

Faculdade de Engenharia da Universidade do Porto

Digital Twin for Plant Floor Kit

Francisco José Machado Coutinho

Mestrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Prof. Mário Jorge Rodrigues de Sousa

31st July 2023

Francisco Coutinho, 2023

i

Resumo

No contexto da Indústria 4.0, a integração de tecnologias de ponta transformou

os processos de fabrico, aumentando a eficiência e produtividade. Entre essas

tecnologias, a tecnologia digital twin tem recebido uma atenção significativa pela sua

capacidade de criar réplicas virtuais de sistemas físicos, possibilitando monitorização,

análise e otimização em tempo real. Esta tese foca-se em utilizar os avanços dos digital

twins para simular o chão de fábrica nos laboratórios de automação da Faculdade de

Engenharia da Universidade do Porto (FEUP). O objetivo é criar uma representação

precisa do ambiente de produção, oferecendo uma plataforma para estudo, análise e

otimização sem necessidade de rearranjos físicos.

O digital twin foi construído, utilizando um motor de jogos capaz de simular as

leis da física, possibilitando interações físicas realistas. Esse alto nível de precisão

permite a simulação, avaliação e otimização de vários cenários de produção sem

necessidade de rearranjos físicos dispendiosos e demorados. Integrando protocolos de

comunicação de automação industrial, o digital twin interage e opera

consistentemente com as práticas industriais do mundo real, facilitando estratégias de

controle inovadoras, avaliação de cenários e validação de algoritmos. A construção de

um sistema modular e configurável permite uma personalização e extensão fácil do

digital twin para representar diferentes layouts e configurações.

Além disso, ao longo da tese, um estudo abrangente de motores de jogo levou

à escolha da Unity como a plataforma mais adequada para o projeto. O simulador

existente nos laboratórios de automação da FEUP serviu de base para definir os

requisitos e implementar o digital twin utilizando a Unity. Componentes-chave, como

tapetes simples, tapetes rotativos e tapetes com máquinas, foram integrados e

testados com sucesso. A implementação passou por testes rigorosos, validando a

funcionalidade e confiabilidade de cada elemento.

No geral, a dissertação alcançou o seu principal objetivo ao desenvolver um

digital twin baseado em física capaz de simular o chão de fábrica nos laboratórios de

automação da FEUP. O sistema demonstrou eficiência, robustez e adaptabilidade,

fornecendo um layout de fábrica realista e replicando eficazmente as funcionalidades

do simulador existente. Este digital twin serve como uma ferramenta para otimizar os

processos de fabrico, beneficiando tanto a academia como a indústria em cenários da

Indústria 4.0.

Palavras-chave: Indústria 4.0; Digital twin; Motor de Jogo; Unity; GameObject;

Modbus.

ii

iii

Abstract

In the context of Industry 4.0, the integration of cutting-edge technologies has

transformed manufacturing processes, enhancing efficiency and productivity. Among

these technologies, digital twin technology has gained significant attention for its

ability to create virtual replicas of physical systems, enabling real-time monitoring,

analysis, and optimization. This thesis focuses on utilizing digital twin advancements

to simulate the plant floor in the automation laboratories of the Faculty of Engineering

at the University of Porto (FEUP). The objective is to create an accurate representation

of the production environment, providing a platform for experimentation, analysis,

and optimization without the need for physical rearrangements.

The digital twin was built on a robust foundation using a game engine capable

of simulating the laws of physics, enabling realistic physical interactions. This high

level of accuracy allows for simulation, evaluation, and optimization of various

production scenarios without the need for costly and time-consuming physical

rearrangements. By integrating industrial automation communication protocols, the

digital twin interacts and operates consistently with real-world industrial practices,

facilitating innovative control strategies, scenario assessment, and algorithm

validation. The construction of a modular and configurable system allows easy

customization and extension of the digital twin to represent different layouts and

configurations.

Furthermore, throughout the thesis, a comprehensive study of game engines

led to the selection of Unity as the most suitable platform for the project. The existing

simulator in FEUP's automation labs served as the foundation for defining requirements

and implementing the digital twin using Unity. Key components, such as simple

conveyors, rotating conveyors, and conveyors with machine tools, were successfully

integrated and tested. The implementation underwent rigorous testing, validating

each element's functionality and reliability.

Overall, the dissertation achieved its primary objective by developing a physics-

based digital twin capable of simulating the plant floor in FEUP's automation labs. The

system demonstrated efficiency, robustness, and adaptability, providing a realistic

plant layout and effectively replicating the functionalities of the existing simulator.

This digital twin serves as a powerful tool for optimizing manufacturing processes,

benefiting both academia and industry in Industry 4.0 scenarios.

Keywords: Industry 4.0; Digital Twin; Game Engine; Unity; GameObject; Modbus.

iv

v

Acknowledgments

First, I would like to express my gratitude to my supervisor, Prof. Mário Jorge

Rodrigues de Sousa, for the high-level scientific knowledge transmitted, for offering

invaluable advice, and for the opportunity to be part of this project.

 To my friends, I am truly grateful for their support throughout this entire

journey. Thank you for listening, offering valuable advice, and providing help

whenever I needed it. Your presence has made a significant difference in my life.

 To my family, thank you for encouraging me in all of my pursuits and inspiring

me to follow my dreams. I am especially grateful to my parents, who supported me

emotionally and financially. Their countless sacrifices, unconditional love, support and

continuous encouragement throughout my life have led me to where I am now. This

accomplishment would not have been possible without them.

Also, I would like to deeply thank all of those who contributed directly or

indirectly to the completion of my dissertation and have helped me overcome the

challenges in the past five years.

vi

vii

Index

1. Introduction ... 1

1.1. Context .. 1

1.2. Industry 4.0 ... 1

1.3. Objective ... 1

1.4. Document’s structure ... 2

2. State of The Art .. 3

2.1. Industry 4.0 .. 3

2.1.1. Historical Context .. 3
2.1.2. Implications for the Manufacturing Sector 4
2.1.3. Technologies of Industry 4.0... 5
2.1.4. Reference Architectural Model Industry 4.0 (RAMI 4.0) 6
2.1.5. Digital Twin .. 7

2.2. Digital Twin Platforms ... 8
2.2.1. Factory I/O ... 8
2.2.2. Siemens Digital Twin .. 9

2.3. Game Engines ... 10
2.3.1. Unity .. 15
2.3.2. Unreal Engine .. 17
2.3.3. CryEngine ... 17

2.4. Communication Protocols ... 18
2.4.1. Modbus .. 19
2.4.2. Modbus TCP .. 20
2.4.3. OPC UA .. 21

3. Requirements and Modelling... 19

3.1. Shop Floor ... 19

3.2. SFS - Flexible Production Line .. 27

3.3. Requirements analysis ... 28

3.4. Unity as a digital twin simulation foundation 29
3.4.1. Unity GameObjects ... 32

4. Implementation .. 33

4.1. Architecture ... 33

4.2. Materials ... 34

4.3. GameObjects .. 35
4.3.1. Floor .. 35
4.3.2. Simple Conveyor ... 37
4.3.3. Rotator Conveyor .. 38
4.3.4. Machine Conveyor ... 39
4.3.5. Piece .. 41

4.4. Deployment Code Sample ... 41

viii INDEX

5. Results and Discussion .. 43

5.1. Tests .. 43

6. Conclusion ... 47

6.1. Future work ... 48

6.2. Final assessment .. 48

References .. 49

ix

List of Figures

Figure 2.1. Advancements in each industrial revolution [4]. 3

Figure 2.2. Examples of technologies of Industry 4.0 [7]. 5

Figure 2.3. Reference architecture model for Industry 4.0 (RAMI4.0) [12]. 6

Figure 2.4. Example of a Factory I/O simulation [19]...................................... 9

Figure 2.5. Example of a shop floor using Siemens Digital Twin [20]. 10

Figure 2.6. Modbus Model [37]. .. 20

Figure 3.1. Plant floor in the automation laboratories of FEUP. 19

Figure 3.2. Shop Floor Simulator. .. 28

Figure 4.1. Architecture of the implementation. .. 34

Figure 4.2. GameObject Floor. ... 35

Figure 4.3. GameObject Simple Conveyor. ... 37

Figure 4.4. Simple Conveyor of Automation Laboratory 38

Figure 4.5. GameObject Rotator Conveyor. .. 39

Figure 4.6. Rotator Conveyor of Automation Laboratory 39

Figure 4.7. GameObject Machine Conveyor. ... 40

Figure 4.8. Machine Conveyor of Automation Laboratory 40

Figure 4.9. GameObject Piece. .. 41

Figure 4.10. Implementation of the Simple Conveyor on the simulation. 42

Figure 5.1. Modbus communication test. ... 43

Figure 5.2. Simple Conveyor test. ... 44

Figure 5.3. Rotator Conveyor test. .. 44

Figure 5.4. Machine test... 45

Figure 5.5. Shop Floor test. ... 45

x

xi

List of Tables

Table 2.1. Advantages of Unity in comparison with other game engines [24]. 16

Table 2.2. Typical Modbus Application Data Unit [37]. 20

Table 3.1. Simple conveyor’s input and output signal. 20

Table 3.2. Rotative conveyor’s input and output signals. 21

Table 3.3. Sliding conveyor’s input and output signals. 21

Table 3.4. Workbench’s input and output signals. .. 22

Table 3.5. Warehouse’s entrance input and output signals. 23

Table 3.6. Warehouse’s exit input and output signals. 23

Table 3.7. Machine tool’s input and output signals. 24

Table 3.8. Pusher’s input and output signals. .. 25

Table 3.9. Robot 3D‘s input and output signals. ... 26

Table 3.10. Comparation of Game Engines[33]. ... 29

Table 4.1. JSON parameters. ... 36

Table 5.1. Work-piece transformations. .. 44

xii

xiii

Notation and Glossary

AI Artificial Intelligence

ASCII American Standard Code for Information Interchange

CPS Cyber-Physical Systems

DDS Data Distribution Service

FEUP Faculdade de Engenharia da Universidade do Porto

HMI Human Machine Interface

IoT Internet of Things

ML Machine Learning

MQTT Message Queuing Telemetry Transport

OPC UA Open Platform Communications Unified Architecture

PBR Physically Based Rendering

PLC Programmable Logic Controllers

ROS Robot Operating System

RS Recommended Standard

RTU Remote Terminal Unit

SCADA Supervisory Control And Data Acquisition

SFS Shop Floor Simulator

TCP/IP Transmission Control Protocol/Internet Protocol

TSN Time Sensitive Networking

xiv

1

1. Introduction

1.1. Context

This dissertation aims to use the advances in digital twin technology, to

simulate the plant floor in the automation laboratories of the Faculty of Engineering

of the University of Porto (FEUP). The envisioned digital twin intends to accurately

replicate the physical layout and dynamics of the production environment, providing a

powerful platform for experimentation, analysis, and optimization. By developing a

physics-based digital twin that accurately simulates the plant floor of FEUP's

automation laboratories, this dissertation seeks to offer a valuable tool for academia,

industry and researchers interested in optimizing manufacturing processes in Industry

4.0 scenarios.

