
An Abstract Interpretation-Based Framework for
Control Flow Reconstruction from Binaries?

Johannes Kinder1, Florian Zuleger1,2 ??, and Helmut Veith1

1 Technische Universität Darmstadt, 64289 Darmstadt, Germany
2 Technische Universität München, 85748 Garching, Germany

Abstract. Due to indirect branch instructions, analyses on executables com-
monly suffer from the problem that a complete control flow graph of the program
is not available. Data flow analysis has been proposed before to statically deter-
mine branch targets in many cases, yet a generic strategy without assumptions on
compiler idioms or debug information is lacking.
We have devised an abstract interpretation-based framework for generic low level
programs with indirect jumps which safely combines a pluggable abstract domain
with the notion of partial control flow graphs. Using our framework, we are able
to show that the control flow reconstruction algorithm of our disassembly tool
Jakstab produces the most precise overapproximation of the control flow graph
with respect to the used abstract domain.

1 Introduction

One of the main problems when analyzing low level code, such as x86 assembly lan-
guage, are indirect branch instructions. These correspond to goto statements where the
target is calculated at runtime, or the use of function pointers combined with pointer
arithmetic in high level languages. In executables, any address in the code is a poten-
tial target of an indirect branch, since in general there are no explicit labels. Failure to
statically resolve the target of an indirect branch instruction thus leads to an either in-
complete or grossly overapproximated control flow graph. Often, data flow analysis can
aid in resolving such indirect branches; however, data flow analysis already requires a
precise control flow graph to work on. This seemingly paradox situation has been re-
ferred to as an inherent “chicken and egg” problem in the literature [1, 2].

In this paper, we show that this notion is overly pessimistic. We present a framework
to construct a safe overapproximation of the control flow graph of low level programs
by effectively combining control and data flow analysis by means of abstract interpre-
tation. Existing approaches to control flow extraction from binaries usually either make
a best effort attempt and accept possible unsoundness [3, 4], or they make optimistic as-
sumptions on clean code layout [5] or on the presence of additional information such as
symbol tables or relocation information [2]. Our approach is designed to be generic in

? This paper has been slightly revised from the VMCAI’2009 proceedings version.
?? The research of the second author was supported in part by Microsoft Research through its

PhD Scholarship Programme.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147973554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the sense that it does not require any additional information besides the actual instruc-
tions and is still able to compute a sound and precise overapproximation of the control
flow graph. In particular, our paper makes the following contributions:

– We define an abstract interpretation that reconstructs the control flow graph and is
parameterized by a given abstract domain. We achieve this by extending the given
abstract domain with a representation of the partial control flow graph. To this end,
we define the notion of a control flow graph for a low level assembly-like language
based on a concrete semantics in Section 3.2. We construct a resolve operator, based
on conditions imposed on the provided abstract domain, for calculating branch tar-
gets. Using this operator, our analysis is able to safely overapproximate the control
flow graph (Section 3.3).

– We present a general extension of the classical worklist algorithm met in program
analysis which empowers control flow reconstruction by data flow analyses under
very general assumptions. The algorithm overcomes the “chicken and egg” problem
by computing the a priori unknown edges on the fly by using the resolve operator.
We prove that the algorithm always returns the most precise overapproximation of
the program’s actual control flow graph with respect to the precision of the provided
abstract domain used by the data flow analysis (Section 3.4).

– In earlier work, we presented our disassembly tool JAKSTAB [6], which employs
constant propagation for an iterative disassembly strategy. JAKSTAB uses an ab-
stract domain which supports symbolic memory addresses to achieve constant prop-
agation through local variables and yielded better results than the most widely used
commercial disassembler IDA Pro. We describe in Section 4 how the control flow
reconstruction algorithm implemented in JAKSTAB instantiates our newly defined
abstract interpretation. Thus, without the need to restart constant propagation, it
always computes a safe overapproximation of the control flow graph.

2 Overview

In this section we describe current disassembly techniques and their shortcomings. We
explain why proposed augmentations of disassembly with data flow analysis suffer from
imprecision and we motivate how to overcome these difficulties by an intertwined con-
trol and data flow analysis.

2.1 Disassembly

Disassembly is the process of translating a sequence of bytes into an assembly language
program. Simple linear sweep disassemblers, such as GNU objdump, sequentially map
all bytes to instructions. Especially on architectures with varying instruction length (e.g.
Intel x86) this leads to erroneous assembly programs, as these disassemblers easily lose
the correct alignment of instructions because of data or padding bytes between code
blocks. Recursive traversal disassemblers interpret branch instructions in the program
to translate only those bytes which can actually be reached by control flow. The disas-
sembler, however, cannot always determine the target of a branch instruction and can
thus miss parts of the program.

2

1: x := 5
2: jmp x
3: x := x− 2
4: jmp 2
5: halt

1

2

3

4

5

>

1

2

3

4

5

Fig. 1. Overapproximation of the CFG by adding an unknown node (>) leads to additional pos-
sible values for x at the indirect jump.

To avoid this problem, disassemblers usually augment recursive traversal by heuris-
tics to detect potential pieces of code in the executable. These heuristics exploit the
presence of known compiler idioms, such as recurring procedure prologues or common
patterns in the calculation of switch-jumps from jump tables [4]. While this works well
for the majority of compiler generated code, the presence of hand-crafted assembly
code and the effects of aggressive compiler optimizations can thwart heuristic methods.
Moreover, heuristics in disassembly are prone to creating false positives, i.e., to mis-
interpret data as code. Because of these well known problems, improved methods of
disassembly that incorporate data flow analysis have been subject to research.

2.2 Augmenting Disassembly with Data Flow Analysis

Data flow analysis statically calculates information about the program variables from a
given program representation. Earlier work [1, 5, 3, 7, 6] has shown that data flow anal-
ysis can be used to augment the results of disassembly, but no conclusive answer was
given on the best way to handle states with unresolved control flow successors dur-
ing data flow analysis. Further, updating the control flow graph could render previous
data flow information invalid, which would require backtracking and could cause the
analysis to diverge.

De Sutter et al. [7] suggested to initially connect all indirect jumps to a virtual un-
known node for indirect jumps, which effectively overapproximates the control flow
graph. In an iterative process, they use constant propagation on the overapproximated
graph to show infeasibility of most overapproximated edges, which can then be re-
moved. This approach is inspired by the solution of Chang et al. [8] to the similar
problem of treating unknown external library functions in the analysis of C programs.
We exemplify De Sutter et al.’s method by applying it to the snippet of pseudo-assembly
code shown in the left of Figure 1. The center of the figure depicts the corresponding
initial control flow graph, where the indirect jump at line 2 is connected to the unknown
node (>). There are outgoing edges from the unknown node to all statements, since
every address is a potential jump target in the general case of stripped code without
relocation information. Calculating the possible values of x, we see that x can in fact
take the concrete values 5, 3, 1,−1, . . . at the entry of line 2 in the overapproximated

3

program. Thus a program analysis operating on this initial overapproximation can only
conclude that addresses 2 and 4 are no targets of the jump, but cannot remove the over-
approximated edges to addresses 1 and 3. The final CFG reconstructed by this method,
shown on the right of Figure 1, consequently contains the infeasible edges (2,1) and
(2,3) (drawn in bold).

