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Resumo

A eficiência energética é um requisito não-funcional que os programadores devem considerar. Este
requisito é particularmente relevante na construção de software para dispositivos que operam com
bateria como os telemóveis: a longa duração da bateria é um requisito essencial para o utilizador
ter uma experiência agradável.

Foi demonstrado que muitas aplicações móveis contêm ineficiências que fazem com que a
bateria seja descarregada mais rapidamente do que o necessário. Algumas destas ineficiências
resultam de padrões de software que têm sido catalogados na literatura. Os catálogos normalmente
fornecem alternativas energeticamente mais eficientes.

Embora a literatura relacionada seja vasta, as abordagens até agora assumem como requisito
fundamental que se tenha acesso ao código fonte de uma aplicação a fim de se poder analisá-la.
Este requisito torna a análise energética independente uma tarefa desafiante, ou mesmo impos-
sível, por exemplo, para um consumidor ou, mais apropriadamente, para uma App Store que tente
fornecer informações sobre a eficiência de uma aplicação a ser submetida para publicação.

O nosso trabalho estuda a viabilidade de procurar padrões energéticos nas aplicações, descompi-
lando-as e analisando o código resultante. Para tal, descompilamos e analisamos 420 aplicações
de código aberto. Estendemos uma ferramenta existente para ajudar neste processo, tornando-a
capaz de descompilar de forma transparente e analisar aplicações Android. Com os dados recolhi-
dos, efectuamos uma estudo comparativa da presença de padrões energéticos entre o código fonte
e o código descompilado.

Efectuamos dois tipos de análise: i) comparando o número total de deteções; ii) comparando
a semelhança entre as deteções. Ao comparar o número total de deteções no código fonte com
o código descompilado, descobrimos que aproximadamente 79,05% das aplicações reportaram o
mesmo número de deteções.

Para testar a semelhança entre o código fonte e os APKs, calculamos, para cada aplicação,
uma pontuação de semelhança baseada nos nossos quatro detetores implementados. De todas
as aplicações, 34,53% obtiveram uma pontuação perfeita de similaridade com valor 4, e 89,47%
obtiveram uma pontuação de 3 ou mais em 4. Além disso, apenas duas aplicações obtiveram uma
classificação de 0.

Quando analisados em conjunto, os resultados das duas análises que realizámos apontam numa
direção promissora. Acreditamos que as técnicas de análise estática, tipicamente utilizadas em
código fonte, podem ser um método viável para inspeccionar APKs quando o acesso ao código
fonte é restrito, e é portanto valioso continuar a investigação nesta área.
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Abstract

Energy efficiency is a non-functional requirement that developers must consider. This requirement
is particularly relevant when building software for battery-operated devices like mobile ones: a
long-lasting battery is an essential requirement for an enjoyable user experience.

It has been shown that many mobile applications include inefficiencies that cause battery to be
drained faster than necessary. Some of these inefficiencies result from software patterns that have
been catalogued in the literature. The catalogues often provide more energy-efficient alternatives.

While the related literature is vast, the approaches so far assume as a fundamental requirement
that one has access to the source code of an application in order to be able to analyse it. This
requirement makes independent energy analysis challenging, or even impossible, e.g. for a mo-
bile user or, most significantly, an App Store trying to provide information on how efficient an
application being submitted for publication is.

Our work studies the viability of looking for known energy patterns in applications by de-
compiling them and analysing the resulting code. For this, we decompiled and analysed 420
open-source applications. We extended an existing tool to aid in this process, making it capable
of transparently decompiling and analysing android applications. With the collected data, we per-
formed a comparative study of the presence of energy patterns between the source code and the
decompiled code.

We performed two types of analysis: i) comparing the total number of detections; ii) compar-
ing the similarity between detections. When comparing the total number of detections in source
code against decompiled code, we found that approximately 79.05% of the applications reported
the same number of detections.

To test the similarity between source code and APKs, we calculated, for each application, a
similarity score based on our four implemented detectors. Of all applications, 34.53% achieved a
perfect similarity score of 4, and 89.47% got a score of 3 or more out of 4. Furthermore, only two
applications got a score of 0.

When viewed in tandem, the results of the two analyses we performed point in a promising
direction. We believe static analysis techniques, typically used in source code, can be a viable
method to inspect APKs when access to source code is restricted, and further research in this area
is worthwhile.

Keywords: code patterns, energy efficiency, static analysis, decompiler, mobile, android, metapro-
gramming, compilers
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Chapter 1

Introduction

1.1 Context

Smartphones are an essential part of our lives nowadays: besides continuous communication and

connection services, smartphones provide access to various productivity tools and immersive en-

tertainment forms. However, since smartphones are most often battery-operated devices, energy

efficiency is crucial to provide these services and, consequently, to achieve a satisfactory user ex-

perience. Studies show that smartphone users consider long battery life the most important feature

when shopping for a new smartphone 1, which reinforces the nature of energy efficiency as a key

non-functional requirement for mobile applications.

One of the avenues researchers have taken to tackle energy efficiency in the mobile space is by

developing guidelines and processes to improve battery consumption in mobile applications [42,

22, 16, 12, 6]. Some of this work has culminated in defining energy patterns, software patterns

with energy implications, that inform how developers should write their code while optimising for

energy efficiency [23, 17, 47, 11, 16].

To assist developers in constructing more efficient applications, automatic detection and refac-

toring tools to inspect and optimise source code and packaged applications (APKs) have been

developed [27, 32, 33, 25, 28, 22, 50]. Providing such tools helps reduce development costs and

raises awareness of good energy practices for all stakeholders. However, most tools are designed

with developers in mind and rely on source code availability, with only a few capable of analysing

APKs through its Dex bytecode [32, 36].

1.2 Motivation

By developing tools to analyse energy efficiency, developers can hopefully improve the energy ef-

ficiency of their applications, ideally without incurring in significant development costs. However,

besides developers themselves, other stakeholders may benefit from energy-efficiency analysis and

1https://www.statista.com/chart/5995/the-most-wanted-smartphone-features/ (Last Ac-
cess: Aug 9, 2022)

1
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Introduction 2

that do not necessarily have access to the source code of applications, notably smartphone users

and App Stores. Taking the latter as an example, being able to analyse and compare the energy ef-

ficiency of different applications could be considered the first step towards providing energy labels

for the applications being commercialised. We note that energy labels are nowadays assumed as

standard2, e.g., for home appliances, and these forms of independent analysis can further motivate

developers to adopt better energy practices.

Given that App Stores usually only have access to APKs, we focus on static analysis of APKs.

Research and tools already exist to analyse applications through their bytecode, so instead, we look

towards static analysis of decompiled Java code as a new potential way to perform independent

energy analysis of Android applications. We can take advantage of existing work related to energy

patterns and their detection in Source code. If this type of analysis proves successful, since we are

reconstructing source code, an added benefit is the ability to send feedback to unaware developers

about possible fixes and improvements they can perform.

Altogether, by empowering App Stores and smartphone users with tools to assess energy ef-

ficiency and, more generally, energy labels and standards, we can create a feedback loop where:

App Stores give energy efficiency ratings to applications; consumer awareness towards energy

grows; developers allocate more time and effort for energy requirements.

1.3 Objective

Given the wealth of research on android applications’ energy patterns, we set out to assess the

viability of looking for these patterns in APKs. For this, we took 420 open-source applications,

extracted from Couto et al. [16], for which we have access both to their source code and APKs.

Our idea was then to compare in a systematic way the energy patterns that we could find in: i) the

source code obtained from decompiling the APKs with ii) their original source code.

In essence, our aim with this work is to explore and answer the following main research ques-

tion:

RQ Can static analysis of decompiled code from Android applications be a viable method of

detecting energy patterns?

To implement our analysis, we extended Kadabra 3, a source-to-source compiler based on the

LARA framework [13, 46]. We added a Java decompiler to Kadabra, JADX 4, making it capable of

automatically decompiling APKs. We then developed a library of detectors, E-APK (Energy-aware

Android Patterns for Kadabra), dedicated to locating energy patterns in Java source code, taking

advantage of Kadabra’s Abstract Syntax Tree (AST) model and its expressive query-based search

system to analyse both the applications’ source code and their decompiled code. By running the

2https://ec.europa.eu/info/energy-climate-change-environment/
standards-tools-and-labels/products-labelling-rules-and-requirements/
energy-label-and-ecodesign/about_en (Last Access: Jul 26, 2022)

3https://specs.fe.up.pt/tools/kadabra/ (Last Access: Jul 26, 2022)
4https://github.com/skylot/jadx (Last Access: Jul 26, 2022)

https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://ec.europa.eu/info/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en
https://specs.fe.up.pt/tools/kadabra/
https://github.com/skylot/jadx
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(a) Source code analysis

(b) APK analysis

Figure 1.1: Data flows for source code and APKs

same detectors in both versions of an application’s code, we can try to ascertain if patterns present

in the source code are also present and visible in decompiled code. Figure 1.1 gives an overview

of how the analysis is done. From the analysis process, E-APK generates a standardized report

that we can use to easily compare versions.

Having analysed all 420 applications and comparing the obtained results, we found empirical

evidence supporting our RQ. Our results show that the decompilation process does not have a

systematic negative impact on detecting energy patterns. As for the rate of similarity, that is, how

many energy pattern instances detected in source code can be detected and matched in the APK,

with our worst performing detector reporting a 75% rate of similarity on average, we believe the

type of analysis we propose to be a promising direction to pursue.

In summary, the main contributions of our work are:

• A new energy pattern detection tool implemented in Kadabra, capable of analysing source

code and APKs.

• A comprehensive study with over 400 applications about detecting energy patterns in source

code and APKs.

• Empirical evidence supporting the possibility of using energy pattern detection techniques

in decompiled code, as a means of performing independent energy analysis.

A replication package is available in a zenodo repository 5. It contains instructions for prepar-

ing the dataset used, executing Kadabra and E-APK, and reproducing the analysis results and

graphs.