1.2. Industry 4.0

In the era of Industry 4.0, the integration of cutting-edge technologies has

revolutionized manufacturing processes, leading to increased efficiency and

productivity [1]. One such technology that has gained significant attention and

momentum is the digital twin technology, which offers a virtual replica of physical

systems to enable real-time monitoring, analysis, and optimization. Digital twins have

also developed as essential tools for simulating and managing the plant floor of

production facilities, allowing for control, and exploration of alternative layouts for

more efficient production lines [2].

To achieve this objective, the digital twin was built upon a robust foundation

using a game engine capable of simulating the laws of physics. With the incorporation

of realistic physical interactions, such as collisions, forces, and movements, the digital

twin will provide a highly accurate representation of the plant floor, allowing the

simulation, evaluation, and optimization of distinct production scenarios without

costly and time-consuming physical rearrangements.

1.3. Objective

To accomplish this, the combination of the digital twin with standard industrial

automation communication protocols will allow interaction and control of the virtual

environment consistently with real-world industrial best practices, aiming at the

implementation of innovative control strategies, the assessment of different

2 Introduction

automation scenarios, and the validation of algorithms. Furthermore, the construction

of a modular and configurable system that accurately represents the various

components and processes found in a typical production plant will be possible by

assembling different blocks, each representing a specific unit within the production

environment, such as simple conveyors, rotating conveyors, and conveyors with

machine tools. Thus, digital twins can be easily customized and extended to have

different layouts and configurations [3].

1.4. Document’s structure

This dissertation is comprised of seven chapters.

The first chapter corresponds to the Introduction, which includes a general

framing of the issue and a study overview.

The Chapter 2, State of The Art, introduces the importance and properties of

digital twins and their use in the industry. The studied digital twins and game engines

are presented as well as the concepts related to communication protocols.

During Chapter 3, Requirements and Modelling, the real shop floor is

presented with the current shop floor simulator and the requirements. The game

engine to be used and the reason for it to be chosen are also discussed.

Then, in Chapter 4, Implementation, information about the materials and

equipment used in the project, as well as the followed procedures, are described.

Following, in Chapter 5, Results and Discussion, the outcomes of this work are

summarized and discussed. The challenges and potential difficulties are also

mentioned.

Next, in Chapter 6, Conclusion, the main findings, discussions and final remarks

of this project are assessed.

Lastly, in the References, the used pre-existing materials developed by others

are properly cited.

3

2. State of The Art

2.1. Industry 4.0

2.1.1. Historical Context

Since the beginning of industrialization, significant advancements in technology

have triggered fundamental changes that are now referred to as "industrial

revolutions". These revolutions comprehend distinct periods of radical transformation:

the first marked by mechanization, the second characterized by the extensive

utilization of electrical energy, and the third characterized by the pervasive

digitization of various industries [4], as represented in Figure 2.1. The first industrial

revolution introduced mechanization using water and steam power, while the second

brought mass production and assembly lines powered by electricity. Finally, the third

revolution, also known as the digital revolution, introduced computerization and

automation [5].

Figure 2.1. Advancements in each industrial revolution [4].

In recent years, the world has witnessed rapid advancements in various

technologies, including artificial intelligence, digital twin, the Internet of Things (IoT),

and big data analytics. The envisioned future of manufacturing revolves around highly

efficient and modular systems, where products are capable of controlling their own

production processes [4]. These technologies have had a profound impact on various

sectors, including manufacturing, leading to the emergence of a new paradigm known

as Industry 4.0. This concept originated in Germany in 2011 represents the fourth

industrial revolution, which combines cyber-physical systems with advanced digital

4 State of The Art

technologies to create smart, connected, and automated manufacturing environments.

Industry 4.0 represents a leap forward, integrating physical and digital systems to

enable intelligent and autonomous manufacturing processes [5].

2.1.2. Implications for the Manufacturing Sector

Industry 4.0 has extensive implications for the manufacturing sector, promising

to transform traditional factories into smart factories improving efficiency since

Industry 4.0 technologies enable real-time monitoring and optimization of

manufacturing processes, leading to increased productivity, reduced downtime, and

improved resource utilization. Since the technology of Industry 4.0 is cloud-based,

there is the ability to connect machines, systems, and processes in a smart factory

that allows for rapid reconfiguration and customization of production lines, enabling

manufacturers to respond quickly to changing market demands. Another benefit of the

Industry 4.0 is that it enables the integration of digital technologies into the products

themselves, leading to the development of products that offer new functionalities and

value-added services [6, 7].

On the other hand, the adoption of Industry 4.0 technologies also comes with

some challenges, including a skilled workforce capable of managing and leveraging

these technologies. Additionally, it also leads to a shift in job roles, with an increased

focus on data analysis, programming, system integration, and cybersecurity since, due

to its interconnected nature, the manufacturers become more vulnerable to cyber-

attacks. So, ensuring the security and integrity of data and systems is a critical

challenge in this new era of manufacturing [6].

Industry 4.0 in industrial practice is driven by two major forces: the application-

pull and the technology-push. On one hand, there is a substantial demand for

applications or solutions, which creates a significant need for changes in response to

shifting operational circumstances. These changes are triggered by social, economic

and political changes, such as the need for short development periods,

individualization on demand, flexibility and resource efficiency [4]. On the other hand,

there is a notable drive for technological advancements within industrial practices.

However, when it comes to job-related aspects, particularly in industrial settings,

innovative technologies are not widely adopted or implemented on a broad scale. Some

approaches of a technology-push are further increasing mechanization and

automation, digitalization and networking, and miniaturization [4].

2.1. Industry 4.0 5

2.1.3. Technologies of Industry 4.0

Industry 4.0 relies on a range of technologies that work together to create a

connected and intelligent manufacturing ecosystem. Some examples are shown in

Figure 2.2.

Figure 2.2. Examples of technologies of Industry 4.0 [7].

One of these technologies is the Internet of Things (IoT) which refers to the

network of physical devices, sensors, and actuators embedded in machines and

products, enabling them to communicate and exchange data with each other and with

humans enabling real-time monitoring, control, and optimization of manufacturing

processes [8].

Cyber-Physical Systems (CPS) is also one of the Industry 4.0 technologies and it

refers to the integration of physical and computational components that interact with

each other and the physical world combining sensing, actuation, and control

capabilities to enable the seamless integration of the physical and virtual realms in

manufacturing systems [9].

Big Data Analytics is another technology that generates vast amounts of data

from various sources, including sensors, machines, and production processes. Big data

analytics techniques are used to process and analyse this data to extract valuable

insights, optimize operations, and support decision-making [10].

Finally, Artificial Intelligence (AI) and Machine Learning (ML) are two

technologies that have gained a lot of popularity in recent years. These technologies

play a crucial role in Industry 4.0 by enabling machines and systems to learn from data,

6 State of The Art

make decisions, and perform tasks that traditionally required human intelligence. AI

and ML algorithms are used for predictive maintenance, quality control, intelligent

automation, and optimization in manufacturing [11].

2.1.4. Reference Architectural Model Industry 4.0 (RAMI 4.0)

Various diverse interests intersect in the debate surrounding Industry 4.0. To

establish a shared comprehension of the essential standards, use cases, and other

requirements for Industry 4.0, it was crucial to create a standardized architectural

model. This model acts as a common reference point, facilitating discussions about its

connections and intricacies. This resulted in the reference architecture model for

Industry 4.0 (RAMI4.0), shown in Figure 2.3 [12].

Figure 2.3. Reference architecture model for Industry 4.0 (RAMI4.0) [12].

So, RAMI 4.0 utilizes a three-dimensional coordinate system to capture essential

aspects of Industry 4.0. By doing so, it simplifies complex relationships into smaller

and more manageable clusters. This model allows to classify objects, like machines,

based on the model, enabling the description and implementation of highly flexible

Industry 4.0 concepts [13].

These three axes are, the Hierarchy Levels Axis, the Life Cycle & Value Stream

Axis, and the Layers Axis.

 The Hierarchy Levels Axis, shown on the right horizontal side, represents

hierarchy levels from IEC 62264, which is an international standards series for

enterprise IT and control systems. These levels define different functionalities within

2.1. Industry 4.0 7

factories or facilities. To represent the Industry 4.0 environment, these functionalities

have been expanded to include workpieces labelled as "Product" and the connection

to the Internet of Things and Services, labelled as "Connected World” [14].

Additionally, the Life Cycle & Value Stream Axis, the left horizontal axis,

represents the life cycle of facilities and products, based on IEC 62890 for life-cycle

management. It distinguishes between "types" and "instances." A "type" refers to the

design and prototyping stage, while an "instance" is when the actual product is being

manufactured [14].

Lastly, on the Layers Axis, the six layers on the vertical axis describe the

decomposition of a machine into its structured properties, layer by layer. This virtual

mapping of a machine's properties draws inspiration from information and

communication technology, where complex systems' properties are commonly broken

down into layers [14].

2.1.5. Digital Twin

The concept of the Digital Twin emerged in the early 2000s and has since

evolved with no standardized definition, highlighting its versatility across various

sectors [13]. It can be seen as a simulation that spans multiple domains, a virtual

representation of a physical object or product that has been manufactured, and a

virtual substitute for a real-world object, among other interpretations [13, 15, 16].

Nonetheless, there is a general framework for the architecture of a Digital

Twin, comprising three main elements: the physical world, the virtual world and the

connectivity that links the two together [17]. Each element incorporates a variety of

components dependent on the specific requirements of the designer. However, some

fundamental components include sensors in the physical world (to collect real-world

data), a physical twin, edge processing capabilities, data security measures, the digital

twin itself, data processing capabilities (facilitated by artificial intelligence, machine

learning, among other) and communication interfaces such as satellite, the internet,

Bluetooth, and more [17].

