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Abstract  

Digitalization is driven by the rapid emergence and adoption of digital technologies. At unprecedented 

speed, technological advancements are triggering disruptive changes that affect individuals, 

organizations, and society on a global scale. In the industrial sector, the rise of new digital technologies 

such as Cyber-physical Production Systems and the Industrial Internet of Things accelerates the 

transition from traditional production facilities towards so-called smart factories. These self-organizing 

and self-optimizing production systems enable more flexible and efficient processes to produce higher 

quality products at reduced cost. With this, the fourth industrial revolution is profoundly influencing the 

competitiveness of organizations and regions, affecting productivity, economic growth, and working 

profiles. Despite their growing importance, the nature of digital technologies – in terms of similarities 

and differences in their characteristics – remains poorly understood. This hampers scientific progress 

and practical application, while technology-driven threats and opportunities remain largely opaque. 

Against this backdrop, this thesis first elaborates on the fundamental understanding of digital 

technologies, before applying an industrial perspective in order to focus on Cyber-physical Production 

Systems as the core technology in smart factories. This understanding builds the foundation for the 

identification, analysis, and management of IT security threats and ecological opportunities in the 

industry. 

This thesis provides two perspectives on the technological foundation of digitalization, developing an 

in-depth understanding of digital technologies, per se, and Cyber-physical Production Systems as a 

specific technology applied in the industrial sector. Based on a sample of real-world technologies, 

research article #1 presents a low-level taxonomy of digital technology characteristics, and high-level 

archetypes representing technology groups. These classification schemes provide long-lasting insights 

that are much needed in the fast-moving field of digitalization. Focusing on digital technologies in the 

industry, research article #2 defines and classifies entities of Cyber-physical Production Systems and 

illustrates their relationships using a terminology, taxonomy, and reference model. Both research articles 

provide descriptive knowledge of technology, on which further advancements in research and practice 

can build. 

Within the industrial sector, the high degree of cross-linking and decentralization of applied digital 

technologies brings new complexity and increases the vulnerability of systems to IT (security) threats. 

Focusing on technology-driven threats, research article #3 proposes a taxonomy of attacks on the 

Industrial Internet of Things. Drawing on an inductively and deductively compiled sample of attacks, 

the taxonomy enables the classification of both conventional and emergent attacks. The analysis of an 

attacked steel facility in Germany provides insights on the use of the taxonomy, which supports the 

intra- and inter-organizational identification, documentation, and communication of incidents. 

Analyzing the impact of IT threats within smart factory networks, research article #4 focuses on the 
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effects of attack and error propagation on production processes. Based on Petri Nets, the presented 

modeling approach enables organizational stakeholders to compare different smart factory architectures 

in terms of the impact of IT threats on the availability of information components and production 

machines. The approach thus provides support for layout decisions and the derivation of appropriate IT 

security mitigation measures.  

With regard to technology-driven opportunities, the thesis offers a technology-driven perspective on 

ecological sustainability in the industry. Research article #5 develops and evaluates a Benefits 

Dependency Network which can be used to systematically identify and structure cause-effect relations 

between digital technology, associated business changes, and ecological benefits. Several artificial and 

real-world instantiations indicate its practical applicability. As a result, the framework supports 

decision-making about technology investments, and serves as a basis for planning, executing, and 

evaluating digitalization projects towards ecological sustainability. 

 

Keywords:  Digitalization, Digital Technology, Industrial Sector, IT Threats, Ecological  

   Opportunities 
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I. Introduction1  

With wave after wave of disruption, digitalization brings about massive changes affecting individuals, 

economy, and society (Fitzgerald et al., 2014; Gimpel et al., 2018; Steininger, 2019). Driven by the rapid 

emergence and adoption of digital technologies, digitalization has launched a paradigm shift in both 

research and practice (Berger et al., 2018). Having been a value driver for over half a century (Lucas Jr 

et al., 2013), today, the integration of digital technologies such as virtual reality, big data, cloud 

computing, or the Internet of Things (IoT) into everyday life happens at unprecedented speed and 

scale – transforming entire industries (Buck and Eder, 2018; Clark, 2003; Iansiti and Lakhani, 2014) as 

well as accelerating innovation in business and society alike (Legner et al., 2017). In the case of the 

IoT, for example, McKinsey estimates that 127 new objects or devices connect to the internet every 

second (Baroudy et al., 2018). The economic impact of associated IoT applications may exceed $11 

trillion per year by 2025 (Ménard, 2017). What can also be observed is an ever-faster rate 

of commoditization and a shorter time-to-market. While upcoming social networks such as Instagram 

reached 100 million users in only about two years, mature technologies like the telephone required 75 

years to achieved comparable coverage (Statista, 2017). 

With their tremendous speed and impact, digital technologies enable the smartification of established 

products and services as well as the development of new ones. This not only disrupts extant business 

models and processes but also creates new ones, while opening up entirely new markets (Fitzgerald et 

al., 2014; Gimpel and Röglinger, 2015; Legner et al., 2017). For instance, the world’s leading 

accommodation and transportation providers – Airbnb and Uber – do not possess any lodging or 

vehicles, but merely act as brokers (McRae, 2015). Since digital technology has long been at the front 

and centre of business models, and is now “applied to almost every part of a company’s value chain” 

(Furr and Shipilov, 2019, p. 96), an in-depth technological understanding is essential in order to 

tap the economic and societal potential of digitalization (Bharadwaj et al., 2013). 

The acronym SMAC – i.e., social, mobile, analytics, and cloud computing – relates to the most 

disruptive technologies in recent years (Evans, 2016). These technologies are already established and 

have long been part of everyday life. Today, the DARQ technologies, i.e., distributed ledger technology, 

artificial intelligence, extended reality, and quantum computing, are ringing in the new ‘post-digital’ 

age (Accenture, 2019b). Additionally, concepts such as cyber-physical systems combine multiple 

different technologies to merge the virtual world with physical reality. Meanwhile, rapidly-changing 

trends in the market bring forth a multitude of new technologies at ever-shorter intervals. For instance, 

the Gartner Hype Cycle for Emerging Technologies lists over 40 upcoming technologies every year. 

However, organizations increasingly face uncertainty when making assessments about whether 

                                                           
1 This section partly comprises content from the thesis’ research articles. To improve the readability of the text, I 

omit the standard labelling of these citations. 
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technologies will enter mainstream adaption or disappear into oblivion. Causing greater confusion is the 

opacity that results from the great variety and sheer number of available technologies (Adomavicius et 

al., 2008). Despite being the key driver of digitalization, digital technology remains a poorly understood 

phenomenon. The lack of understanding about similarities and differences – which also applies in the 

case of groups of digital technologies – not only hampers scientific progress but also hinders 

clear-headed decision-making in industry when it comes to digital transformation. In order to sustain or 

enhance their competitive position, executives must understand digital technologies as a prerequisite to 

recognize the technological impact on products, services, business models, and markets (Ciriello et al., 

2018; Davenport and Westerman, 2018; Fang et al., 2018; Fichman et al., 2014). 

In the industrial sector, the widespread use of digital technologies has led to a new industrial age, known 

as Industry 4.0. This new age is typified by changes in the industry structure, customer demands, and 

market competition (Dalenogare et al., 2018), as the uptake of digital technologies affects productivity, 

economic growth, and working profiles. The integration of digital technologies – particularly the IoT – 

into manufacturing systems forms the Industrial Internet of Things and Cyber-physical Production 

Systems (CPPSs) (Sisinni et al., 2018), accelerating the transformation of traditional production 

facilities into so-called smart factories (Lasi et al., 2014). On an operational level, highly self-organizing 

and self-optimizing production systems within smart factories increase flexibility, production efficiency, 

and product quality by monitoring and controlling production processes in real-time (Brettel et al., 2014; 

Lasi et al., 2014; Radziwon et al., 2014). At the same time, set-up and processing times and material 

and labour costs can be reduced (Dalenogare et al., 2018). Furthermore, technology integration enables 

the three main benefits of Industry 4.0: vertical integration, i.e., connecting different hierarchy levels 

within a smart factory; horizontal integration, i.e., collaboration between organizations; and end-to-end 

engineering, i.e., engineering throughout a product’s entire value chain (Brettel et al., 2014; Kagermann 

et al., 2013). This increasingly enables organizations to provide their customers with individual service 

solutions rather than standardized physical products (Govindarajan and Immelt, 2019). Today, 

customers expect new products and services to incorporate the latest technological advancements 

(Römer et al., 2017). By pivoting towards customer orientation (Buschmeyer et al., 2016), organizations 

are able to remain competitive within dynamic markets with shorter research and development cycles 

for customer-specific products, growing resource and energy efficiency requirements, and constantly 

changing demands (Kagermann et al., 2013; Lasi et al., 2014). As a result, industrial organizations spent 

over $220 billion on digital transformation in 2019 (IDC, 2019). In this new industrial age, technology 

has long been the major driver of transformation and innovation, entailing new threats and opportunities 

for organizations (Kagermann et al., 2013; Lucas Jr et al., 2013).  