1.4 Document Structure

Over the current chapter, we presented an overview of the dissertation. We went over its context

and motivation, and outlined the main objectives as well as our solution. Chapter 2 provides some
5https://doi.org/10.5281/zenodo.7083540 (Last Access: Aug 16, 2022)

https://doi.org/10.5281/zenodo.7083540
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background knowledge on the processes and tools involved in our work. In Chapter 3 we give

an overview of the current research found on energy efficiency for the mobile space, particularly

on Android applications. In Chapter 4 we present our solution for detecting energy patterns in

decompiled applications, along with subset of patterns we selected and their detectors. Chapters 5

and 6 explain our testing methodology and the considerations we take in our experiments and

discuss the results we obtained. We close with Chapter 7 by summarizing the work done so far

and what can be done in the future to expand our work.



Chapter 2

Background

In this section, we present essential background knowledge and some additional technical details

of the processes involved in our work. Our main objective was to study whether looking for energy

patterns through static analysis, as performed on source code, can be done on decompiled code.

To this end, we analysed and compared source code and decompiled code to verify if they yielded

similar detection results. The workflow required for this is divided into two areas, decompilation

and analysis, each with its challenges and requirements.

2.1 Inner workings of Android applications

Android applications are packaged in APK (Android Package Kit) files that contain the compiled

source code in a bytecode format called Dex [21], short for Dalvik Executable, as well as resources

and native code.

Initially, the android operating system used Dalvik [21], a virtual machine to execute Dex

code. From Android 4.4 onwards, the operating system changed to Android Runtime (ART) 1.

The significant change between the two is that instead of using a Just-in-Time (JIT) compiler,

it now compiles application code Ahead-of-Time (AOT) [26]. Essentially instead of compiling

the application during its execution, this is now done during the installation process. However,

applications are still distributed as APKs with Dex bytecode. Another relevant aspect to note

about ART is how energy efficient it is compared to Dalvik; Georgiev et al. reported average

energy savings from 0.48 Joules to 124.72 Joules across multiple benchmarks [26].

1https://source.android.com/devices/tech/dalvik (Last Access: Aug 9, 2022)

5

https://source.android.com/devices/tech/dalvik


Background 6

Figure 2.1 gives an overview of the lifecycle of an APK file. The package section is where

our work will take effect by extracting any Dex files in the APK and decompiling them into Java

source code. Since the changes from Dalvik to ART only affect the installation and execution

phases, our work is not restrained to older or newer applications or OS versions.

Figure 2.1: APK lifecycle2

2.2 Decompilation of Android applications

Decompilation can be achieved using decompilers, programs made to reverse engineer executable

files and translate them into human-readable source code. In the case of Android applications, a

decompiler will take the APK, extract the Dex file inside, disassemble the Dalvik bytecode into an

Intermediate Language, like smali or Jasmin [3, 2], and finally translate that to Java source code.

We list the decompilers we found and their differences in the upcoming Section 3.3.

Decompilation is a multi-step process that can fail in multiple ways, and it is not guaranteed

that perfect recovery and reconstruction of the original source code is possible. In fact, decom-

pilation can be severely hindered by obfuscation [20, 53], a process that makes source code as

unreadable to humans as possible. However, just as there are compilers and decompilers, there

also exist obfuscators [1, 5] and deobfuscators [8, 9].

Since obfuscators modify the code, this raises some interesting questions: What effects does

obfuscation have on code patterns? Can code patterns still be detected? Our work does not mea-

sure the impact of obfuscation on energy code patterns, at least not directly, so dedicated research

on the topic is a good starting point for future work.

2https://youtu.be/EBlTzQsUoOw Google I/O 2014 (Last Access: Jul 26, 2022)

https://youtu.be/EBlTzQsUoOw


2.3 LARA and Kadabra 7

In the Android ecosystem, and of particular concern to our work, two well-known obfuscators

are ProGuard and, in more recent years, R8 3. These obfuscators can be used when creating APKs.

When using the Gradle build system, the build property minifyEnabled will activate three compile-

time tasks for builds: code shrinking, obfuscation, and optimization. We must therefore consider

and register this property’s presence during our analysis.

In the upcoming Section 3.3, we list the decompilation tools we found, some of which are

specifically for Android and are also capable of deobfuscating code to some degree.

2.3 LARA and Kadabra

When deciding how to perform the analysis, our requirements lead us to the development of a

custom solution. For instance, many existing tools are tied to an IDE, like Android Studio 4,

and we needed a command-line tool capable of operating purely with source code files instead of

whole projects. We also needed to analyse a large set of applications for testing and validation

purposes, so automating the process was essential. Another crucial requirement was the capability

of handling an incomplete classpath. Within the Java environment, an important parameter is the

classpath, which acts as a map between Java classes and their location in the filesystem. The

decompilation process can lead to an incomplete classpath, a situation where a reference to a class

exists but not the actual class itself (and its file). Tools like Android Lint, used by some existing

tools, require projects in a compilable state with a complete classpath.

We chose Kadabra 5, a source-to-source compiler based on the LARA framework [13, 46]

as a base for our energy detectors. Source-to-source compilers implemented using the LARA

framework have a common abstraction layer for accessing the AST, and analyses are implemented

using scripts written in JavaScript. The abstraction layer is language-agnostic, so there are LARA

compilers for several languages (e.g., C/C++ [10], MATLAB [48]) using the same abstraction.

Kadabra, in particular, uses Spoon [44] underneath as the Java parser and AST.

With Kadabra, we can handle the incomplete classpath problem, since Spoon offers this ca-

pability 6, and perform a scalable analysis by taking advantage of parallelism and command-line

interface capabilities, so it meets our main requirements. For each pattern, we can develop sin-

gle implementation analysis strategies for both source code and decompiled code; this ensures

the detection logic used during our tests is the same for source code and APKs, making the testing

methodology as fair as possible. The end result is a source code analysis tool capable of seamlessly

decompiling Android applications and analysing them.

3https://developer.android.com/studio/build/shrink-code (Last Access: Aug 3, 2022)
4https://developer.android.com/studio (Last Access: Jul 26, 2022)
5https://specs.fe.up.pt/tools/kadabra/ (Last Access: Jul 26, 2022)
6https://spoon.gforge.inria.fr/launcher.html (Last Access: Aug 20, 2022)

https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio
https://specs.fe.up.pt/tools/kadabra/
https://spoon.gforge.inria.fr/launcher.html


Chapter 3

Related Work

Energy efficiency in mobile applications is a relatively recent research area, with most work done

within the last decade [47, 32, 52, 14, 6, 17, 16, 50]. Contributions from different angles are

required to improve energy efficiency as a whole. We can separate many of these contributions

into three main groups:

• Development of energy profiling techniques to measure energy consumption on smartphone

devices.

• Identification and cataloguing of energy patterns and good practices proven to increase en-

ergy efficiency.

• Development of tools to assist developers in identifying and implementing these patterns.

Another relevant area for our work is the decompilation of Android applications. Our strategy

to identify energy patterns in APKs is to decompile the applications and apply techniques similar

to some existing tools in the decompiled source code. We review existing decompilation tools

capable of regenerating Java source code from Android package files (APKs).

The following subsections look into existing energy pattern catalogues, energy detection/refac-

toring tools, and decompilation tools.

3.1 Energy Patterns in mobile applications

Several works focus on identifying energy-greedy patterns and finding energy-efficient alterna-

tives. As defined by Feitosa et al. [23], these energy patterns can be seen as a tuple of problem,

the energy-greedy form, and solution, the energy-efficient alternative.

A wide range of patterns is documented in the following catalogues, which aggregate data

from different sources using different methods. Couto et al. [16] present code patterns collected

from previous literature and test them individually and in combinations. Cruz et al. [17] review

commits, issues and pull requests from 1000+ applications to find and document common design

patterns that affect energy efficiency. Reimann et al. [47] reference common bad practices accord-

ing to android development guidelines and other sources. A catalogue is available online with

8
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30 patterns [11]. A few works also reference, test and develop tools for patterns not included in

catalogues [42, 22, 27, 12, 6].

In total, more than 60 patterns have been documented in the literature. It is also important

to note that we found some overlap between catalogues, as some patterns refer to the same pair

of problem/solution using different names. An example would be Early Resource Binding, also

called Binding Resources too early or Open Only When Necessary [47, 11, 17, 42]. Table A.1

summarises the patterns found and the instances where duplicates exist.

These patterns and catalogues are a foundation for many of the tools listed in Section 3.2. Our

work also takes these patterns as a starting point, but instead of the usual approach of detecting

them in source code, we hope to find them in decompiled code.

3.2 Existing tools for energy efficiency in mobile applications

While documenting energy patterns is a crucial step towards more energy-efficient applications,

it is only part of the solution. Catalogues by themselves only reach developers already concerned

with energy. To combat this point, another vital research direction with a growing body of works

is the development of tools to assist developers. Such tools help verify and improve how energy-

efficient applications are without incurring in significant development costs, such as acquiring the

necessary expertise to refactor code manually and extra development time.

Some important distinctions can be made between these tools:

• The broadest one is the division of detection-only tools and tools capable of refactoring the

application automatically.

• Another is about who uses such tools and when are they used. Different stakeholders have

different access to applications. Developers benefit from analysis throughout development

and have access to source code. Tools capable of analysing source code, preferably inte-

grated with the IDE, are a must-have. App Stores or smartphone users only have access to a

compiled and packaged version of the application after its release, and tools that do not rely

on source code availability are the only option in this case.

There is a visible correlation between the type of tool and the context where it is used. Many

detection-only tools are standalone, using APKs as input and return some form of a report detailing

the patterns encountered. Most refactoring tools are IDE plugins that work with the project and its

source code.

3.2.1 Detection tools

Greenness [27] Android lint is a code scanning tool integrated with Android Studio that devel-

opers can extend with new functionalities. Goaër et al. propose a new category for Android Lint

called Greenness in their paper. It adds energy-oriented inspections that deal with some of the

existing patterns. It is the sole detection-only tool we found in an IDE plugin form, operating
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directly with the project and its source code.

Paprika [32] While not dealing directly with energy patterns, this tool detects code smells,

object-oriented and Android-specific, which have been proven to impact energy efficiency indi-

rectly. It is a standalone tool based in Soot [51, 38]. It uses a Soot module called Dexpler [7]

to decompile an application’s APK and, from there, builds a graph model to perform bytecode

analysis.

