
SUDOKUBE – USING GENETIC ALGORITHMS

TO SIMULTANEOUSLY SOLVE MULTIPLE

COMBINATORIAL PROBLEMS

 By

 DAVID ISAAC WATERS

 B.S. Electrical Engineering

 Oklahoma State University

 Stillwater, OK

 2005

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 May, 2008

 ii

 SUDOKUBE – USING GENETIC ALGORITHMS

TO SIMULTANEOUSLY SOLVE MULTIPLE

COMBINATORIAL PROBLEMS

 Thesis Approved:

 Dr. Gary Yen

 Thesis Adviser

 Dr. Keith Teague

 Dr. George Scheets

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. LITERATURE REVIEW

 II.A Optimization Algorithms ..4
 II.B Genetic Algorithms/Evolutionary Algorithms ...5
 II.C Genetic Algorithms...5
 II.C.1 Genetic Operators ...9
 II.C.1.a Parent Selection ..9
 II.C.1.b Crossover ..11
 II.C.1.c Mutation ..14
 II.D Simulated Annealing ..16
 II.E NP Complete ...17
 II.F Combinatorial vs. Continuous Optimization ..18
 II.G Sudoku ..24
 II.H 3D Sudoku ..28

III. DESIGN METHODOLOGY

 III.A Design Introduction...31
 III.B 2D Solver...31
 III.B.1 Genetic Operators ...33
 III.B.1.a Parent Selection ...33
 III.B.1.b Aging ...34
 III.B.1.c Uniform Crossover ..36
 III.B.1.d Mutation/Natural Growth ..38
 III.C Puzzle Generation ...42
 III.D Puzzle Combination ..45
 III.E 3D Representation -- SudoKube ..48
 III.E.1 SudoKube Introduction ...48
 III.E.2 Genotype..48
 III.E.3 Genetic Operators ..49
 III.E.3.a Parent Selection ...49
 III.E.3.b Crossover ...49
 III.E.3.c Mutation ...52
 III.E.3.d Fitness Calculation ..52

 iv

Chapter Page

 III.E.4 Settings ...53
 III.E.4.a Mutation Ceiling ..53
 III.E.4.b Reset Count ...54
 III.E.4.c Mutation Rate Multiplier ...57
 III.E.4.d Maximum Iterations ..58
 III.E.4.e Mutation Iterations...59
 III.E.4.f Population Size...60
 III.E.4.g Difference Degree ...61

IV. RESEARCH FINDINGS ...64

V. CONCLUSIONS / FUTURE RESEARCH ...76

 V.A 2D Representation – Success ...76
 V.B 3D Representation – Success ...76
 V.C Future Work ...77

REFERENCES ..79

 v

LIST OF TABLES

Table Page

 1. Comparison of continuous vs. combinatorial problems23

 2. Number of solutions per side ..30

 3. Example of fitness-dependent crossover ..52

 4. Solutions found out of 30 attempts ...65

 5. Solutions found out of 100 attempts ...66

 6. Overall solver results – Helsingin Sanomat ..67

 7. Overall solver results – Aamulehti ...68

 8. Comparison of sequential solver vs. 3-D solver ...73

 vi

LIST OF FIGURES

Figure Page

 1. Sample unsolved ‘easy’ puzzle with symmetric blanks2

 2. Pseudo code outlining a basic genetic algorithm ..7

 3. Uniform crossover example ..12

 4. One point crossover example ..12

 5. Two point crossover example ...13

 6. Mutation example ...15

 7. Solution of an N-Queen problem ..18

 8. Rosenbrock’s Valley – DeJong’s 2nd function ..19

 9. Gradient example ..21

 10. Sample solved puzzle ..26

 11. Example SudoKube with three solved edges ..29

 12. Basic genetic algorithm flow chart ...33

 13. Example of the aging operator performing an exchange35

 14. Uniform crossover flow chart ...37

 15. Row crossover example ..38

 16. Unsolved Sudoku grid with duplicates ...41

 17. Mutation operator flow chart ..42

 18. Randomly generated mini-grids ..44

 19. Overview of five linked puzzles ...46

 vii

Figure Page

 20. Initialization flow chart ...47

 21. Fitness dependent with difference degree crossover ..51

 22. Solve time vs. mutation ceiling ...54

 23. Solve time vs. reset count (A) ...55

 24. Solve time vs. reset count (B) ...56

 25. Fitness vs. mutation rate multiplier (0.90) ..57

 26. Fitness vs. mutation rate multiplier (0.991) ..58

 27. Time vs. mutation iterations ...60

 28. Time vs. population size ...61

 29. Time vs. difference degree ..62

 30. Fitness vs. iterations (Easy) ..70

 31. Fitness vs. iterations (Medium)...70

 32. Fitness vs. iterations (Hard) ..71

 33. SudoKube screenshot ..72

 34. Solve time vs. puzzle type & difficulty ..74

 35. Solved SudoKube..78

 1

CHAPTER I

INTRODUCTION

Sudoku puzzles provide a logical challenge for people of all ages. These puzzles

can be found in newspapers, magazines, puzzle books, and even in cell phones. The

format of a Sudoku puzzle is of an n� � n� grid divided into nine smaller mini-grids.

Each mini-grid is n � n. Bold lines generally separate the mini-grids. Although one can

create similar puzzles to Sudoku with many different � values, � is normally equal to

three, which makes the entire grid 9 � 9. The objective of the game is to fill each row,

column, and mini-grid with the numbers 1 through 9 without duplicate numbers in any

row, column or mini-grid. Puzzle difficulty is partially related to how many cells are

filled at the beginning, although the placement and quality of the starting hints play a

much larger role in determining whether a puzzle is ‘Easy’ or ‘Fiendish.’ The empty

cells are traditionally symmetric with respect to a 180 degree turn around the center cell

as shown in Figure 1. The filled cells are considered static for each particular problem

[1] However, there are some publications that have asymmetric Sudoku grids [2].

 2

9 7 1 6 2
3 7
5 3 7

3 9 7
1 6 9

3 9 2
5 7 9

3 4
4 9 8 1 7

Figure 1: Sample unsolved ‘easy’ puzzle with symmetric blanks. Blanks are symmetric about the

center cell.

Sudoku puzzles are also an interesting combinatorial problem, and although not

extensively researched, several papers have been published on the use of searching

algorithms with respect to solving Sudoku puzzles [3][4][5] . Sudoku is often viewed as

an excellent testing application for combinatorial solvers.

 Genetic algorithms are powerful tools used in solving optimization problems.

They are most effective when applied to problems with large, variable search spaces with

unknown patterns. They use the ‘survival of the fittest’ concept to maintain a population

of good quality solutions while working towards an optimum. Genetic algorithms have

been applied successfully to the traveling salesman problem [6][7][8] , the N-Queens

problem [9], flowshop sequencing [10][11], and also to solving Sudoku puzzles

[5][12][4] . All of these problems are of the type NP-Complete [13].

 3

This thesis will begin by describing optimization problems, genetic algorithms,

and the combinatorial and NP-Complete problem types. Chapter II will discuss different

approaches to creating a genetic algorithm, and it will explain why the use of genetic

algorithms is an effective method for solving optimization problems.

In Chapter III, this thesis will first outline an effective puzzle generation method

for Sudoku, followed by a solver that surpasses its genetic algorithm predecessors in

terms of effectiveness. Following that, it will describe the creation of a new type of

Sudoku game – six Sudoku puzzles in the form of a box, called a SudoKube. Most

significantly, this section will describe the modified operators used in the algorithm that

will effectively and consistently solve a SudoKube, which is a combinatorial optimization

problem with varying constraints.

The results will be outlined in Chapter IV. Results from the proposed solver and

similar existing algorithms will be compared. Results comparing the 2D and 3D solvers’

effectiveness when applied to the SudoKube are also included in Chapter IV. The

relevant conclusions will be drawn in Chapter V.

 4

CHAPTER II

REVIEW OF LITERATURE

II.A Optimization Algorithms

Optimization algorithms are designed to find the best solution for a given problem

and set of constraints. There are several challenges that face any optimization algorithm.

A large search space often makes finding a global optimum difficult. The larger the

search space, the more challenging it is to find and verify an optimal solution. Also, any

case that has only one global optimum within a plethora of sub-optimal solutions results

in the proverbial ‘needle in a haystack’ scenario. Finally, finding the optimal solution

may require the algorithm to perform an extensive search any time it reaches a local

optimum, which is generally impractical in terms of the time it would take to find the

optimal solution. For problems such as the travelling salesman problem, the only way to

verify that a solution is the global optimum is an exhaustive search of every possible

solution.

