104 research outputs found

    Application of Reverse Engineering and Rapid Prototyping to Casting

    Get PDF
    The automotive industry has an increasing need for the re manufacturing of spare parts through reverse engineering. In this thesis we will review the techniques used in Fused Deposition Modeling system for the reverse engineering of vintage automotive parts. The objective of the project is to be able to generate part-to-CAD and CAD-to-part reconstruction of the original part for future usage. These newly created 3D models will be added to the 3D Part Database. The integration of reverse engineering and rapid prototyping is being used for getting product to the market quickly by resolving a long-standing conflict between design and manufacturing. Rapid prototyping (RP) technology has undoubtedly had a major impact on the manufacturing industry throughout the world. RP technology has developed as a result of the requirements of manufacturing industry. There are a number of application areas where RP has been used to good effect and one of these is Metal Casting. This thesis describes work carried out to investigate potential applications for metal casting, as well as an attempt to explore the limits of the technology. It will go on to discuss how the technology may be developed to better serve the requirements of the manufacturing industr

    Compiled Low-Level Virtual Instruction Set Simulation and Profiling for Code Partitioning and ASIP-Synthesis

    Get PDF
    Abstract We present ongoing work and first results in static and detailed quantitative runtime analysis of LLVM byte code for the purpose of automatic procedural level partitioning and cosynthesis of complex software systems. Runtime behaviour is captured by reverse compilation of LLVM bytecode into augmented, self-profiling ANSI-C simulator programs retaining the LLVM instruction level. The actual global data flow is captured both in quantity and value range to guide function unit layout in the synthesis of application specific processors. Currently the implemented tool LLILA (Low Level Intermediate Language Analyzer) focuses on static code analysis on the inter-procedural data flow via e.g. function parameters and global variables to uncover a program's potential paths of data exchange

    An Abstract Interpretation-Based Framework for Control Flow Reconstruction from Binaries

    Get PDF
    Due to indirect branch instructions, analyses on executables commonly suffer from the problem that a complete control flow graph of the program is not available. Data flow analysis has been proposed before to statically determine branch targets in many cases, yet a generic strategy without assumptions on compiler idioms or debug information is lacking. We have devised an abstract interpretation-based framework for generic low level programs with indirect jumps which safely combines a pluggable abstract domain with the notion of partial control flow graphs. Using our framework, we are able to show that the control flow reconstruction algorithm of our disassembly tool Jakstab produces the most precise overapproximation of the control flow graph with respect to the used abstract domain

    The Effect of Code Obfuscation on Authorship Attribution of Binary Computer Files

    Get PDF
    In many forensic investigations, questions linger regarding the identity of the authors of the software specimen. Research has identified methods for the attribution of binary files that have not been obfuscated, but a significant percentage of malicious software has been obfuscated in an effort to hide both the details of its origin and its true intent. Little research has been done around analyzing obfuscated code for attribution. In part, the reason for this gap in the research is that deobfuscation of an unknown program is a challenging task. Further, the additional transformation of the executable file introduced by the obfuscator modifies or removes features from the original executable that would have been used in the author attribution process. Existing research has demonstrated good success in attributing the authorship of an executable file of unknown provenance using methods based on static analysis of the specimen file. With the addition of file obfuscation, static analysis of files becomes difficult, time consuming, and in some cases, may lead to inaccurate findings. This paper presents a novel process for authorship attribution using dynamic analysis methods. A software emulated system was fully instrumented to become a test harness for a specimen of unknown provenance, allowing for supervised control, monitoring, and trace data collection during execution. This trace data was used as input into a supervised machine learning algorithm trained to identify stylometric differences in the specimen under test and provide predictions on who wrote the specimen. The specimen files were also analyzed for authorship using static analysis methods to compare prediction accuracies with prediction accuracies gathered from this new, dynamic analysis based method. Experiments indicate that this new method can provide better accuracy of author attribution for files of unknown provenance, especially in the case where the specimen file has been obfuscated

    Protecting Software through Obfuscation:Can It Keep Pace with Progress in Code Analysis?

    Get PDF
    Software obfuscation has always been a controversially discussed research area. While theoretical results indicate that provably secure obfuscation in general is impossible, its widespread application in malware and commercial software shows that it is nevertheless popular in practice. Still, it remains largely unexplored to what extent today’s software obfuscations keep up with state-of-the-art code analysis and where we stand in the arms race between software developers and code analysts. The main goal of this survey is to analyze the effectiveness of different classes of software obfuscation against the continuously improving deobfuscation techniques and off-the-shelf code analysis tools. The answer very much depends on the goals of the analyst and the available resources. On the one hand, many forms of lightweight static analysis have difficulties with even basic obfuscation schemes, which explains the unbroken popularity of obfuscation among malware writers. On the other hand, more expensive analysis techniques, in particular when used interactively by a human analyst, can easily defeat many obfuscations. As a result, software obfuscation for the purpose of intellectual property protection remains highly challenging.</jats:p
    corecore