Across all industries, established organizations, such as Burberry, Ford, GE, Lego, Procter & Gamble, 

and Nike, struggle with digital transformation (Davenport and Westerman, 2018), while others, such as 

Kodak, fail completely (Lucas Jr and Goh, 2009). Hence, it is not surprising that a recent survey of 



   6 

 

 

413 senior executives, carried out by the Center for Information Systems Research of the MIT, found 

that digital disruption will threaten, on average, 28% of revenue from the executives’ enterprises in the 

next five years (Weill and Woerner, 2018). For large organizations (with more than $7 billion in annual 

revenue), this figure is as high as 46% (Weill and Woerner, 2018). The reasons are manifold: while 

companies like Procter & Gamble want to become the most digital organization in the world, they may 

lose sight of their actual stable business (model). Furthermore, digital transformation is not just about digital 

technology but also about people and processes adapting to substantial organizational and cultural change 

(Davenport and Westerman, 2018). Due to their high profits and inability to rapidly adapt, this is particularly 

true for large organizations, which are increasingly threatened by external digital disrupters (Weill and 

Woerner, 2018). As a result, IT security has become a critical success factor and main competitive 

differentiator for digital transformation (Porter and Heppelmann, 2014). An Accenture risk survey (2018a) 

among Chief Information Security Officers revealed that 71% considered cyber-attacks to be a black 

box – without being able to estimate the impact on their organization. Nevertheless, only one out of 

eight organizations includes future cyber threats in their security budgets (Accenture, 2018b), and 

cybersecurity is often an ‘afterthought’, with strategic considerations, such as transformation paths, 

business models, or product mix, taking priority (Doan, 2019). Yet, as systems and threats become more 

complex and attacks become more sophisticated and professional, this is no longer sufficient (Doan, 

2019). Current attitudes suggest a need for organizations to enhance their cybersecurity knowledge and 

research tools in order to stay ahead of IT threats (Accenture, 2018b). Ultimately, only secure processes 

and business models will enable a successful digital transformation and prove viable and competitive in 

the long run. 

The fact that their production processes are increasingly reliant on information leaves smart factories 

particularly vulnerable to IT security threats (Tupa et al., 2017). The multitude of connected 

technologies, machines, and products in the Industrial Internet of Things open entry points for 

intentional attacks and unintentional errors which affect the availability of information systems and 

production machines. In contrast to formerly isolated systems, today, organizations are highly 

interconnected with their supply chain partners and customers via the internet, forming digitized value 

networks. As stated in Symantec’s Internet Security Threat Report (2019), cyber-attacks on value 

networks increased by 78% in 2018. The high degree of intra- and inter-organizational cross-linking and 

dependencies favours the spread and propagation of attacks and errors across value chains and networks. 

Cascading failures amplify the vulnerability within highly connected networks and cause instability in 

smart factories and their supply chains (Smith et al., 2007), eventually leading to the collapse of entire 

value networks (Amiri et al., 2014). Hence, “with cyberattacks increasingly threatening businesses, 

executives need new tools, techniques, and approaches to protect their organizations” (Huang et al., 

2019, p. 1). This includes both anticipating potential attacks and developing proactive mitigation 

measures to protect business (Accenture, 2018b).  
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On the upside, digital transformation creates a plethora of new opportunities through technological 

change (Steininger, 2019). Aiming for business growth and expansion (Lucas Jr and Goh, 2009), 

technology-driven innovation creates new products, services, business models, and markets. With this, 

organizations are able to strengthen their customer relations and leverage cross-selling opportunities 

(Weill and Woerner, 2015). In industry, the integration of technology into manufacturing systems is 

generally used to achieve higher performance (Kagermann et al., 2013; Wang et al., 2016) in terms of 

the product and operations, i.e., better quality and higher efficiency, as discussed above, or general 

concepts, such as sustainability (Dalenogare et al., 2018; Fitzgerald et al., 2014; Gimpel and Röglinger, 

2015). While there is an extensive body of literature on technology-based process automation and 

efficiency, and product mass customization and innovation, technology-driven sustainability is still in 

its infancy. At the same time, public and governmental awareness is constantly increasing, forcing the 

industry to react. Investigating the reinvention of the industry, a study involving 1,200 executives in 

14 industries and 17 countries identified the ‘drumbeat to go green’ – which is increasingly becoming 

reality – as one of six major forces responsible for change in this new industrial age (Accenture, 2019a). 

In his annual letter to corporate executives, the CEO of BlackRock – the world’s largest fund manager, 

holding $7 trillion in assets – recently put pressure on organizations to address environmental 

sustainability, stating that BlackRock would no longer support organizations that “are not making 

sufficient progress on sustainability-related disclosures and the business practices and plans underlying 

them” (BlackRock, 2020). However, the industrial sector still accounts for more than half of global 

energy consumption (U.S. Energy Information Administration, 2017). Although digitalization and the 

internet consume increasing amounts of energy themselves (International Energy Agency, 2017), digital 

technologies – if used intelligently – offer significant opportunities to reduce the industry-related 

environmental disruption, including global warming, pollution, and the processing of nonrenewable 

resources (Wang et al., 2016). 

Although Industry 4.0 holds the potential to substantially improve environmental performance, it has 

not yet delivered its full capability to industry (Dalenogare et al., 2018; Wang et al., 2016). Ecological 

aspects are still not the primary objective of technological investments but are instead seen as positive 

side effects (Dalenogare et al., 2018). Hence, ecological benefits are neither well understood or explored 

in the industry (Elsevier, 2019; Ford and Despeisse, 2016) nor linked to digital technologies (Despeisse 

et al., 2012; Geng et al., 2017) and associated organizational changes. As “technology changes faster 

than organizations do” (Relihan, 2019), many organizations struggle to realize digital transformation 

projects due to missing (re)definitions of new organizational structures (Davenport and Westerman, 

2018; Denner et al., 2018). Hence, organizations need to be aware of the impact of technology on their 

business and production processes. In sum, a framework is needed to identify and manage interrelations 

between digital technologies and ecological benefits, along with necessary business changes, in a 
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structured manner in order to support organizations’ attempts to reduce negative impacts on the 

environment. 

This doctoral thesis is cumulative and consists of five research articles. Based on an in-depth 

understanding of the nature of digital technologies, it sheds light on associated threats and opportunities 

in the industrial sector. Accordingly – and as outlined in Figure 1 – the research articles are structured 

in terms of three overarching topics: Understanding Digital Technology as a foundation for Identifying 

and Analyzing Technology-driven Threats, and Identifying and Managing Technology-driven 

Opportunities. Providing novel insights into technological advancements and their effects on industry, 

the key findings of this thesis are relevant for both researchers and practitioners. 

 

Figure 1.  Assignment of the Research Articles to the Structure of the Doctoral Thesis 

Digital technologies are the foundation of digitalization, and an in-depth understanding of such 

technologies is key when exploiting their economic and societal potential. The current lack of sufficient 

academic and professional literature leaves researchers and practitioners struggling to effectively 

leverage digital technologies. In response to this problem, this thesis firstly provides a basic 

technological overview that supports the overarching goal of Understanding Digital Technology 

(Section II.1, comprising research articles #1 and #2). This overview involves two perspectives: research 

article #1 elaborates on characteristics and groups of digital technologies in general, while research 

article #2 focuses on the industrial sector and discusses CPPSs in terms of entities and their interactions. 

Based on these insights, the thesis further discusses threats and opportunities that arise with the 

increasing application of emerging technologies in the industry. It considers how, due to a high degree 

of cross-linking and decentralization, technologies such as CPPSs and the Industrial Internet of Things 

Industrial Sector

RA #1

Unblackboxing Digital Technologies –

A Multi-layer Taxonomy and Archetypes

RA #2

Organizing Self-Organizing Systems: 

A Terminology, Taxonomy, and Reference Model 

for Entities in Cyber-Physical Production Systems

Understanding 

Digital Technology 

RA #5

Ecological Sustainability 4.0: 

Identifying and Structuring Ecological Benefits 

of Industry 4.0 Technologies by Means of a 

Benefits Dependency Network

RA #3

Attacks on the Industrial Internet of Things –

Development of a Multi-layer Taxonomy 

RA #4

IT Availability Risks in Smart Factory Networks –

Simulating the Effects of IT Threats on Production 

Processes Using Petri Nets 

Identifying and Managing 

Technology-driven Opportunities

as a foundation for…

RA: Research Article

Identifying and Analyzing

Technology-driven Threats
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create new vulnerabilities, particularly when it comes to IT (security) threats. Elaborating on 

cyber-attacks and the associated effects on production processes, the thesis addresses the challenge of 

Identifying and Analyzing Technology-driven Threats (Section II.2, comprising research articles #3 and 

#4). In contrast, technologies also offer a multitude of new opportunities. In this regard, the thesis 

provides a technological perspective on ecological benefits, by Identifying and Managing 

Technology-driven Opportunities (Section II.3, comprising research article #5). 

Section III concludes with a summary and an outlook on future research. Section IV includes the 

publication bibliography. Finally, the appendix in Section V comprises further details on all research 

articles (Section V.1), my corresponding individual contributions (Section V.2), and the research articles 

themselves (Section V.3 to V.7). 
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II. Overview and Context of the Research Articles2  

1 Understanding Digital Technology  

Digitalization is primarily driven by the emergence of digital technologies, and their increasingly rapid 

adoption in various contexts (Gimpel et al., 2018). Ever-faster commoditization, time-to-market, and 

increases in user numbers reflect the exponential pace of technology-driven digital disruption. In this 

regard, Nintendo’s application game ‘Pokémon Go’, which combines location-based and augmented 

reality technology, broke several records: launched in summer 2016, the application achieved 130 

million downloads within the first month and over 1 billion downloads by the end of 2018 (Iqbal, 2019). 

It was also the fastest game to reach $100 million in sales, which it did after only 20 days (Guinness 

World Records, 2016). Regarding its social and behavioral impact, the application affected the physical 

health of users by changing their walking routines and increasing their steps per day by an average of 

26% (McFarland, 2016). Despite the initial success of this ‘social experiment’, experts were unsure 

about the lifetime of the game and its popularity – which they predicted would last from a few weeks to 

several years (Kollar and Allegra, 2016). Although today the hype about Pokémon Go has noticeably 

decreased, in 2019 – three years after its launch – the game generated $894 million, exceeding its 

revenue from 2016 (Chapple, 2020). Hence, digital technologies hold considerable economic and social 

potential to transform the way business is practiced.  