To lay a foundation for understanding digital twin technology, at its core, a

digital twin is a virtual representation of a physical object, process, or system that

uses real-time data and simulation models to mimic and predict its physical

counterpart’s behaviour and performance [17]. It is divided into three elements that

consist of the physical entity, which represents the real-world object, the digital

8 State of The Art

counterpart, which comprises a combination of data-driven models, algorithms, and

analytical tools, and the connection between them, enabling continuous data exchange

and interaction [17].

Digital twin enables real-time monitoring and analysis of the physical entity and

by capturing and analysing data from sensors and other sources, they can provide

valuable insights into the performance and condition of the physical object. They can

also simulate future scenarios and test innovative ideas, preventing potential failures

or malfunctions in designs before physical production. This information allows for a

proactive decision-making, optimizing efficiency, and reducing downtime, as well as

minimizing unexpected breakdowns, accelerating the innovation process, and reducing

costs [18].

2.2. Digital Twin Platforms

There are several software platforms and companies that offer Digital Twins

solutions and features for various industries, such as Dassault Systèmes (a

3DEXPERIENCE platform), ANSYS, PTC (which offers Industrial IoT capabilities),

Microsoft Azure Digital Twin, IBM Watson IoT, SAP Digital Supply Chain, Oracle IoT,

Siemens MindSphere, AVEVA, Bentley Systems.

This subchapter explores the features and benefits of two software platforms,

Factory I/O and Siemens Digital Twin.

2.2.1. Factory I/O

Factory I/O is a modern virtual environment designed for the simulation and

testing of industrial automation systems and provides a realistic and immersive

platform for training, programming, and debugging industrial processes [19].

Replication of the physical components and processes of a factory floor, allows

for the experimentation and optimization of the automation solutions without the need

for a physical setup. Additionally, Factory I/O offers a vast library of industrial

components such as sensors, actuators, conveyors, and robots, as well as support for

various communication protocols commonly used in industrial automation, such as

Modbus and OPC [19]. It also provides real-time feedback and visualization of process

data, enabling to monitor, analyse and assess the behaviour of automation systems.

2.2. Digital Twin Platforms 9

Furthermore, Factory I/O finds applications in different areas of industrial

automation. It is commonly used for training purposes and control strategies before

implementing them in real-world scenarios and can be utilized for debugging and

optimizing existing automation systems, allowing to identify and resolve issues without

interrupting the production process.

As a result, Factory I/O brings several benefits and advantages in industrial

automation scenarios. Firstly, it significantly reduces costs by eliminating the need for

physical prototypes and setups during the development and testing phases. Secondly,

Factory I/O enhances safety by experimenting with potentially hazardous scenarios

without risking injury or damage to equipment. Finally, it promotes innovation and

creativity by providing a flexible and dynamic environment for exploring new

automation concepts and ideas.

The Figure 2.4 shows an example of a shop floor simulation created using

Factory I/O.

Figure 2.4. Example of a Factory I/O simulation [19].

2.2.2. Siemens Digital Twin

Siemens Digital Twin is a technology that enables the creation of virtual replicas

of physical assets and processes and combines the power of real-time data, advanced

analytics, and simulation models to provide a comprehensive digital representation of

industrial systems. With the integration of the virtual and physical worlds, it offers

new possibilities for monitoring, optimizing, and predicting the behaviour of complex

industrial processes [20].

Additionally, Siemens Digital Twin comprises several key features and

components, such as data acquisition systems, cloud computing infrastructure,

simulation models, and analytics algorithms. The data acquisition systems collect real-

time sensor data from the physical assets and feed it into the digital twin, enabling

10 State of The Art

continuous monitoring and analysis. The cloud computing infrastructure provides the

computational power required to process and analyse the large volumes of data

generated by the digital twin. Finally, the simulation models and analytics algorithms

leverage this data to simulate and predict the performance of the physical assets,

enabling proactive maintenance and optimization [20].

Furthermore, Siemens Digital Twin solution has practical applications across

several industries, including manufacturing, where it can be used to monitor and

optimize production lines, identify bottlenecks, and simulate the impact of process

changes [20].

So, Siemens Digital Twin offers numerous benefits and advantages for industrial

processes. Firstly, it enables predictive maintenance, allowing one to identify and

address potential issues before they cause significant disruptions or failures. This

reduces downtime, improves asset reliability, and extends equipment lifespan.

Secondly, Siemens Digital Twin enhances operational efficiency by providing real-time

insights into process performance and enabling optimization through simulation and

scenario analysis. Finally, it facilitates agile decision-making by providing a virtual

platform for testing and evaluating innovative ideas and strategies, before their

implementation in the physical environment [20].

The Figure 2.5 shows an example of a shop floor simulation created using the

Siemens Digital Twin technology.

Figure 2.5. Example of a shop floor using Siemens Digital Twin [20].

2.3. Game Engines

Game engines offer game developers a framework to create video games

without starting from scratch on all fundamental systems like physics, graphics and

2.4. Communication Protocols 15

artificial intelligence [21, 22]. By providing pre-built tools, game engines save

developers time and resources, eliminating the need to create and integrate these

supporting systems manually [21, 22]. This allows developers to concentrate their

efforts on the core aspects of the game, enhancing the overall game development

process [21, 22]. Some of the most popular game engines are Unreal Engine, Unity,

Godot, Amazon Game Engines, CryEngine and GameMaker.

In this subchapter, three of the powerful game development engines available,

Unity, Unreal Engine and CryEngine, will be explored, examining their key features

and advantages.

2.3.1. Unity

Unity, developed by Unity Technologies, is a cross-platform game development

engine that provides developers with a comprehensive set of tools, resources, and

workflows to create interactive experiences across various platforms. This game

engine offers a wide range of features, including a robust editor, scripting capabilities,

asset management, physics simulation, and integrated support for programming

languages [23]. Its appeal list in its ability to create both 2D and 3D games for different

platforms such as desktop, mobile, web and virtual reality [24].

Moreover, Unity’s popularity among developers can be attributed to its

accessibility, flexibility, efficiency and low power consumption. It is compatible with

Mac, Linux and Windows, offering an artist-friendly range of tools for immersive

designing and game world creation, alongside a strong developer toolkit for high-

performance gameplay and game logic implementation. The editor offers a visual

environment that allows one to design scenes, create game objects, and implement

logic through a drag-and-drop system. Additionally, the asset store offers an extensive

library of pre-built assets, scripts, and plugins, enabling them to accelerate their

workflows and focus on creativity [25].

Unity’s game development features include processing, asset tracking,

scripting, and physics, all of which contribute to reducing game development costs and

time. Furthermore, one of Unity’s strengths is its stable code and well- designed

architecture, leading to better game performance. It also supports high-quality video

and audio effects, ensuring smooth and effective game development. The engine’s

16 State of The Art

runtime debugging feature allows developers to quickly identify and fix issues during

gameplay [24].

Moreover, the Unity engine supports high-quality video and audio effects,

providing significant benefits to game development in terms of intelligence and

effectiveness. Remarkably, videos can be adjusted and displayed in various devices

and screens without any compromise or distortion on picture quality [23]. The ability

to deploy games across multiple platforms is a significant advantage, because not only

saves development time but also expands the potential audience for a game, reaching

players on different devices and operating systems [24].

Unity’s extensibility allows developers to customize the engine to their needs,

utilizing C# scripting to create custom tools, complex game mechanics, and integrate

external libraries, pushing the boundaries of game development for unique

experiences. The Unity integrated development environment (IDE) supports C# and

JavaScript for scripting, offering essential functions suitable for game development

[25, 26]. Some advantages of Unity engine in comparison with other game engines are

presented in Table 2.1.

Table 2.1. Advantages of Unity in comparison with other game engines [24].

Scenario of Game Design Unity game engine solution
Comparative analysis

with other game engines
Develop a 3D environment
that reconciles game
performance with visual
quality

Maximum real-world visual
quality: shadows, light,
texture map, alpha channel,
independent animation time

Less graphic quality
structures

Develop a navigation system
for maximum user freedom

Enable maximum freedom to
navigate and explore the
virtual environment

High control but limited
freedom in movement
and predetermined
animation sequences

Develop a navigation system
that allows end-users to
scrutinize a particular object
for multiple perspectives

Method to augment spatial
understanding

High degree navigation
system, view direction

Develop a method to integrate
several information types

Rich content and other data
leaping technique

Require server-based
interaction and script
language

Develop a method for flexible
3D data exchange

Method for 3D data identical
to the external tool

Less supple to accomplish
data synchronization

Develop a translate
conventional analysis study
method

The basic visual-based
analysis method is present

Less flexible

Flexibility for the expansion
of game design

Possible due to object-
oriented programming

Not possible because of
structural programming

2.4. Communication Protocols 17

2.3.2. Unreal Engine

Unreal Engine, developed by Epic Games, is a comprehensive game

development engine containing a robust suite of tools, libraries, and frameworks and

is renowned for its advanced real-time rendering capabilities, making it the preferred

choice for realistic visualization games. Its feature set includes a powerful editor,

Blueprint visual scripting, asset management, physics simulation, and extensive

support for various platforms [27-30]. Moreover, Unreal Engine's real-time rendering

capabilities allow it to achieve high levels of visual fidelity and realism and, its

advanced rendering pipeline, coupled with the physically based rendering (PBR)

system, allows for the creation of visually stunning environments, realistic lighting,

and lifelike character models. Additionally, accurately simulating light interactions

and shadows in real-time are obtained with the engine's dynamic lighting and global

illumination systems [27-29].

The physics simulation capabilities of this game engine contribute to the

immersion and realism of games, by having the NVIDIA PhysX engine, which enables

accurate and dynamic simulations of objects, collisions, and environmental

interactions enhancing gameplay mechanics, allowing for more engaging and dynamic

experiences [31]. With Unreal Engine's Blueprint visual scripting system, developers

can employ a visual programming interface to create gameplay mechanics, AI

behaviour, and interactive systems without writing traditional code, enhancing

accessibility and empowering the prototypes and the implementation of ideas more

efficiently, reducing reliance on dedicated programmers for certain tasks [31].

Furthermore, this game engine provides a comprehensive networking

framework that supports seamless multiplayer experiences and offers a high-level

networking architecture, a built-in replication system, and support for dedicated

servers, making it easier to implement multiplayer features and to ensure smooth

gameplay interactions [32].