StateDroid [52] Xu et al. propose a static analysis technique called state-taint analysis to

identify resource leaks. Resources like GPS, WiFi, camera and others can consume energy contin-

uously and should be properly closed when not in use. StateDroid is their tool implementation. It

decompiles APKs and builds a control flow graph of the application where it performs the paper’s

proposed state-taint analysis implemented upon the IFDS framework [49].

SAAD [36] Similar to StateDroid [52], Hao et al. propose in their paper a static analysis

technique called SAAD capable of detecting not only resource leaks but also layout defects. It

decompiles APKs using Apktool 1 to try and detect resource leaks using the Dalvik bytecode files

and search for layout defects using layout files.

PatBugs [39] Also worth mention is Lian et al. paper that propose a tool, PatBugs, to detect

patterns in cross-platform mobile applications. It requires the application’s source code to perform

its analysis.

3.2.2 Refactoring tools

Most of these tools are implemented as an IDE extension or plugin, and collectively they cover

the existing code patterns documented in the literature.

For Android studio, we found EcoAndroid [50], aDoctor [33], RAndroid [25], AEON [28],

xAL [22]. A few tools are also integrated into the Eclipse IDE, such as, AsyncDroid [40], En-
ergyPatch [6], Leafactor [18], Nguyen et al. [43]. Besides these, we found four tools; some of

which were developed as auxiliary tools to assist the research presented in their respective papers:

Chimera [16], HOT-PEPPER [14], EARMO [42] and DelayDroid [12]. With the exception of

Chimera [16], the remaining three have the unique distinction of working directly with the appli-

cation APK instead of the source code, and they perform their analysis using bytecode. Chimera
is also the work we use the most as a foundation; we take advantage of some of its documented

Energy-Greedy Android Patterns (EGAPs) and the dataset they used as explained in Chapter 5.

1https://github.com/iBotPeaches/Apktool (Last Access: Jul 26, 2022)

https://github.com/iBotPeaches/Apktool
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3.3 Decompilation tools for Android Applications

Our objective is to perform static analysis in decompiled code to determine if energy patterns can

be detected in APKs when the source code is unavailable. We found several tools to decompile

APKs and extract relevant information and data. The tools below are actively mentioned in the

literature, currently maintained and are therefore good candidates for our work.

We can categorize the tools we found in two modes, according to what inputs they were de-

signed to receive and what outputs they can produce. Tools can take Java bytecode or Dalvik

bytecode as input, and the output produced can be JVM assembly or Java code.

JD Project, Cfr, Procyon, Krakatau and Fernflower are decompilers for Java. Procyon and

Krakatau in particular also work as Java bytecode assemblers/disassemblers.

dex2jar, Dexpler, Apktool, androguard and Jadx were made for Dalvik bytecode and APKs.

dex2jar, Dexpler are exclusively assemblers/disassemblers often used in tandem with other tools

(some presented in 3.2). Apktool and androguard perform a variety of tasks on APK resources and

bytecode. Jadx is a purposely built dex to java decompiler and can also decode APK resources

like the AndroidManifest.xml.

Table 3.1 lists all the tools mentioned above with links to their respective repositories. It also

contains the date of the last commit, where we can see they are all reasonably recent, with some

being actively developed. Lastly, we also include the publications we found that mention these

tools.

We did not test all of these tools, but we chose Jadx as our decompilation tool. It met our

requirements of being actively developed, capable of selectively extracting the classes we want and

featuring deobfuscation mechanisms. Jadx is made explicitly for decompiling APKs, and studies

show it as the best performing decompiler available [41, 35]. Another crucial advantage is the

possibility of (and instructions on) using JADX as a library. Integration with Kadabra, our analysis

tool, was straightforward and resulted in an automatic and more scalable testing environment.

Tool Repository Last Commit Date Referenced in

Jadx https://github.com/skylot/jadx Jul 26, 2022 [41, 35]
Androguard https://github.com/androguard/androguard Jul 26, 2022 [19]
Cfr https://github.com/leibnitz27/cfr Jul 11, 2022 [35, 41, 37]
Apktool https://github.com/iBotPeaches/Apktool Jul 10, 2022 [3]
Fernflower https://github.com/fesh0r/fernflower Jul 4, 2022 [41, 37]
Dexpler (Soot) https://github.com/soot-oss/soot Jul 1, 2022 [7, 3]
Krakatau https://github.com/Storyyeller/Krakatau Jun 16, 2022 [37]
dex2jar https://github.com/pxb1988/dex2jar Nov 3, 2021 [3]
Procyon https://github.com/mstrobel/procyon/wiki/Java-Decompiler May 27, 2021 [41, 37]
JD Project https://github.com/java-decompiler/jd-core Feb 26, 2020 [35]

Table 3.1: Disassemblers and Decompilers for Java and Android

3.4 Summary

The number of refactoring tools we found is higher than detection-only tools. It might indicate

more research being done with developer assistance in mind rather than other stakeholders. From

https://github.com/skylot/jadx
https://github.com/androguard/androguard
https://github.com/leibnitz27/cfr
https://github.com/iBotPeaches/Apktool
https://github.com/fesh0r/fernflower
https://github.com/soot-oss/soot
https://github.com/Storyyeller/Krakatau
https://github.com/pxb1988/dex2jar
https://github.com/mstrobel/procyon/wiki/Java-Decompiler
https://github.com/java-decompiler/jd-core
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the list of patterns compiled, we filtered for code patterns and mapped which energy patterns are

treated by each refactoring tool. Figure 3.1 visually presents the landscape of pattern coverage,

and from our research, while we did not test all of the energy tools, we assume that every pattern

has at least one tool capable of refactoring it.

Figure 3.1: Automatically refactored code patterns

Another important point relevant for future research is the apparent fragmentation of energy

analysis tools. It seems developers wanting to analyse their applications for energy efficiency

require multiple tools that are spread across multiple IDEs. Based on our research, no tool provides

total coverage of the existing energy patterns catalogues.

As for the type of analysis being done, most tools depend on source code availability, there-

fore only satisfying developer needs. The tools we found that analyse APKs directly perform

bytecode analysis. However, directly related to our work, no research was found on the feasibility

of analysing decompiled Java code.

In conclusion, we prepared a good knowledge foundation of energy pattern catalogues 3.1 and

energy tools 3.2 from which to base our work. Since the tools we found are mostly tied to IDEs

and cannot analyse Java code with an incomplete classpath, we must develop our custom analysis

tool. As explained in Section 2.3, we chose Kadabra for its rich feature set that enabled us to

perform a fair comparison of energy code patterns between source code and APKs. To extract

and translate the bytecode of APKs into Java source code, from the listed tools in Section 3.3, we

selected Jadx as our decompilation tool since it is referenced as the best performing decompiler

in the literature [41, 35]. In the next chapter, we go over the requirements and overall architecture
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of our energy analysis tool, and we also present detailed explanations for the four patterns we

selected and implementation details of their respective detectors.



Chapter 4

E-APK: Energy Pattern Detection in
Decompiled Android Applications

This chapter will cover the technical aspects of our work. As we mentioned in Section 2.3, to

properly explore and test our RQ, we developed a custom solution based on Kadabra.

Our goal with this solution is to analyse Java source code, regardless of the code origin, i.e.,

source code from a project or decompiled code from an APK; this approach facilitates our concrete

objective of assessing the viability of analysing decompiled Java code and also promotes our

broader objective of expanding the available tools for independent energy analysis.

The following sections detail the requirements of our solution and the overall architecture and

give an in-depth look into the four energy code patterns we selected.

4.1 Requirements

The following requirements, functional and non-functional, define the main features and intents

of our solution.

Functional requirements:

• Detect energy code patterns in Java source files or APKs.

• Produce a report with traceability data for each pattern after analysis.

• No user intervention required besides inputting the source files or APK.

Non-Functional requirements:

• Detector implementations must be compatible with both source code and decompiled code.

• Execution time per application should be as low as possible for an easier integration within

an APK validation pipeline.

• Easily extensible to support more patterns.

14
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4.2 Architecture

The two primary components of our solution are Kadabra [13, 46] and Jadx [35, 41] and in Fig-

ure 4.1 we can see an architecture diagram, where the three different colours represent the main

development efforts of our solution.

Figure 4.1: Architecture Diagram

We wanted to generalise the analysis process by internally decompiling APKs with Jadx and

running the resulting Java source files through our detectors; this is represented by the yellow

coloured arrows in Figure 4.1. Kadabra uses Spoon internally to parse and build an AST, and with

our integration of Jadx into Kadabra, we can now take APKs as input files that are transparently

decompiled and forwarded to Spoon for analysis.

For our analysis, we developed a set of detectors that exist as a collection of Kadabra scripts

written in javascript that search the AST for instances of energy patterns; it is represented by the

green box labelled E-APK, or Energy-aware Android Patterns for Kadabra.

The output of our analysis is structured in a JSON file, represented by the blue box. It contains

the location of each detected pattern and will be presented in more detail in the next section.

4.3 Implementation

The development of our solution was divided into two phases:

Decompilation of Android applications - This phase pertains to the integration of Jadx into Kadabra

to transparently decompile APKs (yellow arrows in Figure 4.1).

Analysis of Android applications - This phase encompasses the development of Kadabra scripts

to detect energy code patterns in Java source code and the production of a report with the

detected patterns (green and blue boxes in Figure 4.1)

To properly explore the impact and viability of performing static analysis on decompiled code,

selecting a subset of code patterns and a large enough dataset to test everything on was essential.
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Couto et al. [16] studied the impact of refactoring certain energy-greedy code patterns on energy

consumption. In their work, they defined a pattern as being an Energy-Greedy Android Pattern

(EGAP) and compiled a set of 11 EGAPs.

From that set of EGAPs, we selected the top three most frequently detected patterns in their

dataset: Member Ignoring Method or MIM; Excessive Method Calls or EMC; HashMap Usage

or HMU. Together with these three patterns we included a fourth one, Internal Getter or IG.

Selected Energy Patterns
HashMap Usage [16, 42, 30]

Excessive Method Calls [16]

Member Ignoring Method [16, 47, 11, 30]

Internal Getter [47, 11, 42]

Table 4.1: Energy Patterns

In the following subsections, we will explain in detail the decompilation and analysis pro-

cesses, how each detector works and how the final report is structured.

