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Resumo 

No contexto da Indústria 4.0, a integração de tecnologias de ponta transformou 

os processos de fabrico, aumentando a eficiência e produtividade. Entre essas 

tecnologias, a tecnologia digital twin tem recebido uma atenção significativa pela sua 

capacidade de criar réplicas virtuais de sistemas físicos, possibilitando monitorização, 

análise e otimização em tempo real. Esta tese foca-se em utilizar os avanços dos digital 

twins para simular o chão de fábrica nos laboratórios de automação da Faculdade de 

Engenharia da Universidade do Porto (FEUP). O objetivo é criar uma representação 

precisa do ambiente de produção, oferecendo uma plataforma para estudo, análise e 

otimização sem necessidade de rearranjos físicos. 

O digital twin foi construído, utilizando um motor de jogos capaz de simular as 

leis da física, possibilitando interações físicas realistas. Esse alto nível de precisão 

permite a simulação, avaliação e otimização de vários cenários de produção sem 

necessidade de rearranjos físicos dispendiosos e demorados. Integrando protocolos de 

comunicação de automação industrial, o digital twin interage e opera 

consistentemente com as práticas industriais do mundo real, facilitando estratégias de 

controle inovadoras, avaliação de cenários e validação de algoritmos. A construção de 

um sistema modular e configurável permite uma personalização e extensão fácil do 

digital twin para representar diferentes layouts e configurações. 

Além disso, ao longo da tese, um estudo abrangente de motores de jogo levou 

à escolha da Unity como a plataforma mais adequada para o projeto. O simulador 

existente nos laboratórios de automação da FEUP serviu de base para definir os 

requisitos e implementar o digital twin utilizando a Unity. Componentes-chave, como 

tapetes simples, tapetes rotativos e tapetes com máquinas, foram integrados e 

testados com sucesso. A implementação passou por testes rigorosos, validando a 

funcionalidade e confiabilidade de cada elemento. 

No geral, a dissertação alcançou o seu principal objetivo ao desenvolver um 

digital twin baseado em física capaz de simular o chão de fábrica nos laboratórios de 

automação da FEUP. O sistema demonstrou eficiência, robustez e adaptabilidade, 

fornecendo um layout de fábrica realista e replicando eficazmente as funcionalidades 

do simulador existente. Este digital twin serve como uma ferramenta para otimizar os 

processos de fabrico, beneficiando tanto a academia como a indústria em cenários da 

Indústria 4.0. 

 

Palavras-chave: Indústria 4.0; Digital twin; Motor de Jogo; Unity; GameObject; 

Modbus. 
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Abstract 

In the context of Industry 4.0, the integration of cutting-edge technologies has 

transformed manufacturing processes, enhancing efficiency and productivity. Among 

these technologies, digital twin technology has gained significant attention for its 

ability to create virtual replicas of physical systems, enabling real-time monitoring, 

analysis, and optimization. This thesis focuses on utilizing digital twin advancements 

to simulate the plant floor in the automation laboratories of the Faculty of Engineering 

at the University of Porto (FEUP). The objective is to create an accurate representation 

of the production environment, providing a platform for experimentation, analysis, 

and optimization without the need for physical rearrangements. 

The digital twin was built on a robust foundation using a game engine capable 

of simulating the laws of physics, enabling realistic physical interactions. This high 

level of accuracy allows for simulation, evaluation, and optimization of various 

production scenarios without the need for costly and time-consuming physical 

rearrangements. By integrating industrial automation communication protocols, the 

digital twin interacts and operates consistently with real-world industrial practices, 

facilitating innovative control strategies, scenario assessment, and algorithm 

validation. The construction of a modular and configurable system allows easy 

customization and extension of the digital twin to represent different layouts and 

configurations. 

Furthermore, throughout the thesis, a comprehensive study of game engines 

led to the selection of Unity as the most suitable platform for the project. The existing 

simulator in FEUP's automation labs served as the foundation for defining requirements 

and implementing the digital twin using Unity. Key components, such as simple 

conveyors, rotating conveyors, and conveyors with machine tools, were successfully 

integrated and tested. The implementation underwent rigorous testing, validating 

each element's functionality and reliability. 

Overall, the dissertation achieved its primary objective by developing a physics-

based digital twin capable of simulating the plant floor in FEUP's automation labs. The 

system demonstrated efficiency, robustness, and adaptability, providing a realistic 

plant layout and effectively replicating the functionalities of the existing simulator. 

This digital twin serves as a powerful tool for optimizing manufacturing processes, 

benefiting both academia and industry in Industry 4.0 scenarios. 

 

Keywords: Industry 4.0; Digital Twin; Game Engine; Unity; GameObject; Modbus. 
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1. Introduction 

1.1. Context 

This dissertation aims to use the advances in digital twin technology, to 

simulate the plant floor in the automation laboratories of the Faculty of Engineering 

of the University of Porto (FEUP). The envisioned digital twin intends to accurately 

replicate the physical layout and dynamics of the production environment, providing a 

powerful platform for experimentation, analysis, and optimization. By developing a 

physics-based digital twin that accurately simulates the plant floor of FEUP's 

automation laboratories, this dissertation seeks to offer a valuable tool for academia, 

industry and researchers interested in optimizing manufacturing processes in Industry 

4.0 scenarios. 

 

1.2. Industry 4.0 

In the era of Industry 4.0, the integration of cutting-edge technologies has 

revolutionized manufacturing processes, leading to increased efficiency and 

productivity [1]. One such technology that has gained significant attention and 

momentum is the digital twin technology, which offers a virtual replica of physical 

systems to enable real-time monitoring, analysis, and optimization. Digital twins have 

also developed as essential tools for simulating and managing the plant floor of 

production facilities, allowing for control, and exploration of alternative layouts for 

more efficient production lines [2]. 

To achieve this objective, the digital twin was built upon a robust foundation 

using a game engine capable of simulating the laws of physics. With the incorporation 

of realistic physical interactions, such as collisions, forces, and movements, the digital 

twin will provide a highly accurate representation of the plant floor, allowing the 

simulation, evaluation, and optimization of distinct production scenarios without 

costly and time-consuming physical rearrangements.  

 

1.3. Objective 

To accomplish this, the combination of the digital twin with standard industrial 

automation communication protocols will allow interaction and control of the virtual 

environment consistently with real-world industrial best practices, aiming at the 

implementation of innovative control strategies, the assessment of different 
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automation scenarios, and the validation of algorithms. Furthermore, the construction 

of a modular and configurable system that accurately represents the various 

components and processes found in a typical production plant will be possible by 

assembling different blocks, each representing a specific unit within the production 

environment, such as simple conveyors, rotating conveyors, and conveyors with 

machine tools. Thus, digital twins can be easily customized and extended to have 

different layouts and configurations [3]. 

 

 

1.4. Document’s structure 

This dissertation is comprised of seven chapters. 

The first chapter corresponds to the Introduction, which includes a general 

framing of the issue and a study overview.  

The Chapter 2, State of The Art, introduces the importance and properties of 

digital twins and their use in the industry. The studied digital twins and game engines 

are presented as well as the concepts related to communication protocols.  

During Chapter 3, Requirements and Modelling, the real shop floor is 

presented with the current shop floor simulator and the requirements. The game 

engine to be used and the reason for it to be chosen are also discussed.    

Then, in Chapter 4, Implementation, information about the materials and 

equipment used in the project, as well as the followed procedures, are described. 

Following, in Chapter 5, Results and Discussion, the outcomes of this work are 

summarized and discussed. The challenges and potential difficulties are also 

mentioned. 

Next, in Chapter 6, Conclusion, the main findings, discussions and final remarks 

of this project are assessed. 

Lastly, in the References, the used pre-existing materials developed by others 

are properly cited. 
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2. State of The Art  

2.1. Industry 4.0 

2.1.1. Historical Context 

Since the beginning of industrialization, significant advancements in technology 

have triggered fundamental changes that are now referred to as "industrial 

revolutions". These revolutions comprehend distinct periods of radical transformation: 

the first marked by mechanization, the second characterized by the extensive 

utilization of electrical energy, and the third characterized by the pervasive 

digitization of various industries [4], as represented in Figure 2.1. The first industrial 

revolution introduced mechanization using water and steam power, while the second 

brought mass production and assembly lines powered by electricity. Finally, the third 

revolution, also known as the digital revolution, introduced computerization and 

automation [5].  

 

Figure 2.1. Advancements in each industrial revolution [4]. 

In recent years, the world has witnessed rapid advancements in various 

technologies, including artificial intelligence, digital twin, the Internet of Things (IoT), 

and big data analytics. The envisioned future of manufacturing revolves around highly 

efficient and modular systems, where products are capable of controlling their own 

production processes [4]. These technologies have had a profound impact on various 

sectors, including manufacturing, leading to the emergence of a new paradigm known 

as Industry 4.0. This concept originated in Germany in 2011 represents the fourth 

industrial revolution, which combines cyber-physical systems with advanced digital 
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technologies to create smart, connected, and automated manufacturing environments. 

