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In many forensic investigations, questions linger regarding the identity of the authors of 
the software specimen.  Research has identified methods for the attribution of binary 
files that have not been obfuscated, but a significant percentage of malicious software 
has been obfuscated in an effort to hide both the details of its origin and its true intent.  
Little research has been done around analyzing obfuscated code for attribution.   
  
In part, the reason for this gap in the research is that deobfuscation of an unknown 
program is a challenging task.  Further, the additional transformation of the executable 
file introduced by the obfuscator modifies or removes features from the original 
executable that would have been used in the author attribution process.   
 
Existing research has demonstrated good success in attributing the authorship of an 
executable file of unknown provenance using methods based on static analysis of the 
specimen file.   With the addition of file obfuscation, static analysis of files becomes 
difficult, time consuming, and in some cases, may lead to inaccurate findings.    
  
This paper presents a novel process for authorship attribution using dynamic analysis 
methods.  A software emulated system was fully instrumented to become a test harness 
for a specimen of unknown provenance, allowing for supervised control, monitoring, 
and trace data collection during execution.  This trace data was used as input into a 
supervised machine learning algorithm trained to identify stylometric differences in the 
specimen under test and provide predictions on who wrote the specimen. 
 
The specimen files were also analyzed for authorship using static analysis methods to 
compare prediction accuracies with prediction accuracies gathered from this new, 
dynamic analysis based method.  Experiments indicate that this new method can provide 
better accuracy of author attribution for files of unknown provenance, especially in the 
case where the specimen file has been obfuscated. 
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Chapter 1 
 

Introduction 
 
Background 
 
 
 In human readable files, authorship attribution relies on an analysis of 

stylometry, vocabulary diversity, word choice, and frequency of function words 

(Bozkurt, Baghoglu, & Uyar, 2007; Stamatatos, 2009).  However, for computer 

executable files, the process of compilation removes many of the elements of style that 

were added by the author and replaces them with standardized machine level 

instructions (Rosenblum, Miller, & Zhu, 2010, 2011).    

 Laws against copyright infringement and plagiarism have long protected 

intellectual property that is represented in human readable format.  However, in many 

settings, valuable intellectual property is contained within computer software that is not 

in a human readable form.  The loss of this intellectual property can have significant 

impact on a company’s financial health (Federal Bureau of Investigation, 2014; Jeremy 

Kirk, 2013; Lilly, 2012). Similarly, malicious executable files (malware) have caused 

significant damage to individuals and companies alike (Frizell, 2014; Jones, 2014; 

Jeremy  Kirk, 2014).  In both cases, without effective means of identifying the original 

authors of the stolen software or malware, criminal investigations may not be solved 

(Pierluigi, 2013). 

Some research has been done in an effort to create a process or tool that can be 

used to identify or match the author of a binary file of unknown provenance to either a 

previously stored author profile or to other samples of known provenance using style 
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identifiers found within the binary.  However, challenges remain in determining 

authorship in binary executable files, one of which is the difficulty in identifying style 

characteristics of a particular author after the binary file has been transformed through 

some means of obfuscation.   In the context of binary executable file analysis, the 

process of obfuscating a file involves the transformation of that file into a file that has 

identical observable behavior (the behavior as experienced by the user) and that the 

effort required to analyze or reverse engineer the file back into a form that is readily 

understood by a human analyst is prohibitively high (Collberg & Thomborson, 2002; 

Linn & Debray, 2003). 

This dissertation report presents the impact of obfuscation of binary executable 

files in terms of the ability to attribute the author of the file.  In addition to summarizing 

the research specifically covering the authorship attribution of binary files and binary 

file obfuscations, this dissertation report will summarize the existing research in the 

areas that are primarily related to the authorship attribution problem in obfuscated 

binary executable files, including source code authorship attribution, compiler 

provenance, program and programmer evolution, software plagiarism, executable file 

obfuscation, binary file disassembly, representation and comparison, and binary file 

authorship attribution. 

The remainder of this chapter is organized into the following sections: Problem 

Statement; Dissertation Goal; Research Questions; Relevance and Significance; Barriers 

and Issues; Assumptions, Limitations, and Delimitations; Definition of Terms; List of 

Acronyms; and Summary.  The Problem Statement section defines the specific scope of 

the problem being addressed by this research.  The Dissertation Goal section defines the 
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goal of the research being addressed in this dissertation.  The Research Questions 

section has a list of qualitative questions that will be investigated in this research and 

addressed within this dissertation report.  The Relevance and Significance section 

provides justification in support of this research as being worthy of advanced study.  

The Barriers and Issues section provides insight into the challenges that exist in this 

field of study and specifically by the research questions posed in this thesis.  The 

Assumptions, Limitations, and Delimitations section will define the scope and context 

within which this research will exist.  The Definition of Terms section defines the key 

terms that will be frequently used during the course of this research.  Similarly, the List 

of Acronyms section provides an explanation of the frequently used acronyms in this 

field of research.  

Problem Statement 
 
 Analysis of authorship of binary executable files having an unknown provenance 

has not addressed the scenario in which the binary file has been obfuscated in an effort 

to hide its true functionality, and as such, it is unknown to what extent the features that 

uniquely identify the authorship of the file are affected by the obfuscation.   

This research will use the participant submissions from the Google Code Jam 

(GCJ) (Google, 2015) contest as the corpus of files to be analyzed for authorship 

attribution.  Submissions from this contest have been used in previous research on this 

topic (Alrabaee, Saleem, Preda, Wang, & Debbabi, 2014; Caliskan-Islam, Yamaguchi, 

et al., 2015; Rosenblum, Zhu, & Miller, 2011), allowing for the extension of ideas, 

comparisons of techniques, and a measurement of any improvements in attribution.  In 

an effort to maintain a level of similarity between this research and past research, a 
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measurement of attribution of authorship in files that have not been obfuscated will be 

undertaken in order to define a baseline accuracy of attribution within the specimen 

corpus. 

Existing research has demonstrated that machine learning algorithms, using 

either supervised or unsupervised methods (or a combination of both), are capable of 

correctly identifying features and classifying executable file samples based on 

authorship.  However, in all of the previous research studies referenced in this 

dissertation report, obfuscation of the binary files has been left for future research.   

Using the malware complexity classification scheme proposed by Ugarte-Pedrero, 

Balzarotti, Santos, and Bringas (2015), this research will determine the impact of 

different types of binary file obfuscation on the accuracy of attribution of authorship.  

Dissertation Goal 
 
 The goal of this dissertation is to accurately describe the effects of executable 

file obfuscation techniques on the ability to attribute the authorship of a binary 

executable file of unknown provenance. 

Research Questions 
 
 This research on the effects of obfuscation and on how these transformations 

impacts one’s ability to attribute the authorship of unknown binary executable files will 

address the following research questions: 

1. What classes of stylometric markers persist though the obfuscation of binary 

executable files and how do these persistent markers, and the absence of markers 

that do not persist after obfuscation, affect the accuracy of attribution of 

authorship?  
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2. How does the method (static or dynamic) and process of disassembly affect the 

accuracy of attribution of the authorship in obfuscated binary executable files? 

3. What challenges exist in trying to fingerprint and attribute the obfuscation 

routines that are blended into the obfuscated binary file?  

4. How, if at all, does the tool-chain/compiler provenance of a binary program 

contribute to the determination of authorship as in the case of obfuscated binaries 

(or binaries that have been de-obfuscated)? 

5. How does program and/or programmer evolution, plagiarism, and shared access 

to source code repositories affect the accuracy of attribution of the authorship of 

a binary file that has been previously obfuscated? 

Relevance and Significance 
 

There is a problem when attributing authorship in binary files that have been 

obfuscated because the compiler, its optimizing methods, and the obfuscation routines 

actively strip away stylistic markers that existed in the original source code.  These 

original stylistic markers, like markers found in other types of human readable 

documents, are typically used to attribute authorship. 

There are primarily two scenarios where authorship attribution of binary files 

that have been obfuscated becomes very important.  The first is the scenario of 

malicious software (malware), like a rootkit, that can cause damage to valuable 

intellectual property or be used to commit some other crime.  Investigators may not be 

able to determine the identity of the cyber-criminal if the author of the malware cannot 

be determined.  Secondly, in cases where commercial intellectual property is 

represented in binary files, breaches of non-disclosure agreements and other violations 
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of copyright may only be successfully resolved when an accurate determination of the 

legal owner is determined. 

The scope of these two scenarios is quite large.  Malware represents a global 

threat that does not appear to be diminishing (DarkReading, 2016; Evans & Scott, 2017; 

Matthews, 2017).  Similarly, intellectual property theft of technology assets can have a 

staggering impact on the continued success of a commercial organization (Burg, 

McConkey, & Amra, 2016; Furchtgott-Roth, 2017; Shaw, 2016).  If such a method of 

author attribution on files that have been transformed using some binary obfuscation 

routine could be realized, the conviction rates in both of these scenarios might increase, 

which would result in an overall positive change to the Internet environment. 

Prior research (Alrabaee et al., 2014; Alrabaee, Shirani, Debbabi, & Wang, 

2016; Caliskan-Islam, Yamaguchi, et al., 2015; Rosenblum, Zhu, et al., 2011) exists that 

has addressed the goal of identifying the authorship of machine readable executable 

binary files, and a future research opportunity was noted, but not addressed, with 

potential difficulties in identifying style characteristics of a particular author after the 

binary file had been transformed through some means of obfuscation.  Without 

addressing this opportunity, the ability to reliably answer authorship questions in 

obfuscated binary files will remain unfulfilled. 

This research will begin to address the challenge of accurately identifying the 

author of a binary file that has been obfuscated.   As a first phase, the effects of 

obfuscation on binary file authorship attribution will be studied.  As described in 

Collberg, Thomborson, and Low (1997), obfuscation techniques include (but are not 

limited to) inserting “junk” code (code that has no observable effect on program 
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execution), modifying loop conditions, removal of library call references, the addition of 

redundant operands, unrolling (or in-lining) loops, and interleaving multiple methods.  

Beyond this first phase of research, covered by this Dissertation Report, future phases of 

research will involve using the observations and conclusions identified herein in order to 

define a system whereby a binary file that has been transformed by some type of 

obfuscator will be readily capable of being attributed to a particular author. 

Barriers and Issues 
 
 Binary exectuable files do not possess the same characteristics as humanly 

readable source files do.  The characteristics that are of interest in this research are those 

stylistic identifiers that define the work product of a seasoned developer.  For instance, 

stylistic identifiers can include individual preferences on the use of different styles of 

looping (for instance: do…while (condition) instead of while (condition)…) and choices 

of preferred combinations/orderings of function calls.  As noted above, these stylistic 

identifiers may be modified or removed once the process of binary obfuscation has been 

applied to the binary executable.  If a sufficient set of stylistic identifiers survive the 

obfuscation process, the binary program should be able to be attributed to a specific 

programmer with confidence, be it a piece of malicious code in the context of cyber-

crime or be it a component in an enterprise software suite in dispute between 

commercial entities on who owns that particular piece of intellectual property. 

 A list of the significant challenges inherent in the attribution of authorship of 

obfuscated binary executable files is given below.  A brief discussion of each challenge 

follows the list: 

1. De-obfuscation may not return the binary to it’s pre-obfuscated form, 
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2. In the face of obfuscation, the process of disassembly is difficult.  Small 

variances in interpretation of executable code may have a significant impact on 

the disassembled representation of the binary. 

3. Program similarity does not imply equivalence of author, 

4.  It is very easy to copy or share source code, and the practice of sharing is quite 

typical  

5. It is typical in the software industry to hold source code in some type of shared 

repository.  Given the nature of this type of programming, it cannot be 

definitively ascertained that a particular source code module has had only one 

author (or contributor), thus clouding or co-mingling the stylistic markers within 

the file. 

6. Different levels of optimization result in markedly different executables, and 

some optimizations destroy some of the stylistic identifiers needed to attribute 

authorship. 

7. The process of creating a model of an authors style based on previous work 

output for the purpose of comparing programming style against an unknown 

binary sample can be difficult, as there may not be an appropriately sized corpus 

of previous work that can be accurately attributed to a specific author. 

De-obfuscation has been the topic of research from both the perspective of 

analyzing malware samples and developing a tool or procedure that can restore an 

obfuscated binary file to its original un-obfuscated state.  However, in the case of  

malware analysis, “malware classification seeks to extract characteristics specific to a 

program or a family of programs with related behavior, while our authorship attribution 
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techniques must discover more general properties of author style.” (Rosenblum, Zhu, et 

al., 2011, p. 17).  Similarly, research in de-obfuscation strategies has been also focused 

on specific, rather than general properties of files.  Experiments will be undertaken in 

order to  identify which stylistic markers survive compilation and obfuscation such that 

they can be used to provide clues towards attributability of authorship. 

 As discussed, compiler environment can play a role in the preservation or 

removal by optimization of characteristics that aid in the identification of an author (H. 

Chen, 2013).  A thorough understanding of how the compilation environment affects the 

binary output, including methods available to identify the level of optimization of code 

(Aho, Lam, Sethi, & Ullman, 2006; Haneda, Knijnenburg, & Wijshoff, 2005; Hoste & 

Eeckhout, 2008; Moseley, Grunwald, & Peri, 2009), will be undertaken to identify 

additional inputs that can be fed into the classification algorithm to either strengthen or 

weaken the confidence of classification.   

As discussed in Horspool and Marovac (1980), returning to an accurate human 

readable representation of a computer program is a difficult task.  It is difficult for two 

reasons: one, that instructions and data are stored, interspersed, in the computer’s 

memory; and two, it is difficult to attach the correct semantics to certain classes of data 

or instructions.  

 Additional study has been done to determine the efficacy of modern 

disassemblers and de-compilers, given the aforementioned challenges.  Multiple 

commercially available products have been assessed, and in every case the results were 

found to be lacking (Baldwin, Sinha, Salois, & Coady, 2011; Bao, Burket, Woo, Turner, 

& Brumley, 2014; Emmerik & Waddington, 2004; Kinder & Veith, 2008; Paleari, 
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Martignoni, Fresi Roglia, & Bruschi, 2010; Treude, Storey, & Salois, 2011).  The 

overarching goal of this research, as elucidated in the Research Questions, is to 

characterize the effects of binary file obfuscation on the accuracy of authorship 

attribution. To this end, processor instruction data from the specimen executable files 

will be collected by two methods; one using static analysis methods and the other using 

a dynamic analysis process.  This instruction data will then be used to determine the 

author of the original binary executable.  The two methods of data collection will be 

compared and contrasted against the research questions in the analysis portion of the 

research.  

While there exists published research in the area of authorship attribution in 

binary executable files, (Alrabaee et al., 2014; Caliskan-Islam, Yamaguchi, et al., 2015; 

Rosenblum, Zhu, et al., 2011), there continues to be many opportunities for further 

research and refinement.  The latest of these previous studies has shown that 

classification can be done accurately without the need to create a distinct author profile 

for each contributing author, as suggested in previous research.  Despite these successful 

demonstrations of author attribution in binary executable files, none of the existing 

research has taken the step to address obfuscation in binary files.  To this end, an 

ensemble approach, made up of the best components of the aforementioned research in 

attribution of authorship, will be used as a baseline of potential accuracy for attribution, 

prior to the introduction of obfuscation to the speciment executable files.  

Assumptions, Limitations, and Delimitations 

 In as much as the Google Code Jam regulations forbid submissions created by 

team effort or by plagiarism of another programmer, there is no certainty of the ground 
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truth assertion that each submission being studied in this research is actually written by 

the developer who has claimed to have written it.  Even though there may be residual 

concern over the validity of the claim of ground truth authorship, the submissions from 

this contest have been used in past research with good results.  Further, by using the 

same set of test data, comparisons and conclusions regarding performance and accuracy 

can be made, thus furthering the body of knowledge in authorship attribution. 

A recent longitudinal study of executable packers (another name for an 

executable file obfuscator) identified 389 unique packers in their study of 685 

executable file samples (Ugarte-Pedrero et al., 2015).  Even if the full population of 

executable packers was limited to these 389 unique packers, it would still not be feasible 

to study the attribution characteristics of each.  As an alternative, the packer complexity 

categories defined in Ugarte-Pedrero et al. (2015) will be used; and three representative 

samples of each complexity type will be used in this research. 

 As described in Roundy and Miller (2013), the majority of executable file 

obfuscators implement additional measures to further thwart reverse engineering beyond 

just the obfuscation technique itself.    Throughout all the experiments, wherever 

possible, all user defined selections for anti-debug and/or anti-reverse engineer will be 

set to disabled.   By setting these options to disabled, the experiments have the best 

chance of executing completely and without error within both the static and dynamic 

analysis environments. 

 There continues to be debate within the research community involved with 

attribution of authorship and the minimum size and number of samples required to 

provide consistently high accuracy of results.  Zheng, Li, Chen, and Huang (2006) 
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showed that regardless of machine learning algorithm, as the number of samples per 

author increased (from 10 to 30 in increments of five), the accuracy of correct 

classification increased, however, as the number of candidate authors increased (from 

five to 20 in increments of five), the accuracy of correct classification decreased.  

Similarly, Luyckx and Daelemans (2008) demonstrated a decrease in classification 

accuracy from approximately 96% to 34% when the number of authors in the test went 

from two to 145.  In addition to attribution accuracy challenges with respect to the 

number of candidate authors, (Koppel, Schler, & Argamon, 2009, 2013) found that the 

total size of each candidate’s sample was highly correlated to the accuracy of future 

classification attempts.  Finally, Argamon et al. (2007) conducted experiments which 

found that “different kinds of features are needed for different kinds of stylistic text 

classification, and that addition of irrelevant features often reduce performance” 

(Argamon et al., 2007, p. 816). 

 While the findings above are consistent with one’s intuition, only a single known 

study has investigated the effect of sample size on authorship attribution accuracy of 

binary files.  In their research, Caliskan-Islam, Yamaguchi, et al. (2015) performed two 

sets of experiments, one set mirroring the sample size of previous authorship attribution 

research (Alrabaee et al., 2014; Rosenblum, Zhu, et al., 2011), and the other set of 

experiments to determine the optimal training set sample size against the number of 

candidate programmers.  The optimal number of training samples is dependent on the 

number of candidate authors, but in the case of authorship attribution classification with 

20 candidate authors, Caliskan-Islam, Yamaguchi, et al. (2015) found only slight 
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improvements in classification accuracy with larger sets after a minimum set size of 

three executables. 

Even though most machine learning textbooks consider the determination of 

optimal training set sample size to be identifiable only through experimentation (Abu-

Mostafa, Magdon-Ismail, & Lin, 2012; Hastie, Tibshirani, & Friedman, 2009; Witten, 

Frank, & Hall, 2011), this research will follow the sample sizes defined in past research 

in this area (Alrabaee et al., 2014; Caliskan-Islam, Yamaguchi, et al., 2015; Rosenblum, 

Zhu, et al., 2011).   Two different configurations will be used, the first will use eight 

samples from each of 20 authors to train the classifier, and the second will use 14 

samples from each of the 20 authors to train the classifier.  For both configurations, 

testing will follow the training phase and author prediction accuracies will be recorded. 

Definition of Terms 
 

1. Authorship attribution.  The task of determining the author of a document of 

unknown provenance (Zhao & Zobel, 2007). 

2. Abstract Syntax Tree.  A tree representation of the structure of computer source 

code that has a node for each important token and uses operators as the sub-tree 

roots. (Parr, 2009) 

3. Bertillonage.  “A method to reduce the search space when trying to locate a 

software entity’s origin within a corpus of possibilities” (Davies, German, 

Godfrey, & Hindle, 2011, p. 3).  This is typically accomplished by comparing 

coarser details of candidate possibilities, assuming that coarser detail similarity 

will imply finer detail similarity. 
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4. Bloom Filter  A space-efficient probabilistic data structure that is used to test 

whether an element is a member of a set.  Its primary benefit in this context is to 

quickly determine whether two control flow graphs are similar. (Bloom, 1970) 

5. BinHunt.  A tool for identifying semantic differences between files based on the 

control flow of the program using a technique that involved a graph isomorphism 

technique, symbolic execution, and theorem proving (Gao, Reiter, & Song, 

2008). 

6. Call Graph. A graph representation of a program in which the nodes of the graph 

represent the procedures of the program and the edges represent one or more 

executions of the procedure (Ryder, 1979). 

7. C4.5 decision tree. A machine learning algorithm that chooses the attribute of 

the data that most effectively splits the set of samples into subsets of the highest 

similarity. The splitting criterion is the based on the calculated information gain. 

The attribute with the highest information gain is chosen as the decision point for 

the current location in the tree. The C4.5 algorithm continues recursively to split 

each subset (Quinlan, 1986). 

8. Crypter.  A synonym for Obfuscator, popular in hacker cultures. 

9. Cryptic evolution.  The ability of a computer program to hide or obfuscate its file 

signature.  Differences in a file’s signature suggest (to automated detection 

routines) that the file is entirely unique from others that have already been 

encountered (Iliopoulos, Adami, & Szor, 2011). 
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10. Concept drift.  The evolution within a family of malware as a response to outside 

pressures or the need to implement new features (Kantchelian et al., 2013; Singh, 

Walenstein, & Lakhotia, 2012). 

11. Control Flow Graph. A graph representation of a program in which the nodes of 

the graph represent a linear sequence of instructions having one entry point and 

one exit point and the edges represent control flow paths (Allen, 1970). 

12. Data-flow guided Recursive Traversal disassembly. A method of disassembly 

based on the Recursive Travel disassembly algorithm with an additional feature 

of data flow analysis, using slicing and forward substitution to increase the 

accuracy of disassembly during the identification and traversal of jump tables  

(Cifuentes & Van Emmerik, 1999; Vinciguerra, Wills, Kejriwal, Martino, & 

Vinciguerra, 2003). 

13. Decompilation.  A tool used to reconstruct the higher level structure of an 

executable program in an attempt to recover the equivalent source code 

(Caliskan-Islam, Yamaguchi, et al., 2015).   

14. Disassembly.  A method of extracting the set of CPU processor instructions, in 

the proper sequence, that make up a computer program from an existing 

executable file (Vigna, 2007).  

15. Dynamic taint analysis.  A method of program analysis that executes a program 

and observes how predefined taint sources (such as user input) are affected by 

computations (Schwartz, Avgerinos, & Brumley, 2010).   

16. Ether.  A tool used for binary analysis that is based on hardware level 

virtualization (Dinaburg, Royal, Sharif, & Lee, 2008). 
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17. Eureka.  A tool used for malware analysis that dumped the memory contents of a 

malware specimen based on a call to programs exit system call (Sharif, 

Yegneswaran, Saidi, Porras, & Lee, 2008). 

18. Extended Linear Sweep disassembly. A method of disassembly with the same 

characteristics of linear sweep disassembly, with the addition feature of being 

able to properly traverse jump tables embedded in the instruction stream. 

(Schwarz, Debray, & Andrews, 2002; Vinciguerra et al., 2003) 

19. Functional evolution.  The step-wise improvement and additional capability 

made available in successive versions of a software program in order to better 

adapt to its environment (Iliopoulos et al., 2011). 

20. Ground Truth. Factual data as identified through direct observation (Kobielus, 

2014; Krig, 2014; TheFreeDictionary.com, 2016). 

21. Hidden Markov Models.  “Hidden Markov models (HMM) are a general 

statistical modeling technique for 'linear' problems like sequences or time series.   

An HMM is a finite model that describes a probability distribution over an 

infinite number of possible sequences” (Eddy, 1996, p. 361). 

22. Hybrid Extended Linear Sweep / Recursive travel disassembly.  A method of 

disassembly that combines the strengths of linear sweep disassembly with the 

strengths of recursive travel disassembly which offers higher accuracy results 

than either method individually. (Schwarz et al., 2002; Vinciguerra et al., 2003). 

23. In sample error. The rate of errors received when predicting results using the 

same data as used to train the classifier (Abu-Mostafa et al., 2012). 

24. Git.  An open source distributed version control system for computer software.   
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25. Linear sweep disassembly. A method of disassembly that starts at the first byte 

of the code section of a binary executable file and decodes each byte back to its 

original instruction in linear order.  This method of disassembly can often 

produces inaccurate results as misalignment of a single instruction will impact 

the decoding accuracy of the following instructions (Schwarz et al., 2002; 

Vinciguerra et al., 2003). 

26. Machine learning. “A set of methods that can automatically detect patterns in 

data, and then use the uncovered patterns to predict future data, or to perform 

other kinds of decision making under uncertainty” (Murphy, 2012, p. 1). 

27. Machine-morphed variant.  A version of malware that has been generated 

automatically with the use of a morphing engine.  The capabilities of the 

malware are not modified,  just encoded with a different obfuscation key 

(Chouchane, Stakhanova, Walenstein, & Lakhotia, 2013). 

28. N-fold cross validation. An experimental design in which the entire dataset is 

split into n equal shares and each of the n shares is withheld from the set for 

testing purposes after training the classifier with the other (n-1) shares (Witten et 

al., 2011). The final result is computed as the average from the n iterations of the 

test (Witten et al., 2011). 

29. N-gram. A sequence of contiguous characters, words, tokens, or some other 

representation of data of length n, where n can be any natural number, taken 

from a document.  
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30. N-perm.  A type of n-gram that has the sequence of characters dropped, giving a 

set that contains of all the possible permutations of the original n-gram (Karim, 

Walenstein, Lakhotia, & Parida, 2005). 

31. Obfuscator. A type of executable packer that implements one or more 

protections against reverse engineering and/or analysis. 

32. Out of sample error. The rate of errors resulting from predictions made using a 

trained classifier on new data.  Also called generalization error (Abu-Mostafa et 

al., 2012). 

33. Packer. A tool that transforms a binary program into a derivative that has 

identical observable behavior (the behavior as experienced by the user), but has 

been transformed by compressing the code and data bytes and optionally 

applying obfuscations to its code (Roundy & Miller, 2013). 

34. Primary changes (in computer program).  Changes directly attributed to the 

author of a computer program, including the addition of new code, deletion or 

modification of existing code (Zheng Wang, Pierce, & McFarling, 1999). 

35. Phylogeny (of malware).  The evolutionary path of development of a particular 

family of malware as evidenced by new or updated features, the removal of 

unneeded code, and the remediation of coding errors (Kruegel, Kirda, Mutz, 

Robertson, & Vigna, 2006). 

36. Plagiarism. “The unauthorized use or close imitation of the ideas and 

language/expression of someone else. It involves representing their work as your 

own. It is usually associated, too, with little or no acknowledgement of the 

borrowing and the source” (Hannabuss, 2001, p. 311). 
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37. Portable Executable. A file format used by Microsoft to represent binary 

executable files (Pietrek, 1994). 

38. Random Forest.  “A combination of tree predictors such that each tree depends 

on the values of a random vector sampled independently and with the same 

distribution for all trees in the forest”  (Breiman, 2001, p. 1). 

39. Recursive travel disassembly. A method of disassembly where the starting 

instruction is identified and disassembly begins from there, following the 

instructions as they are decoded, branching with the disassembly to ensure 

instruction alignment is maintained (Schwarz et al., 2002; Vinciguerra et al., 

2003). 

40. Secondary changes (in computer program).  Changes to a program that are a 

result of the compilation and/or optimization steps being done by the compiler.  

These changes can include changes in control flow instruction targets, pointers, 

and register allocations (Zheng Wang et al., 1999). 

41. Simulated Annealing. A method of simulation that takes 1) a known initial 

configuration, 2) a mechanism for randomly modifying the configuration, 3) a 

comparison function to measure the improvement (if any) in the change in 

configuration, and 4) a schedule to determine how long to run the simulation in 

order to automatically find the optimal matching solution (Kirkpatrick, Gelatt, & 

Vecchi, 1983).  

42.  Stylometry. The set of stylistic features, including lexical, syntactic, structural, 

content-specific, and idiosyncratic attributes found within a document that 

provides support for the determination of authorship (Abbasi & Chen, 2008). 
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43. Supervised Learning.  A form of Machine Learning that uses a training set, 

which includes the presence of outcome variables, to guide the learning process 

(Hastie et al., 2009). 

44. Symbolic Execution.  A method of program analysis in which a logical formula 

of the program’s execution path is built.  This formula is then used to reason 

about the domain of logic with respect to the program’s execution (Schwartz et 

al., 2010). 

45. τ-obfuscation.  A measurement that captures the difference in time required for 

an obfuscated executable to realize its mission compared to the amount of time 

required by an analyst to de-obfuscate the executable (Beaucamps & Filiol, 

2007). 

46. Unsupervised learning.  A form of Machine Learning that seeks to describe how 

data are organized or clustered based only on the observations of features (with 

no known outcomes) (Hastie et al., 2009). 

