73,335 research outputs found

    Specifications and Development of Interoperability Solution dedicated to Multiple Expertise Collaboration in a Design Framework

    Get PDF
    This paper describes the specifications of an interoperability platform based on the PPO (Product Process Organization) model developed by the French community IPPOP in the context of collaborative and innovative design. By using PPO model as a reference, this work aims to connect together heterogonous tools used by experts easing data and information exchanges. After underlining the growing needs of collaborative design process, this paper focuses on interoperability concept by describing current solutions and their limits. Then a solution based on the flexibility of the PPO model adapted to the philosophy of interoperability is proposed. To illustrate these concepts, several examples are more particularly described (robustness analysis, CAD and Product Lifecycle Management systems connections)

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    Towards a Novel Cooperative Logistics Information System Framework

    Get PDF
    Supply Chains and Logistics have a growing importance in global economy. Supply Chain Information Systems over the world are heterogeneous and each one can both produce and receive massive amounts of structured and unstructured data in real-time, which are usually generated by information systems, connected objects or manually by humans. This heterogeneity is due to Logistics Information Systems components and processes that are developed by different modelling methods and running on many platforms; hence, decision making process is difficult in such multi-actor environment. In this paper we identify some current challenges and integration issues between separately designed Logistics Information Systems (LIS), and we propose a Distributed Cooperative Logistics Platform (DCLP) framework based on NoSQL, which facilitates real-time cooperation between stakeholders and improves decision making process in a multi-actor environment. We included also a case study of Hospital Supply Chain (HSC), and a brief discussion on perspectives and future scope of work

    Evolution of Supply Chain Collaboration: Implications for the Role of Knowledge

    Get PDF
    Increasingly, research across many disciplines has recognized the shortcomings of the traditional “integration prescription” for inter-organizational knowledge management. This research conducts several simulation experiments to study the effects of different rates of product change, different demand environments, and different economies of scale on the level of integration between firms at different levels in the supply chain. The underlying paradigm shifts from a static, steady state view to a dynamic, complex adaptive systems and knowledge-based view of supply chain networks. Several research propositions are presented that use the role of knowledge in the supply chain to provide predictive power for how supply chain collaborations or integration should evolve. Suggestions and implications are suggested for managerial and research purposes

    A requirements engineering framework for integrated systems development for the construction industry

    Get PDF
    Computer Integrated Construction (CIC) systems are computer environments through which collaborative working can be undertaken. Although many CIC systems have been developed to demonstrate the communication and collaboration within the construction projects, the uptake of CICs by the industry is still inadequate. This is mainly due to the fact that research methodologies of the CIC development projects are incomplete to bridge the technology transfer gap. Therefore, defining comprehensive methodologies for the development of these systems and their effective implementation on real construction projects is vital. Requirements Engineering (RE) can contribute to the effective uptake of these systems because it drives the systems development for the targeted audience. This paper proposes a requirements engineering approach for industry driven CIC systems development. While some CIC systems are investigated to build a broad and deep contextual knowledge in the area, the EU funded research project, DIVERCITY (Distributed Virtual Workspace for Enhancing Communication within the Construction Industry), is analysed as the main case study project because its requirements engineering approach has the potential to determine a framework for the adaptation of requirements engineering in order to contribute towards the uptake of CIC systems

    Development of an Extended Product Lifecycle Management through Service Oriented Architecture.

    Get PDF
    Organised by: Cranfield UniversityThe aim of this work is to define new business opportunities through the concept of Extended Product Lifecycle Management (ExtPLM), analysing its potential implementation within a Service Oriented Architecture. ExtPLM merges the concepts of Extended Product, Avatar and PLM. It aims at allowing a closer interaction between enterprises and their customers, who are integrated in all phases of the life cycle, creating new technical functionalities and services, improving both the practical (e.g. improving usage, improving safety, allowing predictive maintenance) and the emotional side (e.g. extreme customization) of the product.Mori Seiki – The Machine Tool Company; BAE Systems; S4T – Support Service Solutions: Strategy and Transitio

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan
    • …
    corecore