicts an approximation of x - y based on Theorem Given
approximations of x and y, this algorithm approximates = -y in one pass; the
loss of precision is predictable without additional information about x and y.
To confirm this claim, we apply the perturbation analysis of Section [d] on the
function f(z,y) =x - y:

f(a,y) flz, y)
The sensitivity measure is small and 1ndependent of the arguments. Thus, in

a top-down approach, x - y can be approximated in one pass without iterative
computations of x and y.

|_2

5.3 Inverse

Theorem 5.3. Let x be a real number represented by (m,n,p). Then % can be
represented by (n,m,p — 1).

Proof. We consider two cases:

1. Suppose ™ > 0. Since x is represented by (m,n,p) we can write:

m 1 m 1
(1 — — 21+ —
n(l 2p)<:1:<n(-|-2p)
n, 2° 1 n, 2°

%(2p+1)<E<E(2p—1)

If % is representable by (n,m,p — 1), then it must be the case that:

1

n 1 1
2P*1)

n
m\ ") < <R

To see that this is valid, it suffices to show:

But = > 0 and hence both inequalities follow from Proposition [2] (see
Appendix [A)).

2. Suppose ™ < 0. Since x is representable by (m,n,p) we have:
n

m 1 m 1
1+ — (1= —
n(+2p)<x<n(2p)
n 2P 1 n 2P

E(pr1)<§<E(2p+1)

If % is representable by (n,m,p — 1) then it must be the case that:

n 1 1 n 1
mHgmn) < g <50 gm)

To see that this is valid, we need to show:

n 2P n 1
il <-
m(2p—|—1)_m(21’—1)
n 1 n 2P
n <

m(+2P_1)_m(21’—1)

But < 0 and hence the inequalities follow from Proposition [2| (see
Appendix |A).
O

10

Algorithm 3 Inverse

Require: expr has the shape %
1: procedure COMPUTE(expr, p)
2: o <~ COMPUTE(z,p + 1)
3: return -

Algorithm |3 approximates % with precision p based on Theorem Given
an approximation of x with precision p, the algorithm allows us to approximate

1 in one pass. We use perturbation analysis and calculate the quantity |mjf(,§§)|

for f(z) = L to show that loss of precision in the inverse can be estimated
independently of the argument:
af'(@), _ (@)(5)

| =1

) @)

The quantity |IJ{(/S)| is a constant and hence iterative computations can be

avoided when calculating the inverse.

5.4 Addition

Theorem 5.4. Let x and y be two real numbers represented by (m,n,p) and
(m/,n’,p), respectively. The value of x +y can be approzimated as follows:

i. 1 ﬁm/ > 0, then x +y can be represented by (mn' + m'n,nn’ p).

1. I ’an,/ < 0 and i € Nt is the smallest natural number such that i >

/
min(| 1], 7))

7
max(| 2|, 2)

log,(), then x+y can be represented by (mn’+m'n, nn’, p—1i).
1

. ’
min(| 2|, 2])

9 !
mae(| 22|,)

Proof.

i. For numbers z and y we can write:

m |m|1< <m+|m1)
L AN i Bl
n n 2P n 2P
m' m' 1 m’ m' 1
w e <<y e 10)

11

If © + y is representable by (mn’ + m/n,nn’,p), then it must be the case
that:
(m+m) 1m+ |< N <(m+m’)+1‘m+m’|
oy oy
n n Y n n’ 2r'n 0

To show that this is valid, we need to prove that:

m m 1, m m m ! 1 m m
oy Ty« 2y 12
C ™ (2 < (2 T LT ™ 1)
m m' 1 m m m m 1, m m'
LA L e A T A L B A Y e 1
e e (L L e

The rational numbers 2* and 7 " have the same 81gn Therefore, | + m,,| =
|2]+ |:’Z, | holds and 1nequahtles and (13) are valid.

ii. If x4y is representable by (mn'+m/n,nn’,p— i), then it must be the case
that:

(

To show that this holds, we need to prove the following (see inequality):

mLmy Ly |< rye (@ +m')
mom m_om m'
n n’ 2p—i y

|

(m+m’)+1(‘m‘ |m) (m+m)+ 1 |m m|
n n' n' n' 2p—i n'
m m m m m m 1 m'
BT — 4+ —|<) (= _
) oD+ T < (4 Ty - 1D+ 1)

For both inequalities, it boils down to proving the following:

m/

1, m m’ m
L2 < 2 (1)

To prove inequality , we consider the following two cases:

1. Suppose 7 > 0 and ’:Z—,' < 0. We can rewrite inequality as follows:

|m+m‘>1(m m’)@(m+m’) l(m m’)
n n'— 2 'n n n’ —2'n
m m 1. m m
Doy (2 2
(n+n’)_2’(n’ n)

In other words, we should show

241 iy
m/ > 2i 1 or —m >
nl n

241 Depending

max(| |12 o

!
on the values of || and |2-|, both cases follow from ———2—>=n= >
n n' min (| 2],] 27)

min(] 22,2 |)

i . . max (| 2|, 2)
241, Equivalently, we should have i > log,(min(‘;‘y‘&}w).

T max(2,)

12

2. Suppose 7+ < 0 and 2"—,, > 0. We can rewrite inequality as follows:

|m+m/‘>1(m’ m)é(m+m’)> 1(m’ m)v
n n —2'n n n n’ " 2'n n
m ! 1.m m
Dy (2
(n+n’)_2’(n n’)
In other word, we need to prove _%ﬂ > gﬂ or E > gﬂ Depending

n 7

n
’
max(| 7], 1)

on the values of || and ||, both cases follow from

n’ min(|]| 2]) =
min(| 7],)
241 Equivalently, we should have i > lo —n a7),
2t _1 q Y g2 (Jm i, mlyy
min(| 22|
max(| 22 |, 27 |)
O
Algorithm 4 Addition
Require: expr has the shape x +y
1: procedure COMPUTE(ezpr, p)
2 dp < p
3 repeat
4 ™ < COMPUTE(z, dp)
5: ™ < COMPUTE(y, dp)
. mm/ .
6 if >0 thfen / > Theorem
7 return nrtmn
8 else) > Theorem B4l
min(| 2 |,| 2 |)
. 1 max(| 2|, | 2 |)
o i 4 [logy min(| 2|, 1))]
max(122),)
10: if dp —i > p then
’ ’
11: return mrtmn
nn
12: else
13: dp < dp+1
14: until true

Algorithm [4] applies Theorem to approximate x + y with precision p.
If approximations * and “- have the same sign, we do not lose precision by

/

calculating z + y. On the other hand, if 7 and 7 have different signs, the
min(| %], %))
max (] 2], 2)
This indicates that if % <0and || = |ZL—,/|, a significant amount of precision
can be lost in 24 y. Thus, if the guaranteed precision for x +y (i.e., p—1) is not
sufficient, and y must be recomputed with higher precisions (see Line in
Algorithm .

amount of precision that is lost depends on the magnitude of

13

To confirm this observation, we apply the perturbation analysis of Section [4]
on f(z,y) =z +y:

f(z,y) f(z,y) r+y rty
The quantity | %[+ |73] is 1 when xy > 0. Thus, we can estimate the

loss of precision in x + y independently of the arguments when zy > 0.

However, the quantity |$f_y\ + |x—_"{_y| can be arbitrarily large when xy < 0
and |z +y| ~ 0. This confirms that a significant amount of precision can be lost
inz+y.

Perturbation analysis shows that in general, we cannot estimate the amount
of precision that is lost in x + y independently of the arguments. Hence, if
approximation 7 and Z’Z—,l have different signs, recomputing x and y might be
essential to obtain the desired precision for x + y. Loss of precision in = + y is
sometimes referred to as loss of significance [9] or catastrophic cancellation [2].

It should be noted that Theorem does not imply that x + y is always
fundamentally problematic when xy < 0 and |z + y| = 0. In certain cases, the
calculation can be adjusted in such a way that loss of significance can be avoided
and the expression can be calculated in one pass.

Suppose we want to calculate /& + 1 — \/x for a relatively large x. Since
vz +1 =~ /z, we will lose a significant amount of precision if we directly cal-
culate v/x +1 — \/x. However, we can change the calculation algorithm by

rewriting the expression as follows:

B - ve+1+yx 1
Vr+1l—vzr=H\z+ f)x\/m—k\/i_\/m—i—ﬁ

In the new expression, all the operations can be approximated with a desired
precision in one pass (see Sectionon calculating square root). Hence, we can
approximate the new expression without recomputing the sub-expressions with
higher precisions. Applying the perturbation analysis of Section [4] also shows
that f(z) = vz + 1 — /z is not fundamentally problematic:

1 1
|xf’(x) = ‘“f(zmﬂ ~ 57 = LS|

f(x) Ve+1l—y/x 2Vz+1 2
Using perturbation analysis, we can identify instances of x +y where adjust-

ments in the algorithm can avoid loss of significance. However, to our knowledge
a general scheme for making such adjustments does not exist.

5.5 Square Root

In this section, we calculate \/z by approximating the root of f(y) = y? — @
using the Newton-Raphson method [9]. The Newton-Raphson method starts
with an initial approximation gy, for /= and iteratively generates a sequence of

14

approximations. Assuming that the precise value of x is available, the sequence
of approximations is generated by:
Yo+

2Yn

In what follows, we prove a theorem for approximating /2 by the Newton-
Raphson method when an approximation (m,n,p) of z is available.

Yn4+1 =

Theorem 5.5. Let x be a real number represented by (m,n,p) such that:
D 0y by x 20
n

where b; € {0,1} for 1 <i <k and by = 1,a € Z. Then \/x can be represented
by (m',n',p — 4N) where N = [log,(logy(2P*3 +1))] + 1 and ’ZZ—,/ is the N-th
term of the following sequence:

2 m
Y + a
n = n n e 2|—2]+1
Yn+1 DY Yo
Proof. From Definition [I| we write:
m 1 m 1
(- — (14—
n(2p)<:z:<n(+2p)
To prove the theorem, it suffices to show:
1
|\/§_3JN|<W|3/N| (15)
We rewrite the left hand side of inequality (15):
Wz —ynl = Vr —2v + 2y —yn| < |[VZ — 2] + |2v — yn| (16)
In inequality , zn is the N-th term of the following sequence:
Z,ZL +x a
Zn+l = 22n , ZO:2[2]+1

To prove inequality , it suffices to show that the following inequalities hold:
1
Vz —zn| < leN| (17)

1
len —yn| < WLUM (18)

Proof for inequality : First, we show that y,, > \/g for all n € N:

2 m 2 m
442 Ltz 1
2 2yn—1 2 zyn—l 2n 2p

Ynat iy [m
2yn—1 n
. y?L—l + % - 2yn—l\/% . (Yn-1— %)2 0
o 2Yn—_1 B 2Yn—1 o

15

Observe that as y, > /5, inequality is valid, if the following inequality
holds:

Wz —2n| < vz (19)

9op— op—4AN+2

To prove inequality (19), we find N such that:

on VI = gV (20)

ZNJrf

We calculate the quantity - Framy £

z27 “+x
INFVE e TVE A a4 2n Ve
ZN — \/E TRt _ \/5 - 212\[_1 +x— 2ZN_1\/5

22N -1
ZN—1 + VT _ 20 + /T 9N
e I (21)

Suppose equality holds for N. We can rewrite the right hand side of
equality as follows:

(ZoJr\/E 2N:ZN+\/5: (2"1‘21,%)\/5
20 — VT AN=VE L (e)VE

The index N that guarantees the required precision of equality can be
calculated from equality :

=P8 11 (22)

+VE
N = log,(log,(2PF3 + log, (logy (22
g (logs 1)) — logy(logy(—— = 20 — T

To guarantee that N is well-defined, we show that zy > x. To prove the in-
equality, we use the assumptions 2% = 0.by ... by x 2%,b; € {0,1} fori=1,... k
and by = 1,29 = 251+

) (23)

VI < < V0. b x 27 x V2 <27 x V2 < 2

To obtain an estimation for N from equality , we calculate an upper bound
for %:

2l51+1 945t +1 22 4

16

In the worst case, the initial approximation zg differs from +/z by a factor %.

