2,483 research outputs found

    One vendor and multiple retailers system in vendor managed inventory problem with stochastic demand

    Get PDF
    In many supply networks, the retailers are reluctant to share information about demand and inventory level to the vendor. This might lead to many difficulties for the vendor in establishing his own order/production plan. Vendor managed inventory (VMI) policy can help to solve that problem. By applying VMI, information sharing is not really a problem for the vendor anymore and this policy have been proven to help reduce total inventory cost as well as improve customer service level in the supply network. In this research, a VMI model for the system with one vendor and multiple retailers will be developed. The main target of the model is to determine the retailer’s lot size, the vendor’s lot size, the retailer cycle time, and the number of replenishments in a vendor cycle so as to minimise the total system cost. For solution purpose, simulation-optimisation technique using genetic algorithm is employed to help find optimal solutions for the decision variables. Numerical experiments are conducted to show the applicability of the proposed model. Sensitivity analysis is also conducted to examine the effects of some input parameters on the optimal solution

    A review of non-cooperative newsvendor games with horizontal inventory interactions

    Get PDF
    There are numerous applications of game theory in the analysis of supply chains where multiple actors interact with each other in order to reach their own objectives. In this paper we review the use of non-cooperative game theory in inventory management within the newsvendor framework describing a single period inventory control model with the focus on horizontal interactions among multiple independent newsvendors. We develop a framework for identifying these types of horizontal interactions including, for example, the models with the possibility of inventory sharing via transshipments, and situations with substitutable products sold by multiple newsvendors. Based on this framework, we discuss and relate the results of prior research and identify future research opportunities

    Optimal Inventory Policy in a Closed Loop Supply Chain System with Multiple Periods

    Get PDF
    Purpose: This paper aims to model and optimize the closed loop supply chain for maximizing the profit by considering the fixed order quantity inventory policy in various sites at multiple periods. Design/methodology/approach: In forward supply chain, a standard inventory policy can be followed when the product moves from manufacturer, distributer, retailer and customer but the inventory in the reverse supply chain of the product with the similar standard policy is very difficult to manage. This model investigates the standard policy of fixed order quantity by considering the three major types of return-recovery pair such as commercial returns, end- ofuse returns, end –of- life returns and their inventory positioning at multiple periods. The model is configured as mixed integer linear programming and solved by IBM ILOG CPLEX OPL studio. Findings: To find the performance of the model a numerical example is considered for a product with three Parts (A which of 2nos, B and C) for 12 multiple periods. The results of the analysis show that the manufacturer can know how much should to be manufacture in multiple periods based on Variations of the demand by adopting the FOQ inventory policy at different sites considering its capacity constraints. In addition, it is important how much of parts should be purchased from the supplier at the given 12 periods Originality/value: A sensitivity analysis is performed to validate the proposed model two parts. First part of the analysis will focus on the inventory of product and parts and second part of analysis focus on profit of the company. The analysis which provides some insights in to the structure of the model.Peer Reviewe

    Operational planning of supply chains in a production and distribution center with just-in-time delivery

    Get PDF
    Purpose: A supply chain consists of raw material suppliers, manufacturers and retailers where inventory of raw materials and finished goods are involved, respectively. Therefore, it is important to find optimal solutions, which are beneficial for both supplier, manufacturer and retailer. Design/methodology/approach: This research focuses on a semi-continuous manufacturing facility by assuming that the production of succeeding cycle starts immediately after the production of preceding cycle. In reality, the inventory of a supply chain system may not be completely empty. A number of products may be left over after the deliveries are made. These leftover inventories are added to the next shipment after the production of required amount to make up a complete batch for shipment. Therefore, it is extremely important to search for an optimal strategies for these types production facilities where leftover finished goods inventory remains after the final shipment in a production cycle. Considering these scenarios, an inventory model is developed for an imperfect matching condition where some finished goods remains after the shipments. Findings: Based on the previous observation, this research also considers a single facility that follows JIT delivery and produces multiple products to satisfy customers’ demand. For this problem a rotational cycle model is developed to optimize the facility operations. Both problems are categorized as mixed integer non-linear programming problems which are to be solved to find optimum number of orders, shipments and rotational cycle policy for multiple products. Also, this solution will lead to estimate the optimum production quantity and minimum total system cost. Research limitations: This research considers the supply chain based on manufacturers point of view and it does not consider the transportation cost associated with supply chain. Next study will be focused on issues with joint decision making, information sharing, and transportation decision. Practical implications: This study will help the managers of refinery and paper industries in making their operation smooth by applying optimizing techniques and robust decision making. Originality/value: Based on the literature, no research was found on continuous production system supply chain and its optimization with JIT delivery. This research will definitely provide a direction for such problem to the researchers.Peer Reviewe

    Benefits of retailer-supplier partnership initiatives under time-varying demand:a comparative analytical study

    Get PDF
    This paper aims to help supply chain managers to determine the value of retailer-supplier partnership initiatives beyond information sharing (IS) according to their specific business environment under time-varying demand conditions. For this purpose, we use integer linear programming models to quantify the benefits that can be accrued by a retailer, a supplier and system as a whole from shift in inventory ownership and shift in decision-making power with that of IS. The results of a detailed numerical study pertaining to static time horizon reveal that the shift in inventory ownership provides system-wide cost benefits in specific settings. Particularly, when it induces the retailer to order larger quantities and the supplier also prefers such orders due to significantly high setup and shipment costs. We observe that the relative benefits of shift in decision-making power are always higher than the shift in inventory ownership under all the conditions. The value of the shift in decision-making power is greater than IS particularly when the variability of underlying demand is low and time-dependent variation in production cost is high. However, when the shipment cost is negligible and order issuing efficiency of the supplier is low, the cost benefits of shift in decision-making power beyond IS are not significant