47. Virtual Machine Obfuscation. A method of program obfuscation where a Virtual 

Machine (VM) section is appended to the original program, the original binary 

code is translated into code that will run within the appended VM section, and 

the program’s OEP is reset to the entry point of the VM section (Fang, Wu, 

Wang, & Huang, 2011).  

List of Acronyms 
 

1. AST. Abstract Syntax Tree. 

2. API. Application Programming Interface. 
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3. BIRD. Binary Interpretation using Runtime Disassembly (Nanda, Li, Lam, & 

Chiueh, 2006). 

4. CAL.  Code Analysis Layer  (Alrabaee et al., 2014). 

5. CFG. Control Flow Graph. 

6. DBI. Dynamic Binary Instrumentation. 

7. FEP. Function Entry Point. 

8. GCJ.  Google Code Jam (Contest). 

9. IAT. Imports Address Table (Pietrek, 1994) 

10. MAAGI. Malware Analysis and Attribution using Genetic Information (Pfeffer et 

al., 2012). 

11. NUANCE. N-gram Unsupervised Automated Natural Cluster Ensemble (Layton, 

Watters, & Dazeley, 2012, 2013). 

12. OEP.  Original Entry Point.   

13. PE (file). Portable Executable (file). 

14. RFG. Register Flow Graph (Alrabaee et al., 2014). 

15. SCAP. Source Code Author Profile  (Frantzeskou, MacDonell, Stamatatos, & 

Gritzalis, 2008; Frantzeskou, Stamatatos, Gritzalis, Chaski, & Howald, 2007). 

16. STL. Software Template Library (Alrabaee et al., 2014). 

17. SVM. Support Vector Machine (Vapnik, 1999). 

Summary 

Authorship attribution in the case of human readable files relies on an analysis of 

stylometry, vocabulary diversity, word choice, and frequency of function words 

(Bozkurt et al., 2007; Stamatatos, 2009).  However, in the case of executable computer 



 

 

22 

files, the process of compilation removes many of the elements of style that were added 

by the author and replaces them with standardized machine level instructions 

(Rosenblum et al., 2010; Rosenblum, Miller, et al., 2011).     

The process of obfuscating an executable computer file involves the 

transformation of that file into a file that has identical observable behavior (the behavior 

as experienced by the user) and that the effort required to analyze or reverse engineer 

the file back into a form that is readily understood by a human analyst is prohibitively 

high (Collberg & Thomborson, 2002; Linn & Debray, 2003).  Collberg et al. also 

characterized an obfuscated executable computer file as a file that “consists of two 

programs merged into one: a real program which performs a useful task and a bogus 

program which computes useless information.  The sole purpose of the bogus program is 

to confuse the reverse engineers by hiding the real program behind the irrelevant code” 

(Collberg et al., 1997, p. 23). 

The goal of this dissertation is to accurately describe the effects of executable 

file obfuscation techniques on the ability to attribute the authorship of a binary 

executable file of unknown provenance. 
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Chapter 2 

Review of the Literature 
 
Overview 
 
 As noted in Alrabaee et al. (2014) and held true in this research, there seems to 

be little previous research done in the field of determining authorship of binary files 

prior to Rosenblum, Zhu, et al. (2011).   Rosenblum, Zhu, et al. (2011) discusses the 

utility of authorship attribution in the case of malware analysis and digital forensics, but 

does not specifically address the challenges that might arise from attempts to use their 

procedures on obfuscated malware specimens.  In later research, Alrabaee et al. (2014) 

further improve the accuracy of author attribution in binary files, but leave the problem 

of obfuscated binary files to future research.  In Caliskan-Islam, Yamaguchi, et al. 

(2015), researchers used a combination of disassembly and decompilation with machine 

learning classification to improve both the accuracy and the size of the author pool in 

attribution of authorship in binary files.  The methodologies used by each of these 

research groups, and their applicability to attributing authorship in obfuscated samples 

will be discussed in considerable detail later in this chapter. 

Determination of authorship in obfuscated binary files intersects with natural 

language and source code authorship attribution, compiler provenance of programs, 

program and programmer evolution, software plagiarism, binary file obfuscation, 

program disassembly, representation, and comparison.  As such, there is a significant 

corpus of research to draw from and each of these topics will be discussed in the 

following subsections. 
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Natural Language and Source Code Authorship Attribution 

 Authorship attribution in natural language readable files has been the subject of 

much research and many of the research problems in this area are well understood and 

solutions have been proposed to address them (Burrows, Uitdenbogerd, & Turpin, 2014; 

Krsul & Spafford, 1997).  Spafford and Weeber (1993) hypothesized that attributing 

authorship in software source code should follow the same process as other natural 

language formatted documents: identifying features in the code that can be attributed to 

the writing style of a particular programmer.   They provided a list of both potential 

features for use in attributing authorship in source code, as well as some potential 

challenges that might arise during the attribution analysis phase. Sallis, Aakjaer, and 

MacDonell (1996) pointed out that even though computer programmers appear to have 

distinct programming styles, there weren’t any techniques available to accurately 

identify the author of computer source code.  Krsul and Spafford (1997) demonstrated in 

an experimental fashion that stylistic markers could be used to measure the likelihood of 

authorship in a sample of computer source code, but their data showed that many 

subjects have very similar style characteristics that led to lower accuracy of results. 

Gray, Sallis, and MacDonell (1997) and Frantzeskou, Gritzalis, and MacDonell (2004) 

concluded that based on these earlier works, authorship attribution of computer source 

code did belong in the field of software forensics. 

 As early as Kilgour, Gray, Sallis, and MacDonell (1998), there were attempts to 

combine the problem of authorship attribution of human readable documents with the 

artificial intelligence practice of fuzzy logic variables to aid in classification. 

 In MacDonell and Gray (2001), the researchers identified a set of 26 authorship 
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related metrics from 351 programs written by seven different authors and fed each of 

them into a feed-forward neural network, a multiple discriminant analysis model, and a  

case-based reasoning system and reported an accuracy of over 80% in the determination 

of author.     

 Li, Zheng, and Chen (2006) described a “writeprint”, the computer software 

version of a fingerprint that could be used to attribute authorship of computer source 

code.  They noted that a “writeprint” was made up of a collection of features that could 

be extracted from the human readable source code.  Shortly thereafter, Frantzeskou and 

her team created the Source Code Author Profile (SCAP) method (Frantzeskou et al., 

2008; Frantzeskou et al., 2007) which could be used to identify authors of computer 

source by comparing profiles created using byte-level n-gram sections of source code 

specimens.  Lange and Mancoridis (2007) demonstrated good results in determining 

authorship of computer source code by using histogram distributions of code metrics, 

but their results were not as accurate as Frantzeskou’s. 

 Instead of relying on simple n-grams or histogram distributions, Bozkurt et al. 

(2007) demonstrated how authorship attribution would benefit from primary component 

analysis and machine learning algorithms.  Bozkurt posited that these advanced 

techniques could be adapted to automate the process of source code authorship 

attribution.  Caliskan-Islam, Harang, et al. (2015) continued with the notion of a 

machine learning based problem and used natural language processing to extract 

necessary features (called The Code Stylometry Feature Set) from computer source code 

to accurately identify authors of source code. 

 However, Burrows, Uitdenbogerd, and Turpin (2009) studied the coding efforts of 
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272 students and identified that coding style evolves over time and that the domain of 

the coding problem had a large impact on the ability to accurately attribute authorship. 

 In Meng, Miller, Williams, and Bernat (2013), the researchers drew from code 

stored in a GIT source code repository to determine authorship.  It is typical for 

programmers to incrementally adjust or update existing code (that could have been 

written by another programmer entirely).  However, even with this mixing of 

contributions from multiple authors, Meng et al. (2013) concluded that accurate 

attribution of authorship in source files could be achieved with good levels of accuracy. 

 Juola (2006) described the challenge of authorship attribution and discussed how 

unsupervised machine learning algorithms might be better suited to the problem of 

attributing authorship due to the lack of sufficient existing material which could be used 

to create an author profile; a profile that would be used during the teaching phase of a 

supervised machine learning algorithm.  Iqbal, Binsalleeh, Fung, and Debbabi (2010) 

applied a method using unsupervised clustering algorithms to create visualizations that 

assisted in the identification of authors of anonymous emails.  Layton, Watters, and 

Dazeley (2010) extended the SCAP method of authorship attribution (Frantzeskou et al., 

2007) using unsupervised machine learning algorithms to identify phishing campaigns. 

(Layton et al., 2012, 2013) further extended the unsupervised learning version of SCAP 

by creating the NUANCE (N-gram Unsupervised Automated Natural Cluster Ensemble) 

model, a higher accuracy model for displaying documents of unknown origin in clusters 

centered around commonality of features. 

 Arabyarmohamady, Moradi, and Asadpour (2012) incorporated style markers into 

the detection of plagiarism in order to identify the original author in cases where original 
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coding efforts had been plagiarized by another author. Like most other methods, the 

method described in Arabyarmohamady et al. (2012) relied on supervised machine 

learning algorithms which required an existing author profile against which the 

unknown document could be compared. 

 Chatzicharalampous, Frantzeskou, and Stamatatos (2012) sought to prove whether 

a single profile-based representation of a set of source code specimens resulted in higher 

accuracy classification of authorship over instance-based representations, where each 

member in the set of source code specimens had their own representation.  The 

researchers found that instance-based representations resulted in higher accuracy 

classifications if the class of specimens was balanced. 

 In Matthew F Tennyson and Francisco J Mitropoulos (2014), improvements were 

made to two of the state-of-the-art methods for attributing authorship in source code, 

namely the Burrows (Burrows et al., 2009) and SCAP (Frantzeskou et al., 2007) 

methods.  Once improved, the two methods were joined together to form an ensemble 

classifier based on Bayesian probability.  The probability that a selected author wrote a 

document, given all the observations, was based on all the evidence as well as the 

combined probabilities from the Burrows’ and SCAP’s observations.  By creating this 

ensemble classifier, the researchers were able to bridge the divide between ranking 

classifiers and machine learning classifiers (Burrows et al., 2014) and create an author 

attribution system with classification accuracy of about 98%. 

Text Analysis as a Machine Learning Problem 

 An emerging trend in the processing and analysis of natural language has been the 

application of machine learning classification algorithms to identify patterns in datasets.  
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Based on the research described in the previous section, the use of machine learning 

tools and algorithms for the purpose of classifying text can be considered a well 

understood problem. 

 Researchers have examined the effect of differently sized sample sets (Koppel et 

al., 2009; Luyckx & Daelemans, 2008; Zheng et al., 2006) and found that larger datasets 

increase prediction accuracy, but increased numbers of candidate authors add 

considerable complexity to classification, which reduces overall accuracy of attribution.  

The effectiveness of different classification algorithms (Iqbal, Khan, Fung, & Debbabi, 

2010; Lamirel, Cuxac, Chivukula, & Hajlaoui, 2015; Luyckx & Daelemans, 2005) has 

also been researched, with Support Vector Machines (SVM) (Vapnik, 1999) being 

shown as a leading classification algorithm.  However, Random Forests (Breiman, 2001) 

have been shown to be effective at classifying data that has many weak inputs (Breiman, 

2001).  Similarly, Koppel et al. (2013) have suggested that “large data sets of very 

simple features are more accurate than small sets of sophisticated features for 

[authorship attribution]” (Koppel et al., 2013, p. 321).  Maitra, Ghosh, and Das (2015) 

demonstrated good accuracy using Random Forests in the verification of authorship, and 

achieved better performance than with an SVM classifier. 

 In datasets having many weak inputs, with weak input described as “no single 

input or small group of inputs that can distinguish between the classes” (Breiman, 2001, 

p. 22), the selection of attributes is both important to accurate classification and difficult 

to determine.  The goal is to select attributes from each record in the dataset such that 

the attribute values demonstrate author invariance (Baron, 2014; Stańczyk, 2013).  

These principal attributes can be identified using the calculation of information gain 
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contributed by each attribute (Quinlan, 1986).   Information gain was used in Argamon 

et al. (2007) and in Caliskan and Greenstadt (2012) to identify the principal components 

in natural language texts and again in Caliskan-Islam, Yamaguchi, et al. (2015) for 

principal component analysis of authorship identifying attributes in binary executable 

files. 

 In majority of the research papers mentioned in these last two sections, the 

material to be classified is natural language text or human readable computer source 

code.  Rosenblum, Zhu, et al. (2011) started down a new path of using the techniques 

based on natural language text classification on binary executable files.  Alrabaee et al. 

(2014) furthered this research path by creating hashes of basic blocks, Register Flow 

Graphs (RFGs), and a Software Template Library (STL) that could be used to classify 

binary files using the same techniques as natural language text.  Caliskan-Islam, 

Yamaguchi, et al. (2015) proceeded further by utilizing methods from both Rosenblum, 

Zhu, et al. (2011) and Alrabaee et al. (2014) with the addition of attributes collected 

during decompilation of the binary executable files.  These research efforts are 

described in detail in the Binary File Authorship Attribution section ahead. 

 
Compiler Chain Provenance 
 
 During the search to discover a method to identify Function Entry Points in 

unknown binary files, Rosenblum, Zhu, Miller, and Hunt (2008) recognized that 

different compilers generate regular patterns that could be used to identify the compiler–

environment of unknown binaries.   In following papers, (Rosenblum et al., 2010; 

Rosenblum, Miller, et al., 2011) created a system to classify these different compiler 

sequences allowing the researchers to identify the compiler chain used in 90% of their 
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test cases.  Torri (2009) demonstrated how knowledge of the compiler environment of a 

particular binary could make the process of reverse engineering and analysis less error-

prone and time consuming.  Jacobson, Rosenblum, and Miller (2011) extended the 

UNSTRIP tool to create a new, derivative binary file with meaningful names of 

functions added to the symbol table in the previously stripped binary executable files. 

 Hosic, Tauritz, and Mulder (2014) extended the research of Rosenblum, Zhu, 

Miller, and Hunt (2007) by using genetic algorithms to classify compiler usage in 

unknown binaries.  The use of genetic algorithms pushed the accuracy of classification 

to an average of 95.3%. 

 Rahimian, Shirani, Alrbaee, Wang, and Debbabi (2015) created BinComp, a tool 

that could identify the compiler provenance of an executable file with an accuracy of up 

to 90% using a combination of control flow graphs, register flow graphs, and function 

call graphs. 

 However, (G. Balakrishnan & Reps, 2010; Bao et al., 2014; Dullien, Carrera, 

Eppler, & Porst, 2010; Payer et al., 2014; Stojanović, Radivojević, & Cvetanović, 2014) 

identified that different compilers, different versions of the same compiler, and a single 

compiler with different optimizations enabled could produce remarkably different 

output, which reduced the predictive value of the identified compiler markings.   

 In their research, Chaki, Cohen, and Gurfinkel (2011) concluded compiler 

provenance to be a sub-set of the problem of representing and comparing two unknown 

binaries for similarity.  Additional facets of binary file representation and comparison 

will be discussed further in the section entitled Representation & Comparison. 

 In Roy, Cordy, and Koschke (2009), code clones were defined as  a section of 
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code that is very similar to another section of code.  Four types of code clones were 

defined in Roy et al. (2009): 

Type 1:  Identical code fragments except for differences in whitespace, layout, or 

comments; 

Type 2: fragments that are syntactically identical except for variations in identifiers, 

literals, types, or whitespace; 

Type 3: fragments that are identical, but additional commands are interspersed into 

the copied material; and 

Type 4: different fragments that perform the same computation but are implemented 

using different syntax. 

 Sæbjørnsen, Willcock, Panas, Quinlan, and Su (2009) proposed a method for 

detecting code clones in binary executable files using a combination of exact matching 

of normalized code regions and inexact matching of feature vectors representing 

important aspects of the code regions.    H. Chen (2013) undertook a study wherein the 

four types of code clones were evaluated against compiler optimizations.  He concluded 

that code clone types three and four were the types that most accurately capture an 

author’s style, and it is these clone types that are affected the most by compiler 

optimizations.  David and Yahav (2014) proposed using ‘tracelets’, short sequences of 

executable instructions for use in detecting similarity between functions.  

Program & Programmer Evolution 
 
 In 1980, Meir Lehman defined the 5 laws of software evolution and described 

how the laws were applicable to all complex software projects.  The laws of software 

evolution are: 
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1. Software undergoes continual change otherwise the software will become less 

useful; 

2. Since software is continually being changed, its complexity continues to 

increase; 

3. As changes are made to the software, the software continues to represent the 

problem and solution domains accurately; 

4. While the program is actively being used, the rate of change is statistically 

invariant; 

5. During the active life of the software, the release content of successive releases 

is statistically invariant (Lehman, 1980; Lehman & Ramil, 2001). 

Software evolution as a mandatory part of the normal lifecycle of software 

development becomes important when considering authorship attribution, as changes 

and/or corrections to a program’s source code are done incrementally, over time, and, 

potentially, by multiple authors.   The study of malware as it relates to software 

evolution can be considered a special case as the time between generations is often very 

short and the number of evolutionary versions can be quite high (Barat, Prelipcean, & 

Gavriluţ, 2013; Dumitras & Neamtiu, 2011; Gupta, Kuppili, Akella, & Barford, 2009; 

Iliopoulos et al., 2011).  In addition, research has identified that typical cybercrime 

(malware) development teams are, on average, sized with between four and seven 

members (not including Nation state hacking teams) (Broadhurst, Grabosky, Alazab, 

Bouhours, & Chon, 2013; Grabosky, 2014; Layton & Azab, 2014).  As suggested in 

Alrabaee et al. (2014), with malware development teams being of a smaller size, the 

accuracy of authorship attribution within a single development team should increase. 
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 Vlachos, Ilioudis, and Papanikolaou (2012) studied the nature and impact of 

security incidents related to malware.  Even though it is reported that there are 200,000 

new malware variants identified per day (Kaspersky Labs, 2012), Vlachos et al. (2012) 

reported that the majority of damage due to malware came from evolutionary variants of 

the top ten malware families. 

 Of the two types of evolution discussed in (Iliopoulos et al., 2011), cryptic and 

functional evolution, only the functional evolution of malware is applicable to the study 

of authorship attribution of binary files as related to malware.   Cryptic evolution refers 

to the capability of a computer program to obfuscate its signature.  This obfuscation 

makes different instances of the same program appear different (for example, an anti-

virus program would compute different hashes of the two instances of the same file, 

resulting in one file being flagged for cleaning and the other not), but does not result in 

different behavior or functionality in the program itself.  Functional evolution refers to 

the step-wise improvement and additional capability made available in successive 

versions of a software program in order to better adapt to its environment (Iliopoulos et 

al., 2011).   

 Kruegel et al. (2006) presented a technique that allowed researchers to identify 

structural similarities between different computer worm mutations based on the 

structural analysis of the worm’s binary code.  This technique could be used to identify 

the phylogeny (evolutionary path) of a particular version of a computer worm.   

 Yu, Zhou, Liu, Yang, and Luo (2010) proposed a novel byte frequency based 

identification process to identify variants of known malware.  Using this method, the 

researchers could quickly gauge the similarity of two suspect binaries and draw 
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conclusions about the lineage of the binaries. 

 Khoo and Lió (2011) created a full execution path logging system to create 

traces that could be transformed into phylogenic trees and networks for topological 

comparisons.  

 Chouchane et al. (2013) presented a set of procedures for the identification of 

machine-morphed malware variants.  Machine-morphed malware variants can be 

generated automatically and in quick succession with the use of a morphing engine.  

These morphing engines do not change the capabilities of the malware, rather they 

obfuscate the same version of program using different encoding keys within a 

compression algorithm, modifying the algorithm used for compression, modifying 

constant values, or randomly inserting “junk” instructions (Chouchane et al., 2013). The 

procedures presented in their research were presented as a sort of pre-processor to the 

authorship attribution challenge of malware.   

 Xu et al. (2013) proposed a new method of analysis to determine similarity 

between malware variants by extracting the function call graph of the variant using 

static analysis.  Once the call graphs were extracted, a comparison could be done to 

quantify the similarity of the variants. 

 In  contrast to the work done on machine-morphed variants, Karim et al. (2005) 

defined a method to determine variants of malware using “n-perms”, which are similar 

to n-grams (an ‘n’ length  section of a program), except that the ordering of the sequence 

was dropped, giving a set of all the possible permutations of the original n-gram.  The 

researchers report that their n-perm based matching algorithm provided better accuracy 

in identifying variants of malware than their n-gram alternatives. 
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 M. Hayes, Walenstein, and Lakhotia (2009) artificially created 2 separate 

malware evolutionary trees for the purpose of studying previous techniques in 

determining phylogeny of malware.  The results of this study called into question the 

validity of malware phylogeny research that was undertaken using artificially generated 

files (which they report is typical).  Lindorfer, Di Federico, Maggi, Comparetti, and 

Zanero (2012) chose instead to find a real malware example and document and study its 

actual evolution in an effort to better understand malware phylogeny.  

 Pfeffer et al. (2012) created a system called MAAGI which is currently being 

used to determine similarity between malware samples, identify families of malware, 

and identify the lineage of multiple variants of malware.  The researchers report 

promising results when using MAAGI against known datasets.  

 Singh et al. (2012) discussed methods to track concept drift in malware families.  

Concept drift is defined as evolution within a family of malware as a response to outside 

pressures or the need to implement new features.  Kantchelian et al. (2013) argued that 

concept drift in malware was a particularly challenging problem for classification, as the 

classification must balance between over-fitting and under-fitting. 

 Darmetko, Jilcott, and Everett (2013) considered the case of variants generated 

by the addition of supplemental or new features.  As discussed above, laws of software 

evolution have been identified and widely agreed upon (Lehman, 1980). Darmetko et al. 

(2013) utilized these laws, including functional complexity, similarity of string data, and 

shared code subsections to identify patterns in software lineage. 

 Jiyong Jang, Woo, and Brumley (2013) constructed a novel tool for identifying 

an evolutionary hierarchy from program binaries that had a measured accuracy of 84% 
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in identifying the correct evolutionary hierarchy for goodware and 72% for malware. 

 Y. Park, Reeves, and Stamp (2013) described a system whereby behavioral 

graphs from multiple program variants were overlaid on a common graph in order to 

create a model behavior that could be used during a comparison of a binary to an 

unknown variant. 

 Anderson, Lane, and Hash (2014) described a novel approach for representing 

malware phylogeny as a graphical lasso, which found the weighted combination of static 

and dynamic views of the variants that allowed for a graph of a family of programs 

phylogeny to be constructed. 

 Not only do computer programs evolve over time, but also so do the human 

programmers who write them.  In J. H. Hayes (2008), the researcher observed that 

programmers had style consistency in their work, such that classifications could 

accurately predict the author of a specimen of computer source code.  Upon revisiting 

the hypothesis of the consistent programmer, J. H. Hayes and Offutt (2010) discussed 

the finding that as a computer programmer reaches a level of expertise, they developed 

their own personal style of programming and that once defined, their programming style 

changed little over time.  Burrows et al. (2009) described their research where they were 

able to observe an evolution of coding skill in students that had just started 

demonstrating proficiency in computer programming.  Their research observed that as 

the students became more proficient, the more accurate the authorship attribution was.    

Bhattathiripad (2012) introduced the notion of programmer blunders.  These 

blunders are errors in programming that have been introduced by a programmer but 

yield little to no chance of causing software failure.  Often these blunders are carried 
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along in software and can provide clues about the author of the program. 

Software Plagiarism 
 
 The opportunity to simply copy another’s computer source code and present it as 

one’s own has existed as long as there have been general purpose programming 

languages (Ottenstein, 1976).  Early research on software engineering observed that 

there were “natural laws” that controlled the algorithmic structure of the solution to 

most software engineering problems (Halstead, 1972, 1977).  As a result of these laws 

governing the algorithmic structure of solutions, Ottenstein (1976) was able to 

demonstrate that differences in the resulting solutions could be attributed to programmer 

style, and these differences could be used to detect plagiarism between different 

versions of a solution.  Many early plagiarism systems were based on the idea of 

attribute counting and that matching scores of attributes within source code files could 

accurately identify examples of plagiarism (Berghel & Sallach, 1984; Donaldson, 

Lancaster, & Sposato, 1981; Grier, 1981; Jankowitz, 1988; Parker & Hamblen, 1989; 

Rees, 1982).  In Verco and Wise (1996), these attribute-counting based plagiarism 

detection systems were compared to the structure-metric systems, which include the 

plagiarism detection systems discussed in (Belkhouche, Nix, & Hassell, 2004; Gitchell 

& Tran, 1999; Whale, 1990; Wise, 1996).   Each method, attribute-counting or structure-

metric, have superior capabilities for identifying some types of plagiarism in software 

source code and should be used, according to Verco and Wise (1996), together and in 

combination with a human reviewer.  

 Besides these two main types of plagiarism detection systems, other processes 

have been proposed.  Freire (2008) used visualizations of binary files to help identify 
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program similarities. Each of (Chae, Ha, Kim, Kang, & Im, 2013; Liu, Chen, Han, & 

Yu, 2006) created systems that generated graphs to represent the binary under analysis.  

These graphs could then be compared for similarity.   Chilowicz, Duris, and Roussel 

(2009) used abstract syntax tree fingerprints to create a type of software fingerprint that 

could be compared to fingerprints from other binaries, and (Chae, Kim, Ha, Lee, & 

Woo, 2013; McMillan, Grechanik, & Poshyvanyk, 2012; X. Wang, Jhi, Zhu, & Liu, 

2009) used software birthmarks, which, like fingerprints, are unique characteristics of a 

program that could be used for comparing program similarity.  Tian, Zheng, Liu, and 

Fan (2013) extended the idea of software birthmarks by incorporating dynamic data 

flow analysis into the birthmark.  This addition of dynamic data flow information 

reduced the negative impact of software obfuscation techniques. 

 There was research that married the problem of determination of plagiarized 

content with the strength of classification offered in machine learning algorithms.  

(Engels, Lakshmanan, & Craig, 2007; Kilgour et al., 1998) fed the output of their 

feature selection process into a feed forward neural network for the purpose of 

classification and (Jadalla & Elnagar, 2008; Ohmann & Rahal, 2014; Zou, Long, & 

Ling, 2010) have used clustering techniques to identify likely plagiarized content. 

 Kučečka (2011) discussed methods that exist that are specifically designed to 

foil plagiarism detection systems.   With knowledge of these types of deceptions, the 

researcher was able to modify an existing plagiarism system to improve the accuracy of 

detection and reduce the number of false positive findings. 
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Executable File Obfuscation 
 
 Cohen (1993) first described the goal of security through obscurity as making the 

difficulty of attack so great that it was not worth performing in practice, even if it could 

eventually be successful.  He continued to describe a number of methods that were 

available for use in making a binary executable file difficult to attack.  In the context of 

binary executable file obfuscation, attack is defined as being able to peer into the binary 

and identify its capabilities in order to render those capabilities useless (Cohen, 1993).  

The methods he described included equivalent instruction replacement, instruction 

reordering, and garbage instruction insertion (Cohen, 1993).  Collberg et al. (1997) 

studied obfuscation techniques in use in malicious software and offered a classification 

mechanism for obfuscation methods.  They also characterized an obfuscated binary 

executable as an executable file that “consists of two programs merged into one: a real 

program which performs a useful task and a bogus program which computes useless 

information.  The sole purpose of the bogus program is to confuse the reverse engineers 

by hiding the real program behind the irrelevant code” (Collberg et al., 1997, p. 23).  

The conclusion reached in Collberg et al. (1997) was that an obfuscated program may 

behave differently from the original program, as long as the observable behavior was 

identical.    This research team completed additional research into obfuscation options 

for executable files in (Collberg, Thomborson, & Low, 1998a, 1998b) and again in 

(Collberg & Thomborson, 2002). 

A formal proof for program obfuscation was attempted in Barak et al. (2001), in 

which a program P is transformed into another, semantically equivalent, program, P’ 

that has the added feature of being harder to understand, and this proof was shown to be 
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impossible to solve.  However, as discussed in Mavrogiannopoulos, Kisserli, and 

Preneel (2011), and consistent with Cohen (1993), obfuscation is used in practice to 

raise the barrier against successful reverse engineering.  Beaucamps and Filiol (2007) 

challenged the findings of Barak et al. (2001) based on the required amount of time 

needed to de-obfuscate a specimen of obfuscated code.  They coined the term τ-

obfuscation to capture the difference in time required for the obfuscated executable to 

realize its mission compared to the amount of time required to de-obfuscate the 

executable (Beaucamps & Filiol, 2007).  In as much as these researchers tried to extend 

the work of (Barak et al., 2001) by finishing the proof for program obfuscation, they 

were not able to.  The researchers concluded that since most binary analysis or reverse 

engineering efforts are constrained by the amount of time the engineer is authorized to 

spend doing the analysis, most obfuscation techniques would be successful in keeping 

the true capability of the unknown binary from the engineer, even if the obfuscation 

method is solvable.  