We use this estimation in equality to calculate the number of iterations for
the Newton-Raphson method:

+1
= log, (logy (27 + 1))~ log, (log, (j —))
V2

<[log, (logy 2"+ +1))] +1 (24)

Proof for 1nequal1ty (18): To prove inequality (18], we consider the calcula-

+
tions in 2y = gz Nl and estimate the amount of error that we commit in the
2 m
. . _ YN +u
approximation yy = “5~—*

Let P(k) denote the amount of precision that we lose when we approximate
zi by yg. Thus, we lose P(N — 1) units of precision if we approximate zy_1 by
YN-—1:

1
lan—1 —yn-1] < W\QN—H

The precision is reduced by 2 units when 2%, is approximated by y3_; (see
Theorem [5.2)):

l2x 1 — ¥kl < WW%\FJ

We approximate 2%, + = by y3_, + 7. We do not lose precision in this
approximation (see Theorem [5.4lli):

9 9 m 1 9 m
|(en1 +2) — (Yno1 + g)| < WWN—l + g| (25)

Given the approximation yy_1 of zy_1, one unit of precision is lost in the
approximation of le,l (see Theorem :

1 1 1 1

— <
|ZN71 YN-1 | 2r—P(N—1)—1 |nyl |
1 1 1 1

— <
22y-1 2yn—1 | 2p—P(N-1)—1 |2yN—1 |

| (26)

Finally, we approxunate é\; lj based on the approximations described in in-

equality (25)) and (26]) (see Theorem [5.2):

212v—1+37 Yo+ n| < 1 |3/N o
2zn-1 2yN—1 2p—P(N=1)=4" 2yn_4

|y —yn| = | @27

From inequality we obtain the following recursive formula:

P(N)=P(N-1)+4

17

Since yo = 2o = 2/5171, we lose P(N) = P(0) + 4N = 4N units of precision
in our approximation of zny. We apply the number of iterations calculated in
inequality and obtain:

P(N) = 4N < 4[log, (log,(2°73 +1))] + 4

Algorithm 5 Square Root

Require: ezpr has the shape \/z
1: procedure COMPUTE(ezpr, p)
2: Choose p, such that p, > p + 4[log, (logy(2P= 13 +1))] + 4
3 N < [log, (logy(2P=T3 +1))] + 1
4; ™ < COMPUTE(Z, pz)
5: if ™ <0 then

6 “Undefined operation”

7 else

8

9

>

= can be represented as 0.y ... by X 2°

: Dbi6{0,1}forlgigk,blzlandaEZ
10: a < [logy (™) +1

11: yo < 25141
12: for i =1to N do

y?—l“"%

!
14: T UN
’

15: return 2

n

Algorithm |5 applies Theorem to approximate /= with precision p. As
indicated in Theorem loss of precision in the square root can be estimated
independently of the argument x and hence Algorithm [5| approximates /z in
one pass. We apply perturbation analysis on f(z) = v/x to show this:

() Vi
S (w)

The quantity |*) | is a small constant. Thus, in our top down approach, we

1
2 = =5

can approximate /2 without iterative computations.

6 Approximating Transcendental Functions by
Riemann Sums
In this section we introduce approximations for e* (Section [6.1)), In(z) (Sec-

tion [6.2), and arctan(z) (Section [6.3). We use Riemann sums to approximate
these functions.

18

/
/
—z A x ¢
(a) y =€t (b) Right & Left Riemann Sums

Figure 1: Approximating e*

The COMPUTE(expr,p) function introduced in Section [5| will be extended
to allow the approximation of e*,In(x) and arctan(z) with a given precision p.
Perturbation analysis will also be used to identify computational problems in
which iterative computations are unavoidable.

6.1 Exponential Function

To approximate the exponential function by Riemann sums, we first provide a
simple approximation for e” where we assume that z is precise. Then we extend
this calculation to approximate e* where x is represented by (m,n,p).
Suppose = > 0. To calculate e* we consider the curve y = e and calculate
the area enclosed by this curve and the t-axis between t = —z and t = z as

follows (see Fig.|1(a))):
/ eldt = e* —e™ "

We use Riemann sums to approximate this area; Fig. shows two approx-
imations from above and below using rectangles. Thus, we get the following
inequalities for N rectangles:

o Y 9
—x+224 T —x —p4 2z
‘ Ne N'<et—e T < Z Ne N (28)
=0 i=1
We rewrite inequality (28)) as follows:

N—-1 N

2 x 2 xT
.

We assume that N > 2z and calculate an upper bound and a lower bound for
e® from inequality :

2r N N N
2 <e" < El 30
<< (5g) (30)
We can estimate the precision of the approximations calculated in inequal-
. . N
ity (30). For example, we can approximate e* by (Nfgl_)? and the absolute
error of this approximation can be calculated as follows:

N N N N 2x N
N g Y _q N
() ¥ - el <) ¥ -+ ¥
q_1
N N + 2x E N i N+ 2z N_ 1
=) -) L)
Xy
o 4a? N (N)i(N—i-Q;v)%ﬂ;l
- N(N—-2z) & "N -2z N
2 -1 2
4z N | nv_, 22 N | x
< = — 31
—JWN—2@iﬂ<N—2J2 N (v—)t GY

For the last inequality we apply 5. > YH2%.

In the discussion above, we have treated x as a precise value. In the following
theorem, we extend this calculation and describe an approximation of e* that
relies on a representation (m,n,p) of . To simplify our approximations, we
first assume that |2*| < 1. Afterwards, we extend our approximations to an
arbitrary (m,n, p).

Theorem 6.1. Let x be a real number represented by (m,n,p) and |2+ < 1.

Suppose N is a natural number such that N > 255

approximated as follows:

The value of €* can be

i. If 0 < @ < 1 then e® can be represented by (m',n’,p — 2[logy(5)] — 3)
where % = (N_Lm)%

ii. If =1 < ™ < 0 then e® can be represented by (m/,n/,p — 2[logy(5)] — 4)

’

where & = L
" (=55m)?
N+
Proof.

i. Suppose 0 < * < 1. Since z is represented by (m,n,p), we have:

1 1.2
0< 21— <o<)<
n

o T <2 (32)

20

To prove the theorem, it suffices to show that:

- N N 1 N N
l _(N—ZT’”)2|<2p—2[log2(%ﬂ—3‘(N—27m)2‘ (33)
We rewrite the left hand side of inequality as follows:
. N N . N |~ N |~ N N
e *(N_ng)2|:|€ 7(N—2m)2 +(N—2x)2 *(@)”
N N N N N N
< le® — 3 T (—)%

n

To prove inequality , it suffices to show that the following inequalities
hold:

N N 1 N N

o N d 4

= =)< e (N QT’"M (34)
N \x N N 1 N I~

&=z ~ =)< g (v)t 39

Proof for inequality : From inequality , we obtain an upper-
bound for the left hand side of inequality :

22 N

N
W(Nf 21')

N —2x

w2

e — ()7 <

(36)

To calculate an upper bound for the right hand side of inequality , we

consider the function f(x) = %(Nﬂx

)% and calculate its derivative:

N 2N

4z, N | n _
- ’ N—2x) 1((N—2x)2)

a W(N— 290)

v[Z

f'(x) +a(

From inequality we obtain x € (0,2). We choose:
N >4>2z (37)

to ensure that f(x) is increasing for z € (0,2), i.e., f'(z) > 0. We rewrite
inequality as follows:

N N 8 N N
2 2

e = (=5 1 < F@) < 72) = (g

(38)

We calculate a lower bound for the right hand side of inequality as
follows:

1 N N 1
2

2?*2(10g2(%)1*2|(]\] — 277”) > op—2log, (§)—2

(39)

21

Thus, to prove inequality (34) it suffices to show that the following inequal-
ity holds (see inequality (38)),):
8 N

()) :

op—2log, (5)—2

w2

<
This is equivalent to the following:

N 4 N
3—log2(N)+§(log2(1+m)) < —p+210g2(5)—|—2 (40)

We choose N > 8 and apply Proposition 3| (see Appendix to obtain an
upper bound for log, (1 4+ 4):

4 4 8
N1 - omp “N-1

Based on inequality ,, it is sufficient to find an IV > 8 satisfying:

log, (1 + (41)

N 8 N
3—10g2(N)+(§)(m) < —p+210g2(5)+2 (42)
Inequality is equivalent to the following:
N3 16

From N > 8, we conclude % < 4. Thus, we choose N such that N >
p+11

max(Q%,S) =2"3 .
Proof for inequality : To prove the inequality, we estimate the

amount of precision that is lost when we approximate (25-) % by (N_LLM)% .

The number z is represented by (m,n,p). Thus, we have:

m 1 m
|z — ;| < ﬁ*\
1 2m
wln
Since NV > 8, one unit of precision is lost when we approximate N — 2x by
N — 22 (see Theorem [5.4li):

2
|2w——m| <
n

2m 1

2m
|(N —2z) — (N - 7)| < 2,,7_1|N— 7|

Approximating ﬁ by ﬁ reduces the precision by one unit (see The-

orem I

- N

N—-2y N-—2m! = 2p-2'y_ 2m
n n

N N 1 N

— <
N2 N—%"' 2P*2|N72Tm

22

N
2

Finally, approximating (2%-)= reduces the precision by 2[log,(4)] units

(see Lemma [1] in Appendix [A)):
N |~ N N 1 N
N—2.’L')2 _(< 2p72"log2(%ﬂ72|(N_%)

N

I(|

ii. Suppose 7* < 0. We use the following identity to calculate e®:

1

67I

e’ =
We represent —x by (—m,n,p) (see Theorem [5.1)). Then, we apply the
first part of the theorem and Theorem to approximate e~* and e}”’
respectively.

O

In what follows, we extend the approximations of Theorem and calculate
the exponential function for = represented by (m,n,p) where || > 1.