This example shows that integration of data flow algorithms with control flow re-
construction is non-trivial and can lead to suboptimal results. In the rest of this paper
we will demonstrate how to successfully design program analyses which reconstruct
the control flow of a disassembled low level program.

2.3 Integrating Fixed Point Equations for Control and Data Flow Analysis

Our approach to control flow reconstruction is based on the idea of executing data flow
analysis and branch resolution simultaneously. A data flow problem is characterized by
a constraint system derived from an overapproximation of the program semantics. The
solution to a data flow problem is calculated by iteratively applying the constraints until
a fixed point is reached. These constraints encode the complete control flow graph (by
an edge relation), which, however, is unavailable as our task exactly is the control flow
reconstruction.

The intuition of our approach is that we can grow the edge relation during the fixed
point iteration, until a simultaneous least fixed point of both data and control flow is
reached. For growing the edge relation, we introduce a resolve operator that uses data
flow information to calculate branch targets of instructions. In our combined analysis,
we will ensure that

– the quality of the fixed point, and thus of the reconstructed control flow graph, does
not depend on the order in which the constraints are applied

– the fixed point of control and data flow is a valid abstraction of the concrete program
behavior.

3 Abstract Interpretation of Low Level Languages

In this section we formally define our combined analysis and prove the above proper-
ties. First, we introduce our low level language, then its concrete semantics, and finally
we state our abstract interpretation framework. Our notation follows standard program
analysis literature [9].

3.1 A Simple Low Level Language

We restrict ourselves to a simple low level language, JUMP, which captures the specifics
of assembly language. JUMP uses the program counter pc, a finite set of integer vari-
ables V = {v1, . . . , vn}, and a store m[·]. For generality we do not further specify the
expressions in JUMP, even though we explicitly note that expressions may contain the
program counter, the variables and the store. We denote the set of expressions by Exp.
A statement in JUMP can be either

4

– a variable assignment v := e, where v ∈ V and e ∈ Exp, which assigns the value
of an expression e to the variable v,

– a store assignment m[e1] := e2, where e1, e2 ∈ Exp, which assigns the value of
e2 to the store location specified by e1,

– a guarded jump statement jmp e1, e2, with e1, e2 ∈ Exp, which transfers control
to the statement at the address calculated from expression e2 if the expression e1
does not evaluate to 0,

– or the program exit statement halt, which terminates execution of the program.

We denote the set of statements by Stmt. The set of program addresses A ⊆ Z is a
finite subset of the integers. A program in JUMP is a finite partial mapping of addresses
to statements. The idea is that every program has a fixed finite representation. At first
we will assume that all addresses in A correspond to statements of the program. After
we finish control flow reconstruction, we establish that some statements are not reach-
able and we can conclude that they are not part of the program (e.g., pieces of data
intermixed with code blocks or misaligned statements on architectures with variable
length instructions). Every program in our language JUMP has a unique starting address
start. The mapping between addresses and statements is expressed by [stmt]a, where
stmt ∈ Stmt and a ∈ A. We present the formal semantics of JUMP in the next section.

JUMP is representative for assembly languages, since the most problematic fea-
tures of machine code, indirect jumps and indirect addressing, are fully supported. In-
tuitively, it forms a minimalist intermediate representation for machine code. For sim-
plicity JUMP does not implement explicit call and return instructions as these can be
implemented by storing the program counter and jumping to the procedure, and jump-
ing back to the stored value, respectively.

3.2 Semantics of JUMP

The semantics of JUMP is defined in terms of states. The set of states State := Loc×
Val×Store is the product of the location valuations Loc := {pc} → A, the variable
valuations Val := V → Z and the store valuations Store := Z → Z. We refer to
the part of a state that represents an element of Store by a function m[·]. As a state s
is a function, we denote by s(pc) the value of the program counter, by s(vi) the value
of a variable vi, and by s(m[c]) the value of the store mapping for an integer c ∈ Z.
We denote by s[· 7→ ·] the state we obtain after substituting a new value for either the
program counter, a variable, or a store mapping in s. We assume the existence of a
deterministic evaluation function eval : Exp → State → Z (→ is right-associative,
i.e., Exp → State → Z stands for Exp → (State → Z)). We now define the
operator post : Stmt→ State→ State:

postJv := eK(s) := s[v 7→ evalJeK(s)][pc 7→ s(pc) + 1]
postJm[e1] := e2K(s) := s[m[evalJe1K(s)] 7→ evalJe2K(s)][pc 7→ s(pc) + 1]

postJjmp e1, e2K(s) :=
{

s[pc 7→ s(pc) + 1] if evalJe1K(s) = 0
s[pc 7→ evalJe2K(s)] otherwise

Remark 1. For the ease of explanation we have chosen to assume that all statements are
of length 1, and therefore the program counter is increased by 1 for fall-through edges.

5

Note that it would make no conceptual difference to introduce a length function that
calculates the appropriate next location for every statement.

For later use in the definition of control flow graphs and in control flow reconstruc-
tion we define a language Stmt# derived from the language Stmt, which consists of
assignments v := e, m[e1] := e2 and labeled assume statements assumea(e), where
e, e1, e2 ∈ Exp, a ∈ A, but which does not contain guarded jump statements. The
intuition is that the assume statements correspond to resolved jump statements of the
language Stmt, where the labels specify resolved target addresses of the jump state-
ments. The condition being assumed encodes (i) whether the statement represents the
true or false branch of the guarded jump and (ii) for true branches, to which address
the target expression evaluated in the particular abstract state. We overload the operator
post : Stmt# → 2State → 2State to work on statements of the derived language
and sets of states S ⊆ State:

postJv := eK(S) := {postJv := eK(s) | s ∈ S},
postJm[e1] := e2K(S) := {postJm[e1] := e2K(s) | s ∈ S},
postJassumea(e)K(S) := {s[pc 7→ a] | evalJeK(s) 6= 0, s ∈ S}.

Note that the definition of the post operator over sets makes use of the post operator
for single elements in the case of assignments. We will need Stmt# and the transfer
function post when stating the conditions we require from the abstract domain for our
control flow reconstruction in Section 3.3.