2.3.3. CryEngine

Crytek designed the gaming engine known as CryEngine. It originated with the

development of Far Cry, a first-person shooter game, and its subsequent instalments,

utilizing the C++ and Lua programming languages for scripting. The engine allows game

development for various platforms like Xbox One, PlayStation 4, Windows, Linux, PSVR,

18 State of The Art

and Oculus Rift. It manages real-time asset conversion and optimization, enabling

developers to make cross-platform modifications efficiently throughout the game

development process. This enhances both the speed and quality of development while

reducing the risks associated with multiplatform games. CryEngine grants access to

source codes and the gaming engine itself, providing more flexibility and customization

options. CryEngine is renowned for its exceptional graphics and game

performance [33].

CryEngine games primarily revolve around the first-person shooter genre. It

boasts numerous features that contribute to immersive and realistic game and virtual

environment creation, such as a real-time editor, bump mapping, dynamic lights, a

network system, an integrated physics system, shaders, shadow support, and a

dynamic music system. The engine is equipped with all necessary development tools,

including the CryEngine Sandbox world editing system. It supports all available

hardware and receives updates for further hardware compatibility. Licensed

developers gain access to the full source code and documentation for the engine and

tools [34].

Using the CryEngine offers several advantages, notably its ability to produce

high-quality graphics and visuals. The engine comes with necessary development tools

that can be accessed from games employing it. The Sandbox editor is particularly user-

friendly as it allows real-time level editing, providing immediate feedback on design

changes. Additionally, a freely downloadable SDK includes partial source code and

documentation [34].

2.4. Communication Protocols

Communication protocols are essential components of modern networking

systems that enable devices and systems to exchange information in a structured and

efficient way. A communication protocol can be seen as a set of rules and conventions

that control how data is transmitted, received, and interpreted between different

entities within a network. These protocols are specifically designed to meet the unique

requirements and challenges faced by industrial applications, such as real-time

control, deterministic behaviour, scalability, and interoperability [35].

Several widely used protocols in the fields of industrial automation and the

Internet of Things (IoT) include OPC UA, Modbus, MQTT, DDS and ROS [36].

2.4. Communication Protocols 19

In this subchapter, Modbus and OPC UA, will be explored, examining their key

features and advantages.

2.4.1. Modbus

The Modbus transmission protocol was specifically designed for controlling

processes in various systems and has become the prevailing standard for serial

communication in the industry. It facilitates communication between devices

connected to the same network, typically operating in a client/server configuration.

Modbus messages are categorized into two types, query/response, and broadcast/no

response. In both cases, the client is responsible for initiating the communication,

and report-by-exception (RBE) is not supported except in the case of Modbus TCP [37].

Modbus is versatile and can be employed by different types of devices, such as

PLCs, HMIs, control panels, drivers, and I/O devices, enabling them to execute remote

operations [37, 38].

The protocol defines a set of standard function codes that facilitate diverse

types of operations, such as reading and writing data registers, coils, input registers,

and discrete inputs and supports both analogue and digital data types, making it

versatile for a wide range of applications [39, 40].

To implement the Modbus protocol, various transmission protocols are

available, such as Asynchronous Serial Transmission and TCP/IP. Asynchronous Serial

Transmission is used for serial connections, such as those over wire RS-232, RS-422,

RS-485, fiber optics, or radio links. Within this mode, there are two distinct

transmission modes, the Modbus RTU and the Modbus ASCII. Modbus RTU utilizes a

compact, binary representation of data, leading to faster communication and its

primary use during regular operations. It is often represented in hexadecimal format.

Modbus ASCII, in contrast, uses a human-readable format, making it more verbose. It

is commonly used for testing and debugging purposes. TCP/IP enables the use of

Modbus over Ethernet networks, extending its capabilities and facilitating

communication between devices connected through TCP/IP [37].

 The figure 2.6 shows the Modbus mapping onto the OSI model.

20 State of The Art

Figure 2.6. Modbus Model [37].

Modbus provides support for four primary data types. Firstly, there are 1-bit

inputs, which are read-only and can be accessed from an I/O system. Secondly, we

have 2-byte input registers, also read-only, and accessible through an I/O system. On

the other hand, we have 1-bit discrete outputs, commonly known as coils, which are

used for output operations. These coils are read/write enabled, meaning they can be

both accessed and modified by an application program. Finally, there are 2-byte

holding registers, also read/write enabled, allowing an application program to both

read from and write to them [37].

Modbus protocol defines a simple PDU independent of the underlying

communication layers. A typical Modbus Application Data Unit (ADU) is shown in Table

2.2.

Table 2.2. Typical Modbus Application Data Unit [37].

 Protocol Data Unit (PDU)

Application Data Unit (ADU)

1 Byte 1 Byte Variable 2 Bytes

Address Field Function Field Data Field
Error Checking

Fields

2.4.2. Modbus TCP

Modbus TCP is a communication protocol, an extension of the Modbus protocol,

widely used in industrial automation and control systems to establish communication

between devices such as programmable logic controllers (PLCs), supervisory control

and data acquisition (SCADA) systems, and various other devices [38].

2.4. Communication Protocols 21

Modbus TCP operates over TCP/IP networks, allowing faster and more reliable

communication over long distances. It is based on a client/server architecture, where

a client initiates a request to a server device, and the server responds with the

requested data or performs the desired action and uses the Transmission Control

Protocol (TCP) as the transport layer, providing features such as error checking, data

packets acknowledgment, and reliable data transmission. It also utilizes the Internet

Protocol (IP) for addressing and routing packets within an Ethernet network [39, 40].

2.4.3. OPC UA

OPC UA, which stands for Open Platform Communications Unified Architecture,

is a communication protocol that facilitates machine-to-machine interaction, primarily

employed in industrial automation. It is meticulously defined in the IEC 62541

specification, and its key objective is to enable seamless communication across

different platforms while utilizing an information model to describe the data being

exchanged [36].

This protocol is widely adopted in the European manufacturing industry, driving

its significance in the realm of industrial automation and gaining global recognition as

one of the leading communication protocols [36].

One of the notable developments in OPC UA is the introduction of the

Publish/Subscribe specification, where servers can publish data, and clients can

subscribe to this data without being concerned about the data's source. An essential

aspect to note is that OPC UA Publish/Subscribe does not inherently incorporate quality

of service (QoS) mechanisms. However, when combined with technologies like Time

Sensitive Networking (TSN) on layer 2, or other protocols such as MQTT, it becomes

feasible to incorporate additional QoS principles [36].

The OPC Foundation, responsible for shaping and maintaining the OPC UA

standard, has released multiple specification parts that are accessible to the public.

This approach fosters transparency and allows the community to understand the

various features and components of OPC UA comprehensively. As a result, OPC UA

continues to evolve and adapt, providing a robust and versatile framework for

machine-to-machine communication in the industrial landscape. Its semantic-rich

architecture and compatibility with different domains make it an ideal choice for a

wide range of applications in the industrial sector, propelling the progress of

automation and smart manufacturing processes [36].

22 State of The Art

19

3. Requirements and Modelling

An in-depth understanding of the shop floor will be undertaken, exploring the

functioning of all its components. To achieve this, an examination of the existing shop

floor as well as the shop floor simulator will be conducted, given its alignment with

the requirements of the automation laboratories at FEUP, represented in Figure 3.1.

Subsequently, the reason for Unity to be chosen to develop the digital twin is

presented. Also, an analysis of the components will be performed to ensure the new

elements meet the same requirements as those in the current shop floor setup. This

meticulous process will lead to the creation of an efficient and effective shop floor

simulator for research and experimentation purposes.

Figure 3.1. Plant floor in the automation laboratories of FEUP.

 3.1. Shop Floor

 The shop floor has a well-defined fixed layout, comprising a diverse range of

equipment. In the subsequent sections, a comprehensive and detailed description of

the operation of each piece of equipment will be provided. Furthermore, explicit

mention will be made of the actuators and sensors associated with each equipment,

offering a comprehensive understanding of their functionalities and interactions.

20 Requirements and Modelling

3.1.1 Simple conveyor

 The simple conveyor possesses the capability to transport a piece in two

opposing directions, depending upon the conveyor's positioning. Regardless of the

direction, the movement consistently occurs at a uniform speed, facilitating the

control mechanism for the conveyor's motor, which can be achieved using separate

binary signals for each direction.

The conveyors are equipped with one or more sensors that facilitate the

detection of a piece on the conveyor, with the number of sensors varying depending

on the conveyor's size. Each of these sensors corresponds to a binary output, providing

a clear and concise indication of whether a piece is present or absent on the conveyor's

surface.

 The Table 3.1 has the simple conveyor’s input and output signal.

Table 3.1. Simple conveyor’s input and output signal.

Type Acronym Name

Binary Actuator mp Positive direction movement

Binary Actuator mm Negative direction movement

Binary Sensor 1 p1 Presence of piece

Binary Sensor 2 p2 Presence of piece

Binary Sensor 3 p3 Presence of piece

3.1.2 Rotative conveyor

The rotative conveyor belt functions much like a simple conveyor belt but

comes with the added advantage of controllable rotation. This means that besides its

linear movement, it can also be precisely rotated to a desired angle.

To facilitate this extra rotational control, the conveyor belt incorporates two

additional binary signals, one for each direction of rotation. These signals allow for

smooth and controlled rotations within a range of 90 degrees. The conveyor belt is

equipped with two limit switches that indicate the endpoints of this 90-degree

rotation.

The Table 3.2 has the rotative conveyor’s input and output signals.

3.1. Shop Floor 21

Table 3.2. Rotative conveyor’s input and output signals.

Type Acronym Name

Binary Actuator mp Positive direction movement

Binary Actuator mm Negative direction movement

Binary Actuator rd Direct rotation

Binary Actuator ri Reverse rotation

Binary Sensor 1 p Presence of piece

Binary Sensor 2 d End of direct rotation

Binary Sensor 3 i End of reverse rotation

3.1.3 Sliding conveyor

The sliding conveyor belt functions in a manner quite similar to the rotative

conveyor belt, with the only distinction being the mode of movement. Instead of

rotational motion, the sliding conveyor belt employs linear translation for its

operations. As a result, the actuators and sensors used in the sliding conveyor belt are

identical to those found in the rotative conveyor belt, although with distinct names,

as indicated in the Table 3.3.

Table 3.3. Sliding conveyor’s input and output signals.