Applications like ‘Pokémon Go’ also contribute to the growth of available data, which is doubling every 

three years (Henke et al., 2016). This affects competition on the market: using data analytics, artificial 

intelligence, and automation to enable strategic business decisions in real-time, data-driven businesses 

transform into insights-driven organizations with an expected revenue of $1.8 trillion a year in 2021 

(Hopkins et al., 2018). In addition, the integration of digital technologies into products and services 

disrupts established business models and creates new ones (Fitzgerald et al., 2014; Matt et al., 2015) 

while opening up new markets. A study of over 50 companies revealed that smart products and services 

make it possible to increase and modify value propositions (Gimpel et al., 2018). Hence, if organizations 

are to remain competitive in this fast-moving field, they must develop a clear understanding of the nature 

of digital technologies and use them to realize company needs (Ciriello et al., 2018; Fang et al., 2018; 

Fichman et al., 2014). However, as digital technologies “do not necessarily create economic value 

themselves; […] they need to be leveraged and exploited” (Steininger, 2019, p. 364). 

Many organizations nonetheless remain unsure about the technological impact on business models and 

markets (Davenport and Westerman, 2018) that will result from the use of technology within their 

products, processes, production, and supply chains (Kagermann et al., 2013), and its capitalization 

(Denner et al., 2018). Although intuitively and frequently used, ‘digital technology’ remains an umbrella 

                                                           
2 This section partly comprises content from the thesis’ research articles. To improve the readability of the text, I 

omit the standard labelling of these citations. 
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term which is not consistently defined (Denner et al., 2018). At the same time, the number of available 

technologies is constantly growing thanks to ever-shorter research and development cycles (Berger et 

al., 2018). This effect is further amplified by combinatorial evolution (Arthur, 2009). That is, new 

devices and functionalities develop through combining existing technologies, i.e., technology is 

technology itself. As a result, a broad variety of different technologies exists, such as machine learning, 

smart dust, 4D printing, and natural language question answering. 

Although there have been calls to structure the field (Bharadwaj et al., 2013), digital technologies remain 

poorly understood. Academic literature primarily discusses topics such as big data (Fahad et al., 2014) 

or smart things (Püschel et al., 2016) on the level of individual technologies. As digital technologies 

must not be reduced to a few features (Mathiesen et al., 2013), research lacks a sufficient level of 

abstraction upon which to build theory. In contrast, professional literature is mainly market-driven and 

refers to high-level classification schemes like SMAC, i.e., social, mobile, analytics, and cloud (Evans, 

2016), and DARQ, i.e., distributed ledger, artificial intelligence, extended reality, and quantum 

computing (Accenture, 2019b). This leaves organizational stakeholders puzzled about technology 

selection and adoption decisions, as the first step in selecting a concrete technology involves a 

consideration of its potential benefits, application cases, and affordances, i.e., action possibilities 

provided by a technology. Academics and practitioners agree that a common technological 

understanding is a prerequisite and foundation for theorizing and building appropriate modeling 

approaches with which to guide further explorations of technology-driven threats and opportunities 

(Berger et al., 2018). 

Against this backdrop, research articles #1 and #2 contribute to the understanding of digital technologies 

as a prerequisite for developing sound scientific methods and making practical advances: while research 

article #1 elaborates on digital technologies in general, research article #2 is focused on the industrial 

sector and discusses CPPSs as the core technology applied in smart factories. 

In line with McKelvey’s (1978) ‘organizational systematics’ approach, and based on the iterative 

development processes as per Nickerson et al. (2013), research article #1 elaborates on the similarities 

and differences of digital technologies by means of a taxonomy. To identify general classes of digital 

technologies, the article also provides archetypes. The results are deductively and inductively derived.  

The taxonomy of digital technologies (Figure 2) comprises eight dimensions – i.e., role of technology, 

scope, multiplicity, direction, data treatment, input, output, and human involvement – which are 

structured using the layered architecture of Yoo et al. (2010) – i.e., device, network, content, and service. 

Each dimension distinguishes two to five characteristics that are mutually exclusive (exactly one 

characteristic applies), or non-exclusive (one or multiple characteristics apply). The taxonomy builds on 

an extensive literature review of current knowledge and a sample of 92 digital technologies from the 
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Gartner Hype Cycles for Emerging Technologies of 2009 to 2017 (Gartner Inc., 2017, 2016, 2015, 2014, 

2013, 2012, 2011, 2010, 2009).  

 

Figure 2.  Multi-layer Taxonomy of Digital Technologies 

Based on the classification of the sample, a hierarchical cluster analysis resulted in nine digital 

technology archetypes (Figure 3), each representing a group of digital technologies with similar 

characteristics. 

 

Figure 3.  Archetypes of 92 Digital Technologies from the Gartner Hype Cycle for Emerging 

Technologies 

One group of archetypes comprises technologies that build the foundation for applications and add value 

by supporting, enabling, and enhancing their functionality. Connectivity & computation relates to digital 

technologies that enable the coordination and execution of distributed work (Alter, 2018) in terms of 

collaboration and information sharing (Levermore et al., 2010; Silver et al., 1995). Platform provision 

Layer Dimension Characteristic Exclusivity *

Device

Role of Technology Application Infrastructure ME

Scope Cyber Cyber-Physical ME

Network

Multiplicity One-to-One One-to-Many Many-to-Many ME

Direction Uni-directional Bi-directional ME

Content

Data Treatment Collection Aggregation Analysis Execution Transmission NE

Input Digital Physical NE

Output Digital Physical NE

Service Human Involvement Active Usage Passive Usage ME

* ME: Mutually Exclusive; NE: Non-Exclusive
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Digital
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One-to-One
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Uni-Directional
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Execution
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Digital
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Physical
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Active Usage
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3D Printing,

4D Printing
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Application

(100%)
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One-to-One
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Active Usage
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In-memory Analytics,
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(100%)

Bi-Directional

(100%)

Col. / Ana. /

Exe. / Tra. *

(100%)

Digital / 

Physical

(100%)

Digital /

Physical

(100%)

Active Usage

(100%)
Autonomous Vehicle

Augmented Interaction 13.0%
Application

(100%)

Cyber-Physical

(100%)

One-to-One

(100%)

Bi-Directional

(100%)

Transmission

(92%)

Digital

(100%)

Physical

(100%)

Active Usage

(100%)

Augmented Data Discovery,

Virtual Personal Assistant

Natural Interaction 17.4%
Application

(100%)

Cyber-Physical

(100%)

One-to-One

(100%)

Bi-Directional

(100%)

Collection

(100%)

Physical

(100%)

Digital

(69%)

Active Usage

(100%)

Conversational User 

Interface, Natural-language 

Question Answering

For each dimension, we illustrate the relative frequency of the characteristic which occurs most frequently

* Col. / Ana. / Exe. / Tra.: Collection / Analysis / Execution / Transmission
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covers infrastructure, software development, and application platforms (Fichman, 2004), which ensure 

data availability and distribution (Bharadwaj et al., 2013). Finally, mobile device represents hardware 

components that allow for human-computer interaction (Bødker, 1987; Nardi, 1996) and enable the use 

of digital data independent of the user’s location. 

The next group of archetypes is involved with the physical world yet does not rely on or interact with 

humans: sensor-based data collection focuses on gathering real-world data by observing changes in the 

physical environment and transforming this data into digital signals for further analysis (Akyildiz and 

Kasimoglu, 2004). In contrast, actor-based data execution encompasses digital technologies that use 

digital input to intervene in their physical surrounding (Akanmu et al., 2012). 

Other digital technology archetypes are equipped with distinctive analytical skills: analytical insight 

generation deals with data in the course of big data analysis, e.g., extracting useful knowledge using 

data-mining techniques (Witten et al., 2017), data warehousing (Watson et al., 2002), data-driven 

business processes, or decision making (Lycett, 2013). Self-dependent material agency combines 

sensors and actors in digital technologies such as smart things, which possess self-x capabilities (e.g., 

self-configuration, -dependence, -optimization, -diagnosis, or -healing) enabling them to perform 

autonomous actions. 

Finally, interaction-driven archetypes support humans in their tasks: while augmented interaction aims 

to generate insights from data and presenting these to humans, natural interaction is focused on social 

interaction (Al-Natour and Benbasat, 2009) in terms of conversations between users and technology. 

The taxonomy and archetypes were developed and evaluated by classifying the sample of 92 digital 

technologies. The reliability, validity, and usefulness of the results was then assessed by applying the 

Q-sort method (Nahm et al., 2002), both internally among the co-authors and externally with focus 

groups (Krueger and Casey, 2014; Tremblay et al., 2010) and industry experts (Rowley, 2012). 

In line with IS literature on theory building (Gregor, 2006; Gregor and Hevner, 2013), the results add to 

descriptive knowledge on the nature of digital technologies and serve as a basis for sense-making and 

design-oriented research. While the taxonomy enables the identification of similarities and differences 

on a low level, the archetypes provide a sufficiently abstract and stable foundation for investigating 

action possibilities, as well as drivers of and barriers to the adoption of digital technologies in future 

research. On a more practical level, the archetypes support the innovation process of new technologies. 

As the taxonomy and archetypes were also inductively derived, they provide insights into what is 

currently going on in the market. This reduces the uncertainty surrounding technology selection and 

increases the transparency of associated decisions. 