    Trade Credit Policies for Supplier, Manufacturer, and Retailer: An Imperfect Production-Inventory System with Rework

    Get PDF
    In this study, we developed a trade credit policy for a three-layer supply chain consisting of a supplier, a manufacturer and a retailer. We propose an optimal production rate and selling price for the manufacturer and the retailer under an imperfect production system. The suggested coordination policy optimizes the profit of each supply chain member. Two models were formulated for two real-life strategies respectively. The first one is a collaborative (integrated) system and the second one is a Stackelberg leadership system. Both strategies were analyzed for various credit periods, respectively offered by the supplier to the manufacturer, by the manufacturer to the retailer, and by the retailer to the customers, by considering price-sensitive demand and a certain replenishment rate. Finally, we concluded which strategy will be better for inventory management under the given restrictions in the form of propositions. The concavity property for the net profit function was established with respect to the selling price and the production rate, which was also described graphically and analyzed by numerical examples

    Multi-echelon Inventory Control with Integrated Shipment Decisions

    Get PDF
    Rising fuel prices and increasing environmental awareness emphasizes the importance of the transportation aspect in logistics. This calls for new improved inventory control methods that consider the effects of shipment strategies in a more realistic manner. This thesis, consisting of an introduction and three scientific papers, studies how shipment decisions can be included in the inventory control of distribution systems. The systems studied in the papers consist of a central warehouse that supplies goods to a number of retailers that face stochastic customer demand. The first two papers consider a system where shipments from the central warehouse are consolidated to groups of retailers periodically. This means that replenishment orders of one or several items from different retailers are consolidated and dispatched at certain time intervals. By doing so, transportation cost savings can be realized and emissions can be reduced. This is achieved by filling the vehicles or load carriers to a higher extent and by using cheaper and more environmentally friendly, transportation modes. The first paper explicitly focuses on how to include more realistic transportation costs and emissions. This is done by obtaining the distribution of the size of an arbitrary shipment leaving the central warehouse (directly affected by the shipment frequency). It is thereby easy to evaluate any system where the transportation costs and emissions are dependent on the size of the shipment. The paper also provides a detailed analysis of a system where there is an opportunity to reserve shipment capacity on an intermodal truck-train-truck solution to at least one of the retailer groups. For this system it is shown how to jointly optimize the shipment intervals, the reserved capacities on the intermodal transportation modes and the reorder points in the system. The presented optimization procedure is applicable in three scenarios; (i) the emissions are not considered, (ii) there is a fixed cost per unit of emission, and (iii) there is a constraint on the maximum emissions per time unit. The second paper extends the analysis of a similar time-based shipment consolidation system to handle compound Poisson demand (instead of pure Poisson demand). This system has a simpler transportation cost structure, but the more general demand structure makes the model applicable for a broader array of products. The paper also extends the model to handle fill rate constraints, which further improves the practical applicability. The cost analysis is performed with a new methodology, based on the nominal inventory position. This variable is a helpful tool for analyzing the dynamics of distribution systems. Another system where this tool can be used is studied in the third paper. In this paper all stock points use installation stock (R,Q) ordering policies (batch ordering). This implies that situations can occur when only part of a requested retailer order is available at the central warehouse. The existing literature predominantly assumes that the available units are shipped immediately and the remaining units are shipped as soon as they arrive to the central warehouse, referred to as partial delivery. An alternative is to wait until the entire order is available before dispatching, referred to as complete delivery. The paper introduces a cost for splitting the order and evaluates three delivery policies; the PD policy (only partial deliveries are used), the CD policy (only complete deliveries are used), and the state-dependent MSD policy (an optimization between a partial and a complete delivery is performed for each delivery). The MSD policy is proven to perform better than both the PD and the CD policy. In a numerical study it is shown that significant savings can be made by using the MSD policy

    Trade Credit Policies for Supplier, Manufacturer, and Retailer: An Imperfect Production-Inventory System with Rework

    Get PDF
    In this study, we developed a trade credit policy for a three-layer supply chain consisting of a supplier, a manufacturer and a retailer. We propose an optimal production rate and selling price for the manufacturer and the retailer under an imperfect production system. The suggested coordination policy optimizes the profit of each supply chain member. Two models were formulated for two real-life strategies respectively. The first one is a collaborative (integrated) system and the second one is a Stackelberg leadership system. Both strategies were analyzed for various credit periods, respectively offered by the supplier to the manufacturer, by the manufacturer to the retailer, and by the retailer to the customers, by considering price-sensitive demand and a certain replenishment rate. Finally, we concluded which strategy will be better for inventory management under the given restrictions in the form of propositions. The concavity property for the net profit function was established with respect to the selling price and the production rate, which was also described graphically and analyzed by numerical examples

    Information Sharing as a Collaboration Mechanism in Supply Chains

    Get PDF
    Sharing information is regarded as one of the most effective ways of improving supply chain (SC) performance. However, the implementation of SC information sharing in practice is challenging. Effective information sharing across organizations with different objectives and perspectives means sharing the right information, at the right level of detail, using the right language, at the right time, in the right context, with the right people. A failure related to any one of these factors can lead to an information sharing breakdown. This paper introduces information sharing as an essential activity in all SC collaborative work. Since the scope of information sharing varies widely in the literature, the focus of this paper will be on how the absence of information sharing (i.e. asymmetric information) may affect the SC and how SC information sharing can be defined in terms of what, to whom and how information is shared, with an emphasis on the benefits and challenges of SC information sharing. Keywords: supply chains- asymmetric information- information sharing
    • …
    corecore