4.3.1 Jadx integration

We started by integrating Jadx into Kadabra, and the process was reasonably straightforward since

Jadx is available as a library and provides clear documentation and examples. However, we had to

address a significant side-effect of the decompilation process.

When decompiling an APK, code from 3rd-party libraries like Google and Android APIs are

also present, so filtering is essential to extract only the actual application code for analysis. For

reference, in a test application built with Android Studio, unfiltered decompilation resulted in 3066

classes; after applying a filter, that number was reduced to the 14 relevant classes.

Jadx already has a feature for filtering classes, but we encountered an issue where, despite

filtering for a particular class, if that class had any dependencies, i.e., imported another class, it

would also be extracted; this was an obvious problem since many classes in an application have

dependencies from the Android API.

We reported this problem to Jadx’s developers and submitted a pull request that was success-

fully merged 1. With those changes, we were able to successfully use the application package

name to filter for the relevant application code without any extra unwanted code.

We wanted to give the user the ability to specify any class filter they wanted. For example, in

an application called "com.my.application", we could use its name as a filter to exclude code from

"com.google" and others, but it could also be useful to only exclude code from "com.google" and

extract everything else.

To provide a more flexible filtering system within Kadabra, we implemented an optional execu-

tion parameter, "-APF (Android Package Filter)", where the user can pass any number of matching

1https://github.com/skylot/jadx/pull/1467 (Last Access: Sep 08, 2022)

https://github.com/skylot/jadx/pull/1467
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filters to easily extract only the required classes. The filters can be written with a simple mini-DSL

with the following rules:

• "com.my.application" - match exactly "com.my.application"

• "?com.my" - match any classes beginning with "com.my"

• "foo?" - match any classes ending with "foo"

• "?bar?" - match any classes containing "bar"

• "!?google?" - exclude any classes containing "google" ("!" can negate any of the rules above)

We mentioned the application package name several times as a way to filter an application, but

this implies the user must know the package name. We also provided a special filtering option for

situations where that information is not readily available. The package name can be acquired from

the encrypted AndroidManifest.xml inside the APK, and Jadx can decrypt it. Using the "-APF"

parameter mentioned before with the filter "package!" will make Jadx retrieve the package name

automatically and use it as a filter.

4.3.2 Detector structure and logic

With the decompilation process fully integrated, we moved to our detector implementations. All

detectors follow a base structure and logic to fulfil our non-functional requirement of extensibility.

Every detector extends a base detector class with a custom analyseClass method with the specific

detector logic and a save method to extract relevant information from the analysis results. The

base detector has a generic analyse method to iterate through all classes. Listing 4.1 provides a

simplified structure of our detectors.

1 class Detector {

2 analyse() {

3 Query.search("class").get().forEach(

4 (c) => this.analyseClass(c)

5 );

6 }

7 }

8

9 class ExampleDetector extends Detector {

10 analyseClass(jpClass) {...}

11 save() {...}

12 }

Listing 4.1: Simplified Detector Structure (JS code)

Kadabra provides extensive techniques and mechanisms to analyse code, particularly its query-

like language to search and analyse ASTs. In lines 3-5, we can see the query system and its method

chaining syntax that drive our detection logic.
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To give a more detailed view of the query functionality, examine the following example written

in natural language:

Get all void methods inside classes named "foo"

We can translate this into a search query that Kadabra can process like this:

Query.search("class", {name: "foo"}).children("method", {returnType: "void"}).get()

where the query starts by looking for classes with the name "foo", then searches for children of

type "method" with a return type of "void". Every detector takes advantage of this query system

to model its search criteria as we will show in the next four subsections.

4.3.3 Member Ignoring Method

This pattern occurs when a non-static method in a class does not interact with any instanced field

or method and is not an override or overridden. As stated by Couto et al. [16], static methods are

allocated in a different memory block, away from objects, and only a single instance of the method

is created regardless of the number of class instances; the reduction in energy consumption comes

from this process.

1 public class Foo {

2 public int sum(int a, int b) {

3 return a + b;

4 }

5 }

Listing 4.2: Example of Member Ignoring Method (MIM)

Listing 4.2 provides an example of the pattern as it appears in Java source code. Our search

criteria must consider several attributes. We want to find methods that are neither static, final, nor

involved with inheritance. They must also not use any non-static fields or methods.

We start by filtering out methods that are already static, that are final or contain "@Override"

annotations as seen on Listing 4.3. After this first filtering phase, we check if the remaining

methods use only parameter variables (if any) and static fields and that any method calls performed

inside them are also to static methods. The final verification is for inheritance, where we check

if the method is an override or overridden by another method. This check requires comparing

against all other methods and is an expensive operation, so we precompute and cache a map of all

methods with the same name to improve performance.
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1 let mightBeStatic = Query.childrenFrom(jpClass, "method", {

2 isStatic: false,

3 isFinal: false,

4 annotations: noOverrideAnnotationFilter,

5 }).get();

Listing 4.3: Member Ignoring Method Query Logic (JS code)

4.3.4 Excessive Method Calls

This pattern refers to when a method is needlessly called inside a loop and can be moved outside

without changing the application’s behaviour.

Couto et al. [16] rightly states that needlessly calling a method can have a negative impact on

performance; calls typically require pushing arguments to a stack and writing to CPU registers,

and the method body can also contain complex operations, therefore reducing the number of calls

can, by proxy, result in reduced energy consumption. It can be seen as a form of Loop-invariant

code motion [4].

1 public int sum(int a, int b) {

2 return a + b;

3 }

4

5 public int uselessSum() {

6 int sum = 0;

7 for (int i = 0; i < 10; i++) {

8 //Call can be moved outside the loop

9 int res = sum(1, 1);

10 sum += res;

11 }

12 return sum;

13 }

Listing 4.4: Example of Excessive Method Class (ECM)

Listing 4.4 provides an example of the pattern as it appears in Java source code. There are

many ways to go about detecting this pattern; our implementation performs two searches in the

AST: i) collect data on reads and writes of variables (local or fields) inside loops; ii) analyse

method calls inside loops against the collected data. Calls that do not read or write loop variables

are marked as invariants and can be safely removed from the loop.

As an example, in a method call like A(X, B(), C(Y)), by analysing the nodes from the inside

out, i.e., starting with Y, then C() and ending with A(), if an inside node is declared variant, all

outside ones will be as well; if B() is variant, A() is also variant.
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We operate over loop nodes this time. These nodes are an abstraction in Kadabra to represent

any type of loop, e.g., for or while loops. During the first pass over the AST, in line 4 in Listing 4.5,

we build a structure with each method’s variable reads and writes and a boolean flag to signal

missing info, i.e., a call to a method not in the classpath. In the second pass, in lines 6-7 we

analyse all method calls recursively to check if they either require any data modified in the loop or

if they modify data used in the loop, directly or indirectly.

1 analyseLoop(jpLoop) {

2 this.resetDetector();

3

4 this.collectLoopInfo(jpLoop);

5

6 let calls = this.getFirstDescendentsOfTypes(jpLoop, ["call"]);

7 calls.forEach( (c) => this.analyseLoopCall(c) );

8 }

Listing 4.5: Excessive Method Calls Query Logic (JS code)

4.3.5 HashMap Usage

This pattern comes as an official Android recommendation where usage of HashMaps is discour-

aged in favour of ArrayMaps 2. As a side note for our HMU implementation, while Couto et al.’s

implementation [16] looks for all instances of HashMap or Map, our implementation only looks

for HashMap instantiations.

We reason that HashMap instantiations are inherently made by the developer, and upon refac-

toring an instantiation to ArrayMap, a developer must also update any connected code. Further-

more, our implementation addresses a potential problem where the detector could flag an external

HashMap source outside the developer’s control, e.g., an API outputting a HashMap. We can also

argue that using the generic Java Map interface is a good practice. For these reasons, we believe

that looking for explicit instantiation cases is a better approach to this pattern.

1 public void foo() {

2 HashMap<String, String> hashMap = new HashMap<String, String>();

3 Map<String, String> map = new HashMap<String, String>();

4 }

Listing 4.6: Example of HashMap Usage (HMU)

Listing 4.6 provides an example of the pattern as it appears in Java source code. The search

criteria is quite simple for this pattern. We look for instantiations of HashMaps from the package

"java.util". Instantiations are syntactically defined by the new keyword, and in Kadabra’s AST

2https://developer.android.com/reference/android/util/ArrayMap
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new is a type of node. We search for all new nodes with a type of "HashMap" and filter them to

only return those whose package is "java.util".

1 let hashMapRefs = Query.searchFrom(jpClass, "new", { type: "HashMap" })

2 .get()

3 .filter(

4 (jp) =>

5 jp.typeReference !== undefined &&

6 jp.typeReference.package === "java.util"

7 );

Listing 4.7: HashMap Usage Query Logic (JS code)

4.3.6 Internal Getter

This pattern is unrelated to the previous three. It appears in one of the catalogues mentioned

before [11] and is covered by a few tools [42, 33, 14]. This pattern is more relevant in older

Android JIT compilers 3. It presents itself as a simple code pattern and appears to be optimisable

by the compiler, so it is an interesting pattern to study possible side-effects of the compilation and

decompilation processes. As implied by the name, our implementation focuses only on getters,

i.e., methods that purely return a field inside their own class.

1 int id = 123;

2

3 public int getID() {

4 return id;

5 }

6

7 public void foo() {

8 //...

9 bar = getID();

10 //...

11 }

Listing 4.8: Example of Internal Getter (IG)

Listing 4.8 provides an example of the pattern as it appears in Java source code. Our search

criteria are fairly simple here. Looking at line 9, we want to find calls of internal getter methods

inside the class where the method is defined. An internal getter is defined as a method containing

a single field return statement.

Listing 4.9 shows the class analysis logic for IG. In lines 6-14, we collect all methods that meet

our Internal Getter criteria. With Query.childrenFrom(jpClass, <criteria>) we select, inside the

3https://stackoverflow.com/questions/4912695/what-optimizations-can-i-expect-from-dalvik-and-the-android-toolchain/
4930538#4930538 (Last Access: Sep 05, 2022)

https://stackoverflow.com/questions/4912695/what-optimizations-can-i-expect-from-dalvik-and-the-android-toolchain/4930538#4930538
https://stackoverflow.com/questions/4912695/what-optimizations-can-i-expect-from-dalvik-and-the-android-toolchain/4930538#4930538
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class we are currently analysing, all methods that are not void and not static. Then with consecutive

.children(...) methods, we further refine the search with methods whose body only have a single

return statement of a single field variable. In lines 16-20, we cross-reference the getter methods

we found with the method calls inside the class and return any calls of internal getters.