A trace σ of a program is a finite sequence of states (si)0≤i≤n, such that s0(pc) =
start, stmt is not halt for all [stmt]si(pc) with 0 ≤ i < n, and si+1 = postJstmtK(si)
for all [stmt]si(pc) with 0 ≤ i < n. Note that we do not impose conditions on variable
or store valuations for state s0. We denote the set of all traces of a program by Traces.
Further, we assume the program counter of all states in all traces to only map into the
finite set of addresses A, as every program has a fixed finite representation.

The definition of control flow graphs of programs in JUMP is based on our definition
of traces and uses labeled edges. We define the set of labeled edges Edge to be A ×
Stmt# ×A.

Definition 1 ((Trace) Control Flow Graph). Given a trace σ = (si)0≤i≤n, the trace
control flow graph (TCFG) of σ is

TCFG(σ) = {(si(pc), stmt , si+1(pc)) |
0 ≤ i < n with [stmt]si(pc), where stmt is v := e or m[e1] := e2}

∪ {(si(pc), assumesi+1(pc)(e1 = 0), si+1(pc)) |
0 ≤ i < n with [jmp e1, e2]si(pc) and evalJe1K(si) = 0}

∪ {(si(pc), assumesi+1(pc)(e1 6= 0 ∧ e2 = si+1(pc)), si+1(pc)) |
0 ≤ i < n with [jmp e1, e2]si(pc) and evalJe1K(si) 6= 0}.

The control flow graph (CFG) is the union of the TCFGs of all traces

CFG =
⋃

σ∈Traces

TCFG(σ).

6

As stated in the above definition, the CFG of a program is a semantic property, not a
syntactic one, because it depends on the possible executions.

3.3 Control Flow Reconstruction by Abstract Interpretation

For the purpose of CFG reconstruction we are interested in abstract domains (L,⊥,>,
u,t,v, p̂ost, êval, γ), where

– (L,⊥,>,u,t,v) is a complete lattice,
– the concretization function γ : L→ 2State is monotone, i.e.,

`1 v `2 ⇒ γ(`1) ⊆ γ(`2) for all `1, `2 ∈ L,

and maps the least element to the empty set, i.e., γ(⊥) = ∅,
– the abstract operator p̂ost : Stmt# → L → L overapproximates the concrete

transfer function post, i.e.,

postJstmtK(γ(`)) ⊆ γ(p̂ostJstmtK(`)) for all stmt ∈ Stmt#, ` ∈ L, and

– the abstract evaluation function êval : Exp → L → 2Z overapproximates the
concrete evaluation function, i.e.,⋃

s∈γ(`)

evalJeK(s) ⊆ êvalJeK(`) for all e ∈ Exp, ` ∈ L.

In the following we define a control flow analysis based on an abstract domain
(L,⊥,>,u,t,v, p̂ost, êval, γ). Our control flow analysis works on a Cartesian ab-
stract domain D : A → L and a partial control flow graph F ⊆ Edge. The fact
that edges are labeled with statements from Stmt# enables us to combine the abstract
domain with the control flow reconstruction nicely.

A control flow analysis must have the ability to detect the (possibly overapproxi-
mated) set of targets of guarded jumps based on the knowledge it acquires. To this end,
we define the operator resolve : A → L → 2Edge, using the functions available in
the abstract domain. For a given address a and a lattice element `, resolve returns a set
of labeled control flow graph edges. If ` is the least element ⊥, the location a has not
been reached by the abstract interpretation yet, therefore no edge needs to be created
and the empty set is returned. Otherwise, resolve labels fall-through edges with their
respective source statements, or it calculates the targets of guarded jumps based on the
information gained from the lattice element ` and labels the determined edges with their
respective conditions:

resolvea(`) :=

:=



∅ if ` = ⊥{
(a, stmt, a+ 1)

}
if ` 6= ⊥ and ([stmt]a is [v := e]a

or [m[e1] := e2]a){
(a, assumea′(e1 6= 0 ∧ e2 = a′), a′) |
a′ ∈ êvalJe2K

(
p̂ostJassumea(e1 6= 0)K(`)

)
∩A

}
∪{(a, assumea+1(e1 = 0), a+ 1)} if ` 6= ⊥ and [jmp e1, e2]a

7

The crucial part in the definition of the resolve operator is the last case, where the
abstract operator p̂ost and the abstract êval are used to calculate possible jump targets.
Note that the precision of the abstract domain influences the precision of the control
flow analysis.

We are now ready to state constraints such that all solutions of these constraints
are solutions to the control flow analysis. The first component is the Cartesian abstract
domainD : A→ L, which maps addresses to elements of the abstract domain. The idea
is that D captures the data flow facts derived from the program. The second component
is the set of edges F ⊆ Edge which stores the edges we produce by using the resolve
operator. Finally, we provide initial abstract elements ιa ∈ L for every location a ∈ A.
Then the constraints are as follows:

F ⊇
⋃
a∈A

resolvea(D(a)) (1)

D(a) w
⊔

(a′,stmt,a)∈F

p̂ostJstmtK(D(a′)) t ιa (2)

Note how it pays off that edges are labeled. The partial control flow graph F does not
only store the a priori unknown targets of the guarded jumps, but also the conditions
(assume statements) which have to be satisfied to reach them. This information can be
used by the abstract p̂ost to propagate precise information.

The system of constraints (1) and (2) corresponds to a function

G :
(
(A→ L)× 2Edge

)
→
(
(A→ L)× 2Edge

)
G(D,F) 7→ (D′, F ′), where

F ′ =
⋃
a∈A

resolvea(D(a)),

D′(a) =
⊔

(a′,stmt,a)∈F

p̂ostJstmtK(D(a′)) t ιa.

The connection between constraints (1) and (2) and control flow analysis is stated in
the following theorem (detailed proof in Appendix A), whereby correctness notably
depends on ιstart ∈ L:

Theorem 1. Given a program in the language JUMP and a trace σ = (si)0≤i≤n, such
that s0(pc) = start and s0 ∈ γ(ιstart), every solution (D,F) of the constraints (1)
and (2) satisfies sn ∈ γ(D(sn(pc))) and TCFG(σ) ⊆ F .

The proof is a straightforward induction on the length of traces using the properties we
require from the abstract domain. We immediately obtain:

Corollary 1. Given a program in the language JUMP and a solution (D,F) of the
constraints (1) and (2), where {s ∈ State | s(pc) = start} ⊆ γ(ιstart), F is a
superset of the CFG.