Many problems contain local optimums that can ‘trap’ many searching algorithms

(these local optimums are often called ‘basins’). A searching algorithm can find a local

optimum within a basin and, unless the algorithm is designed to be able to escape said

basin, it will likely never find a better solution than the one in its current location.

Without the capacity to escape, the algorithm could easily (and incorrectly) determine

that it has found the global optimum. Local optimums are much easier to find compared

to global optimums in the majority of cases [14].

 5

II.B Evolutionary Algorithms/Genetic Algorithms

Evolutionary algorithms are a grouping of heuristic solving techniques that

include processes such as genetic algorithms, particle swarm optimization, and

evolutionary programming. This thesis will focus primarily on genetic algorithms and

their characteristics. Another type of optimization algorithm is simulated annealing.

Genetic algorithms can be augmented by methods found in simulated annealing. This

section will discuss some concepts behind simulated annealing and will cover some of its

unique characteristics [15].

II.C Genetic Algorithms

A genetic algorithm (GA) is a heuristic optimization method originally proposed

by Holland [16] that is based on some of the most basic biological concepts: survival of

the fittest, natural selection, and the transfer of biological characteristics (genetic

material) from parents to children.

A potential solution in a genetic algorithm fits a genotype that is defined at the

outset of the program. For example, a genotype for a traveling salesman problem may be

a one dimensional array containing a permutation of the cities the salesman must visit.

The following array could be a population member for a specific traveling salesman

problem.

� ��.
��
�, �����, �������� �
��, ��� ����, ������, ��������, � �
�!"
��# $

 6

However, in the interest of programming simplicity, each of these cities may be

assigned a number according to their position, and the resulting permutation may look

like this:

� 1, 2, 3, 4, 5, 6, 7 $

Genetic algorithms initially used binary representation, with 1’s and 0’s defining a

parent’s genetic material [17]. It is more common now to see real valued representation.

A genetic algorithm works by first initializing and then maintaining a population

of potential solutions and evolving them over the course of many generations through the

use of different types of functions, called operators. The quality of a solution is described

by its ‘fitness,’ which is a problem dependent objective. The better a solution’s fitness,

the more likely it is that it will be selected for reproduction. This is where the survival of

the fittest concept comes into play for a genetic algorithm. For a distance-minimizing

problem (say, a sales route for a traveling salesman), an individual population member

would be a specific sales route, and the fitness would be the total distance traveled. A

good sales route would have a low fitness value, which would be a direct result of short

travel distance [6].

After determining each existing solution’s fitness, a genetic algorithm will apply

crossover and mutation operators in order to generate new population members. The

crossover operator simulates a mating process, and the mutation operator simulates the

unlikely event of a gene being mutated within a population member. Depending on the

genetic algorithm, crossover will either generate a new generation equal to the size of the

 7

original generation before re-integration or it will generate one child and integrate it back

into the population immediately. Generating a number of children equal to the

population size occurs in a ‘generational’ algorithm, and generating one child at a time

occurs in a ‘steady state’ algorithm [14]. In a steady state algorithm, a child could be

selected as a parent immediately after its insertion into the general population. In a

generational algorithm, the children are not available in the parent selection process until

their entire generation has been created and inserted back into the general population.

The creator of genetic algorithms, Holland, described the generational algorithm as

having ‘intrinsic parallelism.’ When dealing with large search spaces, this can be very

beneficial [18]. The process is outlined below in Figure 2.

Figure 2: Pseudo code outlining a basic genetic algorithm

 8

Genetic algorithms can be very powerful tools to solve problems that would be

too complex or cumbersome to attack with brute force or with an algorithm that relied

strictly on problem logic. This includes problems with large search spaces or problems

for which the pattern of solutions is not known or not easily found. Sudoku provides an

example of a very large, variable search space that depends solely on the initial hint

distribution [19]. The size of the search space for a specific Sudoku puzzle grows

exponentially with each starting blank. A genetic algorithm has the ability to find

optimal solutions within a large search space without requiring much user supplied

information.

The successful use of genetic algorithms in optimization problems of both the

continuous and the combinatorial variety indicates a good deal of flexibility within the

genetic algorithm concept itself [20][21].

Through the use of standard operators and the situational application of modified

operators, a genetic algorithm can be used to solve both individual and linked (3D)

Sudoku puzzles correctly and efficiently. Genetic algorithms are a method of searching

for an optimal solution rather than a method of solving a Sudoku puzzle to obtain the

answer. There are many Sudoku solvers that can use human puzzle-solving techniques to

arrive at a valid answer for a given Sudoku puzzle [1][22]. This thesis will not compare

the results of this genetic algorithm with those solvers, but it is worth noting that there are

a few puzzles that are virtually impossible to solve using human logic techniques, such as

 9

the ‘Escargot’ puzzle [22], which requires a player to consider eight cells simultaneously

in order to begin the puzzle.

There are a few drawbacks that come with the use of genetic algorithms.

Qualitative analysis of these algorithms is quite lacking in the literature. Results are not

repeatable due to the stochastic nature of the algorithm itself. While the genetic

algorithm may arrive at the same answer on virtually every run, the method by which it

reaches the final result will be different each time. These qualities can make genetic

algorithms somewhat difficult to troubleshoot and analyze [16].

Parent selection is a staple within any genetic algorithm. As stated previously,

crossover is the manifestation of the ‘survival of the fittest’ concept within a solving

algorithm, and crossover essentially begins with parent selection. Another operator

within a standard genetic algorithm is mutation. There are many different methods for

applying crossover and mutation, and there are even more methods that involve slight

modifications to those operators. Designing an appropriate crossover and mutation

combination to fit a specific problem is both a science and an art [21]. There are many

different settings to choose and decisions to make before finalizing this operator pair.

II.C.1 Operators

II.C.1.a Parent Selection

Genetic algorithms weed out solutions with bad fitness values partially through

the use of parent selection methods. The goal of these methods is to allow the best

 10

solutions to mate more often than the poor solutions so that the next generation will

receive the best genetic information from the parents’ generation. Simply put, a solution

with good fitness will pass on much more genetic material than a solution with bad

fitness.

 The parent selection operator is exactly what its name implies. It is a method of

selecting parents to mate and create a child or a number of children. Traditionally, the

number of parents allowed for any individual child is two [20].

Depending on the type of genetic algorithm, parents may or may not pass on

‘learned’ information to their children. If the algorithm allows for the transfer of learned

information from one generation to the next, it is called Lamarckian evolution [14].

However, a ‘purer’ form of genetic algorithm would not pass on learned information via

genetics, based on the Darwinian model of evolution. Rather than keeping and using the

learned traits, the Darwinian model directs the search toward the areas with those traits.

A large portion of genetic algorithms apply Lamarckian evolution over the Darwinian

model because the Lamarckian model does not discard the learned information.

However, Darwinian evolution can be more useful when basins are large or when the

algorithm does not include a mutation operator [14].

Regardless of the evolution type used, Lamarckian or Darwinian, the population

members with the best fitness are the most likely to be chosen for reproduction.

Selections can be directly proportional to fitness, or they can be based solely on a

 11

solution’s rank within its generation. Parent selection is often a random process that has

its probabilities based on solution fitness [21]. In a traditional genetic algorithm, the

crossover operator is applied immediately after parents are selected.

II.C.1.b Crossover

A crossover operator in a genetic algorithm is designed to combine attributes of

two parents in creating new members of the population. Normally only one or two

children will be created from two parents, and the biological basis for genetic algorithm

does not seem to allow more than two parents for a single child. Several forms of

crossover were considered during the design of the proposed algorithm [20].

One of the most basic crossover methods is uniform crossover [20]. In uniform

crossover, a child is created from equal parts of two parents. This would be analogous to

a child having his or her mother’s hair, but father’s eyes, mother’s nose, but father’s

mouth and so on, all the way down to the feet. In a combinatorial problem (described

further on in this section), uniform crossover is often not an ideal option. For illustrative

purposes, consider the following rows taken from a potential solution to a Sudoku puzzle.

Each number represents the digit placed in its corresponding cell on the Sudoku grid. For

example, Row 1 would have the number 1 in its first cell.