The IoT is among the most disruptive technologies and describes “the connectivity of physical objects 

equipped with sensors and actuators to the Internet via data communication technology” (Oberländer et 

al. 2018, p. 488). The IoT serves as the basis for cyber-physical systems, which merge the cyber world 
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with physical reality (Kagermann et al., 2013; Lucke et al., 2008; Schuh et al., 2014). Beyond their 

application in domains like avionics, health care, and energy distribution (Ahmed et al., 2013), 

cyber-physical systems are primarily applied in industry. These so-called CPPSs accelerate the 

transformation of traditional production sites into smart factories (Lasi et al., 2014), which act within 

interconnected value networks. As CPPSs are adaptive, self-organizing, and cooperative (Broy et al., 

2012; Hellinger and Seeger, 2011; Yoon et al., 2012), they allow for flexible and automated production 

processes, resource efficiency, vertical and horizontal integration (Kagermann et al., 2013; Yoon et al., 

2012), and product mass-customization (Lasi et al., 2014; Tjahjono et al., 2017).  

Due to the high level of cross-linking and multifunctionality, these technology-driven systems are 

becoming increasingly complex and opaque. The lack of a common understanding of CPPS 

characteristics, entities, and system behavior (Ullrich et al., 2016; Wang et al., 2015) hampers design, 

implementation (Hellinger and Seeger, 2011; Pétrissans et al., 2012; Zuehlke, 2010), and innovation 

activities in industry (National Instruments, 2014). To date, extant CPPS models vary in their level of 

abstraction and granularity. As “heterogeneity and isolated solutions prevail” (Hellinger and Seeger, 

2011, p. 12), research and practice lack a holistic perspective on CPPSs. Modeling approaches are 

required that “describe the structure, communication interfaces, and capabilities of the different entities 

inside a CPPS and the functionalities of the production facilities and their components and the 

specification of products” (Vogel-Heuser et al., 2014, p. 714). A common understanding is a prerequisite 

to overcoming complexity and opacity in CPPSs (Kagermann et al., 2013) and serves as a foundation 

for creating general models of machines, processes, and production (Hellinger and Seeger, 2011; 

Kagermann et al., 2013). This is especially important as CPPSs are an interdisciplinary construct, 

combining aspects of (production) engineering, informatics, and automation (Kagermann et al., 2013; 

Karnouskous and Colombo, 2011). 

To address this need, research article #2 elaborates on CPPSs as the core technology in smart factories. 

Based on an extensive review of current CPPS literature (e.g., Chen, 2017a, 2017b; Monostori et al., 

2016), the contribution of this article is three-fold: firstly, a terminology based on a consideration of the 

diverse nomenclature in literature is introduced in order to unify, define, and standardize CPPS entity 

terms. Secondly, a taxonomy classifies the identified terms using ‘is-a relationships’. Thirdly, based on 

the terminology and taxonomy, a reference model (Figure 4) illustrates abstract relations – i.e., 

associations and aggregations – between CPPS entities using Unified Modeling Language (UML) class 

diagrams.  
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Figure 4. Reference Model for Cyber-physical Production Systems 

The proposed artefacts for CPPSs were developed and evaluated based on the iterative development 

process of Nickerson et al. (2013). The iteration steps build on an extensive literature review, the 

co-authors findings from internal discussions, and the feedback from focus group discussions and 

interviews with industry experts. To demonstrate its efficacy and general applicability, the reference 

model was instantiated in the course of three fictional application scenarios featuring differing levels of 

distributed smartness. In order to demonstrate its practical relevance, the reference model was also used 

to illustrate a CPPS from a real-world model factory. 

In sum, research article #2 concretizes the idea of CPPSs with regard to more mature modeling 

approaches. The combination of detailed definitions and classification of CPPS entities, as well as the 

abstract illustration of their relationships, enables the modeling of various CPPS layouts and associated 

capabilities. CPPSs are the core technology in smart factories, making a better understanding of CPPSs 

a necessary starting point for further exploration of technology-driven threats and opportunities in the 

industrial sector. 

In particular, architectural knowledge about the structure and functioning of CPPSs supports the 

identification of possible risk sources, such as attacks and errors, along with the analysis of their 

propagation and associated effects on the overall system, e.g., in terms of availability (Section II.2). 

Improved risk management thereby reduces the potential of financial losses and supports profound 

decision-making regarding prioritization in risk control and investments in mitigation measures. At the 

same time, insights about CPPS entities and their capabilities enable the identification of opportunities, 

such as ecological benefits (Section II.3), and the corresponding changes in production and business 

processes necessary in order to realize those benefits.  
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2 Identifying and Analyzing Technology-driven Threats 

As discussed in the previous section, digital technologies are changing individuals, organizations, and 

society at unprecedented speed and scale. Organizations are riding the digital wave, attempting to 

increase their profitability by adopting digital technologies that enable new operating and business 

models. Today, almost everything that improves the efficiency and competitiveness of an organization 

involves digital systems and networks. However, these technology-driven systems are increasingly 

vulnerable to IT security threats (Tupa et al., 2017). 

In industry, smart factories rely on technologies such as CPPSs or the Industrial Internet of Things, 

which significantly differ from conventional IT systems (Alaba et al., 2017; Frustaci et al., 2018). Due 

to the high number, heterogeneity, openness, and interconnectedness of decentralized products, 

machines, and devices, smart factories are complex and opaque systems (Frustaci et al., 2018). 

Moreover, industrial production often builds on existing systems featuring outdated security 

technologies (Sadeghi et al., 2012), and adds components with limited hardware and software resources 

(Frustaci et al., 2018; Jing et al., 2014) that are linked through insecure connections (Lu et al., 2014). 

This expands the ‘surface area’ exposed to cyber-attacks by offering targets and entry points for 

conventional and technology-specific, emerging IT attacks (Alaba et al., 2017). Thereby, conventional 

attacks might have different impacts on CPPSs or the Industrial Internet of Things than on conventional 

IT systems, especially because air gaps, i.e., the physical or logical separation of two or more IT systems, 

are increasingly being removed. At the same time, the probability of unintentional or negligent 

disruptions and errors occurring increases (Broy et al., 2012). 

From a risk management perspective, the continuing trend towards more sophisticated, multi-stage 

security incidents (Ervural and Ervural, 2018) complicates the implementation of appropriate mitigation 

measures. As a consequence, more than half of successful attacks lead to operational interruptions such 

as downtimes within production processes (BSI, 2017), eventually entailing physical damage or even 

posing a threat to human life (Bhamare et al., 2020). Since digital technologies are deeply embedded in 

highly connected and automated operation systems, a single security incident increases the potential 

damage (Accenture, 2018a). Hence, organizations increasingly face the challenge of protecting their 

production systems. A structuring approach is therefore required to support the systematic identification, 

analysis, and documentation of conventional and emerging attacks. 

Although the current literature encompasses a variety of classification schemes for conventional attacks, 

it lacks an integrated and systematic approach that elaborates on the particularities of smart factory 

technologies and considers conventional and emerging attacks alike. As a result, organizations still lack 

an overview of potential attacks and associated characteristics (Kaspersky, 2017), which is nonetheless 

needed to identify and analyze attacks and to derive appropriate mitigation measures (Shirazi et al., 

2014; Spreitzer et al., 2018). In order to address this need, research article #3 proposes a multi-layer 
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taxonomy of attacks on the Industrial Internet of Things, which can be used to distinguish relevant attack 

characteristics. In line with the iterative development process of Nickerson et al. (2013), the taxonomy 

was developed deductively and inductively by drawing on an extensive literature review, insights from 

expert interviews with practitioners from ten organizations involved in IT security, and the classification 

of a sample including over 50 real-world attacks. The taxonomy was evaluated in discussions with 

co-authors and industry experts, using established evaluation criteria from design science research.  

As there is a continuing trend toward more sophisticated, multi-stage incidents (Ervural and Ervural, 

2018), the taxonomy ensures consistency by focusing on individual attacks as the smallest unit of an 

incident. Hence, incidents have to be subdivided into attacks to be analyzed in more detail. The 

taxonomy (Figure 5) comprises three layers, which allow it to characterize attacks in detail: the ‘method 

of operation’ describes the procedure used by an attacker (Kjaerland, 2005) to achieve an ‘impact’ 

(CERT, 2004; Howard and Longstaff, 1998) on a desired ‘target’ (Howard and Longstaff, 1998). Each 

layer includes several dimensions, whereby the ‘method of operation’ specifically focuses on the 

procedure and behavior of the attacker, and tools and ways used to perform an attack (CERT, 2004; 

Kjaerland, 2005). The ‘target’ level illuminates the attack surface from an organizational and 

architectural perspective. Finally, the effect of an attack is summarized in the ‘impact’ layer. 

Figure 5. Multi-layer Taxonomy of Attacks on the Industrial Internet of Things 

To demonstrate the applicability and practical relevance of the results, a real-world incident was 

analyzed. As it is one of the rare multi-stage incidents about which information is publicly available, the 

incident in a German steel facility from 2014 (Lee et al., 2014) was selected. The example demonstrates 

that the taxonomy is suitable for the detailed analysis of such incidents.  