Type Acronym Name

Binary Actuator mp Positive direction movement

Binary Actuator mm Negative direction movement

Binary Actuator tp Positive direction translation

Binary Actuator tm Negative direction translation

Binary Sensor 1 p Presence of piece

Binary Sensor 2 fp End of positive direction translation

Binary Sensor 3 fm End of negative direction translation

22 Requirements and Modelling

3.1.4. Workbench

The worktable has a specific purpose of providing a temporary location for

positioning pieces within the gantry-type robot's reach. It permits the robot to deposit

pieces onto the table, facilitating the stacking of these pieces on top of each other.

Regarding its control mechanism, the worktable operates as an immobile

conveyor belt, essentially static and devoid of any movement. It relies on a single

presence sensor to identify the presence of a piece on its surface. Unlike traditional

conveyor belts, the worktable does not possess any actuators for mobility since it

remains fixed in one position throughout its use.

The Table 3.4 has the workbench’s input and output signals.

Table 3.4. Workbench’s input and output signals.

Type Acronym Name

Binary Sensor p Presence of piece

3.1.5. Warehouse

In order to simplify warehouse operations, the interaction with the warehouse

is streamlined to include two primary actions, requesting the storage of a piece or the

retrieval of a specific type of piece.

The warehouse cell's physical interface with other cells is facilitated through

two distinct conveyor belts, each serving a unique purpose. One type of conveyor belt

enables the retrieval of pieces from the warehouse, while the other type facilitates

the storage of pieces into the warehouse.

Control of each conveyor belt aligns with the familiar setup of a simple conveyor

belt, utilizing two digital outputs for the movement actuators and one digital input to

detect the presence of a piece on the conveyor belt.

To store a piece within the warehouse, it must first be positioned in the middle

position on the appropriate conveyor belt. The request for storage is initiated by a

designated digital signal transitioning from 0 to 1.

On the other hand, when it comes to removing a piece from the warehouse, the

conveyor belt should be initially free. Subsequently, the desired piece type is indicated

using a numerical value. Notably, for the removal request to be acknowledged, the

corresponding register should have an initial value of 0.

3.1. Shop Floor 23

The Tables 3.5 and 3.6 have the input and output signals for the warehouse’s

entrance and exit respectively.

Table 3.5. Warehouse’s entrance input and output signals.

Type Acronym Name

Binary Actuator mp Positive direction movement

Binary Actuator mm Negative direction movement

Binary Actuator in Insert piece into the warehouse

Binary Sensor p Presence of a piece

Table 3.6. Warehouse’s exit input and output signals.

Type Acronym Name

Binary Actuator mp Positive direction movement

Binary Actuator mm Negative direction movement

Word Actuator tp Type of piece to remove

Binary Sensor p Presence of a piece

3.1.6. Machine tool

The machine tool efficiently performs operations on workpieces positioned on

the attached conveyor belt, which forms an integral part of the machine tool and is

controlled by actuators similar to those used in simple conveyor belts.

There exist two variants of the machine tool, one equipped with a single tool

and another with three tools. In the latter case, these three tools are housed on a

turret. When switching between tools on the turret, a simple and consistent process is

followed, ordering the rotation of the turret in a single direction until the desired tool

is correctly aligned for machining. The activation of a sensor confirms the presence of

any tool in the machining position.

Upon startup, the machine assumes Tool T1 to be in the machining position.

The tools are strategically mounted in the following order: T1, T2, T3. The turret,

housing the tools, possesses independent movement capabilities along the ZZ and YY

24 Requirements and Modelling

axis. Each axis is controlled by two binary actuators and is accompanied by two sensors

that signal the arrival at the extreme positions.

For machines equipped with a single tool, the control is limited to maintaining

a fixed speed, and the turret's movement is confined solely to the ZZ axis. The

indication of the fixed-speed tool operating in the machining position is communicated

through a straightforward binary actuator.

The Table 3.7 has the machine tool’s input and output signals.

Table 3.7. Machine tool’s input and output signals.

Type Acronym Name

Binary Actuator mp Positive direction movement

Binary Actuator mm Negative direction movement

Binary Actuator tc Tool change

Binary Actuator -- Tool change

Binary Actuator tr Tool rotate

Binary Actuator vp
Positive tower movement along

Y-axis

Binary Actuator vm
Negative tower movement along

Y-axis

Binary Actuator zp
Positive tower movement along

Z-axis

Binary Actuator zm
Negative tower movement along

Z-axis

Binary Sensor p Presence of piece

Binary Sensor pt Presence of tool

Binary Sensor vp End of positive Y-axis movement

Binary Sensor vm End of negative Y-axis movement

Binary Sensor zp End of positive Z-axis movement

Binary Sensor zm End of negative Z-axis movement

3.1. Shop Floor 25

3.1.7. Pusher

A pusher serves as a valuable device utilized for effectively displacing pieces

on a conveyor belt, primarily used in sorting and selecting operations. The pusher and

the conveyor belt are inherently interconnected, with the latter being controlled by

actuators similar to those used for simple conveyor belts.

The pusher operates through two actuators, enabling movements in both right

and left directions. The boundary of each movement is precisely determined by two

limit switch sensors. To ensure the preservation of equipment integrity, strict

measures are in place to prevent the pusher from surpassing these limits during its

movements.

The Table 3.8 has the pusher’s input and output signals.

Table 3.8. Pusher’s input and output signals.

Type Acronym Name

Binary Actuator mp Positive direction movement

Binary Actuator mm Negative direction movement

Binary Actuator pr Retract the pusher

Binary Actuator pe Extend the pusher

Binary Sensor p Presence of piece

Binary Sensor fr End of pusher retraction

Binary Sensor fe End of pusher extension

3.1.8. Robot 3D

The 3D robot is equipped to perform movements along three axes, with two

movement actuators for each axis, enabling motion in both directions. The ZZ axis is

monitored by two sensors indicating its extreme positions, namely up and down.

Similarly, the XX axis employs two sensors to identify its extreme positions, ensuring

correct alignment with the conveyors or tables beneath the robot. On the other hand,

the YY axis utilizes five sensors to establish alignment with any of the five conveyors

or tables along this axis.

26 Requirements and Modelling

To control the claw, a single binary actuator is utilized. However, due to

mechanical constraints, after the claw's closing actuator is engaged, it should pause

for approximately one second to ensure a secure grip on the object. A sensor inside

the claw detects the presence or absence of a piece.

To prevent collisions, all movements of the claw along the XX and YY axes are

restricted to occur only when the claw is positioned in the uppermost position along

the ZZ axis. Additionally, movements along the XX, YY, and ZZ axes must never exceed

the prescribed limits of the robot's operating area.

At the system's startup, the robot's initial position is unknown. Hence, an

initialization procedure is required to place the robot in a known position, establishing

a reliable starting point for its operations.

The Table 3.9 has the Robot 3D‘s input and output signals.

Table 3.9. Robot 3D‘s input and output signals.

Type Acronym Name

Binary Actuator xp
Positive direction movement along

XX axis

Binary Actuator xm
Negative direction movement along

XX axis

Binary Actuator yp
Positive direction movement along

YY axis

Binary Actuator ym
Negative direction movement along

YY axis

Binary Actuator zp
Positive direction movement along

ZZ axis

Binary Actuator zm
Negative direction movement along

ZZ axis

Binary Actuator g Claw actuator

Binary Sensor xp
End of movement in positive

direction along XX axis

Binary Sensor xm
End of movement in negative

direction along XX axis

Binary Sensor zp
End of movement in positive

direction along ZZ axis

Binary Sensor zm
End of movement in negative

direction along ZZ axis

Binary Sensor y1 Position 1 of YY axis

3.1. Shop Floor 27

Table 3.9. Cont.

Type Acronym Name

Binary Sensor y2 Position 2 of YY axis

Binary Sensor y3 Position 3 of YY axis

Binary Sensor y4 Position 4 of YY axis

Binary Sensor y5 Position 5 of YY axis

Binary Sensor p Presence of piece

3.1.9. Interlock

The shop floor is equipped with an interlock system capable of filtering out

student actuators that could potentially cause harm or damage to the physical

equipment. This safety feature prevents the execution of certain types of actuators

known to be hazardous. For instance, it blocks any attempts to perform simultaneous

movements in both directions on any conveyor or trying to rotate the rotative conveyor

in both directions simultaneously. Additionally, if a piece becomes jammed between

two conveyors, being on of them a rotative conveyor, the system prevents any

attempts to rotate it. It also intervenes when there are attempts to force pieces

against each other, as such actions could lead to damage. Furthermore, actuators that

could result in displacements exceeding their designated limits, such as those in the

warehouse or robot3d, are also restricted by the interlock mechanism.

3.2. SFS - Flexible Production Line

FEUP's current simulator is a 2D representation of the shop floor that contains

the various objects like conveyors, warehouses, and machines. The simulator, unlike

its real counterpart, can be customized, meaning it can have different layouts. The

Figure 3.2 shows an example of those layouts.

For this layout, the warehouses are depicted as large vertical rectangles with

brown squares. All conveyors are bi-directional, and the yellow dots represent sensors

capable of detecting pieces' presence. Additionally, some conveyors, indicated by a

28 Requirements and Modelling

blue tinge, can rotate about their vertical axis, allowing pieces to move in both

horizontal and vertical directions. While conveyors with an orange arrow can insert or

remove pieces from the respective warehouses.

Furthermore, the simulator has two types of machines, namely M1 and M2, with

different tool sets. M1 is equipped with tools T1, T3, and T4, while M2 uses tools T2,

T3, and T4.

To simulate this production line, the Shop Floor Simulator (SFS) software is

employed. The SFS is developed in Java and is compatible with Windows, Linux, and

OSX. The logic signals, including sensors and actuators, are accessed using the

Modbus/TCP protocol. Specifically, the SFS simulator acts as a Modbus/TCP server,

mapping sensors to Input Discrete and actuators to Coils. The addresses for each signal

are available in a csv file.

Figure 3.2. Shop Floor Simulator.

 3.3. Requirements analysis

Considering both the physical shop floor and the shop floor simulation, several

essential requirements arise for this project. Each of these objects serves distinct

purposes and possesses specific requirements.

The conveyor's primary function is to efficiently transport pieces from one

location to another. Its key requirement is to ensure seamless dislocation of the pieces

along the intended path.