Industry 4.0 represents a leap forward, integrating physical and digital systems to 

enable intelligent and autonomous manufacturing processes [5]. 

2.1.2. Implications for the Manufacturing Sector 

 

Industry 4.0 has extensive implications for the manufacturing sector, promising 

to transform traditional factories into smart factories improving efficiency since 

Industry 4.0 technologies enable real-time monitoring and optimization of 

manufacturing processes, leading to increased productivity, reduced downtime, and 

improved resource utilization. Since the technology of Industry 4.0 is cloud-based, 

there is the ability to connect machines, systems, and processes in a smart factory 

that allows for rapid reconfiguration and customization of production lines, enabling 

manufacturers to respond quickly to changing market demands. Another benefit of the 

Industry 4.0 is that it enables the integration of digital technologies into the products 

themselves, leading to the development of products that offer new functionalities and 

value-added services [6, 7]. 

On the other hand, the adoption of Industry 4.0 technologies also comes with 

some challenges, including a skilled workforce capable of managing and leveraging 

these technologies. Additionally, it also leads to a shift in job roles, with an increased 

focus on data analysis, programming, system integration, and cybersecurity since, due 

to its interconnected nature, the manufacturers become more vulnerable to cyber-

attacks. So, ensuring the security and integrity of data and systems is a critical 

challenge in this new era of manufacturing [6]. 

Industry 4.0 in industrial practice is driven by two major forces: the application-

pull and the technology-push. On one hand, there is a substantial demand for 

applications or solutions, which creates a significant need for changes in response to 

shifting operational circumstances. These changes are triggered by social, economic 

and political changes, such as the need for short development periods, 

individualization on demand, flexibility and resource efficiency [4]. On the other hand, 

there is a notable drive for technological advancements within industrial practices. 

However, when it comes to job-related aspects, particularly in industrial settings, 

innovative technologies are not widely adopted or implemented on a broad scale. Some 

approaches of a technology-push are further increasing mechanization and 

automation, digitalization and networking, and miniaturization [4]. 
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2.1.3. Technologies of Industry 4.0 

 

Industry 4.0 relies on a range of technologies that work together to create a 

connected and intelligent manufacturing ecosystem. Some examples are shown in 

Figure 2.2. 

 

Figure 2.2. Examples of technologies of Industry 4.0 [7]. 

One of these technologies is the Internet of Things (IoT) which refers to the 

network of physical devices, sensors, and actuators embedded in machines and 

products, enabling them to communicate and exchange data with each other and with 

humans enabling real-time monitoring, control, and optimization of manufacturing 

processes [8]. 

Cyber-Physical Systems (CPS) is also one of the Industry 4.0 technologies and it 

refers to the integration of physical and computational components that interact with 

each other and the physical world combining sensing, actuation, and control 

capabilities to enable the seamless integration of the physical and virtual realms in 

manufacturing systems [9]. 

Big Data Analytics is another technology that generates vast amounts of data 

from various sources, including sensors, machines, and production processes. Big data 

analytics techniques are used to process and analyse this data to extract valuable 

insights, optimize operations, and support decision-making [10]. 

Finally, Artificial Intelligence (AI) and Machine Learning (ML) are two 

technologies that have gained a lot of popularity in recent years. These technologies 

play a crucial role in Industry 4.0 by enabling machines and systems to learn from data, 
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make decisions, and perform tasks that traditionally required human intelligence. AI 

and ML algorithms are used for predictive maintenance, quality control, intelligent 

automation, and optimization in manufacturing [11]. 

2.1.4. Reference Architectural Model Industry 4.0 (RAMI 4.0) 

Various diverse interests intersect in the debate surrounding Industry 4.0. To 

establish a shared comprehension of the essential standards, use cases, and other 

requirements for Industry 4.0, it was crucial to create a standardized architectural 

model. This model acts as a common reference point, facilitating discussions about its 

connections and intricacies. This resulted in the reference architecture model for 

Industry 4.0 (RAMI4.0), shown in Figure 2.3 [12]. 

 

Figure 2.3. Reference architecture model for Industry 4.0 (RAMI4.0) [12]. 

 

So, RAMI 4.0 utilizes a three-dimensional coordinate system to capture essential 

aspects of Industry 4.0. By doing so, it simplifies complex relationships into smaller 

and more manageable clusters. This model allows to classify objects, like machines, 

based on the model, enabling the description and implementation of highly flexible 

Industry 4.0 concepts [13]. 

These three axes are, the Hierarchy Levels Axis, the Life Cycle & Value Stream 

Axis, and the Layers Axis. 

 The Hierarchy Levels Axis, shown on the right horizontal side, represents 

hierarchy levels from IEC 62264, which is an international standards series for 

enterprise IT and control systems. These levels define different functionalities within 
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factories or facilities. To represent the Industry 4.0 environment, these functionalities 

have been expanded to include workpieces labelled as "Product" and the connection 

to the Internet of Things and Services, labelled as "Connected World” [14]. 

Additionally, the Life Cycle & Value Stream Axis, the left horizontal axis, 

represents the life cycle of facilities and products, based on IEC 62890 for life-cycle 

management. It distinguishes between "types" and "instances." A "type" refers to the 

design and prototyping stage, while an "instance" is when the actual product is being 

manufactured [14]. 

Lastly, on the Layers Axis, the six layers on the vertical axis describe the 

decomposition of a machine into its structured properties, layer by layer. This virtual 

mapping of a machine's properties draws inspiration from information and 

communication technology, where complex systems' properties are commonly broken 

down into layers [14]. 

2.1.5. Digital Twin 

 

The concept of the Digital Twin emerged in the early 2000s and has since 

evolved with no standardized definition, highlighting its versatility across various 

sectors [13]. It can be seen as a simulation that spans multiple domains, a virtual 

representation of a physical object or product that has been manufactured, and a 

virtual substitute for a real-world object, among other interpretations [13, 15, 16]. 

Nonetheless, there is a general framework for the architecture of a Digital 

Twin, comprising three main elements: the physical world, the virtual world and the 

connectivity that links the two together [17]. Each element incorporates a variety of 

components dependent on the specific requirements of the designer. However, some 

fundamental components include sensors in the physical world (to collect real-world 

data), a physical twin, edge processing capabilities, data security measures, the digital 

twin itself, data processing capabilities (facilitated by artificial intelligence, machine 

learning, among other) and communication interfaces such as satellite, the internet, 

Bluetooth, and more [17]. 

To lay a foundation for understanding digital twin technology, at its core, a 

digital twin is a virtual representation of a physical object, process, or system that 

uses real-time data and simulation models to mimic and predict its physical 

counterpart’s behaviour and performance [17]. It is divided into three elements that 

consist of the physical entity, which represents the real-world object, the digital 
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counterpart, which comprises a combination of data-driven models, algorithms, and 

analytical tools, and the connection between them, enabling continuous data exchange 

and interaction [17]. 

Digital twin enables real-time monitoring and analysis of the physical entity and 

by capturing and analysing data from sensors and other sources, they can provide 

valuable insights into the performance and condition of the physical object. They can 

also simulate future scenarios and test innovative ideas, preventing potential failures 

or malfunctions in designs before physical production. This information allows for a 

proactive decision-making, optimizing efficiency, and reducing downtime, as well as 

minimizing unexpected breakdowns, accelerating the innovation process, and reducing 

costs [18]. 

 

2.2. Digital Twin Platforms   

There are several software platforms and companies that offer Digital Twins 

solutions and features for various industries, such as Dassault Systèmes (a 

3DEXPERIENCE platform), ANSYS, PTC (which offers Industrial IoT capabilities), 

Microsoft Azure Digital Twin, IBM Watson IoT, SAP Digital Supply Chain, Oracle IoT, 

Siemens MindSphere, AVEVA, Bentley Systems. 

This subchapter explores the features and benefits of two software platforms, 

Factory I/O and Siemens Digital Twin. 

2.2.1. Factory I/O 

 

Factory I/O is a modern virtual environment designed for the simulation and 

testing of industrial automation systems and provides a realistic and immersive 

platform for training, programming, and debugging industrial processes [19]. 

Replication of the physical components and processes of a factory floor, allows 

for the experimentation and optimization of the automation solutions without the need 

for a physical setup. Additionally, Factory I/O offers a vast library of industrial 

components such as sensors, actuators, conveyors, and robots, as well as support for 

various communication protocols commonly used in industrial automation, such as 

Modbus and OPC [19]. It also provides real-time feedback and visualization of process 

data, enabling to monitor, analyse and assess the behaviour of automation systems. 
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Furthermore, Factory I/O finds applications in different areas of industrial 

automation. It is commonly used for training purposes and control strategies before 

implementing them in real-world scenarios and can be utilized for debugging and 

optimizing existing automation systems, allowing to identify and resolve issues without 

interrupting the production process. 