,�� 1 � 1, 2, 3, 4, 3, 6, 9, 7, 8 $
,�� 2 � 1, 1, 2, 3, 5, 6, 7, 8, 9 $

Notice that Row 1 has duplicate 3’s in its third and fifth slots, and Row 2 has

duplicate 1’s in its first and second slots. If fitness is defined as the number of duplicates

 12

in a given solution, both of these rows would have fairly good fitness values individually

due to each of them only having one duplicate. However, if a crossover operator used

them for uniform crossover, the child would have a much worse fitness value than either

of the parents as shown in Figure 3.

,�� 1 � /, 2, 0, 4, 0, 6, 1, 7, 2 $
,�� 2 � 1, /, 2, 0, 5, 3, 7, 2, 9 $
��
�# � 1, 1, 3, 3, 3, 6, 9, 8, 8 $

Figure 3: Example of uniform crossover

The child in the previous example would have more than double the duplicates (and

therefore double the fitness value) of either of its parents. Applying uniform crossover

resulted in a population member that has a fitness value that is much worse than either of

its parents’ fitness values.

Single point crossover is another simple way to create new children from two

parents. An example is below in Figure 4. An initial ‘cut’ point is determined at random,

and the beginning segment of one parent is attached to the ending segment of the other.

Again, consider the same two rows from a Sudoku puzzle as an example.

,�� 1 � /, 4, 0, 5, 0, 6, 9, 7, 8 $
,�� 2 � 1, 1, 2, 3, 5, 3, 6, 2, 1 $
��
�# � 1, 2, 3, 4, 3, 6, 7, 8, 9 $

Figure 4: Example of single point crossover

 13

Notice how the number of duplicates in the child is equivalent to the duplicates in

each parent. This will not always be the case, but single point crossover can often yield

better results than uniform crossover in a combinatorial problem [20]. This is due to the

fact that each parent may have a segment that is a completely correct permutation. This

type of crossover is more useful when applied to a problem where the ordering of a single

permutation is the process by which a final answer is obtained.

Another form of crossover that lends itself more to the combinatorial problem

domain is 2-point crossover. Two endpoints of a genotype segment are selected, and two

children are created. The segments are then swapped between genotypes, which

generates two new members of the population. In the form of crossover shown below in

Figure 5, a ‘fixing’ operator is applied to the new generation after the initial crossover in

order to iron out duplicates – making the child a valid permutation [21]. The fixing

operator could also be applied to other types of crossover, such as single point crossover,

and it probably should be used for combinatorial problems that require every population

member to be a valid permutation.

,�� 1 � 1, 3, 6, 7, 5, 4, 7, 8, 9 $
,�� 2 � 6, 4, 3, 6, /, 7, 2, 8, 9 $
��
�# � 1, 3, 6, 7, 1, 5, 7, 8, 9 $

�!�� ��
�# � 1, 3, 6, 4, 2, 5, 7, 8, 9 $

Figure 5: Example of two point crossover

 14

Arithmetic crossover (described below) is a useful tool in continuous optimization

problems.

As mentioned above, many forms of crossover do not work as well for

combinatorial problems compared to continuous problems. This is due to the fact that the

combination of two completely dissimilar parents often yields a child with poor fitness,

regardless of the parents’ fitness quality. For combinatorial problems, the difference

degree method [23] allows an algorithm to use crossover methods while addressing this

issue. In difference degree crossover, after two parents are selected, all of their

individual elements are compared. If the difference is greater than a set threshold

percentage, an alternate parent set is selected. This helps limit crossover to ‘couples’ that

have a sufficient amount of similarities to produce useful children.

II.C.1.c Mutation

A mutation operator introduces an essential element of randomness into the

search algorithm. The goal of the operator is to apply occasional changes to members of

the new generations as they are created. This allows the algorithm to discover different

areas in which to search – otherwise it would be permanently limited by the starting

population’s ‘gene pool’. For example, if every initial population member for a Sudoku

puzzle had its empty cells filled with 1’s, there would be no way to reach the optimal

solution. All of the genetic material passed from parents to children would be completely

incorrect, regardless of the crossover method used.

 15

,�� 1 8 8 � 1, 1, 1, 1, 1, 1, 1, 1, 1 $
,�� 2 8 8 � 1, 1, 1, 1, 1, 1, 1, 1, 1 $
��
�# 8 8 � 1, 1, 1, 1, 1, 1, 1, 1, 1 $

While the above example is quite extreme, it illustrates the need for mutation for

diversity preservation. Somehow the elements within the row need to change, but

crossover will not provide that change, but mutation will introduce variants into the gene

pool.

Typically, the probability of a mutation occurrence is very low – often as low as

1% for any given population member. In a traditional genetic algorithm (one with binary

representation), mutation would require merely a single bit flip. For a combinatorial

problem such as Sudoku, mutation will often involve a random reordering of nodes [5].

Figure 6 is an example of mutation applied to a population member defined as a row

within a Sudoku puzzle.

��
!
��� �""� �
�! � 1, 2, 3, 4, 5, 6, 7, 8, 9 $
9�����# �""� �
�! � 1, 2, 3, 4, 7, 6, 5, 8, 9 $

Figure 6: Example of mutation

 The mutated offspring had its 5th and 7th values exchanged. This change was not

based on any previous genetic information. It was a random alteration that the mutation

operator imposed on the offspring.

 16

II.D Simulated Annealing

Simulated annealing is another powerful optimization algorithm. It is a

combination of global and local search techniques, and it is generally regarded as an

effective method to reach an acceptable (if not optimal) solution [14]. Simulated

annealing is based on the phenomenon that occurs when cooling certain metals – if done

correctly, the metal reforms with a purer lattice structure than it was before it was heated.

The molecules move from a high heat (and therefore high energy) state to a low heat

state, where they can settle in to an ideal structure.

Unlike genetic algorithms, simulated annealing does not maintain a population.

Instead, it sustains one solution from start to finish, choosing whether or not to accept a

‘move’ to a new solution based on its energy state. Whether the algorithm is in a high or

low energy state depends on the ‘temperature’. When starting the algorithm, a high

initial temperature is used. Each iteration brings a reduction to the temperature, with the

amount of temperature reduction being dependent on a user-defined cooling schedule.

Two common cooling schedules are linear and proportional. In linear cooling, the

temperature is reduced by a set number of degrees each iteration, and in proportional

cooling the temperature is reduced by a set percentage of degrees each iteration.

In simulated annealing, when the algorithm is in a high energy state, the

probability of accepting a move to a solution with a worse fitness than the current

solution is relatively high. In a low energy state, it is highly unlikely (although not

 17

impossible) for the algorithm to allow a move to a solution with a poorer fitness. A move

to a solution with a better fitness is always allowed within simulated annealing as

described in the equation below [14]. The current temperature is represented by ‘Temp’,

and the change in fitness from the current solution to the proposed solution is represented

by ∆"
�.

;<���� � ��=�> ? @1
" ∆"
� A 0
� ∆CDE

FGHI
" ∆"
� � 0 J (1)

II.E NP-Complete

 Simulated annealing and genetic algorithms are solving methods that are often

applied to problems of the NP-Complete class. A decision problem, X, is considered

NP-Complete if it is of the Non-Deterministic Polynomial Time (NP) type and if every

other problem in the NP set can be reduced to X. Sudoku, the Traveling Salesman

Problem (TSP), and Tetris are all well-known examples of NP-Complete problems [24].

Another famous combinatorial problem that is also of the type NP-Complete is

the N-Queens problem, in which the objective is to place n queens on a N � N sized

chessboard in such a way that no queen can ‘take’ another queen with a single horizontal,

vertical, or diagonal move. A solution to the N-Queens problem is shown in Figure 7.

 18

Figure 7: Example of a solved N-Queen problem [25].

Some practical examples of NP-Complete problems are scheduling and network routing

[14].

II.F Combinatorial vs. Continuous Optimization

 Both genetic algorithms and simulated annealing are two powerful searching

algorithms that can be applied to different types of optimization problems.

There are two distinct types of optimization problems – combinatorial and

continuous. A combinatorial problem is concerned with the reordering of a given set of

elements in order to achieve an acceptable solution. For Sudoku, this is essentially a

search for permutations of {1, 2…9} that satisfy the row, column, and mini-grid

constraints. A continuous problem is concerned with exploring a continuous range of

values (possibly to the extent of <– ∞ , ∞>> in order to discover the solution.

 19

In general, the combinatorial optimization problem set is considered to be more

difficult to handle than the continuous optimization problem set. There are several

reasons for this. For a continuous optimization problem (such as one of DeJong’s

functions – Figure 8 [26]), there is a full range of options available for crossover

operators as a result of the function’s use of a practically infinite number set. With

continuous problems, solving techniques that involve using the gradient of the fitness

with respect to the change of the population can be applied. Continuous problems have

easily definable neighborhoods and local minima/maxima. Combinatorial problems do

not [14].