The rotator, on the other hand, plays a pivotal role in altering the direction of

the pieces. Hence, it is imperative that the rotator can smoothly and precisely rotate,

in order for the items to change to the direction needed.

3.3 Requirements analysis 29

For the machines, their primary objective is to work on the pieces by modifying

their colour. As a result, the system must provide the necessary tools and

functionalities to enable the machines to execute this colour-changing process

flawlessly.

Finally, the warehouses function as storage units for the pieces. Ensuring that

the system can effectively manage and handle the storage of pieces within the

warehouses.

Additionally, the simulation should be configurable using file formats like txt or

JSON. These files will serve as a means to customize the properties and behaviour of

objects in the simulation. Consequently, the project should also include functionalities

to handle file communication effectively, enabling seamless interaction with these

configuration files. By doing so, different and flexible layouts of the shop floor can be

created, meeting specific needs and scenarios.

Lastly, it is crucial for the project to offer support for the Modbus protocol to

facilitate smooth interactions with external industrial devices.

3.4. Unity as a digital twin simulation foundation

The reason behind selecting Unity as the preferred platform for creating a

digital twin capable of simulating the plant floor when comparing it with other popular

options such as Unreal Engine and CryEngine are represented on Table 3.10.

Table 3.10. Comparation of Game Engines[33].

Parameters Unity Unreal CryEngine

Cross

Platform

Consoles (Xbox,

PlayStation, Wii U,

Nintendo), OS or Desktop

(macOS, Windows and

Linux), Mobile devices

(Android, Windows, iOS,

Blackberry), WebGL

Consoles (Xbox,

PlayStation, Switch),

OS (Windows, macOS

and Linux), Mobile

devices (Android, iOS),

HTML5

Consoles (Xbox,

PlayStation, Oculus

Rift), OS (Windows

Linux), Mobile devices

(not supported)

OS Support Windows, Linux, Mac Windows, Mac Windows, Linux

30 Requirements and Modelling

Table 3.10. Cont.

Parameters Unity Unreal CryEngine

Programming

Languages

C#, JavaScript, Boo C++ C++,Lua

Multifunctionality 2D,3D 2D,3D 3D

Documentation Best Good Poor

Difficulty Level

(for Beginner)

Low High High

Artificial

Intelligence

RAIN Kynapse Lua Driven AI

Physics Engine PhvsX PhvsX Soft-Bodv

Network/

Multiplayer

Supported Supported Supported

Network/

Multiplayer

Supported Supported Supported

Development

Tools

Visual Studio,

MonoDevelop

BluePrint Editor, Visual

Studio

FlowGraph, Visual

Studio

Terrain Design

using Engine

Tools

Medium High Medium (Good in-

built assets)

Graphic Effects Shadow effects,

Particle system,

Different types of

lighting, Lens Flare

Shadow effects,

Particle system,

Different types of

lighting, Lens Flare

Shadow effects,

Particle system,

Different types of

lighting, Lens Flare

Libraries &

Plugins

Maximum Less than Unity Least

Technical and

Community

Support

Vast, active and

supportive

community

Between Unity and

CryEngine

Relatively small

community

3.4. Unity as a digital twin simulation foundation 31

Table 3.10. Cont.

Parameters Unity Unreal CryEngine

Animations Basic animation SkeletalControl and

supports dynamic

animation (better than

CryEngine)

Supports

SkeletalControl and

Facial Editor

Modeling Supports external

modeling assets

created in (Blender,

3ds Max, Maya, etc.)

and it has built in

asset store

Static Mesh Editor(not

better when compared

to CryEngine)

Provides Designer

Tool, CryEngine’s 3D

object modelling tool

Pricing Personal – Free Plus

- $399/yr per seat

Pro - $1800/yr per

seat

Enterprise -

$2000/mo per 10

seats

Personal use – Free

Personal Version – if

revenue from the

game is more than

$3,000 /quarter than

5% of the game's gross

income is charged or

else free

CryEngine is available

for free including the

full engine code.

There is a 5% royalty

fee levied after the

first $5000 of revenue

earnt

VR/AR Supports Oculus Rift,

HTC Vive, Google

DayDream,

Cardboard, Gear VR,

Steam VR

Supports Oculus Rift,

HTC Vive, Steam VR,

OSVR Google

VR/DayDream,

Samsung Gear VR

Supports HTC Vive,

Oculus Rift

Considering Table 3.10, Unity stands out as the optimal choice for several

reasons. Firstly, its cross-platform compatibility with macOS, Windows, and Linux

makes it incredibly versatile.

Moreover, Unity's exceptional documentation, extensive libraries, and robust

community support make it the leader among game engines in these aspects. The

wealth of resources available allows for swift and efficient troubleshooting, enabling

to overcome any challenges or setbacks that may arise during development.

32 Requirements and Modelling

One of Unity's most significant advantages is its beginner-friendly nature, with

the lowest difficulty level compared to other engines. This ease of use facilitates a

smooth learning curve for newcomers, granting them a better understanding of the

engine and game development process.

So, considering all these factors and ensuring compatibility with the

requirements outlined in the previous sub-chapter, it becomes evident that Unity

stands out as the optimal choice for simulating a shop floor.

3.4.1. Unity GameObjects

 To develop the components for the Shop Floor Simulator, understanding

Unity's GameObjects is crucial.

GameObjects are the basic building blocks of any project in Unity and represent

the entities, objects, or elements that make up a game world. To define the specific

functionality and behaviour of each GameObject, they can have more than one

component attached to it. Unity provides a wide range of built-in components, being

the main ones the Transform which allows to define and change the position, rotation,

and scale of the GameObject, the Renderer which gives the GameObject a visual

appearance, the Rigidbody that allows the GameObject to suffer for physics

simulation, and the Collider that allows for physical collisions between GameObjects.

These components can be added, modified, or removed to customize the behaviour

and appearance of GameObjects. Scripts are also components that can be added to a

GameObject.

Scripts can be attached to GameObjects as components, providing them with

specific functionality like modifying already existing components, creating new ones,

interacting with other scripts, and responding to events or input from the player. In

Unity, scripts are typically written in an external code editor using the C# language

and then attached to GameObjects using the Inspector window. Moreover, when scripts

are attached to any GameObject in Unity, they remain active throughout the

GameObject's existence. These scripts typically have two primary functions by default,

the Start() and the Update() functions. The Start() function is executed only once each

time the class is called or the GameObject is initialized. On the other hand, the

Update() function is executed once every frame, providing continuous updates and

allowing for real-time interactions and changes in the game or application.

33

4. Implementation

To address the shortcomings of the old simulator, a new 3D simulator was

developed that offers a more realistic representation of the shop floor. The new

simulator was built using the old simulator as a reference, allowing us to incorporate

the knowledge gained from it into the development of the new one.

 4.1. Architecture

The architecture of the new simulator was carefully designed to enable

efficient communication between different classes and seamless interactions between

various elements of the shop floor simulation.

At the heart of the architecture lies the “Shopfloor” class. This class serves as

a central connection point that facilitates communication between different

components of the simulator. Its main responsibilities include reading a JSON file that

contains crucial information about the shop floor layout, such as specifications for

different objects, types of pieces, and actions associated with various machines. By

parsing this JSON data, the Shopfloor class can set up the initial state of the simulation.

Furthermore, the Shopfloor class acts as a server for the Modbus communication

protocol, where Modbus is implemented to facilitate real-time data exchange between

the simulation and the user's program. The Shopfloor class continuously updates the

sensors’ values on the shop floor and sends this information to the user's program using

the Modbus protocol. Simultaneously, it receives actuator values from the user's

program, enabling real-time control of the simulation.

The user's program, acting as a Modbus client, connects to the Shopfloor class

and interacts with the simulation. By sending actuator values, the user can manipulate

the behaviour of various elements in the shop floor environment and observe the

effects in real time through the simulation's graphical interface.

Additionally, the Shopfloor class establishes connections with various classes

responsible for handling different objects within the simulation, which include the

Simple Conveyor, Rotator Conveyor, Machine Conveyor. Each of these classes manages

the behaviour and functionality of its corresponding object.

34 Implementation

For instance, the Simple Conveyor class manages the movement of pieces along

the conveyor, updates sensor data for detecting piece positions, and communicates

with the user's program through the Shopfloor class to reflect changes in the conveyor's

behaviour.

Similarly, the Rotator Conveyor class and Machine Conveyor class handle

specific functionalities unique to their respective objects. They also interact with the

user's program via the Shopfloor class, providing the user with comprehensive control

over the simulation.

The architecture promotes modularity and flexibility, allowing for easy

expansion and incorporation of new elements into the simulation. By establishing well-

defined communication channels and encapsulating functionalities within specific

classes, the new simulator achieves a robust and scalable design.

The Figure 4.1 shows the architecture implemented for this project.

Figure 4.1. Architecture of the implementation.

4.2. Materials

Each material used in the simulator served a specific purpose in distinguishing

various elements within the shop floor environment. So, the Black material was applied

to the conveyors, giving them the appearance of a typical conveyor belt, the red

material was utilized for the side barriers, indicating restricted areas for the

movement of pieces and the yellow material was employed for the sensors located in

the middle of the conveyors, facilitating the detection of pieces during their transit.

The Grey material provided a neutral colour for the floor, contributing to the

overall aesthetics. In contrast, the GreyMet material, sharing the same grey colour,

4.2. Materials 35

added a metallic sheen to the machines, making them appear more robust and

industrial in nature.

Additionally, the implementation of a physical material with drag components

added a layer of realism to the simulation. This allowed for more accurate modelling

of object interactions, such as pieces being affected by friction as they moved across

the conveyor systems.

4.3. GameObjects

To enhance the visual fidelity and realism of the simulation, careful

consideration was given to the design of GameObjects.

4.3.1. Floor

The GameObject Floor is used for the Shopfloor class and serves as the base

layer upon which all other elements are positioned and interact, providing the

necessary backdrop for the entire shop floor simulation.

The Figure 4.2 shows the scene view of the GameObject Floor.

Figure 4.2. GameObject Floor.

Since the Shopfloor class is responsible for the communication with the JSON

file, the parameters of configuration that come from it for each GameObject are

presented on this script. The Table 4.1 shows those parameters.

36 Implementation

Table 4.1. JSON parameters.