The results of this study further the understanding of attacks on the Industrial Internet of Things and 

provide insights for IT security management. From an academic point of view, the article adds to the 

descriptive knowledge, providing the first approach capable of consistently describing and comparing 

complex attacks and incidents in technology-driven, highly interconnected systems. From a practical 

Layer Dimension Characteristic Exclusivity *

Method

of 

Operation

Technique Physical Logical ME

Mechanism Active Passive ME

Executability Stand-alone Coupled ME

Focus Undirected Directed ME

Target

Vulnerability Technical Social NE

IoT Level Perception Level Network Level Application Level NE

Impact

Consequence Disclosure Deception Disruption Usurpation NE

Scope Cyber Cyber-physical ME

* ME: Mutually Exclusive; NE: Non-Exclusive
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perspective, the taxonomy enables organizations to systematically identify, collect, and analyze 

information on attacks. As uniform guidelines for incident reporting among various security teams have 

not yet been established (Zuech et al., 2015), the taxonomy supports the standardized intra- and inter-

organizational documentation and communication of attacks. The subdivision of incidents into attacks 

enables the recognition of attack patterns, which is beneficial for the derivation of appropriate 

countermeasures in IT security. 

In smart factories, physical production processes increasingly require information from underlying 

information networks to enable the flexible production of customized products (Radziwon et al., 2014). 

Due to the increasing use of information in production processes, the information network within smart 

factories is, in particular, vulnerable to disruption (Pasqualetti et al., 2013). These disruptions may result 

from intentional IT attacks – as discussed in research article #3 – or unintentional errors, and can affect the 

availability of both the information and the production network (Broy et al., 2012). To protect systems 

from disruptions, the goals of traditional IT security management followed the CIA-triad, whereby 

(1) confidentiality involves restrictions on access to and disclosure of data, (2) integrity ensures protection 

against the improper alteration or destruction of data, and (3) availability describes the timely and reliable 

access to and use of data (Dempsey et al., 2011). With (close to) real-time requirements and the high degree 

of interconnectivity, smart factories become most vulnerable to availability threats (Amiri et al., 2014; 

Cardenas et al., 2008; Lee, 2008).  

The high level of interconnectivity within smart factories facilitates threat propagation (Smith et al., 2007), 

eventually resulting in the collapse of entire systems (Amiri et al., 2014). Concepts like just-in-time and 

just-in-sequence additionally amplify propagation effects, further increasing the potential damage. As 

extant approaches have proven insufficient for depicting the specific characteristics of smart factory 

networks and simulating propagation effects, a modeling approach is needed to grasp availability risks as 

a basis for decision-making regarding information and production network layouts and the derivation of 

mitigation measures (Amin et al., 2013; Dempsey et al., 2011; Frustaci et al., 2018; Vavra and Hromada, 

2015). 

Against this backdrop, research article #4 addresses the issue of analysing and simulating availability risks 

of IT threats in smart factory networks. In line with the design science research methodology of Peffers et 

al. (2007), the modeling approach elaborates on the effects that IT threats have on production processes 

by enabling the modeling of smart factory network architectures and the simulation of attack and error 

occurrence and propagation. Using Petri Nets (Petri, 1966) and multiple extensions, e.g., Timed Coloured 

Petri Nets (Ha and Suh, 2008) and Generalised Stochastic Petri Nets (Valk, 2008), the modeling approach 

offers modular components to model smart factory networks which comprise an information network and 

a production network (Figure 6). The information network is formed of modular information components 

that build information layer hierarchies. Once an information component is affected by an attack or error, 
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the failure propagation follows an exponential distribution and cascades through the information network 

and may even extend to the production network. 

The article also identifies and discusses various factors influencing propagation effects, i.e., redundancy 

within the production network, redundancy within the information network, and the smartness of 

production machines; these serve as a basis for modeling and analyzing different smart factory network 

architectures.  

 

Figure 6.  Exemplary Layout of a Smart Factory Network 

The modeling approach was evaluated via its application in artificial and naturalistic settings. For the 

real-world scenario, the production environment of a German manufacturer of customized milling and 

turning machines was simulated and analyzed in terms of productivity and the availability of information 

components and production machines under varying conditions. By enabling the modeling and analysis 

of IT availability threats, the modeling approach supports production managers and IT security experts 

in their efforts to identify critical components and dependencies within smart factory networks. The 

approach thus enables risk managers to make well-founded decisions on appropriate mitigation 

measures.  
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3 Identifying and Managing Technology-driven Opportunities  

In addition to the threats described in the previous section, technologies present manifold opportunities 

in industry. The main idea of Industry 4.0 relates to the integration of digital technologies into 

manufacturing systems in order to increase performance (Kagermann et al., 2013; Wang et al., 2016). 

In this context, performance is operations-related, product-related, or represents general performance in 

terms of global challenges such as sustainability (Dalenogare et al., 2018; Fitzgerald et al., 2014; Gimpel 

and Röglinger, 2015). With concepts like decentralization, autonomy, and self-organization in real-time, 

industrial technologies (e.g., CPPSs) enable more efficient and flexible processes, raising the operational 

performance of an organization (Brettel et al., 2014; Lasi et al., 2014; Radziwon et al., 2014). At the 

same time, organizations are able to raise the quality and diversity of customized products via the use 

of digital technologies. General performance often relates to sustainability, which is divided into 

ecological, economical, and social aspects. In times of climate change, the industry is, in particular, 

responsible for reducing its ecological footprint. The industrial energy demand, which already accounts 

for more than 55% of the global energy consumption, is expected to grow by a further 18% in the next 

twenty years (U.S. Energy Information Administration, 2017). 

Although the technological advancements in industry hold huge potential for reducing environmental 

impact (Dalenogare et al., 2018; Wang et al., 2016), industrial production still uses nonrenewable 

resources and contributes to pollution and climate warming. When it comes to technological investment 

decisions, ecological benefits are still rarely seen as the primary objective, but as merely a positive 

side-effect (Dalenogare et al., 2018). In literature, the topics of technology (Atzori et al., 2010; Chan et 

al., 2018; Tao et al., 2018) and ecology (Despeisse et al., 2012; Geng et al., 2017) are being discussed 

in isolation from one another, with an integrated approach still lacking. As the dependencies between 

these two domains are complex, it remains unclear how technology and ecology are related. In addition, 

becoming digital includes more than plugging in technology: the redefinition of processes and the 

organizational structure is a key element for successful digital transformation (Davenport and 

Westerman, 2018). Hence, it must be examined how organizations might transform their processes in 

order to realize desired ecological benefits. This is especially important as technology changes faster 

than organizations (Relihan, 2019). 

In this regard, research article #5 aims to systematically identify ecological benefits, associated digital 

technologies, and necessary business changes in the manufacturing context. In line with the design 

science research methodology of Peffers et al. (2007), the article takes a triple-punch approach: firstly, 

the Benefits Dependency Network (Ward and Daniel, 2006) from benefits management is introduced, 

which is designed to “improve the likelihood of successful results in digital investments” (Peppard, 

2016). The framework asks the intended users to answer the following questions: why is an investment 

being made, what changes are needed to achieve desired benefits, and how are these changes enabled 

by technology? In line with Ward and Daniel (2006), the Benefits Dependency Network distinguishes 
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five dimensions: the ‘Investment Objectives’ address the organization’s drivers, i.e., internal and 

external aspects of the business environment, such as financial benefits or market trends, and ensure that 

a project contributes to the organization’s strategic future goals. ‘Business Benefits’ represent 

advantages which are associated with corresponding ‘Investment Objectives’. Those benefits and 

objectives will only be realized if permanent changes – i.e., ‘Business Changes’ – or one-off changes – 

i.e., ‘Enabling Changes’ – are implemented. These (structural) changes affect the business and 

production processes of organizations. Finally, ‘IS/IT Enabler’ represents the technological foundation 

for the realization of the described changes. In general, the Benefits Dependency Network is developed 

from right to left in order to align the applied technology with the organization’s goals. In line with King 

(2011), however, this approach also enables a technology-driven development direction from left to 

right. 

In a second step, the Benefits Dependency Network is transferred to the context of ecological 

sustainability in the industry. To guide intended users in identifying technology-driven opportunities in 

terms of ecological benefits and underlying technologies, building blocks are provided (Figure 7). 

Building on and extending the literature on green manufacturing principles (Despeisse et al., 2012) and 

technological advancements in the industry (Dalenogare et al., 2018), the building blocks represent 

exemplary technologies, organizational changes, and ecological benefits for each dimension. Although 

the building blocks do not depict every possible technology, change, or benefit, and have to be adapted 

to specific use cases, they simplify the application of the Benefits Dependency Network for intended 

users and support such users in creating instantiations of their own projects.  

Thirdly, the feasibility and effectiveness of the Benefits Dependency Network are demonstrated by 

providing instantiations from practice. In particular, the case of a company that uses additive 

manufacturing – i.e., 3D sand printing to produce sand moulds – shows that the framework not only 

supports the identification of technology-based ecological benefits but also reveals at what stage of the 

product lifecycle these benefits are realized. In this case, the ecological benefits were generated not 

during the production process but as part of the product and material life cycle. 

The framework was evaluated from ex-ante and ex-post perspectives by applying the four evaluation 

activities as per Sonnenberg and vom Brocke (2012). Thus, the Benefits Dependency Network was 

developed and evaluated in multiple rounds with both researchers – i.e., discussions with focus groups 

– and practitioners – i.e., interviews with experts. Furthermore, the Benefits Dependency Network was 

applied in both artificial and naturalistic settings. The interdisciplinary approach combines the 

knowledge of different domains and contributes to the descriptive knowledge of technology-driven 

opportunities. The overall contribution is a framework that guides intended users in taking novel 

perspectives on the ecological benefits of digital technologies in the industry. With this, the Benefits 

Dependency Network provides a basis for sound investment decisions, in which ecological 

considerations play an increasingly important role.   
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III.  Conclusion3 

1 Summary 

Digitalization is driven by the rapid emergence and adoption of digital technologies, changing 

individuals, organizations, and society on a global scale. Although digital technologies have been around 

for almost half a century, increases in their number, variety, impact, and diffusion are all currently 

gaining further momentum. Within this highly volatile environment, researchers and practitioners 

increasingly struggle to understand and leverage digital technologies. This hampers scientific progress 

and decision-making in industry. Addressing calls for structure to be brought to the field (Bharadwaj et 

al., 2013), this doctoral thesis provides a common understanding of digital technologies as a foundation 

for taking different perspectives on technology-driven threats and opportunities in the industrial sector. 