Theorem 6.2. Let x be a real number represented by (m,n,p) and |2 > 1.
Suppose k and N are natural numbers such that:
m p+11

— | <1, N>2%s
Byl

The value of e can be approximated as follows:

i. If ™ > 0 then e can be represented by (m',n’,p — 2[logy ()] — 2k — 3)

N)N-Z’“_l
N—_2m .
n

!’
where 2 = (
n

i. If ™ < 0 then e® can be represented by (m',n’,p — 2[logy(§)] — 2k — 4)
1

’
m’
where TN

- —
NI

Proof. Since || > 1, we choose k € N such that |55 < 1. We use the following
identity to calculate e”:

¥ = (ez‘i’“)Qk (43)

We approximate 5z by 5z-. Since 2% is a constant, we do not lose precision in

this approximation. We apply Theorem to approximate e2* . This approxi-
mation reduces the precision by:

o 2[logy(5)] + 3 units, if 0 < &= < 1;
o 2[logy(5)] + 4 units, if —1 < = <0.

Suppose %, is the approximation obtained for e2* from Theorem We

approximate (62%)2k by (%)2k; we lose 2k units of precision in this calculation
(see Lemma [I] in Appendix [A).
O

23

Algorithm 6 Exponential Function

Require: expr has the shape e”
procedure COMPUTE(expr, p)

1:

2 Choose N such that N > 255~
3 po p+2[logy ()] +4

4: repeat

5

6

7

™ < COMPUTE(z, px)
if 0 < <1 then

’

8: return %
9: else if —1 < 7t < 0 then
10: %/ — Nl N
(m@) 2
11: return %
12: else
13: Choose k € N such that [5| < 1
14: if (0 > 0)A
15: (ps — 2[logy(§)] — 2k — 3 > p) then
’ k—1
16 %H(Niv%)]“
17: return ’:Z—,/
18: else if (7 < 0)A
19: (pr — 2[10g2(%ﬂ — 2k —4 > p) then
20: %,/ — (N+N2m1)N'2k71
21: return ’:;”—,’
22: else
23: Do ¢ Do+ 1
24: until true

> Theorem 6. 1H

> Theorem

> Theorem [6.2lf

> Theorem

24

1 x t 1 x ¢

(a) y = % (b) Right & Left Riemann Sums

Figure 2: Approximating In(z)

Algorithm [f] implements the approximations described by Theorem and
6.2 to calculate e® with arbitrary precision. Observe that when || < 1, e®
can be approximated in one pass. However, when |[7*| > 1, loss of precision
depends on the magnitude of |7*|. Thus, recomputing 2 with higher precisions
might be necessary to compensate for the loss of precision caused by applying
equality (see Line in Algorithm @

To confirm that iterative computations are unavoidable, we apply perturba-
tion analysis on f(z) = e*:

zf'(x)
f(x)

The quantity |z| can become arbitrarily large and hence approximating e* with
precision p in one pass is not always possible.

xre
| = |67| = |z|

6.2 Natural Logarithm

In this section, we first discuss an approximation for In(z) based on Riemann
sums where we assume that x is precise. Then we extend this calculation to
approximate In(z) where z is represented by (m,n,p).

Suppose z > 1 is a real number and we want to approximate In(z). We
consider the curve y = % (see Fig. and calculate the area enclosed by this
curve and the t-axis between t = 1 and ¢t = x. This area can be calculated as

follows:
/ dt = In(x)
1t

We use Riemann sums to approximate this area; Fig. shows how the area
can be approximated from below and above using rectangles. Thus, we get the

25

following inequalities for IV rectangles:

-1 1 r—134 1

- <lIn(z) < ;
N ¢:11+W(m_1) N Z_:01—|—ﬁ(:1:—1)

This gives us an upper bound and a lower bound for In(z) and by increasing N
we get more precise approximations.
We can estimate the premSlon of our approximations. For instance, if we

approximate In(z) by 2t ZZ 0 m the absolute error can be estimated

as follows:
N-1
r—1 1
| ; — In(z)|
N 2:01+N(:C71)
|x—1Nil 1 x—li 1 ‘
SN Sl i(@-1) N Zli(e-1)

B A e Ay (44)

Up to this point, we have assumed that the precise value of z is available.
In what follows, we formulate a theorem to describe an approximation of In(x)
based on a representation (m,n,p) of x.

Theorem 6.3. Let x be a real number represented by (m, n,p) such thatp > 1.

i If > 1, then In(z) can be represented by (m’,n',p — j — 4) where 7:—,/ =
mN Z (m) 0 N = [2r~2 (j_)i], and j is the smallest natural

number such that j> logz(i_ﬁ) holds.

i If 0 < 0 < 1 then In(x) can be represented by (m’,n',p — j — 5) where
)=

m’ _ _ ()=l N-1 1 _ —2 %)2

D PUARSE s (EYE g N D

natural number such that j > logQ(—) holds

Proof.
i. Suppose ™ > 1. The number z is represented by (m,n,p) and hence we

can write:
1 m _m 1 1 3m
- —(1-—= —(1 < — 4
2 < SRl gp)<r<y (+2p)_2n (45)

To prove the theorem, we need to prove the following inequality:

m

m _ N1 1
| -2 .
) - 2= X

m __
n

SIS

=0

<2PJ4|

2\“
3

—_
~

26

We rewrite the left hand side of inequality as follows:

m_ 1
| In(z)—-= | =
N ZZ1+gx(m-1)
N—-1
z—1 1
| In(z)— ;
N i—o 1+N(Z‘—1)
N—-1 N-1
_ m _ 1
N o].-I—N((L'—l) N o 1+ﬁ(;—1)
z 1N—1
| In(z) ; |
N 1%3 1 m_p = 1 |
N ZOlJrﬁ(xfl) N 1201+ﬁ(%71)

To prove inequality , it suffices to show that the following inequalities
hold:

In(z) _ @ 1= 1 | 1 |%—1N* 1 |
n\r)— "
N 7,:01+ﬁ('r_1) »-9-3° N i=01+ﬁ(;_1)
(47)
ﬁflgf 1 m_ 1= 1 |
N i=0 1+ﬁ(:c71) N i=0 1+ﬁ(%71)
1 |%—1N’1 1 |
w73 N+ (-)
(48)

Proof for inequality : We use inequality and calculate an upper
bound for the left hand side of inequality :

2

-1 1 —1)2
|In(z) — = - <&l
N 1+ g(@-1) Nz

K2

(49)

I
o

2
To calculate an upper bound for %, we counsider the function f(z) =

(z—1)2 . . .
N and calculate its derivative:

From inequality (45 we conclude that = € [,22]. The function f(z)

is decreasing (f'(z) < 0) in the interval [3,1] and increasing (f'(z) > 0)

27

in the interval [1, 22]. Thus, the maximum of f(z) for z € [5,32] is
max(f(3), f(32)). We use this to rewrite inequality (49):

r— 1= 1 1. . 3m
1 — - < < - —_
[In(z) — — ; 1Jr%(%_l)l < f(e) < max(f(3), f(57))
1 (5p -2
=y NEm)
(52)* . 3m
< max(5 N(3m))_ o (00)
We also calculate a lower bound for the right hand side of inequality (47))
L5 Nz’:l 1 ol |(’;571)N*1 1 |
2r—i=3' N 1+ 4() T2t N A (A2 1)
_ 1 (@_1) N
S =37 N+ (N-1)(2-1)
1 m N
=R NA+m2 1)
_(E-1)
e (51)

To show that inequality (47) holds, it suffices to prove the following inequal-
ity (see inequality ,)

Thus, it suffices to choose N > 272 (7_)1

Proof for inequality . To prove inequality we consider the cal-

culations in = Z and estimate the amount of precision that

1+l(ac 1)

we lose in the approximation "N Z.: L

1+ i ('m) .
From Theorem [5.4]i] we conclude that j units of precision is lost by subtract-

ing 1 from = where j > log,(+m). We obtain the following inequalities:

@ =1 = (= =Dl < 51— 1

2p—j
7 .m 1 i m
Cr—1)— —(— —1 (2
A A P e i Gl

The approximation + (2 — 1) of +(z — 1) is positive. Hence, we do not
lose precision by adding +(z — 1) and 1 (see Theorem [5.4}i).
] m 1 ,m

P 1) = (4 () < 4 ()

(1 +

28

By approximating the inverse of 1 + ﬁ(l‘ — 1), we lose 1 unit of precision
(see Theorem [5.3):

1 1 1 1

- — - < - -
|1+ﬁ(z71) 1+§(%—1)| 2P—J_1|1+ﬁ(%—1)‘
We lose 2 units of precision by multiplying £t and % (see Theo-
N
rem [5.2)):
|x—1 1 (2 —1) 1
N 1+ £@=-1) N 14 E5(Z-1)
1 “%—1) 1 |
DT N 14 4£(Z-1)

i a1 1
Since the numbers *5 TFEESD

. . —1 N— 1
calculating the summation %= > . FEa does not

are approximated by the positive numbers
w1 1

N 14 (Z-1)
affect the precision:

)_l

|x—1%§ 1 R 1 |
N Z01+§(:p—1 N 12014-%(% 1)
1 m o 1

—i—3" N m
2073 i=0 1+ﬁ(ﬁfl)
ii. Suppose 0 < ™ < 1. We use the following identity to approximate In(x):

1 = —In(—

b(z) =~ In(-)
We approximate % by (n,m,p — 1) (see Theorem . Then, we apply the
first part of the theorem and Theorem to approximate — ln(%).

O

Algorithm (7] applies Theorem to approximate In(x) with arbitrary pre-
cision. Note that when the approximation 7* is close to 1 the amount of pre-
cision that we lose in the calculations depends on the magnitude of “*. Loss
of pre(nsmn for x ~ 1 in Algorithm [7] is due to our approximation formula,

ZZ 0 m We divide the interval between 1 and x into N subin-

tervals and approximate the area under the curve f(t) = % The length of the
interval [1, z] is crucial in our approximation. Thus, recomputing « with higher
precisions is necessary when a significant amount of precision is lost in x — 1
(see Line in Algorithm [7)).

To show that approximating In(z) for z ~ 1 is fundamentally problematic
we apply perturbation analysis on f(x) = In(x):

UGG R
flx) In(z) In(z)

29

Algorithm 7 Natural Logarithm

Require: ezpr has the shape In(z)

1: procedure COMPUTE(ezpr, p)
2 Pz —Dp+5

3 repeat

4: ™ < COMPUTE(2, px)
5: if > 1 then

6 arg <

7 04

8 else if 0 < * < 1 then
9: arg < -

10: {5

11: else

12: “Undeﬁneq operation”
13 j = Nogy(1=2)]

14: if p, — j — £ > p then
15: N+ [21’1'*2%9_21}
16: % — ar?V—l Zﬁiol 1+ﬁ(1arg71)
17: if 7 > 1 then

18: return Z—L,/

19: else
20: return ’7:7'
21: else
22: Pr P+ 1
23: until true

30

T t x t

(a) y = ﬁ (b) Right & Left Riemann Sums

Figure 3: Approximating arctan(x)

When z & 1 the quantity In(z) is a small value and hence committing a small
error in the approximation of x causes a significant error in calculating In(z).
Thus, for x &~ 1, iterative computations are unavoidable.