As a result, Factory I/O brings several benefits and advantages in industrial 

automation scenarios. Firstly, it significantly reduces costs by eliminating the need for 

physical prototypes and setups during the development and testing phases. Secondly, 

Factory I/O enhances safety by experimenting with potentially hazardous scenarios 

without risking injury or damage to equipment. Finally, it promotes innovation and 

creativity by providing a flexible and dynamic environment for exploring new 

automation concepts and ideas. 

The Figure 2.4 shows an example of a shop floor simulation created using 

Factory I/O. 

 

Figure 2.4. Example of a Factory I/O simulation [19]. 

2.2.2. Siemens Digital Twin 

 

Siemens Digital Twin is a technology that enables the creation of virtual replicas 

of physical assets and processes and combines the power of real-time data, advanced 

analytics, and simulation models to provide a comprehensive digital representation of 

industrial systems. With the integration of the virtual and physical worlds, it offers 

new possibilities for monitoring, optimizing, and predicting the behaviour of complex 

industrial processes [20]. 

Additionally, Siemens Digital Twin comprises several key features and 

components, such as data acquisition systems, cloud computing infrastructure, 

simulation models, and analytics algorithms. The data acquisition systems collect real-

time sensor data from the physical assets and feed it into the digital twin, enabling 
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continuous monitoring and analysis. The cloud computing infrastructure provides the 

computational power required to process and analyse the large volumes of data 

generated by the digital twin. Finally, the simulation models and analytics algorithms 

leverage this data to simulate and predict the performance of the physical assets, 

enabling proactive maintenance and optimization [20]. 

Furthermore, Siemens Digital Twin solution has practical applications across 

several industries, including manufacturing, where it can be used to monitor and 

optimize production lines, identify bottlenecks, and simulate the impact of process 

changes [20]. 

So, Siemens Digital Twin offers numerous benefits and advantages for industrial 

processes. Firstly, it enables predictive maintenance, allowing one to identify and 

address potential issues before they cause significant disruptions or failures. This 

reduces downtime, improves asset reliability, and extends equipment lifespan. 

Secondly, Siemens Digital Twin enhances operational efficiency by providing real-time 

insights into process performance and enabling optimization through simulation and 

scenario analysis. Finally, it facilitates agile decision-making by providing a virtual 

platform for testing and evaluating innovative ideas and strategies, before their 

implementation in the physical environment [20]. 

The Figure 2.5 shows an example of a shop floor simulation created using the 

Siemens Digital Twin technology. 

 

 

Figure 2.5. Example of a shop floor using Siemens Digital Twin [20]. 

 

2.3. Game Engines  

Game engines offer game developers a framework to create video games 

without starting from scratch on all fundamental systems like physics, graphics and 
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artificial intelligence [21, 22]. By providing pre-built tools, game engines save 

developers time and resources, eliminating the need to create and integrate these 

supporting systems manually [21, 22]. This allows developers to concentrate their 

efforts on the core aspects of the game, enhancing the overall game development 

process [21, 22]. Some of the most popular game engines are Unreal Engine, Unity, 

Godot, Amazon Game Engines, CryEngine and GameMaker. 

In this subchapter, three of the powerful game development engines available, 

Unity, Unreal Engine and CryEngine, will be explored, examining their key features 

and advantages. 

 

2.3.1. Unity  

 

Unity, developed by Unity Technologies, is a cross-platform game development 

engine that provides developers with a comprehensive set of tools, resources, and 

workflows to create interactive experiences across various platforms. This game 

engine offers a wide range of features, including a robust editor, scripting capabilities, 

asset management, physics simulation, and integrated support for programming 

languages [23]. Its appeal list in its ability to create both 2D and 3D games for different 

platforms such as desktop, mobile, web and virtual reality [24].  

Moreover, Unity’s popularity among developers can be attributed to its 

accessibility, flexibility, efficiency and low power consumption. It is compatible with 

Mac, Linux and Windows, offering an artist-friendly range of tools for immersive 

designing and game world creation, alongside a strong developer toolkit for high-

performance gameplay and game logic implementation. The editor offers a visual 

environment that allows one to design scenes, create game objects, and implement 

logic through a drag-and-drop system. Additionally, the asset store offers an extensive 

library of pre-built assets, scripts, and plugins, enabling them to accelerate their 

workflows and focus on creativity [25].  

Unity’s game development features include processing, asset tracking, 

scripting, and physics, all of which contribute to reducing game development costs and 

time. Furthermore, one of Unity’s strengths is its stable code and well- designed 

architecture, leading to better game performance. It also supports high-quality video 

and audio effects, ensuring smooth and effective game development. The engine’s 
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runtime debugging feature allows developers to quickly identify and fix issues during 

gameplay [24].  

Moreover, the Unity engine supports high-quality video and audio effects, 

providing significant benefits to game development in terms of intelligence and 

effectiveness. Remarkably, videos can be adjusted and displayed in various devices 

and screens without any compromise or distortion on picture quality [23]. The ability 

to deploy games across multiple platforms is a significant advantage, because not only 

saves development time but also expands the potential audience for a game, reaching 

players on different devices and operating systems [24]. 

Unity’s extensibility allows developers to customize the engine to their needs, 

utilizing C# scripting to create custom tools, complex game mechanics, and integrate 

external libraries, pushing the boundaries of game development for unique 

experiences. The Unity integrated development environment (IDE) supports C# and 

JavaScript for scripting, offering essential functions suitable for game development 

[25, 26]. Some advantages of Unity engine in comparison with other game engines are 

presented in Table 2.1. 

Table 2.1. Advantages of Unity in comparison with other game engines [24]. 

Scenario of Game Design Unity game engine solution 
Comparative analysis 

with other game engines 
Develop a 3D environment 
that reconciles game 
performance with visual 
quality 

Maximum real-world visual 
quality: shadows, light, 
texture map, alpha channel, 
independent animation time 

Less graphic quality 
structures 

Develop a navigation system 
for maximum user freedom 

Enable maximum freedom to 
navigate and explore the 
virtual environment 

High control but limited 
freedom in movement 
and predetermined 
animation sequences 

Develop a navigation system 
that allows end-users to 
scrutinize a particular object 
for multiple perspectives 

Method to augment spatial 
understanding 

High degree navigation 
system, view direction 

Develop a method to integrate 
several information types 

Rich content and other data 
leaping technique 

Require server-based 
interaction and script 
language 

Develop a method for flexible 
3D data exchange 

Method for 3D data identical 
to the external tool 

Less supple to accomplish 
data synchronization 

Develop a translate 
conventional analysis study 
method 

The basic visual-based 
analysis method is present 

Less flexible 

Flexibility for the expansion 
of game design 

Possible due to object-
oriented programming 

Not possible because of 
structural programming 
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2.3.2. Unreal Engine  

  

Unreal Engine, developed by Epic Games, is a comprehensive game 

development engine containing a robust suite of tools, libraries, and frameworks and 

is renowned for its advanced real-time rendering capabilities, making it the preferred 

choice for realistic visualization games. Its feature set includes a powerful editor, 

Blueprint visual scripting, asset management, physics simulation, and extensive 

support for various platforms [27-30]. Moreover, Unreal Engine's real-time rendering 

capabilities allow it to achieve high levels of visual fidelity and realism and, its 

advanced rendering pipeline, coupled with the physically based rendering (PBR) 

system, allows for the creation of visually stunning environments, realistic lighting, 

and lifelike character models. Additionally, accurately simulating light interactions 

and shadows in real-time are obtained with the engine's dynamic lighting and global 

illumination systems [27-29]. 

The physics simulation capabilities of this game engine contribute to the 

immersion and realism of games, by having the NVIDIA PhysX engine, which enables 

accurate and dynamic simulations of objects, collisions, and environmental 

interactions enhancing gameplay mechanics, allowing for more engaging and dynamic 

experiences [31]. With Unreal Engine's Blueprint visual scripting system, developers 

can employ a visual programming interface to create gameplay mechanics, AI 

behaviour, and interactive systems without writing traditional code, enhancing 

accessibility and empowering the prototypes and the implementation of ideas more 

efficiently, reducing reliance on dedicated programmers for certain tasks [31].  

Furthermore, this game engine provides a comprehensive networking 

framework that supports seamless multiplayer experiences and offers a high-level 

networking architecture, a built-in replication system, and support for dedicated 

servers, making it easier to implement multiplayer features and to ensure smooth 

gameplay interactions [32].  

