1,730 research outputs found

    An overview of application-oriented multifunctional large-scale stationary battery and hydrogen hybrid energy storage system

    Get PDF
    The imperative to address traditional energy crises and environmental concerns has accelerated the need for energy structure transformation. However, the variable nature of renewable energy poses challenges in meeting complex practical energy requirements. To address this issue, the construction of a multifunctional large-scale stationary energy storage system is considered an effective solution. This paper critically examines the battery and hydrogen hybrid energy storage systems. Both technologies face limitations hindering them from fully meeting future energy storage needs, such as large storage capacity in limited space, frequent storage with rapid response, and continuous storage without loss. Batteries, with their rapid response (90 %), excel in frequent short-duration energy storage. However, limitations such as a self-discharge rate (>1 %) and capacity loss (∼20 %) restrict their use for long-duration energy storage. Hydrogen, as a potential energy carrier, is suitable for large-scale, long-duration energy storage due to its high energy density, steady state, and low loss. Nevertheless, it is less efficient for frequent energy storage due to its low storage efficiency (∼50 %). Ongoing research suggests that a battery and hydrogen hybrid energy storage system could combine the strengths of both technologies to meet the growing demand for large-scale, long-duration energy storage. To assess their applied potentials, this paper provides a detailed analysis of the research status of both energy storage technologies using proposed key performance indices. Additionally, application-oriented future directions and challenges of the battery and hydrogen hybrid energy storage system are outlined from multiple perspectives, offering guidance for the development of advanced energy storage systems

    Unleashing the power of artificial intelligence for climate action in industrial markets

    Get PDF
    Artificial Intelligence (AI) is a game-changing capability in industrial markets that can accelerate humanity's race against climate change. Positioned in a resource-hungry and pollution-intensive industry, this study explores AI-powered climate service innovation capabilities and their overall effects. The study develops and validates an AI model, identifying three primary dimensions and nine subdimensions. Based on a dataset in the fast fashion industry, the findings show that the AI-powered climate service innovation capabilities significantly influence both environmental and market performance, in which environmental performance acts as a partial mediator. Specifically, the results identify the key elements of an AI-informed framework for climate action and show how this can be used to develop a range of mitigation, adaptation and resilience initiatives in response to climate change

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Digitalization and Development

    Get PDF
    This book examines the diffusion of digitalization and Industry 4.0 technologies in Malaysia by focusing on the ecosystem critical for its expansion. The chapters examine the digital proliferation in major sectors of agriculture, manufacturing, e-commerce and services, as well as the intermediary organizations essential for the orderly performance of socioeconomic agents. The book incisively reviews policy instruments critical for the effective and orderly development of the embedding organizations, and the regulatory framework needed to quicken the appropriation of socioeconomic synergies from digitalization and Industry 4.0 technologies. It highlights the importance of collaboration between government, academic and industry partners, as well as makes key recommendations on how to encourage adoption of IR4.0 technologies in the short- and long-term. This book bridges the concepts and applications of digitalization and Industry 4.0 and will be a must-read for policy makers seeking to quicken the adoption of its technologies

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Microcredentials to support PBL

    Get PDF

    Space Oddity: Space Cybersecurity Lessons from a Simulated OPS-SAT Attack

    Get PDF
    The space industry is currently experiencing a rapid transformation, driven by innovations both in space and on the ground. Lower access barriers to orbit and the widespread use of commercial off-the-shelf components have facilitated the rise of CubeSats. These small satellites, with their modular design and cost-effectiveness, enable smaller teams to engage in space operations and larger players to conduct groundbreaking technological demonstrations. Furthermore, decreasing launch costs and on-demand access to ground station services have encouraged more players to join the space industry, fostering an agile and diverse environment for experimentation. However, this growth is accompanied by significant cybersecurity challenges that demand urgent attention. Historically, the space industry has relied on security-through-obscurity, but this approach can no longer be tolerated as the industry opens up to new players and technologies. This work aims to address the often-dismissed matter of securing space vehicles, using OPS-SAT, one of the most advanced CubeSat missions, as a case study. Despite its remarkable capabilities, OPS-SAT is not immune to the general dismissal of cybersecurity that plagues the industry. This work will employ a demonstrative approach, devising and implementing an attack scenario against OPS-SAT. The chosen attacker model for this scenario is that of a malicious user with limited to no cybersecurity knowledge, reflecting the reality that attackers with varying degrees of expertise can pose a threat. While keeping the attack as simple as possible, the goal is to demonstrate the potential damage that could be caused. The findings of this work illustrate that the rapid pace of development in the space industry should be accompanied by an equally enthusiastic and vigilant security force. The importance of addressing cybersecurity concerns becomes evident as the industry evolves and attracts more players, emphasizing the need for a proactive and robust security posture to safeguard space missions and future infrastructures

    2017 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Eleventh Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1011/thumbnail.jp

    Software Startups -- A Research Agenda

    Full text link
    Software startup companies develop innovative, software-intensive products within limited time frames and with few resources, searching for sustainable and scalable business models. Software startups are quite distinct from traditional mature software companies, but also from micro-, small-, and medium-sized enterprises, introducing new challenges relevant for software engineering research. This paper's research agenda focuses on software engineering in startups, identifying, in particular, 70+ research questions in the areas of supporting startup engineering activities, startup evolution models and patterns, ecosystems and innovation hubs, human aspects in software startups, applying startup concepts in non-startup environments, and methodologies and theories for startup research. We connect and motivate this research agenda with past studies in software startup research, while pointing out possible future directions. While all authors of this research agenda have their main background in Software Engineering or Computer Science, their interest in software startups broadens the perspective to the challenges, but also to the opportunities that emerge from multi-disciplinary research. Our audience is therefore primarily software engineering researchers, even though we aim at stimulating collaborations and research that crosses disciplinary boundaries. We believe that with this research agenda we cover a wide spectrum of the software startup industry current needs
    corecore