1 analyseClass(jpClass) {

2 super.analyseClass(jpClass);

3

4 const notVoid = (r) => r !== "void";

5

6 let simpleGetters = Query

7 .childrenFrom(jpClass, "method", {

8 returnType: notVoid,

9 isStatic: false,

10 })

11 .children("body", { numChildren: 1 })

12 .children("return")

13 .children("var", { isField: true })

14 .chain().map((m) => m["method"]);

15

16 let internalCalls = Query

17 .searchFrom(jpClass, "call", {

18 decl: (d) => d !== undefined &&

19 simpleGetters.some((sg) => sg.same(d)),

20 }).get();

21

22 this.results.push(...internalCalls);

23 }

Listing 4.9: Internal Getter Query Logic (JS code)

4.3.7 Detection report

Each detector outputs an array with the detections found, as shown in Listing 4.10. This array can

be exported to a JSON file individually if the user only requires data from a particular detector.

1 [

2 "Theraphy.java/Theraphy/prepareListData:27",

3 "UserSession.java/UserSession/getUserDetails:44",

4 "UserSession.java/UserSession/getUserDetails:50"

5 ]

Listing 4.10: Example of HashMap Usage Detector Output
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Here it is crucial to consider another challenge of decompilation: how to define and represent

the pattern location in the report. Whether we want to compare results from source code against

decompiled code or analyse an APK and return feedback to the developer, we need to trace the

location of a detection as accurately as possible.

A naive approach would be to record the file and line associated with a code pattern; however,

the compilation and decompilation processes can change the order of the code, remove whites-

paces and comments and even introduce new debug comments. All these factors can change the

line location of the patterns; therefore, comparing patterns based on line location is unreliable.

We attempt to solve this problem by representing each pattern detection with a string in the

following format:

”<fileName>/<className>/<methodName>[/<callName>] : <lineNumber>”

Each part can be seen as a branching point in the AST, and the <methodName> (or <call-

Name> where applicable) is the highest precision we can achieve for locating patterns. The call-

Name information is optional, only applied to two detectors, EMC and IG. We also keep the line

number at the end of the string since it is valuable information, but as stated before, it is unreliable

for comparing patterns.

In Figure 4.2, we can see the creation process of the E-APK report. When analysing the source

code of an application or its corresponding APK, our solution executes all existing detectors and

compiles the individual reports from each detector into a single JSON report.

Figure 4.2: Creation of E-APK Report
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The report, as exemplified in Listing 4.11, is in JSON format and contains the total number of

patterns detected, details for each detector and the source of the analysis, i.e. the folder analysed

or the APK file. In this particular example, we can see in line 3 the source pointing to a folder

with the source code. We have a total of 3 pattern detections in line 5, and those detections are

instances of HMU.

1 {

2 "sources": [

3 "E:/apps/003f67dd-c926-4f96-bb1b-5a2dd4bf344f/latest/app/src/

main/java"

4 ],

5 "total": 3,

6 "detectors": {

7 "Excessive Method Calls Detector": [],

8 "HashMap Usage Detector": [

9 "Theraphy.java/Theraphy/prepareListData:27",

10 "UserSession.java/UserSession/getUserDetails:44",

11 "UserSession.java/UserSession/getUserDetails:50"

12 ],

13 "Internal Getter Detector": [],

14 "Member Ignoring Method Detector": []

15 }

16 }

Listing 4.11: Example of an E-APK report

In the next chapter, we will explain how we used this solution to test a large dataset with 420

applications and how we compiled and analysed all the collected E-APK reports.



Chapter 5

Evaluation

Previous research, like the catalogues described in Section 3.1, has shown that refactoring energy

code patterns can positively impact energy efficiency. Our objective is to understand if energy pat-

terns, initially present in the source code, remain present and detectable after undergoing the APK

compilation and decompilation processes. To achieve this, we take a sample of Android applica-

tions and test their source code and APKs with our detectors previously introduced in Chapter 4.

We can then compare the results obtained across the multiple versions.

In this chapter, we explain the dataset of open source Android applications we used and how

we prepared it; we present the methodology and reasoning used to collect the report data. Finally,

we show how the data analysis was done and how the results presented in Chapter 6 were obtained.

5.1 Open Source Android Applications Dataset

To properly answer our RQ, a significantly sized dataset is required. Couto et al.[16] provided a

dataset with roughly 600 applications originally used to study a set of energy patterns they call

EGAPs. As explained in Section 4.3, three of our detectors are from this EGAP group, and the

dataset contains over 100 instances of these same patterns; these are relevant characteristics that

make it suitable to be re-used in our context.

In order to fairly compare source code against APKs, we had to impose a few selection criteria

and perform some data preparation, and indeed, we found some nuances in the way the dataset was

organised. The projects were all inside individual folders named with a UUID, but some folders

contained multiple subprojects inside, e.g., the actual application and sometimes a sample project.

Some projects also had multiple APKs available, e.g., distribution, production or development

APKs.

To normalise the testing conditions, we took advantage of some standard Android project

practices, like the existence of src and build folders by default. We recursively analysed all folders

in the dataset and applied the following criteria in this specific order:

1. Select all src folders (even multiple per project).

From the original 590 base application folders in the dataset, we found 1015 src folders.

25
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2. Select all projects with a build folder containing APKs.

From the 1015 candidate projects, only 423 had APKs, and all of those contained three

versions of APKs: Debug is an APK built, zipaligned 1 and signed with debug keys and with

the debuggable flag enabled; Debug(Unaligned) is similar to Debug without the zipalign

process; Release is also similar to Debug but has the debuggable flag disabled.

3. Select all projects using Gradle.

Most of the remaining projects used Gradle, with only two being removed in this step,

reducing to suitable projects to 421.

4. Select all projects with an AndroidManifest.xml.

From the 421 projects, only one was missing an AndroidManifest.xml file.

Ultimately, we ended up with 420 applications that comprise our study object. A final prepa-

ration step was performed where we extracted the application package name from the Android-

Manifest.xml and the boolean values of the build property minifyEnabled for release and debug

builds from the build.gradle. We compiled all the information into a JSON file, represented in

Listing 5.1, with the 420 test applications, 14 of which have minifyEnabled Release APKs.

1 {

2 "0": {

3 "base": "003f67dd-c926-4f96-bb1b-5a2dd4bf344f",

4 "applicationId": "com.githang.androidcrash.app",

5 "dminified": false,

6 "rminified": false,

7 "src": "E:/apps/003f67dd-c926-4f96-bb1b-5a2dd4bf344f/latest/

app/src/main/java",

8 "apks": [

9 "E:/apps/003f67dd-c926-4f96-bb1b-5a2dd4bf344f/latest/app

/build/outputs/apk/app-debug-unaligned.apk",

10 "E:/apps/003f67dd-c926-4f96-bb1b-5a2dd4bf344f/latest/app

/build/outputs/apk/app-debug.apk",

11 "E:/apps/003f67dd-c926-4f96-bb1b-5a2dd4bf344f/latest/app

/build/outputs/apk/app-release-unsigned.apk"

12 ]

13 },

14 "1": {...}

15 }

Listing 5.1: Example of a test application from the processed dataset

1https://developer.android.com/studio/command-line/zipalign (Last Access: Aug 9, 2022)

https://developer.android.com/studio/command-line/zipalign


5.2 Testing Methodology 27

5.2 Testing Methodology

In this section, we will explain the thought process during the data collection phase of our solution.

We will also explain how we analysed that data and what metrics we used to compare the similarity

of detections between source code and APKs.

5.2.1 Data Collection

Our end goal is to compare source code and decompiled code with respect to our ability to detect

energy code patterns in them. To do this, we test each application four times, once for the source

code and the other three times for each APK version: Release; Debug; Debug(Unaligned). In

Figure 5.1 we can see how the four versions are organised in our experimental setup.

Figure 5.1: Control and Experimental Samples

The source code can be seen as our control sample or ground truth since no code information

is missing, and any energy code pattern present must be detectable, assuming the detectors are

working correctly. The release APK is the most likely candidate version that App Stores and

consumers will have access to and is, therefore, the one we will draw most of our comparisons

with.

The analyses of Debug and Debug(Unaligned) APKs were not a specific target but instead

presented themselves as an opportunity; all of our 420 applications had those available, and their

analyses could nonetheless yield interesting results.

We mentioned before that we extracted the application package name from the AndroidMan-

ifest.xml when preparing for analysis; we use the package name to filter out any code that is not

from the developer. As explained in Section 4.3.1, with Jadx class filtering options and the simple

filtering system we implemented in Kadabra, we try to ensure, as best as possible, a fair compari-

son between source code and the APKs, i.e., any decompiled code we extract also exists in source

code.

We also took note of applications using the build property minifyEnabled, responsible for

obfuscating code as explained in Section 2.2. We did it not only for analysis purposes but also
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to know when the deobfuscation options of Jadx were required. However, after testing, we found

that keeping those options enabled at all times worked without any perceivable side effects.

In Section 4.3.7, we explained the structure of the E-APK report our solution outputs. For a

single applicaiton, we generate four E-APK reports for each of the four versions. Listing 5.2 is an

example of this, where we can see an ID, the values for the minifyEnabled Gradle build properties

for release and debug builds, and the four E-APK reports.

1 {

2 "id": "0",

3 "minified_r": false,

4 "minified_d": false,

5 "result": [

6 {<source report>},

7 {<debug APK report>},

8 {<debug(unaligned) report>},

9 {<release report>}

10 ]

11 }

Listing 5.2: Example of JSON with analysis results of an application

Initially, we ran our detectors for each of the four versions for the 420 applications. While the

execution time per application was acceptable, ranging from 10 seconds to over a minute in some

cases, cumulatively, it took roughly three hours. We were executing Kadabra using Python, writing

the results to a JSON file on disk, reading it and repeating the process for the next application.