 Wroblewski (2002) demonstrated a technique for obfuscating binary executable 

files that could be applied generically on different computer architectures.  Linn and 

Debray (2003) offered strategies for obfuscation of binaries, with the appreciation that 

evading disassembly was the goal of obfuscation.  These strategies were applicable to 

both common disassembly algorithms: linear sweep and recursive traversal (definitions 

provided in the next section).   In response to these obfuscation techniques, disassembly 

tools could utilize symbolic execution of the executable to extract program instructions.  

However, Zhi Wang, Ming, Jia, and Gao (2011) presented an obfuscation method that 

foiled symbolic execution. 
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A system that “camouflaged” program instructions by replacing them with more 

complex structures was presented in (Kanzaki, Monden, Nakamura, & Matsumoto, 

2003; Kanzaki, Monden, Nakamura, & Matsumoto, 2006).  Popov, Debray, and 

Andrews (2007) proposed a system where binary executable files could be obfuscated 

by replacing control transfer instructions with Traps that caused signals to be sent.  The 

signal handling routine would then affect the original transfer of control, restoring the 

appropriate execution behavior while confusing the disassembler (Popov et al., 2007). 

 Anckaert et al. (2007) proposed a new method to measure the complexity 

influence of both obfuscators and de-obfuscators and showed how some obfuscation 

techniques imposed a limited effect on the difficulty of reverse engineering. 

 Automated malware analyzers are able to discover obfuscated sections within 

code using symbolic execution, forced conditional execution, and multiple path 

exploration, instead of waiting until program execution to observe program behavior. 

However, Sharif, Lanzi, Giffin, and Lee (2008) proposed an obfuscation technique that 

used input values as the secret phrase for the decryption of code blocks which held the 

trigger condition for the malware’s execution.  The researchers showed how effective 

this technique could be against current automated analysis systems.  Instead of 

embedding encrypted sections into code, Cappaert, Preneel, Anckaert, Madou, and De 

Bosschere (2008) proposed a method which included the on-demand decryption of 

‘guards’ embedded in executable files for the demonstration of code integrity.  The key 

material for these ‘guards’ is the calling code itself.  In this context, on-demand refers to 

the characteristic of having only sections of code encrypted, as opposed to other 
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techniques that encrypt the entire program and attach a small decryption stub to initiate 

the program’s execution. 

 Z. Wu, Gianvecchio, Xie, and Wang (2010) proposed a new approach to binary 

code obfuscation called ‘mimimorphism’, which relied on transforming the original 

binary file to a “mimicry” executable, which had the same capabilities but presented to 

malware detection systems as benign. 

 Fang et al. (2011) proposed a novel obfuscation technique that involved creating 

a private and random virtual machine core, complete with a transformed instruction set.  

This obfuscation technique was more efficient and provided a higher level of security 

than previous models of obfuscation (Fang et al., 2011).  This strategy of obfuscation 

will be discussed further in the Binary File Disassembly section of this Literature 

Review. 

 O'Kane, Sezer, and McLaughlin (2011) described the mechanism of applying 

obfuscation to malware and Roundy and Miller (2013) discussed the popular 

obfuscation techniques used in malware and the strategies and tools used by malware 

investigators.  These popular obfuscation techniques can be found in Table 1.   

 

Obfuscation 
Technique 

Explanation 

Code Packing The main program content is compressed or encrypted and an 
unpacking program is added to the program.  The unpacking 
program runs first; expanding the programs executable content 
into memory then passes execution control to the in-memory 
version of the program.  
 

Code Overwriting The existing code is overwritten by new instructions placed into 
the execution path during runtime. 
 

Non-returning Calls A CALL instruction is used to jump to another location in code in 
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order to execute some instructions.  These instructions are 
followed by a RET (return) which brings execution back to the 
call location.  A CALL instruction could be substituted for a JMP 
(jump) instruction, so long as the destination instructions clean the 
extra return address from the stack.  This substitution confuses 
many disassembly tools. 
 

Call-Stack Tampering Similar to non-returning calls, call-stack tampering involves the 
non-standard use of the ret instruction to confuse disassemblers. 
 

Obfuscated Control-
Transfer Targets 

Instead of using the compiler-supplied direct control transfers, this 
obfuscation technique relies on using memory or register content 
to determine the location of the CALL and JMP functions. 
 

Exception-Based 
Control Transfers 

Signal- and exception-handling routines can be used for 
obfuscating control transfers in much the same way as discussed 
above.  Additionally, the signal- and exception-handler routines 
define the location in the program of where to resume once the 
handler has finished, adding further to the obfuscation of the 
control transfer. 
 

Ambiguous Code and 
Data 

By introducing a conditional branch to the instruction path where 
one of the conditions is never met, the disassembler may 
erroneously interpret the “junk codes” inserted into the never-
followed conditional path. 
 

Disassembler Fuzz 
Testing 

By adding seemingly random instructions to the program, the 
program can “fuzz test” the disassembler, which usually results in 
errors in disassembly due to incorrect interpretation or definition 
of the fuzzed instructions by the disassembler.  This technique 
also works in sandbox environments and is typically used to 
identify that the execution of a program is indeed sandboxed. 
  
 

Obfuscated Calls and 
Returns 

The program uses a call and ret pair rather than the more 
appropriate JMP instruction.  The addition of the code needed to 
undo the automatic stack modification can interfere with 
disassembly. 
 

Overlapping 
Functions and Basic 
Blocks 

Due to the dense nature of the variable instruction length IA-32 
architecture, small functions and code blocks are often able to 
overlap due to the duplication in a small subset of opcodes. 
 

Obfuscated Constants Using a known obfuscation algorithm, any constant defined 
within an executable program can be replaced by the seemingly 
random set of characters generated by the obfuscation algorithm.  
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The program, when run, will replace that set of symbols with the 
original value.  However, an analyst will not be able to identify 
these constants during casual observation (as can be done with 
constants that haven’t been obfuscated). 
 

Calling Convention 
Violations 

Calling conventions standardize the contract between a caller and 
callee function.  While many calling conventions exist, most 
compilers default to a standard calling convention.  By changing 
the calling conventions with a program, the difficulty of analysis 
will increase. 
 

Do-Nothing Code By adding additional instructions that have no purpose (beyond 
obfuscation), the real set of instructions is diluted which increases 
the likelihood it will be overlooked. 
 

Embedded Virtual 
Machines 

By translating original instructions into instructions that can be 
run only on a specific virtual machine, one that implements many 
of the above obfuscations, the true nature of the original program 
is effectively hidden. 
 

Stolen Bytes By implementing the first bytes of code from a function provided 
by an external library in one’s own code, and then removing the 
reference to the library, small sections of code are missing from 
an executable until the library is dynamically re-referenced during 
execution. 
 

Self-Checksumming The packer embeds a checksum of its own code into its code and 
then regularly checks the validity of the current image against the 
checksum.   
 

Anti-OEP (Original 
Entry Point)* Finding 

Since finding the OEP is so important in unpacking, packers 
implement these obfuscations within the bootstrap code as well, in 
an effort to hide the OEP. 
 
* The OEP is the first instruction to be executed by the program 
once de-obfuscated.  Typically the last instruction to be executed 
by the packer is a JMP (unconditional jump) to the OEP. 
  

Payload-Code 
Modification 

By linking the main program execution back into routines found 
in the packing stub, the packing stub becomes a critical section of 
code execution, rather than an artifact of analysis that can be 
discarded. 

Table 1 - Popular obfuscation techniques (Roundy & Miller, 2013) 
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 Ugarte-Pedrero et al. (2015) completed a longitudinal study of binary packers 

over seven years.  In the context of their research, and typically in analysis of binary 

executable files, the term ‘packer’ is used to generically describe a tool that compresses 

binary data, and optionally applies the obfuscations listed in Table 1.  By studying 

examples of packed malware over a period of seven years, the researchers were able to 

draw conclusions about how packer techniques and usage in malware have changed over 

the last number of years.  In addition to the results of this study over time, the 

researchers proposed a taxonomy of complexity types for packers (Ugarte-Pedrero et al., 

2015).  Their packer complexity types are listed in Table 2 (Ugarte-Pedrero et al., 2015). 

The researchers continued by demonstrating that an assumption made by many reverse-

engineering and analysis procedures is false in that there is a complete and de-

obfuscated image of the executable in memory during some phase in the binary file’s 

execution (Ugarte-Pedrero et al., 2015).  

Complexity Type Description 
 

Type I A single packing routine executes before transferring execution 
to the unpacked program. 
 

Type II Multiple unpacking layers, each of the layers executed 
sequentially in order to unpack the following code.  The 
packing routine transfers execution to the unpacked program 
once all the packing layers have been removed. 
 

Type III Similar to Type II, however instead of sequential execution of 
the unpacking layers, the packing layers are organized in a 
more complex topology that includes loops.   
As a result, the original code may not be located in the last, or 
deepest, layer.  In such cases, the last layer often contains 
integrity checks, anti-debug routines, or a portion of the packer 
routine (which has also been obfuscated). 
In Type III there is still a final execution transfer to the original 
code. 
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Type IV Type IV packers are either single or multiple-layered and 
interleave portions of the packer code into the execution of the 
original code.  The portion of the packer code responsible for 
unpacking is not interleaved into the main execution body.   
While there is still a precise moment where the entire original 
code is completely unpacked in memory, the transition is 
difficult to detect due to the jumping between packing and 
application layers (due to the interleaving of the two). 
 

Type V A packer of type V has interleaved the packer into the original 
program to the extent that the packer unpacks each program 
frame (a small set of instructions) at a time for execution.   
As a consequence, the transfer of execution happens more than 
once, and for each transfer, there is only the single frame of the 
original program revealed.  A full image of the original 
application is available immediately following the termination 
of the program itself. 
 

Type VI Packers of type VI describe a packer that unpacks only a single 
fragment, as small as a single instruction, at a time.     
Virtual Machine type packers belong to this type of packer. 

Table 2 - Packer complexity types (Ugarte-Pedrero et al., 2015) 

 
Binary File Disassembly 
 

Disassembly is defined as a method of extracting the set of CPU processor 

instructions, in the proper sequence, that make up a computer program from an existing 

executable file (Vigna, 2007).  The challenge of correctly disassembling binary code is 

difficult “because fully correct x86 disassembly is provably undecidable: Bytes are code 

if and only if they are reachable at runtime – a decision that reduces to the halting 

problem” (Wartell, Zhou, Hamlen, Kantarcioglu, & Thuraisingham, 2011, p. 11).  

Disassembly of unknown binary executable files that have the x86/x64 architecture is 

made more difficult due to the variable length of instructions and the comingling of 

instructions and data (Zwanger, Gerhards-Padilla, & Meier, 2014).  Wartell et al. (2011) 

showed that IDA-Pro (Hex-Rays SA, 2015b) can make the following mistakes in 

disassembly:  misclassifying data as returns, misaligned code bytes that are interpreted 
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as 16-bit legacy instructions, mislabeled padding bytes, and flows from code to data.  In 

response, these researchers developed an automated disassembler that more accurately 

separated code and data segments.   

There are utilities that “strip” binary files, in much the same way as many 

obfuscation engines, removing the jump table and other diagnostic information from the 

transformed image of the original binary executable file, which is a significant challenge 

for disassembly or reverse engineering the unknown binary.  Cifuentes and Van 

Emmerik (1999) proposed a method based on program slicing and expression 

substitution to recover the lost jump table.   

In response to the typical lack of accuracy in automated disassembly of unknown 

executable files, Krishnamoorthy, Debray, and Fligg (2009) described a machine-

learning based approach that used decision trees to identify possible errors in static 

disassembly, and Zwanger et al. (2014) created a set of classifiers that could accurately 

locate code sections in many types of unknown files. 

 X. Chen, Andersen, Mao, Bailey, and Nazario (2008) discussed the challenges of 

disassembling unknown binary executable files due to both anti-virtualization and anti-

debugging techniques that can be applied to binary executable files to thwart analysis. 

For this research, disassembly will include static disassembly techniques using generally 

available plug-ins for IDA-Pro (Hex-Rays SA, 2015b) and dynamic disassembly 

techniques based on tools written for the QEMU whole machine emulator (Bellard, 

2005).    Beyond the specific techniques discussed in the following subsections on 

dynamic and static analysis, research on deobfuscation techniques has been done in (B. 

Lee, Kim, & Kim, 2010; Lin, Zhang, & Xu, 2010; Luo, Ming, Wu, Liu, & Zhu, 2014; 
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Popa, 2012; H. Qiu & Osorio, 2013; Vigna, 2007; Xie, Li, Wang, Su, & Lu, 2012) with 

varying levels of success on specific variants of specific obfuscations. 

Dynamic Analysis 
 

Dynamic analysis of a binary executable file involves executing the file on some 

system that is tracing the execution path and logging instructions and system state as the 

execution progresses.  Dyninst was an early example of a tool for dynamic analysis of 

known and unknown binary executable files.  It was written to be a tool to enable 

structured modification of a binary file outside of the standard development 

environment of source code editor and compiler.  The structured modification capability 

was implemented as a set of C++ class libraries that could be linked together to allow 

for program instrumentation (Buck & Hollingsworth, 2000).  Dyninst enabled the 

instrumentation of an unknown binary for the extraction and logging of instructions that 

were flagged as instrumented.  Harris and Miller (2005) offered new insights into the 

analysis of stripped binary code using an analysis framework based on Dyninst.  It was 

reported that this framework was able to produce a 95.6% average recovery rate for 

recreating the symbol table stripped from the original binary file.  Rosenblum et al. 

(2008) was able to extend the capability of Dyninst to build system that could identify 

function entry points (FEPs) in unknown, obfuscated programs.  Due to the nature of 

most obfuscation routines, the symbol information needed to accurately identify FEPs in 

an executable are missing which is a challenge for static analysis. 

QEMU is a software-only machine emulator that could be used to trace through 

the execution of computer programs (Bellard, 2005).  QEMU has been used for many 

types of analysis, including performance tuning, debugging, and security-based analysis 
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of binary executable files (Bellard, 2005).  Egele, Kruegel, Kirda, Yin, and Song (2007) 

extended the QEMU environment by creating a dynamic taint propagation engine that 

could reliably classify unknown browser helper objects that behaved like spyware.   

Taint analysis involves running a program while observing which computations are 

affected by predefined taint sources such as user input.  Techniques in taint propagation 

are used to identify how tainted data flows through a program and what impacts this 

tainted data may have on normal program execution (Schwartz et al., 2010).  Moser, 

Kruegel, and Kirda (2007b) then extended the QEMU environment further by creating a 

system that could explore multiple execution paths by taking note of instruction 

branches and the values that determined the branch decision and later returning to the 

decision point and replaying the execution with new values.  By returning to the 

decision point and following the alternate execution path, a typical limitation of 

dynamic analysis could be minimized.  A computer program source code retrieval 

system called Top was introduced in Zeng et al. (2013), which used QEMU and PIN to 

reconstruct sources from binary executable files using dynamic binary instrumentation 

(DBI).  Henderson et al. (2014) extended QEMU further with DECAF, a virtual 

machine based, multi-target, and whole-system emulating dynamic binary analysis 

system. 

 Another tool built upon QEMU is TEMU (TEMU, 2009), but for TEMU, the 

emulator is able to provide whole system dynamic taint analysis.  TEMU was the 

foundation that BitBlaze, a binary analysis framework, was built on (Song et al., 2008).  

M. G. Kang, Poosankam, and Yin (2007) created Renovo, which extended the 

TEMU/BitBlaze tool set to iteratively unpack binaries that were obfuscated with 
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multiple layers of obfuscation (see Table 2, complexity type II).  The tool showed 

encouraging results, but was unable to fully unpack binary files that utilized the 

obfuscation technique of “embedded virtual machine” (see Table 1).  Vine was the 

component of BitBlaze that provided static analysis capability for use with unknown 

binary executable files.  BAP (short for Binary Analysis Platform) was created as a re-

write of Vine to facilitate the analysis of assembly language instructions (Brumley, 

Jager, Avgerinos, & Schwartz, 2011).  The Phoenix decompiler is one of the projects 

that use the intermediate representation that is output by BAP (Schwartz, Lee, Woo, & 

Brumley, 2013). 

As previously introduced, PIN is another DBI tool that is used for the 

instrumentation of binary executable files on the x86/x64 architectures (Luk et al., 

2005).  PIN is a flexible toolkit that has often been used in security related research 

including (R. Balakrishnan & Anbarasu, 2013; Kwon & Su, 2010; Veeralakshmi & 

Sindhuja, 2013). 

 Bhansali et al. (2006) proposed a runtime framework that would collect a 

complete trace, down to the instruction level, of a program’s execution.  This 

framework, named Nirvana, had good performance and accuracy characteristics, and the 

trace output could be used for analysis purposes.  Nanda et al. (2006) presented BIRD, 

the Binary Interpretation using Runtime Disassembly system, that consisted of two 

passes: the first uses recursive traversal disassembly, and the second pass treats all 

unreachable bytes as instructions and performs another iteration of the same recursive 

traversal disassembly on these bytes. 
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 Martignoni, Christodorescu, and Jha (2007) built OmniUnpack which was built 

on, and addressed the limitations of the static analysis tool PolyUnpack (Royal, Halpin, 

Dagon, Edmonds, & Lee, 2006).  An additional benefit of the dynamic unpacking tool 

OmniUnpack was that it could properly unpack executable files with anti-debugging and 

other offensive capabilities (Martignoni et al., 2007). 

 Sharif, Yegneswaran, et al. (2008) describe Eureka, a framework that combined 

coarse-grained execution tracing and statistical bigram analysis to accurately unpack 

binary executable files of unknown origin, obfuscation, and authorship.  Unlike other 

contemporary binary analysis tools that monitored the progress of unpacking the target 

binary on an instruction-by-instruction (fine-grained) basis, Eureka only hooked the 

system call interface, specifically the NtTerminateProcess call (coarse-grained), to 

trigger a write to disk of the contents of the process memory.  The assumption was that 

the unknown binary would be at its most unpacked state just prior to exiting. 

 Dinaburg et al. (2008) presented Ether, a malware analysis framework based on 

hardware virtualization extensions.  By using hardware extensions, Ether was able to 

address the shortcomings of QEMU-based solutions.   Alazab (2015) used Ether to study 

and characterize types of malware and variants in an effort to create a system that could 

accurately profile malware, allowing for the implementation of countermeasures in a 

timely and appropriate manner.    

 Rolles (2009) offered guidelines that could be followed to unpack binary 

executable files that were obfuscated with virtual machine type obfuscation.   
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Sharif, Lanzi, Giffin, and Lee (2009) demonstrated a proof-of-concept system called 

Rotalumé that had good success in extracting bytecode traces, syntax, and semantic 

information from the virtual machine obfuscated binary executable file specimens. 

Coogan, Lu, and Debray (2011) extended this previous work and proposed a method 

that would return 50-75% of the original binary executable file from its virtual machine 

based obfuscation. 

 Y. Wu, Chiueh, and Zhao (2009) created Uncover, a dynamic binary 

instrumentation tool that could accurately evaluate the workings of packed binaries by 

entropy analysis during execution to accurately track unpacking process during runtime.  

Uncover was shown to work well, but made assumptions that would prove troublesome 

for malware disassembly, including the inability to unpack sections of the executable at 

a time and that there would be no anti-disassembly routines embedded in the binary. 

 Coogan, Debray, Kaochar, and Townsend (2009) proposed a system that 

combined dynamic and static analysis by having the unpacking code identified using 

static analysis methods and then as a second step used these results to construct a 

customized unpacker for that binary.   They report good results using this hybrid 

approach to disassembling unknown binary executable files. 

 Kawakoya, Iwamura, and Itoh (2010) developed a debugger that unobtrusively 

monitored memory accesses of a process for the purpose of returning page execute 

access requests in order to address the concern that some obfuscated binaries unpack 

only portions of their code at a time, or recursively pack their content.  



 

 

53 

 Charif-Rubial et al. (2013) proposed MIL, based on MAQAO (Barthou, Rubial, 

Jalby, Koliai, & Valensi, 2010), which is a binary instrumentation tool that can 

accurately disassemble optimized code used in parallel processing applications. 

Static Analysis 
 

Alternatively, a binary executable file can be studied using static analysis 

techniques, which analyze the file without it being executed by the computer.   Cifuentes 

and Gough (1995) described the structure of a decompiler for computer programs: a 

software program that could revert the binary executable back to its human readable 

source code.  Cifuentes also presented an integrated environment for the reverse 

engineering of programs in (Cifuentes, 1995, 1996). 

 Schwarz et al. (2002) discussed the primary methods for disassembly: linear 

sweep, where the disassembler decodes everything in order that bytes appear in the 

binary file sections, and recursive traversal, where the disassembler starts at the entry-

point of the binary file and traverses down through the executable following the flow 

and logic of the file.  Schwarz et al. (2002) offered weaknesses in both methods and 

proposed to improve the accuracy of the disassembly process using either an extended 

linear sweep algorithm or a hybrid approach that was able to check the results of 

disassembly as the disassembly was happening.  Vinciguerra et al. (2003) expanded on 

this discussion of the methods of disassembly, including Linear Sweep (LS), Extended 

Linear Sweep (ELS), Recursive Traversal (RT), Data-Flow guided RT (DRT), and 

Hybrid ELS/RT and the tools and procedures used to disassemble binary executable 

files. 
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 Kruegel, Robertson, Valeur, and Vigna (2004) implemented a disassembler that 

used a control flow graph from an obfuscated binary executable as well as statistical 

techniques that could accurately disassemble programs obfuscated with the techniques 

described in (Linn & Debray, 2003). 

 Udupa, Debray, and Madou (2005) proposed a method that combined aspects of 

static and dynamic analysis and was based on the specific obfuscation mechanism being 

addressed.  Royal et al. (2006) demonstrated PolyUnpack, a static unpacking tool that 

could be used to force a malware sample to self-identify as being packed by comparing 

its runtime execution against its static code model. 

 Caballero, Johnson, McCamant, and Song (2009) created a tool using hybrid 

disassembly, symbolic execution, jump table identification, and inference to extract 

functions from binary executable files for use in other source-based applications. 

 As defined in both the Obfuscation and the Dynamic analysis sections, virtual 

machine obfuscation continues to present challenges for accurate disassembly, and 

(Kinder, 2012) discussed potential strategies that might be employed to accurately 

analyze binaries using static analysis methods that have been obfuscated with 

virtualization type obfuscators. 

 
Representation & Comparison  
 

In much the same way as natural language authorship attribution first extracts 

measurable features from a document specimen for later comparison of authorship 

features, binary files must also first be analyzed before comparison.  The first binary file 

comparison techniques involved simple byte/location based matching (Coppieters, 

1995).  Shortly following this byte-matching process, Zheng Wang et al. (1999) 
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recognized that programs could be broken down into execution blocks and that 

execution blocks from two programs could be very similar, if not identical.  The 

researchers observed that a program could have “primary changes” – changes directly 

attributed to the programmer:  addition of new code, deletion or modification of existing 

code.  In addition to primary changes, “secondary changes” could also be observed as a 

result of the changes in control flow instruction targets, pointers, register allocation, etc. 

These secondary changes posed challenges to simple matching techniques.  The 

researchers introduced BMAT, a tool that could match binaries with a measured 

accuracy of over 98%. 

 A further extension of the aforementioned research is presented by Flake (2004), 

where Flake described a system that created control flow graphs that represent binary 

programs.  By transforming the binary program into a control flow graph, all compiler-

introduced variability is removed, leaving only the specific flow of execution through 

the binary.  Flake showed that this transformation to control flow graphs allowed for 

higher accuracy binary comparison as well as being able to identify differing regions in 

two file specimens.   

 Dullien and Rolles (2005) extended Flake’s work by adding the capability to 

accurately represent differences between versions of files based on instruction ordering.  

Another challenge encountered with control flow graph based binary analysis is that 

certain changes to code, like loop iteration counts and buffer sizes do not change the 

graph representation, causing analysis to improperly match code that is different.  In 

response to this challenge, H. Park, Choi, Seo, and Han (2008) proposed a solution 

using control flow graph analysis with the addition of constant values that have been 
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extracted from the code during transformation.  These extracted values are then added to 

the analysis layer to further refine the matching process.  

 Gao et al. (2008) presented BinHunt, a tool that reported high levels of accuracy 

in identifying semantic differences between files based on the control flow of the 

program using a technique that involves a new graph isomorphism technique, symbolic 

execution, and theorem proving.  Once transformed into graphs, the two specimen files 

were executed symbolically and the output of each graph was compared using a 

theorem-proving solver.   

 Another of the principle challenges in the use of control flow graphing as a 

mechanism to compare binary files, is the computational complexity of matching graphs 

(Unger, 1964).   B. Kang, Kim, Kim, Kwon, and Im (2011) proposed the addition of a 

Bloom filter to the control flow graph analysis to reduce the processing overhead found 

in previous implementations.  Similarly, Bourquin, King, and Robbins (2013) proposed 

a method of binary file comparison using control flow graphs with Hungarian equations 

as a method of reducing the computational complexity of the matching.  This new 

method produced a tool called BinSlayer that, while still in development, showed great 

promise in terms of both matching accuracy and speed of comparison.  

 Alam, Horspool, Traore, and Sogukpinar (2014) put forward additional 

improvements in performance of control flow graph comparisons by adding annotations 

to the control flow graph and the addition of a sliding window of comparison to the 

generic control flow graph analysis technique.  These improvements allowed for both 

performance increases as well as higher levels of accuracy in comparison, even when 

similar binaries have undergone external obfuscation or different compiler 
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optimizations. 

 Ryder (1979) presented an alternate, but similar graph based strategy for 

program analysis: call graphs.  Call graphs are similar to program flow graphs, except 

that instead of building the graph based on conditional branching instructions, the 

graphs are built around system and function calls.  As previously introduced, Harris and 

Miller (2005) created a tool called Dyninst that could be used to reconstruct stripped 

executable files using a combination of both control flow graphs and call graphs.   

(Kinable, 2010; Kinable & Kostakis, 2011) used call graphs to identify and classify 

malware.  Their research demonstrated that function and system calls, and their 

frequency and patterns of use, could be used to create signatures that could be used to 

identify similarities in malware. 

With an appreciation that call graph analysis suffers from the same 

computational complexity challenge as control flow graphs, Kostakis, Kinable, 

Mahmoudi, and Mustonen (2011) applied simulated annealing to the call graph analysis 

in an effort to reduce computational complexity.  Simulated annealing takes a known 

configuration (in this case a set of call graphs), a configuration changing mechanism that 

operates at random, a comparison function to measure the improvement (if any) in the 

change in configuration, and a schedule to determine how long to run the simulation in 

order to automatically find the optimal matching solution (Kirkpatrick et al., 1983).  

Nascimento, Prado, Boccardo, Carmo, and Machado (2012) chose to implement a 

comparison system for binary files that extracted the program features from the call and 

control flow graphs and, instead of comparing sub-graphs for similarity, fed the 

extracted features into a feed forward neural network for classification of similarity. 
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 In an effort to increase the match capability of the system, Joonhyouk Jang, 

Choi, and Hong (2012) proposed to add additional structural features of the files under 

test to the call graph based comparison.  D. Qiu, Li, and Sun (2013) attempted to 

improve the matching capability of the algorithm by adding both the structure of the 

binary and a computed class diagram to the graph of the binary under examination. 

 Y. R. Lee, Kang, and Im (2013) worked toward increasing the speed of analysis 

by creating call graphs that were used not for comparison purposes, but for creating n-

grams of the sub-trees that could then be used for comparison.  These call-graph 

spawned n-grams have been shown to be as effective in matching binaries as a pure 

graph comparison approach while not being as computationally intensive as the pure call 

graph solving method.  Similarly, Zhimin Yin, Yu, and Niu (2013) created call graphs of 

binaries,  and then transformed the call graphs into a set of vectors that could be 

visualized using colors and shapes.  Similar features within binaries are made apparent 

in the patterns and colors of the visualizations.  Instead of control flow graphs as the 

input mechanism for signatures, Cesare and Xiang (2011) created signatures from call 

graphs. 

 Zhang and Reeves (2007) created a system called Metaaware that was able to 

identify metamorphic variants of a particular malware type based on the pattern of 

library and system functions that were called.  Ahmed, Hameed, Shafiq, and Farooq 

(2009) demonstrated that spatial-temporal measurements of API calls in binary 

programs could also accurately and uniquely provide identification of a binary file.   

(Alazab, Venkataraman, & Watters, 2010; Iwamoto & Wasaki, 2012) recognized that 

the behavior of a piece of malware could be understood by extracting the API calls from 
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the binary.  Han, Kang, and Im (2011) further demonstrated that malware could be 

classified by identifying the frequencies of instructions within the program.   

One of the latest advancements in the field of call graph analysis for malware 

similarity comes from Kostakis (2014), where they created a new system named 

“Classy”, a distributed system that allows for the clustering of large streams of call 

graphs.  This distributed system has shown very good accuracy while maintaining 

acceptable levels of performance. 