Parameter Simple Conveyor Rotate Conveyor Machine Conveyor

Id X X X

Type “conveyor” “rotator” “machine”

DirectionX X X X

DirectionZ X X X

PositionX X X X

PositionZ X X X

OffsetSen X X X

OffsetAct X X X

Speed X X X

The table 4.1 clearly illustrates that all GameObjects share the same parameter

configuration, except for the "Type" parameter, which determines the specific object

to be created. The "Id" parameter is used for unique identification of each object.

Moreover, the "directionX" and "directionZ" parameters control the orientation of the

GameObject, while the "positionX" and "positionZ" parameters define its coordinates.

Additionally, the "offsetSen" and "offsetAct" parameters dictate the positions in

the Modbus memory where the GameObject's sensor and actuator values are stored,

respectively. Lastly, the "speed" parameter influences the movement velocity of the

pieces on the conveyors.

 Utilizing the “Instantiate()” function with these specific parameters, the

objects can be seamlessly spawned onto the floor, enabling the automatic creation of

the shop floor the moment the game is initiated.

4.3. GameObjects 37

4.3.2. Simple Conveyor

Representing one of the core elements of the shop floor, the Simple Conveyor

was designed as a 3D object with a cube shape, subsequently transformed to simulate

a conveyor belt. The modification of component Transform values resulted in the

conveyor's characteristic shape, facilitating the movement of pieces. To create a more

realistic representation, the conveyor was complemented with side barriers and a

central sensor to detect the presence of pieces as they travelled along the conveyor

belt.

To the Simple Conveyor it was attached the “SimpleConveyorMove” script. This

script is responsible for controlling the movement of objects on the conveyor belt and

uses variables such as “direction”, a Vector3 variable representing the movement

direction of objects, and “onBelt” , a List of GameObjects to store objects on the belt.

In the Update() function, the script evaluates the sensor state to detect objects

on the conveyor belt and, based on the actuator values, the appropriate movement

direction is determined. The script iterates through objects on the belt, updating their

velocity for smooth movement. Instead of moving the conveyor itself, it manipulates

the velocity of each individual piece, resulting in their seamless movement.

The script also manages collisions with other objects. When a collision occurs,

the “OnCollisionEnter(Collision collision)” function adds the collided object to the

“onBelt” list. On the other hand, the “OnCollisionExit(Collision collision)” function

removes the object from the list when the collision ends.

The Figure 4.3 shows the scene view of the GameObject Simple Conveyor while

the Figure 4.4 shows the laboratory of automation counterpart.

Figure 4.3. GameObject Simple Conveyor.

38 Implementation

Figure 4.4. Simple Conveyor of Automation Laboratory

4.3.3. Rotator Conveyor

Building upon the foundation of the Simple Conveyor, the Rotator Conveyor

shares similar design principles but includes additional sensors. These sensors detect

changes in the conveyor's orientation, allowing the simulator to accurately model

pieces being rotated during their movement.

To the Rotator Conveyor, the “RotatorConveyor” script was attached. This

script controls the rotation of the conveyor belt and object movement using the same

logic as the “SimpleConveyorMove” script for moving objects.

In the Update() function, the script updates the time variable based on the

elapsed time since the previous frame and checks the status of two rotation sensors,

updating their values, and determining the rotation direction based on the active

rotation sensor. The script manages the conveyor belt's rotation based on the actuator

states, and if the appropriate actuator is active and the time delay has passed, it

rotates the conveyor belt in the desired direction using “eulerAngles” of the transform.

Moreover, the script forces the piece to rotate in sync with the conveyor, creating a

visually realistic behaviour.

The Figure 4.5 shows the scene view of the GameObject Rotator Conveyor while

the Figure 4.6 shows the laboratory of automation counterpart.

4.3. GameObjects 39

Figure 4.5. GameObject Rotator Conveyor.

Figure 4.6. Rotator Conveyor of Automation Laboratory

4.3.4. Machine Conveyor

Extending the conveyor system, the Machine Conveyor featured elements

indicative of a machine. Three supplementary 3D objects were included to visually

represent the presence of a machine connected to the conveyor adding depth and

detail to the simulation, allowing the simulator to accurately model pieces being

transformed by the machines.

The “MachineMove” script was attached to the Machine Conveyor. This script

controls the interactions of a machine and the movement of objects on the conveyor

belt following the same logic as the previous scripts for the movement of objects.

The script begins by declaring variables related to colour, tool status, and timing,

initializing the timing variable in the Start() function.

40 Implementation

In the Update() function, the script handles tool activation and deactivation

based on specific actuators and sensors. Additionally, triggers a tool selection process

based on timing and tool type conditions. The tool selection process determines which

values should be set to true, representing the usage of different tools.

If the sensor detects an object, the script performs loops to identify the initial

and final states of the object on the belt. Based on the identified states and the current

tool status, the script updates the object's colour, sets the tool work status, and resets

the timing variable.

The Figure 4.7 shows the scene view of the GameObject Machine Conveyor

while the Figure 4.8 shows the laboratory of automation counterpart.

Figure 4.7. GameObject Machine Conveyor.

Figure 4.8. Machine Conveyor of Automation Laboratory

4.3. GameObjects 41

4.3.5. Piece

A fundamental element of the shop floor, the Piece was represented as a simple

3D cube object. To enable interactions with other GameObjects, a Rigidbody

component was added, allowing the Piece to react to external forces and, for instance,

remain atop the conveyors during transit.

The Figure 4.9 shows the scene view of the GameObject Piece.

Figure 4.9. GameObject Piece.

4.4. Deployment Code Sample

To implement the simulation with objects in the Unity project, the code shown

in Figure 4.10 is utilized when the project starts running. Although the provided code

example only demonstrates the creation of a simple conveyor, it serves as a blueprint

for creating all other objects in the simulation.

The process begins by reading the parameters from a JSON file. These

parameters contain essential information about the objects to be instantiated.

Depending on the type of object specified in the JSON file (in this case, a conveyor for

the simple conveyor), the corresponding object will be created.

The Instantiate() function is then employed to generate the objects in the

scene. By using the parameters obtained from the JSON file, each object is positioned

accurately on the floor with the correct orientation.

Following the instantiation process, the relevant parameters are sent to the

“SimpleConveyorMove” script. This script handles the movement and behaviour of the

created conveyor object, allowing it to function as intended within the simulation.

42 Implementation

Figure 4.10. Implementation of the Simple Conveyor on the simulation.

4.3. GameObjects 43

43

5. Results and Discussion

A series of test were conducted on the created objects. The primary objective

of these tests was to validate the functionality and performance of the objects,

including their movements, sensors detection, and Modbus communication with the

user's program.

5.1. Tests

The first test involved the implementation of a single conveyor to assess the

efficiency of Modbus communication. A piece was placed on the conveyor's sensor, and

the corresponding sensor value was updated and transmitted to the client. This test

aimed to ensure that the Modbus communication protocol was correctly established

between the Shopfloor class and the user's program. A visual representation of this test

is shown on the Figure 5.1.

Figure 5.1. Modbus communication test.

Building upon the previous test, a tester was designed to verify the bi-

directional movement of the simple conveyor. Two simple conveyors were used, and a

piece was made to move back and forth between them, triggered by the sensors. This

test enabled the validation of both actuators of the conveyor, as the movement

occurred in both directions. Additionally, the change in motion also served as a

validation of the sensors' accuracy. A visual representation of this test is shown on the

Figure 5.2.

44 Results and Discussion

Figure 5.2. Simple Conveyor test.

Next, the focus shifted to testing the rotator conveyor. The objective was to

implement a tester that could validate the rotation functionality of the rotator. For

this purpose, two simple conveyors were arranged in an inverse L shape, with a rotator

at the joint. The rotator was programmed to perform a 90º rotation in both

orientations. This test was essential to confirm the proper functioning of the rotator's

actuators and sensors responsible for the rotational movement. A visual representation

of this test is shown on the Figure 5.3.

Figure 5.3. Rotator Conveyor test.

Dedicated tests were performed on the machine to assess its ability to

transform pieces. Multiple iterations of this test were conducted, using different tools

of the machine with various types of pieces and transformation times. The objective

was to evaluate the machine's reliability and versatility in executing different

transformation processes. The distinct tests are presented on the Table 5.1 and an

example of this test is shown on the Figure 5.4.

Table 5.1. Work-piece transformations.

Starting Piece Produced Piece Tool Processing Time

P1 P6 T1 20s

P2 P4 T2 10s

P2 P5 T3 15s

P3 P6 T1 20s

P4 P7 T3 10s

P6 P8 T2 30s

5.1. Tests 45

P7 P9 T2 10s

Figure 5.4. Machine test.

In this final test, a more realistic shop floor simulation was created to validate

all the objects' functionalities in a practical setting. The aim was to replicate cells A

and C of the current FEUP simulator with a simplified layout. This comprehensive test

allowed for the evaluation of the objects' performance under real-world scenarios,

providing valuable insights into their practical applicability. A visual representation of

this test is shown on the Figure 5.5.

Figure 5.5. Shop Floor test.

46 Results and Discussion

47

6. Conclusion

This dissertation successfully achieved its primary objective of developing a

digital twin capable of simulating the plant floor simulator in FEUP's automation labs.

Through an in-depth exploration of various game engines able to create a digital twin

capable of simulating the plant floor simulator, it was determined that Unity was

the most suitable choice for this project due to its extensive documentation and user-

friendly nature, making it accessible even to beginners.

Additionally, a comprehensive study of the existing simulator was conducted to

gain a thorough understanding of its components, which served as the foundation for

defining the requirements for the implementation of the new digital twin using Unity.

The identified requirements included the integration of the Modbus communication

protocol, along with the implementation of various elements such as a simple

conveyor, a rotating conveyor, and a conveyor with a machine tool.

Following the successful implementation of the requirements, a series of

comprehensive and robust tests were conducted to carefully validate each element of

the system. The initial test involved the movement of a piece between two simple

conveyors, validating their consistent logic and functionality. Subsequently, the second

test focused on assessing the rotator conveyor's in executing rotation movements

efficiently and accurately. In the final test, the machine's capability to change tools

and alter the colour of the piece was rigorously examined. The flawless execution of

these tasks within the designated time frames unequivocally confirmed the

effectiveness and reliability of the implementation.

Through these meticulous tests, the system has demonstrated its efficiency,

robustness, and adaptability, leaving no doubts about the successful validation of all

elements. The results underscore the system's capacity to meet the required

functionalities.

