83 research outputs found

    Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Get PDF
    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we multiplex and transmit four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam, we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the higher-rate link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the lower rates, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.Comment: 26 pages, 5 figure

    Efficient Multi-Pair IoT Communication with Holographically Enhanced Meta-Surfaces Leveraging OAM Beams: Bridging Theory and Prototype

    Full text link
    Meta-surfaces, also known as Reconfigurable Intelligent Surfaces (RIS), have emerged as a cost-effective, low power consumption, and flexible solution for enabling multiple applications in Internet of Things (IoT). However, in the context of meta-surface-assisted multi-pair IoT communications, significant interference issues often arise amount multiple channels. This issue is particularly pronounced in scenarios characterized by Line-of-Sight (LoS) conditions, where the channels exhibit low rank due to the significant correlation in propagation paths. These challenges pose a considerable threat to the quality of communication when multiplexing data streams. In this paper, we introduce a meta-surface-aided communication scheme for multi-pair interactions in IoT environments. Inspired by holographic technology, a novel compensation method on the whole meta-surface has been proposed, which allows for independent multi-pair direct data streams transmission with low interference. To further reduce correlation under LoS channel conditions, we propose a vortex beam-based solution that leverages the low correlation property between distinct topological modes. We use different vortex beams to carry distinct data streams, thereby enabling distinct receivers to capture their intended signal with low interference, aided by holographic meta-surfaces. Moreover, a prototype has been performed successfully to demonstrate two-pair multi-node communication scenario operating at 10 GHz with QPSK/16-QAM modulation.Comment: Meta-surface, RIS, Internet-of-Things (IoT), Line-of-Sight (LoS), Orbital Angular Momentum (OAM), holographic communications, multi-use

    Photonic techniques for indoor spatially-multiplexed wireless communication

    Get PDF

    Novel Insights into Orbital Angular Momentum Beams: From Fundamentals, Devices to Applications

    Get PDF
    It is well-known by now that the angular momentum carried by elementary particles can be categorized as spin angular momentum (SAM) and orbital angular momentum (OAM). In the early 1900s, Poynting recognized that a particle, such as a photon, can carry SAM, which has only two possible states, i.e., clockwise and anticlockwise circular polarization states. However, only fairly recently, in 1992, Allen et al. discovered that photons with helical phase fronts can carry OAM, which has infinite orthogonal states. In the past two decades, the OAM-carrying beam, due to its unique features, has gained increasing interest from many different research communities, including physics, chemistry, and engineering. Its twisted phase front and intensity distribution have enabled a variety of applications, such as micromanipulation, laser beam machining, nonlinear matter interactions, imaging, sensing, quantum cryptography and classical communications. This book aims to explore novel insights of OAM beams. It focuses on state-of-the-art advances in fundamental theories, devices and applications, as well as future perspectives of OAM beams

    Quantum information processing with space-division multiplexing optical fibres

    Full text link
    The optical fibre is an essential tool for our communication infrastructure since it is the main transmission channel for optical communications. The latest major advance in optical fibre technology is spatial division multiplexing (SDM), where new fibre designs and components establish multiple co-existing data channels based on light propagation over distinct transverse optical modes. Simultaneously, there have been many recent developments in the field of quantum information processing (QIP), with novel protocols and devices in areas such as computing, communication and metrology. Here, we review recent works implementing QIP protocols with SDM optical fibres, and discuss new possibilities for manipulating quantum systems based on this technology.Comment: Originally submitted version. Please see published version for improved layout, new tables and updated references following review proces

    Roadmap on structured light

    Get PDF
    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.Peer ReviewedPostprint (published version

    Photonics-enabled very high capacity wireless communication for indoor applications

    Get PDF

    Roadmap on structured light

    Get PDF
    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized
    corecore