To accelerate the analysis time and facilitate a more iterative analysis, we took advantage of

Kadabra’s runParallel feature to analyse each version in parallel. The total execution was roughly

reduced by a factor of four to less than an hour. The end product was a final JSON file with the

analysis results of all 420 applications, and we used it to perform the analysis detailed in the next

section.
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5.2.2 Data Analysis

We performed our analysis in two phases:

1. Analysis over the total number of detections

This initial, more general analysis, looks at the total number of detections between source

code and APK. We also briefly compare the obfuscated with the non-obfuscated applica-

tions, despite the small sample size of obfuscated applications in our dataset.

2. Analysis of similarity between detections

The second analysis, more in-depth, verifies the actual similarity between detections in each

version using different metrics to compare detection instances in their string form.

Our initial analysis takes the total number of detections as the comparison point. For a given

application, for a given detector, we consider a perfect match between source code and APK when

both versions have the same number of detected patterns, e.g., detector EMC on application X

reported three instances in source code and three instances in APK.

An obvious flaw of this analysis is the lack of differentiation between instances, e.g., the three

EMC detections on application X can be in class foo in source code and class bar in APK. In

total, both versions have three detections, but they are not the same. We address this flaw with our

second analysis.

The takeaway from analysing total detections, however, is still quite relevant. It tries not to

prove our RQ but instead tries to disprove it. If there is a significant mismatch between versions,

we know our hypothesis, or our approach at the very least, is not viable.

For the second analysis, we focus on comparing the results of each detector individually. We

analyse and compare the results using two different metrics: Jaccard Index [34, 24] and Fuzzy

Matching [31, 15].

Both metrics serve the same purpose: calculating a similarity score between two versions.

Each detector gives a normalised similarity score ranging from zero to one. To represent the

similarity per application, we use a cumulative score calculated with the sum of all four detectors

where the maximum value is four, i.e., all detectors got a perfect score of one.

1 [

2 "Theraphy.java/Theraphy/prepareListData:27",

3 "UserSession.java/UserSession/getUserDetails:44",

4 "UserSession.java/UserSession/getUserDetails:50"

5 ]

Listing 5.3: Example of HMU detection before transformation
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Before calculating these metrics, we must again address the line location problem explained

previously in Section 5.2.1. If we encounter two patterns in the same method, the only distinguish-

ing factor is the line number; this is an unavoidable limitation of our solution due to our approach

to traceability. Listing 5.3 gives an example using the HMU detections shown before. In particular

the method getUserDetails appears twice in lines 44 and 50.

Our solution here was to transform the string representation of the patterns. The transformation

consists of removing the line number from each detection, counting the number of duplicates,

appending that number to the end of each string, and finally, removing the duplicates.

1 [

2 "Theraphy.java/Theraphy/prepareListData:1",

3 "UserSession.java/UserSession/getUserDetails:2",

4 ]

Listing 5.4: Example of HMU detection after transformation

Listing 5.4 is the transformed version of the previous example. The two instances of method

getUserDetails get transformed to ...getUserDetails:2. With the transformation of the results from

each detector, we get sets of unique pattern detections, i.e., lists of unique strings without dupli-

cates, ready to be compared using the different metrics.

5.2.3 Metric - Jaccard Index

The Jaccard Index [34, 24] is a statistic to compute the similarity between two sets. The similarity

is represented by the ratio between the cardinality of the intersection over the cardinality of the

union. It follows the following formula:

J(A,B) =
|A∩B|
|A∪B|

, (5.1)

where A and B are the two sets we want to compare. For our purposes, if both sets are empty, we

consider them fully similar, with a Jaccard Index of 1.

To give a more tangible example of how the Jaccard Index works, suppose we have the two

following sets:

A = [ f oo : 1,bar : 2]

B = [bar : 2,baz : 1]

The intersection of the two sets is the set [bar : 2], whose cardinality is one. The union is the set

[ f oo : 1,bar : 2,baz : 1] with a cardinality of three. By applying equation 5.1 for Jaccard Index,

we get:

J(A,B) =
|A∩B|
|A∪B|

=
1
3

(5.2)
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This result means that set A is 33.(3)% similar to set B. In reality, the result should be 50%,

since we have two instances of bar and thus the total number of detections represented here is

four.

We account for this by recalculating the cardinality based on the number of instances. The

set [bar : 2] with cardinality of one gets a cardinality of two instead, since bar:2 represents two

instances. By doing this, the union also gets a cardinality of four, and the final score is the expected

50%.

The weak point of this metric comes from some decompilation situations where the decom-

piled code suffered small changes, e.g. AIMSICD becomes ActivityC0001AIMSICD, and the Jac-

card treats these as completely different instances. These differences are acceptable overall, as we

will see in Section 6, and make the Jaccard a more conservative metric that gives a worst-case

scenario score.

5.2.4 Metric - Fuzzy Matching

With Fuzzy Matching [31, 15] we get a more optimistic score, which is an excellent complement

to Jaccard and can more correctly score the previously stated decompilation problems. We use a

library for Python called TheFuzz2 to calculate the string differences. Given the higher degree of

complexity involved, we will forego a detailed explanation of how it works and will instead apply

it to the previous example. We tried three variations with Fuzzy Matching, using two methods

from the TheFuzz library.

With the fuzz.token_sort_ratio method we first transform the set into a single string concate-

nated with a Pipe (|) symbol, e.g., [ f oo : 1,bar : 2] becomes ” f oo : 1|bar : 2”. We call this method

FuzzyConcat. When comparing the previous sets A and B, we get a score of 73%. In this example,

we go above the expected 50% because of the similarities between bar and baz. Moreover, since

we compare the whole strings, the repeated symbols and numbers (:, 1, 2) also increase the score.

The benefit of this metric is more evident in the decompilation example we showed before. If we

apply it to the sets [AIMSICD : 1] and [ActivityC0001AIMSICD : 1], we get a score of 0% with

Jaccard and a more representative score of 58% with FuzzyConcat.

We also test the process.extractOne method from the TheFuzz library that, given a string, finds

the best match in an array of strings. We iterate the smallest set, apply this method against the

biggest set, sum each score and divide the final result by the length of the biggest array. We call

this one FuzzyProcess. Applying it to these different sets, [” f oo : 1”,′ bar : 2′,”AIMSICD : 1”]

and [” f oo : 1”,”bar : 2”,”ActivityC0001AIMSICD : 1”], we get a score of 97% which is quite

close to the expected score of 100% (remember that AIMSICD is a decompilation edge case). The

previous FuzzyConcat gets a score of 76% and Jaccard gets 60%.

The final metric we use is a combination of Jaccard and FuzzyConcat, which we call Fuzzy-

Jaccard. The Jaccard Index has many variations, including some with Fuzzy sets [45]. Our imple-

mentation is much simpler and aims to hopefully provide a score that averages its constituents; in

2https://github.com/seatgeek/thefuzz (Last Access: Aug 8, 2022)

https://github.com/seatgeek/thefuzz
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situations where reports should be 100% similar but are not due to obfuscation, we can get a more

correct score. It is calculated using the following formula:

FJ(A,B) = J(A,B)+(1− J(A,B))∗F((A−B),(B−A)), (5.3)

where J is the Jaccard method and F is the FuzzyConcat method. It also follows from this for-

mula that, should the difference between sets be an empty set, we get a perfect score of one

from Jaccard. On the other hand, if the intersection is empty, the resulting score is entirely

commanded by FuzzyConcat. Using the previous example, we start by calculating the Jaccard

score, which was 60%. We then take the differences between sets, i.e. [”AIMSICD : 1”] and

[”ActivityC0001AIMSICD : 1”] and calculate the FuzzyConcat score which is 58%. We take the

complement of Jaccard, 40%, multiply it by the FuzzyConcat score to get 23.2% and add the

Jaccard score to a final score of 83.2%.

5.3 Summary

We need to test our detectors with a significantly sized dataset. We take the dataset used in [16]

and prepare it for our testing purposes, resulting in 420 applications, each with source code and

three APKs: Release, Debug, Debug(Unaligned).

We split our analysis into two phases: analysing the total number of detections and comparing

the actual similarity between detections. When comparing the similarity between versions, we use

two different methods, Jaccard Index and Fuzzy Matching, for a total of four metrics. We compare

how these four metrics perform with the dataset.

In the next chapter, we present all the findings obtained from the testing and analysis explained

in this chapter.
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Results and Discussion

We collected data from 420 applications, each with four versions: Source code, Release APK,

Debug APK, Debug(U) APK. We analysed each version with our four implemented detectors

(EMC, HMU, IG, MIM). After analysing the 420 applications, we organised all the data as a

dataframe from the well-known Python library, Pandas.

Our main objective is to understand how the detection of patterns differs between Source code

and APK, so we first filtered our results for applications where we detected at least one energy

pattern with the following query:

totals > 0 OR totald > 0 OR totaldu > 0 OR totalr > 0,

where totals, totald, totaldu and totalr are the total number of detections, per application, in the

source code, debug, debug(unaligned) and release versions respectively.

We found that only 152 applications, 36% of the 420, reported at least one detection. This

result is consistent with the study of Couto et al. [16] where we sourced the dataset; they reported

only detecting patterns in roughly 40% of the applications.

As we explained in Chapter 5, we divided our analysis into two phases: i) comparing the total

number of detections; ii) comparing the similarity between detections. The following sections

contain the findings from the two analyses we conducted using these 152 applications.

6.1 Analysis over the total number of detections

We start our analysis by counting the number of detections that can be found in the four different

versions of each of the 152 applications we considered. The results we obtained can be found in

Figure 6.1.

We detected 947 patterns in the source code, an 11.50% and 10.44% difference to the Release

and Debug respectively. The number of detections was precisely the same, 853, between the

Debug and Debug(Unaligned) versions.

33
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The Release version had a similar the same number of detections, 844, which is 9 fewer

detections, across three applications. We manually inspected all three applications and found

the following:

• All three have the minifyEnabled property and showed signs of obfuscation.

• One of the applications had seven detections of HMU in Source code and Debug but zero

in Release and, in fact, there was no presence of "HashMap" when performing a text search

through the decompiled code.

• Another application was missing one out of three MIM detections in Release.