Other researchers have looked towards binary file comparison with the idea that 

if low-level representations of code were similar, then higher levels of code, including 

source code, should be similar as well (Chaki et al., 2011; Juricic, 2011).   (Davies et al., 

2011; Godfrey, 2013) proposed digital “Bertillonage”, whereby coarser measurements 

of program similarity are compared with the assumption that if these coarser 

measurements are similar then it is reasonable to conclude that the sources were also 

similar. 

 Another means of classifying and comparing binary files involves the study of 

the binary file’s behavior as it executes on a machine.  Egele, Scholte, Kirda, and 

Kruegel (2012) provided an overview of the most common methods.  Among the 

common methods is the family of methods that involve running the unknown binary in 

some type of sandbox, usually a virtualized machine, and recording its output (Moser, 

Kruegel, & Kirda, 2007a; Rieck, Trinius, Willems, & Holz, 2011; Trinius, Holz, Gobel, 

& Freiling, 2009; Trinius, Willems, Holz, & Rieck, 2009).  Palahan, Babić, Chaudhuri, 

and Kifer (2013) were able to build a system call dependency graph that identified 

significant behaviors from binary specimens executed within a sandbox. However, 
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Huang, Lee, Kao, Tsai, and Chang (2011) noted that analysis done from within a 

virtualized system may result in inaccurate conclusions due to subtle differences in 

execution environments or program design.  An analysis method that attempts to 

balance the fully managed environment of a virtual machine against the accuracy of 

“bare metal” execution is done by instrumenting the system in such a way that the 

system provides extensive monitoring and logging of its own state, such that the 

executable is being observed, not through its own execution, but rather by interaction 

with the running system below it (Apel, Bockermann, & Meier, 2009; Bai, Hu, Jing, Li, 

& Wang, 2014; Ding, Dai, Yan, & Zhang, 2014; Egele, Woo, Chapman, & Brumley, 

2014; Qiao, Yang, He, Tang, & Liu, 2014). 

One of the other longstanding methods of analyzing binary files for comparison 

purposes is the creation and matching of signatures derived from the binary file itself.  

Walenstein and Lakhotia (2007) and Walenstein, Venable, Hayes, Thompson, and 

Lakhotia (2007) used an approach based on vector comparisons to identify similar 

binaries.  The vectors are based on both n-grams and n-perms (defined previously). 

 Zhiyi Yin et al. (2008) created a fingerprint of an executable using “color 

moments” in an effort to easily and accurately identify similar versions of files, while  

Barr, Cardman, and Martin Jr (2008) used an ensemble of clustering algorithms to create 

a technique that correlates both functions and global data references to provide quick 

and accurate comparison of two files.    

 (Acosta & Medina, 2012; Acosta, Medina, & Mendoza, 2012) developed an 

algorithm for comparing binary files by using the quantity and quality of the set of 

longest common substrings in each file as a basis for comparison.  Blokhin, Saxe, and 
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Mentis (2013) extended this research of longest common string analysis methods with 

the addition of using run-time logs that featured call-stack data to create traces that can 

be compared for program similarity.  Similarly, Adkins, Jones, Carlisle, and Upchurch 

(2013) used a sliding window approach to identify matching sections of code for the 

purpose of creating a similarity ratio and Liangboonprakong and Sornil (2013) used n-

gram sequential patterns to identify features of malware.  Luo et al. (2014) created a 

system named CoP that implemented two levels of analysis to create a more accurate, 

obfuscation resilient ensemble method for determining how similar two binaries were.  

First, the system symbolically modeled the program’s basic block with a theorem solver, 

and then implemented a longest common subsequence algorithm that could accept non-

matching portions of the sequence, effectively negating the effects of common code 

obfuscation methods. 

 Other methods, including the use of pushdown systems (stacks) (Macedo & 

Touili, 2013) and hidden Markov models to identify hidden states that could identify 

similar features of metamorphic malware have been investigated in an effort to 

accurately compare binary executable files (Austin, Filiol, Josse, & Stamp, 2013).  

As discussed in the Compiler Chain Provenance section, (Farhadi, 2013; 

Farhadi, Fung, Charland, & Debbabi, 2014) have proposed a method to identify code 

clones in binary files.  Code clones can be identified in a binary file, then used to 

provide reference to future clones, thus shortening the time required to complete a 

binary analysis. 

McMillan et al. (2012) proposed the idea of comparing semantic anchors (for 

example API calls) between two files to identify their similarity.  With API calls being 
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defined in purpose-oriented libraries, two programs using the same libraries and the 

same calls within the libraries share similarities.  Additionally, the researchers defined 

weights based on commonality of API calls and patterns of co-occurrence of API calls 

in order to classify the similarity of Java programs.  The combination of these three 

features produced similarity measures that were more accurate than other systems 

considered state of the art at the time.  In an effort to identify similarity in binary 

fragments, Lakhotia, Preda, and Giacobazzi (2013) created a system whereby 

abstractions of the semantic actions of basic blocks could be compared measure 

similarity.  These abstractions, call the ‘juice’ of a binary, could be used to compare 

basic blocks from within binary files because the abstraction process removed code 

variations like register renaming, memory address allocation, and constant replacement 

from the block representations.  Their experimental results show that this new 

abstraction represented an improvement in previous uses of symbolic interpretation to 

discover similarity between code fragments.   Chaki, Cohen, Gurfinkel, and Havrilla 

(2013) proposed a system to hash each basic block into a semantic signature for the 

purpose of identifying similarity in binary files that had different compiler optimizations 

enabled.  Their use of hashes, unlike some other systems that compare graphs of basic 

blocks for similarity, resulted in good accuracy and good performance.  Finally, 

Ruttenberg et al. (2014) created a system that demonstrated high accuracy results and 

was based on extracting semantic information from blocks of binary code for the 

purpose of identifying similar components in different specimens of malware. 

Binary File Authorship Attribution 
 
 As early as 1993, Spafford and Weeber (1993) and again in Gray et al. (1997) 
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suggested that it should be possible to extract author identifying traits from computer 

binary programs for comparison purposes.  Review of the literature suggests that most 

authorship attribution research has been directed toward the case where computer source 

code was analyzed rather than computer binary executable files.  It appears that the first 

concerted effort to determine authorship in binary files was done by Rosenblum, Zhu, et 

al. (2011). In that research, a system was devised whereby code from an arbitrary binary 

file could be reduced to a set of predefined feature templates.   Instead of dealing with 

the challenge of determining what features ought to be selected for author attribution a 

priori, Rosenblum, Zhu, et al. (2011) choose to focus on collecting all the features 

available in the program.  These features were both numerous and very simple.  After 

collection, the researchers allowed supervised machine learning algorithms to detemine 

the best features to classify authorship based on a set of programs with known 

authorship.  The classification results were used to create a k-means clustering algorithm 

(Bishop, 2001) which was used to determine authorship in an unsupervised capacity. 

Rosenblum, Zhu, et al. (2011) used feature templates as a means of describing 

patterns that would be instantiated into many concrete features of binary files.  Their 

feature templates included idioms, graphlets, supergraphlets, call graphlets, n-grams, 

and external interations.  While idioms captured low-level details of the instruction 

sequence underlying a program, graphlets captured details that represented program 

structure.  Supergraphlets were made up of graphlets that were combined with a random 

neighbour and then collapsed.  Call graphlets captured both the interprocedural control 

flow of a program as well as interactions with external libraries.  Finally, n-grams are 

short sequences of bytes taken directly from the binary program itself and external 
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interactions with libraries were simply counted.  All of the collected features from 

multiple examples of binaries written by a known author were then fed into a supervised 

learning classification system to determine how much each feature contributed to 

attribution and how accurately the identity of an author could be inferred from the 

generated model (Rosenblum, Zhu, et al., 2011). 

The researchers also applied unsupervised clustering to determine how well the 

computed clusters reflected the actual authorship of a program and whether the stylistic 

characteristics learned from one set of authors could improve the clustering of programs 

written by different authors.  The results of the classification system showed positive 

results with 77% accuracy in selecting the correct author from a pool of 20 and the 

improvement offered by the learned metric in the clustering algorithm was significant at 

a 95% confidence level for all measures (Rosenblum, Zhu, et al., 2011). 

As part of their research, Alrabaee et al. (2014) found that the results published 

by Rosenblum, Zhu, et al. (2011) were overly optimistic compared to their efforts to 

replicate Rosenblum’s findings. Alrabaee et al. (2014) concluded that many of the 

indicators of authorship identified by Rosenblum’s classifier did not classify on 

programmer style, rather it classified based on similarities of function names or contants 

defined during compilation.   As a result of these discrepancies, Alrabaee et al. (2014) 

proposed their own process for identifying the author of a binary file of unknown 

provenance.   

The first steps of the process defined in Alrabaee et al. (2014) was to filter out 

the portions of the binary file that came from external libraries.  The process of 

attribution continued on the user-contributed portion of the binary file with their Code 
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Analysis Layer (CAL), which compared the code in the binary to existing samples of 

programming contructs stored in a Software Template Library (STL).  In addition to the 

comparison of code segments with those found in the STL, hashes were made of code 

blocks. Alrabaee et al. (2014) found that blocks of binary code from similarly coded 

programs will have a high ratio of matched hashes.  Finally, code sections were reduced 

to Register Flow Graphs (RFG) for the purpose of creating generic signatures of blocks 

of code which would allow for inexact matching of signatures between two blocks.  All 

of these data were directed towards a supervised machine learning classification 

algorithm with the goal of creating an author profile of each author of a set of specimen 

programs.  Once these profiles were created, binary files of unknown provenance could 

be analyzed and compared to the profile data in order to match the author. 

The classification scheme used in Alrabaee et al. (2014) is based on a 

hierarchical classification system as described in Barthélemy, Brucker, and Osswald 

(2004) and contains a manual step which allows for intervention into the classification 

process should the case arise where there the number of selected classes “for a given 

author are too numerous” (Alrabaee et al., 2014, p. 101).  A second potential limitation 

in the classification strategy used in Alrabaee et al. (2014) is the requirement to define a 

similarity function for the valued class system.  These similarity functions can introduce 

bias into the classification system, especially where there can be multiple interpretations 

and thus measurements of similarity between discrete attributes (Witten et al., 2011). 

Alrabaee et al. (2014) report lower false positive rates of author identification in 

cases of attribution of a binary file of unknown provenance than the results reported in 

Rosenblum, Zhu, et al. (2011), but admitted there is additional research to be done 
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regarding binaries created using different programming languages, programs compiled 

using different compilers, and programs that have been obfuscated.  In a subsequent 

survey paper on the feasibility of malware authorship attribution, a research team made 

up of three of the four original researchers conducted experiments that showed that 

some feature ranking was an incorrect byproduct of the IDA-Pro (Hex-Rays SA, 2015b) 

disassembly process  rather than features of author style (Alrabaee et al., 2016). 

In Caliskan-Islam, Yamaguchi, et al. (2015), the researchers added additional 

features to the the feature set that would be used in the classification of authorship in 

binary exectuabe files.  They used the results of two automated decompilation tools 

(Hex-rays (SA, 2016) and Snowman (Derevenets, 2016)) to identify lexical and 

syntactic features of the files under examination.  The syntactic features came from 

passing the decompiled pseudo-code into a tool called joern (Yamaguchi, 2016), a tool 

that is capable of producing fuzzy Abstract Syntax Trees (ASTs) from decompiled 

pseudo-code. ASTs have been used in previous research on author attribution of 

computer source code because ASTs have been shown to capture features within them 

that are highly effective in representing programming style (Caliskan-Islam, Harang, et 

al., 2015; Wisse & Veenman, 2015).  

During the process of decompilation, Snowman (Derevenets, 2016) creates 

control flow graphs.  Caliskan-Islam, Yamaguchi, et al. (2015) used features taken from 

the control flow graph data in addition to using the decompiled pseudo-code produced 

by Snowman during the classfication step. 

Finally, in addition to the features contributed from the decompilation and 

control flow graph steps, Caliskan-Islam, Yamaguchi, et al. (2015) used two different 
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disassembler engines (radare2 (pancake, 2016) and nasm (NASM development team, 

2016)) to extract the op-code instruction data from the executable files.   

The sheer number of attributes that were created as a result of these analysis 

steps forced the use of information gain (Quinlan, 1986) calculations to reduce the 

dimensionality of the feature set.  The reduced feature set was then used to train a 

random forest (Breiman, 2001) classifier using k-fold cross-validation (Witten et al., 

2011).  In this research, the number of folds (k) was determined by the number of binary 

samples contributed by each author.  The number of trees created in the forest was set to 

500, which was empirically determined to provide “the best tradeoff between accuracy 

and processing time” (Caliskan-Islam, Yamaguchi, et al., 2015, p. 6).  These researchers 

have demonstrated higher classification accuracies on significantly larger author pools 

than previously attained, a limitation identified in the research of both Rosenblum, Zhu, 

et al. (2011) and Alrabaee et al. (2014).   

Like the previous research, Caliskan-Islam, Yamaguchi, et al. (2015) leaves the 

issue of binary file obfuscation to future research.  While this research shows promise in 

the area of authorship attribution in binary executable files, a full 58 percent of the 

features used in classification came from the decompilation phase.  As previously 

discussed in the Binary Obfuscation section, binary obfuscators significantly reduce (if 

not eliminate, based on the complexity category (see Table 2)) the ability to accurately 

decompile binary files back to their human readable source (Collberg & Thomborson, 

2002; Collberg et al., 1997). 
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Summary 
 
 This literature review began by outlining key research accomplishments in 

authorship attribution of natural language documents.  Progress has been made, from the 

simple counting of characters and character combinations to the use of sophisticated 

machine learning algorithms to identify the most distinguishing attributes in a dataset of 

text to the classification of authors based on those attributes, with exceptional accuracy.    

It’s not surprising that researchers then looked towards identifying those 

stylometric attributes in computer source code for the purpose of attributing authorship 

in computer programs.  Advances in this field were also accomplished in lock-step with 

advances in machine learning capabilities. 

If one considers that executable binary files are simply these human readable 

source code files transformed by the compiler into the binary language equivalent for 

the target processor (Aho et al., 2006; Grune, Van Reeuwijk, Bal, Jacobs, & 

Langendoen, 2012), it’s reasonable to attempt to apply these same classification 

procedures to the compiled code.  The task of authorship attribution of machine readable 

executable files will necessarily need to separate the contributions of the author and of 

the compiler in order to achieve high classification accuracy. 

 Working against the accurate classification of binary executable files, the work 

product of human programmers (and the functional requirements of same) continue to 

evolve over time.  Snippets of code, functions, or even full classes of human readable 

source code can be copied from any number of sources available on the Internet today.  

These copied components may not follow the author’s native style of authorship.  Both 
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the injection of plagiarized content and the natural evolution of programmers and 

programs must be accommodated in order to achieve the classification accuracy goals. 

Further, these executable files can be obfuscated using a plethora of options, 

each of which contributes to an increase in difficulty of reverse engineering the 

executable file for the purpose of analysis, description, and attribution.  As Collberg et 

al. (1997) suggested, extracting the original executable file from the obfuscated 

derivative may not be easily done. 

Obfuscated or not, one of the primary methods for reverse engineering these 

executable files back into some form that is human-readable is known as disassembly. 

There are two primary methods of disassembly: dynamic and static disassembly.  

Dynamic disassembly involves tracing the program instructions as they are executed by 

the processor.  The disadvantage of dynamic disassembly is that decision branches that 

are not executed are not included in the disassembly, which reduces the percentage of 

the file that is disassembled, thus reducing the number of instructions available for 

analysis.  Static disassembly involves tracing the program execution using an algorithm 

to traverse the instructions.  The disadvantage of this method is that Intel X86/X64 

assembly code is self-healing (Linn & Debray, 2003), which allows for the possibility of 

inaccurate or incomplete disassembly based on an incorrect offset into an instruction or 

block of instructions. 

Regardless of the method of disassembly, the human-readable program that is 

recovered during disassembly must be presented and stored in a format that allows for 

accurate and timely comparison.  The challenges discussed in this section regarding 

these two competing requirements demonstrate that accurate representation and 
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comparison of binary file artifacts is an area of research that still holds significant 

opportunity for advancement. 

Research has extended the study of attribution to binary files, with good success, 

but an open and remaining problem in binary file attribution is applying this attribution 

capability to files that have been obfuscated. 
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Chapter 3 
 

Methodology 
 
 

Overview 
 

In this chapter, a detailed methodology of the experiments that were designed to 

support the research objectives are described.  The research objectives, as captured by 

the Research questions and Dissertation goal sections, were to 1) classify authorship of 

obfuscated programs, 2) identify attributes that lend themselves towards classifying the 

author of an obfuscator and, by extension, fingerprinting the obfuscator, and 3) identify 

the impact of tool-chain provenance on accuracy of attribution.   

Both the Google Code Jam (Google, 2015) specimen files and the selected 

obfuscator tools were downloaded from the Internet.  The Google Code Jam (GCJ) files 

were compiled using compiler-specific default settings.  A baseline authorship 

attribution accuracy was measured using the procedure to be described in the following 

subsections.  After this baseline was determined using the executable files as they 

existed prior to obfuscation, the executable files were transformed using the downloaded 

obfuscator tools.  

The raw data used in the analysis of authorship attribution of the obfuscated 

executable files was collected using two different methods.  The first method was based 

on static analysis, an analysis technique in which the file is not executed during the 

disassembly or data collection process.  The second method was based on dynamic 

analysis techniques, which does include executing the file during the process of data 
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collection.  The raw instruction data underwent feature extraction, primary component 

analysis, and mapping to feature vectors.  These feature vectors were used in a 

supervised machine learning environment for the determination of authorship.  In the 

following sections, the preparation, compilation, feature extraction and analysis, and 

machine learning algorithms will be discussed in greater depth. 

Following the descriptions of the experiment preparation steps and experiments 

themselves, this chapter concludes with the following sections: Instrument development 

and validation, Format for presenting results, Resource requirements, and Summary.  

These final sections serve the purpose of adding richer technical context to the 

discussions of specific experiments and set the foundation for the findings to be 

discussed in the next chapter. 

 
The Obfuscation Tools 
 
Selection and Collection of Obfuscation Tools 
 

As discussed in the Literature Review section, there are literally hundreds of 

obfuscation tools in use today, each implementing different features designed towards 

making the obfuscated binary resistant to analysis or reverse engineering.  Obfuscator 

samples were selected using purposeful maximal sampling (Creswell, 2012) of specific 

obfuscators from within the full set of available binary file obfuscators.  Purposeful 

maximal sampling refers to the selection of specific cases that show as wide a selection 

of perspectives as possible (Creswell, 2012).  

By using purposeful maximal sampling, uniform coverage from all the complexity types 

listed in Table 2 was assured.  With assistance from the researchers who authored 

Ugarte-Pedrero et al. (2015), a list of obfuscation tools and their complexity types was 
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compiled and can be found in Table 3.  The experiments listed in the remainder of this 

Methodology chapter used these specific obfuscators as representative samples for each 

complexity type. 

 As shown in Table 3, a mix of obfuscators from each of the six complexity 

categories were downloaded from sites on the Internet.  The exact download locations of 

the obfuscators can be found in Appendix E.  

Complexity Type Obfuscator 
Type 1 UPX 3.91 

ASPack 2.40 
PESpin 1.33 

Type 2 YodasCrypter 1.3 
JDPack 1.01 
DotFix NiceProtect 6.0 

Type 3 UPolyX 0.5 
PECompact 3.02.2 
ASProtect 2.76 

Type 4 ACProtect 1.10 
ExeStealth 3.17 

Type 5 Beria 0.7 
EXPressor 1.8.0.1 

Type 6 VMProtect 3.03 
Themida 2.4.6.0 
Armadillo 8.0.4 

Table 3 – Obfuscation samples by complexity type 

The Data Set 
 

The specimen files came from the Google Code Jam (Google, 2015) contest, a 

contest that has been running since 2008, which features multiple submissions by 

individual developers solving specific computing challenges.  Submissions from 

contestants who did not advance to the finalist stage were excluded due to an 

insufficient number of submissions with which to build an accurate characterization of 

the author.  The number of problems and the number of competitors who reached the 

finalist stage and have taken part in the competition over multiple years did provide an 
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ample corpus of source code that could be compiled into binary executable files and 

then obfuscated for both describing stylometric similarity and authorship attribution 

testing. 

Preparation of Data Set 
 
 A Python script made available by the researchers who authored Caliskan-Islam, 

Harang, et al. (2015) was used to scrape the Google Code Jam pages for the contest 

standings and links to the file submissions.  Once these standings and submissions were 

collected, a second python script was used to download each submission in .zip file 

format.  The submissions were downloaded into a directory structure that captured the 

year of submission and the username of the submitter: 

Ø 2008 

o ACRush 

§ 32001.24439.0.zip   

§ 32002.24444.1.zip   

     … 

o Ahyangyi 

     … 

Ø 2009 

o ACRush 

     … 

o AdrianKuegel 

§ 186264.171116.0.zip 

§ 186264.171116.1.zip 
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     … 

Ø 2010 

… 

 
Compilation of Data Set Specimens 
 
 This research required three different configurations of compilation of the 

specimen files, using three different compiler tools.  The three configurations were 

“default”, “optimized for execution speed”, and “optimized for (minimal) file size”.  

The compiler configuration flags can be found in Table 4. 

 Default Optimize for Speed Optimize for Size 
MS VC++ (Microsoft, 2016b) <n/a> /O2 /O1 
Intel ICC (Intel, 2016) /0d /01 /02 
GNU GCC (GCC, 2016) -O0 -O2 -Os 

Table 4 - Compiler and optimization settings 

 For each compiler product, a Microsoft Windows 7 x86 virtual machine was 

created, configured with two processor cores and two gigabytes (GB) of memory.  Refer 

to Table 5 for product and patch version information for each compiler product.  

Required run-time dynamic link libraries (as determined by the compiler product) will 

be copied to the DECAF (Henderson et al., 2014) system to ensure successful program 

execution. 

 Version Patch Level 
MS VC++ (Microsoft, 2016b) 2013 VS2013 Update 5 
Intel ICC (Intel, 2016) 2016 Update 2 
GNU GCC (GCC, 2016) 4.9 .3 

Table 5 - Compiler version and patch level 

 While the GCJ contest does not place restrictions on the programming language 

of the submissions, this research used only those submissions that were written in 

C/C++.  Any submission that did not compile cleanly using the compiler options 
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specified in this section were excluded.  Submissions that compiled successfully but 

issued warnings during compilation were accepted as specimens for this research. 

 For each coding challenge, participants were allowed to submit a “short version” 

and a “long version” of their solution (Furrow & Naverniouk, 2016).   Each authorship 

attribution experiment used only one of the two submissions per coding problem per 

author in the training set.  

Static Disassembly and De-obfuscation 
 

Many of the obfuscation techniques listed in Table 1 break the algorithm used 

for disassembling code, whether the algorithm is based on linear sweep or recursive 

descent (Eagle, 2008).  The use of these obfuscation techniques mandates the use of an 

unpacking utility prior to disassembly.  Even though some obfuscation tools offer 

companion utility programs that can be used to de-obfuscate an executable file that was 

obfuscated by that specific obfuscator, to maintain consistency across all the obfuscators 

these companion tools were not used, even though these tools may have resulted in 

slightly higher prediction accuracies.  Instead, all the obfuscated specimens were first 

deobfuscated using the GUnpacker tool (Quick Unpack, 2017), as described in Figure 1.  

Dynamic Disassembly and De-obfuscation 
 

In addition to static disassembly, each specimen file was disassembled using 

dynamic analysis techniques using a full system emulator called DECAF (Henderson et 

al., 2014), which is based on QEMU (Bellard, 2005).  As discussed in the Literature 

Review section, dynamic analysis has the advantage of capturing execution at the 

instruction level as the binary application is being executed.   
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Feature Extraction 
 
Previous research has defined a set of feature types that exist within binary executable 

files and can be used to accurately attribute the author of the executable file (Alrabaee et 

al., 2014; Caliskan-Islam, Yamaguchi, et al., 2015; Rosenblum, Zhu, et al., 2011).  The 

feature types identified in these past research efforts are listed in Table 6, but have been 

organized by the similarity of the feature type rather than by the original researcher to 

identify the feature type.  In this research, n-grams (Rosenblum, Zhu, et al., 2011), 

disassembly unigrams, and bigrams (Caliskan-Islam, Yamaguchi, et al., 2015) have 

been simplified and reduced to the single feature type of opcode.   

 
 

Feature  

 
(Rosenblum, 
Zhu, et al., 

2011) 

 
(Alrabaee 

et al., 
2014) 

(Caliskan-
Islam, 

Yamaguchi, 
et al., 2015) 

 
 

This research 

N-gram X   Implemented as opcode 
Disassembly 
unigram 

  X 

Disassembly 
bigram 

  X 

Stuttering layer  X  Implemented with FLIRT 
(Hex-Rays SA, 2015a) and 
data post-processing. 

Graphlets X   Implemented as control flow 
graph hashes. SuperGraphlets X   

Call graphlets X   
Exact match  X  
Inexact match  X  Implemented as Register 

Flow Graphs.  RFG  X  
Idioms X   
Decompiled 
features 

  X Not used. 
 

Library calls X   Not used. 
 

STL repository  X  Not used. 
 

Table 6 - Features identified in binary executables for author attribution 
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In Alrabaee et al. (2014), the stuttering layer was primarily responsible for 

separating user and system portions of the application.  In this research, FLIRT (Hex-

Rays SA, 2015a) was used to separate user and system code in the static method, and a 

post-processing step which removes all instructions located in the system portion of the 

memory map was used in the dynamic method. 

 Graphlets, supergraphlets, call graphlets (Rosenblum, Zhu, et al., 2011), and 

exact matches (Alrabaee et al., 2014) have been reinterpreted as hashes of control flow 

graphs.  Classification is computationally simplified by taking the hash of the control 

flow graph (Alrabaee et al., 2014).  Idioms (Rosenblum, Zhu, et al., 2011) and inexact 

matches (Alrabaee et al., 2014) have been interpreted as equivalent to Register Flow 

Graphs (Alrabaee et al., 2014) and have been captured as a feature type in this research.  

Register Flow Graphs capture the flow and semantics of a control flow graph (Alrabaee 

et al., 2014). 

Obfuscated programs cannot be readily (or accurately) decompiled, thus none of 

feature types based on program decompilation are included in this research (Caliskan-

Islam, Yamaguchi, et al., 2015).  Similarly, library calls are stored in the Imports section 

of the Portable Executable (PE) file (Pietrek, 1994), but obfuscators typically remove 

this section (Roundy & Miller, 2013).  Finally, the Software Template Library (STL) 

(Alrabaee et al., 2014) stored collections of opcodes that, when used together, typically 

represent some common programming syntax.  Since obfuscators insert junk operations, 

unroll loops, and insert additional subroutines (Collberg et al., 1997; Roundy & Miller, 

2013), no feature types based on the STL will contribute to the classification process.  
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However, because the obfuscated samples will still have an observable behavior 

that is identical to the original sample (Collberg et al., 1997), elements of original 

structure of the sample must still exist within the obfuscated sample.  Even though these 

original elements were obfuscated, the nature of the supervised learning classification 

algorithms used in this research allowed for the identification of similarities, and those 

similarities were weighed, combined with others, and then were used to compute a 

likelihood of similar authorship in the samples. 

Having chosen the feature types to use for author classification, the assembly 

language formatted output of the static disassembly and dynamic instruction collection 

was put through an automated process to separate the user instructions from the system 

instructions, collate the opcodes, separate the program into a set of control flow graphs 

using the procedure described in Allen (1970) and compute the hash of each graph, and 

generate a set of Register Flow Graphs (RFG) using the procedure described in Alrabaee 

et al. (2014). 

Primary Component Analysis 
 
 For each experiment, a set of specimens was chosen at random for each of the 

selected authors, with each author also having been chosen at random.  The management 

tool, discussed in detail in the Instrument design and validation section, used a random 

number generator to choose the files from the set of unique submissions from each 

author.  Once the full set of specimens was determined, a set of distinct feature vectors 

was created from the union of all the feature vectors extracted (as described in the 

previous subsection) from each specimen in the experiment set.  These feature vectors 

were then converted into a probability map based on the frequency of occurrence in each 
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specimen (Tanguy, Urieli, Calderone, Hathout, & Sajous, 2011).  For every obfuscated 

specimen analyzed using the dynamic method, the set of feature vectors exceeded 

100,000 elements.  Similarly, for many of the obfuscated specimens analyzed using the 

static method, the set of feature vectors exceeded 100,000 elements.  Analysis to 

determine the principal components of this full set of feature vectors was conducted to 

reduce the number of feature vectors used in the classification step.  The algorithm used 

to compute how much any single feature vector contributed to the accurate classification 

result is called Information Gain and is described by the following formula: 

 IG(A, Mi) = H(A) – H(A| Mi) (1) 

where A is the class that represents the author, H is Shannon Entropy, and Mi is the ith 

feature vector in the experiment’s data set (Quinlan, 1986; University of Waikato, 

2016).   The full set of feature vectors was then ranked according to their Information 

Gain, or the relative amount that the feature vector contributed to the classification of 

the author.  The number of feature vectors used in the final classification was studied 

through experimentation, and it was found that limiting the number of feature vectors to 

a maximum of 500 had no noticeable effect on prediction accuracy, and kept the 

classifier training time to an acceptably small duration.  Caliskan-Islam, Yamaguchi, et 

al. (2015) also concluded that 500 feature vectors was an optimal number of feature 

vectors, balancing both accuracy and training time.  