6.3 Arctangent

We first introduce an approximation of arctan(z) using Riemann sums. The
assumption is that the precise value of x is available. Afterwards, we extend
our calculations to introduce an approximation of arctan(z) based on a repre-
sentation (m,n,p) of x.

Suppose that z > 0 is a real number and we want to approximate arctan(z).

We consider the curve y = H_%; see Fig. [3(a)l We calculate the area enclosed
by this curve and the t-axis between t = 0 and ¢ = x:
/ Toodt tan(z)
—— = arctan(z
o 1+1¢2

We approximate this area using Riemann sums. Fig. shows approximations
from above and below for the integral using rectangles. From Fig. we can
derive the following inequalities for N rectangles:

N-1

z 1 ry !

—) ————— <arctan(z) < — T ive2
N ; 1+ (3)%a N = 1+ ()

We want to estimate the precision of our approximations. Suppose we ap-

proximate arctan(z) by % vagol m The absolute error of this approxi-
N

31

mation can be estimated as follows:

¢ N 1 T N 1 r & 1
| — ; —arctan(z)| < |—= - - = ; |
N —~ 1+ ()22 N —~ 1+ (%)%22 N ; 1+ ()22
x 1 a3
= = 2
N) T N (52)

Up to this point, we have assumed that x is precisely calculated. In what
follows, we assume that x is approximated by (m,n,p). We extend the Riemann
sum calculation to compute arctan(z) using the given approximation of x.

Theorem 6.4. Let x be a real number represented by (m,n,p). Then arctan(x)

can be represented by (m/,n',p — 6) where ’:}—,/ = (771;) Zﬁgl m and
N n
N = 2r-2[(my2).
Proof. We consider two cases:
1. Suppose 7 > 0. Since x is represented by (m,n,p) we can write:
m 1 1 2m
A 1 2
(1) <e < T) < o (5)
To prove the theorem, we should show that:
(m) N-1 1 1 (m -1
| arctan(z) — & —| < | 2= Z — |
NS 1+ (F)P) ol N iz 1+N (%)
(54)
We rewrite the left hand side of inequality as follows:
my N—1
- 1
| arctan(x) —) W' =
NS 1+ (7))
arctan(z) — £ 3~ —L
arctan(z) — —
N —= 1+ (§)%?
N—1 N—1
x 1 (™) 1
+Nzl+(i)22_;\} 1 z‘2m2|S
i=0 N = 1+ (%)2(%)
X 1
arctan(r) — —
N 3 - 7 m\2
N i Lt ()2 N o L+ (F) ()

32

Thus, to prove inequality , it suffices to prove the following inequali-
ties:

p N1 1 | (my ¥
|arctan(z) — — . | < — |2~ ——| (55)

N i=0 1+ (%)2‘%2 20=5° N i=0 1+ (% 2(;)
| L, Vol 1 (m) N-1 1
N 7 - i m\2
N i=0 1+ ()22 N = 1+ ()2 (%

1 () A 1
<

7N 2 ey

Proof for inequality : We first consider the left hand side of in-
equality and calculate an upper bound for it. From inequality
we can write:

| arctan(z S Nz: | < - (57)
N &~ (L) N(1+ 22)

Z

To obtain an upper-bound for #jﬁ), we consider the function f(z) =

#jﬁ) and calculate its derivative:
3x? + 2t
"(z) = ————== >0

Thus, f(z) is an increasing function and its maximum occurs when x gets
its maximum value. Inequality (53)) implies that sz is an upper bound
for z and hence we can rewrite inequality as follows:

r A= 1 23 8()3
|arctan(x) — — - | < < n
N ; 1+ ()22~ N(1+2?) = N(1+4(%)?)

8(%)°

S N+ ()2

(58)

We also calculate a lower bound for the right hand side of inequality :

) N1 o
55 2 T & X TR
_(271—5) G + (N]V—Zl)2(g)2)
> (e)
5 o

33

To prove inequality (55)), it suffices to show that the following inequality
holds (see inequality ,):

@ (@
N+ (2P) T 2+ ()

m

We divide all the components by ((EEant obtaining;:

8(

S

)? 1
< T

=

Thus, it suffices to take N = 2P~ 2[(2)2].

Proof for 1nequallty . To prove the inequality, we consider the
calculations in ZZ 0 W and estimate the amount of error that
we commit in the approxnnatlon G Z W
From Theorem and inequality (53 , we conclude that 2 units of preci-
sion is lost by approximating 2 by (%)2 and hence we obtain:

m 1 m

27 = (2] < 55l (5
()% = (2] < g Ay

The approximation (ﬁ) (’T’Z)2 of (&)2z? is positive. Thus, we do not lose
precision by adding (+)%2? and 1 (see Theorem [5.4/fi):

W+ ()27 = (L (2 < g1+ ()27

We lose 1 unit of precision by approximating the inverse of 1 + (%)2z?
(see Theorem [5.3)):

1 B 1 < 1 | 1 |
I+ G T T GPE? T P T GPEP

We lose 2 units of precision in the approximation of .
Theorem [5.2)):

—_

3

) 1 |<1@ 1L

x (
- 25 N T (L)

NI+(@)Pa? N T (PG

m

The approximations %-.

m are positive for 0 <i < N — 1. Thus,
N n

we do not lose precision by calculating the summation & vagol 1

T+(%)2?

34

(see Theorem [5.4li):

N-—

._.

E 1 (m) = 1 |
AT 7 - i m\2
N =0 1+ N 2.1'2 N =0 1+(ﬁ)2(ﬁ)
Gy 1
— 7 m\2
2?5 N o L+ (§)2(%)
2. Suppose < 0. We can write:
m 1 1

Observe that z < 0; we can use the following identity for arctan(x):
arctan(x) = — arctan(—x)

where —z > 0. We first approximate arctan(—z) using the first part of the
proof. Afterwards, we apply Theorem to approximate — arctan(—zx).
Unary negation does not influence the precision.

O

Algorithm 8 Arctangent

Require: ezpr has the shape arctan(z)
1: procedure COMPUTE(ezpr, p)
2: ™ < COMPUTE(z,p + 6)
3: N 20t (m)2]
. m () N-1 1
* im0 TR

5: return &
n

Algorithm [8| applies Theorem to approximate arctan(z) with arbitrary
precision. Note that Theorem [6.4) predicts the amount of precision that is lost by
calculating arctan(z) independently of the argument z and hence Algorithm
calculates arctan(z) in one pass.

To confirm that arctan(x) is computable in one pass, we apply perturbation

analysis and calculate the quantity \xf (x)| for f(x) = arctan(z):

zf'(z)
f(x)

Proposmonl see Appendlx shows that |m| < 1; iterative com-

)y |
arctan(zx) (1 + 22?) arctan(x)

putations are not required for approximating arctan(x).

35

7 Approximating Transcendental Functions by
Taylor Expansions

In this section we first briefly discuss the basics of approximating functions using

Taylor expansions. Afterwards, we use Taylor expansions to approximate sin(x)

and cos(x).
Suppose f: D — R is a function and I = (a,b) C D such that:

e f has n continuous derivatives on I (denoted by f)(z) for 1 <14 < n);
o f(n+1) exists on I;
e xo€el.

Taylor’s theorem states that for every & € I there is a number ¢, between x
and zg such that f(z) = P,(x) + R,(z) where:

_ f(nJrl) (cz)

np) (g _
Pu(z) = I2@0) (4 ag)i) Roe) = EDEE zo)"* (60)
i=0 ’

7!

The formula R, (z) is called the Lagrange form of the remainder [20].

In the remaining of this section, we discuss approximations for sin(z) and
cos(z). Our approximations are based on the following Taylor expansions around
the point zg = 0:

sin(z) = i 7(_1)1 .inH (61)

cos(z) :Z (7.1)! z* (62)

For each function, we first describe an approximation that is applicable to
the base interval I = (—1,1) (see Section[7.1)). Afterwards, we extend our calcu-
lations to the complete domain of the functions using range reduction identities
(see Section . Proof of correctness for the base and general cases are pro-
vided. Moreover, the COMPUTE(expr, p) function is extended to approximate
sin(x) and cos(x) with arbitrary precision. We use perturbation analysis to
confirm the observations obtained from the approximations.

7.1 Approximating Functions in the Base Interval

7.1.1 Sine

In this section we use the Taylor expansion from equality to approximate
sin(z). We assume that the input argument z is represented by (m,n,p) and
=<

36

Theorem 7.1. Let x be a real number represented by (m,n,p) such that —1 <

™ < 1. Then sin(z) can be represented by (m',n’,p — 2[logy(2N — 1)] — 3)
where %,/ = ZN (éli%),(¥ and N € N is an odd number such that

(%)((21\”@#) > 9P,
Proof. The real number z is given with precision p:
m
T T o< T T < T (63)
n n
To prove the theorem, we should show that the following inequality holds:

(=1)" m 2i+1)i m 2i+1

|sin(z) — m | < op— 2(log2 nl- 3|Z 21+1

Mz

s
I
<

(64)

We rewrite the left hand side of inequality as follows:

N ; .
. (1) m 2i+1
sin(x — =
[sin(e) = 3 iy 1y
N ; N ; N ; .
: (-1) 21 (1" 2ip (=1)" m 21
N =7 1 N =7 1 _ N 7 (" <
|sin(z) - ;(22+1) +Z(2i—|—1)!m z%(2i+1)!) Is
: (-1 22+) 22+ (=1)" m 21
|sin(e) - Z(Qerl I+ Z 22+1 Z(Qz‘Jrl)!(n) |
=0 =0 =0
Thus, we prove inequality by showing that the following inequalities hold:
N N ;
, 21) m 2i+1
|sin(a ; 21—1—1 < 5= 2rlog2<2N T- 2'20 21+1 | (65)
N ; N .)
)’ L2+ (1" m 2+l
N L

N)
1)z m 2i+1
2p 2[log, (2N —1)]— 2|Z 214,1) () ‘ (66)
=0

Proof for inequality : Based on Taylor’s theorem (see equality) and
inequality , we can rewrite the left hand side of inequality as follows:

S N2 (e,)

(2N +2)!