• The last application reported one extra EMC detection in the Debug version that was not

present in Source code, while the Release was correct.

Overall, these differences could be attributed to obfuscation, but no real conclusion could be

drawn from this information.

Figure 6.1: Total number of detections per version

We then tried to look further into the obfuscated applications. Of the 152 applications, only 8

were obfuscated, and 144 were non-obfuscated.

Table 6.1 contains descriptive statistics separating obfuscated and non-obfuscated applications.

We show, for each version, the average number of detections, the standard deviation, the maximum

number of detections in a single application and several quantiles.
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Mean SD 25% 50% 75% 95% max

Non-Obfuscated
Source 6.18 18.36 1.00 2.00 4.00 24.85 182
Release 5.58 18.16 0.00 1.00 3.00 23.95 182
Debug 5.58 18.16 0.00 1.00 3.00 23.95 182
Debug(U) 5.58 18.16 0.00 1.00 3.00 23.95 182

Obfuscated
Source 7.12 9.17 1.75 5.00 7.00 21.30 29
Release 5.00 9.49 0.00 1.50 4.25 19.95 28
Debug 6.12 9.60 0.75 3.50 5.50 21.30 29
Debug(U) 6.12 9.60 0.75 3.50 5.50 21.30 29

Table 6.1: Descriptive statistics for total number of detections in Obfuscated vs Non-Obfuscated
applications

The standard deviation is relatively high in all situations, given the significant difference be-

tween the minimum and maximum values. The maximum number of detections in the obfuscated

group is below the 95% quantile range of the non-obfuscated group, and no abnormalities were

visible in the detectors when comparing the two groups.

In Figure 6.2 we can also see the same data points in a boxplot. The non-obfuscated group

shows several outliers, but only one application is over the 100 detections range. The mean value

in the boxplot does not include the outliers, therefore we can see a different between groups here.

Figure 6.2: Number of detections by version
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Overall, nothing conclusive on the impact of obfuscation was found. It would be interesting

to test a bigger sample of obfuscated applications and compare the results to understand how

obfuscation might impact our analysis.

An interesting finding related to obfuscation is the generation of invalid Java code in some

circumstances. Prior to enabling the deobfuscation options in the decompiler Jadx, the analysis

of five applications failed due to Spoon [44] (used internally by Kadabra) being unable to build

their AST; this is another challenge of decompilation where we can have Dalvik bytecode that is

incompatible with Java code.

As is the case with non-obfuscated applications, bytecode generated directly from Java can be

translated back safely. However, should any transformation happen to the bytecode, e.g., obfusca-

tion, some form of preprocessing might be required to decompile it safely. Notwithstanding, after

enabling the deobfuscation options, all five applications that failed previously were successfully

analysed.

We proceeded with our comparison using only the source code and the Release APK since it is

the primary APK candidate as explained in Section 5.2.1. If we ignore the obfuscated applications,

no difference was found between the APK versions. We also kept the obfuscated applications in

the remaining analyses but disregarded any possible impact they may have due to their small

sample size.

In Figure 6.3 we can see how each detector performed comparatively in the source code and

the release APK and in Table 6.2 we show the difference in percentage between the two scenarios,

calculated by dividing the absolute difference of both values by their average.

EMC HMU MIM IG

Source 194 170 151 432
Release APK 190 148 106 400
% Difference 2.08% 13.84% 35.02% 7.69%

Table 6.2: Percentage Difference between Source Code and Release APK

Without exception, the number of detections was higher in the source code, with the most sig-

nificant difference coming from the MIM pattern at 35.02%. Judging only by this value, the MIM

pattern could be the one suffering the most from the compilation and decompilation processes.

Meanwhile, the IG pattern has visibly more detections than the rest.

As discussed before in Section 4.3.6, we considered the IG pattern to be a likely candidate

for compiler optimisations, e.g., inlining. However, the results show the opposite; they reinforce

the notion that perhaps this pattern is handled by the JIT or AOT compiler during the installation

phase in the smartphone.

Our next step was to look at the differences across applications to get a more in-depth un-

derstanding of the results. Figure 6.4 is a histogram of the differences in total detections found

between Source code and the Release APK. From the 152 applications, we found the same number

of detections between the Source code and the Release APK in 64 applications. Besides those, 67
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Figure 6.3: Total number of detections per detector

showed more detections in the Source code, with 47 of those having only one more detection, and

21 showed more in the Release APK.

With this information, it is important to recall the initial set of 420 applications. If we redo

the previous comparison with the set of 420, we find that 332 applications have the same number

of detections. In Table 6.3 we can see the different ratios for: same number of detections; Source

having more than APK; Source having less than APK.

In the set of 420 applications, given the significant percentage of 79.05% where we did not find

any differences between Source and APK, we can claim with some certainty that the compilation

and decompilation processes are not systematically introducing detections; this, in turn, reinforces

the potential of the type of static analysis we performed.

Set of 152 Set of 420

Source = APK 42.11% 79.05%
Source > APK 44.08% 15.95%
Source < APK 13.82% 5.00%

Table 6.3: Ratios of equal, higher and lower number of detections in Source vs APK

To get a different perspective on the data we collected and understand how each detector

behaves in situations where the number of detections does not match, we isolated the two groups,

Source > APK and Source < APK and analysed them. Figure 6.5 shows the two groups with each
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Figure 6.4: Histogram of detection differences between Source and Release

detector represented individually in a stack for each application, sorted by the difference in total

number of detections. Positive values represent more detections on source code compared to APK,

and negative values represent the opposite. As a side note, the detectors are colour-coded, and the

same colours will be used in the next section for consistency and ease of comparison.

The differences can be attributed to different situations. Positive values can point to cases

where the compiler optimised the pattern and removed it, or it could be when the decompilation

process fails to reconstruct the Java code accurately. Negative values can result from artefacts

introduced by the decompilation process.

The catalogues we mentioned in Section 3.1 tested these patterns before and after refactoring

them and proved them to be more energy-efficient. Therefore it is unlikely that the compilation

process would introduce harmful energy patterns, and safe to assume that the compiler is not

responsible for these negative values. We also did not extensively test the detectors, and some

situations can be unaccounted for; This can also result in positive or negative differences. Further

research is required in this area.

Overall, the results point favourably towards static analysis of decompiled code being viable

and lend credence to our RQ. It is important to note that these results come from the total values

for each detector and do not account for the similarity of detections. That is discussed in the next

section.
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Figure 6.5: Detector Differences per Application between Source and APK

6.2 Analysis of similarity between detections

In this section, we complement the previous analysis by verifying the similarity score between

detections, i.e., given a report from Source code and another from the Release APK, how similar

are they?

We quantify the similarity using different metrics as demonstrated in Chapter 5 and we also

maintain the same set of 152 applications in this analysis.

We start with the Jaccard Index, where the similarity score ranges from zero to one. Each

detector has its own score, and cumulatively, an application can have a score ranging from zero to

four. Figure 6.6 contains the histograms for our four detectors, and a logarithmic scale is used to

visualise the smaller indexes more clearly.

In all detectors, the number of applications with a similarity score of one is almost an order of

magnitude higher than the rest, i.e., for most applications, their reports contain the same number

of patterns in the same locations. The second highest category in all detectors is where we have a

similarity score of zero, i.e., the two reports, from Source and APK, do not have a single matching

detection.

The results above explore the detectors by themselves, but to understand how they work to-

gether, we must look at the cumulative score. The 130 applications in detector EMC are not

necessarily the same as the 131 applications from detector HMU. In Figure 6.7 we can get a better

perspective of each application’s similarity across all four detectors; in fact, only 54 applications,
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Figure 6.6: Jaccard Index per Detector between Source and Release APK

35.53%, have a similarity score of 4, contrary to what one might believe from Figure 6.6. How-

ever, 136 applications, 89.47%, have a score equal to or higher than three, i.e., the reports in three

detectors are entirely similar, and only two applications got a score of zero.

The Jaccard Index can quantify and sort the applications by how similar they are between

versions. In the previous section, in Figure 6.5, we filtered and sorted the applications that differed

in the total number of detections. Figure 6.8 redos the same analysis but this time using the

cumulative Jaccard Index as a filter (cumulative Jaccard Index < 4) and sorting value.

The difference between both figures is the eight applications with a value of zero, i.e., cases

where we have the same number of detections in all detectors, but they are not entirely similar.

Given that only eight applications went undetected, purely looking at the total number of detec-

tions, as we did in the previous section, is a somewhat reliable method of comparing versions and

provides an accurate profile of the collected data.
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Figure 6.7: Cumulative Jaccard Index per Detector per Application between Source and APK

We also wanted to verify and reinforce the adequacy of testing similarity scores with the Jac-

card Index. We introduced Fuzzy Matching as an alternative metric alongside Jaccard Index in

Chapter 5, and tested three variants: FuzzyConcat, FuzzyProcess and FuzzyJaccard.

In Figure 6.9 we can see the scores per detector, as we did for the Jaccard Index in Figure 6.6.

The differences are: a slightly smaller number of applications in the extreme bins, similarities of

zero and one; the values in between are also slightly shifted to the right, towards one. Overall the

results are almost indistinguishable, which is true for all three variants.

In Table 6.4 we can see how the four metrics compare numerically and confirm our initial

predictions. All metrics show a similar result and help reinforce the Jaccard Index as the more

conservative, worst-case scenario metric. Meanwhile, Fuzzy Matching, in particular, FuzzyConcat

serves as a more optimistic metric.
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Figure 6.8: Detector Differences per Application between Source and APK

Mean SD 25%

EMC
Jaccard 0.90 0.28 1.00
FuzzyConcat 0.93 0.23 1.00
FuzzyProcess 0.93 0.23 1.00
FuzzyJaccard 0.93 0.23 1.00

HMU
Jaccard 0.88 0.32 1.00
FuzzyConcat 0.92 0.26 1.00
FuzzyProcess 0.92 0.25 1.00
FuzzyJaccard 0.91 0.27 1.00

Mean SD 25%

IG
Jaccard 0.79 0.40 1.00
FuzzyConcat 0.80 0.39 1.00
FuzzyProcess 0.79 0.40 1.00
FuzzyJaccard 0.79 0.40 1.00

MIM
Jaccard 0.75 0.41 0.50
FuzzyConcat 0.76 0.40 0.74
FuzzyProcess 0.76 0.40 0.59
FuzzyJaccard 0.78 0.40 0.58

Table 6.4: Descriptive statistics for similarity metrics

To conclude this section, we also did some statical analysis within the limits of our sample

data. At best, we can calculate the range of values that are likely to contain the similarity score of

the population, i.e., other applications, based on our population sample.