Classification 
 
 Prior research into attribution of authorship to binary files has used the 

supervised classification algorithms of support vector machine (SVM), single 

hierarchical classification, and random forests.  Given the potential performance 
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limitations when using an SVM on very large dimensioned datasets, and based on the 

previously discussed limitations of hierarchical classifiers, and the natural fit of random 

forests for datasets that have weak inputs, this research used a random forest classifier. 

The specific implementation of the random forest classifier was the one found in Weka 

(University of Waikato, 2016). 

Baseline Attribution 
 

Experiments were undertaken to address the Research Questions posed earlier in 

this Research Report.  For each of these experiments, described in the following 

paragraphs, a common procedure of comparing the results of the stylometric similarity 

process (feature extraction and classification for stylometric similarity) was conducted.  

In each experiment, the disassembly data of the original executable (not 

obfuscated), the disassembly data recreated via static analysis, and the disassembly data 

recovered using dynamic analysis techniques were used as input to the feature extraction 

and classification process (described earlier).   The results of the classification of the 

original sample executable (not obfuscated) was used as a sort of baseline measure of 

classification accuracy. 

Attribution of Obfuscated Files 
 

The first experiment involved assessing the stylometric similarity between 

native, never-having-been-obfuscated versions of the specimens of each of the 

contributing authors using a stratified tenfold cross-validation process (Witten et al., 

2011).  Tenfold cross-validation involves splitting the dataset into ten equal shares and 

each of the ten shares is withheld from the set for testing purposes after training the 

classifier with the other nine shares (Witten et al., 2011). The final result was computed 
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as the average from the ten iterations of the test (Witten et al., 2011).  The results of this 

experiment were used as a baseline of attribution accuracy for use in comparison with 

the attribution accuracy of obfuscated examples.  

Whereas the first experiment involved assessing for stylometric similarity in 

native, never-having-been-obfuscated specimens, the second experiment assessed for 

stylometric similarity in the obfuscated specimens themselves.  For each of the 

complexity types, and for each of the contributing authors, a tenfold cross-validation 

process (Witten et al., 2011) of collecting stylometric similarity markers was undertaken 

using the disassembled opcode instructions in mnemonic form of the  obfuscated 

versions of the specimen files.  Obfuscation tools are designed to hide both the intent 

and specific implementation details of the executable files that are to be obfuscated, but 

should also reduce or remove stylometric markings as well.  It was expected that an 

effective obfuscation tool would remove all traces of any stylometric feature that could 

have been used to attribute authorship. 

These first two experiments provided data that was used to address Research 

Questions One and Two.   Research Question One focused on classes of stylometric 

markings that persisted through the obfuscation/de-obfuscation process.  Similarly, 

Research Question Two concerned the extent to which the method of analysis (static 

disassembly vs. dynamic reconstruction) had an impact on the accuracy of authorship 

attribution.  Since these first two experiments extracted data from the executable files 

using two separate procedures, one using static disassembly methods, and one using 

dynamic instruction collection methods, it was expected that there would be differences 

in attribution accuracy between these two methods.  It was hypothesized that the 
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accuracy of predictions of author attribution will be both higher and more stable across 

different obfuscation tools using the dynamic method of data collection than when using 

the static method of disassembly.  This hypothesis is supported by the previous 

discussion on the practical implementation problems inherent with Intel X86 

disassembly and the ground-truth execution platform that the CPU, even an emulated 

CPU, must provide to the higher-level operating system and application programs.    

 
Stylometric Markers within the Obfuscation Routines 
 

Research Question Three posed questions regarding challenges that may have 

existed with respect to fingerprinting the obfuscator code based on the transformations 

done to the original file.  Two experiments were designed to provide insight into this 

question.   

Experiment three used a single obfuscator, but the experiment was repeated for 

each obfuscator in the list of selected obfuscation tools (see Table 3).  In much the same 

way as Collberg described an obfuscated binary as being made up of two distinct 

elements: the original binary file and the obfuscation routines (Collberg et al., 1997),  

this experiment used samples randomly selected from different authors solving different 

problems but all having been obfuscated by the same obfuscator.   By using specimens 

from different authors solving different coding problems, the information gain on 

features not contributed by the obfuscator were minimized.  This experiment followed 

the same stratified tenfold cross-validation process (Witten et al., 2011) described  

previously.  It was expected that the transformations and additional instructions, and/or 

subroutines applied to the original file by the obfuscator would be separable from the 

original program.  By being able to separate the features of the original program from 
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the transformations applied by the obfuscator, the machine learning classifier would be 

able to accurately predict the obfuscation tool used to create the sample.  

The second experiment designed to address Research Question Three involved 

obfuscating a single author’s specimen files with different versions of a single 

obfuscator.  This set of obfuscators included both simple generational iterations and 

forked versions that potentially had different features implemented.  A set of 

submissions was created, containing the programming challenge submissions from a 

single participant from the Google Code Jam Contest (Google, 2015).  By using 

specimens from the same author, the information gain on features not contributed by the 

obfuscator was minimized.   Once selected, these specimens were obfuscated with 

different versions of the same obfuscator and then used to train a machine-learning 

algorithm to detect variations in obfuscation techniques.   Given the hypothesized result 

from the last experiment, where the classifier was expected to differentiate between 

obfuscation code and original code, it was hypothesized in this experiment that the 

machine learning classifier would be unable to differentiate between versions of a single 

obfuscator due to stylometric consistency across their generational versions. 

This experiment focused solely on the complexity type 1 obfuscator, UPX 

(Markus F.X.J. Oberhumer, 2017a).  Multiple, archived versions of UPX were available 

for download, unlike most other obfuscators being studied.  The archived versions were 

available at Sourceforge (2015).  

 
Tool-chain Impacts to Attribution 
 

The fourth Research Question involved the changes to binary files when using 

different compilers and/or different optimization and compilation options that could 
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affect the accuracy of authorship attribution.   Based on the similarities between 

compilers and obfuscators, it seemed scientifically reasonable to apply the same process 

of analysis to files generated by different compilers and their different settings as those 

files that have been obfuscated using some obfuscation tool.  A fixed number of 

compiler options were used, those that are commercially available for MS Windows: 

1. Microsoft Visual Studio (Microsoft, 2015) 

2. Intel Compiler (Intel, 2015) 

3. GCC (GCC, 2015). 

Three experiments were designed to address the question posed in Research 

Question Four.  The first experiment involved setting a baseline for the additional two 

compilers listed above.  Experiment one from Research Question One was reproduced 

using these additional compilers.  The expected result was that each different compiler, 

while possibly encoding features using a different format or schema, would be 

consistent in those encodings and provide similar attribution accuracy results as the 

baseline identified in experiment one.  

 The second experiment designed to address Research Question Four involved 

using two optimization classes for each compiler.  Two classes were examined: 

optimizations applied to ensure fastest execution speed, and optimizations applied to 

ensure the smallest size of executable (see Table 4).  For each of the compilers, for each 

of the two optimization classes, experiment one from Research Question One were 

reproduced in order to identify the effect that these two types of optimization had on the 

measured accuracy of attribution classification.  It was hypothesized that as the level of 

optimization changed, the level and number of stylometric markers capable of 
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substantively contributing to the accurate classification of authorship would be changed, 

likely resulting in weaker prediction results.  

 The last two experiment designed to address Research Question Four involved 

testing for authorship attribution on files that were compiled using different compilers 

and different optimizations.  In these previous experiments, the compilation process had 

been common and consistent for all the samples in all the author groups.  In this 

experiment, each sample being classified for authorship was randomly compiled using 

one of the available compiler and optimization configurations from the previous two 

experiments.  Given the three different compilers listed above, with each compiler 

having the two optimization settings (default, speed, and size, see Table 4), samples 

from each compiler/optimization class were compared to randomly chosen samples from 

each of the eight other compiler/optimization classes using the stratified tenfold cross-

validation process (Witten et al., 2011) described earlier.  As discussed in the previous 

experiment, differences in compiler optimization, for either executable size or execution 

speed, should negatively affect the number and quality of stylometric markers available 

for classification; however, this reduction should have been somewhat mitigated by the 

commonality of the compiler itself.  In this experiment, the learning algorithm will not 

have any consistent compiler or optimization features that will naturally be de-

emphasized due to their existing in every sample.  It is expected that there will be no 

significant predictive correlation between executable file and author given the broad 

variation in compiler and optimization settings.  
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Instrument Development and Validation 
 

A schematic diagram of the experimental setup is presented in Figure 1.   The 

primary components of this setup include the management tool, the automation bridge, 

and the DECAF environment, which includes the trace_cap plugin.  

The management tool was developed specifically for this research, and allowed 

for the creation, modification, and exploration of the experimental data. Details of the 

Google Code Jam problems, submission and submitter details, experiment details, and 

preliminary data could be viewed using this management tool.  The management tool 

was also capable of defining experiments, selecting samples at random (using the built-

in random number library) based on experimental criteria, and generating the ARFF 

formatted files used by Weka (Henderson et al., 2014). 

A key component of the dynamic analysis system, the automation bridge was 

connected to the primary data store to pull contest submission control data from the data 

store.  This control data was sent to the virtualized Windows 7 machine running within 

the DECAF environment (Henderson et al., 2014) to control the execution of the 

samples and the data collection.  By controlling the execution of the samples in this 

way, reliable and repeatable execution of hundreds of file samples, each potentially 

having their own specific input and output requirements, could be accomplished.  

DECAF (Henderson et al., 2014) is a dynamic analysis framework built on 

QEMU (Bellard, 2005) and was used for all dynamic analysis tasks.  DECAF was 

downloaded from the Git repository (Sycurelab, 2016) of the project on 2015-12-20.  

DECAF was run from within a virtual machine image running an up-to-date (as of 2015-

12-20) Ubuntu Desktop 14.04.3 LTS (Ubuntu, 2016) system with the current version 
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Figure 1 - Schematic diagram of experimental setup 

 

of QEMU (version 2.0.0) and its development tools installed as a layered product. 

 One of the plugins that is bundled with DECAF (Henderson et al., 2014) is 

called “tracecap”.  This tracecap plugin records every instruction that is executed by the 

program under test by intercepting instructions as they are processed by the DECAF 

platform (Henderson et al., 2014).  Tracecap writes all the instruction detail to a binary 

file on the host computer.  A helper utility is also provided, trace_reader, that is used to 

extract information from the binary trace file and present it in a human readable format.  

Trace_reader was used to recover the binary instructions from the specimen executable.  

Once the instructions were translated into the standard mnemonic format, the tools 

described previously were used to format the data for use in Weka (University of 

Waikato, 2016). 
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A standard Microsoft Windows 7 X86 image (with Internet Explorer 11) was 

downloaded from the Internet Explorer Development home page (Microsoft, 2016a) and 

was used, without modification (beyond formatting the emulated machine image for the 

execution of the test specimens).  The build version of machine image used for this 

research is 20141027.  The image downloaded from Microsoft was in the industry 

standard OVF format (Distributed Management Task Force, 2016), which required a 

translation (prior to first use) from this format to the QEMU .qcow2 version 0.10 format 

(WikiBooks, 2016).  A utility for translating these image files is bundled with QEMU, 

and was used to translate the stock Microsoft Windows 7 image to an equivalent image 

in the format supported by DECAF (Henderson et al., 2014). 

The management tool (including the .ARFF (University of Waikato, 2016) 

writing capability) was written in C# using Microsoft Visual Studio 2013 (Microsoft, 

2015).  

Python (Python Software Foundation, 2015) was used as the default scripting 

language for tasks requiring simple transfer and transformation capabilities.  The 

specimen files were collated and transferred from the Google code repository using 

scripts written in Python (Python Software Foundation, 2015).  Scripts allowing for the 

automation of the DECAF (Henderson et al., 2014) analysis tasks were also written in 

Python (Python Software Foundation, 2015).  

Format for Presenting Results 
 
 The summary results from each experiment are presented in graph form for 

maximum clarity and will reside with the summary description of the experiment.  The 

results record the prediction accuracy of authorship attribution for the given obfuscator 
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in the given scenario.  Comparable results will be displayed within common tables and 

graphs to facilitate comparison between analysis techniques and/or obfuscators. 

 Tables containing all the detailed results of each experiment can be found in the 

appendices.   

 
Resource Requirements 
 
 Beyond the tools developed specifically for this research and described in the 

Instrument Development and Validation section, the other external tools and software 

packages required to complete this research included IDA-Pro (Hex-Rays SA, 2015b), 

QEMU (Bellard, 2005), DECAF (Henderson et al., 2014), and Weka (University of 

Waikato). Besides IDA-Pro, these tools are available freely by download.  Visual Studio 

(Microsoft, 2015) and the Intel Compiler Set (Intel, 2015) were downloaded and used 

during a limited time evaluation period.  GCC (GCC, 2015) is free and open-source and 

was simply downloaded.  TortoiseSVN (TortoiseSVN, 2016) was used as a client side 

tool to track and manage all versions of the software written for this research. 

 Experiments were performed on a 64bit, 4-core Intel Core i5 processor with 3.0 

GHz clock speed, 8GB of RAM, and Microsoft Windows 7 operating system.  Extracted 

feature data and experiment configuration data was stored in an MSSQL 2012 

(Microsoft, 2016c) database.  Backup copies of the tools, specimen files, and data were 

stored to Google Drive as off-site backups. 

  
Summary 
 

This research had three primary objectives: 1) classify authorship of obfuscated 

programs, 2) identify attributes that lend themselves towards fingerprinting an 
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obfuscator, and 3) identify the impact of tool-chain provenance on accuracy of 

attribution.  These objectives were mapped directly from Research questions one 

through four. 

 By using computer programs from the Google Code Jam (Google, 2015) contest, 

and accepting the assumption that each submission was the individual work product of 

the participant of the contest, the executable file specimens could be attributed to a 

single programmer.  Features embedded in these executable files could be identified and 

extracted to classify for authorship attribution prior to obfuscation.  These classifications 

were used as a baseline of attribution accuracy against which the classification of 

obfuscated samples was compared.   

 Previous research had consistently demonstrated that there existed a sufficient 

number and quality of features in computer source code to attribute authorship.  Even 

though compilation is generally non-deterministic (Lamb, Lunar, Levsen, Cascadian, & 

Luo, 2016), there would exist some subset of those source code-based authorship 

features in the resulting compiled executable.  In this research, the raw data set from 

which these features were identified and extracted are the processor instructions as 

decoded by a disassembler, in the static analysis case, and by dynamic instruction 

collection from within an emulated system, in the dynamic analysis case.  These two 

different methods of raw data extraction, static and dynamic, were followed in order to 

shed the light of understanding on how the method of extraction affects the final 

measurement of accuracy of attribution.  Data extracted via the static method might not 

have been accurate due to remaining artifacts of obfuscation or errors in the disassembly 

algorithm (either due to algorithmic flaws or purposeful injection of junk material into 
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the byte stream).  Similarly, data collected via dynamic analysis methods might have 

been incomplete due to the execution of only a single decision path during program 

execution. 

 The collected data was then analyzed using the latest machine learning 

algorithms, first to determine the features that were the most author discriminating, and 

second to build a classifier that could be used to predict the author of unknown software 

samples. 

 Research Question five remains unaddressed in this research, as there were 

significant challenges in providing a rigorous response to that question.  While the 

Terms and Conditions (Appendix D) of the Google Code Jam (Google, 2015) contest 

prohibit jointly developed submissions, there was no way to ensure this prohibition was 

enforced.  Similarly, there were not enough samples from each contributor, over enough 

contest years, to ensure accurate results with good levels of generalizability.  As such, 

Research Question five will be addressed in future research.  
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Chapter 4 

 
Results 

 
 

Overview 

 This chapter presents the results of the experiments described in the 

Methodology chapter.   There are three major sections to this chapter: Data analysis, 

Findings, and Summary.  In the Data analysis section, the results of the experiments will 

be presented.  The results will be presented without extended discussion in the Data 

Analysis section, but will be thoroughly discussed in the Findings section.  Finally, the 

Summary will offer a reiteration of the important aspects of these findings. 

Data Analysis 

The Data Set 

 A set of 1863 programs were selected from the Google Code Jam (Google, 2015) 

contest from between 2008 and 2015.  Each of these programs was chosen randomly, 

using the management tool described in the previous chapter, from the set of all 

programs written by an author, again chosen at random to meet the requirements for 

sample size.  All of samples were collected from the Google Code Jam website (Google, 

2015) using the procedure described in the Methodology section of this report.  Each of 

the selected programs, written in either C or C++ were compiled per the requirement of 

the specific experiment. 

Experiment #1: The Baseline Study 

 This first experiment set a baseline for accuracy of author attribution given the 

methodology developed in this research.  In addition to establishing a baseline accuracy, 
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comparisons between the methods of data collection were done.   The results shown in 

Figure 2 show the prediction accuracy of author identification in executable files that 

have not been obfuscated.    

 Figure 2 - Results of baseline accuracy of author attribution using dynamic and static methods 

Experiment #2: Attribution of Packed Binary Executables 

 After defining the baseline prediction accuracy of author attribution using 

executables not packed at all, each of the samples was obfuscated using the obfuscators 

chosen from the set of available obfuscators from each complexity type.  The results of 

each category are presented under their own sub-heading.  The data collection statistics 

for each of the obfuscators under test can be found in Appendix A.     

Obfuscation Complexity Type 1 

 Complexity type one obfuscators include ASPack (ASPack Software, 2017a), 

PESpin (cyberbob, 2017), and UPX (Markus F.X.J. Oberhumer, 2017a).  The results of 

the authorship attribution experiments for these three examples of obfuscator complexity 

type one are shown in Figure 3.  Note that files obfuscated using ASPack (ASPack 

Software, 2017a) could not be disassembled using the standardized procedure and tools 

described in the static analysis procedure, so prediction accuracies are not provided.  
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 Figure 3 - Results of author attribution in specimens obfuscated using complexity type 1 
obfuscators 

Obfuscation Complexity Type 2 

 Yoda’s crypter (Yoda, 2017), JDPack (JDPack, 2016), and DotFix’s NiceProtect 

(DoxFix Software, 2017) are three examples of obfuscator tools that implement 

obfuscation in accordance with the definition of complexity type two.  Each of these 

examples was used to obfuscate the test specimens for analysis using the static and 

dynamic methods described previously.  The results of the authorship attribution 

experiments for these three examples of obfuscator complexity type two are shown in 

Figure 4.  For the NiceProtect obfuscator (DoxFix Software, 2017), the obfuscated 

executables appeared to execute correctly, but the instruction traces were not captured 

by the DECAF dynamic collection platform (Henderson et al., 2014), so no results are 

reported.  As documented in Table 8, many specimens obfuscated using Yoda’s crypter 

(Yoda, 2017) aborted with a runtime error at time of execution, yielding no usable trace 

data.  Other specimens obfuscated with Yoda’s crypter (Yoda, 2017) did execute, but 

the size of the captured trace file, and the lack of expected output, suggest that a 
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problem between the DECAF platform (Henderson et al., 2014), this version of Yoda’s 

crypter (Yoda, 2017), and version of Microsoft Windows (Microsoft, 2016a), exist.  

 Figure 4 - Results of author attribution in specimens obfuscated using complexity type 2 
obfuscators 

Obfuscation Complexity Type 3 

 According to the statistics published by Ugarte-Pedrero et al. (2015), malware  

obfuscated by complexity type three obfuscators are the most commonly encountered in 

the wild.  Of the numerous potential choices for instances of complexity type three 

obfuscation tools, ASProtect (ASPack Software, 2017b), PECompact (Collake, 2017), 

and UPolyX (unknown) were chosen.  Author attribution prediction accuracy 

measurements for specimens obfuscated by these instances can be found in Figure 5.  

Like the complexity type two example ASPack (ASPack Software, 2017a), specimens 

obfuscated using ASProtect (ASPack Software, 2017b) could not be disassembled using 

the procedure and tools used in the static analysis case.  
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Figure 5 - Results of author attribution in specimens obfuscated using complexity type 3 

obfuscators 

Obfuscation Complexity Type 4 

 Obfuscators that implement complexity type four and five are rare, according to 

the statistics presented in (Ugarte-Pedrero et al., 2015).  As such, only two instances for 

each of type four and type five obfuscators were located for use in this research.  For 

type four, the two instances were ACProtect (Ultra-Protect, 2016) and Exestealth 

(Hanspeter Imp, 2017).  The authorship attribution prediction accuracy measures are 

detailed in Figure 6.  Even though the initial executable files appeared to properly 

transform into their obfuscated counterparts using the ACProtect (Ultra-Protect, 2016) 

tool and the obfuscated versions were successfully disassembled as part of the static 

analysis procedure, all the obfuscated specimens failed to execute within the DECAF 

(Henderson et al., 2014) environment, each returning a Microsoft Windows runtime 

error.  As such, no prediction accuracies from the dynamic analysis are reported. 
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 Figure 6 - Results of author attribution in specimens obfuscated using complexity type 4 
obfuscators 

Obfuscation Complexity Type 5 

 As evidenced by only 0.9 % of samples being obfuscated using type five 

complexity (Ugarte-Pedrero et al., 2015), only two such tools could be located, Beria 

(haggar, 2016) and EXPressor (CGSoftLabs).  The author attribution prediction 

accuracy findings for each of these obfuscators can be found in Figure 7. 

 

 

 
  

Figure 7 - Results of author attribution in specimens obfuscated using complexity type 5 
obfuscators 
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Obfuscation Complexity Type 6 

 As previously described, executable files obfuscated with complexity type six, 

which include virtual machine obfuscation, are resistant to disassembly (Coogan et al., 

2011; Fang et al., 2011; M. G. Kang, Yin, Hanna, McCamant, & Song, 2009; Rolles, 

2009).  As such, the three instances of obfuscators used in this research, Armadillo 

(Silicon Realms), Themida (Oreans Technologies, 2017), and VMProtect (VMProtect 

Software, 2017), all lack author attribution prediction measurements gathered from the 

static analysis method.  The results from the dynamic analysis are shown in Figure 8. 

 
Figure 8 - Results of author attribution in specimens obfuscated using complexity type 6 

obfuscators 

Summary 

 The average of the author attribution prediction accuracies for each of the 

complexity groups was calculated for both the static and dynamic methods of analysis.  

The averages for each complexity type are given in Figure 9 for the 14 sample groups.  

Refer to Appendix B for results from the 8 sample groups. 
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Figure 9 - Summary results of obfuscator attribution by complexity type (Set size of 14) 

Experiment #3: Fingerprinting the Obfuscator 

 Experiment three was designed to identify features common in all samples that 

were obfuscated with the same obfuscator allowing for the identification of the 

obfuscation tool itself.   Results shown in Figure 10 only describe obfuscator prediction 

accuracies from the 14 sample groups.  For prediction accuracies measured using the 

eight sample groups, refer to Appendix C. 
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Figure 10 - Results of obfuscator attribution in randomly selected and obfuscated samples 

Experiment #4: Stylometric consistency over generational versions of an obfuscator 

 This experiment was designed to test the stability over time of stylometric 

features in obfuscators themselves. A machine learning algorithm was trained to 

recognize differences introduced by the obfuscator itself.  The results of this experiment 

are shown in Figure 11 and the data collection statistics for this experiment can be found 

in Appendix D.   
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 Figure 11 - Results of obfuscator version uniqueness identification using the UPX obfuscator 

Experiment #5: Baseline attribution using different toolchains 

 For this experiment, the same specimens were compiled using both the Intel C 

Compiler and the GNU GCC compiler.   The results of authorship attribution prediction 

accuracy using these different toolchains are illustrated in Figure 12.  For comparison 

purposes, the earlier results from the Microsoft compiler baseline have been added.   

 
Figure 12 - Results of author attribution in specimens compiled using different compilers 

Experiment #6: Attribution when using different optimization settings 

 In much the same way as obfuscators transform executable programs into 

observably equivalent, but different versions of themselves, the executable file output 

from a compiler configured for different optimization settings will be different, yet 
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observably equivalent.  To quantify the effects of compiler optimizations options, two 

optimization configurations were created, one for fast execution and one for small file 

size.   

Optimization for Speed 

 The results describing author prediction accuracies when all the samples in the 

author sets are compiled for speed is shown in Figure 13. 

 Figure 13 - Results of author attribution in specimens compiled using optimization for execution 
speed 

Optimization for File Size 

 The results describing author prediction accuracies when all the samples in the 

author sets are compiled for file size is shown in Figure 14. 
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Figure 14 - Results of author attribution in specimens compiled using optimization for file size 

Experiment #7: Attribution with random composition of all tool chains 

 Having measured the attribution accuracies of authorship in programs that were 

consistent across compiler selection and optimization settings, the final experiment 

sought to identify author attributing similarities in samples coming from like authors, 

but having been built using different compilers and/or different optimizations.   Results 

of this experiment can be seen in Figure 15. 

 
Figure 15 - Results of author attribution in specimens compiled using randomly chosen 

compiler / optimization settings 
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Findings 

 This section discusses the results presented in the previous section and provides 

an analysis and insight of the data.  Observations collected during the execution of these 

experiments are also presented in this section. 

The Data Set 

The decision to use the Google Code Jam contest as a source of files for this 

research was made due to the previous research in executable file author attribution 

having used these files (Alrabaee et al., 2014; Caliskan-Islam, Yamaguchi, et al., 2015; 

Rosenblum, Zhu, et al., 2011).  Similarly, sample and dataset sizes where kept constant 

and consistent with these previous research efforts to maximize the comparability of 

results.  However, these past research efforts in author attribution in executable files 

included only static analysis methods, whereas this research included both static and 

dynamic methods. 

The first challenge in using a dynamic method for collection of program trace 

data was that the specimens were required to compile and execute without error.  A 

nontrivial number of published submissions to the Google Code Jam contest could not 

be compiled and/or executed within this research environment.  To be included in one 

the experiments of this research, the not-obfuscated version of the specimen had to 

execute on the DECAF platform (Henderson et al., 2014) without error.  

For each Code Jam problem, Google only describes the problem and supplies a 

single set of inputs with their expected output.  As a result, there were large variations of 

input parameter and output handling.  Some contributions accepted interactive user input 

while executing the specimen program, others wrote the input parameters to a file (with 
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hardcoded filenames) for reading during execution, while others accepted input and 

output files as command line parameters passed at runtime.  The automation bridge, 

described in the previous chapter, was implemented to ensure that each of these cases 

was dealt with in a uniform and consistent fashion.  

Data Collection 

 To accurately predict the authorship of executable files, author identifying 

feature data contained in the executable file must first be extracted from the executable 

file.  As described in the Methodology section, this raw feature data extraction is done 

using two distinct methods, the first using static analysis techniques (the file being 

analyzed is not executed), and dynamic analysis techniques (the file being analyzed is 

executed).  

Static Analysis Method 

To extract feature data from the executable using the static analysis technique, 

the executable is read, analyzed, and then disassembled by IDA-Pro (Hex-Rays SA, 

2015b).  If the executable under analysis has been obfuscated, IDA-Pro will be unable to 

accurately analyze the file, which results in an aborted disassembly.  Thus, an additional 

step of unpacking the executable was required.  Previous research has demonstrated 

(and discussed previously in the document) that IDA-Pro can introduce inaccuracies 

during the disassembly of binary executable files.  Similarly, the unpacking routine can 

also introduce translation inaccuracies in the unpacked version. These inaccuracies may 

have reduced the level of accuracy in attributing the authorship of some binary 

executable files. 
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Dynamic Analysis Method 

The dynamic analysis method based the raw feature data collection on capturing 

CPU instructions as they are executed from within an instrumented platform, in this 

research, DECAF (Henderson et al., 2014).  As with the static analysis method, author 

attribution prediction accuracies may have been affected by the following limitations.   

First, not all execution paths will be traversed when using dynamic analysis techniques 

(the discarded alternate path of any conditional statement is never executed.  A second 

limitation lies in the potential for certain emulated instructions to be incorrectly 

implemented or instrumented which would have introduced inaccuracy in the 

disassembled instructions. (Chyłek, 2009; M. G. Kang et al., 2009).   