2N+2 |ﬂ|2N+222N+2
n

(-1 o, sin
A < | < ,
(2N +2)l

£ (2i+ 1)

K2

| sin(z) —

(67)

37

We choose N = 2k 4+ 1 > 1. Applying Proposition [5| (see Appendix we can
rewrite the right hand side of inequality as follows:

N

1 (=1)t m 2i+1 B sgn(™)
2p—2ﬂog2(2N—1ﬂ—2‘ZO(2¢+1)1(Z) =\ fomen 172
1=

N —1)* g 2i+1
'(2(2(¢+)1)!(n)) (68)

=0

where sgn is the sign function. To prove inequality , it suffices to show that
the following inequality holds (see (67),(68)):

|m |2N+222N+2 N
n

CslE) LD m
(2N +2)! 2p—2[logy (2N —1)]-2 2t+ 1! n

=0

This is equivalent to:

2r2Mom N D12 2+ (274 1)] ' n eNt 2l
N ; .
sgn() m 1, m.4 (=1)" ,m 2+1
Sr—2Tloss (2N 112 (n -G G
p
|m |2N+292N 42
n
vy Y (69)

The quantity sgn(%) ZfVZQ %("‘)QH1 is positive (see Proposition |5in Ap-

n
pendix. Moreover, the approximation 2* satisfies |”*| < 1. To prove inequal-
ity it is sufficient to show:

) sy - BT
9p—2[logy(2N-1)]-2 " p 31" n (2N + 2)!
2r—2 n 3" n (2N +2)!
Inequality is equivalent to:
m. m 1., m., 2p2N m. o
Sgn(z)(ﬁ)(l - (5)(;) - (2N +2)I(2N — 1)2 (;))>0

Since sgn(2)(™) > 0 and ()2 < 1, we should choose an N such that:

1 2p+2N—2(10g2(2N—1)]
-+ <1
6 (2N +2)!(2N —1)2

Thus, N should satisfy (%)(2]\7“%;*71)2 > 2P,

38

Proof for inequality : We show that given an approximation 7* of z with
precision p we can approximate Z?;O ((2;2;!1‘2“‘1 by ZZ-ALO ((zz_ﬂ)' (%)%Jrl with
precision p — 2[log, (2N — 1)] — 2.
(=)' 241
i+ 1)!
Thus, adding two arbitrary terms with different signs from the expansion can
significantly reduce the precision (see Theorem [5.4lii). To avoid this, we first
consider specific pairs of terms for which loss of precision due to addition is
bounded. Then, we calculate the summation of these pairs. The following

identity shows the way we calculate 3 ((Q;ﬂ;x%“:

The sign of the terms alternates between positive and negative.

N)z k phitl 22

(_1 2i+1 __
Z(2¢+1)!x ’ _2(41'4—1)!(1_ @r@+3)

i=0 =0

Choosing N = 2k + 1 allows us to make pairs of terms.
The number z is given with precision p. Thus, we can approximate 2 with
precision p — 2 (see Theorem :

2 m.o 1 m.o
22— (57 < 5522
and hence
i (z)? Ly

(4 +2)(4i +3) (4i+2)(4i + 3)| < 5zl (4i + 2)(4i + 3)‘

. 2 m)2 .. .
We approximate 1 — Mw by 1 — W. Loss of precision in the
()2
. I+ =T
approximation can be estimated by calculating the quantity log, (—"=Z")

eTET TRy

(see Theorem [5.4lii]):

m)2
L+ @iy 1+ 3 7
log, (—— a5) < logy(;—1) = loga(5) <1
6

1- (4i+275(4i+3)
Thus, we lose at most 1 unit of precision:

a? (%)° 1 (%)

O @@ 0)

(4¢+2)(4¢+3))| <zl (4i+2)(4i+3)|

The powers z**! are approximated by (2)**! for 0 < i < k and 2[logy(4i+1)]
units of precision is lost in this operation. Thus, in the worst case, the precision
is reduced by 2[log,(4k + 1)] units:

4it1 Mo 4541 1 Mogiv1) 1 M\ 4541
27 = () < ot () = S ()7

39

Multiplying approximations of z*'+!

cision:

by a constant does not influence the pre-

x4i+1 (%)4i+1 1 (%)41’-{-1

‘(4@ +1)! (4i+ 1)!| < Qp 2oz @N 1] |(4z' + 1)!‘

+1

. . . IQ . . .
The multiplication -+ (i +1), (1- CESIeE +3)) can be approximated by multiplying

the approximations % and 1 — % (see Theorem :
I4i+1 1,2 (m)4i+1 (m)2
| (4i + 1)! (1= (4i + 2)(4i + 3)) a (472 + 1)!(1 (4i+ 27)L(4i + 3))|
1 (m)4i+1 (m)z
< 2p—max{2[logy (2N -1)],3} -2 | (47; + 1)!(B (4i 4+ 27)L(4z' +3))
1 ()it ()2

p— n —
= e Eeney T2 G)1 T @)@ £3))

= _ 2
For the last equality, we use the assumptions (g)(M%) > 2P and

N = 2k + 1; we can conclude that N > 3.
m\4i+1 ('m

2
For 0 <4 < k the terms ((Z)H)I (1- (4“2?()4”3) have the same sign which
in Appendix . Thus, we

is determined by the sign of ™ (see Proposition [5
)41+1 m\2

. k 4i+1 m
can approximate » £ 1-

(=)
i=0 (4i+1)!(@itz 4z+3)) by Zz =0 (4z+1)'((4i+2)(4i+3))
. 4Hi):

without losing precision (see Theorem

k phitl 2 k (m)47,+1
n

7 (4i+1)!

(5)°
|; 4i+1 (4i+2)(4i+3))

(4i +2)(4i + 3)

)<

|(1_

1=

)
1 k ()41+1 (m)2
2[log, (2N —1 2‘2 (17 o\ (4)l
2p—2logy (=20 (4i + 1) (43 + 2)(4i + 3)

O

Theorem provides a top-down approximation for sin(z) in the base in-
terval. Loss of precision in this approximation is estimated independently of
the argument z. To show that iterative calculations can be avoided in the base

interval, we calculate |m]{(fcm | for f(z) = sin(z):

zf'(x)
f(z)

Proposition [7| (see Appendix shows that |z - cot(x)| < 1 for x € (—1,1).
Thus, we can approximate sin(z) in the base interval in one pass.

x - cos(x)

| | = | = [z - cot(z)] (71)

sin(z)

40

7.1.2 Cosine

In this section we introduce an approximation for cos(z) where z is represented
by (m,n,p) and |7*| < 1. Our approximation is based on the Taylor expansion

from equality (62 .

Theorem 7.2. Let x be a real number represented by (m,n,p) such that —1 <
™ < 1. Then cos(x) can be represented by (m',n’, p—2[log,y (2N —2)] —3) where

’

= Zfio (é;))!i (%)ZZ and N € N is an odd number such that QNH;;# >

2P,

Proof. The real number x is represented by (m,n,p) and hence we can write:
1
2l 1< *I (72)

To prove the theorem, we need to show:

N (71)2 m . 2i N m 21
|COS(£ZZ) - ZO (22)' (E) | op— 2[log2(2N 2)]-3 ‘ ZO (73)
We rewrite the left hand side of inequality as follows:
N . .
(—1) m2i
eoste) =3 G () 1=
N ; N . N . .
(=1 o (=1)" 9 (=1)" m 2
— — <
| cos() ; 2" +ZZ:; 2" ; o) 1S
N - N ; N ; .
_ (=1)" (=1)" o - (-1 m, 2
| cos(z) ;)" |+|;)" ; @) |

We prove inequality by showing that the following inequalities are valid:

N 7 N m 2
lcos(z) ~ 3 Y ! DI = e N

21
2)! | < op—2[log, (2N—2)]—2 - (2i)!

> 3

—1)" Y (—1)F m 2 1 m. 2
. ((22‘))!9j _Z((%))! (Z) < op—2[log, (2N ~2)]~ 2|Z 21) *) | (75)
=0 i=0 i=0

Proof for inequality : We use Taylor’s theorem (see equality) and
the bounds calculated for x in inequality to rewrite the left hand side of

inequality :

=

i) COS(2N+1)(Cz):L‘2N+1

N
| cos(w ; . oNil S TN

|m|2N+122N+1
n

(76)

41

We choose N = 2k+1 > 1 and apply Proposition@ (see Appendix to rewrite
the right hand side of inequality :

N N
m 21 1) m 27
2p— 2(log2(2N 2)] -2 | Z 2p 2[log, (2N —2)]—2 Z 22)

=0
(77)

To show that inequality holds, it suffices to prove the following (see in-
equality ,):
| |2N+192N +1 1 N 1) m 2
(2N +1)! < 9p—2[log,(2N—2)]— 22 (2i)! 7) (78)

Inequality is equivalent to:

‘m|2N+122N+1
n

1 ol)i m 2i B
2P*2f10g2(2N*2ﬂ*220 (20 ‘n’ @@N+1!

|m 2N +192N+1
n

1 1_1(@)2+Z(_1)i(@)m)

srzronen—a72 (0~ 3(5 e)T e 70

The quantity Zz 9 (21), (%)% is positive (see Proposition |§| in Appendix .
Since || < 1, it suffices to show:

1 1 m) |m|2N+122N+1
2p—2flog2(2N—2)1—2(3t n))- (2N +1)! ~
(2N —2)? 1 m., 22N+L
= (11— o (— _— 0 79
w7 15300 oy > (79)

Inequality is equivalent to:
2p+2N71
@N +1)I2N —2)?

1 m

b L

(g)Q >0

Since (2)? < 1, it is sufficient to choose an N that satisfies the following
inequality:
1 2p+2N —1

TNty —2p <!

Thus, we should choose an N = 2k + 1 that satisfies %*—2)2 > 2P,

Proof for inequality : To prove the inequality, we estimate the amount of

precision that is lost when we approximate va 0 ((211)), 22 by Zi‘v:o ((_23)); (%)%.

The sign of the terms (21)), 22 alternates between positive and negative. Thus,

42

adding two arbitrary terms with different signs from the expansion can poten-
tially cause significant loss of precision (see Theorem [5.4lfii). To avoid this, we
first consider pairs of terms for which addition can be calculated with a bounded
loss of precision. Afterwards, we calculate the summation of these pairs. The
following identity shows our computation scheme:

> (=1)" o5 _ att 1 z?
- (2i) " _22(41‘)!(“@wrn@s)

=

7

Choosing N = 2k + 1 allows us to pair the terms of the summation.
Since z is given with precision p, we can approximate 22 with precision p — 2
(see Theorem [5.2)):

|z

2 (Mo 1 m o
< 5512

Multiplying the approximation of 22 by a constant does not influence the pre-
cision:

L « + W PP SR ¢
i+ 1)[di+2) [@di+D)@di+2) 202 (di+1)(4i +2)
. 2 m)2 .
We approximate 1 — @) @12 by 1 — m. To estimate lose of pre-
()2
cision in our approximation, we calculate the quantity logQ(W) (see
@) @)
Theorem [5.4}iii):
10g2(%) < 10%2(1 %) = logy3 <2
~ @4 2

Thus, we lose at most 2 units of precision:

I—Q),(lf (%)’ et ()
(4i+ 1)(4i + 2) i+ 1)4i+2)" 274 (4i+1)(4i + 2)

[(1— |

Approximating 2% by (2)* reduces the precision by 2[logy(4i)] units (see
Lemma [I] in Appendix [A]); in the worst case we lose 2[log,(4k)] units of preci-
sion:

1

o Tl = g (%
o op—2Mlog, 2N—2)1 I\

44 47 44 __
|z —(g) |<m|()=

Multiplying (%)‘” by a constant factor does not influence the precision of the
calculation:
o () 1 (e

‘(41')! (40)! | < Sraog,ev a1 (44)! |

43

. 4i 2 m 41
We approximate ﬁ(l — m) by multiplying the approximations ((711'))!

and (1 — m) (see Theorem :

:C4i x2 (%)41 (%)2
|(4i)!(1_(4z’ +1)(4d +2)) T (40)! (1= (4i 4 1)(43 + 2))‘
< ! 52 TR »
9p—max{4,2log, GN-2)1} -2 | (44)] (4i +1)(4i + 2)
S U] 3} SR) S
~ 9p—2Mlog;, @N-2)T-2 | (45)] (43 + 1)(4i + 2)

2
To obtain the last equality, we use the assumptions w’q%‘# > 2P and

N = 2k + 1; we conclude that N > 3.
(m 41 (% 2

)
The terms o] (1_(4¢+1)(4z’+2)) v

in Appendix D and hence we can approximate the summation Zf:o %(1 —
W?MH)) without losing precision (see Theorem :

are positive for 0 < ¢ < k (see Proposition

ki 22 k (%)41‘ (%)2
‘; @ @D+ _; RS CE L
L () ()
2p*2ﬂogz(2N72>H|Z (4i)! (1= (4i + 1)(42’—!—2))‘

3

I
=

O

Theorem estimates loss of precision in cos(z) in the base interval in-
dependently of the argument x. To show that iterative computations can be

avoided in the base interval, we calculate |IJ{(/3(5)| for f(x) = cos(x):
xf'(x) —x - sin(x)
= =|z-t 80
2P| =) (50)

From Proposition [8] (see Appendix [A)) we conclude that |z - tan(z)| < tan(1) for
x € (—1,1). Thus, we can approximate cos(z) in the base interval in one pass.

