55 research outputs found

    Genetic Transfer or Population Diversification? Deciphering the Secret Ingredients of Evolutionary Multitask Optimization

    Full text link
    Evolutionary multitasking has recently emerged as a novel paradigm that enables the similarities and/or latent complementarities (if present) between distinct optimization tasks to be exploited in an autonomous manner simply by solving them together with a unified solution representation scheme. An important matter underpinning future algorithmic advancements is to develop a better understanding of the driving force behind successful multitask problem-solving. In this regard, two (seemingly disparate) ideas have been put forward, namely, (a) implicit genetic transfer as the key ingredient facilitating the exchange of high-quality genetic material across tasks, and (b) population diversification resulting in effective global search of the unified search space encompassing all tasks. In this paper, we present some empirical results that provide a clearer picture of the relationship between the two aforementioned propositions. For the numerical experiments we make use of Sudoku puzzles as case studies, mainly because of their feature that outwardly unlike puzzle statements can often have nearly identical final solutions. The experiments reveal that while on many occasions genetic transfer and population diversity may be viewed as two sides of the same coin, the wider implication of genetic transfer, as shall be shown herein, captures the true essence of evolutionary multitasking to the fullest.Comment: 7 pages, 6 figure

    Geometric particle swarm optimization for the sudoku puzzle

    Get PDF
    Geometric particle swarm optimization (GPSO) is a recently introduced generalization of traditional particle swarm optimization (PSO) that applies to all combinatorial spaces. The aim of this paper is to demonstrate the applicability of GPSO to non-trivial combinatorial spaces. The Sudoku puzzle is a perfect candidate to test new algorithmic ideas because it is entertaining and instructive as well as a nontrivial constrained combinatorial problem. We apply GPSO to solve the sudoku puzzle

    Stochastic Optimization Approaches for Solving Sudoku

    Full text link
    In this paper the Sudoku problem is solved using stochastic search techniques and these are: Cultural Genetic Algorithm (CGA), Repulsive Particle Swarm Optimization (RPSO), Quantum Simulated Annealing (QSA) and the Hybrid method that combines Genetic Algorithm with Simulated Annealing (HGASA). The results obtained show that the CGA, QSA and HGASA are able to solve the Sudoku puzzle with CGA finding a solution in 28 seconds, while QSA finding a solution in 65 seconds and HGASA in 1.447 seconds. This is mainly because HGASA combines the parallel searching of GA with the flexibility of SA. The RPSO was found to be unable to solve the puzzle.Comment: 13 page

    Sudokube Using Genetic Algorithms To Simultaneously Solve Multiple Combinatorial Problems

    Get PDF
    School of Electrical & Computer Engineerin

    Diversification and Intensification in Hybrid Metaheuristics for Constraint Satisfaction Problems

    Get PDF
    Metaheuristics are used to find feasible solutions to hard Combinatorial Optimization Problems (COPs). Constraint Satisfaction Problems (CSPs) may be formulated as COPs, where the objective is to reduce the number of violated constraints to zero. The popular puzzle Sudoku is an NP-complete problem that has been used to study the effectiveness of metaheuristics in solving CSPs. Applying the Simulated Annealing (SA) metaheuristic to Sudoku has been shown to be a successful method to solve CSPs. However, the ‘easy-hard-easy’ phase-transition behavior frequently attributed to a certain class of CSPs makes finding a solution extremely difficult in the hard phase because of the vast search space, the small number of solutions and a fitness landscape marked by many plateaus and local minima. Two key mechanisms that metaheuristics employ for searching are diversification and intensification. Diversification is the method of identifying diverse promising regions of the search space and is achieved through the process of heating/reheating. Intensification is the method of finding a solution in one of these promising regions and is achieved through the process of cooling. The hard phase area of the search terrain makes traversal without becoming trapped very challenging. Running the best available method - a Constraint Propagation/Depth-First Search algorithm - against 30,000 benchmark problem-instances, 20,240 remain unsolved after ten runs at one minute per run which we classify as very hard. This dissertation studies the delicate balance between diversification and intensification in the search process and offers a hybrid SA algorithm to solve very hard instances. The algorithm presents (a) a heating/reheating strategy that incorporates the lowest solution cost for diversification; (b) a more complex two-stage cooling schedule for faster intensification; (c) Constraint Programming (CP) hybridization to reduce the search space and to escape a local minimum; (d) a three-way swap, secondary neighborhood operator for a low expense method of diversification. These techniques are tested individually and in hybrid combinations for a total of 11 strategies, and the effectiveness of each is evaluated by percentage solved and average best run-time to solution. In the final analysis, all strategies are an improvement on current methods, but the most remarkable results come from the application of the “Quick Reset” technique between cooling stages

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Solution and Level Identification of Sudoku Using Harmony Search

    Full text link
    corecore