The Obfuscators 

The researchers who defined the packer complexity types assisted this research 

by providing additional examples of obfuscator products for some of the less often 

observed complexity types (Ugarte-Pedrero et al., 2015).  All but two of these 

obfuscators could be located on the Internet. Alternative obfuscators could have been 

used, but at the time of the experiments, no tool for ad hoc classification of an unknown 

obfuscator was available.   

While there is significant coverage of obfuscation tools on the open Internet, 

mostly related to facilitating reverse engineering, or de-obfuscating, a malware sample, 

some of the obfuscation tools themselves could not be located.  Similarly, in cases 

where more than three examples of a complexity type were identified, the most available 

examples, as defined by Google search result rankings, were chosen for use in this 
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research.  No effort was made to join any malware development forums, regardless of 

whether the forum was open or closed to new members. 

Based on the timestamps of Internet forum postings, it appeared as though 

several obfuscation tools have simply not been kept current and in working order for the 

newer operating systems and compilers.  As a result, some specimen files that were 

successfully compiled and executed could not be packed and others, after having been 

reported as successfully packed would not execute.  Still other specimens, after having 

been obfuscated without error, abnormally end their execution with either a generic 

Microsoft Windows run time error or an error of type R6002.   

An R6002 error is known to be caused by an illegal setting of an access attribute 

on a page of memory during a program’s execution (blackd0t, 2009a, 2009b).   These 

errors have been linked to coding errors in programs that modify Portable Executable 

file sections as these obfuscation tools do (Castán, 2014; Rodriguez, 2015).   These 

issues, experienced while undertaking this research on authorship attribution are 

consistent with previous research done on the software quality of packed programs 

(Castán, 2014; Rodriguez, 2015). 

One of the distinctive features of obfuscators in general is that they add 

additional “do little” or “do nothing” code to programs to increase the difficulty of 

analysis (Collberg et al., 1997; Roundy & Miller, 2013).  In addition, many obfuscators 

are loop intensive, which adds a considerable number of  additional instructions to the 

program being executed (Collberg et al., 1997; Roundy & Miller, 2013).   For some 

obfuscated specimens, across a wide range of obfuscation tools spanning all the 

complexity types, the additional execution overhead introduced with these extra 
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instructions caused issues in the collection and analysis phases of the research.  The 

computer hosting the DECAF environment had approximately 140 gigabytes (GB) of 

free disk space to store program traces.  During the execution of some of the obfuscated 

specimens, all the available disk space was consumed causing the tracing to abort due to 

insufficient disk space.   As a result, the trace collection of these files had a maximum 

file size of 125GB.   The traces that were capped to this maximum size are marked as 

“partial” in the tables containing the data collection and analysis details (Appendix A). 

Finally, some of the obfuscation tools used in this research were evaluation 

versions of the commercially available tool.  All the evaluation versions of obfuscation 

tools had a runtime pop-up window identifying the specimen as having been obfuscated 

with an evaluation version.  A review of the documentation provided with the evaluation 

version of the obfuscation tools suggested that only advanced features like time-locked 

execution, node-locked execution, licensing, and advanced features like anti-debug and 

anti-virtual machine execution were unavailable in the evaluation versions.  Beyond this 

documentation review, no exhaustive investigation of differences in the protection 

strategies offered between evaluation and full versions of the obfuscation tools was 

done. 

Experiment #1: The Baseline Study 

 The accuracy measures of predicted author in this research are lower than 

accuracy measures reported in the most recently published research in this area of study 

(Caliskan-Islam, Yamaguchi, et al., 2015).  This is to be expected, as the number of 

feature types is significantly less in this research than that previous research.   As 

described in the previous chapter, the feature types selected for this research were 
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chosen from the full set of feature types identified in previous research (Alrabaee et al., 

2014; Caliskan-Islam, Yamaguchi, et al., 2015; Rosenblum, Zhu, et al., 2011).  Each of 

these candidate feature types was assessed for its ability to survive the compilation and 

obfuscation steps. 

 Even with the reduced accuracy measures presented in the previous section, a 

baseline of the “best-case” output of author attribution prediction using these features 

was established.  As discussed in the Methodology section, the use of random forest 

classifiers is encouraged when a great number of features, each with weaker predictive 

strength, is known to be the general composition of the data set.  The trace data, 

collected using the DECAF (Henderson et al., 2014) analysis platform, conforms to this 

general composition.  The program trace output in the static analysis process, however, 

does not.  Within the static analysis process, the output of the disassembly step, which 

used IDA-Pro (Hex-Rays SA, 2015b), is more like computer source code in that loops 

are not unrolled and recurring functions are not duplicated.  To maintain the consistency 

of results, a random forest classifier was used in the static analysis process as well, but 

the accuracy results would have been higher if another classifier was used (additional 

prediction measurements were made using a Naïve Bayes classifier, and those 

measurements have been included in the data collection detail tables found in Appendix 

A). 

Experiment #2: Attribution of Packed Binary Executables 

 The findings for each of the complexity types are discussed together, as the 

results are generally consistent for all the tested obfuscation tools of the given type.  
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Following the per type discussions, a Summary of the findings overall is given, which 

includes a discussion of average prediction accuracies for each complexity type.  

Obfuscation Complexity Type 1 

 Obfuscators having complexity type one have a single unpacking routine that is 

fully executed before transferring execution control to the now unpacked program that 

resides in memory (Ugarte-Pedrero et al., 2015).  Consistent this this definition, the 

specimens used in this research, having been obfuscated with ASPack (ASPack 

Software, 2017a), PESpin (cyberbob, 2017), and UPX (Markus F.X.J. Oberhumer, 

2017a), provide attribution prediction accuracies that are, on average, the same as the 

baseline measures observed in experiment one.  These prediction accuracies are to be 

expected, given the nature of obfuscation for complexity type one packers.  The single 

unpacking routine is executed at the start of the program run, deobfuscating and 

transferring the entire image to memory prior to the transfer back to the recreated 

original application.  The instructions involved in unpacking will occur in all the 

samples, effectively being deemphasized by the classifier during training.  Similarly, 

once the deobfuscation is done, all the remaining instructions are application code, and 

the differences in author style are identified and classified in the same manner as the 

original baseline samples. However, for specimens obfuscated using ASPack (ASPack 

Software, 2017a), the GUnpacker (Quick Unpack, 2017) tool was unable to create an 

image dump, so the static analysis process could not be completed. 

Obfuscation Complexity Level 2 

 Whereas obfuscation tools of complexity type one have only a single packing 

routine, obfuscators of complexity type two have multiple packing routines organized in 
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a chain.  The output of the last packing routine in the chain transfers execution control to 

the now de-obfuscated image in memory (Ugarte-Pedrero et al., 2015).   One of the 

obfuscators used in this research, JDPack (JDPack, 2016), produced results in both static 

and dynamic analysis consistent with the expectation that the transfer point between the 

obfuscator code and original application could be identified.  The measured results are 

2.7 percent lower than the baseline for the dynamic result and just 0.3 percent higher 

than the baseline for the static case.  These results suggest some links in the obfuscation 

chain modify the original code more fundamentally than just compression or encryption.   

The NiceProtect (DoxFix Software, 2017) obfuscated specimens did undergo 

static analysis successfully, but return a lower attribution prediction accuracy.  These 

reductions in authorship attribution prediction accuracy in samples that have undergone 

obfuscation provides a hint of support for the hypothesis provided in the Methodology 

chapter: a fully effective obfuscator should fully remove all stylometric markings such 

that a specific author cannot be predicted with accuracy; clearly, these examples of 

complexity type two obfuscation are not fully effective obfuscators.  Unfortunately, the 

specimens packed with NiceProtect (DoxFix Software, 2017) could not be successfully 

analyzed using the procedure defined in this research and described previously.  The 

specimens execute correctly through to their natural completion, complete with expected 

output, but the executable trace plugin from DECAF (Henderson et al., 2014) was not 

triggered as the specimen started.  It is not known if this is an undocumented protection 

feature of NiceProtect (DoxFix Software, 2017)  or a limitation of the DECAF platform 

(Henderson et al., 2014).  
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Consistent with the results measured from JDPack (JDPack, 2016), the 

prediction accuracy measures using the static analysis process from specimens 

obfuscated with Yoda’s crypter (Yoda, 2017) are close, but lower, than the baseline.   

The results derived from the dynamic analysis of specimens obfuscated using Yoda’s 

crypter (Yoda, 2017) are some of the lowest measured across all of the experiments.  

While this result could be interpreted as strongly supporting the research hypothesis, it is 

expected that the high percentage of specimens not analyzed due to errors (34.0 percent) 

or not fully analyzed (40.0 percent) due to trace capture storage limitations are to blame.  

The specific percentages of excluded samples are listed in Table 8 and an explanation of 

the types of failures was provided earlier in this chapter. 

Obfuscation Complexity Type 3 

 Rather than having the multiple packing routines organized in a single chain, 

obfuscators of complexity type three organize the multiple packing routines in a more 

complex topology which includes loops (Ugarte-Pedrero et al., 2015).   While this 

complex topology can result in having the original executable code in layers that are 

above the last layer of packing, there is still an observable transition between the set of 

packing routines and the application code (Ugarte-Pedrero et al., 2015).    

 Specimens obfuscated with ASProtect (ASPack Software, 2017b) could not be 

successfully dumped using the GUnpacker (Quick Unpack, 2017) tool, so attribution 

predictions derived from the static analysis process are not provided.  The attribution 

prediction accuracies for ASProtect (ASPack Software, 2017b) and PECompact 

(Collake, 2017) when derived from the dynamic process are just 0.9 percent lower 

(average) than the established baseline.   
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 The attribution accuracies for specimens obfuscated using UPolyX (unknown) 

have the same basic form as the others in this complexity class, with a markedly lower 

prediction accuracy when using the static method than when using the dynamic method.  

Overall, though, the measures were significantly lower than the results when using the 

other two obfuscators of this complexity type.  Inasmuch as this reduction in attribution 

prediction accuracy supports the research hypothesis, these reductions can more likely 

be attributed to the significant number of samples that either did not pack or did not 

execute to their natural completion due to either a generic runtime error or the R6002 

error discussed earlier.  A complete accounting of all the data collection details can be 

found in Appendix A, but for UPolyX (unknown, 2016), only 26% of the samples were 

successfully executed.  For the training set size of eight, this averages to just two 

samples per author, and for the training set size of 14, this averages to 3.6 samples per 

author.  As discussed previously, and experimentally demonstrated in Caliskan-Islam, 

Yamaguchi, et al. (2015), prediction accuracies only approach the upper plateau of high 

accuracy predictions after samples set size of four. 

Obfuscation Complexity type 4 

 Obfuscators developed within the definition of complexity type four can have 

either a single or multiple number of packing layers (Ugarte-Pedrero et al., 2015).  The 

packing routines are interleaved into the main application and are executed immediately 

before the segment of memory that was obfuscated is required by the application during 

its execution.  There is a moment during execution that the entire unpacked executable 

resides in memory (Ugarte-Pedrero et al., 2015).   Examples of obfuscators of 
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complexity type four include ACProtect (Ultra-Protect, 2016) and Exestealth (Hanspeter 

Imp, 2017).   

 ACProtect (Ultra-Protect, 2016) created obfuscated specimens that appeared to 

be properly assembled portable executable files and GUnpacker (Quick Unpack, 2017) 

was able to parse these files, providing a deobfuscated dump of the file.  The attribution 

prediction accuracy using the static method was very high, higher even than the baseline 

measure.  These results suggest that some portion of the program transformation by the 

ACProtect (Ultra-Protect, 2016) obfuscator strengthens some (or all) of the features used 

by the machine learning algorithm to differentiate between samples having different 

authors.  However, every one of the specimen executables would not execute within the 

DECAF (Henderson et al., 2014) environment,  thus providing no trace data for use in 

authorship attribution testing. 

 Exestealth (Hanspeter Imp, 2017) returned a 2.8 percent reduction in author 

prediction accuracies when using the static analysis method.  Similarly, the prediction 

accuracy results from the dynamic method showed a decrease of 3.6 percent from the 

baseline.  Both findings are consistent with the research hypothesis, and suggest that this 

obfuscator is somewhat effective at removing stylometric features introduced by the 

author of the original program. 

Obfuscation Complexity Type 5 

 Complexity type five obfuscation tools interleave the packing routines with the 

application code, only de-obfuscating the frame of the application as it is about to be 

executed.  The only time the entire application is available in memory in a deobfuscated 

state is immediately prior to program completion (Ugarte-Pedrero et al., 2015). 
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 Of the two complexity type five obfuscators tested, the Beria (haggar, 2016) 

obfuscator behaved in a manner consistent with the research hypothesis: the author 

prediction accuracies were reduced by 3.0 percent in the dynamic case.  Similarly, the 

accuracy prediction results from the static analysis method were 2.5 percent lower than 

the baseline, which is noteworthy for both the obfuscators for this complexity type and 

the previous complexity type in that the results are consistent with previous research that 

had discussed the difficulties encountered when attempting to analyze files obfuscated 

within these higher complexity types (Bat-Erdene, Kim, Park, & Lee, 2017; Devi & 

Nandi, 2012; Kruegel et al., 2004; Lakhotia et al., 2013; B. Lee et al., 2010; O'Kane et 

al., 2011; Roundy & Miller, 2013; Udupa et al., 2005).  Even at this level of complexity, 

both the dynamic analysis and static analysis method could still identify a subset of the 

stylometric markers that would have been found in the original, not obfuscated versions 

of the programs.  

 The other complexity type five example, EXPressor (CGSoftLabs), had static 

analysis prediction results that exceeded the dynamic analysis results.  As previously 

discussed, this obfuscation tool appears to transform the original in such a way as to 

inadvertently amplify some of the stylometric markers the machine learning algorithm 

used to prediction authorship.   

Obfuscation Complexity Type 6 

 Finally, there are obfuscators of complexity type six.  These obfuscators pack the 

application code in such a way that only the smallest of frames, even down to a single 

instruction, are unpacked at any given time (Ugarte-Pedrero et al., 2015).  The family of 

virtual machine obfuscators is included in the complexity type six category (Coogan et 
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al., 2011; Fang et al., 2011; M. G. Kang et al., 2009; Rolles, 2009; Ugarte-Pedrero et al., 

2015). 

 As expected based on past research on program analysis of virtual machine 

obfuscation protected binaries, each of the three examples of complexity type six 

obfuscators tested, Armadillo (Silicon Realms), Themida (Oreans Technologies, 2017), 

and VMProtect (VMProtect Software, 2017), could not be analyzed using the static 

method (Coogan et al., 2011; Fang et al., 2011; M. G. Kang et al., 2009; Rolles, 2009).   

Collection of program traces using DECAF (Henderson et al., 2014) was successful for 

these three examples, however, on average, 34.0 percent of specimens aborted execution 

with errors and 17.0 percent of specimens could only have partial collection of trace 

data due to trace storage limitations.  Even with these relative high percentages of 

missing and incomplete data, the average attribution accuracy reduction was only 1.6 

percent, suggesting that even with this highest level complexity, the machine learning 

algorithm was able to separate portions of code contributed from the obfuscator and 

portions of the original application. 

 In the case of Themida (Oreans Technologies, 2017), a maximum runtime 

restriction is also imposed on programs obfuscated using the trial version of the 

software.  After 20 minutes of execution, the specimen program is aborted.  Specimens 

having had their execution time limited due to this restriction have been marked as 

having only partial execution analysis. 

 In the case of Armadillo (Silicon Realms), dynamic analysis prediction measures 

were close to those of the baseline measures, suggesting that some author attributing 

stylometric features have survived through compilation and obfuscation.  The same can 
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be said for executables obfuscated using Themida (Oreans Technologies, 2017), having 

prediction results consistent with baseline measures.  Finally, for VMProtect 

(VMProtect Software, 2017), the prediction results come in at about half way between 

the best and worst case measurements.  These measures suggest that some, but not all, 

the stylometric features have been removed from the original code by the obfuscator.  

However, the lack of differentiation between the experimental results using smaller and 

larger sample size might suggest that the number of features selected for this research, 

and used consistently in all the experiments, is insufficient to provide a model that does 

improve prediction accuracy with additional samples from which to learn (Abu-Mostafa 

et al., 2012; Hastie et al., 2009). 

Summary 

 In Figures 9 and 16 the average prediction accuracies per complexity type are 

displayed.  While there are slight reductions in author prediction accuracies as the 

complexity type increases, the negative correlation between obfuscator complexity type 

and prediction accuracy for authorship attribution is not as strong as described in the 

experimental hypothesis.  The results of this experiment support the original description 

offered by Collberg et al. (1997), where it is stated that an obfuscated program “consists 

of two programs merged into one: a real program which performs a useful task and a 

bogus program which computes useless information” (Collberg et al., 1997, p. 23), and 

the machine learning classifier has been given enough features from enough samples to 

correctly distinguish between the “real program” and the “bogus program”. 

 

 



 

 

119 

Experiment #3: Fingerprinting the Obfuscator 

 This experiment was designed to fingerprint, or identify, the obfuscation tool 

that was used to obfuscate the original program by identifying features common among 

all samples obfuscated by a tool.  The results, indicated by the measurements taken in 

this experiment, generally support the research hypothesis, that is, that obfuscation 

routines intermingled into the original application would have their own stylometric 

markers which could be used in attribution testing to identify the obfuscator itself.   

 As documented in Figure 10, when using the dynamic method of analysis, 

enough features were identified by the classifier from each of the obfuscators such that 

obfuscated samples could be classified with over 97.7 percent accuracy based on 

stylometric markers contributed by the obfuscator.   Generally, the results from the static 

method of test were similarly supportive of the research hypothesis, but as expected, the 

prediction accuracies are lower at 92.7 percent. 

Experiment #4: Stylometric consistency over generational versions of an obfuscator 

This experiment was designed to test the stability of stylometric features in an 

obfuscator over time.  It was hypothesized that different obfuscator tools are developed 

over time by the same team of developers, and that different versions of the obfuscator 

should have very few individual, unique stylometric features.  To that end, a set of 

specimens, all written by the same author, were obfuscated using each of the available 

versions of the obfuscator and tested for stylometric similarity.  All specimens in this 

experiment were written by the same author to minimize the effect of any stylometric 

features from the author.  The machine learning algorithm was then trained to recognize 

differences introduced by the obfuscator itself.  As shown in Figure 11, these results 
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show a prediction accuracy of just over 80 percent, which suggests that there are fewer 

unique stylometric identifiers in each version of UPX (compared to the greater than 97 

percent accuracy achieved in predicting an obfuscator), thus lending some support to the 

hypothesis that these generational versions have consistent stylometric features which 

supports the hypothesis that the same author(s) wrote all the versions of UPX that were 

assessed in this research. 

As previously discussed, a determination of whether a single author or a stable 

group of authors wrote all the generational versions cannot be made, but attribution 

problems such as this are presently being researched (Dauber, Caliskan-Islam, Harang, 

& Greenstadt, 2017; Meng, 2016; Meng, Miller, & Jun, 2016). 

A threat to the validity of this experiment lies in the release schedule of some of 

the older UPX versions used in this experiment.  Based on revision history posted at 

(Markus F.X.J. Oberhumer, 2017b), many of the release versions were primarily due to 

bug-fixes.  It is expected that some of the issues encountered while trying to capture 

trace data using the dynamic method were caused by bugs present in the UPX version 

and presenting themselves while executing within the DECAF (Henderson et al., 2014) 

environment.  In this experiment, as with all the experiments included in this research, 

specimens unable to provide data (in both the static and dynamic analysis cases), were 

excluded from the dataset.  These exclusions may have affected both the in-sample and 

out-of-sample error rates of the predictions of stylometric stability over time (Abu-

Mostafa et al., 2012).  
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Experiment #5: Baseline attribution using different toolchains 

Previous research has searched for and studied artefacts found in applications 

left by various toolchains as a method for determining which tools were used to create 

the application (Chaki et al., 2011; H. Chen, 2013; Rahimian et al., 2015; Rosenblum et 

al., 2010; Rosenblum, Miller, et al., 2011), but no previous research could be located to 

causally connect the toolchain to the prediction strength of author attribution.  This 

research posed the possibility of the toolchain affecting the accuracy of author 

attribution as a Research Question, and this experiment began a set of experiments 

designed to identify any causal relationships between author attribution and toolchain 

selection.  The results from this experiment, shown in Figure 12, show that author 

attribution prediction accuracy is similar for each of the three compilers chosen for this 

research.  These results are consistent with the research hypothesis as well as what one 

would generally expect, as the program itself should always behave in a consistent 

fashion, regardless of the tools used to transform the source code into the corresponding 

machine code.  

Experiment #6: Attribution using different optimization settings 

 Earlier in this document, an analogy was put forward that compiler optimizations 

would act in a manner like an obfuscator, taking in a source program and creating a 

substantively different variant from the original.  However, after having compiled every 

sample program using these different optimization settings, the results of author 

prediction testing are not consistent with the expected result. The author prediction rates 

in both optimization cases examined here are nearly identical to the baseline measures 

for each compiler. 
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Experiment #7: Attribution with random composition of all tool chains 

 Experiment seven was designed to mimic a real-world attribution scenario where 

an unknown sample, compiled with an unknown compiler using unknown optimization 

settings must be attributed for authorship.  To that end, the eight and 14 sample 

experiments done in experiments five and six were redone but instead of the sample set 

being made up of specimens compiled with the same version of compiler and 

optimization settings, each sample in the set was randomly chosen from the set 

containing all nine (i.e. three compiler types, with three configurations for each) of the 

different versions of that sample.   It was hypothesized that the machine learning 

classifier would be less able to accurately predict the author of a file with an unknown 

author and unknown toolchain provenance.  The measured results are lower than those 

measured in the case of uniform compiler and optimization settings, but not by much.   

For the dynamic method of attribution, a reduction of 2.2 percent was measured for both 

the eight and 14 sample groups.  The results from the static method show only a 

reduction of only 0.3 percent for the 14 sample group and a 1.0 percent reduction for the 

eight sample group.  These findings suggest that few of the stylometric indicators stored 

in code are affected by compiler choice or optimization level.  

Summary 
 
 This research had the goal of answering several research questions involved in 

quantifying the effects of binary file obfuscation on the accuracy of author attribution 

predictions.  The primary tasks of this research were to compile and obfuscate the 

specimens, devise a process for and build tools to identify and capture program feature 

data, and analyze these data to make predictions on the accuracy of authorship 
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attribution.  Not only did this research capture and analyze data from obfuscated 

samples, it captured and analyzed data from specimens compiled using various 

compilers, each with differing options for output optimization. 

 The data consisted of 1863 samples pulled from the Google Code Jam (Google, 

2015) code repository.  The samples included in this research were only those that were 

written in C/C++ and could be successfully compiled and executed within the test 

platform. 

 There were three notable outcomes of the experiments designed to provide a 

baseline accuracy of authorship attribution.  The first outcome validated that the selected 

features could, with reasonable accuracy, predict authorship in unknown samples.  The 

second outcome validated that this novel method of capturing instruction trace data 

could be used to predict authorship in unknown samples.  The third outcome, arguably 

the most important, demonstrated that the instruction traces captured using an 

instrumented virtual machine provided higher accuracy predictions than the predictions 

based on trace data extracted using the IDA-Pro disassembler (Hex-Rays SA, 2015b) 

and using the same primary component analysis and classification process. These 

baseline experiments set the “high-water” mark for the other experiments that used the 

same methodology on specimens that were obfuscated using a variety of different 

obfuscation tools. 

 The results of the attribution testing for samples obfuscated with the type one 

complexity measure generally had prediction accuracies very close to the baseline.  In 

the case of ASPack (ASPack Software, 2017a), static analysis could not be completed, 

so no prediction results are offered.   
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 Results of attribution testing for samples obfuscated with the type two 

obfuscators were not consistent with the hypothesized results.  While some results 

continued to show strong prediction accuracies when using the dynamic method, the 

static method of author attribution showed no decrease in accuracy.  

Even though the specimens obfuscated with NiceProtect (DoxFix Software, 

2017) executed correctly, the DECAF (Henderson et al., 2014) environment could not 

trigger on program start, resulting in a lack of dynamic analysis results for this 

obfuscator .  Similarly, a significant percentage of samples obfuscated with Yoda’s 

crypter (Yoda, 2017) failed to execute correctly. 

 Samples obfuscated using complexity type three tools also failed to remove 

enough stylometric markers from the original code to adequately hide the identity of the 

author.  For each of these complexity type three obfuscators, the results from dynamic 

testing were close to the baseline measure.  However, the obfuscation tools selected as 

type three examples did reduce the author prediction accuracies in the static case to 

some of the lowest accuracies measured.  

 The results from one of the two examples of complexity type four obfuscator, 

Exestealth (Hanspeter Imp, 2017) were much the same as those described for 

complexity type three:  the obfuscator had successfully reduced the number of 

stylometric features that could be identified from within the static method.  The strength 

of stylometric markings were also reduced in the dynamic case, but not nearly as much 

as in the static case.  

For the second obfuscator, ACProtect (Ultra-Protect, 2016), the results from the 

static method are not consistent with those measured with Exestealth (Ultra-Protect, 
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2016), and no conclusions can be drawn from the dynamic method due to the 

consistently invalid executable files produced by this version of the obfuscator.  

 The results from samples obfuscated using complexity type five tools are 

similarly polarized.  The first example, Beria (haggar, 2016) offers stronger 

anonymization in the static analysis case and weaker anonymization in the dynamic 

case, much like what was measured using Exestealth (Hanspeter Imp, 2017).  The 

results of both static and dynamic analysis show only slight attenuation of the 

stylometric markers being identified during the testing of the specimens packed with 

Expressor (CGSoftLabs, 2017). 

 Type six obfuscators performed as expected, providing no useable results from 

static analysis and a slightly lower prediction accuracy from the dynamic method.   

Additionally, there are some indications that the authorship predictions for this 

complexity type could benefit from additional features being provided to the classifier.  

 Based on the result presented above, the obfuscators selected in this research 

seemed to prioritize adding additional layers of redirection and “junk” code over 

rewriting the original instructions into functionally equivalent, but syntactically 

different, versions of themselves.  As a result, the machine learning algorithm could 

separate the contributions from the obfuscator and the contributions from the original 

application.  Having the contributions supplied from the obfuscator being ubiquitous 

across the sample population, the obfuscator effects could be deemphasized by the 

classifier allowing the original stylometric attributes to be selected for which resulted in 

high accuracy author predictions. 
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 There were several systemic issues that potentially challenge the validity of these 

results.  First, a considerable number of specimens, from all complexity types, would 

not execute in the DECAF (Henderson et al., 2014) environment.  While previous 

research has shown that the software engineering quality of packed (or obfuscated) 

specimens is considerably lower than compiled samples, (Castán, 2014; Rodriguez, 

2015), it is not known whether packer quality issues or unknown issues with DECAF 

(Henderson et al., 2014) are to blame.   A second issue was the amount of disk space 

needed to hold a complete trace of some of the executables under test.  Each of the 

Google Code Jam samples can be considered a simple program, the largest of which has 

no more than a thousand lines of source code, but once obfuscated and being traced by 

the DECAF (Henderson et al., 2014) tool, requires more than 140 gigabytes (GB) of 

disk space.  As a result of limitations in the collection environment used in this 

research, some specimens could only have partial execution traces analyzed.  Finally, 

there were cases where the tracing mechanism within DECAF (Henderson et al., 2014) 

was unable to trigger the trace plugin when a program was initiated, resulting in no 

trace data being collected for a specimen. 

 In the first of the two remaining experiments using the obfuscators, it was 

demonstrated that evolutionary versions of a packing routine are still separable, 

however, each version does provide fewer unique stylometric features for a machine 

learning algorithm to use in classification.  In the second, it was shown that all of 

obfuscators in this research have identifiable stylometric features that can be measured, 

albeit with reduced accuracy in a few cases.   
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 A second group of experiments were conducted to ascertain whether a program’s 

toolchain affected the accuracy of author attribution prediction.  A baseline experiment 

was done, resulting in the conclusion author prediction accuracies were stable and 

mostly the same across different brands of compiler.  A second experiment showed that 

optimizations for execution speed and file size do not substantially change the author 

prediction accuracies. 

 Finally, a random mixture of specimens having come from differing toolchains 

and levels of optimization were tested for authorship attribution prediction accuracy.  It 

was shown that predicting an author of an unknown program is only slightly harder in 

the case where the training data is not made up of programs compiled using the same 

compiler brand and the same optimization settings. 
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Chapter 5 
 

Conclusions, Implications, Recommendations, and Summary 
 
Conclusions 
 
 Attribution of authorship in computer code, both human- and machine-readable 

formats continues to rise in importance in parallel with the rise of both intellectual 

property disputes and computer crime.  Past research has considered whether, and to 

what extent, stylometric features found in human-readable versions of code carry into 

their machine-readable versions, but no research could be found that attempted to 

qualify or quantify the effects of obfuscation of authorship attribution. 