Figure 8 [26]: Rosenbrock’s Valley – DeJong’s 2nd function, described by the following equation:

∑ O/PP Q <R<S T /> 8 R<S>4>4 T U/ 8 R<S>V4WXY/SZ/ (2)

 20

One of the more useful crossover operators for a continuous problem is the

arithmetic crossover, where the new value ‘c’ is equal to the mean of the previous

parents’ values ‘a’ and ‘b’ that occupy the same place within a chromosome.

 � ? [\]
� (3)

For example, if the optimal solution were ‘3.5’ and the parents selected had

values of ‘3’ and ‘4’, the algorithm would discover the optimal solution simply by

performing arithmetic crossover. However, this averaging strategy would not work if the

given problem were of a combinatorial nature, because a combination of this type could

give a result that is not permitted.

Consider the case of the traveling salesman again. If two cities on the route are

St. Louis (a) and Oklahoma City (b), using a crossover operator to yield a midpoint may

land the salesman in Joplin, MO (c). If the salesman is expected to travel to both St.

Louis and Oklahoma City and not to Joplin, this would be unacceptable. The arithmetic

crossover operator would result in a point that is not an option in the given problem.

Another key difference between combinatorial and continuous problems is the

concept of ‘direction’ [14][27]. In a continuous problem, if the algorithm moves from

2.0 to 2.1 and finds that 2.1 is a better solution, it can continue on the same gradient

toward 2.2. In a combinatorial problem, if the algorithm switches nodes 2 and 3 to reach

a better solution, it cannot use that information to determine that switching nodes 3 and 4

 21

would also be beneficial. Many optimization techniques are gradient based, but these

algorithms can only be applied to continuous problems due to the lack of direction

inherent to the combinatorial problem.

The Figure 9 is a plot that demonstrates the value of being able to use gradient

information when searching for a global optimum. Assuming that the objective of the

optimization problem is to minimize fitness, and assuming that the plot shows the entire

fitness function for the problem, the global optimum will have a fitness of 0 at a value of

13. Suppose the algorithm found its way to the corner of the plateau at value 11. If it

took a small step to the right, it would calculate the gradient to be negative. The

algorithm could potentially follow the same monotonically decreasing path until it found

the global optimum at a value of 13.

Figure 9: Example of gradient usage

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13

F
it

n
e

ss
 V

a
lu

e
s

Input value into fitness function

Direction / Gradient Example

Fitness Function

 22

 In a combinatorial problem, an algorithm cannot make use of the gradient

information, in part because the fitness function cannot be represented as a continuous

curve with a slope. Again, the lack of an exploitable ‘direction’ for combinatorial

problems limits a programmer’s options.

Often coupled with direction is the idea of step size. In a continuous problem, an

algorithm can use step sizes that are very large or very small, with the limits dependent

only on the system on which the algorithm is being run. This allows the optimization

algorithm to make great leaps away from its current neighborhood to explore a different

area. It also allows the algorithm to take small steps in order to fine tune a solution.

A combinatorial problem can make use of different step sizes, but only by

increasing or decreasing the number of nodes swapped per step, since there is no way to

perform fractions of a swap or permutation. However, increasing the step size for a

combinatorial problem from one swap to two greatly increases the gap between the

original solution and the new solution [14].

For combinatorial problems, a single step cannot move a solution out from a

basin. However, a solution can still improve its fitness in one step by moving from one

basin to another, even without being able to escape [14]. Below, table 1 outlines some of

the key differences between continuous and combinatorial optimization problems.

 23

Table 1: Comparison of continuous vs. combinatorial problems

 Continuous Combinatorial

Able to use direction
information

Yes No

Able to fine tune step size Yes No

Well defined local search Yes No

Easy to scale/define
neighborhoods

Yes No

One of the characteristics of the combinatorial problem type is that every possible

solution is essentially reordering a given set of elements. For example, in Sudoku, an

algorithm can sort through different potential solutions by shuffling the numbers {1,

2…9} in each row. This limits the styles of crossovers and mutations available to the

algorithm. Arithmetic crossover would not be possible for a Sudoku puzzle, because it

could result in numbers that are not part of the set of allowable values in a Sudoku grid.

Many heuristic algorithms have been applied to the N-Queens problem with

varying degrees of success. Genetic algorithms performed fairly well when applied to the

N-Queens problem [9], and so the transition to Sudoku – a similar type of problem – is

quite logical.

There are many different parent selection methods from which to choose for a

combinatorial problem, including roulette, tournament, and partially matched. Roulette

selection is a simple and effective selection method. Parent selection can also be in direct

proportion to the fitness of a solution [20].

 24

Local minimums are a significant stumbling block for many genetic algorithms

when it comes to combinatorial problems. With a limited population, it is quite possible

to get stuck in a local minimum in which swapping one or two cells (in an N-Queen or

Sudoku problem) would result in a worse fitness value than the previous solution. As

stated previously, a combinatorial problem cannot remove itself from a basin with a

single swap. A way to counter this issue of reaching ‘dead-ends’ is re-initializing the

starting population for the algorithm. However, one must be careful to limit the use of

this method, as it can severely impact the efficiency of the algorithm [11]. If an algorithm

restarts itself often enough, it acts similar to a random search, which is ineffective at best.

II.G Sudoku

Sudoku is a logical puzzle in which a player attempts to fill in all blanks with the

numbers {1, 2…9} such that no row, column, or 3 � 3 mini-grid contains a duplicate

number. Sudoku puzzles are actually a subset of an older puzzle called a ‘Latin Square.’

According to Will Shortz [24], Sudoku was likely developed in 1979 by Howard Garns,

and it was initially called ‘Number Place.’ Dell Magazines published it, but it did not

catch on in the U.S. initially. In 1984, Sudoku was introduced in Japan by Nikoli – a

publisher that specializes in logic puzzles. Even then it did not gain in popularity until

Nikoli imposed restrictions on the game: no more than 32 clues were allowed, and the

puzzles were made to be symmetrical 180 degrees around the center cell. There are

approximately 6.67 ^ 10�_ valid Sudoku grids [28].

 25

The lowest possible number of starting hints that can provide a unique solution is

17. It has not been proven that there are no puzzles with 16, but to date, none have been

found. Another prerequisite for a unique solution is using 8 of the 9 possible values

when giving hints. If only 7 values are used (say, the numbers 1 through 7), then any

solution found would not be unique. This is due to the fact that another trivial solution

could be found just by exchanging the two unused numbers (the 8 and the 9) [29].

For a player, there are many simple logical checks to perform in order to find the

values that belong in each of the blank cells. For the simplest of puzzles, the solution can

be found by using just a straightforward process of elimination. For more complicated

grids, the user needs to identify multiple possible values in each of the cells and proceed

from there. There are also very complex logical solving methods, with names like ‘X-

Wing’, ‘Y-Wing’, and ‘Death-Blossom’ [22].

Puzzle difficulty often hinges on which solving techniques are required in order

to complete a Sudoku without guessing. Many times this will relate to the number of

starting hints, but not always [1]. Difficulty of Sudoku puzzles varies drastically from

one puzzle to the next, and a puzzle’s given difficulty level (e.g. – 4 Star, 5 Star) does not

always accurately indicate how challenging it may be [5].

Standard (read: non – evolutionary based) algorithms can use this same type of

logic or a combination of logic and brute force in order to solve Sudoku puzzles [1]. This

approach is feasible for solving one grid, but when attempting to apply straight logic or

 26

the brute force and logic combination to multiple puzzles simultaneously, it can begin to

become unwieldy. Figure 10 is an example of a solved Sudoku puzzle.

9 7 1 5 8 6 4 3 2
3 8 4 7 2 1 5 9 6
5 2 6 3 9 4 1 7 8
8 3 9 2 7 5 6 4 1
2 4 5 1 6 9 7 8 3
6 1 7 4 3 8 9 2 5
1 5 2 8 4 7 3 6 9
7 9 8 6 1 3 2 5 4
4 6 3 9 5 2 8 1 7

Figure 10: Sample solved puzzle. This is the same puzzle as in Figure 1.

Sudoku has become very popular in the US over the past few years. It can be

found in many magazines and newspapers, and it is available for handheld gaming

systems such as the Nintendo DS, the Sony PSP, and even cell phones.