The Cartesian abstract domain A → L, equipped with pointwise ordering, i.e., D1 v
D2 :⇔ ∀a ∈ A. D1(a) v D2(a), is a complete lattice, because L is a complete

8

lattice. The power set 2Edge ordered by the subset relation ⊆ is a complete lattice. The
product lattice (A → L)× 2Edge, equipped with pointwise ordering, i.e., (D1, F1) v
(D2, F2) :⇔ D1 v D2 ∧ F1 ⊆ F2, is complete as both A → L and 2Edge are
complete. It can be easily seen that G is a monotone function on (A → L) × 2Edge.
As (A → L) × 2Edge is a complete lattice, we deduce from the Knaster-Tarski fixed
point theorem [10] the existence of a least fixed point µ of the function G. Therefore,
the following proposition immediately follows:

Proposition 1. The combined control and data flow problem, i.e., the system of con-
straints (1) and (2), always has a unique best solution.

3.4 Algorithms for Control Flow Reconstruction

For the purpose of algorithm design we will focus on abstract domains L satisfying the
ascending chain condition (ACC). We now present two CFG-reconstruction algorithms.
The first algorithm (Algorithm 1) is generic and gives an answer to the “chicken and
egg” problem as it computes a sound overapproximation of the CFG by an intertwined
control and data flow analysis. We stress the fact that the order in which the CFG re-
construction is done may only affect efficiency but not precision. The second algorithm
(Algorithm 2) is an extension of the classical worklist algorithm and is geared towards
practical implementation.

The generic algorithm maintains a Cartesian abstract domain D : A → L and a
partial control flow graph F ⊆ Edge. D(a) is initialized by ιstart for a = start (line
3) and by ⊥ for a 6= start (line 2). As we do not know anything about the control
flow graph of the program yet, we start with F as the empty set (line 4). The algorithm
iterates its main loop as long as it can find an unsatisfied inequality (line 7, 8). Thus
the algorithm essentially searches for violations of constraints (1) and (2). If the generic
algorithm finds at least one not yet satisfied inequality, it nondeterministically picks a
single unsatisfied inequality and updates it (lines 9 to 14).

We now state the correctness of Algorithm 1 for abstract domains L that satisfy the
ascending chain condition (detailed proof in Appendix B):

Theorem 2. Given a program in the language JUMP, where {s ∈ State | s(pc) =
start} ⊆ γ(ιstart), the generic CFG-reconstruction algorithm (Algorithm 1) com-
putes a sound overapproximation of the CFG and terminates in finite time. Furthermore
it returns the most precise result with respect to the precision of the abstract domain L
regardless of the non-deterministic choices made in line 9.

Proof (sketch). The algorithm terminates because (A → L) × 2Edge′
, where Edge′

is the finite subset of Edge that consists of all the edges that are potentially part of
the program, satisfies the ascending chain condition. The fact that the algorithm always
computes the most precise result heavily depends on the existence of the unique least
fixed point µ ofG. It is easy to show that the generic algorithm computes this least fixed
point µ. As the least fixed point is the best possible result with respect to the precision
of the abstract domain, it is always the most precise regardless of the non-deterministic
choices made in line 9.

9

Input: a JUMP-program, its set of addresses A including start, and the abstract domain
(L,⊥,>,u,t,v, p̂ost, êval, γ) together with an initial value ιstart

Output: a control flow graph
begin1

forall a ∈ A \ {start} do D(a) := ⊥;2
D(start) := ιstart;3
F := ∅;4
while true do5

Choices := ∅;6

if ∃(a′, stmt, a) ∈ F. p̂ostJstmtK(D(a′)) 6v D(a) then Choices := {do p};7
if ∃a ∈ A. resolvea(D(a)) * F then Choices := Choices ∪ {do r};8
if ∃u ∈ Choices choose u ∈ U /* non-deterministic choice */9

switch u do10
case do p choose (a′, stmt, a) ∈ F where11

p̂ostJstmtK(D(a′)) 6v D(a)

D(a) := p̂ostJstmtK(D(a′)) tD(a);12

case do r choose a ∈ A where resolvea(D(a)) * F13
F := resolvea(D(a)) ∪ F ;14

else15
return F;16

end17

Algorithm 1: Generic CFG-reconstruction Algorithm

The worklist algorithm (Algorithm 2) is a specific strategy for executing the generic
algorithm, where the partial control flow graph F ⊆ Edge is not kept as a variable, but
implicit in the abstract values of the program locations. The initialization of D (lines
2, 3) is the same as in the generic algorithm. The algorithm maintains a worklist W ,
where it stores the edges for which data flow facts should be propagated later on. Every
time the algorithm updates the information D(a) at a location a (lines 3, 8), it calls the
resolve operator (lines 4, 9) to calculate the edges which should be added to W . In
every iteration of the main loop (lines 5 to 9) the algorithm non-deterministically picks
an edge from the worklist by calling choose (line 6), and then shortens the worklist by
calling rest (line 6). Subsequently, it checks for the received edge (a′, stmt , a), if an
update is necessary (line 7), and in the case it is, it proceeds as already described.

From the correctness of the generic algorithm (1) we obtain the correctness of the
worklist algorithm (proof in Appendix C):

Corollary 2. Given a program in our language JUMP, where {s ∈ State | s(pc) =
start} ⊆ γ(ιstart), the worklist CFG-reconstruction algorithm (Algorithm 2) com-
putes a sound overapproximation of the CFG and terminates in finite time. Furthermore
it returns the most precise result with respect to the precision of the abstract domain L
regardless of the non-deterministic choices made in line 6.

Proof (sketch). The worklist terminates because L satisfies the ascending chain condi-
tion. As the generic algorithm can always simulate the updates made by the worklist

10

Input: a JUMP-program, its set of addresses A including start, and the abstract domain
(L,⊥,>,u,t,v, p̂ost, êval, γ) together with an initial value ιstart

Output: a control flow graph
begin1

forall a ∈ A \ {start} do D(a) := ⊥;2
D(start) := ιstart;3
W := resolvestart(D(start));4
while W 6= ∅ do5

((a′, stmt, a),W) := (choose(W),rest(W));6

if p̂ostJstmtK(D(a′)) 6v D(a) then7

D(a) := p̂ostJstmtK(D(a′)) tD(a);8
W := add(W, resolvea(D(a)));9

F := ∅;10
forall a ∈ A do11

F := F ∪ resolvea(D(a));12

return F;13

end14

Algorithm 2: Worklist CFG-Reconstruction Algorithm

algorithm, the result computed by the worklist algorithm is always less or equal to the
result of the generic algorithm, which is the least fixed point of G. On the other hand it
can be shown that if the algorithm terminates, the result is greater or equal to the least
fixed point of G.