  The goal of this research was to provide insight into the effect, if any, of 

obfuscation on the accuracy of authorship attribution of machine-readable computer 

programs.   Once the challenge of creating obfuscated specimens for use in testing were 

overcome, a methodology and tools were created that would analyze and de-emphasize 

the effects of obfuscation such that author attribution could proceed.    A methodology 

using DECAF (Henderson et al., 2014) for instruction collection was devised to avoid 

the common difficulties associated with using static disassembly methods on obfuscated 

files, described earlier in the Literature Review section.  As a comparative baseline, 

these same obfuscated specimens were analyzed using typical methodology based on 

static analysis, one that relied on generic unpacking using GUnpacker (Quick Unpack, 

2017) prior to static disassembly using IDA-Pro (Hex-Rays SA, 2015b). 

 The results of this research demonstrated that enough stylometric indicators 

survive from source code through compilation and obfuscation to make accurate 

predictions of authorship feasible.  Instead of making considerable changes to the 
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original instructions, it appears that obfuscators mostly wrap the existing instructions in 

multiple layers of additional do-nothing instructions.  These extra layers do confound 

human reverse engineers, and to a lesser extent, the leading unpacking and disassembly 

tools.  However, these extra layers seem to be readily identified by the classifier and due 

to their prevalence across all obfuscated samples, are deemphasized to nothing in 

principal component analysis.  Some rewriting of code is done, for instance, instruction 

obfuscations, which include changes in function calls from direct to indirect (Roundy & 

Miller, 2013), and are observed with less frequency or in only a percentage of the 

samples, thus negatively impacting attribution prediction accuracy. 

Further, a method of collecting execution traces was devised which used an 

instrumented, software-emulated machine platform for data collection.  This new 

method enabled accurate analysis of executables even when those executables were 

obfuscated with tools that implement complex obfuscation algorithms which have foiled 

some of the best static analysis methods described in past research.  

 
Implications 
 
 Prior research has done a lot to demonstrate that an author of an executable file 

can be identified.  However, those researchers avoided the additional complexity of 

executable file obfuscation.  While there are many applications of author attribution in 

cases where the executable files are not obfuscated, a very large opportunity exists in the 

attribution of authorship in malware.  Recent research has concluded that more than 80 

percent of malware is obfuscated (Bat-Erdene, Park, Li, Lee, & Choi, 2016).  

 Following the trend established in previous research, submissions from the 

Google Code Jam (Google, 2015) contest were used (Alrabaee et al., 2014; Caliskan-
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Islam, Yamaguchi, et al., 2015; Rosenblum, Zhu, et al., 2011).  While there have been 

criticisms on the use of Google Code Jam (Google, 2015) submissions for author 

attribution research (Dauber et al., 2017), an alternate dataset does not readily exist.  

Research is currently being undertaken to address the applicability of Github (GitHub 

Inc., 2017) projects as a reasonable alternative to the Google Code Jam, but problems of 

ground truth attribution exist within Github (GitHub Inc., 2017) as well (Dauber et al., 

2017).  

Even though all the submissions to this contest were validated by the Google 

Code Jam (Google, 2015) online submission portal at time of submission, some 

challenges with respect to building and executing a percentage of these submissions 

were encountered.  Further challenges were encountered when attempting to obfuscate 

these submissions with a variety of obfuscation tools, some of which were first 

introduced over a decade ago.  These challenges, when compared to the challenges 

described in the Literature Review section by other researchers doing similar research, 

may seem relatively insignificant based on the results that were produced using this 

approach based on instrumented execution within a virtualized environment.  

With damages and payouts exceeding six hundred millions of dollars due to 

ransomware attacks in 2016 (Matthews, 2017), the need to accurately identify the author 

of a program, especially those that have been obfuscated, has never been higher.  

 
Recommendations 
 
 Some of the future research opportunities that can be derived from these results 

include optimizing the collection and analysis of instruction traces, identification of 

additional features in obfuscated executables that can improve prediction accuracy, 
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classification methods that support the notion of deep learning, and modifications of 

tools and processes based on findings resulting from the study of common practice of 

plagiarism and code sharing. 

As previously discussed, the steps taken to capture execution traces consumed 

significant amounts of disk space and time.  The programs written to solve the problems 

presented in the Google Code Jam did not exceed a few thousand lines of code.   A 

recent study found that malware has been growing in size, measured in lines of source 

code, from several thousand lines of code in the early 2000s, to tens of thousands of 

lines of code in recent samples, at an average rate of 16% per year growth (Calleja, 

Tapiador, & Caballero, 2016).   Such large specimens would require a prohibitively 

large analysis platform and would take more time to analyze than could be reasonably 

allowed, given the number of new malware samples requiring analysis on a daily basis 

(Kaspersky Labs recent published their statistic of 323,000 new samples found per day 

(DarkReading, 2016)). 

The features selected for use in attribution testing were chosen for their expected 

ability to survive obfuscation.  Past research has always used more features than just 

those used in this research (Alrabaee et al., 2014; Caliskan-Islam, Yamaguchi, et al., 

2015; Rosenblum, Zhu, et al., 2011). Each of the features used in previous research were 

assessed to determine whether the feature would survive through obfuscation.  As 

discussed in the Methodology section, only a small subset of features was consistent 

through obfuscation, resulting in these other features to be excluded. However, 

improvements in prediction accuracy will likely come from the addition of other 
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features that capture additional stylometric features encoded within the obfuscated 

binary files.  

Throughout this Dissertation Report, the idea of stylometric features as a 

tangible entity tempts the reader to request a listing of the features that were most 

influential in giving an accurate prediction of authorship.  However, at present, it is not 

possible, in most cases, to extract the decision-making criteria from a supervised 

machine learning classifier (Knight, 2017).  Research opportunities exist in creating a 

mechanism to extract and encode those stylometric features from the classifier which 

accurately and parsimoniously describe an author.  

 Drawing conclusions from the intersection of findings from the attribution 

experiments, the obfuscator fingerprinting experiment, and the toolchain impact 

experiments, an opportunity for future research may include the use of deep learning to 

improve the prediction accuracy of authorship, where separate processing layers within 

a larger classifier are trained to discriminate between different aspects of the data, in this 

case, the compiler and its level of optimization, the original executable, and the 

obfuscator (LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015).   Application of this 

technology may improve both the author attribution accuracies described in this research 

and may also address the scenario where a single author uses different obfuscation tools 

for different software projects. 

Even though Research Question Five remained unaddressed in this research, 

other researchers have started to explore the area of author attribution in the case of 

intermingled contributions within a single file, both in source code (Dauber et al., 2017) 
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and binary format (Meng, 2016; Meng et al., 2016).  In both of these efforts, obfuscation 

has not been addressed, and will surely need to be at some future time. 

Summary 
 
 In human readable files, authorship attribution relies on an analysis of 

stylometry, vocabulary diversity, word choice, and frequency of function words 

(Bozkurt et al., 2007; Stamatatos, 2009).  Past research has also shown that similar 

analysis can be done on computer source code resulting accurate predictions of 

authorship (Burrows et al., 2014; Caliskan-Islam, Harang, et al., 2015; Đurić & Gašević, 

2013; Frantzeskou et al., 2004; Frantzeskou et al., 2008; Frantzeskou et al., 2007; Ji, 

Park, Woo, & Cho, 2007; Kilgour et al., 1998; Meng et al., 2013; Ohmann & Rahal, 

2014; Tennyson, 2013; Matthew F Tennyson & Francisco J Mitropoulos, 2014; 

Matthew F Tennyson & Frank J Mitropoulos, 2014).  Even though the process of 

compilation removes many of these elements of author style (Rosenblum et al., 2010; 

Rosenblum, Miller, et al., 2011), research has also shown stylometric indicators can be 

located in executable files (Alrabaee et al., 2014; Caliskan-Islam, Yamaguchi, et al., 

2015; Rosenblum, Zhu, et al., 2011).  This research set out to extend the body of 

knowledge in this domain of author attribution in executable files by examining the 

impact that binary executable obfuscation had on the accuracy of author attribution. 

The goal of binary executable obfuscation is to dramatically increase the 

difficulty of analysis, thus requiring additional effort to be spent in order to understand 

the capability and mechanisms of the obfuscated software (Collberg & Thomborson, 

2002; Collberg et al., 1997; Roundy & Miller, 2013).  Consequently, many analysis 

tools fail to provide an accurate representation of the original program after it has been 
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obfuscated (Acosta & Medina, 2012; Acosta et al., 2012; Alam et al., 2014; Alazab, 

Venkatraman, Watters, & Alazab, 2011; Egele et al., 2012; Gandotra, Bansal, & Sofat, 

2014; Huang et al., 2011; Iwamoto & Wasaki, 2012; Ki, Kim, & Kim, 2015; Mohaisen, 

Alrawi, & Larson, 2013; Moser et al., 2007a; Pfeffer et al., 2012; Rieck et al., 2011; 

Rolles, 2009; Sharif, Lanzi, et al., 2008; Walenstein & Lakhotia, 2007; Xie et al., 2012; 

Zeng et al., 2013; Zhang & Reeves, 2007).   For this reason, an approach of using 

dynamic analysis techniques to test for authorship was used.  In much the same was as 

(Dinaburg et al., 2008; Henderson et al., 2014; Zeng et al., 2013) used virtual machine 

execution to analyze malware for its capabilities, DECAF (Henderson et al., 2014) was 

used in this research to collect executable instruction traces for the purpose of author 

attribution.  This novel approach to author attribution has not yet received much 

attention in prior research (Alrabaee et al., 2016).  The experiments using execution of 

programs in a virtualized environment to supply instruction traces were replicated using 

instruction traces collected using static methods to provide a baseline for comparison 

with both the methodology and the effects of program obfuscation on authorship 

attribution. 

Some challenges existed in creating an environment useful for author attribution 

based on dynamic analysis techniques.  Each of the individual challenges posed to 

participants of the Google Code Jam contest are described in written English and a 

sample of input parameters and expected output are provided.  While guidance is given 

in the Quick-Start Guide (Google Inc., 2017), no further restrictions are applied, so 

participants are free to decide how the input will be supplied to the program and how the 

output would be presented.  These differences in input and output specification became 
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another significant challenge, as each executable needed to be analyzed in a reliable and 

repeatable fashion.  The number of samples, the whole corpus of submissions totaled to 

over 4400 files, combined with the number of obfuscation tools and different compiler 

settings, dictated the need for automation.  With these requirements for instrumentation 

and automation defined, processes and tools were created for use in these experiments.  

The feasibility of this methodology and tools for predicting authorship in files of 

unknown provenance was demonstrated by comparing its predictions to those measured 

using methods based on static disassembly of the specimens.  This new method was then 

used to predict the author of executable files that were obfuscated using a variety of 

obfuscation tools organized into complexity types as defined in (Ugarte-Pedrero et al., 

2015).  Each of these attribution tests was redone using the methodology and tools based 

on static disassembly of specimens for comparison.  Additional experiments were done 

to show the stability of programmer style over the evolution of a single obfuscation tool 

and how amenable to fingerprinting a specific obfuscator’s author might be solely based 

on data captured from the execution of randomly chosen specimens.  Finally, it was 

hypothesized that differences in executable files introduced by either differing compilers 

or compiler options would be factored out during the machine learning classification 

phase, thus rendering toolchain impacts to author attribution insignificant. 

It was hypothesized in the Methodology chapter than an effective obfuscation 

tool would remove all traces of any stylometric feature that could have been used to 

attribute authorship.  Given this hypothesis and the scale of increasing obfuscator 

complexity types (Ugarte-Pedrero et al., 2015), it was expected that as the complexity 

type increased, the number and quality of stylometric markers would decrease.  The 
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measured results were not consistent with the expected outcomes; executables 

obfuscated with tools from the lower levels of packer complexity types had author 

prediction results almost equal to those measured in the baseline experiments and 

executables obfuscated with tools from the higher levels of packer complexity types had 

author prediction rates only one to three percent lower than the baseline measurements.  

It was, however, shown that author prediction accuracies resulting from the static 

analysis method were both unpredictable and lower than those resulting from the 

dynamic method.  Generic unpacking tools can often deobfuscate executable files that 

have been transformed using tools in the lower complexity types, but are largely 

ineffective when used on those obfuscated with the higher level of complexity type 

obfuscators.    

Support for the notion of programmer stability (J. H. Hayes & Offutt, 2010; Jane 

Huffman Hayes, 2009) was not sufficiently demonstrated in this research as the machine 

learning algorithms trained to provide predictions of the obfuscator version from a set of 

generational versions of the obfuscator succeeded with an accuracy of 80 percent.  

Further, this research did not test the full implementation of the obfuscator itself for 

stylometric stability, it only tested the specific obfuscation routines that were added to 

the samples.   

The experiment designed to fingerprint the obfuscator found that, generally, the 

dynamic method of analyzing obfuscated executables allowed for the accurate 

identification of stylometric features within the obfuscator code allowing the obfuscator 

to be fingerprinted with high accuracy.     
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A threat to the validity of these results existed in that a significant number of 

obfuscated specimens, up to 70 percent in the worst case, and on average 23.5 percent, 

failed to execute completely, potentially allowing some features to be excluded in the 

classification steps.  Some incomplete, partial results could be attributed to constraints 

imposed by the testing environment itself, the test environment only had about 140 

gigabytes (GB) of available disk space in which to temporarily store execution traces.  

In some instances, over most of the complexity types, the amount of processing 

overhead added by the obfuscator pushed execution trace sizes from a few hundred 

megabytes (MB) to over a hundred gigabytes (GB).  As a result, these execution traces 

were capped at 125 GB.  For the cases where the obfuscated specimens would not 

execute, or abort due to runtime errors, it is not known whether software quality issues 

in the obfuscation tools themselves or whether inaccurate or incomplete implementation 

of the software emulated environment are responsible. 

While the results of this research demonstrate that dynamic methods of analysis 

of executables can be used to predict authorship with good accuracy, it is still a resource 

intensive task.  As just described, the disk space requirements for each execution of each 

file were significant. Not surprisingly, the amount of time required to execute each 

sample is also significant; many specimens took over four hours to execute within the 

virtual environment, even though the environment consisted of modern computer 

equipment with multiple processing cores and adequate amounts of memory.  Future 

research opportunities may include improving the success rate of analyzed samples and 

the accuracy of author prediction.   
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Obfuscation tools remove many of the artifacts that have been used in previous 

research to predict authorship (Alrabaee et al., 2014 ; Caliskan-Islam, Yamaguchi, et al., 

2015; Rosenblum, Zhu, et al., 2011), thus requiring the identification of additional 

structures or behaviors that can lead to higher accuracy prediction.   The results of this 

research provide a solid first step and encouragement that authorship in obfuscated 

executable files can be attributed with good accuracy, it is expected future research will 

provide improvements to the foundations described herein.  
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Appendix A: 
 

Experiment 2 Data Collection Details  
 

 ASPack PESpin UPX 
Sample Size (files) 1863 1863 1863 
Not Packed (%) 0 0 1.27 
Static Not Dumped (%) 100 3.92 0.42 
Analysis 8 Accuracy (%): Naïve Bayes n/a 93.9 93.5 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

n/a 94.1 93.9 

  Accuracy (%): Random 
Forest (500 trees), maximum 
500 features 

n/a 92.9 93.9 

 14  Accuracy (%): Naïve Bayes n/a 94.5 94.1 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

n/a 94.9 94.8 

  Accuracy (%): Random 
Forest (500 trees), maximum 
500 features 

n/a 94.9 95.2 

Dynamic Runtime Errors (%) 0 0.42 0.42 
Analysis R6002 Errors (%) 0 0.85 0 
 No Capture Errors (%) 0 0 0 
 8 Partial samples (%) 0 3.75 0 
 sample Accuracy (%): Naïve Bayes 92.8 94.0 92.8 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
93.3 93.8 93.2 

  Accuracy (%): Random 
Forest (500 trees), maximum 
500 features 

94.2 94.2 94.6 

 14 Partial samples (%) 0 3.51 0 
 sample Accuracy (%): Naïve Bayes 93.0 94.6 92.7 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
94.8 94.7 94.5 

  Accuracy (%): Random 
Forest (500 trees), maximum 
500 features 

95.4 95.2 95.3 

Table 7 – Data collection details for complexity type 1 results 
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 NiceProtect 

DotFix 
 

JDPack 
Yoda’s 
crypter 

Sample Size (files) 1863 1863 1863 
Not Packed (%) 0.14 0.14 11.55 
Static Not Dumped (%) 10.9 10.0 0.14 
Analysis 8 Accuracy (%): Naïve Bayes 91.1 94.2 94.3 
 sample 

set 
Accuracy (%): Naïve 
Bayes, maximum 500 
features 

91.0 94.3 94.4 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

90.8 92.5 93.0 

 14 Accuracy (%): Naïve Bayes 91.4 94.5 94.6 
 sample 

set 
Accuracy (%): Naïve 
Bayes, maximum 500 
features 

91.0 94.9 94.9 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

91.1 94.6 94.6 
 

Dynamic Runtime Errors (%) 0 3.8 21.07 
Analysis R6002 Errors (%) 0 7.04 1.43 
 No Capture Errors (%) 100 0 0 
 8 Partial samples (%) 0 3.13 38.75 
 sample Accuracy (%): Naïve Bayes n/a 92.5 90.3 
 set Accuracy (%): Naïve 

Bayes, maximum 500 
features 

n/a 92.9 90.3 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

n/a 94.3 90.3 

 14 Partial samples (%) 0 2.14 40.0 
 sample Accuracy (%): Naïve Bayes n/a 92.7 90.3 
 set Accuracy (%): Naïve 

Bayes, maximum 500 
features 

n/a 94.2 90.3 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

n/a 94.8 90.3 

Table 8 - Data collection details for complexity type 2 results 
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 ASProtect PECompact UPolyX 
Sample Size (files) 1863 1863 1863 
Not Packed (%) 12.13 0.14 3.21 
Static Not Dumped (%) 100 7.76 12.5 
Analysis 8  Accuracy (%): Naïve Bayes n/a 91.8 92.2 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

n/a 91.8 90.6 

  Accuracy (%): Random 
Forest (500 trees), maximum 
500 features 

n/a 91.2 90.6 

 14 Accuracy (%): Naïve Bayes n/a 92.0 92.3 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

n/a 92.0 90.6 

  Accuracy (%): Random 
Forest (500 trees), maximum 
500 features 

n/a 91.2 90.7 

Dynamic Runtime Errors (%) 10.71 0.14 70.71 
Analysis R6002 Errors (%) 0.28 0.14 0 
 No Capture Errors (%) 0 0 0 
 8 Partial samples (%) 15 0 13.13 
 sample Accuracy (%): Naïve Bayes 92.8 92.8 90.8 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
92.6 93.0 90.3 

  Accuracy (%): Random 
Forest (500 trees), maximum 
500 features 

93.0 94.3 90.4 

 14 Partial samples (%) 14.64 0 13.93 
 sample Accuracy (%): Naïve Bayes 92.9 93.4 92.4 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
93.7 94.6 91.9 

  Accuracy (%): Random 
Forest (500 trees), maximum 
500 features 

94.5 95.5 92.6 

Table 9 - Data collection details for complexity type 3 results 
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 ACProtect Exestealth 
Sample Size (files) 1863 1863 
Not Packed (%) 8.17 0 
Static Not Dumped (%) 0 0 
Analysis 8  Accuracy (%): Naïve Bayes 93.8 90.3 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

94.0 90.3 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

92.6 90.3 

 14  Accuracy (%): Naïve Bayes 94.7 90.3 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

95.1 90.3 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

94.7 90.3 

Dynamic Runtime Errors (%) 91.83 40.36 
Analysis R6002 Errors (%) 0 0 
 No Capture Errors (%) 0 0 
 8 Partial samples (%) 0 0 
 sample Accuracy (%): Naïve Bayes n/a 93.3 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
n/a 93.1 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

n/a 91.7 

 14 Partial samples (%) 0 0 
 sample Accuracy (%): Naïve Bayes n/a 92.6 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
n/a 93.1 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

n/a 92.5 

Table 10 - Data collection details for complexity type 4 results 
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 Beria Expressor 
Sample Size (files) 1863 1863 
Not Packed (%) 1.07 1.07 
Static Not Dumped (%) 11.79 10.36 
Analysis 8  Accuracy (%): Naïve Bayes 90.9 93.8 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

91.0 94.1 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

90.2 92.8 

 14 Accuracy (%): Naïve Bayes 91.0 94.3 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

91.4 94.7 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

90.6 94.5 

Dynamic Runtime Errors (%) 17.86 21.07 
Analysis R6002 Errors (%) 0.71 0 
 No Capture Errors (%) 0 0 
 8 Partial samples (%) 79.38 8.13 
 sample Accuracy (%): Naïve Bayes 91.5 94.0 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
91.4 92.6 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

91.6 92.7 

 14 Partial samples (%) 79.29 9.29 
 sample Accuracy (%): Naïve Bayes 91.3 94.4 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
91.8 94.2 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

92.3 94.2 

Table 11 - Data collection details for complexity type 5 results 
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 Armadillo Themida VMProtect 
Sample Size (files) 1863 1863 1863 
Not Packed (%) 0 0 0 
Static Not Dumped (%) 100 100 100 
Analysis 8 Accuracy (%): Naïve Bayes n/a n/a n/a 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

n/a n/a n/a 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

n/a n/a n/a 

 14  Accuracy (%): Naïve Bayes n/a n/a n/a 
 sample 

set 
Accuracy (%): Naïve Bayes, 
maximum 500 features 

n/a n/a n/a 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

n/a n/a n/a 

Dynamic Runtime Errors (%) 14.64 43.93 43.57 
Analysis R6002 Errors (%) 0 0 0 
 No Capture Errors (%) 0 0 0 
 8 Partial samples (%) 46.25 0 5.63 
 sample Accuracy (%): Naïve Bayes 93.9 90.6 91.2 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
93.2 92.2 92.3 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

93.5 92.3 93.3 

 14 Partial samples (%) 44.29 0 6.79 
 sample Accuracy (%): Naïve Bayes 93.8 90.6 92.0 
 set Accuracy (%): Naïve Bayes, 

maximum 500 features 
93.3 93.3 93.0 

  Accuracy (%): Random 
Forest (500 trees), 
maximum 500 features 

93.9 94.0 93.0 

Table 12 - Data collection details for complexity type 6 results 
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Appendix B: 
 

Additional Results from Experiment 2 
 

 
Figure 16 – Summary results of obfuscator attribution by complexity type (Set size of 8) 
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Appendix C: 

 
Additional Results from Experiment 3 

 

 
Figure 17 - Results of obfuscator attribution in randomly selected and obfuscated samples (Set 

size of 8) 
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Appendix D: 
 

Experiment 4 Data Collection Details 

 
   Static 

Analysis 
 

Dynamic Analysis 
 

Version 
Total 
Files 

Not 
Packed 

(%) 

Not 
Dumped 

(%) 

Partial 
Collection 

(%) 

Runtime 
Error 
(%) 

R6002 
Error 
(%) 

1.20 70 0 21.4 4.29 68.57 0 
1.24 70 0 7.14 2.86 40.0 8.57 
1.25 70 0 14.29 8.57 35.71 0 
2.02 70 67.14 2.86 0 2.86 0 
2.03 70 0 24.29 0 4.29 0 
3.06 70 0 7.14 2.86 0 0 
3.07 70 11.43 0 4.29 0 0 
3.08 70 0 7.14 0 2.86 0 
3.09 70 11.43 0 2.86 0 0 
3.91 70 2.86 0 2.86 0 0 

Table 13 - Data collection details from Experiment 3: UPX versions 

 
 
  

Accuracy 
Naïve Bayes  

(%) 

Accuracy 
Naïve Bayes  

max 500 features 
(%) 

Accuracy 
Random Forest 

 max 500 features 
(%) 

Dynamic Method 70.7 
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Table 14 - Results of UPX Version stylometric similarity, different machine learning algorithms 
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Appendix E: 
 

Terms and Conditions from Google Code Jam 
 
Taken from https://code.google.com/codejam/terms.html, October 22, 2015. 
 
GOOGLE CODE JAM TERMS AND CONDITIONS 

Welcome to Google Code Jam! 

These Terms and Conditions ("Terms") apply to Google Code Jam and all 
related Code Jam contests sponsored by Google Inc. (each referred to as a 
"Contest"). Please read these Terms carefully as they form a binding legal 
agreement between you and Google Inc., located at 1600 Amphitheatre 
Parkway, Mountain View, CA 94043, United States ("Google") with respect to 
the Contest. 

Our Code Jam Contests vary and we may post additional terms and conditions 
on the Contest website, which become part of these Terms and your agreement 
with us with respect to the Contest. 

YOU MAY NOT SUBMIT AN ENTRY TO A CONTEST AND ARE NOT 
ELIGIBLE TO RECEIVE PRIZES UNDER A CONTEST UNLESS YOU AGREE 
TO THESE TERMS. YOUR SUBMISSION OF AN ENTRY IN A CONTEST 
CONSTITUTES YOUR AGREEMENT TO THESE TERMS. 

The words "include" and "including" as used in these Terms mean "including but 
not limited to." 

1. 1. Eligibility. 

1. 1.1 VOID WHERE PROHIBITED. The Contest is void in Crimea, Cuba, 
North Korea, Sudan, Syria, Quebec, and where prohibited by law. 

2. 1.2 NO PURCHASE NECESSARY TO ENTER OR WIN. You do not 
need to purchase any Google product or service to enter or win the 
Contest. 

3. 1.3 Ineligible Individuals. 

1. (A) You cannot participate in the Contest if: 

1. (1) You are a resident of Crimea, Cuba, North Korea, Sudan, 
Syria, or Quebec or anywhere that the Contest is prohibited 
by law; 
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2. (2) You are restricted by applicable export controls and 
sanctions programs; 

3. (3) You are a current employee (including intern), contractor, 
officer, or director, of Google or its affiliates; or 

4. (4) You are an immediate family member (including a parent, 
sibling, child, spouse, or life partner regardless of where you 
live) of one of the individuals listed in subsection (3) above or 
you are a member of their household (whether related or not). 

2. (B) However, Section 1.3(A)(3) above does not apply if you are a 
Google Student Ambassador (whether paid or not) and you may 
participate in the Contest. 

3. (C) If you gained information on a problem while working as an 
employee, intern, contractor, or official office-holder of Google, 

1. (1) you may be disqualified if you attempt to gain points on 
that problem in the Qualification Round; and 

2. (2) you may not participate in the Contest if that problem is 
used in any later rounds. 

4. 1.4 Requirements to Enter and Receive a Prize. 

1. (A) In order to enter the Contest, you must have 

1. (1) access to the Internet, and 

2. (2) a valid email address. 

2. (B) In order to receive a prize, you must provide your name, phone 
number, a valid postal address, and any other information Google 
may need to award or send you a prize. 

5. 1.5 Verifying Eligibility. Google reserves the right to verify your 
eligibility and to adjudicate on any dispute at any time. You agree to 
provide Google with any proof of eligibility requested by Google and 
your refusal or failure to provide such proof within 10 days of Google's 
request will result in your disqualification from the Contest and 
forfeiture of any prizes. 

6. 1.6 Communications. All communications between Google and you, 
including the Contest website and email communications, will be in 
English. 

2. 2. How to Enter. 
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1. 2.1 Registration. To enter the Contest, you must register at the Contest 
website and provide the required information about yourself. 

1. (A) Registration times are listed on the Contest website. YOU ARE 
RESPONSIBLE FOR DETERMINING THE CORRESPONDING 
TIME IN YOUR TIME ZONE. 

2. (B) You must register for each Contest before you can participate 
in that Contest. For example, if you registered for Code Jam 2014 
and wanted to participate in Google Code Jam to I/O for Women, 
you would still need to register for the Google Code Jam to I/O for 
Women Contest. 

3. (C) You may only register for the Contest with one valid email 
address. If you compete in the same Contest with multiple email 
addresses, you will be disqualified. 

2. 2.2 Screen Names. Google reserves the right to change or omit 
contestant screen names or nicknames for purposes of publication on 
Google websites or listserv, particularly if they are, in Google's sole 
opinion, obscene or violate the intellectual property rights of others. 

3. 3. Contest Structure. 

1. 3.1 Overview. Each Code Jam Contest consists of one or more rounds 
as may be more fully described in rules posted on the Contest website. 
Each round consists of one or more problems. In each round, you will 
receive a score based on the answers you provide to the problem(s). If 
the Contest has more than one round and your score exceeds a 
specified threshold or is one of a specified number of highest scores in 
that round, you will advance to the next round. 