Sudoku is in the NP-Complete problem class, which indicates that it is a difficult

problem to solve consistently. For combinatorial problems, genetic algorithms are

typically designed to quickly approach the optimal solution, because waiting to find the

global optimum is not always practical. In fact, if the global optimum is unknown, the

algorithm would never have a set (problem-defined) stopping point.

For Sudoku, these guidelines do not apply. The objective is to reduce the number

of duplicates in every row, column, and mini-grid to zero. The optimum for any given

 27

problem is ‘zero duplicates’. In one respect, knowing the objective before beginning is

quite helpful, since the algorithm has a very clear stopping point. However, designing a

Sudoku solving genetic algorithm only to approach the optimum but not reach it is as

impractical as it is unacceptable. No Sudoku solver should be considered complete if it

frequently solves puzzles down to one or two duplicates but not to the optimal solution.

Several papers have been published on using evolutionary algorithms to search

for Sudoku solutions, including [4] and [5].

In [4], the authors tested many different novel forms of crossover, including what

they called ‘product geometric’ crossover. Their puzzle representation was a single array

of 81 integers, with every 9 integers making one row of the Sudoku grid. Starting

solutions were initialized by inserting random numbers from the set {1, 2…9} into every

blank cell, or by creating a random valid permutation of the numbers 1 to 9 in each row.

The population size was set to 5000, and the top half of the population was retained after

each iteration. Most of the crossover operators tested in [4] were applied to individual

rows, with the exceptions of two-point crossover. The authors designed the algorithm to

apply both point mutation (changing one number to a random number from the set {1,

2…9}) and swap mutation. The algorithm stopped its search after making no progress

for 20 generations.

In [5], the authors used a somewhat different approach to solving Sudoku puzzles.

The puzzle representation was the same as the one in [4], but their crossover and

 28

mutation methods were different. The population size was merely 21, and they only

applied elitism (saving the best solutions) to a single population member. The authors

used two types of mutation, swap mutation and ‘cataclysmic mutation’, which is a

random reset. Rather than checking for the number of duplicates in each row, column,

and mini-grid, the algorithm in [5] checked to make sure that each individual row and

column had values that both summed to 45 and had a product equal to 9!. The fitness

function also verified that every value from the set {1, 2…9} appeared in each row and

column. The algorithm would only stop if a solution was found.

II.H 3D Sudoku

After extensive research, it seems evident that there is not much (if any)

information on the problem of 3D Sudoku. The 3D variety of Sudoku is just an extension

of the well known NP-Complete problem of 2D Sudoku, and an example is shown in

Figure 11. Six individual Sudoku puzzles are used as the faces of a cube. A requirement

of the puzzle is that adjacent edges must match.

.

Figure

For the purposes of this research, the 3D puzzle does not follow all of the

traditional Sudoku guidelines. For a standard Sudoku puzzle, there tends to be only one

solution. Also, the blanks are typically rotationally symmetrical about the center cell on

the grid [1].

For this 3D representation, each individual side ma

This is due to the need to present a problem in which

solutions with intertwined constraints

29

Figure 11: Example SudoKube with three solved edges

For the purposes of this research, the 3D puzzle does not follow all of the

udoku guidelines. For a standard Sudoku puzzle, there tends to be only one

solution. Also, the blanks are typically rotationally symmetrical about the center cell on

For this 3D representation, each individual side may have more than one solution.

This is due to the need to present a problem in which the goal is to discover

with intertwined constraints. If the sides could be solved individually

For the purposes of this research, the 3D puzzle does not follow all of the

udoku guidelines. For a standard Sudoku puzzle, there tends to be only one

solution. Also, the blanks are typically rotationally symmetrical about the center cell on

y have more than one solution.

the goal is to discover simultaneous

individually, then

 30

there would be no guaranteed need for a 3D solver. A single Sudoku solver could be

applied to each side in turn, the edges would match by default, and then the cube would

be solved. However, if a side has multiple possible solutions, there is only a slim chance

that solving each side individually would generate a valid 3D solution.

For a SudoKube, the set of six puzzles itself is more limited in the number of

solutions available compared to one of its single sides. For example, the number of

solutions per side for one particular ‘hard’ rated puzzle is displayed below (Table 2) [22].

The reason an entire cube has a reduced number of solutions is due to the fact that having

a side with only one solution essentially increases the number of givens for adjacent

sides, which reduces the number of possible solutions for the adjacent sides.

Table 2: Number of solutions per side

Side
Number

Number of
Solutions

Number of solutions when given edges of sides with
only 1 solution

Center – 1 1 1

Top – 2 143 3

Right – 3 4 2

Left – 4 1 1

Bottom - 5 8 4

Back - 6 44 15

 31

CHAPTER III

DESIGN METHODOLOGY

III.A Design Introduction

There are several different elements in the proposed genetic algorithm that creates

and solves 3-D Sudoku puzzles, called SudoKubes. These elements include a 2D solver,

a 3D generator, and a 3D solver. There is no existing standard publication of 3D Sudoku

cube puzzles. Therefore, the algorithm was designed to first create six ‘linked’ Sudoku

puzzles before solving them. The program was coded in Microsoft Visual Studio 2005

using C#.

The creation process has several key steps. First, the 2D puzzle generator sets up

an initial blank puzzle. Next, the remainder of the cube’s sides are linked to the first

puzzle and solved sequentially. This yields a solved SudoKube with touching edges set

equal to each other. Finally, the algorithm removes a random amount of numbers from

the completed puzzle so that it can be solved. The pattern of removal and significance of

the amount of numbers removed in order to create a puzzle with a unique solution is an

interesting problem, but it will not be addressed here.

III.B 2-D Solver

In order to effectively generate SudoKubes, a 2D solver was developed. A

benefit to having a 2D solver was being able to research and fine-tune operators that

 32

would also work on SudoKubes. This provided useful information when coding the 3D

solver.

For the 2D problem, each member of the population is represented by a filled

Sudoku grid with dimensions of 9 � 9. The given numbers for each puzzle are static, so

they will not change as the algorithm works towards a solution. Each grid space that

does not contain a given (the ones that would be blank if the puzzle was taken from a

newspaper) holds a number from the set {1, 2…9}.

Fitness is calculated by counting the number of duplicates in each row, column,

and mini-grid. The goal is for the fitness of each row, column, and mini-grid to be as low

as possible, with an optimum value of zero. Fitness is calculated separately for rows,

columns, and mini-grids. Total fitness for a given population member is the sum of each

individual fitness value for every row, column, and mini-grid. Therefore, a correctly

solved puzzle will have a total fitness of zero, because there will be no duplicates within

the population member. A flowchart for a basic genetic algorithm is shown below in

Figure 12.

 33

Figure 12: Basic genetic algorithm

III.B.1 Genetic Operators

III.B.1.a Parent Selection

The 2D algorithm uses a modified version of a parent selection method taken

from [10]. Originally, the algorithm selected a random member from the top half of the

 34

population and another member from the whole population to determine a pair of parents.

Although somewhat effective, this approach did not fully utilize the ability of a genetic

algorithm to select the best population members more frequently than unfit population

members. In the final algorithm, the probability of selecting a population member k from

a population of size M is given by the following equation:

 <�> ? 2 ^ `Ya
`^<`_> (4)

The population is ordered from best to worst before parent selection occurs, so the

population member with the best fitness (at the top of the ordered list) is approximately

twice as likely to be selected for reproduction as the population member halfway down

the list. Two parents are selected to create one child, and the selection process occurs

once for each population member.

After the crossover step is complete, the new generation of solutions is combined

with the previous generation, and the fitness of each potential solution is calculated.

Next, the combined solution set is ordered from best to worst. Finally, the top half – the

half with the best fitness – of the combined solution set is kept and used as the next

parent generation.

III.B.1.b Aging

After much testing of the standard 2D solver, an aging operator was introduced.

The operator was designed to help the algorithm escape local minima without having to

 35

resort to ‘cataclysmic mutation’, which is essentially a random reset [5]. Each population

member has an age assigned to it. When a child is generated, its age is set to zero. For

every generation a particular solution survives, its age is incremented by one. A solution

that has reached a predetermined age threshold is replaced with the next best solution that

is not due to be retained in the top half of the population.

Figure 13 illustrates the aging operator. For clarity and brevity, the population

size is only 5 and the maximum age is 5. After performing crossover to make a new

generation and then evaluating the fitness of each solution, the solutions are sorted in

order of ascending quality. Typically, the top half of the list is retained and used for

creating a new generation, while the bottom half of the list is discarded.