Note that if the abstract domain L does not satisfy the ascending chain condition, it is
possible to enhance the algorithms by using a widening operator to guarantee termi-
nation of the analysis. Such an algorithm would achieve a valid overapproximation of
the CFG but lose the best approximation result stated in the above theorems, due to the
imprecision induced by widening.

4 Instantiation of the Framework in the JAKSTAB Tool

We implemented the worklist algorithm for control flow reconstruction (Algorithm 2) in
our disassembly and static analysis tool JAKSTAB [6]. JAKSTAB works on X86 executa-
bles, and translates them into an intermediate language that is similar in style but more
complex than JUMP. We designed an abstract domain supporting constant propagation
through registers (globally) and indirect memory locations (local to basic blocks) to
parameterize the analysis, which yielded better results than the most widely used com-
mercial disassembler IDA Pro. In this section we demonstrate how JAKSTAB integrates
with our framework and sketch its abstract domain.

For supporting memory constants, JAKSTAB has to maintain an abstract representa-
tion of the store. When only dealing with memory accesses through constant addresses
(which is the case for global variables), this is trivial, since the store then behaves just
like additional variables/registers. In compiled code, however, local variables are laid

11

x y m[x+ 2]
start: x := x+ 2 (x+ 2) > >

2: m[x] := 5 (x+ 2) > 5
3: x := x+ 1 (x+ 3) > 5
4: x := x+ 3 (x+ 6) > 5
5: y := m[x− 4] (x+ 6) 5 5
6: halt (x+ 6) 5 5

Fig. 2. Simple example for constant propagation through symbolic store locations. Abstract val-
ues calculated by the analysis are shown on the right.

out on the stack, relative to the top of the current stack frame. They are manipulated
by indirect addressing through the stack base pointer. For example, the instruction mov
[ebp - 4], 0 assigns 0 to the local variable at the top of the current stack frame. The
exact value of the stack pointer, however, is only determined at runtime. Therefore, to
successfully propagate constants through stack variables, our analysis must be able to
handle indirect memory accesses symbolically, i.e., use symbolic store mappings from
expressions to arbitrary expressions. The same holds true for fields in dynamically al-
located memory structures, whose addresses are not statically known, either.

Support for symbolic store locations requires symbolic constants. Consider the sim-
ple program in Figure 2. The value of x is non-constant (because it is part of the input)
and thus initialized to >. To still propagate the assignment of 5 to the store location
pointed to by x from line 2 to 5, the value of x has to be propagated symbolically,
by forward substituting and partially evaluating the expressions. To this end, the lat-
tice of abstract variable values contains symbolic expressions as an additional level of
abstraction between integers and >. Consequently, the mapping from store indices to
integers has to be extended to a mapping Exp → Exp. The join t of the lattice for
two elements with distinct values of the program counter is implemented by removing
all symbolic mappings, retaining only mappings of variables to integers and from inte-
ger store locations to integers. This causes the scope of symbolic constant propagation
to be limited to a single basic block. It also has the effect that the lattice L, which is
of infinite height, satisfies the ascending chain condition; join points in loops always
cause removal of mappings, thus every abstract state can only hold a finite number of
mappings. Since ascending chains in the lattice remove one mapping per height level,
the chains will always reach > after a finite number of steps.

The use of symbolic values has other implications as well. For updating symbolic
values, the abstract p̂ost uses a substitution function that substitutes variables and
memory expressions recursively with symbolic values from the abstract state. For sub-
stituting memory values, an aliasing check of store indices has to be performed. The
abstract evaluation function êval, which is used by our framework to resolve branch
targets, uses substitution of symbolic store locations as well but ignores resulting sym-
bolic values and only returns either integers, >, or ⊥. The concretization function γ
maps each element of L to all concrete valuations matching the integer constants, dis-
regarding symbolic mappings.

12

Using this abstract domain, JAKSTAB has already achieved good precision in re-
constructing the control flow of executables [6]. Note that in the analysis of compiled
applications, there are some cases when calls cannot be resolved by our current imple-
mentation. Most of the instances of unresolved control flow are due to function pointers
inside structures being passed as parameters through several procedure calls. The local
propagation of memory values in the abstract domain is currently not precise enough to
capture such cases. Improvement of the propagation of memory values is a particular
focus of ongoing work. The number of function pointer structures greatly depends on
the implementation language of the program and the API functions used. In low level
C code, the overwhelming majority of indirect calls result from compiler optimizations
storing the addresses of frequently used API functions in registers, which JAKSTAB can
reliably resolve.

5 Related work

The problem of extracting a precise control flow graph from binaries has risen in sev-
eral different communities of computer science. An obvious area is reverse engineering
and in particular decompilation, where one aims to recover information about the orig-
inal program, or preferably a close approximation of the original source code, from a
compiled binary [11–13]. The compiler literature knows the concept of link-time- and
post-link-optimizers [14, 7], which exploit the fact that the whole program including
libraries and hand-written assembly routines can be analyzed and optimized at link-
time, i.e., after all code has been translated to binary with the symbol information still
present. Precise tools for determining worst case execution time (WCET) of programs
running on real time systems also have to process machine code, since they need to take
compiler optimizations into account, and thus face similar problems of reconstructing
the control flow [1, 15, 5]. Other applications of binary analysis include binary instru-
mentation [16], binary translation [17], or profiling [4].

Another prominent area of research that requires executable analysis is advanced
malware detection. While classical malware detection relied on searching executables
for binary strings (signatures) of known viruses, more recent advanced techniques fo-
cus on detecting patterns of malicious behavior by means of static analysis and model
checking [18, 19]. In this application domain, independence of the analysis from sym-
bol information and compiler idioms is imperative, since malicious code is especially
likely to have its symbols removed or to even be specially protected from analysis.

Due to the interest from these different communities, there has been a number of
contributions to improving the results from disassembly. The literature contains a num-
ber of practical approaches to disassembly, which do not try to formulate a generaliz-
able strategy. Schwarz et al. [2] describe a technique that uses an improved linear sweep
disassembly algorithm, using relocation information to avoid misinterpreting data in a
code segment. Subsequently, they run a recursive traversal algorithm on each function
and compare results, but no attempt is made to recover from mismatching disassembly
results. Harris and Miller [4] rely on identifying compiler idioms to detect procedures
in the binary and to resolve indirect jumps introduced by jump tables. Cifuentes and van
Emmerik [20] present a method to analyze jump tables by backward slicing through reg-

13

ister assignments and computing compound target expressions for the indirect jumps.
These compound expressions are then matched against three compiler-specific patterns
of implementing switch statements.

