16 research outputs found

    Secured and progressive transmission of compressed images on the Internet: application to telemedicine

    Get PDF
    International audienceWithin the framework of telemedicine, the amount of images leads first to use efficient lossless compression methods for the aim of storing information. Furthermore, multiresolution scheme including Region of Interest (ROI) processing is an important feature for a remote access to medical images. What is more, the securization of sensitive data (e.g. metadata from DICOM images) constitutes one more expected functionality: indeed the lost of IP packets could have tragic effects on a given diagnosis. For this purpose, we present in this paper an original scalable image compression technique (LAR method) used in association with a channel coding method based on the Mojette Transform, so that a hierarchical priority encoding system is elaborated. This system provides a solution for secured transmission of medical images through low-bandwidth networks such as the Internet

    WG1N5315 - Response to Call for AIC evaluation methodologies and compression technologies for medical images: LAR Codec

    Get PDF
    This document presents the LAR image codec as a response to Call for AIC evaluation methodologies and compression technologies for medical images.This document describes the IETR response to the specific call for contributions of medical imaging technologies to be considered for AIC. The philosophy behind our coder is not to outperform JPEG2000 in compression; our goal is to propose an open source, royalty free, alternative image coder with integrated services. While keeping the compression performances in the same range as JPEG2000 but with lower complexity, our coder also provides services such as scalability, cryptography, data hiding, lossy to lossless compression, region of interest, free region representation and coding

    Compressão de imagem médica para arquivos de alto desempenho

    Get PDF
    Information systems and the medical subject are two widespread topics that have interwoven so that medical help could become more efficient. This relation has bred the PACS and the international standard DICOM directed to the organization of digital medical information. The concept of image compression is applied to most images throughout the web. The compression formats used for medical imaging have become outdated. The new formats that have been developed in the past few years are candidates for replacing the old ones in such contexts, possibly enhancing the process. Before they are adopted, an evaluation should be carried out that validates their admissibility. This dissertation reviews the state of the art of medical imaging information systems, namely PACS systems and the DICOM standard. Furthermore, some topics of image compression are covered, such as the metrics for evaluating the algorithms’ performance, finalizing with a survey of four modern formats: JPEG XL, AVIF, and WebP. Two software projects were developed, where the first one carries out an analysis of the formats based on the metrics, using DICOM datasets and producing results that can be used for creating recommendations on the format’s use. The second consists of an application that encodes and decodes medical images with the formats covered in this dissertation. This proof-of-concept works as a medical imaging archive for the storage, distribution, and visualization of compressed data.Os sistemas de informação e o assunto médico são dois temas difundidos que se entrelaçam para que a ajuda médica se torne mais eficiente. Essa relação deu origem ao PACS e ao padrão internacional DICOM direcionado à organização da informação médica digital. O conceito de compressão de imagem é aplicado à maioria das imagens em toda a web. Os formatos de compressão usados para imagens médicas tornaram-se desatualizados. Os novos formatos desenvolvidos nos últimos anos são candidatos a substituir os antigos nesses contextos, possivelmente potencializando o processo. Antes de serem adotados, deve ser realizada uma avaliação que valide sua admissibilidade. Esta dissertação revisa o estado da arte dos sistemas de informação de imagens médicas, nomeadamente os sistemas PACS e a norma DICOM. Além disso, são abordados alguns tópicos de compressão de imagens, como as métricas para avaliação do desempenho dos algoritmos, finalizando com um levantamento de três formatos modernos: JPEG XL, AVIF e WebP. Foram desenvolvidos dois projetos de software, onde o primeiro realiza uma análise dos formatos com base nas métricas, utilizando conjuntos de dados DICOM e produzindo resultados que podem ser utilizados para a criação de recomendações sobre o uso do formato. A segunda consiste numa aplicação capaz de codificar e descodificar imagens médicas com os formatos abordados nesta dissertação. Essa prova de conceito funciona como um arquivo de imagens médicas para armazenamento, distribuição e visualização de dados compactados.Mestrado em Engenharia de Computadores e Telemátic