7.2 Extending Base Interval Approximations

In Section and we discussed approximations for sin(z) and cos(z)
in the base interval. In what follows, we show that range reduction identities
can be used to extend these approximations to calculate sine and cosine for an
argument x represented by (m,n,p) where |7t > 1.

In our calculations, we use a representation (m’,n’, p) of . This representa-
tion can be obtained based on our approximation for arctan(x) (see Section [6.3))
and the following identity:

m = 4arctan(1)

44

7.2.1 Sine

Theorem 7.3. Let x be a real number represented by (m,n, p) such that |2+ > 1

and (m’,ﬁ’,p) b/e a representation for w. Suppose & = Tt + k’T”T/I where k € 7
and 0 < 2 < 7% The value of sin(x) can be approzimated as follows:

i. If 0 < <1, then sin(x) can be represented by (my,n1,p — i1) where:

11 =81+t
N1 N o 2041
m =Y &(T)
ni P (2i + 1)' n
i. If 1 < <2, then sin(z) can be represented by (mg,ng,p — iz) where:
t9g =81 +to + 2
N i e 20 V: i o 20

m2 _, ZI: =D (ﬁ)z Y i (=1 (ﬁ)z
N 22+ 1) 2m £ (2i)! \2n

wi. If2 < % < ’:—,/, then sin(x) can be represented by (ms,ns,p — i3) where:

i3 =S1 + So +13+6

=0

In the approximations above, si,S2, N1, No, N3, Ny € N are the smallest natural
numbers satisfying:

s1 2 loga () » %2 2 loga(—)
_ U bR 4n’?4n
1 max(| 2 [,k) max(2 ML)
RS o L
1 2
2 2
Gy (BNs + 200N = 1) sy Nt DIONG =2 sy,
6 22N ’ 22N

and t1,ty € N are defined as follows:
t]_ =2 |—1Og2(2N1 - 1)-| +3
to =max(2[log,(2N1 — 1)] + 3, 2[logy(2N2 — 2)] + 3)
ts =max(2[log,(2N1 — 1)] + 3,2[log,(2N2 — 2)] + 3,
2logy (25 — 1)] + 3, 2[log, (2N — 2)] +3)

45

Proof. Since || > 1, we can choose k € Z such that Z = = 4 k% and

0< % < ZL—,/ Suppose y = x + kw. We use the following identity to calculate
sin(x):

sin(x) = sin(x + k) = sin(y) (81)

We approximate y by % =7+ k% (see Theorem . By performing this
approximation, we lose s; € N units of precision where s; is the smallest number
satisfying:

1 min(\%Lk’n'—f,l)
+ max(| 2|,k)
min(\%|,k%)

SN LA
max(| 3|,k 27)

s1 > logy(

)
1—

We consider three cases for calculating sin(y):

1. Suppose 0 < % < 1. We apply Theorem Thus, t; = 2[log,(2N7 —
1)1 + 3 units of precision is lost in the approximation of sin(y). A total of
$1 + t1 units of precision is lost in the approximation of sin(z).

2. Suppose 1 < % < 2. We use the following identity to bring the argument
within the base interval:

Y Y

sin(y) = 2 Sin(§) cos(g) (82)

El

We approximate ¥ by . Since % < % < 1, we apply Theorem and
ﬂ to approximate sin(%) and cos(%), respectively. Loss of precision in

these calculations is as follows:

ke

to = max(2[logy(2N1 — 1)] + 3,2[log,(2N2 — 2)] + 3)

The multiplication in equality reduces the precision by 2 units (see
Theorem [5.2)). A total of s; 4+ t3 + 2 units of precision is lost in the
approximation of sin(z).

3. Suppose 2 < % < ZL—,, We use the following identity to bring the argument
within the base interval.

sin(y) = QSiH(%)COS(%)
.Y Y y
= 4sm(1)cos(1)cos(§)
= 4sin(%) cos(%)sin(g - %)
= 8Sin(%) cos(%)sin(% — %)COS(% — %) (83)

46

We approximate § and Z — ¥ by 72 and 4%/, — &, respectively. We lose
s2 € N units of precision in this approximation (see Theorem [5.4llii)) where

59 is the smallest number satisfying:

—
m m

min(

DT T
1+ max(l:/ 4%
an’4m
S92 2 10g2(- m! m)
1_ min(5, 2)
——dn, SR~
max(ﬂ,,%

We apply Theorem and to approximate sin(¥), cos(¥),sin(% — %),

and cos(% —4). Lose of precision in these approximations can be calculated
as follows:

ts = max(2[logy(2N1 — 1)] + 3,2[log,(2N2 — 2)| + 3,
2[logy(2N3 — 1)] + 3, 2[logy (2N, — 2)] + 3)

The three multiplications in sin(¥) cos(¥) sin(§ — %) cos(§ — %) reduce the
precision by 6 units (see Theorem [5.2). A total of s; + s + t3 + 6 units of

precision is lost in the approximation of sin(zx).
O

Algorithm |§| applies Theorem and to approximate sin(x) with ar-
bitrary precision. In this algorithm, initially, we calculate x with a precision
that is adequate for calculations in the base interval. However, if the obtained
approximation is outside the base interval, we use the half-angle formula or add
rational multiples of 7 to the argument (see equality and)

Observe that an arbitrary amount of precision can be lost in the approxi-
mation of z + km and § — ¥ when z ~ —kn. Hence, iterative computations
might be necessary in the approximation (see Line in Algorithm [J)).
To show that this is essential for sine, we reconsider the perturbation analysis
in equality for f(z) = sin(x). The quantity |z - cot(z)| can be arbitrary
large for x ~ —kmw. Thus, iterative computations are essential for approximating
sin(z).

7.2.2 Cosine

Theorem 7.4. Let x be a real number represented by (m,n, p) such that || > 1

and (m',n’,p) be a representation for w. Suppose % =T 4 (2k + 1)2%/, where

k€eZ and 0 < 2 < '7’;—,/ The value of cos(x) can be approzimated as follows:

n

i. If0 < % < 1, then cos(x) can be represented by (mqy,n1,p — i1) where:

11 =81+t
m N1 (71)1' 7 2+l
o1y o ()

ni Pt (Zi + 1)' n

47

Algorithm 9 Sine

Require: expr has the shape sinx

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

13:

14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

procedure COMPUTE(expr, p)

Choose an odd N such that (%)(W@#) > 9p+2[logy (2N —1)1+3
Pz < p+2[logy (2N —1)] +3
repeat
o <~ COMPUTE(x, pz)
if -1 <™ <1 then > Theorem [7.1]

m N (=1 ;m\2i+1
=Y ino (2i+1)!(2) '

return 2o
no

else
™+ COMPUTE(4 arctan(1), p,)

Choose k € Z such that 0 < % +k’g—,/ < ’g—,/

7
m m m
O oy U8
— n TR /
(@ | pm
min(| 2|,k 2)

1+
Choose s1 € N such that s; > log,(

max (| 2| I)
min(\%\.k%))
max(\%\,k%)
2
Choose an odd N; such that (%)(@M@#) > 2Pz
Choose an odd N, such that W > 2P=—51
if 0 < % < 1 then > Theorem
t1 + 2[logy(2N, —1)] + 3
if p, —s1 —t;1 > p then
my ZNI (=1)° (m)Q”l

ny i=0 (2i+1)!\ 7
return %
1
else
Pz < Pe+1
else if 1 < % < 2 then > Theorem

to + max(2[log,(2N7 — 1)] + 3,2[logy(2N2 — 2)] + 3)

ifpg,:—sl—752—22p‘then2+1 _ .
m N1 (=1)" 20 Ny (=1)% 77\ 28
= 2(22:10 ((2¢+)1)!(ﬁ))(Zz:zo ((21'))! (5))
return TT;

else
Dz < Pz t+1
else > Theorem [Z3Jfil
Choose an odd N3 such that (%)(%#) > 2Pz S1782

Choose an odd Ny such that —(QN“HQ);%N“_Q)z > QPz—S1—82
ts3 < max(2[log,(2N1 — 1)] + 3, 2[log,(2N2 — 2)] + 3,
2[logy(2N3 — 1)] + 3, 2[logy (2N, — 2)] + 3)

48

Algorithm 9 Sine (Continued)

34: if p, —s1 —so —t3 — 6 > p then
, N1 (S1) g 2itl .
2 B =8 gt ()) (205 G (R))
N (_1)i — 2i+1 N () i 21
(Zi:30 (2i+1)!(4 ’ 4n))(Zz 40 (24)! (- E))
36: return %”
37: else
38: Py — P+ 1
39: until true
1. If 1 < % < 2, then cos(x) can be represented by (ma,na, p — ia) where:
i2 =81 + tg -+ 2
N i o 2i V: i o 20
M2 g (~1)k Zl i(ﬁf . Zz (=1) (ﬁ)z
) —~ (2t +1)!"2m —~ (20)! “2nm
1. If 2 < % < ’;—L,, then cos(z) can be represented by (ms,nsg,p — i3) where

i3251+82+t3+6

In the approximations above, s1, 82, N1, No, N3, Ny € N are the smallest natural
numbers satisfying:

min(| 7 |,(2k+1) "

m/’)