There have also been several proposals for more general frameworks for recon-
structing the control flow from binaries. In Section 2.2, we already discussed the ap-
proach by De Sutter et al. [7], which targets code with symbol and relocation infor-
mation and uses an overapproximating unknown-node for unresolved branch targets.
In his bottom-up disassembly strategy, Theiling [1] assumes architectures in which all
jump targets can be computed directly form the instruction, effectively disallowing in-
direct jumps. For extending his method to indirect jumps, he also suggests the use of an
overapproximating unknown node.

Kästner and Wilhelm [5] describe a top-down strategy for structuring executables
into procedures and basic blocks. For this to work, they require that code areas of pro-
cedures must not overlap, that there must be no data between or inside procedures,
and that explicit labels for all possible targets of indirect jumps are present. Compilers,
however, commonly generate procedures with overlapping entry and exit points, even
if the control flow graphs of the procedures are completely separate, so their top-down
structuring approach cannot be used in general without specific assumptions about the
compiler or target architecture.

The advanced executable analysis tool Codesurfer/X86, presented by Balakrish-
nan and Reps [3], extracts information about relations between values and computes
an approximation of possible values based on the abstract domain of value sets. For
disassembly, they rely on the capabilities of the commercial disassembler IDA Pro.
While they are able to resolve missing control flow edges through value set analysis,
their separation from disassembly prevents that newly discovered code locations can be
disassembled. Furthermore, CodeSurfer/X86 is vulnerable to errors introduced by the
heuristics based disassembly strategy of IDA Pro.

Although operating at higher language levels, the decompilation approach of Chang
et al. [13] is similar in spirit to our framework. They connect abstract interpreters op-
erating at different language levels, executing them simultaneously. One can interpret
our data flow analysis and control flow reconstruction as separate decompilation stages
of their framework. However, we do not restrict the execution order but allow nonde-
terministic fixed point iteration over both analyses and are still able to prove that the
resulting control flow graph is optimal.

6 Conclusion

We have built a solid foundation for the concept of disassembling binary code by defin-
ing a generic abstract interpretation framework for control flow reconstruction. While
analysis of machine code often requires ad hoc solutions and has many pitfalls, we be-
lieve that it greatly helps in the design of disassemblers and binary analysis tools to
know that data flow guided disassembly does not suffer from a “chicken and egg” prob-
lem. Based on our framework, we plan to further extend our own disassembler JAKSTAB
with an improved abstract domain to further reduce the need for overapproximation of
control flow.

14

References
1. Theiling, H.: Extracting safe and precise control flow from binaries. In: 7th Int’l Workshop

on Real-Time Computing and Applications Symp. (RTCSA 2000), IEEE Computer Society
(2000) 23–30

2. Schwarz, B., Debray, S.K., Andrews, G.R.: Disassembly of executable code revisited. In: 9th
Working Conf. Reverse Engineering (WCRE 2002), IEEE Computer Society (2002) 45–54

3. Balakrishnan, G., Reps, T.W.: Analyzing memory accesses in x86 executables. In: 13th Int’l
Conf. Compiler Construction (CC 2004). Volume 2985 of LNCS., Springer (2004) 5–23

4. Harris, L.C., Miller, B.P.: Practical analysis of stripped binary code. SIGARCH Comput.
Archit. News 33(5) (2005) 63–68

5. Kästner, D., Wilhelm, S.: Generic control flow reconstruction from assembly code. In:
2002 Jt. Conf. Languages, Compilers, and Tools for Embedded Systems & Software and
Compilers for Embedded Systems (LCTES’02-SCOPES’02), ACM Press (2002) 46–55

6. Kinder, J., Veith, H.: Jakstab: A static analysis platform for binaries. In: 20th Int’l Conf.
Computer Aided Verification (CAV 2008). Volume 5123 of LNCS., Springer (2008) 423–
427

7. De Sutter, B., De Bus, B., De Bosschere, K.: Link-time binary rewriting techniques for
program compaction. ACM Trans. Program. Lang. Syst. 27(5) (2005) 882–945

8. Chang, P.P., Mahlke, S.A., Chen, W.Y., Hwu, W.W.: Profile-guided automatic inline expan-
sion for C programs. Softw., Pract. Exper. 22(5) (1992) 349–369

9. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer (1999)
10. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5(2)

(1955) 285–309
11. Cifuentes, C., Gough, K.J.: Decompilation of binary programs. Softw., Pract. Exper. 25(7)

(1995) 811–829
12. van Emmerik, M., Waddington, T.: Using a decompiler for real-world source recovery. In:

11th Working Conf. Reverse Engineering (WCRE 2004), IEEE Computer Society (2004)
27–36

13. Chang, B., Harren, M., Necula, G.: Analysis of low-level code using cooperating decom-
pilers. In: 13th Int’l Static Analysis Symp. (SAS 2006). Volume 4134 of LNCS., Springer
(2006) 318–335

14. Schwarz, B., Debray, S.K., Andrews, G.R.: PLTO: A link-time optimizer for the intel IA-32
architecture. In: Proc. Workshop on Binary Translation (WBT 2001). (2001)

15. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling, H.,
Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a real-life pro-
cessor. In: First Int’l Workshop on Embedded Software (EMSOFT 2001). Volume 2211 of
LNCS., Springer (2001) 469–485

16. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instru-
mentation. In: Proc. ACM SIGPLAN 2007 Conf. Programming Language Design and Im-
plementation (PLDI 2007), ACM Press (2007) 89–100

17. Cifuentes, C., van Emmerik, M.: UQBT: Adaptive binary translation at low cost. IEEE
Computer 33(3) (2000) 60–66

18. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model
checking. In: Second Int’l Conf. Detection of Intrusions and Malware & Vulnerability As-
sessment (DIMVA 2005). Volume 3548 of LNCS., Springer (2005) 174–187

19. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-aware mal-
ware detection. In: IEEE Symp. Security and Privacy (S&P 2005), IEEE Computer Society
(2005) 32–46

20. Cifuentes, C., van Emmerik, M.: Recovery of jump table case statements from binary code.
Sci. Comput. Program. 40(2-3) (2001) 171–188

15

A Proof of Theorem 1

Proof. Let (D,F) be a solution to the system of constraints (1) and (2). By induction
on n, we show that sn ∈ γ(D(sn(pc))) and TCFG(σ) ⊆ F for every trace σ =
(si)0≤i≤n with s0 ∈ γ(ιstart).

For the induction basis n = 0, we consider the trace (ti)0≤i≤0 of length 1 with
t0 ∈ γ(ιstart). We have t0 ∈ γ(ιstart) ⊆

⊆ γ

(⊔
(a′,stmt,start)∈F

p̂ostJstmtK(D(a′))
)
t ιstart

 ⊆ γ(D(start)),

where the element relationship holds by assumption. The first inclusion holds due to
the monotonicity of γ. The second inclusion holds because (D,F) is a solution to the
system of constraints (1) and (2) and because γ is monotone. Furthermore we have
TCFG((t0)) = ∅ ⊆ F .