    3D Medical Image Lossless Compressor Using Deep Learning Approaches

    Get PDF
    The ever-increasing importance of accelerated information processing, communica-tion, and storing are major requirements within the big-data era revolution. With the extensive rise in data availability, handy information acquisition, and growing data rate, a critical challenge emerges in efficient handling. Even with advanced technical hardware developments and multiple Graphics Processing Units (GPUs) availability, this demand is still highly promoted to utilise these technologies effectively. Health-care systems are one of the domains yielding explosive data growth. Especially when considering their modern scanners abilities, which annually produce higher-resolution and more densely sampled medical images, with increasing requirements for massive storage capacity. The bottleneck in data transmission and storage would essentially be handled with an effective compression method. Since medical information is critical and imposes an influential role in diagnosis accuracy, it is strongly encouraged to guarantee exact reconstruction with no loss in quality, which is the main objective of any lossless compression algorithm. Given the revolutionary impact of Deep Learning (DL) methods in solving many tasks while achieving the state of the art results, includ-ing data compression, this opens tremendous opportunities for contributions. While considerable efforts have been made to address lossy performance using learning-based approaches, less attention was paid to address lossless compression. This PhD thesis investigates and proposes novel learning-based approaches for compressing 3D medical images losslessly.Firstly, we formulate the lossless compression task as a supervised sequential prediction problem, whereby a model learns a projection function to predict a target voxel given sequence of samples from its spatially surrounding voxels. Using such 3D local sampling information efficiently exploits spatial similarities and redundancies in a volumetric medical context by utilising such a prediction paradigm. The proposed NN-based data predictor is trained to minimise the differences with the original data values while the residual errors are encoded using arithmetic coding to allow lossless reconstruction.Following this, we explore the effectiveness of Recurrent Neural Networks (RNNs) as a 3D predictor for learning the mapping function from the spatial medical domain (16 bit-depths). We analyse Long Short-Term Memory (LSTM) models’ generalisabil-ity and robustness in capturing the 3D spatial dependencies of a voxel’s neighbourhood while utilising samples taken from various scanning settings. We evaluate our proposed MedZip models in compressing unseen Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities losslessly, compared to other state-of-the-art lossless compression standards.This work investigates input configurations and sampling schemes for a many-to-one sequence prediction model, specifically for compressing 3D medical images (16 bit-depths) losslessly. The main objective is to determine the optimal practice for enabling the proposed LSTM model to achieve a high compression ratio and fast encoding-decoding performance. A solution for a non-deterministic environments problem was also proposed, allowing models to run in parallel form without much compression performance drop. Compared to well-known lossless codecs, experimental evaluations were carried out on datasets acquired by different hospitals, representing different body segments, and have distinct scanning modalities (i.e. CT and MRI).To conclude, we present a novel data-driven sampling scheme utilising weighted gradient scores for training LSTM prediction-based models. The objective is to determine whether some training samples are significantly more informative than others, specifically in medical domains where samples are available on a scale of billions. The effectiveness of models trained on the presented importance sampling scheme was evaluated compared to alternative strategies such as uniform, Gaussian, and sliced-based sampling

    Preserving data integrity of encoded medical images: the LAR compression framework

    Get PDF
    International audienceThrough the development of medical imaging systems and their integration into a complete information system, the need for advanced joint coding and network services becomes predominant. PACS (Picture Archiving and Communication System) aims to acquire, store and compress, retrieve, present and distribute medical images. These systems have to be accessible via the Internet or wireless channels. Thus protection processes against transmission errors have to be added to get a powerful joint source-channel coding tool. Moreover, these sensitive data require confidentiality and privacy for both archiving and transmission purposes, leading to use cryptography and data embedding solutions. This chapter introduces data integrity protection and developed dedicated tools of content protection and secure bitstream transmission for medical encoded image purposes. In particular, the LAR image coding method is defined together with advanced securization services

    Selective Compression of Medical Images via Intelligent Segmentation and 3D-SPIHT Coding