2.3.3. CryEngine 

  

Crytek designed the gaming engine known as CryEngine. It originated with the 

development of Far Cry, a first-person shooter game, and its subsequent instalments, 

utilizing the C++ and Lua programming languages for scripting. The engine allows game 

development for various platforms like Xbox One, PlayStation 4, Windows, Linux, PSVR, 
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and Oculus Rift. It manages real-time asset conversion and optimization, enabling 

developers to make cross-platform modifications efficiently throughout the game 

development process. This enhances both the speed and quality of development while 

reducing the risks associated with multiplatform games. CryEngine grants access to 

source codes and the gaming engine itself, providing more flexibility and customization 

options. CryEngine is renowned for its exceptional graphics and game 

performance [33].  

CryEngine games primarily revolve around the first-person shooter genre. It 

boasts numerous features that contribute to immersive and realistic game and virtual 

environment creation, such as a real-time editor, bump mapping, dynamic lights, a 

network system, an integrated physics system, shaders, shadow support, and a 

dynamic music system. The engine is equipped with all necessary development tools, 

including the CryEngine Sandbox world editing system. It supports all available 

hardware and receives updates for further hardware compatibility. Licensed 

developers gain access to the full source code and documentation for the engine and 

tools [34]. 

Using the CryEngine offers several advantages, notably its ability to produce 

high-quality graphics and visuals. The engine comes with necessary development tools 

that can be accessed from games employing it. The Sandbox editor is particularly user-

friendly as it allows real-time level editing, providing immediate feedback on design 

changes. Additionally, a freely downloadable SDK includes partial source code and 

documentation [34]. 

 

2.4. Communication Protocols  

Communication protocols are essential components of modern networking 

systems that enable devices and systems to exchange information in a structured and 

efficient way. A communication protocol can be seen as a set of rules and conventions 

that control how data is transmitted, received, and interpreted between different 

entities within a network. These protocols are specifically designed to meet the unique 

requirements and challenges faced by industrial applications, such as real-time 

control, deterministic behaviour, scalability, and interoperability [35]. 

Several widely used protocols in the fields of industrial automation and the 

Internet of Things (IoT) include OPC UA, Modbus, MQTT, DDS and ROS [36]. 



2.4. Communication Protocols  19 

 

 

 

In this subchapter, Modbus and OPC UA, will be explored, examining their key 

features and advantages. 

2.4.1. Modbus 

The Modbus transmission protocol was specifically designed for controlling 

processes in various systems and has become the prevailing standard for serial 

communication in the industry. It facilitates communication between devices 

connected to the same network, typically operating in a client/server configuration. 

Modbus messages are categorized into two types, query/response, and broadcast/no 

response. In both cases, the client is responsible for initiating the communication, 

and report-by-exception (RBE) is not supported except in the case of Modbus TCP [37]. 

Modbus is versatile and can be employed by different types of devices, such as 

PLCs, HMIs, control panels, drivers, and I/O devices, enabling them to execute remote 

operations [37, 38]. 

The protocol defines a set of standard function codes that facilitate diverse 

types of operations, such as reading and writing data registers, coils, input registers, 

and discrete inputs and supports both analogue and digital data types, making it 

versatile for a wide range of applications [39, 40]. 

To implement the Modbus protocol, various transmission protocols are 

available, such as Asynchronous Serial Transmission and TCP/IP. Asynchronous Serial 

Transmission is used for serial connections, such as those over wire RS-232, RS-422, 

RS-485, fiber optics, or radio links. Within this mode, there are two distinct 

transmission modes, the Modbus RTU and the Modbus ASCII. Modbus RTU utilizes a 

compact, binary representation of data, leading to faster communication and its 

primary use during regular operations. It is often represented in hexadecimal format. 

Modbus ASCII, in contrast, uses a human-readable format, making it more verbose. It 

is commonly used for testing and debugging purposes. TCP/IP enables the use of 

Modbus over Ethernet networks, extending its capabilities and facilitating 

communication between devices connected through TCP/IP [37].  

 The figure 2.6 shows the Modbus mapping onto the OSI model. 
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Figure 2.6. Modbus Model [37]. 

 

Modbus provides support for four primary data types. Firstly, there are 1-bit 

inputs, which are read-only and can be accessed from an I/O system. Secondly, we 

have 2-byte input registers, also read-only, and accessible through an I/O system. On 

the other hand, we have 1-bit discrete outputs, commonly known as coils, which are 

used for output operations. These coils are read/write enabled, meaning they can be 

both accessed and modified by an application program. Finally, there are 2-byte 

holding registers, also read/write enabled, allowing an application program to both 

read from and write to them [37].  

Modbus protocol defines a simple PDU independent of the underlying 

communication layers. A typical Modbus Application Data Unit (ADU) is shown in Table 

2.2. 

 

Table 2.2. Typical Modbus Application Data Unit [37]. 

 Protocol Data Unit (PDU)  

Application Data Unit (ADU) 

1 Byte 1 Byte Variable 2 Bytes 

Address Field Function Field Data Field 
Error Checking 

Fields 

 

2.4.2. Modbus TCP  

 

Modbus TCP is a communication protocol, an extension of the Modbus protocol, 

widely used in industrial automation and control systems to establish communication 

between devices such as programmable logic controllers (PLCs), supervisory control 

and data acquisition (SCADA) systems, and various other devices [38]. 
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Modbus TCP operates over TCP/IP networks, allowing faster and more reliable 

communication over long distances. It is based on a client/server architecture, where 

a client initiates a request to a server device, and the server responds with the 

requested data or performs the desired action and uses the Transmission Control 

Protocol (TCP) as the transport layer, providing features such as error checking, data 

packets acknowledgment, and reliable data transmission. It also utilizes the Internet 

Protocol (IP) for addressing and routing packets within an Ethernet network [39, 40]. 

2.4.3. OPC UA  

 

OPC UA, which stands for Open Platform Communications Unified Architecture, 

is a communication protocol that facilitates machine-to-machine interaction, primarily 

employed in industrial automation. It is meticulously defined in the IEC 62541 

specification, and its key objective is to enable seamless communication across 

different platforms while utilizing an information model to describe the data being 

exchanged [36]. 

This protocol is widely adopted in the European manufacturing industry, driving 

its significance in the realm of industrial automation and gaining global recognition as 

one of the leading communication protocols [36].   

One of the notable developments in OPC UA is the introduction of the 

Publish/Subscribe specification, where servers can publish data, and clients can 

subscribe to this data without being concerned about the data's source. An essential 

aspect to note is that OPC UA Publish/Subscribe does not inherently incorporate quality 

of service (QoS) mechanisms. However, when combined with technologies like Time 

Sensitive Networking (TSN) on layer 2, or other protocols such as MQTT, it becomes 

feasible to incorporate additional QoS principles [36]. 

The OPC Foundation, responsible for shaping and maintaining the OPC UA 

standard, has released multiple specification parts that are accessible to the public. 

This approach fosters transparency and allows the community to understand the 

various features and components of OPC UA comprehensively. As a result, OPC UA 

continues to evolve and adapt, providing a robust and versatile framework for 

machine-to-machine communication in the industrial landscape. Its semantic-rich 

architecture and compatibility with different domains make it an ideal choice for a 

wide range of applications in the industrial sector, propelling the progress of 

automation and smart manufacturing processes [36]. 
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3. Requirements and Modelling  

An in-depth understanding of the shop floor will be undertaken, exploring the 

functioning of all its components. To achieve this, an examination of the existing shop 

floor as well as the shop floor simulator will be conducted, given its alignment with 

the requirements of the automation laboratories at FEUP, represented in Figure 3.1. 

Subsequently, the reason for Unity to be chosen to develop the digital twin is 

presented. Also, an analysis of the components will be performed to ensure the new 

elements meet the same requirements as those in the current shop floor setup. This 

meticulous process will lead to the creation of an efficient and effective shop floor 

simulator for research and experimentation purposes. 

 

  

 
 

Figure 3.1. Plant floor in the automation laboratories of FEUP. 

 

 3.1. Shop Floor 

 The shop floor has a well-defined fixed layout, comprising a diverse range of 

equipment. In the subsequent sections, a comprehensive and detailed description of 

the operation of each piece of equipment will be provided. Furthermore, explicit 

mention will be made of the actuators and sensors associated with each equipment, 

offering a comprehensive understanding of their functionalities and interactions. 
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3.1.1 Simple conveyor 

 

 The simple conveyor possesses the capability to transport a piece in two 

opposing directions, depending upon the conveyor's positioning. Regardless of the 

direction, the movement consistently occurs at a uniform speed, facilitating the 

control mechanism for the conveyor's motor, which can be achieved using separate 

binary signals for each direction. 

The conveyors are equipped with one or more sensors that facilitate the 

detection of a piece on the conveyor, with the number of sensors varying depending 

on the conveyor's size. Each of these sensors corresponds to a binary output, providing 

a clear and concise indication of whether a piece is present or absent on the conveyor's 

surface. 

 The Table 3.1 has the simple conveyor’s input and output signal. 

 
Table 3.1. Simple conveyor’s input and output signal. 