For the inductive step n 7→ n + 1, we assume that for all traces σ = (si)0≤i≤n of
length (n+1) with s0 ⊆ γ(ιstart) the inclusions sn ⊆ γ(D(sn(pc))) and TCFG(σ) ⊆
F hold. We consider the trace (ti)0≤i≤n+1 of length (n + 2) with t0 ∈ γ(ιstart) and
proceed by case distinction on the statement stmt , with [stmt]tn(pc) being part of the
program.

– stmt is halt. The trace (ti)0≤i≤n+1 has a state tn+1, making this case impossible
by the definition of a trace. Note that halt instructions are themselves never part of
a trace, but instead cause the trace to end.

– stmt is v := e or m[e1] := e2. By induction assumption we know for the trace
(ti)0≤i≤n that tn ∈ γ(D(tn(pc))). Therefore we have that D(tn(pc)) 6= ⊥, since
γ(⊥) = ∅ (tn is not contained in the empty set). It follows, that

(tn(pc), stmt , tn+1(pc)) ∈ resolvetn(pc)(D(tn(pc)))

⊆
⋃
a∈A

resolvea(D(a)) ⊆ F (3)

where we have the element relationship from the definition of resolve, the first
inclusion holds trivially, and the second because (D,F) is a solution of constraint
system (1) and (2). As we have TCFG((ti)0≤i≤n) ⊆ F by induction assumption,
we now have TCFG((ti)0≤i≤n+1) ⊆ F .
Furthermore, we deduce

tn+1 = postJstmtK(tn)
∈ postJstmtK (γ(D(tn)))

⊆ γ
(
p̂ostJstmtK(D(tn))

)
⊆ γ

 ⊔
(a′,stmt,tn+1(pc))∈F

p̂ostJstmtK(D(a′))


⊆ γ(D(tn+1)),

16

where the equality holds by the definition of a trace, the element relationship holds
by induction assumption. The first inclusion holds as the abstract p̂ost operator is
an overapproximation of the concrete post operator. The second inclusion holds
because we have (tn(pc), stmt , tn+1(pc)) ∈ F by (3) and because γ is monotone.
The third inclusion holds because (D,F) is a solution of the system of constraints
(1) and (2) and because γ is a monotone function.

– stmt is jmp e1, e2. Again, by induction assumption we have for the trace (ti)0≤i≤n
that tn ∈ γ(D(tn(pc))). Therefore we know that D(tn(pc)) 6= ⊥, since γ(⊥) = ∅.
Now we proceed by case distinction on the value of evalJe1K(tn).

• evalJe1K(tn) = 0. We infer

(tn(pc), assumetn+1(pc)(e1 = 0), tn+1(pc))

∈ resolvetn(pc)(D(tn(pc)))

⊆
⋃
a∈A

resolvea(D(a)) ⊆ F, (4)

where we have the element relationship from the definition of resolve. The
first inclusion holds trivially. The second inclusion follows from (D,F) being
a solution of the system of constraints (1) and (2). By induction assumption we
know that TCFG((ti)0≤i≤n) ⊆ F , so we now have TCFG((ti)0≤i≤n+1) ⊆
F .

We deduce

tn+1 = postJjmp e1, e2K(tn)
∈ postJassumetn+1(pc)(e1 = 0)K({tn})

⊆ postJassumetn+1(pc)(e1 = 0)K(γ(D(tn)))

⊆ γ
(
p̂ostJassumetn+1(pc)(e1 = 0)K(D(tn))

)
⊆ γ

 ⊔
(a′,stmt,tn+1(pc))∈F

p̂ostJstmtK(D(a′))

 ⊆ γ(D(tn+1)),

where we have the initial equality from the definition of a trace. We have the
element relationship from the definition of the post operator and from the case
assumption evalJe1K(tn) = 0. We know the first inclusion from the induction
assumption. The second inclusion holds as the abstract p̂ost operator is an
overapproximation of the concrete post operator. The third inclusion holds
because we have (tn(pc), assume(e1 = 0), tn+1(pc)) ∈ F by (4) and because
γ is a monotone function. The fourth inclusion holds as (D,F) is a solution of
the system of constraints (1) and (2) and because γ is a monotone function.

This completes treatment of the fallthrough case for jumps.

17

• evalJe1K(tn) 6= 0. We infer

tn+1(pc) = evalJe2K(tn)

∈ evalJe2K
(
postJassumetn(pc)(e1 6= 0)K({tn})

)
⊆ evalJe2K

(
postJassumetn(pc)(e1 6= 0)K

(
γ(D(tn))

))
⊆ evalJe2K

(
γ
(
p̂ostJassumetn(pc)(e1 6= 0)K(D(tn))

))
⊆ êvalJe2K

(
p̂ostJassumetn(pc)(e1 6= 0)K(D(tn))

)
, (5)

where we have the equality by the definition of post. The element relationship
follows from evalJe1K(tn) 6= 0, since postJassumetn(pc)(e1 6= 0)K({tn})
is equal to the unchanged singleton set {tn} in this case. The first inclusion
holds by induction assumption. The second inclusion holds as, by definition
of the abstract domain, the abstract p̂ost operator is an overapproximation of
the concrete post operator. The third inclusion holds as the abstract êval is an
overapproximation of the concrete eval, again by the conditions imposed on
the abstract domain.
Furthermore, we have tn+1(pc) ∈ A from the definition of traces. We therefore
deduce

(tn(pc), assumetn+1(pc)(e1 6= 0), tn+1(pc))

∈ resolvetn(pc)(D(tn(pc)))

⊆
⋃
a∈A

resolvea(D(a)) ⊆ F, (6)

where we have the element relationship from (5) and from the fact that tn+1 ∈
A. The first inclusion holds trivially. The second inclusion holds because (D,F)
is a solution of the system of constraints (1) and (2). By induction assumption
we have TCFG((ti)0≤i≤n) ⊆ F , so we now have TCFG((ti)0≤i≤n+1) ⊆ F .
Finally, we deduce

tn+1 = postJjmp e1, e2K(tn)
∈ postJassumetn+1(pc)(e1 6= 0)K{(tn)}

⊆ postJassumetn+1(pc)(e1 6= 0)K(γ(D(tn(pc))))

⊆ γ
(
p̂ostJassumetn+1(pc)(e1 6= 0)K(D(tn))

)
⊆ γ

 ⊔
(a′,stmt,tn+1(pc))∈F

p̂ostJstmtK(D(a′))

 ⊆ γ(D(tn+1)),

where we have the equality from the definition of a trace. We have the ele-
ment relationship from the definition of post, and from the case assumption
evalJe1K(tn) 6= 0. The first inclusion holds by induction assumption. The sec-
ond inclusion holds as the abstract p̂ost is an overapproximation of the con-
crete post. The third inclusion holds because we have (tn(pc), assume(e1 6=

18

0), tn+1(pc)) ∈ F by (6) and because γ is a monotone function. The fourth
inclusion holds as (D,F) is a solution of constraint system (1) and (2) and
because γ is a monotone function.