Firstly, organizations have to understand digital technologies in general, and manufacturing 

technologies in particular, to fully tap their economic and social potential. Secondly, the high degree of 

cross-linking and decentralization accompanying different technologies increases the complexity of 

industrial systems. Therefore, the thesis examines vulnerabilities and threats evoked by technology. 

Thirdly, this thesis elaborates on ecological opportunities enabled by digital technologies in the industry. 

Regarding the overarching topic of Understanding Digital Technology, Section II.1 examines digital 

technologies by providing in-depth insights on their nature, and by discussing entities and relations 

within CPPSs as the most important technologies in manufacturing. Research article #1 aims to provide 

a clear understanding of digital technologies via the identification of similarities and differences as a 

prerequisite for their further use in sound scientific methods and applications (McKelvey, 1978; Posey 

et al., 2013). Drawing on a sample of 92 digital technologies from the Gartner Hype Cycle for Emerging 

Technologies (Gartner Inc., 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009) and an extensive 

literature review as justificatory knowledge, the resulting taxonomy distinguishes eight dimensions and 

associated characteristics, which are structured cross four layers of an established digital technology 

architecture (Yoo et al., 2010). Based on the subsequent classification of the sample, the hierarchical 

cluster analysis (Ward, 1963) results in nine digital technology archetypes, each representing a group of 

digital technologies with similar characteristics. Both the taxonomy and archetypes add to the 

descriptive knowledge of digital technologies and serve as a foundation for further sense-making and 

design-oriented research (Gregor, 2006; Gregor and Hevner, 2013). Focusing on the industrial sector, 

research article #2 deepens the technological perspective by elaborating on CPPSs which are applied 

within smart factories. Building on and extending current CPPS literature, a terminology, taxonomy, 

and reference model are presented as a foundation for creating general models of machines, processes, 

and production (Hellinger and Seeger, 2011; Kagermann et al., 2013). Thereby, the terminology unifies, 

                                                           
3 This section partly comprises content from the thesis’ research articles. To improve the readability of the text, I 

omit the standard labelling of these citations. 
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defines, and standardizes the CPPS nomenclature, while the taxonomy groups the identified CPPS 

entities. As the core of this article, the reference model illustrates abstract relationships between CPPS 

entities using UML class diagrams. With this, research article #2 meets the demand for more mature and 

appropriate CPPS modeling approaches (Vogel-Heuser et al., 2014) and creates a common technological 

understanding, which enables the modeling of various CPPS layouts and associated capabilities. With 

this, the further exploration of technology-driven threats – e.g., the identification of risk, such as attacks, 

errors, and their propagation – and opportunities – e.g., the benefits of technology use – becomes feasible 

in the industrial sector. 

On the topic of Identifying and Analyzing Technology-driven Threats, Section II.2 discusses the 

vulnerabilities of new systems based on digital technologies and associated challenges of IT security in 

the industry. Taking a risk perspective, IT attacks and their effects on highly cross-linked information 

and production systems are discussed in detail. In this regard, research article #3 elaborates on the typical 

characteristics of attacks on industrial technologies and systems. The developed taxonomy 

conceptualizes characteristics, dimensions, and layers of attacks on the Industrial Internet of Things, 

drawing on a sample of over 50 attacks, interviews with researchers and practitioners, and relevant work 

on IT attacks as justificatory knowledge. Splitting IT security incidents into single attacks enables the 

recognition of attack patterns, which is useful for the derivation of appropriate countermeasures. As 

there are, so far, no established, uniform guidelines for incident reporting (Zuech et al., 2015), the 

taxonomy supports researchers and organizational stakeholders in systematically identifying, collecting, 

analyzing, and sharing information on attacks. Thereby, the taxonomy adds to the descriptive knowledge 

in the field of IT security. Research article #4 complements the risk perspective on technology-driven 

threats by analysing and simulating availability risks in smart factory networks. In particular, the Petri 

Net-based modeling approach elaborates on the effects of IT attacks on production processes by enabling 

the modeling of various smart factory network architectures, and the simulation of attack and error 

occurrence and propagation. The modeling approach supports production managers, security experts, risk 

managers, and IT architects in identifying critical network components and dependencies as a basis for 

sound and transparent decisions on appropriate mitigation measures. 

With regard to Identifying and Managing Technology-driven Opportunities, Section II.3 elaborates on 

the industrial application of technology for environmental purposes. More precisely, research article #5 

supports the identification of cause-effect relationships between ecology and technology by applying 

and further developing the Benefits Dependency Network (Ward and Daniel, 2006) from benefits 

management. This framework structures drivers of change along with associated objectives, business 

changes, and underlying technologies. Drawing on relevant literature from sustainability and 

technology, e.g., green manufacturing principles (Despeisse et al., 2012) and digital technologies in the 

industry (Kang et al., 2016), the article introduces exemplary building blocks for technologies, business 

changes, and ecological benefits to support intended users from research and practice in creating 
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concrete Benefits Dependency Network instantiations of their specific use-cases. In addition to 

supporting the identification phase, the framework can also be used to evaluate the progress of 

digitalization projects in industrial organizations. Thereby, the framework helps to provide structured 

descriptions of the interrelationships between technology and ecological benefits, and thus provides 

additional transparency for investment decisions. It also forces intended users to identify and understand 

the changes required for a successful digital transformation. By combing and extending knowledge from 

different domains, this interdisciplinary approach contributes to the descriptive knowledge of 

technology-driven opportunities. 

2 Future Research  

As any research project, this doctoral thesis is beset with some limitations that will stimulate future 

research. In the following, an overview is provided which discusses these limitations and makes 

recommendations for advancing research about information systems on digital technology, and 

associated threats and opportunities in the industry. Further details are described in the individual 

research articles. 

In the section on Understanding Digital Technologies, research article #1 and #2 deductively and 

inductively develop and evaluate the resulting artefacts – i.e., terminology, taxonomy, archetypes, and 

reference model – and draw on academic and professional literature as justificatory knowledge. This 

includes, inter alia, state-of-the-art definitions of and literature on digital technologies (e.g., Yoo et al., 

2010) and CPPSs (e.g., Penas et al., 2017), technology reports and trends compiled by management 

consultancies and market research institutions (e.g., Deloitte, Forbes, or Forrester), and a sample of 

92 digital technologies from the Gartner Hype Cycle for Emerging Technologies from 2009 to 2017. 

Digitalization, however, is a fast-moving field. Ever-shorter development cycles and time-to-market 

result in the emergence of countless new technologies every year, which is further reinforced by the 

combination of extant technologies (Arthur, 2009). At the same time, once-hyped technologies 

disappear, e.g., ‘broadband over power lines’ (Gartner Inc., 2010). To cope with this highly volatile, 

uncertain, complex and ambiguous environment (Bennett and Lemoine, 2014), efforts to advance 

research activities should focus on repeatedly adjusting and re-evaluating the presented artefacts, and 

should also integrate new insights from theory and practice. This is in line with organizational 

systematics (McKelvey, 1982, 1978), which proclaims that the ‘theory of diversity’ includes the 

development of taxonomies and archetypes, as well as tracking the evolution of objects of interest, i.e., 

digital technology, over time. Follow-up research should therefore update and enlarge the sample size, 

including extant and emerging technologies. Moreover, the application of technology in additional 

real-world use-cases and studies is encouraged. In particular, the archetypes of digital technologies, as 

well as the CPPS reference model, should be used in defined fields of application in order to test their 

robustness and practical relevance. This increases the stability and generality of the results and helps to 
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obtain a holistic view on the diversity of digital technologies. Finally, the use of emerging digital 

technologies opens up new possibilities regarding the design of innovative products and processes, 

which should be explored. 

In the manufacturing industry, in particular, technological advancement and digital disruption entail 

massive changes (Govindarajan and Immelt, 2019; Urbach and Röglinger, 2019). This puts pressure on 

industrial organizations to transform themselves in order to remain competitive (Ciriello et al., 2018; 

Fang et al., 2018; Fichman et al., 2014). However, digitalization concepts and digital technologies do 

also affect multiple other industries, such as the automotive, avionics, energy, transportation, and health 

care industries (Ahmed et al., 2013). Hence, future endeavours should transfer the findings of this thesis 

regarding digital technologies and Cyber-physical (Production) Systems to other industries, and vice 

versa, in order to promote the sharing of experiences and knowledge among researchers and 

practitioners. 