Type Acronym Name 

Binary Actuator mp Positive direction movement 

Binary Actuator mm Negative direction movement 

Binary Sensor 1 p1 Presence of piece 

Binary Sensor 2 p2 Presence of piece 

Binary Sensor 3 p3 Presence of piece 

 

 

3.1.2 Rotative conveyor 

 

The rotative conveyor belt functions much like a simple conveyor belt but 

comes with the added advantage of controllable rotation. This means that besides its 

linear movement, it can also be precisely rotated to a desired angle. 

To facilitate this extra rotational control, the conveyor belt incorporates two 

additional binary signals, one for each direction of rotation. These signals allow for 

smooth and controlled rotations within a range of 90 degrees. The conveyor belt is 

equipped with two limit switches that indicate the endpoints of this 90-degree 

rotation. 

The Table 3.2 has the rotative conveyor’s input and output signals. 
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Table 3.2. Rotative conveyor’s input and output signals. 

Type Acronym Name 

Binary Actuator mp Positive direction movement 

Binary Actuator mm Negative direction movement 

Binary Actuator rd Direct rotation 

Binary Actuator ri Reverse rotation 

Binary Sensor 1 p Presence of piece 

Binary Sensor 2 d End of direct rotation 

Binary Sensor 3 i End of reverse rotation 

 

 

3.1.3 Sliding conveyor 

 

The sliding conveyor belt functions in a manner quite similar to the rotative 

conveyor belt, with the only distinction being the mode of movement. Instead of 

rotational motion, the sliding conveyor belt employs linear translation for its 

operations. As a result, the actuators and sensors used in the sliding conveyor belt are 

identical to those found in the rotative conveyor belt, although with distinct names, 

as indicated in the Table 3.3. 
 

Table 3.3. Sliding conveyor’s input and output signals. 

Type Acronym Name 

Binary Actuator mp Positive direction movement 

Binary Actuator mm Negative direction movement 

Binary Actuator tp Positive direction translation 

Binary Actuator tm Negative direction translation 

Binary Sensor 1 p Presence of piece 

Binary Sensor 2 fp End of positive direction translation 

Binary Sensor 3 fm End of negative direction translation 
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3.1.4. Workbench 
 

The worktable has a specific purpose of providing a temporary location for 

positioning pieces within the gantry-type robot's reach. It permits the robot to deposit 

pieces onto the table, facilitating the stacking of these pieces on top of each other.  

Regarding its control mechanism, the worktable operates as an immobile 

conveyor belt, essentially static and devoid of any movement. It relies on a single 

presence sensor to identify the presence of a piece on its surface. Unlike traditional 

conveyor belts, the worktable does not possess any actuators for mobility since it 

remains fixed in one position throughout its use. 

The Table 3.4 has the workbench’s input and output signals. 

 

Table 3.4. Workbench’s input and output signals. 

Type Acronym Name 

Binary Sensor p Presence of piece 

 

3.1.5. Warehouse 

 

In order to simplify warehouse operations, the interaction with the warehouse 

is streamlined to include two primary actions, requesting the storage of a piece or the 

retrieval of a specific type of piece. 

The warehouse cell's physical interface with other cells is facilitated through 

two distinct conveyor belts, each serving a unique purpose. One type of conveyor belt 

enables the retrieval of pieces from the warehouse, while the other type facilitates 

the storage of pieces into the warehouse. 

Control of each conveyor belt aligns with the familiar setup of a simple conveyor 

belt, utilizing two digital outputs for the movement actuators and one digital input to 

detect the presence of a piece on the conveyor belt. 

To store a piece within the warehouse, it must first be positioned in the middle 

position on the appropriate conveyor belt. The request for storage is initiated by a 

designated digital signal transitioning from 0 to 1. 

On the other hand, when it comes to removing a piece from the warehouse, the 

conveyor belt should be initially free. Subsequently, the desired piece type is indicated 

using a numerical value. Notably, for the removal request to be acknowledged, the 

corresponding register should have an initial value of 0.  
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The Tables 3.5 and 3.6 have the input and output signals for the warehouse’s 

entrance and exit respectively. 

Table 3.5. Warehouse’s entrance input and output signals. 

Type Acronym Name 

Binary Actuator mp Positive direction movement 

Binary Actuator mm Negative direction movement 

Binary Actuator in Insert piece into the warehouse 

Binary Sensor p Presence of a piece 

 

 
Table 3.6. Warehouse’s exit input and output signals. 

Type Acronym Name 

Binary Actuator mp Positive direction movement 

Binary Actuator mm Negative direction movement 

Word Actuator tp Type of piece to remove 

Binary Sensor p Presence of a piece 

 

3.1.6. Machine tool  

 

The machine tool efficiently performs operations on workpieces positioned on 

the attached conveyor belt, which forms an integral part of the machine tool and is 

controlled by actuators similar to those used in simple conveyor belts. 

There exist two variants of the machine tool, one equipped with a single tool 

and another with three tools. In the latter case, these three tools are housed on a 

turret. When switching between tools on the turret, a simple and consistent process is 

followed, ordering the rotation of the turret in a single direction until the desired tool 

is correctly aligned for machining. The activation of a sensor confirms the presence of 

any tool in the machining position.  

Upon startup, the machine assumes Tool T1 to be in the machining position. 

The tools are strategically mounted in the following order: T1, T2, T3. The turret, 

housing the tools, possesses independent movement capabilities along the ZZ and YY 
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axis. Each axis is controlled by two binary actuators and is accompanied by two sensors 

that signal the arrival at the extreme positions. 

For machines equipped with a single tool, the control is limited to maintaining 

a fixed speed, and the turret's movement is confined solely to the ZZ axis. The 

indication of the fixed-speed tool operating in the machining position is communicated 

through a straightforward binary actuator. 

The Table 3.7 has the machine tool’s input and output signals. 

 
Table 3.7. Machine tool’s input and output signals. 

Type Acronym Name 

Binary Actuator mp Positive direction movement 

Binary Actuator mm Negative direction movement 

Binary Actuator tc Tool change 

Binary Actuator -- Tool change 

Binary Actuator tr Tool rotate 

Binary Actuator vp 
Positive tower movement along 

Y-axis 

Binary Actuator vm 
Negative tower movement along 

Y-axis 

Binary Actuator zp 
Positive tower movement along 

Z-axis 

Binary Actuator zm 
Negative tower movement along 

Z-axis 

Binary Sensor p Presence of piece 

Binary Sensor pt Presence of tool 

Binary Sensor vp End of positive Y-axis movement 

Binary Sensor vm End of negative Y-axis movement 

Binary Sensor zp End of positive Z-axis movement 

Binary Sensor zm End of negative Z-axis movement 
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3.1.7. Pusher 

 

A pusher serves as a valuable device utilized for effectively displacing pieces 

on a conveyor belt, primarily used in sorting and selecting operations. The pusher and 

the conveyor belt are inherently interconnected, with the latter being controlled by 

actuators similar to those used for simple conveyor belts. 

The pusher operates through two actuators, enabling movements in both right 

and left directions. The boundary of each movement is precisely determined by two 

limit switch sensors. To ensure the preservation of equipment integrity, strict 

measures are in place to prevent the pusher from surpassing these limits during its 

movements. 

The Table 3.8 has the pusher’s input and output signals. 

 
Table 3.8. Pusher’s input and output signals. 

Type Acronym Name 

Binary Actuator mp Positive direction movement 

Binary Actuator mm Negative direction movement 

Binary Actuator pr Retract the pusher 

Binary Actuator pe Extend the pusher 

Binary Sensor p Presence of piece 

Binary Sensor fr End of pusher retraction 

Binary Sensor fe End of pusher extension 

 

 

3.1.8. Robot 3D 

 

The 3D robot is equipped to perform movements along three axes, with two 

movement actuators for each axis, enabling motion in both directions. The ZZ axis is 

monitored by two sensors indicating its extreme positions, namely up and down. 

Similarly, the XX axis employs two sensors to identify its extreme positions, ensuring 

correct alignment with the conveyors or tables beneath the robot. On the other hand, 

the YY axis utilizes five sensors to establish alignment with any of the five conveyors 

or tables along this axis. 
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To control the claw, a single binary actuator is utilized. However, due to 

mechanical constraints, after the claw's closing actuator is engaged, it should pause 

for approximately one second to ensure a secure grip on the object. A sensor inside 

the claw detects the presence or absence of a piece. 

To prevent collisions, all movements of the claw along the XX and YY axes are 

restricted to occur only when the claw is positioned in the uppermost position along 

the ZZ axis. Additionally, movements along the XX, YY, and ZZ axes must never exceed 

the prescribed limits of the robot's operating area. 

At the system's startup, the robot's initial position is unknown. Hence, an 

initialization procedure is required to place the robot in a known position, establishing 

a reliable starting point for its operations. 

The Table 3.9 has the Robot 3D‘s input and output signals. 

Table 3.9. Robot 3D‘s input and output signals. 