2. 3.2 Problems. In each round you will be asked to solve one or more 
algorithmic problems, which may include one or more small inputs, 
large inputs, or other inputs described in the problem statement. A 
problem may describe special rules for inputs other than small or large. 
You will be able to access the problems on the Contest website and 
download the relevant input files once the round begins. 

3. 3.3 Submissions. You must submit your solutions for problems through 
the Contest website. 

1. (A) Your submission must be in the format specified by the 
problem, the Contest website, and these Terms (with precedence 
given in that order). Deliberately obfuscated source code is not 
allowed. 
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2. (B) You should submit your solutions within enough time 
remaining in each time period to avoid latency issues between 
your computer and Google servers. Solutions submitted after the 
applicable time period expires will not be accepted. 

4. 3.4 Modifying the Contest. Google may cancel or modify the structure 
and location of the Contest if technical difficulties prevent or make it 
unfair to run the Contest in accordance with these Terms. 

4. 4. Judging and Scoring. The solutions you submit will be judged as 
follows. 

1. 4.1 Points. Each problem is worth a certain value of points. For 
example, for a problem with a small input and a large input, the 
solution to the small input may be worth 10 points, while the solution to 
the large input may be worth 15 points. Your total score for a round will 
be the sum of the points you earned in that round for each correct 
solution to an input. 

2. 4.2 Ranking Contestants. 

1. (A) Highest Score First. Contestants will be ranked in order of the 
highest score first and lowest score last. 

2. (B) Ties Ranked by Penalty Time. In the event of a tie between 
contestants, the one with the lowest penalty time will be ranked 
first while the one with the highest penalty time will be ranked last. 
Penalty times may be specified in the Contest Rules, the Contest 
website, or in the problem statement. 

5. 5. Advancement and Notice of Winners. 

1. 5.1 Notice of Advancement. You will be notified by email at least one 
day before the following round whether you have advanced to the next 
round. 

2. 5.2 Announcement of Winners. The results of each round of the 
Contest will be announced on the Contest website at least one day 
prior to the next round. The results of the final round of the Contest will 
be posted on the Contest website after its completion. Posted results 
will include a list of the contests' names or nicknames in ranked order 
based on their scores. 

6. 6. Prizes. 

1. 6.1 Money Prizes. Money prizes will be awarded in U.S. dollars and 
may be delivered in the form of cash, check, gift card, or other cash 
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equivalent. You are responsible for any costs associated with currency 
exchange. 

2. 6.2 Delivery. Google may either ship your prize to you or request that 
you come to a Google office to collect your prize. If Google informed 
you that it will ship your prize to you and you have not received your 
prize within 6 months after the end of the Contest, please 
email codejam@google.com. Google will not award any prizes beyond 
12 months from the end of the Contest. 

3. 6.3 Forfeiture. You will forfeit your prize and an alternative winner may 
be selected, if: 

1. (A) You fail to provide a phone number during registration or any 
other information requested by Google within 15 days of Google's 
request; 

2. (B) You fail to respond to Google's email notification of your prize 
within 15 days; 

3. (C) You fail to follow directions provided by Google for receiving 
the prize; 

4. (D) Your prize or prize notification is returned to Google; or 

5. (E) You fail to pay applicable taxes or timely submit applicable 
documentation to Google or the relevant tax authority. 

4. 6.4 Substitute Prizes. Google may provide a substitute prize of equal or 
greater value at Google's discretion, or where required by law, or in the 
event all or part of a prize becomes unavailable. 

5. 6.5 Taxes. You are solely responsible for complying with all applicable 
tax laws and filing requirements. To remain eligible for a prize, you 
must submit to Google or the relevant tax authority all documentation 
requested by Google or required by applicable law within 7 days of 
Google's request or earlier if required by law. You are solely 
responsible for paying all taxes imposed on prizes awarded to you. All 
prizes will be net of any taxes Google is required by law to withhold. 

6. 6.6 No Warranties for Prizes. Except as required by law, Google 
makes no warranties, express or implied, for prizes. 

7. 7. Disqualification. 

1. 7.1 You may be disqualified from the Contest and forfeit any prizes you 
may be eligible to receive if Google reasonably believes that you have 



 

 

153 

attempted to undermine the legitimate operation of the Contest, 
including: 

1. (A) Providing false information about yourself during registration or 
concerning your eligibility; 

2. (B) Breaching or refusing to comply with these Terms; 

3. (C) Tampering or interfering with administration of the Contest 
(including monitoring at onsite rounds) or with the ability of other 
contestants to participate in the Contest; 

4. (D) Sharing or using from others any information about a problem 
(including its content or solution) before the end of a round unless 
expressly permitted by these Terms; 

5. (E) Submitting content that: 

1. (1) violates the rights of a third party, 

2. (2) is lewd, obscene, pornographic, racist, sexist, or otherwise 
inappropriate to the Contest, or 

3. (3) violates any applicable law; or 

6. (F) Threatening or harassing other contestants or Google, 
including its employees and representatives. Harassing behavior 
includes, offensive, threatening, and/or hateful comments directed 
toward an individual or protected class (gender, sexual orientation, 
disability, gender identity, age, race, religion, ethnicity, veteran 
status), the use or display of sexual images in public spaces, 
deliberate intimidation, stalking, following, taking unwelcome 
photos/videos, sustained disruption of talks or other events, 
inappropriate physical contact, unwelcome sexual attention, and 
developing and/or promoting any applications designed to 
encourage any of these behaviors. 

2. 7.2 You may report to Google at codejam@google.com any 
harassment, cheating, or violation of these Terms by another 
contestant. Google may investigate any such allegations and all 
decisions by Google in these matters are final and binding. If you are 
asked to stop any harassing behavior, you are expected to comply 
immediately. 

8. 8. Rights in Your Submissions; Privacy. 
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1. 8.1 Ownership of Submissions. You retain all rights to your 
submissions of output files and source code that you had before 
submitting them to the Contest. 

2. 8.2 License to Submissions. For any submission you make to the 
Contest, you grant Google a non-exclusive, worldwide, perpetual, 
irrevocable, free license (with the right to sublicense) to reproduce, 
prepare derivative works of, distribute, publicly perform, publicly 
display, and otherwise use such submission for the purpose of 
administering and promoting the Contest. Your submitted source code 
may be made available for anyone to view on the Internet and 
download and use at the end of the Contest. 

3. 8.3 Privacy. 

1. (A) How Google May Use Your Information. 

1. (1) Google will use the information you provide during 
registration and in any subsequent communications to 
administer the Contest (including verifying your eligibility to 
participate in the Contest and delivering prizes). This data 
may be transferred into the United States and will be 
maintained in accordance with Google's Privacy Policy. 

2. (2) By accepting a prize, you agree that Google and its agents 
may use your name, likeness, and statements without 
compensation to promote the Contest, including displaying it 
on the Contest website. 

2. (B) Sharing Your Information. Your name and username you 
create during registration may be displayed publicly on the Contest 
website. If you win a prize, Google may share your name and 
address with third parties to fulfill awarding a prize to you. 

3. (C) Accessing Your Information. You may access, review, and 
update any of your personal data held by Google in connection 
with the Contest by emailing codejam-claims@google.com or 
writing to Google (Attention: Code Jam) at the address listed 
above. 

4. (D) Permission to Record You. If you participate in an onsite round 
of the Contest, you give permission to Google to make and have 
made audio, visual, and audiovisual recordings (in any format or 
media) of you and your activity on a computer while you are 
participating in the Contest (the "Recordings") and grant Google 
an unrestricted, sublicensable, transferable, perpetual, irrevocable, 
worldwide, free license to use the Recordings to promote the 
Contest. You waive all rights, including any right of prior approval, 
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and release Google and its agents from, and will neither sue nor 
bring any proceeding against Google or its agents for, any claim or 
cause of action, whether now known or unknown, for defamation, 
copyright infringement, and invasion of the rights to privacy, 
publicity, or personality or any similar matter, or based upon or 
relating to the use and exploitation of the Recordings. 

9. 9. Your Representations, Warranties, Indemnities. 

1. 9.1 Representations and Warranties. You represent and warrant that: 

1. (A) the information you provide about yourself while registering or 
in subsequent communications with Google is truthful and 
accurate; 

2. (B) your submissions to the Contest are original and, unless 
expressly permitted by these Terms, not created with the 
assistance of any information about the problems not provided by 
Google; 

3. (C) you own all rights in your submissions or otherwise have the 
right to submit your submissions to Google and grant to Google 
the licenses granted in these Terms without violating any rights of 
any other person or entity or any obligation you may have with 
them; and 

4. (D) your submissions do not violate any applicable laws. 

2. 9.2 Indemnities. You will indemnify Google and its affiliates, directors, 
officers, employees against all liabilities, damages, losses, costs, fees 
(including legal fees), and expenses relating to any allegation or third-
party legal proceeding to the extent arising from: 

1. (A) your acts or omissions in relation to the Contest (including your 
use or acceptance of any prize and your breach of these Terms); 
and 

2. (B) your submissions violating any rights of any other person or 
entity or any obligation you may have with them. 

10. 10. Disclaimers. 

THE CONTEST WEBSITE AND ALL CONTENT (INCLUDING SOURCE 
CODE) IS PROVIDED ON AN "AS IS" AND "AS AVAILABLE" BASIS. 
GOOGLE DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES 
(EXPRESS OR IMPLIED), INCLUDING ANY WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 
GOOGLE IS NOT RESPONSIBLE FOR ANY INCOMPLETE, FAILED, OR 
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DELAYED TRANSMISSION OF YOUR APPLICATION INFORMATION OR 
SUBMISSIONS DUE TO THE INTERNET, INCLUDING INTERRUPTION 
OR DELAYS CAUSED BY EQUIPMENT OR SOFTWARE MALFUNCTION 
OR OTHER TECHNICAL PROBLEMS. YOU USE ALL SOURCE CODE 
AVAILABLE ON THE CONTEST WEBSITE AT YOUR OWN RISK. 

11. 11. General. 

1. 11.1 Not an Offer or Contract Of Employment. 

1. (A) You acknowledge that your participation is voluntary. 

2. (B) You acknowledge that no confidential, fiduciary, agency or 
other relationship or implied-in-fact contract now exists between 
you and Google and that no such relationship is established by 
your submission of an entry to the Contest. 

3. (C) You understand and agree that nothing in these Terms, any 
Rules, a submission into the Contest, or an award of a prize may 
be construed as an offer or contract of employment with Google. 

2. 11.2 Severability. If any term (or part of a term) of these Terms is 
invalid, illegal or unenforceable, the rest of the rules will remain in 
effect. 

3. 11.3 Translations. In the event of any discrepancy between the English 
version of these Terms and a translated version, the English version 
will govern. 

4. 11.4 Governing Law. ALL CLAIMS ARISING OUT OF OR RELATING 
TO THESE TERMS WILL BE GOVERNED BY CALIFORNIA LAW, 
EXCLUDING CALIFORNIA'S CONFLICT OF LAWS RULES, AND 
WILL BE LITIGATED EXCLUSIVELY IN THE FEDERAL OR STATE 
COURTS OF SANTA CLARA COUNTY, CALIFORNIA, USA; THE 
PARTIES CONSENT TO PERSONAL JURISDICTION IN THOSE 
COURTS. 

 

Contest Rules for Code Jam 2015 

Welcome to Google Code Jam 2015! 

Please read carefully the Google Code Jam Terms and Conditions ("Code Jam 
Terms"), Google's general Privacy Policy, and these Rules for Code Jam 2015 
(described below and referred to as the "Rules"), and all of which together are 
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referred to as the "Terms", as they form a binding legal agreement between you 
and Google Inc. with respect to the Google Code Jam 2015 Contest. 

1. 1. Age. You may participate in the Contest only if you are 13 years of age 
or older at the time of registration, but you must be 18 years of age or older 
at the time of registration to be eligible for the onsite final round, if not, you 
are only eligible to win a t-shirt. 

2. 2. Registration. Registration for the Contest opens on Tuesday, March 10, 
2015 at 19:00 UTC (12:00 PM Pacific Time (PT) in the United States) and 
ends on Sunday, April 12, 2015 at 2:00 UTC (Saturday, April 11, 2015 at 
7:00 PM PT). 

3. 3. Contest Structure. The Contest consists of two competition tracks: 
Code Jam and Distributed Code Jam. Code Jam has 5 rounds: a 
qualification round, Round 1, Round 2, Round 3, and a final round. You 
must qualify for Round 3 of Code Jam to qualify for Distributed Code Jam. 
Distributed Code Jam has 2 rounds: Round 1 followed by an onsite final 
round. The qualification round, Round 1, Round 2, and Round 3 of each 
track will be conducted online. The final round of each track will take place 
at the Google office in Seattle, Washington, USA, or such other location as 
Google may designate. 

1. 3.1 Code Jam Structure. 

1. (A) Qualification Round. Code Jam will start with a qualification 
round on Friday, April 10, 2015 at 23:00 UTC (4:00 PM PT) and 
run for 27 hours, ending on Sunday, April 12, 2015 at 2:00 UTC 
(Saturday, April 11, 2015 at 7:00pm PT). In the Qualification 
Round, you must log in to the Contest website to attempt to solve 
a number of problems within the 27-hour period. If you earn a 
minimum number of points during the qualification round, which 
will be displayed on the Contest website, you will advance to 
Round 1 of Code Jam. 

2. (B) Round 1. Code Jam Round 1 is conducted online and is 
offered in three sub-rounds at the times specified 
athttps://code.google.com/codejam/schedule.html from Saturday, 
April 18, 2015 (Friday, April 17th PST) to Sunday, May 10, 2015. If 
you advanced to Code Jam Round 1, you can participate in any or 
all of the sub-rounds by logging into the Contest website to solve a 
number of problems until you qualify for Code Jam Round 2. 
However, once you qualify for Code Jam Round 2, you may not 
participate in any later sub-rounds of Code Jam Round 1. You will 
advance to Code Jam Round 2 if you are one of the top-scoring 
1000 contestants from one of the sub-rounds in Code Jam Round 
1. You will be notified by email after the end of each sub-round if 
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you are one of the 3000 contestants advancing to Code Jam 
Round 2. 

3. (C) Round 2. Code Jam Round 2 is conducted online and will 
begin on Saturday, May 30, 2015 at 14:00 UTC and will end on 
Saturday, May 30 at 16:30 UTC. To participate in Code Jam 
Round 2, you must log in to the Contest website to solve problem 
sets. You will advance to Code Jam Round 3 if you are one of the 
top-scoring 500 contestants from Code Jam Round 2. You will be 
notified by email after the end of Code Jam Round 2 if you are one 
of the 500 contestants advancing to Code Jam Round 3. 

4. (D) Round 3. Code Jam Round 3 is conducted online and will 
begin on Saturday, June 13, 2015 14:00 UTC and will end on 
Saturday, June 13, 2015 at 16:30 UTC. To participate in Code 
Jam Round 3, you must log in to the Contest website to solve 
problem sets. You will advance to the onsite final round of Code 
Jam if you are one of the top-scoring 25 contestants from Code 
Jam Round 3. You will be notified by email after the end of Code 
Jam Round 3 if you are one of the 25 contestants advancing to the 
final round of Code Jam. 

5. (E) Final Round. 

1. (1) Time and Location. The final round of Code Jam will be 
held on Friday, August 14, 2015 at the Google offices in 
Seattle, Washington, USA. Google may change the date and 
location of the final round in its discretion. 

2. (2) Structure. During the final round of Code Jam, you will be 
asked to solve problem sets using only Google-provided 
computer equipment. You may choose to use your own 
keyboard and other materials permitted by Google. Google 
will send you a list of permitted materials by email at least 7 
days before the beginning of the final round. 

3. (3) Last Year's Winner. If you are the winner of Google Code 
Jam 2014 and enter Google Code Jam 2015 and are 
otherwise eligible to participate, you will automatically 
advance to the final round of Code Jam. 

2. 3.2 Distributed Code Jam Structure. 

1. (A) Round 1. If you advance to Round 3 of Code Jam, then you 
qualify to compete in the first round of Distributed Code Jam. 
Distributed Code Jam Round 1 is conducted online and will begin 
on Sunday, June 14, 2015 14:00 UTC and will end on Sunday, 
June 14, 2015 at 17:00 UTC. To participate in Distributed Code 
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Jam Round 1, you must log in to the Contest website to solve 
problem sets. You will advance to the onsite final round for 
Distributed Code Jam if you are one of the top-scoring 10 
contestants from Distributed Code Jam Round 1. You will be 
notified by email after the end of Distributed Code Jam Round 1 if 
you are one of the 10 contestants advancing to the final round of 
Distributed Code Jam. 

2. (B) Final Round. 

1. (1) Time and Location. The final round of Distributed Code 
Jam will be held on Saturday, August 15, 2015 at the Google 
offices in Seattle, Washington, USA. Google may change the 
date and location of the final round in its discretion. 

2. (2) Structure. During the final round of Distributed Code Jam, 
you will be asked to solve problem sets using only Google-
provided computer equipment. You may choose to use your 
own keyboard and other materials permitted by Google. 
Google will send you a list of permitted materials by email at 
least 7 days before the beginning of the final round. 

4. 4. Problems. 

1. 4.1 Submitting Solutions for Code Jam Problems. 

1. (A) Submission Requirements. For each Code Jam problem you 
must submit a correct output file and the source code used in its 
generation or a written explanation explaining how you solved the 
problem. 

1. (1) File Format and Size.. You may submit source code as 
one or more plaintext or zipped plain text files. The size of 
each source code file may not exceed 100KB, and the total 
size of your source code for an output after being unzipped 
may not exceed 1MB. If you use a standard library that is 
freely available on the Internet that is too large to include in 
your submission, you may exclude it as long as you put a 
comment in your source code explaining where the library is 
available. 

2. (2) Programming Language, Editor, and Compiler. For the 
qualification round of Code Jam, you may use any 
programming language to solve a Code Jam problem, using 
any development environment or text editor. For any round of 
Code Jam after the qualification round, the compiler or 
interpreter you use must be available such that anyone else 
can use it for free without a time limitation and without 
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violating any rights of any person or entity. However, the 
following are permissible: 

1. (a) Visual Studio, Microsoft Excel, and MATLAB; 

2. (b) compilers and interpreters that require Microsoft 
Windows or Mac OS X, as long as the compiler or 
interpreter itself is free, as described in this Subsection 
(2); and 

3. (c) any further exceptions that Google may communicate 
to you by email on the Contest website. 

2. (B) Time Limit. When you attempt to solve a particular input for a 
Code Jam, a timer will start as soon as you begin downloading the 
file. You must submit your solution in accordance with Subsection 
(A) above within: 

1. (1) 4 minutes for a small input; 

2. (2) 8 minutes for a large input; or 

3. (3) some other time as specified in the problem for other 
inputs, but in each case no later than the end of the round of 
the Contest. 

3. (C) Small Inputs. In Code Jam, Google will judge your 
submissions for small inputs immediately and notify you if your 
submission is correct or incorrect. If the output file and source 
code file are not received by the end of the 4 minute period or if 
the output you submit is judged incorrect, you may choose to 
attempt to solve that problem again within the time remaining in 
the round, but will have to download a new small input. 

4. (D) Large Inputs. In Code Jam, you can only attempt to solve each 
large input once. For each large input, you can make multiple 
output submissions within the 8 minute period, but only your last 
submission will be judged. Google will notify you whether your 
submission was correct or incorrect after the round ends by 
posting the results on the Contest website. 

5. (E) Submission Erros and Discrepancies. 

1. (1) During a Round. Google may ignore certain incorrect 
submissions in Code Jam and notify you that the submission 
was malformed and that you may submit again in whatever 
time remains in the period. During a round of Code Jam, if 
you think you submitted the wrong source code for an output, 
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you may notify the judges using the "Ask a Question" link on 
the Contest website. For inputs other than large inputs, the 
judges may mark the submission as incorrect so that you can 
attempt the problem again. For a large input for onsite rounds 
of Code Jam, the judges may, in their discretion, permit 
resubmission of the source code. 

2. (2) After a Round. You may not submit source code for any 
round after it ends. After the end of a round, if a discrepancy 
is discovered between the output file you submitted that was 
judged correct and the corresponding source code that you 
submitted, then a panel of two or more judges consisting of 
employees of Google will examine the source code for your 
submissions. The judges will determine whether a 
discrepancy exists, and if so will decide in their sole opinion 
whether the discrepancy is trivial or non-trivial. For a trivial 
discrepancy, you will be assessed a 4-minute penalty for that 
input. For a non-trivial discrepancy, you will be assessed a 4-
minute penalty in a qualification round and you will forfeit all 
points for that input in all other rounds. 

2. 4.2 Submitting Solutions for Distributed Code Jam Problems. For 
Distributed Code Jam Problems you must submit through the Contest 
website the source code for your solution and it will be compiled and 
run on Google Compute Engine. The Contest website will return a 
response code indicating whether your solution was accepted or not. 
The Contest website will provide a list of response codes and their 
meaning. 

1. (A) Submission Requirements. Your solution for a problem in 
Distributed Code Jam must be a single file of source code written 
in one of the approved languages listed on the Contest website 
which may list additional requirements for a particular language. 
Your solution: 

(1) cannot exceed 100KB in size; 

(2) must compile to 4MB or less in size; 

(3) must compile in less than 10 seconds under 64-bit Linux; 

(4) cannot fork or create threads; 

(5) cannot replace the currently executed binary with a different 
one (e.g. you cannot use exec); 

(6) can only use the libraries published on the Contest website; 
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(7) cannot embed assembler code; 

(8) cannot use network functions (you must use the library 
published on the Contest website to communicate with other 
instances); 

(9) cannot open files (including temporary files); 

(10) cannot violate system security; 

(11) cannot wait for user interaction; 

(12) cannot use more memory than specified in the problem 
statement; and 

(13) must make all instances exit with a 0 exit code. 

2. (B) Time Limit. You must submit your solutions for problems in 
Distributed Code Jam within the round and your solutions must 
compile and run within the time specified in the problem, the 
Contest website, and these Terms (with precedence given in that 
order). 

3. (C) Small Inputs. In Distributed Code Jam, you must provide a 
correct solution for the problem’s small input before you can solve 
the large input. If your solution was not accepted, you may 
continue to submit new solutions for the small input until it is 
accepted or until the round expires. 

4. (D) Large Inputs. Within a round of Distributed Code Jam, you can 
submit more than one solution for a large input, but only your last 
submission will be judged. Google will notify you whether your 
submission for the large input was correct or incorrect after the 
round ends by posting the results on the Contest website. 

5. (E) Test Runs. You may submit test runs in Distributed Code Jam. 
The Contest website will provide more information on how to 
submit a test run and how often you may submit them. 

3. 4.3 Penalty Time. Your penalty time for a round in Code Jam or 
Distributed Code Jam is equal to the time it took you to submit your last 
correct solution measured from the start of the round, plus 4 minutes 
for each incorrect solution you submitted for small inputs you 
eventually solved. Penalty times may also be specified in a problem 
statement. 

5. 5. Attendance at the Final Round and Related Events. 
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1. 5.1 Required Attendance. To remain eligible to participate in the final 
rounds of the Contest and to receive a prize, you must commit to 
attending all related organized events as well as the awards ceremony 
at the end of the Contest. If you fail to attend the awards ceremony or 
any other event related to the final round that is not optional, Google 
may, in its discretion, move you to the bottom of the rankings for the 
final round and award your prize to the contestant with the next highest 
score until the top three prizes have been awarded. All events related 
to the final round are open only to contestants, except that you may 
bring a guest to the reception. 

2. 5.2 Travel Expenses. As a finalist, Google will pay for certain expenses 
related to your travel to and participation in the final round as described 
below. You must submit to Google or its designated agent within 45 
days after the final round any eligible expenses you want reimbursed 
with detailed receipts and any documentation requested by Google; 
otherwise, your expenses will not be reimbursed. You are responsible 
for all other expenses. 

1. (A) Visa. You are responsible for obtaining your own visa prior to 
arrival to the final round; however, Google will reimburse you for 
any visa application fee and up to $100 USD in travel expenses 
incurred each way in obtaining the visa. Google will not reimburse 
any fees or expenses related to obtaining a passport. 

2. (B) Flight. As a finalist, you will receive round-trip coach class air 
transportation from the major airport nearest your residence on a 
flight selected by Google. If you want to fly from an airport other 
than the major airport nearest your residence or on a flight other 
than the flight selected by Google, you will have to pay for the 
difference in cost. If Google changes the location of the final 
round, you are not entitled to any difference in the cost of airfare 
paid by Google. Google will reimburse you for the cost to travel to 
and from each airport up to $50 USD each way. 

3. (C) Accommodations. As a finalist, you will receive hotel 
accommodations for one at a hotel of Google's choice for the 
duration of the final round. 

4. (D) Meals. As a finalist, Google will reimburse you for the cost of 
your meals up to $30 USD per day on days you are travelling to 
and from the Contest and up to $60 USD per day on non-travel 
days during the final round. 

3. 5.3 TRAVEL DISCLAIMER. YOU UNDERSTAND AND AGREE THAT 
TRAVEL CONTAINS SOME INHERENT ELEMENT OF RISK OF 
ACCIDENT, ILLNESS, INJURY, LOSS OR DEATH. IN NO EVENT 
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WILL GOOGLE, ITS AFFILIATES, OR AGENTS, BE LIABLE FOR 
ANY HARM, DAMAGE, CLAIM, LOSS OR OTHER ACTION ARISING 
OUT OF YOUR TRAVEL TO OR FROM THE FINAL ROUND. 

6. 6. Prizes. 

1. 6.1 Code Jam Prizes. 

1. (A) T-Shirt. You are eligible to receive a t-shirt if you are one of the 
top-scoring 1000 contestants from Code Jam Round 2 or if you 
are the winner of Code Jam 2014 and eligible to participate in the 
final round pursuant to Section 3.1(E)(3) (Last Year's Winner). 

2. (B) Cash Prize. You are eligible to receive one of the following 
cash prizes if you advance to, attend, and compete in the final 
round of Code Jam. 

Competitor(s) Prize 

1st Place $15,000 USD 

2nd Place $2,000 USD 

3rd Place $1,000 USD 

4th—26th Place $100 USD 

2. 6.2 Distributed Code Jam Prizes. You are eligible to receive one of the 
following cash prizes if you advance to, attend, and compete in the 
final round of Distributed Code Jam. 

Competitor(s) Prize 

1st Place $3,000 USD 
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Competitor(s) Prize 

2nd Place $1,000 USD 

3rd Place $500 USD 

7. 7. Disqualification. 

1. 7.1 Qualification Round. You will not be disqualified in the qualification 
round of Code Jam for using or sharing information about problems. 

2. 7.2 Final Round. If you are disqualified from the final round of the 
Contest, Google may advance the next highest scoring contestant from 
the previous round. You may be disqualified from a final round if: 

1. (A) You fail to respond to any request for information from Google 
related to the final round within 5 days of Google's request; 

2. (B) You fail to confirm receipt of your visa letter from Google within 
5 days of its receipt; 

3. (C) You fail to book your flight with Google's travel agent within 2 
weeks of receiving the email invitation to participate in the final 
round; 

4. (D) You fail to respond to flight confirmation emails within 48 hours 
of Google or its agent sending such email; 

5. (E) You fail to provide all documentation and information related to 
your visa and passport requested by Google within 2 weeks of the 
final round; or 

6. (F) You fail to compete in the final round, or are unable to do so 
(for example, because you failed to obtain a passport in time). 
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Appendix F: 

Download Locations of Obfuscation Tools 

 

Obfuscator Download location 
UPX 
ASPack 
PESpin 

https://upx.github.io/ 
http://www.aspack.com/aspack.html 
http://www.pespin.com/ 

Yoda’s Crypter 
1.3 
JDPack 1.01 
DotFix 
NiceProtect 

https://sourceforge.net/projects/yodap/files/Yoda%20Crypter/1.3/ 
 
http://keygens.pro/crack/106500/ 
https://www.niceprotect.com/ 
 

UPolyX 0.5 
 
PECompact 
ASProtect 

http://www.leetupload.com/database/Win32/Compression%20%20Cr
yptage/UPolyX%20v0.5.rar 
https://bitsum.com/portfolio/pecompact/ 
http://www.aspack.com/asprotect32.html 

ACProtect 
 
ExeStealth 

https://web.archive.org/web/20081216070813/http://www.ultraprotec
t.com/download.htm 
http://www.webtoolmaster.com/exestealth.htm 

Beria 0.7 
 
EXPressor 

http://www.reversing.be/article.php?story=20051130102310455&qu
ery=iat 
http://www.cgsoftlabs.ro/ 

VMProtect 
Themida 
Armadillo 8.0 

http://vmpsoft.com/ 
http://www.oreans.com/downloads.php 
https://www.bleepingcomputer.com/forums/t/80738/the-silicon-
realms-toolworks-armadillo/ 

Table 15 - Download Locations for Obfuscation Tools used in this Research 
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