/uf)
o> logs(T (), (2k+1)2n/)) 5> log (M)
= 2 1_m1n(|m\(2k+1)) 9 = 2 1_%
max(| 31, (2k+1)2"71t’) max(;’;%%)
(?)((2N1 + 2)I(2Ny — 1)) > 2r—s (2N5 + 1)!(2N5 — 2) .
6 92N1 5 92N
5., (2N3 + 2)!I(2N5 — 1)? ONs 1 1N, — 22
(6)((i 2)25\[3 3))> 9P—51—52 , (4+ 2)2](\74 4) S gp—s1—5

and t1,t2 € N are defined as follows:
t]_ =2 |—1Og2(2N1 - 1)-| + 3
to =max(2[log,(2N1 — 1)] + 3, 2[log,(2N2 — 2)] + 3)
ts =max(2[log,(2N1 — 1)] + 3,2[log,(2N2 — 2)] + 3,
2logy (25 — 1)] + 3, 2[log, (2N — 2)] +3)

49

Proof. Since || > 1, we can choose k € Z such that Z = 2 4+ (2k + 1)% and
0<Z < ™ Supposey =z + (2k + 1)%. We use the following identity to

n n
calculate cos(x):

cos(z) = (—1)F sin(z + (2k + 1)%) = (—1)"sin(y)

We approximate y by % = T+ (2k + 1)272/, From Theorem we can
conclude that s; € N units of precision will be lost in this approximation where
s1 is the smallest natural number satisfying:

/

min(| 2], (2k+1) 22

1+ 2
o1 > logy (L@)
L= 08 | min(E k) 25)

max(| 2 [,(2k+1) 27)

We apply Theoremto approximate sin(y) and determine the loss of precision
in the approximation. From Theorem [5.1{we can conclude that the factor (—1)*
does not influence the precision of the approximation. O

Algorithm applies Theorem and to approximate cos(z) with a
desired precision. The algorithm first calculates x with a precision that is suf-
ficient for approximating cos(z) in the base interval. Similar to sin(x), we use
range reduction identities to calculate cos(z) for an arbitrary x.

Observe that a significant amount of precision might be lost in the approx-
imation when z ~ =2+ o Thus, iterative computations might be necessary
in our approximation (see Line [22J29]38|in Algorithm [I0)). To show that these
recomputations are essential, we reconsider the perturbation analysis of equal-
ity . The quantity |z - tan(z)| can be arbitrary large for z ~ %7‘(and
hence iterative computations are unavoidable for cos(x).

8 Related Work

An implementation for a bottom-up approach to exact real arithmetic is pro-
posed in [I6]. For a given expression, the inputs are computed with predefined
precisions and a bottom-up scheme is used to determine the guaranteed preci-
sion of the output. Iterative computations are required if the obtained precision
is not adequate. A formalization of a top-down approach in a theorem prover is
proposed in [I7]. The author first provides a definition for a metric space based
on a ball relation. Afterwards, real numbers are defined as the completion of
the metric space Q. Rational operations are lifted to approximate operations
on real numbers. This approach is optimized in [10].

Two closely-related top-down approaches based on absolute errors have been
studied in [3, [I5]. These approaches mainly differ in their approximations of
the transcendental functions. In [3] the authors introduce a general way for
calculating with Taylor expansions and apply this method to approximate the

50

Algorithm 10 Cosine

Require: expr has the shape cosx

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

13:

14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

procedure COMPUTE(expr, p)

Choose an odd N such that QNH%;# > gp+2[logy (2N —2)1+2
Pz < p+ 2[logy (2N —2)] + 2
repeat
o <~ COMPUTE(2, px)
if -1 <™ <1 then > Theorem [7.2]
% = Zilio ((21‘1))! (%)21
return 7;—(?
else
TT'I < CoMPUTE(4 arctan(1), p;)

Choose k € Z such that 0 < 2 + (2k + 1)2%, < ™
mom oy (2k 1)

n 2n/

min(] 7|, (2K41) 22

max(| 2|, (2k+1) 22)

_ min(| 2], (2k+1) 227
max(| 2|, (2k+1) 227

Choose an odd N; such that (%)(@M@#) > 2Pz
2
Choose an odd N, such that W > 2P=—51
if 0 < % < 1 then > Theorem
t1 + 2[logy(2N, —1)] + 3
if p, —s1 —t;1 > p then

m N —1)F 2041
= (—)F T S ()

1+

Choose s1 € N such that s; > log,(

return 2t
ni

else
Dz < Pzt 1
else if 1 < % < 2 then > Theorem

to + max(2[log,(2N7 — 1)] + 3,2[logy(2N2 — 2)] + 3)

if p, —s1 —ta—2 > pthen
m N —1)" 2041 N. —1)% 20
=2 (_1)k(21:10 ((2i+)1)!(ﬁ))(Zi=20 ((21‘))1 (7%))

return 22
na

else
Pz < Pzt 1
else > Theorem [Z.4Ii
Choose an odd N3 such that (%)(W) > QP s1ms2

Choose an odd Ny such that —(ZN“HQ);%M_QV > QPTS1782
ts3 < max(2[log,(2N1 — 1)] + 3, 2[log,(2N2 — 2)] + 3,
2Moga(2Ns — 17] + 3. 2 logs(2Ns — 2)] + 3

o1

Algorithm 10 Cosine (Continued)

34: if p, —s1 — so —t3 > p then
) k N —1)% gy 20+1 Ny (—1)% /7 \20
35: =8 (DM ((2i+i)!(%)) (i ((m))x (&)7)
Ny (~1)° ;2041 Ne (<) m/ a2
(Zi:SO (2i+1)!($ﬂ o %) (21:40 (24)! <Z:u - %))
36: return 72
3
37: else
38: Py — P+ 1
39: until true

transcendental functions. In [I5], the approximations of the transcendental func-
tions are treated separately and in a more ad-hoc way. In contrast, our approach
is based on relative errors. We provide detailed proofs of correctness for each
operation and use perturbation analysis to identify essential recomputations.

In [I] the authors propose a layered framework for computations with real
numbers. The lowest layer is an implementation of floating point arithmetic.
In the second layer, arithmetic operations are approximated using polynomial
models. The highest layer supports more advanced features such as differential
operations. Proof of correctness in a theorem prover and an implementation
based on [I] are also available. In this article, we have focused on approximating
specific operations, whereas in [I] polynomial models are discussed in an abstract
way without concrete examples from well-known arithmetic operations.

The approach introduced in [I8] is based on linear fractional transformations
(LFTs). Computations are encoded as trees of LFTs; various operations are
defined to extract the result of a computation from the corresponding tree.
However, this approach does not specify a top-down scheme to relate the desired
precision in the output and the required operations on the expression tree.
Expression trees are evaluated using lazy evaluation; computations terminate
when adequate information is available in the root of a tree.

A symbolic approach to exact real arithmetic has been proposed in [8]. The
author uses infinite binary sequences in the golden ratio base to represent real
numbers. To calculate an expression, first the symbolic techniques available in
Maple are applied to obtain a simplified expression. Additional Maple proce-
dures are implemented by the author to extract binary sequences from simpli-
fied expressions. Performing operations on binary sequences is also possible.
However, choosing a suitable balance between symbolic computations and di-
rect manipulation of binary sequences depends on the given expression. As
indicated in [8], using this approach to its full potentials requires expertise in
Maple. Moreover, the procedure might need adaptations for each problem.

9 Conclusion

In this article, we proposed a simple representation for real numbers and dis-
cussed a top-down approach for approximating various arithmetic operations

92

with arbitrary precision. The focus was on:

e providing complete algorithms and proofs of correctness for the approxi-
mations, and

e perturbation analysis to identify essential iterative computations.

Existing exact real arithmetic approaches have explored different represen-
tations for real numbers; approximations for algebraic operations and transcen-
dental functions have also been proposed based on these representations. As
far as we can see, proofs of correctness for existing approaches are restricted
to basic operations. Moreover, no formal reasoning is provided to prove the
necessity of iterative computations.

We envisage various extensions of the presented approach. From a practical
point of view, some optimizations are essential. For example, the coefficients
m and n in the representation (m,n,p) can grow rapidly during computations.
Thus, space efficiency is a relevant concern. One can consider an alternative
representation in which large coefficients are represented in a more efficient
way. Moreover, the computational efficiency of the transcendental functions can
be improved by reducing the amount of required computations (i.e, number of
rectangles in Riemann sums, number of terms in Taylor expansions) to guarantee
the desired precision.

As discussed in Section [5.4] in certain computational problems, computing
the expressions as they are would lead to loss of precision, whereas rewriting
the expressions would allow us to compute them in one pass. Our top-down
approach can be extended with a set of rewrite rules that transform problematic
expressions into expressions that can be calculated in one pass.

Acknowledgement This research was supported by the Dutch national pro-
gram COMMIT and carried out as part of the Allegio project.

References

[1] P. Collins, M. Niqui, and N. Revol. A validated real function calculus.
Mathematics in Computer Science, 5(4):437-467, 2011.

[2] A. Feldstein and P. Turner. Overflow, underflow, and severe loss of signifi-
cance in floating-point addition and subtraction. IMA journal of numerical
analysis, 6(2):241-251, 1986.

[3] P. Gowland and D. Lester. The correctness of an implementation of exact
arithmetic. In Proceedings of RNC 2000, volume 140, 2000.

[4] P. Hertling. Computable real functions: Type 1 computability versus type
2 computability. In Proceedings of CCA 1996. Mathematik/Informatik,
Universitat Trier, 1996.

[5] N. Higham. Accuracy and stability of numerical algorithms. STAM, 2002.

93

[6]
[7]

[10]

[11]

[16]

[17]

N. Higham. Functions of matrices: theory and computation. STAM, 2008.

A. Hohmann and P. Deuflhard. Numerical Analysis in Modern Scientific
Computing: An Introduction, volume 43. Springer Science & Business Me-
dia, 2012.

T. Kelsey. Exact numerical computation via symbolic computation. In
Proceedings of CCA 2000, pages 187-197. Springer, 2000.

D. Kincaid and E. Cheney. Numerical analysis: mathematics of scientific
computing, volume 2. American Mathematical Soc., 2002.

R. Krebbers and B. Spitters. Type classes for efficient exact real arithmetic
in Coq. Logical Methods in Computer Science, 9(1:1):1-27, 2013.

G. Kreisel, D. Lacombe, and J. Shoenfield. Partial recursive functionals
and effective operations. Constructivity in Mathematics, Studies in Logic
and the Foundations of Mathematics, pages 290-297, 2000.

B. Kushner and L. Lefman. Lectures on constructive mathematical analysis,
volume 60. American Mathematical Soc., 1984.

T. M. library. http://www.mpfr.org. Visited: August 2015.

A. Markov. On the continuity of constructive functions (in Russian). Us-
pekhi Mat. Nauk (NS), 9:226-230, 1954.

V. Ménissier-Morain. Arbitrary precision real arithmetic: design and al-
gorithms. The Journal of Logic and Algebraic Programming, 64(1):13-39,
2005.

N. Miiller. The iRRAM: Exact arithmetic in C++. In Proceedings of CCA
2001, pages 222-252. Springer, 2001.

R. O’Connor. Certified exact transcendental real number computation in
Coq. In Theorem Proving in Higher Order Logics, pages 246—261. Springer,
2008.