Figure 13: Example of the aging operator performing an exchange

 36

In the above example, the third population member on the list has aged to the

limit set in the algorithm. The aging operator determines that it must be discarded.

The next best member of the population (member 6) then takes the place of the ‘elderly’

individual (member 3).

III.B.1.c Crossover

There are three forms of crossover used in the proposed genetic algorithm: row

crossover, column crossover, and grid crossover. These are all applied with equal

probability to two parents in order to create one child. Figure 14 is a chart that outlines

the crossover operator.

 37

Figure 14: Uniform Crossover

In row crossover, rows 1, 3, 5, 7, and 9 are taken from the first parent, and rows 2,

4, 6, and 8 are taken from the second parent. The rows hold the same positions in the

resulting child as they held in their respective parents. For example, row 1 from parent 1

would be row 1 in the child. An example of this concept is shown in Figure 15.

 38

Parent 1 Parent 2 Child
1 1
 2 2
3 3
 4 4
5 5
 6 6
7 7
 8 8
9 9

Figure 15: Row crossover

Column crossover works in the same fashion, taking alternate columns from their

respective parents and combining them into a child. Mini-grids are also numbered 1-9

starting from the top left corner of the puzzle and ending at the bottom right corner. As

with row and column crossover, alternate mini-grids are taken from each parent to create

a child.

Another tested method was fitness based crossover, which is discussed in the 3D

Sudoku section found further in this thesis.

III.B.1.d Mutation / Natural Growth

Although not always beneficial, there is something to be said for applying some

problem-specific logic to solving a Sudoku puzzle, even with a heuristic algorithm such

as this. For the proposed algorithm, the logic is implemented in the mutation operator.

Concepts from simulated annealing are also applied within this operator. As with

crossover, there are three types of mutations available for application. Row, column, and

mini-grid mutation all occur with equal probability.

 39

To begin, a random number from [1, 100] is generated. If the number is below

the threshold set by the user, the operator will perform standard mutation. Otherwise it

will perform ‘Natural Growth’ (described below) on the given population member.

 The standard mutation operator selects a number from the set {1, 2 … 9} and

places it in a random cell that is not specified by the initial problem. This type of

operation occurs infrequently. The likelihood of mutation is predetermined. Generally,

the threshold that defines the frequency of standard mutation is set so that mutation

occurs between 1 and 3 percent of the time. This component of the mutation operator is

typical to many genetic algorithms in combinatorial problems, and it often results in an

invalid row, column, or mini-grid. However, the placement of a random number, while

not always immediately helpful, often helps the algorithm explore regions of the search

space that may be inaccessible through crossover alone.

If the random number does not fall below the given value, the second component

of the mutation operator, called ‘natural growth’, is applied. It is not a true mutation

operator, as it is guided by problem logic and puzzle-specific constraints. It uses the

simple rules of the Sudoku problem to ‘mature’ a solution. The algorithm randomly

chooses to look at row, column, or mini-grids, and it performs growth on the selected

sections.

Row, column, or mini-grid ‘growth’ is selected at the start of the natural growth

operator – all with equal probability. If ‘row’ is selected, the operator references the

 40

fitness value of each row to see if it contains duplicates. If at least one duplicate is

present, the operator replaces one of the duplicate numbers with a number from the set

{1, 2…9} that is not already used within the row. If there are no duplicates within a row

(or column, or mini-grid), the operator will generate a second random number from [1,

100]. If the random number is less than the current set mutation rate (e.g.: if the mutation

rate is 3, and the random number is a 1), then a random swap is performed.

A swap takes two existing values in a given puzzle segment (row, column, or

mini-grid) and exchanges their positions. This ensures that the segment in question

maintains its fitness value of zero, but it also allows the population member to change in

a way that could potentially aid the search. As mentioned previously, numbers given in

the original problem are static and will not be altered by any operators.

The mutation/natural growth operator goes through several iterations before

moving to the next member of the population. This allows each individual member of the

population to realize its full potential. The growth operator eliminates duplicates in any

segment on which is it working, but each step in the growth process has the potential to

introduce more duplicates in other segments. Fortunately, the crossover operator and the

iterative nature of the growth operator solve the problem of these duplicates.

 For standard mutation, any non-static number could be replaced with any number

from {1, 2…9}. For row growth, one of the 7’s or 6’s in the first row of Figure 16 would

 41

be replaced with a 1 or a 2 (the unused numbers for that row). The chart following the

Sudoku example (Figure 17) describes the mutation process.

3 8 7 7 6 6 9 4 5
9 1 4 5 3 8 6 2 7
6 5 2 7 9 4 1 3 8
4 7 3 2 5 9 8 6 1
8 9 5 6 4 1 3 7 2
1 2 6 8 7 3 4 5 9
2 3 1 4 8 7 5 9 6
5 4 8 9 2 6 7 1 3
7 6 9 3 1 5 2 8 4

Figure 16: Unsolved Sudoku grid with duplicates.

 42

Figure 17: Mutation Operator

III.C Puzzle Generation

Generating Sudoku puzzles is more complex than solving a given puzzle out of a

newspaper or book, because it is not difficult to generate unsolvable puzzles if an

algorithm places starting hints incorrectly.

 43

Initialization presented an interesting problem when attempting to generate a valid

Sudoku puzzle. It is not necessary to explicitly define every cell. Initialization of the

puzzle can be done in stages. If one attempts to completely initialize a blank grid in only

one step, the process essentially leads to solving a completely blank Sudoku puzzle,

which can be difficult for a genetic algorithm due to the very large search space and the

availability of multiple solutions.

Originally, if the proposed algorithm was given a blank Sudoku grid to solve, the

algorithm would run for an extended length of time before finding a solution. There are

~6.67 x 1021 possible Sudoku grids [28], and therefore there are that many solutions with

a fitness of zero – assuming the given puzzle is an empty set of cells. The large number

of potential solutions created challenges for the proposed algorithm, because the

algorithm was designed to take one puzzle and converge to its one optimal solution.

With a blank puzzle, there are many optimal solutions. Therefore, the proposed

algorithm’s selection and crossover operators did not function as intended. The

algorithm could select two parents with similar (good) fitness values but entirely different

puzzle layouts between them. If crossover were to be performed on these two good (but

different) solutions, it would most likely result in a solution with high fitness. As a result

of this crossover challenge, the introduction of difference degree crossover became

essential. Potentially useful for combinatorial problems in general, difference degree

crossover was especially useful in the situation in which each population member had the

potential to differ greatly from every other population member. Difference degree

crossover prevented solutions that were too disparate from mating.

 44

At first, the puzzle generation component of the proposed algorithm utilized an

effective initialization tool in order to overcome the problem of having too many possible

solutions. The algorithm randomly generated three mini-grids and placed them in

opposite corners and in the middle of the Sudoku grid as shown in Figure 18. Generating

a mini-grid was simple. The algorithm placed the numbers {1, 2…9} in a 3 x 3 box to

create a valid mini-grid for a Sudoku puzzle.

9 7 1
3 8 4
5 2 6

2 7 5
1 6 9
4 3 8

3 6 9
2 5 4
8 1 7

Figure 18: Randomly generated mini-grids, one of two choices for puzzle initialization.

The key to this particular initialization technique was that no mini-grid interfered

with any other mini-grid. Each initialized mini-grid was completely independent of the

other two mini-grids. This independence ensured that there would be no duplicates in

any row, column, or mini-grid when the solver began its work.

Giving the solver 27 static numbers to start with allowed it to reach a solution

quickly and efficiently, but adding difference degree crossover eventually eliminated the

need for this particular initialization technique.

 45

Another way to initialize a Sudoku puzzle is by setting the four edges of a puzzle

to valid permutations of the numbers {1, 2 … 9} before solving it. Doing this serves the

same purpose as initializing the mini-grids, but edge initialization was more effective

when forming the linked grids.

III.D Puzzle Combination

In order to fully realize the potential of using a genetic algorithm to solve Sudoku

puzzles, ‘linked’ or ‘3-D’ puzzles were connected and generated while the solver and

generator mentioned in the above sections.

First, a ‘seed puzzle’ is generated and is used as the base for the remainder of the

puzzles that are placed around it. Rather than initializing the starting puzzle with three

mini-grids, the algorithm initializes all four sides of the Sudoku grid. Each attached

puzzle shares an edge with the main grid. This results in top, right, left, back, and bottom

puzzles as well as the main (front) puzzle. The auxiliary puzzles (top, right, left, bottom,

and back) share sides with each other as well as shown in Figure 19.