In the industry, Identifying and Analyzing Technology-driven Threats is a first step towards risk and IT 

security management within smart factories. Research article #3 and #4 focus on the description and 

simulation of intentional attacks, unintentional errors, and their propagation within industrial systems 

such as the Industrial Internet of Things and smart factory networks. Future research should use this as 

a starting point for the further development of IT security management concerning the derivation of 

mitigation measures. Moreover, the concepts lack validation with real-world data and in real-world 

settings. This is because the majority of organizations conceal information on attacks to avoid image 

loss. Initially, future research should, therefore, concentrate on investigating IT security threats to model 

factories, and thereby convince organizations of the added value of IT security research for industrial 

application. In addition, IT security always lags behind technological innovation, which increases the 

risk posed by new, unknown vulnerabilities, targets, and attacks. Hence, there is an urgent need for 

continuous research activities regarding the expansion and adjustment of extant models and their 

transformation into suitable IT security tools. In particular, there is a need for research involving 

organizations themselves. Only by working closely together will research and practice be able to keep 

up with the growing number and increasing power of attackers. On the other hand, professional 

cooperation with hackers is also conceivable, as they have considerable knowledge in the area of attacks 

and are experienced in dealing with the latest technology. Research article #4 focusses on availability 

risks. Although availability is the most critical threat within smart factories (Amiri et al., 2014; Cardenas 

et al., 2008; Lee, 2008), future works should incorporate other IT security goals, such as integrity and 

confidentiality, as violations of such goals often remain unnoticed for a longer time and might, therefore, 

cause more damage. On a more general level, the threats to digital technologies discussed herein mainly 

concern IT risk and security management. However, multiple other areas in manufacturing are likewise 

disrupted and well worth exploring, e.g., technology-driven change of work and employment, including 

work design, qualification measure, and employment-oriented work and qualification policy. 
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With regard to sustainability, Identifying and Managing Technology-driven Opportunities is an 

increasingly important field emerging in global awareness. The Benefits Dependency Network is an 

appropriate tool for identifying and managing cause-effect relations between technologies, associated 

business changes, and ecological benefits. However, the efficient use of resources by means of ‘green’ 

technology often implies side-effects such as the rebound effect, which should be subject to further 

research. The rebound effect refers to the phenomenon that new technologies, which increase resource 

use efficiency, might cause behavior that reduces or even reverses its expected benefits. Ideally, future 

endeavors should focus on embedding the Benefits Dependency Network into a corporate sustainability 

strategy. In addition to ecological activities, this strategy should also pool, link, and control economic 

and social sustainability initiatives. While economic sustainability aims to support long-term economic 

growth by purchasing local goods or using recycled material without harming the environment or 

society, social sustainability refers to practices that support cultural aspects, such as social and health 

equity, human and labor rights, and social justice. Only a holistic view of the three pillars of 

sustainability enables the meaningful depiction of a company’s sustainability efforts and serves as a 

basis for well-founded strategy and investment decisions. Just as with threats, there are other worthwhile 

technology-driven opportunities besides sustainability, such as the digital transformation and innovation 

of business models and processes, which should be examined and researched in the future. 

In sum, the unprecedented speed and scale of technological advancement continue to increase. As a 

result, research and practice will face novel threats and opportunities in the near future. With this thesis, 

I hope to encourage researchers and practitioners to join the interdisciplinary endeavour of shedding 

light on the highly relevant field of digitalization in order to leverage digital technologies and move 

towards fully tapping their economic and social potential. 
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1 Index of Research Articles  

Research Article #1: Unblackboxing Digital Technologies – A Multi-layer Taxonomy and 

Archetypes 

Berger S., Denner M.-S., & Röglinger M. Unblackboxing Digital Technologies – A Multi-layer 

Taxonomy and Archetypes. Submitted working paper. Earlier version published in Proceedings of the 

26th European Conference on Information Systems (ECIS), Portsmouth, United Kingdom. 

Research Article #2: Organizing Self-organizing Systems: A Terminology, Taxonomy, and 

Reference Model for Entities in Cyber-physical Production Systems 

Berger S., Häckel B., & Häfner L. (2019). Organizing Self-organizing Systems: A Terminology, 

Taxonomy, and Reference Model for Entities in Cyber-physical Production Systems. In: Information 

Systems Frontiers (in press).  

Research Article #3: Attacks on the Industrial Internet of Things – Development of a Multi-layer 

Taxonomy  

Berger S., Bürger O., & Röglinger M. (2020). Attacks on the Industrial Internet of Things – 

Development of a Multi-layer Taxonomy. In: Computers & Security, 2020, 93 (2020), 101790.  

Research Article #4: IT Availability Risks in Smart Factory Networks – Simulating the Effects of 

IT Threats on Production Processes Using Petri Nets  

Berger S., Häckel B., & van Dun C. IT Availability Risks in Smart Factory Networks – Simulating the 

Effects of IT Threats on Production Processes Using Petri Nets. Submitted working paper. Earlier 

version published in Proceedings of the 27th European Conference on Information Systems (ECIS), 

Stockholm and Uppsala, Sweden. 

Research Article #5: Ecological Sustainability 4.0 – Identifying and Structuring Ecological 

Benefits of Industry 4.0 Technologies by Means of a Benefits Dependency Network 

Berger S., Graf V., & Häckel B. Ecological Sustainability 4.0 – Identifying and Structuring Ecological 

Benefits of Industry 4.0 Technologies by Means of a Benefits Dependency Network. Submitted working 

paper.  
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2 Individual Contribution to the Research Articles  

This thesis is cumulative and consists of five research articles that build the main body of work. All 

included research articles were developed and written in teams with multiple co-authors. This section 

provides details on the research settings and highlights my individual contribution to each article. 

Research article #1 (Berger et al.) was developed in a team of three co-authors. All three jointly 

developed the key concept of the taxonomy and archetypes of digital technologies. A former version of 

the article was presented at the 26th European Conference on Information Systems (ECIS), Portsmouth, 

United Kingdom. After incorporating feedback, we significantly advanced our work. All co-authors 

jointly elaborated on the identification of a sample of real-world technologies, taxonomy development, 

the underlying literature work, as well as the conduction of internal and external Q-sorts in course of the 

evaluation. I particularly focussed on the design of the research method and the use of statistical methods 

to inductively derive archetypes from our sample. 

Research article #2 (Berger et al. 2019) was developed in a team of three co-authors. The three 

co-authors jointly worked on the main idea and the key contributions, i.e., terminology, taxonomy, and 

reference model. I played a key role in reviewing the extant literature and in the method design. With 

regard to our artefacts, I was, in particular, responsible for the development of the taxonomy and 

reference model, along with their application. I was also responsible for preparing the article for re-

submission. 

Research article #3 (Berger et al. 2020) was developed in a team of three co-authors. As the leading 

author, I brought in the idea and key concept of the article and was responsible for the elaboration of the 

research method, model development, and application. I also prepared, organized, and conducted expert 

interviews for our evaluation. While, to a large extent, this article reflects my efforts, all co-authors 

promoted the advancement of the paper throughout the entire project.  

Research article #4 (Berger et al.) was developed in a team of three co-authors. A former version of the 

article was jointly developed by a former team of four co-authors and presented at the 27th European 

Conference on Information Systems (ECIS), Stockholm and Uppsala, Sweden. After one new co-author 

joined the team and two co-authors left, we revised our modeling approach, incorporating the feedback 

from the conference and extending its evaluation. In particular, I was responsible for reviewing the 

extant literature, further developing the methodology, and clarifying the contribution. All three 

co-authors supported the project throughout its duration and made equal contributions to the article. 

Research article #5 (Berger et al.) was developed in a team of three co-authors. As the leading author of 

this article, I developed the basic idea and, to a large extent, created its content. In particular, I set up 

the research method and developed our framework within multiple iterations. I also carried out the 

comprehensive evaluation of the framework and conducted several interviews with industry experts. 

The analysis of the interviews enabled me to draw insights about both the application and contribution 
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of our work. Although I am the leading author of this project, the co-authors were involved in the 

literature review and discussions throughout the project.  
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3 Research Article #1: 

Unblackboxing Digital Technologies – A Multi-layer Taxonomy and 

Archetypes 

 

Authors: Berger S., Denner M.-S., Röglinger M. 

Status:   Submitted working paper.  

Earlier version published in Proceedings of the 26th European Conference on 

Information Systems (ECIS), Portsmouth, United Kingdom. 

Extended Abstract  

With their rapid emergence and adoption, digital technologies are the key driver of digitalization, 

affecting individuals, organizations, and society as a whole on a global scale. Despite their major 

importance for research and practice, digital technologies remain poorly understood. The lack of 

knowledge about their very nature hampers scientific progress and clear-headed decisions on digital 

transformation in practice. While academia mainly elaborates on individual technologies, professional 

literature primarily lists multiple technology compilations and provides high-level classifications. 

Hence, a literature-backed and empirically validated approach is required, which identifies similarities 

and differences as well as provides a sufficient level of abstraction from individual technologies as a 

basis for further sense-making and design-oriented research. Against this backdrop, we ask the following 

research question: How can digital technologies be classified? 

In response to this research question, we adopt an ‘organizational systematics’ approach in line with 

McKelvey (1978) to make a two-fold contribution: First, we apply the established iterative taxonomy 

development process of Nickerson et al. (2013) to inductively and deductively develop a taxonomy of 

digital technologies. Drawing on an extensive literature review of current knowledge and a sample of 

about 90 digital technologies from the Gartner Hype Cycle for Emerging Technologies of 2009 to 2017, 

the taxonomy comprises eight dimensions – i.e., role of technology, scope, multiplicity, direction, data 

treatment, input, output, and human involvement – and corresponding characteristics of digital 

technologies, which are structured along the establish layered architecture of Yoo et al. (2010). Enabling 

the structured classification of individual technologies, the taxonomy addresses similarities and 

differences of digital technologies. Second, we inductively infer digital technology archetypes, each of 

which reflects a typical combination of digital technology characteristics. After classifying the entire 

sample of digital technologies by means of the taxonomy, we conducted a hierarchical cluster analysis 

and received nine archetypes: connectivity & computation, platform provision, mobile device, 

sensor-based data collection, actor-based data execution, analytical insight generation, self-dependent 
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material agency, augmented interaction, and natural interaction. These archetypes abstract from 

individual technologies and provide a profound basis for further research. 