Type Acronym Name 

Binary Actuator xp 
Positive direction movement along 

XX axis 

Binary Actuator xm 
Negative direction movement along 

XX axis 

Binary Actuator yp 
Positive direction movement along 

YY axis 

Binary Actuator ym 
Negative direction movement along 

YY axis 

Binary Actuator zp 
Positive direction movement along 

ZZ axis 

Binary Actuator zm 
Negative direction movement along 

ZZ axis 

Binary Actuator g Claw actuator 

Binary Sensor xp 
End of movement in positive 

direction along XX axis 

Binary Sensor xm 
End of movement in negative 

direction along XX axis 

Binary Sensor zp 
End of movement in positive 

direction along ZZ axis 

Binary Sensor zm 
End of movement in negative 

direction along ZZ axis 

Binary Sensor y1 Position 1 of YY axis 
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Table 3.9. Cont. 

Type Acronym Name 

Binary Sensor y2 Position 2 of YY axis 

Binary Sensor y3 Position 3 of YY axis 

Binary Sensor y4 Position 4 of YY axis 

Binary Sensor y5 Position 5 of YY axis 

Binary Sensor p Presence of piece 

 

3.1.9. Interlock 

 

The shop floor is equipped with an interlock system capable of filtering out 

student actuators that could potentially cause harm or damage to the physical 

equipment. This safety feature prevents the execution of certain types of actuators 

known to be hazardous. For instance, it blocks any attempts to perform simultaneous 

movements in both directions on any conveyor or trying to rotate the rotative conveyor 

in both directions simultaneously. Additionally, if a piece becomes jammed between 

two conveyors, being on of them a rotative conveyor, the system prevents any 

attempts to rotate it. It also intervenes when there are attempts to force pieces 

against each other, as such actions could lead to damage. Furthermore, actuators that 

could result in displacements exceeding their designated limits, such as those in the 

warehouse or robot3d, are also restricted by the interlock mechanism. 

 

 

 

3.2. SFS - Flexible Production Line  

FEUP's current simulator is a 2D representation of the shop floor that contains 

the various objects like conveyors, warehouses, and machines. The simulator, unlike 

its real counterpart, can be customized, meaning it can have different layouts. The 

Figure 3.2 shows an example of those layouts.  

For this layout, the warehouses are depicted as large vertical rectangles with 

brown squares. All conveyors are bi-directional, and the yellow dots represent sensors 

capable of detecting pieces' presence. Additionally, some conveyors, indicated by a 
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blue tinge, can rotate about their vertical axis, allowing pieces to move in both 

horizontal and vertical directions. While conveyors with an orange arrow can insert or 

remove pieces from the respective warehouses. 

Furthermore, the simulator has two types of machines, namely M1 and M2, with 

different tool sets. M1 is equipped with tools T1, T3, and T4, while M2 uses tools T2, 

T3, and T4. 

To simulate this production line, the Shop Floor Simulator (SFS) software is 

employed. The SFS is developed in Java and is compatible with Windows, Linux, and 

OSX. The logic signals, including sensors and actuators, are accessed using the 

Modbus/TCP protocol. Specifically, the SFS simulator acts as a Modbus/TCP server, 

mapping sensors to Input Discrete and actuators to Coils. The addresses for each signal 

are available in a csv file. 

 

Figure 3.2. Shop Floor Simulator. 

 
 3.3. Requirements analysis 

Considering both the physical shop floor and the shop floor simulation, several 

essential requirements arise for this project. Each of these objects serves distinct 

purposes and possesses specific requirements. 

The conveyor's primary function is to efficiently transport pieces from one 

location to another. Its key requirement is to ensure seamless dislocation of the pieces 

along the intended path. 

The rotator, on the other hand, plays a pivotal role in altering the direction of 

the pieces. Hence, it is imperative that the rotator can smoothly and precisely rotate, 

in order for the items to change to the direction needed.
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For the machines, their primary objective is to work on the pieces by modifying 

their colour. As a result, the system must provide the necessary tools and 

functionalities to enable the machines to execute this colour-changing process 

flawlessly. 

Finally, the warehouses function as storage units for the pieces. Ensuring that 

the system can effectively manage and handle the storage of pieces within the 

warehouses. 

Additionally, the simulation should be configurable using file formats like txt or 

JSON. These files will serve as a means to customize the properties and behaviour of 

objects in the simulation. Consequently, the project should also include functionalities 

to handle file communication effectively, enabling seamless interaction with these 

configuration files. By doing so, different and flexible layouts of the shop floor can be 

created, meeting specific needs and scenarios. 

Lastly, it is crucial for the project to offer support for the Modbus protocol to 

facilitate smooth interactions with external industrial devices. 

 

 

3.4. Unity as a digital twin simulation foundation 

The reason behind selecting Unity as the preferred platform for creating a 

digital twin capable of simulating the plant floor when comparing it with other popular 

options such as Unreal Engine and CryEngine are represented on Table 3.10. 

 

Table 3.10. Comparation of Game Engines[33]. 

Parameters Unity Unreal CryEngine 

Cross 

Platform 

Consoles (Xbox, 

PlayStation, Wii U, 

Nintendo), OS or Desktop 

(macOS, Windows and 

Linux), Mobile devices 

(Android, Windows, iOS, 

Blackberry), WebGL 

Consoles (Xbox, 

PlayStation, Switch), 

OS (Windows, macOS 

and Linux), Mobile 

devices (Android, iOS), 

HTML5 

Consoles (Xbox, 

PlayStation, Oculus 

Rift), OS (Windows 

Linux), Mobile devices 

(not supported) 

OS Support Windows, Linux, Mac Windows, Mac Windows, Linux 
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Table 3.10. Cont. 

Parameters Unity Unreal CryEngine 

Programming 

Languages 

C#, JavaScript, Boo C++ C++,Lua 

Multifunctionality 2D,3D 2D,3D 3D 

Documentation  Best Good Poor 

Difficulty Level 

(for Beginner) 

Low High High 

Artificial 

Intelligence 

RAIN Kynapse Lua Driven AI 

Physics Engine  PhvsX PhvsX Soft-Bodv 

Network/ 

Multiplayer 

Supported Supported Supported 

Network/ 

Multiplayer 

Supported Supported Supported 

Development 

Tools  

Visual Studio, 

MonoDevelop 

BluePrint Editor, Visual 

Studio 

FlowGraph, Visual 

Studio 

Terrain Design 

using Engine 

Tools 

Medium High Medium (Good in-

built assets) 

Graphic Effects Shadow effects, 

Particle system, 

Different types of 

lighting, Lens Flare 

Shadow effects, 

Particle system, 

Different types of 

lighting, Lens Flare 

Shadow effects, 

Particle system, 

Different types of 

lighting, Lens Flare 

Libraries & 

Plugins 

Maximum Less than Unity Least 

Technical and 

Community 

Support 

Vast, active and 

supportive 

community 

Between Unity and 

CryEngine 

Relatively small 

community 
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Table 3.10. Cont. 

Parameters Unity Unreal CryEngine 

Animations  Basic animation SkeletalControl and 

supports dynamic 

animation (better than 

CryEngine) 

Supports 

SkeletalControl and 

Facial Editor 

Modeling Supports external 

modeling assets 

created in (Blender, 

3ds Max, Maya, etc.) 

and it has built in 

asset store 

Static Mesh Editor( not 

better when compared 

to CryEngine) 

Provides Designer 

Tool, CryEngine’s 3D 

object modelling tool 

Pricing Personal – Free Plus 

- $399/yr per seat  

Pro - $1800/yr per 

seat 

Enterprise - 

$2000/mo per 10 

seats 

Personal use – Free 

Personal Version – if 

revenue from the 

game is more than 

$3,000 /quarter than 

5% of the game's gross 

income is charged or 

else free 

CryEngine is available 

for free including the 

full engine code. 

There is a 5% royalty 

fee levied after the 

first $5000 of revenue 

earnt 

VR/AR Supports Oculus Rift, 

HTC Vive, Google 

DayDream, 

Cardboard, Gear VR, 

Steam VR 

Supports Oculus Rift, 

HTC Vive, Steam VR, 

OSVR Google 

VR/DayDream, 

Samsung Gear VR 

Supports HTC Vive, 

Oculus Rift 

 

Considering Table 3.10, Unity stands out as the optimal choice for several 

reasons. Firstly, its cross-platform compatibility with macOS, Windows, and Linux 

makes it incredibly versatile. 

Moreover, Unity's exceptional documentation, extensive libraries, and robust 

community support make it the leader among game engines in these aspects. The 

wealth of resources available allows for swift and efficient troubleshooting, enabling 

to overcome any challenges or setbacks that may arise during development. 
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One of Unity's most significant advantages is its beginner-friendly nature, with 

the lowest difficulty level compared to other engines. This ease of use facilitates a 

smooth learning curve for newcomers, granting them a better understanding of the 

engine and game development process. 