 46

Figure 19: Overview of five linked puzzles. It is displayed like an unfolded cube. For clarity, the
puzzle that would be the back of the cube is not shown.

If one were to imagine the puzzles folded into a cube, the sides that would join

together to form an edge would contain the same numbers.

In order to create this linked puzzle setup, some constraints must be imposed upon

the auxiliary puzzles. For example, in Figure 19, the top row of section 3 cannot contain

the numbers 7, 8, 5, or 4 in the two cells immediately to the right of the 9. If it did

 47

contain a 7 or an 8, the bottom right mini-grid in puzzle 1 would be unsolvable, and if it

contained a 5 or a 4, the top left mini-grid in puzzle 3 would be unsolvable. Ensuring that

the resulting auxiliary puzzles are solvable is imperative when generating a linked

Sudoku puzzle.

After the linked puzzles are initialized, the solver is applied to every puzzle, and

the result is a set of six solved, linked Sudoku grids. This process is shown in Figure 20.

Figure 20: Initialization flow chart

A traditional Sudoku puzzle typically has a unique solution. When generating the

3D cubes, the proposed algorithm does not check for uniqueness of solutions. There are

two reasons for this. First, checking for uniqueness would make the puzzle generation

 48

process slower. Second, if each member within a set of six puzzles had a guaranteed

unique solution, then they are essentially six different puzzles and can be solved

individually. If there is no guarantee of a unique solution for each side, then changing the

values of any of the linked edges has a very real effect on a side’s four neighbors.

III.E 3D Representation – SudoKube

III.E.1 SudoKube Introduction

In order to truly test the ability of genetic algorithms in the combinatorial arena, a

method of solving six linked puzzles simultaneously was developed. Due to the lack of

availability of a six sided Sudoku puzzle, a new brainteaser had to be created in order to

provide the algorithm with something on which to operate. The previous sections of this

thesis outlined the generation of the 3D puzzle (SudoKube). The following pages

describe the solver algorithm and detail its effectiveness.

III.E.2 Genotype

In the previous section covering the 2D representation, the genotype was a 9 � 9

grid. Each population member was its own copy of the puzzle on which the genetic

algorithm was operating. However, in the 3D solver, each population member is a

6 � 9 � 9 array – corresponding to the six sides of the generated puzzle and each of the

nine rows and columns per side.

 49

III.E.3 Operators

III.E.3.a Parent Selection

Originally, the algorithm selected a random member from the top half of the population

and another member from the entire population to choose a pair of parents. As stated

previously, this did not fully utilize the ability of a genetic algorithm to select the fittest

members the majority of the time. Instead, the probability of selecting a population

member k is given by equation 4, defined earlier and shown again below, which is a

modified form of a selection probability equation that is found in [10].

 <�> ? 2 ^ `Ya
`^<`_> (4)

III.E.3.b Crossover

The proposed algorithm initially employed uniform crossover, much like the 2D

representation. However, after comparing uniform crossover to fitness based crossover,

the performance of uniform crossover was not as effective. Also integrated into the

proposed algorithm is the difference degree crossover method described above and as

taken from [23].

The final version of the proposed algorithm utilizes a fitness based + difference

degree crossover method. Two parents are selected based on the parent selection method

described above. After selection, every cell in parent 1 is compared to every

corresponding cell in parent 2. The proposed algorithm tracks the total number of cells

 50

that contain different values. For a SudoKube there are 81 * 6 <486) cells. The

difference degree equation is a simple ratio of the number of cells that differ to the total

number of cells.

�b ? cd
c (5)

In the above equation, N is the total number of cells and Nd is the total number of

cells that differ between parent 1 and parent 2.

Next, a crossover type is selected based on total grid, column, or row fitness. The

probability of selection for each type is inversely proportional to the fitness values with

respect to the first parent. For example, if parent 1 has an excellent row fitness total but

an abysmal column fitness total, it is likely that row crossover will be selected over

column crossover. Figure 21 describes the crossover operator.

 51

Figure 21: Fitness dependent crossover with difference degree selection

After both parents and the crossover method are selected, each segment (row,

column, or mini-grid, depending on the crossover type) from each parent is compared.

The segment with the better fitness is kept and passed on to the new generation. For

example, if P1 has a first row with fitness 2, and P2 has a first row with fitness 9, the

child would acquire the first row from P1. An example is below in table 3.

 52

Table 3: Example of fitness-dependent crossover.

Row/Column/Grid
Index

Segment Fitness
Parent A

Segment Fitness
Parent B

Selected Segment –
Fitness Value

1 2 0 B - 0

2 4 6 A - 4

3 4 4 B - 4

4 2 6 A – 2

5 8 10 A – 8

6 12 10 B - 10

7 2 4 A – 2

8 0 2 A – 0

9 0 0 B - 0

III.E.3.c Mutation

The mutation operator for the 3D representation is very similar to the operator for

the 2D representation. However, there is a key difference. The operator is applied to all

six sides of the cube, not just to one puzzle. If row mutation/growth is selected, the

proposed algorithm applies row mutation/growth (as described previously) to each side in

succession.

III.E.3.d Fitness Calculation

Fitness calculations for the 3D representation of Sudoku are calculated in much

the same manner as the 2D representation. Duplicates in each row, column and mini-grid

 53

are added together to acquire a total side fitness. Each population member goes through

this process to calculate the number of duplicates for all six of its sides, and the total

overall fitness is the sum of the total side fitness values.

The difference between the fitness calculation for the 3D representation and the

one for the 2D representation is that two rows and two columns have a weighted fitness in

the 3D representation. A row or column that is an edge of the cube has its fitness value

multiplied by ten. For example, the top row of a side (which is the bottom row of an

adjacent side) with two duplicates would have a fitness value of 20. If the fitness is zero,

this obviously has no effect. Weighting helps ensure that the outer edges of each Sudoku

puzzle will not have any duplicates.

III.E.4 Settings

There are several significant settings that have an effect on how well the proposed

algorithm performs. Some of these settings, such as ‘population size’ and ‘maximum

iterations,’ are common to any genetic algorithm. Others, such as ‘mutation ceiling’ and

‘mutation rate multiplier’ are not. These settings were optimized when testing the 2D

solver, and the settings were carried over and used in the 3D representation.

III.E.4.a Mutation Ceiling

The mutation ceiling is the highest value that the mutation probability can attain.

Setting this number too high causes a chaotic placement of random numbers within

puzzles for several iterations after the mutation probability is increased to its ceiling.

 54

Setting this number too low greatly increases the chance that the algorithm will remain

stuck in a basin once it enters one.

Figure 22 displays a segment of sample data. It shows that 10% is an value for

the mutation ceiling. Using this value led to finding solutions quickly and effectively.

Figure 22: Time vs. mutation ceiling

III.E.4.b Reset Count

The reset count represents the number of iterations the algorithm will run before

changing the mutation rate to the mutation ceiling. Like the mutation ceiling, if this

number is set incorrectly, it would be detrimental to the proposed algorithm. If the reset

5% 10% 15% 25%

Puzzle 1 3.085 2.494 3.091 4.992

Puzzle 2 3.847 1.945 3.2 3.726

Puzzle 3 4.534 2.87 2.908 3.165

Average 3.822 2.436 3.066 3.961

0

1

2

3

4

5

6

A
v

e
ra

g
e

 T
im

e
 t

o
 S

o
lv

e

1
 P

u
zz

le
 (

S
e

co
n

d
s)

Time vs. Mutation Ceiling

 55

count is set low, it does not give the crossover and mutation operators many iterations to

improve the fitness of the overall population before setting the mutation rate to a high

value, which could result in the algorithm failing to find a solution for difficult puzzles.

If the reset count is set high, then the algorithm may spend a disproportionate amount of

time in a local minimum before the change in the mutation rate allows it to escape.

An additional check is included in the check for the reset count. If the total

fitness of the best population member is equal to the total fitness of the worst population

member, the algorithm is likely stuck in a basin. In this case the mutation rate would be

set to the mutation ceiling. Figure 23 is a plot of solve time versus the reset count value.

Figure 23: Time vs. reset count (A)

5 10 15 20 25

Puzzle 1 0.94 0.80 0.96 1.00 1.14

Puzzle 2 0.30 0.42 0.58 0.68 0.90

Puzzle 3 2.76 2.76 2.36 2.52 2.74

0.00

0.50

1.00

1.50

2.00

2.50

3.00

S
o

lv
e

 T
im

e
 (

S
e

co
n

d
s)

Time vs. Reset Count

 56

 For clarity, the results for the ‘Escargot’ puzzle (a very difficult instance of a

Sudoku puzzle) were moved to its own chart in Figure 24 along with the average of all

solve times. The ‘Escargot’ puzzle was used to test the limits of the solver.