Regarding the evaluation, we classified the sample of 92 digital technologies. As for the archetypes, we 

conducted a Q-sort among the co-authors and a panel of twelve industry experts with a digitalization 

background. To evaluate the robustness of the archetypes, we conducted a longitudinal analysis to 

examine the occurrence of archetypes over time. Finally, we asked the industry experts for potential use 

cases to elaborate on the archetypes applicability. In sum, the evaluation results confirmed the reliability 

and validity of the taxonomy and archetypes. 

Overall, the taxonomy and archetypes build on and extend discussions in the IS community about the 

nature of digital technologies and add to the descriptive knowledge in this field. While the taxonomy 

enables the classification of individual digital technologies, the archetypes provide a profound basis for 

industrial use cases and future research. 
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4 Research Article #2: 

Organizing Self-organizing Systems: A Terminology, Taxonomy, and 

Reference Model for Entities in Cyber-physical Production Systems 

 

Authors: Berger S., Häckel B., Häfner L. 

Published in: Information Systems Frontiers (in press). 

Abstract: Ongoing digitalization accelerates the transformation and integration of physical 

production and traditional computing systems into smart objects and their 

interconnectivity, forming the Internet of Things. In manufacturing, the cross-linking 

of embedded systems creates adaptive and self-organizing Cyber-Physical Production 

Systems (CPPSs). Owing to ever-increasing cross-linking, rapid technological 

advances, and multifunctionality, the complexity and structural opacity of CPPSs are 

rapidly increasing. The development of urgently needed modeling approaches for 

managing such complexity and structural opacity, however, is impeded by a lack of 

common understanding of CPPSs. Therefore, in this paper, we contribute to a common 

understanding of CPPSs by defining and classifying CPPS entities and illustrating their 

relations. More precisely, we present a terminology, a taxonomy, and a reference model 

for CPPS entities, created and evaluated using an iterative development process. 

Thereby, we lay the foundation for future CPPS modeling approaches that make CPPS 

complexity and structural opacity more manageable. 

Keywords: Digitalization, Cyber-Physical (Production) Systems, Terminology, Taxonomy, 

Reference Model, Smart Objects 
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5 Research Article #3: 

Attacks on the Industrial Internet of Things – Development of a Multi-layer 

Taxonomy 

 

Authors: Berger S., Bürger O., Häckel B. 

Published in: Computers & Security, 2020, 93 (2020), 101790. 

Abstract: The Industrial Internet of Things (IIoT) provides new opportunities to improve process 

and production efficiency, which enable new business models. At the same time, the 

high degree of cross-linking and decentralization increases the complexity of IIoT 

systems and creates new vulnerabilities. Hence, organizations are not only vulnerable 

to conventional IT threats, but also to a multitude of new, IIoT-specific attacks. Yet, a 

literature-based and empirically evaluated understanding of attacks on the IIoT is still 

lacking. Against this backdrop, we develop a multi-layer taxonomy that helps 

researchers and practitioners to identify similarities and differences between attacks on 

the IIoT. Based on the latest literature and a sample of about 50 attacks, we deductively 

and inductively determine attack characteristics and dimensions. We demonstrate the 

usefulness and practical relevance of our taxonomy by applying it to a real-world 

incident affecting a German steel facility. By combining IT security, IIoT, and risk 

management to form an interdisciplinary approach, we contribute to the descriptive 

knowledge in these fields. Industry experts confirm that our taxonomy enables a 

detailed classification of attacks, which supports the identification, documentation, and 

communication of incidents within organizations and their value-creation networks. 

With this, our taxonomy provides a profound basis for the further development of IT 

security management and the derivation of mitigation measures. 

Keywords: Industrial Internet of Things, Industry 4.0, IT Security, Attacks, Taxonomy 
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6 Research Article #4: 

IT Availability Risks in Smart Factory Networks – Simulating the Effects of 

IT Threats on Production Processes Using Petri Nets 

 

Authors: Berger S., Häckel B., van Dun C. 

Status:  Submitted working paper.  

Earlier version published in Proceedings of the 27th European Conference on 

Information Systems (ECIS), Stockholm and Uppsala, Sweden. 

Extended Abstract 

In manufacturing, concepts like the Internet of Things and Cyber-physical Systems accelerate the 

development from traditional production facilities towards smart factories. Thereby, the high degree of 

cross-linking and information exchange between information components and production machines 

forms complex smart factory networks. Due to their increasing reliance on information flows and the 

openness, complexity, and interconnectedness of components, smart factory networks are, in particular, 

vulnerable to IT availability risks caused by cyber-attacks and errors (Tupa et al., 2017). As the number 

attacks and errors is rising and existing literature lacks an integrated model for analysing availability 

risks in smart factory networks, our research question is: How can availability risks of IT attacks and 

errors in smart factory networks and their impact on production be modelled and simulated? 

To answer this research question, we adopt the Design Science Research Methodology of Peffers et al. 

(2007): Drawing on an extensive literature review, we infer formal and functional design objectives, 

i.e., modelling requirements, for iteratively developing our modelling approach as an artefact. In line 

with these design objectives, we introduce classical Petri Nets (Petri 1966) and multiple extensions to 

provide modular information and production components, representing specific features of smart factory 

networks for analysing IT availability risks and associated impacts on production. More precisely, these 

components enable the modeling of (existing) smart factory network architectures, and the simulation 

of stochastic attack and error occurrence and propagation. 

To evaluate our artefact and demonstrate its applicability, we follow the evaluation activities as per 

Sonnenberg and vom Brocke (2012). After justifying the research gap from scientific and practical view, 

we conduct a feature comparison discussing our artefact’s specification against the design objectives 

and competing artefacts. In addition, we demonstrate the real-world fidelity and applicability of our 

modeling approach in artificial and naturalistic settings: As for the artificial setting, we implemented an 

instantiation of our modeling approach as a software prototype and simulated multiple fictional 

scenarios. With this, we provide a proof of concept and enable the modelling of various smart factory 
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network layouts. As for the naturalistic setting, we recreated and parameterised real-world scenarios 

with industry experts. After simulating these scenarios, we analyzed and compared the result regarding 

availability and productivity. 

Overall, our modeling approach creates transparency by providing a scalable depiction of smart factory 

networks and its components. At the same time, our approach allows for the analysis and comparison of 

threat scenarios by simulating the occurrence of errors and the spread of attacks from the information 

network down to machine level. By comparing different network layouts, the identification of weak 

points and critical dependencies becomes feasible. With this, the proposed modeling approach supports 

preventive risk management and the derivation of suitable mitigation measures, serving the specific 

needs of different organizational stakeholders such as IT security experts, production and risk managers, 

and IT architects. 
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7 Research Article #5: 

Ecological Sustainability 4.0 – Identifying and Structuring Ecological Benefits 

of Industry 4.0 Technologies by Means of a Benefits Dependency Network 

 

Authors: Berger S., Graf V., Häckel B. 

Status:  Submitted working paper. 

Extended Abstract 

Driven by the integration of digital technologies into manufacturing systems, digitalization accelerates 

the development of the industrial sector towards Industry 4.0. With concepts like self-organization, 

self-optimization, decentralization, and autonomy, industrial technologies such as Cyber-physical 

Production Systems and the Industrial Internet of Things enable highly flexible and efficient 

(production) processes at reduced costs. Until now, the benefits of Industry 4.0 are primarily described 

from a product or operations perspective. Performance improvement in terms of sustainability is merely 

seen as positive side effect of technology use (Dalenogare et al., 2018). In times of ongoing 

environmental deterioration and climate change, however, the industrial sector is, in particular, 

responsible for reducing its ecological footprint as it accounts for more than half of the worldwide energy 

consumption (U.S. Energy Information Administration, 2017). As current literature discusses 

technologies and ecologic benefits individually rather than from an integrated point of view, researchers 

and practitioners are still struggling to systematically identify cause-effect relations. Hence, our research 

question is: How can ecological benefits of Industry 4.0 technologies be identified in a structured way? 

To answer this question, we follow the design science research methodology as per Peffers et al. (2007) 

and propose a triple-punch approach: First, we iteratively develop a Benefits Dependency Network 

(Ward and Daniel, 2006) as a framework from benefits management to support organizational 

stakeholders in identifying and correlating ecological benefits, associated Industry 4.0 technologies, and 

necessary organizational changes in a structured way. Second, we introduce building blocks, i.e., 

exemplary elements of the Benefits Dependency Network derived from literature on topics such as green 

manufacturing principles (e.g., Despeisse et al., 2012) and technological advancements in the industry 

(e.g., Dalenogare et al., 2018), to increase the utility of the Benefits Dependency Network and guide 

intended users in developing instantiations. Third, we demonstrate the feasibility and effectiveness of 

the Benefits Dependency Network and its building blocks.  

Regarding the validation of the framework, we follow the evaluation activities as per Sonnenberg and 

vom Brocke (2012), which are in line with the design science research paradigm. We demonstrate our 

artefact in artificial, i.e., literature-based instantiations, and naturalistic, i.e., real-world use cases, 
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settings. For the iterative development process and the validation of the artefact, we included feedback 

from multiple discussions with focus groups and interviews with industry experts. 

In sum, the Benefits Dependency Network contributes to the descriptive knowledge regarding the 

interdisciplinary research field of ecological sustainability. The framework guides researchers and 

practitioners in systematically identifying, structuring, and correlating Industry 4.0 technologies and 

ecological benefits under consideration of associated organizational changes. The integrated view on 

technology and ecology serves as a basis for the ex-ante, ex-nunc, and ex-post evaluation of 

technology-driven projects and corresponding ecological objectives. With this, we support profound 

decision-making on investments and the monitoring and control of projects to accelerate ecology-driven 

transformation. 
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