B Proof of Theorem 2

Proof. For a given program in JUMP with an associated set of addresses A it can easily
be seen that the set

EdgeF =
= {(a, stmt , a+ 1) | a ∈ A with [stmt]a, where stmt is v := e or m[e1] := e2}
∪ {(a, assumea′(e1 = 0 ∧ e2 = a′), a′), (a, assumea+1(e1 6= 0), a+ 1) |

a ∈ A with [jmp e1, e2]a, a′ ∈ A}

is a finite subset of Edge. Therefore 2EdgeF
satisfies the ACC. The lattice A → L

satisfies the ACC because L satisfies the ACC and A is finite. It follows that (A →
L)× 2EdgeF

satisfies the ACC.
We denote by the function

H :
(
(A→ L)× 2EdgeF

)
→
(
(A→ L)× 2EdgeF

)
with

H(D,F) 7→ (D′, F ′)

one iteration of the while loop of the generic algorithm (Algorithm 1), where (D,F)
is updated to (D′, F ′) according to the body of the loop. It can easily seen that H is
extensive, i.e.,

∀(D,F) ∈ (A→ L)× 2EdgeF

. (D,F) v H(D,F).

We define⊥ to be the value of (D,F) after the initialization, i.e., after executing lines 2
to 4. We defineHn(⊥) to be the value of (D,F) after the nth iteration of the while loop.
We define Hn+1(⊥) to be Hn(⊥), if the loop terminated after the nth iteration of the
while loop. Clearly the sequence (Hn(⊥))n∈N0 is an ascending chain. It eventually sta-
bilizes, i.e., there is a n0 such thatHn(⊥) = Hn0(⊥)∀n ≥ n0, as (A→ L)×2EdgeF

satisfies the ACC. The termination of the generic algorithm immediately follows.
We provide initial values ιa of G as follows: ιstart for a = start and ⊥ for a 6=

start. For the given program we can assume that the type of the function G is
(
(A→

L) × 2EdgeF
)
→
(
(A → L) × 2EdgeF

)
. We denote by µιstart the least fixed point

of G for the initial value ιstart. We will now show that the generic algorithm computes
µιstart .

It can easily be seen that

∀(D,F) ∈
(
(A→ L)× 2EdgeF

)
→
(
(A→ L)× 2EdgeF

)
.

H(D,F) v G(D,F) (7)

19

From ⊥ v µιstart and from (7) we have ∀n ∈ N0. H
n(⊥) v µιstart by induction on

n. Now it remains to show that Hn0(⊥) is µιstart .We prove this by contradiction. We
assume that Hn0(⊥) v

/
µιstart . It follows that Hn0(⊥) 6= G(Hn0(⊥)). From (7) we

have
Hn0(⊥) = Hn0+1(⊥) = H(Hn0(⊥)) v G(Hn0(⊥)).

ThereforeHn0(⊥) v
/
G(Hn0(⊥)). This means that there is an address a ∈ A, such that

F + resolvea(D(a)), or an edge (a′, stmt, a) ∈ F , such that D(a) 6w p̂ostJstmtK
(D(a′)) t ιa. This is a contradiction to the assumption that the algorithm terminated at
least after the nth

0 iteration of the loop.

C Proof of Corollary 2

Proof. We denote by the function

W : (A→ L)→ (A→ L)

with
W (D) 7→ (D′)

one iteration of the while loop of the worklist algorithm (Algorithm 2), where D
is updated to D′ according to the body of the loop. It can be easily seen that W is
extensive, i.e.,

∀D ∈ A→ L.D vW (D).

We define ⊥ to be the value of D after the initialization, i.e., after executing lines 2 and
3. We defineWn(⊥) to be the value ofD after the nth iteration of the while loop, and we
defineWn+1(⊥) to beWn(⊥), if the loop terminated after the nth iteration of the while
loop. Clearly the sequence (Wn(⊥))N0 is an ascending chain. It eventually stabilizes,
i.e., there is a n0 such that ∀n ≥ n0.W

n(⊥) = Wn0(⊥), as A→ L satisfies the ACC
(see the proof of Theorem 1). The termination of the worklist algorithm immediately
follows.

We denote the result of the worklist algorithm Wn0(⊥) by DF. We have(
DF,

⋃
a∈A

resolvea(DF(a))

)
v µιstart ,

as the lines 8 and 9 of the worklist algorithm can be simulated by the generic algorithm
by choosing the respective necessary updates (see proof of Theorem 1 for µιstart).

It remains to show that
(
DF,

⋃
a∈A resolvea(DF(a))

)
w µιstart . We will show

that
DF(start) w ιstart (8)

and

∀a′ ∈ A.∀(a′, stmt , a) ∈ resolvea′(DF(a′)). DF(a) w p̂ostJstmtK(DF(a′)).
(9)

20

Having established (8) and (9), we know that
(
DF,

⋃
a∈A resolvea(DF(a))

)
is a so-

lution to the constraint system (1) and (2) and therefore greater than the least fixed point
µιstart . We have (8) by the fact that ⊥(start) = ιstart, and by the fact that W is ex-
tensive, as Wn0(⊥) = DF. Now we prove (9) by contradiction. We assume that there
are a′, a ∈ A, such that

(a′, stmt , a) ∈ resolvea′(DF(a′)),

and
DF(a) 6w p̂ostJstmtK(DF(a′)).

We proceed by case distinction on the last time that DF(a′) was updated:

– line 2. There is no edge (a′, stmt , a) ∈ resolvea′(DF(a′)) as DF(a′) = ⊥ holds
throughout the execution of the algorithm, and therefore resolve never adds an
edge. This is a contradiction.

– line 3. a′ is start. DF(a) w p̂ostJstmtK(D(start)) is assured in a later step
as the edge (start, stmt , a) ∈ resolvestart(DF(start)) is added to the work-
list (line 4), and remains invariant after that as DF(start) does not change until
termination. This leads to a contradiction.

– line 8. DF(a) w p̂ostJstmtK(D(a′)) is assured in a later step, since the edge
(a′, stmt , a) ∈ resolvea′(DF(a′)) is added to the worklist (line 9) and remains
invariant after that, as DF(a′) does not change until termination. This leads to a
contradiction.

21