So, considering all these factors and ensuring compatibility with the 

requirements outlined in the previous sub-chapter, it becomes evident that Unity 

stands out as the optimal choice for simulating a shop floor. 

3.4.1. Unity GameObjects  

 To develop the components for the Shop Floor Simulator, understanding 

Unity's GameObjects is crucial. 

GameObjects are the basic building blocks of any project in Unity and represent 

the entities, objects, or elements that make up a game world. To define the specific 

functionality and behaviour of each GameObject, they can have more than one 

component attached to it. Unity provides a wide range of built-in components, being 

the main ones the Transform which allows to define and change the position, rotation, 

and scale of the GameObject, the Renderer which gives the GameObject a visual 

appearance, the Rigidbody that allows the GameObject to suffer for physics 

simulation, and the Collider that allows for physical collisions between GameObjects. 

These components can be added, modified, or removed to customize the behaviour 

and appearance of GameObjects. Scripts are also components that can be added to a 

GameObject. 

Scripts can be attached to GameObjects as components, providing them with 

specific functionality like modifying already existing components, creating new ones, 

interacting with other scripts, and responding to events or input from the player. In 

Unity, scripts are typically written in an external code editor using the C# language 

and then attached to GameObjects using the Inspector window. Moreover, when scripts 

are attached to any GameObject in Unity, they remain active throughout the 

GameObject's existence. These scripts typically have two primary functions by default, 

the Start() and the Update() functions. The Start() function is executed only once each 

time the class is called or the GameObject is initialized. On the other hand, the 

Update() function is executed once every frame, providing continuous updates and 

allowing for real-time interactions and changes in the game or application. 
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4. Implementation 

To address the shortcomings of the old simulator, a new 3D simulator was 

developed that offers a more realistic representation of the shop floor. The new 

simulator was built using the old simulator as a reference, allowing us to incorporate 

the knowledge gained from it into the development of the new one. 

 

 4.1. Architecture 

The architecture of the new simulator was carefully designed to enable 

efficient communication between different classes and seamless interactions between 

various elements of the shop floor simulation. 

At the heart of the architecture lies the “Shopfloor” class. This class serves as 

a central connection point that facilitates communication between different 

components of the simulator. Its main responsibilities include reading a JSON file that 

contains crucial information about the shop floor layout, such as specifications for 

different objects, types of pieces, and actions associated with various machines. By 

parsing this JSON data, the Shopfloor class can set up the initial state of the simulation. 

Furthermore, the Shopfloor class acts as a server for the Modbus communication 

protocol, where Modbus is implemented to facilitate real-time data exchange between 

the simulation and the user's program. The Shopfloor class continuously updates the 

sensors’ values on the shop floor and sends this information to the user's program using 

the Modbus protocol. Simultaneously, it receives actuator values from the user's 

program, enabling real-time control of the simulation. 

The user's program, acting as a Modbus client, connects to the Shopfloor class 

and interacts with the simulation. By sending actuator values, the user can manipulate 

the behaviour of various elements in the shop floor environment and observe the 

effects in real time through the simulation's graphical interface. 

Additionally, the Shopfloor class establishes connections with various classes 

responsible for handling different objects within the simulation, which include the 

Simple Conveyor, Rotator Conveyor, Machine Conveyor. Each of these classes manages 

the behaviour and functionality of its corresponding object. 
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For instance, the Simple Conveyor class manages the movement of pieces along 

the conveyor, updates sensor data for detecting piece positions, and communicates 

with the user's program through the Shopfloor class to reflect changes in the conveyor's 

behaviour. 

Similarly, the Rotator Conveyor class and Machine Conveyor class handle 

specific functionalities unique to their respective objects. They also interact with the 

user's program via the Shopfloor class, providing the user with comprehensive control 

over the simulation. 

The architecture promotes modularity and flexibility, allowing for easy 

expansion and incorporation of new elements into the simulation. By establishing well-

defined communication channels and encapsulating functionalities within specific 

classes, the new simulator achieves a robust and scalable design.  

The Figure 4.1 shows the architecture implemented for this project. 

 

Figure 4.1. Architecture of the implementation. 

4.2. Materials  

Each material used in the simulator served a specific purpose in distinguishing 

various elements within the shop floor environment. So, the Black material was applied 

to the conveyors, giving them the appearance of a typical conveyor belt, the red 

material was utilized for the side barriers, indicating restricted areas for the 

movement of pieces and the yellow material was employed for the sensors located in 

the middle of the conveyors, facilitating the detection of pieces during their transit. 

The Grey material provided a neutral colour for the floor, contributing to the 

overall aesthetics. In contrast, the GreyMet material, sharing the same grey colour, 
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added a metallic sheen to the machines, making them appear more robust and 

industrial in nature. 

Additionally, the implementation of a physical material with drag components 

added a layer of realism to the simulation. This allowed for more accurate modelling 

of object interactions, such as pieces being affected by friction as they moved across 

the conveyor systems. 

 

4.3. GameObjects  

To enhance the visual fidelity and realism of the simulation, careful 

consideration was given to the design of GameObjects. 

4.3.1. Floor 

The GameObject Floor is used for the Shopfloor class and serves as the base 

layer upon which all other elements are positioned and interact, providing the 

necessary backdrop for the entire shop floor simulation.  

The Figure 4.2 shows the scene view of the GameObject Floor. 

 

 

Figure 4.2. GameObject Floor. 

Since the Shopfloor class is responsible for the communication with the JSON 

file, the parameters of configuration that come from it for each GameObject are 

presented on this script. The Table 4.1 shows those parameters. 
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Table 4.1. JSON parameters. 

Parameter Simple Conveyor Rotate Conveyor Machine Conveyor 

Id X X X 

Type “conveyor” “rotator” “machine” 

DirectionX X X X 

DirectionZ X X X 

PositionX X X X 

PositionZ X X X 

OffsetSen X X X 

OffsetAct X X X 

Speed X X X 

  

The table 4.1 clearly illustrates that all GameObjects share the same parameter 

configuration, except for the "Type" parameter, which determines the specific object 

to be created. The "Id" parameter is used for unique identification of each object. 

Moreover, the "directionX" and "directionZ" parameters control the orientation of the 

GameObject, while the "positionX" and "positionZ" parameters define its coordinates. 

Additionally, the "offsetSen" and "offsetAct" parameters dictate the positions in 

the Modbus memory where the GameObject's sensor and actuator values are stored, 

respectively. Lastly, the "speed" parameter influences the movement velocity of the 

pieces on the conveyors. 

 Utilizing the “Instantiate()” function with these specific parameters, the 

objects can be seamlessly spawned onto the floor, enabling the automatic creation of 

the shop floor the moment the game is initiated. 
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4.3.2. Simple Conveyor 

Representing one of the core elements of the shop floor, the Simple Conveyor 

was designed as a 3D object with a cube shape, subsequently transformed to simulate 

a conveyor belt. The modification of component Transform values resulted in the 

conveyor's characteristic shape, facilitating the movement of pieces. To create a more 

realistic representation, the conveyor was complemented with side barriers and a 

central sensor to detect the presence of pieces as they travelled along the conveyor 

belt. 

To the Simple Conveyor it was attached the “SimpleConveyorMove” script. This 

script is responsible for controlling the movement of objects on the conveyor belt and 

uses variables such as “direction”, a Vector3 variable representing the movement 

direction of objects, and “onBelt” , a List of GameObjects to store objects on the belt. 

In the Update() function, the script evaluates the sensor state to detect objects 

on the conveyor belt and, based on the actuator values, the appropriate movement 

direction is determined. The script iterates through objects on the belt, updating their 

velocity for smooth movement. Instead of moving the conveyor itself, it manipulates 

the velocity of each individual piece, resulting in their seamless movement. 

The script also manages collisions with other objects. When a collision occurs, 

the “OnCollisionEnter(Collision collision)” function adds the collided object to the 

“onBelt” list. On the other hand, the “OnCollisionExit(Collision collision)” function 

removes the object from the list when the collision ends. 

The Figure 4.3 shows the scene view of the GameObject Simple Conveyor while 

the Figure 4.4 shows the laboratory of automation counterpart. 

 

 

Figure 4.3. GameObject Simple Conveyor. 
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Figure 4.4. Simple Conveyor of Automation Laboratory 

4.3.3. Rotator Conveyor 

Building upon the foundation of the Simple Conveyor, the Rotator Conveyor 

shares similar design principles but includes additional sensors. These sensors detect 

changes in the conveyor's orientation, allowing the simulator to accurately model 

pieces being rotated during their movement. 

To the Rotator Conveyor, the “RotatorConveyor” script was attached. This 

script controls the rotation of the conveyor belt and object movement using the same 

logic as the “SimpleConveyorMove” script for moving objects. 