In Table 6.5 we can see the 95% confidence interval for the mean of each detector and their

cumulative mean, for Jaccard and FuzzyConcat. What we can gather from these intervals is that

for the worst performing detector, MIM, we get a 95% confidence level that the true value of

similarity between Source code and a Release APK is at least 0.69 when calculated by the more
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Figure 6.9: Fuzzy Matching per Detector between Source and Release APK

conservative Jaccard Index.

As for the true value of cumulative similarity from all four detectors, we can say that it is

between 3.26 and 3.38. These values might, of course, be dependent on other variables that were

not accounted for in our tests, and the usage of more detectors can skew the results in either

direction, but overall we got positive results supporting our RQ.

6.3 Summary

We tested 420 applications, 152 of which reported at least one detection. The number of detections

in Source code was, in all detectors, superior to the APK versions, with an average difference of

11% between the two. When analysing the impact of obfuscation, due to the small sample size,

results were inconclusive, and further testing with a bigger sample is required.

Our analysis of the total number of detections primarily showed that the compilation and

decompilation process is not systematically introducing detections, with 79.05% of the 420 appli-

cations reporting an equal number of detections between Source and Release APK. We also com-

pared the similarity of detections between those two versions and got reinforcing results. From

the group of 152 applications, 34.53% got a perfect similarity score of four, with 89.47% getting

a score of three or more out of four. Meanwhile, only two applications got completely different

reports with a score of zero.
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Lower Bound Upper Bound

Jaccard
EMC 0.84 0.96
HMU 0.82 0.94
IG 0.73 0.85
MIM 0.69 0.81
Cumulative 3.26 3.38

FuzzyConcat
EMC 0.87 1.00
HMU 0.85 0.98
IG 0.74 0.86
MIM 0.71 0.84
Cumulative 3.36 3.49

Table 6.5: 95% Confidence Interval for the Mean

We calculated the 95% confidence intervals for each detector and found that for the worst

performing detector, MIM, the true value of the similarity score in this population is between 0.69

and 0.81 with the Jaccard Index. We did the same for the cumulative value of all four detectors

and got an interval between 3.36 and 3.49.

The two analyses we performed confirm and reinforce themselves. We know the detections

between Source code and Release APK are reasonably similar. We know that even comparing the

total number of detections is, by itself, a somewhat reliable mechanism to evaluate the presence of

energy patterns. Given all this, we can safely claim that static analysis of decompiled applications

is indeed viable, as we proposed in our RQ and we believe this area should be further explored.

A replication package is available in a zenodo repository 1. It contains instructions for prepar-

ing the dataset used, executing Kadabra and E-APK, and reproducing the analysis results and

graphs.

In the next and final chapter, we present our overall conclusions for this work, the main con-

tributions achieved and what can be done in the future to expand the work done so far.

1https://doi.org/10.5281/zenodo.7083540 (Last Access: Aug 16, 2022)

https://doi.org/10.5281/zenodo.7083540


Chapter 7

Conclusions and Future Work

Energy efficiency is an important consideration when developing mobile applications. The current

literature provides catalogues of good energy practices and automatic detection and refactoring

tools for developers. However, there is a noticeable requirement among these tools: they need

access to an application’s source code. Besides the original developer, other stakeholders, most

notably App Stores, that want to perform an independent energy analysis of applications lack the

means to do so.

To bridge this gap, we took 420 open-source Android applications to understand if energy

patterns present in their source code can be detected by decompiling and analysing the resulting

code. We developed a module capable of detecting Android energy patterns in Java source code.

To analyse APKs directly, we also extended Kadabra to transparently decompile the Dex bytecode

from APKs into Java source code.

We comparatively analysed source code against decompiled code and found that approxi-

mately 79.05% of the applications reported no difference in the number of detections. We proced-

ded with a more in-depth analysis, trying to correspond each detection instance individually in the

source code and the decompiled code.

A similarity score from 0 to 4 was attributed to each application, with 34.53% of all applica-

tions getting a perfect similarity score of 4, and 89.47% getting a score of three or more out of

four. Meanwhile, only two applications got completely different reports with a score of zero.

We also calculated the 95% confidence intervals for each detector and found that for the worst

performing detector, MIM, the true value of the similarity score in this population is between 0.69

and 0.81 with the Jaccard Index. We did the same for the cumulative value of all four detectors

and got an interval between 3.36 and 3.49.

The execution time per application was acceptable, ranging from 10 seconds to over a minute

in some cases, but cumulatively, it took over three hours. We accelerated the analysis process by

taking advantage of Kadabra’s runParallel feature to analyse each version in parallel. The total

execution was roughly reduced by a factor of four to less than an hour. Furthermore, we can also

parallelise each detector for even faster times; this opens the possibility of testing of even larger

datasets and facilitate a more iterative analysis.

45
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Overall, our results support our RQ: static analysis techniques, typically used in source code,

might be viable to inspect APKs when access to source code is restricted. We believe this area

should be further explored, and in Section 7.2, we expand upon potential research paths that can

complement our work.

7.1 Main Contributions

Here we present the most significant milestones we achieved as a way to synthesise the work:

• Integration of an APK decompiler, Jadx, into Kadabra to transparently decompile APKs and

analyse their decompiled code.

• Development of a collection of scripts for Kadabra, E-APK, to detect energy code patterns.

• Large-scale testing, with over 400 Android applications, of Kadabra and our E-APK scripts.

• Assessment of the viability of energy code pattern detection in APKs as a method of per-

forming independent energy analysis.

• Publication of a conference paper [29] with partial findings of our work:

N. Gregório, J. Bispo, J. P. Fernandes and S. Q. Medeiros (2022). E-APK: Energy Pattern

Detection in Decompiled Android Applications. 26th Brazilian Symposium on Program-

ming Languages, 2022.

Additionally, our work also resulted in:

• Identifying a feature inconsistency in the decompiler Jadx, and creating a pull request 1 that

was accepted by Jadx’s team.

• Deployment of our solution in other research done within the GreenStamp project.

7.2 Future Work

Future work includes performing a complementary analysis of the bytecode generated from the

compilation process to possibly identify false positives and artifacts from the decompilation tool;

this comes with its own challenges however, since it requires implementing detectors for bytecode

and matching the resulting detections between source code and bytecode.

Due to limitations in the dataset we used, the impact of obfuscation was not explored. Re-

producing the analysis we did but with pairs of application, obfuscated and non-obfuscated, could

provide insights into the impact of obfuscation on the detection of patterns; this could be done

while testing different decompilers and deobfuscation tool for a clear understanding of the current

capabilities and limitations of state of the art decompilation and deobfuscation tools.

1https://github.com/skylot/jadx/pull/1467 (Last Access: Sep 14, 2022)

https://github.com/skylot/jadx/pull/1467
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Another important aspect is the possibility of generalising this type of analysis to other lan-

guages. Our dataset was limited to Android applications written in Java, but Kotlin is growing in

popularity 2 and should also be studied. Our detectors have some flexibility here since the LARA

framework has multi-language support and can be extended to also work with Kotlin, and the

detections scripts might not even require changes.

Other efforts worth looking into are:

• The impact of compilation and optimisation flags and how often developers take advantage

of them.

• Extending the available detectors to increase pattern coverage and understand which patterns

are more susceptible to interference from compilation/decompilation.

• Repeat the experiment with a different dataset with older or newer applications targetting

different Android versions.
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Appendix A

Energy Pattern table

Energy Pattern Also known as
Draw Allocation [16, 30] Init OnDraw

Wakelock [16, 17, 47, 11] Resource Leak, Durable Wake-

Lock, Race-to-idle

Recycle [16]

Obsolete Layout Parameter [16]

View Holder [16, 47, 11] Uncached Views

HashMap Usage [16, 42, 30]

Excessive Method Calls [16]

Member Ignoring Method [16, 47, 11, 30]

Dark UI Colors [17]

Dynamic Retry Delay [17]

Avoid Extraneous Work [17]

Push over Poll [17]

Power Save Mode [17]

Power Awareness [17]

WiFi over Cellular [17]

Suppress Logs [17]

Batch Operations [17]

Cache [17]

Decrease Rate [17]

User Knows Best [17]

Inform Users [17]

Enough Resolution [17]

Sensor Fusion [17]

Kill Abnormal Tasks [17]

No Screen Interaction [17]
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Energy Pattern table 54

Avoid Extraneous Graphics and Animations [17]

Manual Sync, On Demand [17]

Bulk Data Transfer On Slow Network [47, 11]

Data Transmission Without Compression [47, 11, 17] Reduce Size

Debuggable Release [47, 11]

Early Resource Binding [47, 11, 17, 42] Binding Resources too early,

Open Only When Necessary

Inefficient Data Structure [47, 11]

Inefficient SQL Query [47, 11]

Inefficient Data Format And Parser [47, 11]

Internal Getter/Setter [47, 11, 42] Private getters and setters

Leaking Inner Class [47, 11, 30]

Leaking Thread [47, 11]

Nested Layout [47, 11]

No Low Memory Resolver [47, 11, 30]

Overdrawn Pixel [47, 11, 30] UI Overdraw

Prohibited Data Transfer [47, 11]

Rigid AlarmManager [47, 11]

Set Config Changes [47, 11]

Slow Loop [47, 11]

Unclosed Closable [47, 11]

Blob [42]

Lazy Class [42]

Long-parameter list [42]

Refused Bequest [42]

Speculative Generality [42]

Unsupported Hardware Acceleration [30]

Unsuited LRU Cache Size [30]

Lifetime Containment [22]

Bitmap Format Usage [22]

Heavy AsyncTask [22, 40]

Heavy Service Start [22, 25]

Heavy Broadcast Receiver [22]

Vacuous Background Services [22, 12, 6, 27] Sensor Coalesce

Immortality Bug [6]

Battery-Efficient Location [27]

Table A.1: Energy Patterns
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