P. Potts. Ezact real arithmetic using Mobius transformations. PhD thesis,
PhD-thesis, Imperial College London, 1998.

M. Richter and K. Wong. Computable preference and utility. Journal of
Mathematical Economics, 32(3):339-354, 1999.

M. Spivak. Calculus. Benjamin, 1967.

K. Weihrauch. Computable analysis: an introduction. Springer Science &
Business Media, 2012.

o4

A Useful Propositions & Lemmas

Proposition 1. For any p € N the following inequalities hold:

1.5 1
(14 5) <14 5oy (34
1 1.5
-5 = (1- 27) (85)
Proof. For inequality we can write:
1., 1 1 1 1 1
(1+§) =t tapaslitgataa=ltgs
Similarly for inequality we have:
1o tpogy Loy Lot
Q=) =t gzl pa>1l 5o
O
Proposition 2. For any p € NT the following inequalities hold:
2p 1
1 2P
_ < = 87
2r—1 = 2r 4+ 1 (87)
Proof. Since p € N* we have 2P > 2. For inequality we have:
2 214l 14
2»—1 22 —1 © 2w—17 2!
Similarly for inequality we can write:
2p 2 +1-1 1 1
_Zt =1- >1——
r+1 27 +1 27 +1 2p—1
O
Proposition 3. For any 0 < y < 1 the following inequality holds:
Y
1 1 < —— 88

Proof. Based on Taylor’s theorem, we can write the following expansion for
logy (1 +y):

N .
i1 Y (=N
lo,(1+9) = 2V g Y N DA 1 o))

99

where 0 < ¢y < y. For N = 1 we obtain:

y2

y J—
In(2) 2(1+4¢1)?In(2)

logy(1+y) =

The quantity W;"’lnﬂ) is positive and hence log, (1 + y) < lnz(/2

Proposition 4. For x € R\ {0} we have |(1+r | < 1.

x
2) arctan(z)

Proof. We analyze the derivative of f(z) = |(1+x2):mtan(x)\ = T arcian(®)
and find the intervals in which f(z) is increasing/decreasing.

arctan(z)(1 — 2?) —
(1 + z2)2(arctan(x))?

We analyze the derivative in the following cases:

f'(z) =

1. Suppose 0 < z < 1. We use the Taylor expansion of arctan(z) to rewrite
arctan(z)(1 — z?) — a:

oo] i .
arctan(z)(1 — 2?) —x = Z ;)1m2’+1 — 2 — 2% arctan(x)
2t
o)] i ‘
= Z () 2 — 22 arctan(z)
= 2141
oo
. 1 2
= Z —x4l_1(4i - 4;67_’_1) — 2% arctan(z)

=1

The term —x? arctan(x) is negative and —x4i_1(411 TR +1) is negative for
phi-1_1 2

i>1and 0 <z < 1. Thus, the summation >~ e o)

x? arctan(z) is negative and f’(z) < 0. The functlon f(x) is decreasing

for0 <z < 1.

2. Suppose x > 1. In this case, arctan(z)(1 — 2?) — 2 < 0. Thus, f'(z) < 0
and f(x) is decreasing for x > 1.

3. Suppose z < 0. Since f'(—z) = —f'(x), we can conclude from the first
two cases that f(z) is increasing when x < 0.

The case analysis shows that f(z) is bounded from above by lim, o f(z) = 1.
O

Proposition 5. For anyy € (—1,0)U(0,1) and i € N the following inequalities
hold:

(_1) y4’L+1 () 1’+1y4l+3 > 0 ny > 0
47+ 1) (@i +3)!

(D% g1, GO s :
—_— 0 0
wrn? Ty <0 Wys

96

Proof. We can rewrite the summation as follows:

(_1)2i ditl 4 (_1)2i+1 4i+3 _ (_1)% y4i+1(1 _ 242)
(4 +1)! (4i + 3)! (4i+1)! (4i 4 2)(4i + 3)
Since 1 — W&iﬁi) >1- % > 0 the sign of the summation is determined by

the sign of y*+1.

O

Proposition 6. For anyy € (—1,0) U (0,1) and i € N the following inequality
holds:

1 2141)
())' y4z+2 > 0

(1% .,
@Y i

Proof. We can rewrite the left hand side of the inequality as follows:

(V¥ CDPH (D 1

@) T w2 “@my(LXM+Uw+mf)

Since 1 — mf >1— £ >0, the inequality holds.

Proposition 7. For z € (—1,1) \ {0} we have |z - cot(z)| < 1.

Proof. For the interval x € (—1,1) \ {0}, we have |z - cot(z)| = z - cot(z). We
analyze the derivative of f(z) = z - cot(z) in (—1,1) \ {0}.

sin(x) cos(z) — x _ sin(2x) — 2z
sin?(z) 2sin’(z)

f'(x) = cot(z) — 2(1 + cot?(z)) =

The point z = 0 is a critical point for f(x). Since [sin(2z)| < |2z, f(x) is
increasing in (—1,0) and decreasing in (0, 1). Thus, f(z) is bounded from above
by lim,_,o f(z) = 1.

O

Proposition 8. For z € (—1,1) we have |z - tan(z)| < tan(1).

Proof. For the interval x € (—1,1), we have |z-tan(z)| = x-tan(x). To determine
an upper-bound for z - tan(x), we analyze the derivative of f(x) = x - tan(x):
sin(z) cos(z) + = sin(2x) + 2z

f'(x) = tan(z) + (1 + tan*(z)) = cos?(z) - 2 cos?(x)

The quantity sin(2z)+ 2z is negative in (—1,0) and positive in (0,1). Thus, f(x)
is decreasing in (—1, 0) and increasing in (0,1). We conclude that f(z) < tan(1).
O

Lemma 1. Let x be a real number represented by (m,n,p). Then x* can be
represented by (m?,n',p — 2[log}]).

o7

Proof. We can apply Theoremto calculate ¢ = 231 x 23], Let k = ﬂog;]
and P(i) denote the precision that we lose by calculating 2. From Theorem
we can write:

Thus, we lose 2k = 2flogé] units of precision by calculating z°.

98

Science Reports Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2012):

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system
12/07 Dirk Fahland and Robert Priifer Data and Abstraction for Scenario-Based Modeling with Petri Nets
12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for
Model-Driven Development
12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems
R.J. Bril, J.J. Lukkien and T. Nolte - extended version —
12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates
Johan J. Lukkien and data compression
12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins

Mark van den Brand

12/12 Jeroen J.A. Keiren and Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2
Martijn D. Klabbers

12/13 Ammar Osaiweran, Jan Friso Groote, Evaluating the Effect of Formal Techniques in Industry
Mathijs Schuts, Jozef Hooman
and Bart van Rijnsoever

12/14 Ammar Osaiweran, Mathijs Schuts, Incorporating Formal Techniques into Industrial Practice
and Jozef Hooman

13/01 S. Cranen, M.W. Gazda, J.W. Wesselink Abstraction in Parameterised Boolean Equation Systems
and T.A.C. Willemse

13/02 Neda Noroozi, Mohammad Reza Mousavi Decomposability in Formal Conformance Testing
and Tim A.C. Willemse

13/03 D. Bera, K.M. van Hee and N. Sidorova Discrete Timed Petri nets

13/04 A. Kota Gopalakrishna, T. Ozcelebi, Relevance as a Metric for Evaluating Machine Learning Algorithms
A. Liotta and J.J. Lukkien

13/05 T. Ozcelebi, A. Weffers-Albu and Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures
J.J. Lukkien (WAmIi)

13/06 Lotfi ben Othmane, Pelin Angin, Extending the Agile Development Process to Develop Acceptably
Harold Weffers and Bharat Bhargava Secure Software

13/07 R.H. Mak Resource-aware Life Cycle Models for Service-oriented Applications

managed by a Component Framework
13/08 Mark van den Brand and Jan Friso Groote Software Engineering: Redundancy is Key

13/09 P.J.L. Cuijpers Prefix Orders as a General Model of Dynamics

mailto:wsinsan@tue.nl

14/01

14/02

14/03

14/04

14/05

14/06

14/07

14/08

14/09

14/10

15/01

15/02

15/03

15/04

15/05

Jan Friso Groote, Remco van der Hofstad

and Matthias Raffelsieper
Maurice H. ter Beek and Erik P. de Vink

Frank Peeters, lon Barosan, Tao Yue
and Alexander Serebrenik

Jan Friso Groote and Hans Zantema

Hrishikesh Salunkhe, Orlando Moreira
and Kees van Berkel

D. Bera, K.M. van Hee and
H. Nijmeijer

Reinder J. Bril and Jinkyu Lee
Fatih Turkmen, Jerry den Hartog,
Silvio Ranise and Nicola Zannone

Ana-Maria Sutii, Tom Verhoeff
and M.G.J. van den Brand

M. Stolikj, T.M.M. Meyfroyt,
P.J.L. Cuijpers and J.J. Lukkien
Onder Babur, Tom Verhoeff and
Mark van den Brand

Various

Hrishikesh Salunkhe, Alok Lele,

Orlando Moreira and Kees van Berkel

J.G.M. Mengerink, R.R.H. Schiffelers,
A. Serebrenik, M.G.J. van den Brand

Sarmen Keshishzadeh and
Jan Friso Groote

On the Random Structure of Behavioural Transition Systems

Using mCRL2 for the analysis of software product lines

A Modeling Environment Supporting the Co-evolution of
User Requirements and Design

A probabilistic analysis of the Game of the Goose

Buffer Allocation for Real-Time Streaming on a
Multi-Processor without Back-Pressure

Relationship between Simulink and Petri nets

CRTS 2014 - Proceedings of the 7th International Workshop

on Compositional Theory and Technology for Real-Time Embedded Systems
Analysis of XACML Policies with SMT

Ontologies in domain specific languages — A systematic literature review

Improving the Performance of Trickle-Based Data Dissemination in
Low-Power Networks

Multiphysics and Multiscale Software Frameworks: An Annotated Bibliography

Proceedings of the First International Workshop on Investigating Dataflow
In Embedded computing Architectures (IDEA 2015)

Buffer Allocation for Realtime Streaming Applications Running on a
Multi-processor without Back-pressure

Evolution Specification Evaluation in Industrial MDSE Ecosystems

Exact Real Arithmetic with Pertubation Analysis and Proof of Correctness

	TITEL.PG15-05
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 15-05

	Blanco
	keshishzadeh_groote
	Introduction
	Computable Real Functions
	Real Numbers: Representation & Operations
	Sensitivity of Operations to Perturbations in the Arguments
	Perturbation Analysis for Unary Functions
	Perturbation Analysis for Binary Functions

	Approximating Algebraic Operations
	Unary Negation
	Multiplication xy
	Inverse
	Addition
	Square Root

	Approximating Transcendental Functions by Riemann Sums
	Exponential Function
	Natural Logarithm
	Arctangent

	Approximating Transcendental Functions by Taylor Expansions
	Approximating Functions in the Base Interval
	Sine
	Cosine

	Extending Base Interval Approximations
	Sine
	Cosine

	Related Work
	Conclusion
	Useful Propositions & Lemmas

	PUBL.LS4csr 2012 tm