In the Update() function, the script updates the time variable based on the 

elapsed time since the previous frame and checks the status of two rotation sensors, 

updating their values, and determining the rotation direction based on the active 

rotation sensor. The script manages the conveyor belt's rotation based on the actuator 

states, and if the appropriate actuator is active and the time delay has passed, it 

rotates the conveyor belt in the desired direction using “eulerAngles” of the transform. 

Moreover, the script forces the piece to rotate in sync with the conveyor, creating a 

visually realistic behaviour. 

The Figure 4.5 shows the scene view of the GameObject Rotator Conveyor while 

the Figure 4.6 shows the laboratory of automation counterpart. 
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Figure 4.5. GameObject Rotator Conveyor. 

 

Figure 4.6. Rotator Conveyor of Automation Laboratory 

4.3.4. Machine Conveyor 

Extending the conveyor system, the Machine Conveyor featured elements 

indicative of a machine. Three supplementary 3D objects were included to visually 

represent the presence of a machine connected to the conveyor adding depth and 

detail to the simulation, allowing the simulator to accurately model pieces being 

transformed by the machines. 

The “MachineMove” script was attached to the Machine Conveyor. This script 

controls the interactions of a machine and the movement of objects on the conveyor 

belt following the same logic as the previous scripts for the movement of objects. 

The script begins by declaring variables related to colour, tool status, and timing, 

initializing the timing variable in the Start() function. 
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In the Update() function, the script handles tool activation and deactivation 

based on specific actuators and sensors. Additionally, triggers a tool selection process 

based on timing and tool type conditions. The tool selection process determines which 

values should be set to true, representing the usage of different tools. 

If the sensor detects an object, the script performs loops to identify the initial 

and final states of the object on the belt. Based on the identified states and the current 

tool status, the script updates the object's colour, sets the tool work status, and resets 

the timing variable. 

The Figure 4.7 shows the scene view of the GameObject Machine Conveyor 

while the Figure 4.8 shows the laboratory of automation counterpart. 

 

 

Figure 4.7. GameObject Machine Conveyor.  

 
Figure 4.8. Machine Conveyor of Automation Laboratory 
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4.3.5. Piece 

A fundamental element of the shop floor, the Piece was represented as a simple 

3D cube object. To enable interactions with other GameObjects, a Rigidbody 

component was added, allowing the Piece to react to external forces and, for instance, 

remain atop the conveyors during transit.  

The Figure 4.9 shows the scene view of the GameObject Piece. 

 

 

Figure 4.9. GameObject Piece. 

 

4.4. Deployment Code Sample  

To implement the simulation with objects in the Unity project, the code shown 

in Figure 4.10 is utilized when the project starts running. Although the provided code 

example only demonstrates the creation of a simple conveyor, it serves as a blueprint 

for creating all other objects in the simulation. 

The process begins by reading the parameters from a JSON file. These 

parameters contain essential information about the objects to be instantiated. 

Depending on the type of object specified in the JSON file (in this case, a conveyor for 

the simple conveyor), the corresponding object will be created. 

The Instantiate() function is then employed to generate the objects in the 

scene. By using the parameters obtained from the JSON file, each object is positioned 

accurately on the floor with the correct orientation. 

Following the instantiation process, the relevant parameters are sent to the 

“SimpleConveyorMove” script. This script handles the movement and behaviour of the 

created conveyor object, allowing it to function as intended within the simulation. 
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Figure 4.10. Implementation of the Simple Conveyor on the simulation. 
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5. Results and Discussion 

A series of test were conducted on the created objects. The primary objective 

of these tests was to validate the functionality and performance of the objects, 

including their movements, sensors detection, and Modbus communication with the 

user's program. 

 

5.1. Tests  

The first test involved the implementation of a single conveyor to assess the 

efficiency of Modbus communication. A piece was placed on the conveyor's sensor, and 

the corresponding sensor value was updated and transmitted to the client. This test 

aimed to ensure that the Modbus communication protocol was correctly established 

between the Shopfloor class and the user's program. A visual representation of this test 

is shown on the Figure 5.1. 

  
Figure 5.1. Modbus communication test. 

 

Building upon the previous test, a tester was designed to verify the bi-

directional movement of the simple conveyor. Two simple conveyors were used, and a 

piece was made to move back and forth between them, triggered by the sensors. This 

test enabled the validation of both actuators of the conveyor, as the movement 

occurred in both directions. Additionally, the change in motion also served as a 

validation of the sensors' accuracy. A visual representation of this test is shown on the 

Figure 5.2. 
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Figure 5.2. Simple Conveyor test. 

 

Next, the focus shifted to testing the rotator conveyor. The objective was to 

implement a tester that could validate the rotation functionality of the rotator. For 

this purpose, two simple conveyors were arranged in an inverse L shape, with a rotator 

at the joint. The rotator was programmed to perform a 90º rotation in both 

orientations. This test was essential to confirm the proper functioning of the rotator's 

actuators and sensors responsible for the rotational movement. A visual representation 

of this test is shown on the Figure 5.3. 

  
Figure 5.3. Rotator Conveyor test. 

 

Dedicated tests were performed on the machine to assess its ability to 

transform pieces. Multiple iterations of this test were conducted, using different tools 

of the machine with various types of pieces and transformation times. The objective 

was to evaluate the machine's reliability and versatility in executing different 

transformation processes. The distinct tests are presented on the Table 5.1 and an 

example of this test is shown on the Figure 5.4. 

Table 5.1. Work-piece transformations. 

Starting Piece Produced Piece Tool Processing Time 

P1 P6 T1 20s 

P2 P4 T2 10s 

P2 P5 T3 15s 

P3 P6 T1 20s 

P4 P7 T3 10s 

P6 P8 T2 30s 
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P7 P9 T2 10s 

 

   

Figure 5.4. Machine test. 

 

In this final test, a more realistic shop floor simulation was created to validate 

all the objects' functionalities in a practical setting. The aim was to replicate cells A 

and C of the current FEUP simulator with a simplified layout. This comprehensive test 

allowed for the evaluation of the objects' performance under real-world scenarios, 

providing valuable insights into their practical applicability. A visual representation of 

this test is shown on the Figure 5.5. 

  
Figure 5.5. Shop Floor test. 
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6. Conclusion 

This dissertation successfully achieved its primary objective of developing a 

digital twin capable of simulating the plant floor simulator in FEUP's automation labs. 

Through an in-depth exploration of various game engines able to create a digital twin 

capable of simulating the plant floor simulator, it was determined that Unity was 

the most suitable choice for this project due to its extensive documentation and user-

friendly nature, making it accessible even to beginners. 

Additionally, a comprehensive study of the existing simulator was conducted to 

gain a thorough understanding of its components, which served as the foundation for 

defining the requirements for the implementation of the new digital twin using Unity. 

The identified requirements included the integration of the Modbus communication 

protocol, along with the implementation of various elements such as a simple 

conveyor, a rotating conveyor, and a conveyor with a machine tool. 

Following the successful implementation of the requirements, a series of 

comprehensive and robust tests were conducted to carefully validate each element of 

the system. The initial test involved the movement of a piece between two simple 

conveyors, validating their consistent logic and functionality. Subsequently, the second 

test focused on assessing the rotator conveyor's in executing rotation movements 

efficiently and accurately. In the final test, the machine's capability to change tools 

and alter the colour of the piece was rigorously examined. The flawless execution of 

these tasks within the designated time frames unequivocally confirmed the 

effectiveness and reliability of the implementation. 

Through these meticulous tests, the system has demonstrated its efficiency, 

robustness, and adaptability, leaving no doubts about the successful validation of all 

elements. The results underscore the system's capacity to meet the required 

functionalities. 

Lastly, the creation of the digital twin was a successful endeavour, resulting in 

the development of a realistic plant layout that effectively replicated the 

functionalities of the existing simulator. Throughout the implementation process, all 

the identified requirements were seamlessly integrated and operated as intended, 

leading to a fully functional digital twin. 
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6.1. Future work 

It is important to acknowledge that like any project, this dissertation also has 

its limitations. Due to the complexity of industrial systems, some requirements have 

not been fully captured in the simulation. Future work could focus on refining the 

digital twin to include more advanced features and precise modelling, like adding the 

warehouses and allowing for different communications protocol, making it even more 

representative of real-world scenarios.  

Additionally, to enhance result validation, tests conducted by running the 

simulation and the real shop floor simultaneously, would allow for a better 

comparation of the object interactions and execution times, ensuring a stronger 

evaluation of the outcomes. 

 
6.2. Final assessment 

The development of this project enabled personal and educational growth 

through a combination of self-organization and pursuit of excellence, ensuring the 

achievement of the project objectives and deadlines. Despite the difficulty of self-

evaluation in lengthy projects, the deep interest in the subject, intense concentration, 

and unwavering dedication helped maintain a high level of focus throughout the 

semester, resulting in an outstanding final outcome. 
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