Lastly, the creation of the digital twin was a successful endeavour, resulting in

the development of a realistic plant layout that effectively replicated the

functionalities of the existing simulator. Throughout the implementation process, all

the identified requirements were seamlessly integrated and operated as intended,

leading to a fully functional digital twin.

48 Conclusion

6.1. Future work

It is important to acknowledge that like any project, this dissertation also has

its limitations. Due to the complexity of industrial systems, some requirements have

not been fully captured in the simulation. Future work could focus on refining the

digital twin to include more advanced features and precise modelling, like adding the

warehouses and allowing for different communications protocol, making it even more

representative of real-world scenarios.

Additionally, to enhance result validation, tests conducted by running the

simulation and the real shop floor simultaneously, would allow for a better

comparation of the object interactions and execution times, ensuring a stronger

evaluation of the outcomes.

6.2. Final assessment

The development of this project enabled personal and educational growth

through a combination of self-organization and pursuit of excellence, ensuring the

achievement of the project objectives and deadlines. Despite the difficulty of self-

evaluation in lengthy projects, the deep interest in the subject, intense concentration,

and unwavering dedication helped maintain a high level of focus throughout the

semester, resulting in an outstanding final outcome.

49

References

[1] H. Fatorachian and H. Kazemi, "A critical investigation of Industry 4.0 in

manufacturing: theoretical operationalisation framework," Production Planning

& Control, vol. 29, pp. 1-12, 01/11 2018, doi:

www.doi.org/10.1080/09537287.2018.1424960.

[2] N. Mason, P. Hailey, D. Mifsud, and J. Urquhart, "Systems Astrochemistry: A

New Doctrine for Experimental Studies," Frontiers in Astronomy and Space

Sciences, vol. 8, 12/08 2021, doi: www.doi.org/10.3389/fspas.2021.739046.

[3] A. M. Madni, C. C. Madni, and S. D. Lucero, "Leveraging Digital Twin Technology

in Model-Based Systems Engineering," Systems, vol. 7, doi:

www.doi.org/10.3390/systems7010007.

[4] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, "Industry 4.0,"

Business & Information Systems Engineering, vol. 6, pp. 239-242, 2014/08/01

2014, doi: www.doi.org/10.1007/s12599-014-0334-4.

[5] M. Piccarozzi, B. Aquilani, and C. Gatti, "Industry 4.0 in Management Studies:

A Systematic Literature Review," Sustainability, vol. 10, doi:

www.doi.org/10.3390/su10103821.

[6] M. Correia, "Industrie 4.0 Framework, Challenges and Perspectives," 2014.

[7] H. Cañas, J. Mula, M. Díaz-Madroñero, and F. Campuzano-Bolarín,

"Implementing Industry 4.0 principles," Computers & Industrial Engineering,

vol. 158, p. 107379, 2021/08/01/ 2021, doi:

www.doi.org/10.1016/j.cie.2021.107379.

[8] S. Rajput and S. P. Singh, "Identifying Industry 4.0 IoT enablers by integrated

PCA-ISM-DEMATEL approach," Management Decision, vol. 57, 07/31 2018, doi:

www.doi.org/10.1108/MD-04-2018-0378.

[9] E. Mueller, X.-L. Chen, and R. Riedel, "Challenges and Requirements for the

Application of Industry 4.0: A Special Insight with the Usage of Cyber-Physical

System," Chinese Journal of Mechanical Engineering, vol. 30, pp. 1050-1057,

2017/09/01 2017, doi: www.doi.org/10.1007/s10033-017-0164-7.

50 REFERENCES

[10] M. Khan, X. Wu, X. Xu, and W. Dou, "Big data challenges and opportunities in

the hype of Industry 4.0," presented at the 2017 IEEE International Conference

on Communications (ICC), 2017.

[11] R. Cioffi, M. Travaglioni, G. Piscitelli, A. Petrillo, and F. De Felice, "Artificial

Intelligence and Machine Learning Applications in Smart Production: Progress,

Trends, and Directions," Sustainability, vol. 12, doi:

www.doi.org/10.3390/su12020492.

[12] P. Adolphs and U. Epple, "Reference Architecture Model Industrie 4.0

(RAMI4.0)," ZVEI: Die Electroindustrie, 2015.

[13] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, "Digital Twin in

manufacturing: A categorical literature review and classification," IFAC-

PapersOnLine, vol. 51, pp. 1016-1022, 2018/01/01/ 2018, doi:

www.doi.org/10.1016/j.ifacol.2018.08.474.

[14] B. Lydon, "RAMI 4.0 Reference Architectural Model for Industrie 4.0,"

International Society of Automation, 2019.

[15] M. Grieves, "Digital Twin: Manufacturing Excellence through Virtual Factory

Replication," 03/01 2015.

[16] F. Jaensch, A. Csiszar, C. Scheifele, and A. Verl, "Digital Twins of Manufacturing

Systems as a Base for Machine Learning," in 2018 25th International Conference

on Mechatronics and Machine Vision in Practice (M2VIP), 20-22 Nov. 2018 2018,

pp. 1-6, doi: www.doi.org/10.1109/M2VIP.2018.8600844.

[17] D. M. Botín-Sanabria, A.-S. Mihaita, R. E. Peimbert-García, M. A. Ramírez-

Moreno, R. A. Ramírez-Mendoza, and J. d. J. Lozoya-Santos, "Digital Twin

Technology Challenges and Applications: A Comprehensive Review," Remote

Sensing, vol. 14, doi: www.doi.org/10.3390/rs14061335.

[18] Y. Lu, C. Liu, K. I. K. Wang, H. Huang, and X. Xu, "Digital Twin-driven smart

manufacturing: Connotation, reference model, applications and research

issues," Robotics and Computer-Integrated Manufacturing, vol. 61, 2020, doi:

www.doi.org/10.1016/j.rcim.2019.101837.

[19] "Factory I/O." factoryio.com (accessed 2023).

REFERENCES 51

[20] "Siemens." siemens.com (accessed 2023).

[21] P. Mishra and U. Shrawankar, "Comparison between Famous Game Engines and

Eminent Games," International Journal of Interactive Multimedia and Artificial

Intelligence, vol. 4, pp. 69-77, 2016, doi:

www.doi.org/10.9781/ijimai.2016.4113.

[22] S. Pavkov, I. Franković, and N. Hoić-Božić, "Comparison of game engines for

serious games," in 2017 40th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), 22-26

May 2017 2017, pp. 728-733, doi: www.doi.org/10.23919/MIPRO.2017.7973518.

[23] J. K. Haas, "A History of the Unity Game Engine," 2014.

[24] O. C. Agbonifo, O. A. Sarumi, and Y. M. Akinola, "A chemistry laboratory

platform enhanced with virtual reality for students’ adaptive learning,"

Research in Learning Technology, vol. 28, 2020, doi:

www.doi.org/10.25304/rlt.v28.2419.

[25] T. Nieminen, "Unity game engine in visualization, simulation and modelling,"

2021.

[26] M. Foxman, "United We Stand: Platforms, Tools and Innovation With the Unity

Game Engine," Social Media + Society, vol. 5, 2019, doi:

www.doi.org/10.1177/2056305119880177.

[27] A. Šmíd, "Comparison of unity and unreal engine.," Czech Technical University

in Prague, 2017.

[28] J. Lee, Learning Unreal Engine Game Development. 2016, p. 274.

[29] A. Sanders, An Introduction to Unreal Engine 4. 2016, p. 256.

[30] W. Qiu and A. Yuille, "UnrealCV: Connecting Computer Vision to Unreal Engine,"

in Computer Vision – ECCV 2016 Workshops, Cham, G. Hua and H. Jégou, Eds.,

2016// 2016: Springer International Publishing, pp. 909-916.

[31] D. Valente de Macedo, M. A. F. Rodrigues, and Y. R. Serpa, "Desenvolvimento

de Aplicações Gráficas Interativas com a Unreal Engine 4," Revista de

52 REFERENCES

Informática Teórica e Aplicada, vol. 22, pp. 181-202, 11/25 2015, doi:

www.doi.org/10.22456/2175-2745.56371.

[32] R. Pennanen, "Virtual Reality Multiplayer in Unreal Engine 5 with C++," 2022.

[33] C. Vohera, H. Chheda, D. Chouhan, A. Desai, and V. Jain, "Game Engine

Architecture and Comparative Study of Different Game Engines," in 2021 12th

International Conference on Computing Communication and Networking

Technologies (ICCCNT), 6-8 July 2021 2021, pp. 1-6, doi:

www.doi.org/10.1109/ICCCNT51525.2021.9579618.

[34] S. Smith and D. Trenholme, "Computer game engines for developing first-person

virtual environments," Virtual Reality, vol. 12, 09/01 2008, doi:

www.doi.org/10.1007/s10055-008-0092-z.

[35] A. Ioana and A. Korodi, "DDS and OPC UA Protocol Coexistence Solution in Real-

Time and Industry 4.0 Context Using Non-Ideal Infrastructure," Sensors, vol. 21,

doi: www.doi.org/10.3390/s21227760.

[36] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, "OPC UA versus

ROS, DDS, and MQTT: Performance Evaluation of Industry 4.0 Protocols," in 2019

IEEE International Conference on Industrial Technology (ICIT), 13-15 Feb. 2019

2019, pp. 955-962, doi: www.doi.org/10.1109/ICIT.2019.8755050.

[37] S. Mohagheghi, J. Stoupis, and Z. Wang, "Communication protocols and

networks for power systems-current status and future trends," in 2009 IEEE/PES

Power Systems Conference and Exposition, 15-18 March 2009 2009, pp. 1-9,

doi: www.doi.org/10.1109/PSCE.2009.4840174.

[38] S. Figueroa-Lorenzo, J. Añorga Benito, and S. Arrizabalaga, "Modbus Access

Control System Based on SSI over Hyperledger Fabric Blockchain," Sensors, vol.

21, doi: www.doi.org/10.3390/s21165438.

[39] G. Meza, C. d. Carpio, N. Vinces, and M. Klusmann, "Control of a three-axis CNC

machine using PLC S7 1200 with the Mach3 software adapted to a Modbus

TCP/IP network," in 2018 IEEE XXV International Conference on Electronics,

Electrical Engineering and Computing (INTERCON), 2018, pp. 1-4, doi:

www.doi.org/10.1109/INTERCON.2018.8526429.

REFERENCES 53

[40] A. Swales, "Open modbus/tcp specification," Schneider Electric, vol. 29, p. 19,

1999.