    Get PDF
    ABSTRACT SELECTIVE COMPRESSION OF MEDICAL IMAGES VIA INTELLIGENT SEGMENTATION AND 3D-SPIHT CODING by Bohan Fan The University of Wisconsin-Milwaukee, 2018 Under the Supervision of Professor Zeyun Yu With increasingly high resolutions of 3D volumetric medical images being widely used in clinical patient treatments, efficient image compression techniques have become in great demand due to the cost in storage and time for transmission. While various algorithms are available, the conflicts between high compression rate and the downgraded quality of the images can partially be harmonized by using the region of interest (ROI) coding technique. Instead of compressing the entire image, we can segment the image by critical diagnosis zone (the ROI zone) and background zone, and apply lossless compression or low compression rate to the former and high compression rate to the latter, without losing much clinically important information. In this thesis, we explore a medical image transmitting process that utilizes a deep learning network, called 3D-Unet to segment the region of interest area of volumetric images and 3D-SPIHT algorithm to encode the images for compression, which can be potentially used in medical data sharing scenario. In our experiments, we train a 3D-Unet on a dataset of spine images with their label ground truth, and use the trained model to extract the vertebral bodies of testing data. The segmented vertebral regions are dilated to generate the region of interest, which are subject to the 3D-SPIHT algorithm with low compress ratio while the rest of the image (background) is coded with high compress ratio to achieve an excellent balance of image quality in region of interest and high compression ratio elsewhere

    Lossy-to-lossless 3D image coding through prior coefficient lookup tables

    Get PDF
    This paper describes a low-complexity, highefficiency, lossy-to-lossless 3D image coding system. The proposed system is based on a novel probability model for the symbols that are emitted by bitplane coding engines. This probability model uses partially reconstructed coefficients from previous components together with a mathematical framework that captures the statistical behavior of the image. An important aspect of this mathematical framework is its generality, which makes the proposed scheme suitable for different types of 3D images. The main advantages of the proposed scheme are competitive coding performance, low computational load, very low memory requirements, straightforward implementation, and simple adaptation to most sensors

    Compression of Three-Dimensional Magnetic Resonance Brain Images.

    Get PDF
    Losslessly compressing a medical image set with multiple slices is paramount in radiology since all the information within a medical image set is crucial for both diagnosis and treatment. This dissertation presents a novel and efficient diagnostically lossless compression scheme (predicted wavelet lossless compression method) for sets of magnetic resonance (MR) brain images, which are called 3-D MR brain images. This compression scheme provides 3-D MR brain images with the progressive and preliminary diagnosis capabilities. The spatial dependency in 3-D MR brain images is studied with histograms, entropy, correlation, and wavelet decomposition coefficients. This spatial dependency is utilized to design three kinds of predictors, i.e., intra-, inter-, and intra-and-inter-slice predictors, that use the correlation among neighboring pixels. Five integer wavelet transformations are applied to the prediction residues. It shows that the intra-slice predictor 3 using a x-pixel and a y-pixel for prediction plus the 1st-level (2, 2) interpolating integer wavelet with run-length and arithmetic coding achieves the best compression. An automated threshold based background noise removal technique is applied to remove the noise outside the diagnostic region. This preprocessing method improves the compression ratio of the proposed compression technique by approximately 1.61 times. A feature vector based approach is used to determine the representative slice with the most discernible brain structures. This representative slice is progressively encoded by a lossless embedded zerotree wavelet method. A rough version of this representative slice is gradually transmitted at an increasing bit rate so the validity of the whole set can be determined early. This feature vector based approach is also utilized to detect multiple sclerosis (MS) at an early stage. Our compression technique with the progressive and preliminary diagnosis capability is tested with simulated and real 3-D MR brain image sets. The compression improvement versus the best commonly used lossless compression method (lossless JPEG) is 41.83% for simulated 3-D MR brain image sets and 71.42% for real 3-D MR brain image sets. The accuracy of the preliminary MS diagnosis is 66.67% based on six studies with an expert radiologist\u27s diagnosis
    corecore