Figure 24: Time vs. reset count (B)

The results seem to indicate that the solver benefits from a low reset count if the

puzzle is not difficult. This suggests that the proposed algorithm finds local minima

quickly when solving an easy puzzle, and the low reset count allows the solver to escape

said minima just as quickly by increasing the mutation rate.

 The reset count used in the final version of the proposed algorithm was 20.

Lower reset counts often yielded slightly faster results, but they did not always enable the

proposed algorithm to reach a solution.

5 10 15 20 25

Escargot 4.22 4.66 4.26 4.18 5.52

Average 2.06 2.16 2.04 2.10 2.58

0.00

1.00

2.00

3.00

4.00

5.00

6.00

S
o

lv
e

 T
im

e
 (

S
e

co
n

d
s)

Time vs. Reset Count

 57

III.E.4.c Mutation Rate Multiplier

The mutation rate multiplier is the percentage by which the mutation rate is

multiplied. The mutation rate is reduced by this factor each iteration until it reaches the

starting mutation rate. For example, if the mutation ceiling set the mutation rate to 25%,

and the multiplier was 0.5, the sequence of mutation rates over the following few

iterations would be 12.5%, 6.25%, 3.125%…etc until reaching the initial setting for the

mutation rate, which is about 1%. This method of varying the mutation rate is loosely

based on the temperature change concept in simulated annealing.

 Figure 25 illustrates the behavior that occurs when a mutation rate multiplier of

0.90 is used. A reset count of 50 was used in this example. The solver was run on the

Escargot Sudoku puzzle.

Figure 25: Fitness vs. mutation rate multiplier of 0.90

0

5

10

15

20

1 16 31 46 61 76 91 106 121 136 151 166 181 196

Fitness

Value

0.90 Multiplier

Fitness Function

 58

 Figure 26 illustrates the behavior that occurs when a mutation rate multiplier of

0.991 is used. A reset count of 50 was also used in this example. Again, the solver was

run on the Escargot Sudoku puzzle.

Figure 26: Fitness vs. mutation rate multiplier of 0.991

 With a mutation rate multiplier of 0.991, the algorithm maintained a high

mutation rate for several iterations. With a mutation rate multiplier of 0.90, the mutation

rate decreased too fast to be effective. Eventually, the algorithm with a mutation rate

multiplier of 0.90 was able to escape the local minimum, but it took the solver four more

resets before it was able to find the solution. The final version of the proposed algorithm

uses a multiplier of 0.99.

III.E.4.d Maximum Iterations

The maximum iteration setting determines how many generations the proposed

algorithm will create. If this number is set too low, it is unlikely that the algorithm will

0

5

10

15

20

1 6 11 16 21 26 31 36 41 46 51 56 61 66

Fitness

Value

.991 Multiplier

Fitness Function

 59

find the optimal solution to any Sudoku puzzle. If this value is set to an infinite number

of generations, it would be virtually impossible for the algorithm not to find a solution to

any valid Sudoku puzzle. However, the time it may take to reach that solution would be

unacceptable. Also, many of the other settings in the algorithm become trivial if it is

allowed to run indefinitely. Even a random search is able to find a solution if it is given

enough time. For the purposes of solving the SudoKubes, 2000 iterations were more than

enough to reach the optimal fitness value of zero.

III.E.4.e Mutation Iterations

The maximum iterations setting for the mutation operator determines how far the

‘Natural Growth’ operator is allowed to take each member of the population. Each

mutation iteration represents one application of row/column/mini-grid mutation as

described previously. Applying the mutation operator multiple times per population

member serves a dual purpose. If the mutation rate is low, the operator eliminates many

duplicates throughout the population member. If the mutation rate is high (after it is set

to the mutation ceiling), it allows the algorithm to escape a local minima. The proposed

algorithm uses a mutation iteration setting of 200, because it yielded the fastest solve

time coupled with a 100% solve rate. A plot of solve time versus mutation iterations is

shown below in figure 27.

 60

Figure 27: Time vs. mutation iterations

III.E.4.f Population Size

The population size is the number of solutions created by crossover during each

iteration (generation). It is also the number of solutions kept at the end of each iteration.

Genetic algorithms have the benefit of being able to scale their overall search according

to population size. Increasing the population size allows the genetic algorithm to cover

more of the search space. However, for each additional population member added to the

gene pool, a significant amount of time is added per iteration. The final version of the

proposed algorithm uses a population size of 20. A smaller population size did not yield

a 100% solve rate. Figure 28 is a plot of solve time versus population size.

25 50 75 100 150 200 250 300

Puzzle 1 3.86 2.40 2.16 2.18 2.14 2.10 2.06 2.26

Puzzle 2 7.90 1.88 1.36 1.46 1.46 1.30 1.58 1.62

Puzzle 3 8.04 4.02 4.32 3.90 3.62 3.84 4.14 4.72

Total Average 6.60 2.77 2.61 2.51 2.41 2.41 2.59 2.87

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

S
e

co
n

d
s

P
e

r
S

o
lu

ti
o

n

(A
v

e
ra

g
e

 O
v

e
r

5
0

 T
ri

a
ls

)

Time vs. Mutation Iterations

 61

Figure 28: Time vs. population size

III.E.4.g Difference Degree

The difference degree represents the percentage of elements that are allowed to

differ between parents selected for a crossover operation. If the difference degree value

is set to 1.0, then it completely negates the difference degree operator, as it would allow

mating between solutions that were 100% different. If the value is set to 0.0, then

crossover would be completely useless, since the only parents allowed to mate would be

exactly alike. This value is best set somewhere between 0.3 and 0.5, as shown in Figure

29.

10 20 30 40 50

Puzzle 1 2.40 3.28 3.36 3.88 6.00

Puzzle 2 1.98 1.57 2.14 0.92 1.48

Puzzle 3 3.90 6.00 7.48 8.96 9.26

Average 2.76 3.62 4.33 4.59 5.58

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

S
e

co
n

d
s

P
e

r
S

o
lu

ti
o

n

(A
v

e
ra

g
e

 O
v

e
r

5
0

 T
ri

a
ls

)

Time vs. Population Size

 62

Figure 29: Time vs. difference degree – *Indicates settings without a 100% solve rate

Although a difference degree setting of 0.6 had the best overall average times,

only four difference degree settings solved the ‘Escargot’ problem on every run. It is

worth noting that the time difference between the best and the worst settings for the

Escargot puzzle is 6.2 seconds, and the time difference for a much easier puzzle, Puzzle

2, is 0.94 seconds. This discrepancy between easy and difficult puzzles leads to the

conclusion that adjusting settings to account for the possibility of solving a very difficult

puzzle is the best approach.

0.1* 0.2 0.3 0.4 0.5 0.6* 0.7* 0.8* 0.9* 1*

Puzzle 1 3.30 2.36 2.08 1.88 1.92 1.86 1.72 2.56 1.90 1.90

Puzzle 2 2.00 1.78 1.54 1.88 1.92 1.52 1.24 1.70 1.04 1.06

Puzzle 3 4.46 4.26 4.00 3.90 4.20 3.74 3.42 4.44 4.18 3.44

Escargot 15.10 16.26 13.82 13.12 17.52 13.44 14.28 19.32 13.74 17.80

Average 6.21 6.16 5.36 5.19 6.39 5.14 5.16 7.01 5.21 6.05

0.00

5.00

10.00

15.00

20.00

25.00

S
e

co
n

s
P

e
r

S
o

lu
ti

o
n

(A
v

e
ra

g
e

 O
v

e
r

5
0

 T
ri

a
ls

)

Time vs. Difference Degree

 63

After testing all of these different variables, it became clear that each puzzle has

its own set of ‘ideal’ settings. For example, puzzles of easy to moderate difficulty were

solved quickest when using a low value for the ‘reset count’ setting, but more difficult

puzzles needed more iterations between ‘resets’. Throughout testing, it was evident that

each setting was not entirely independent of every other setting. An example of two

intertwined settings would be ‘mutation ceiling’ and ‘mutation multiplier’. With a high

mutation ceiling, it is desirable to have a large reduction in the mutation rate per iteration.

With a low ceiling, this is not the case. For the final proposed algorithm, the values for

each setting that yielded a solve rate of 100% in a reasonable amount of time were used.

 64

CHAPTER IV

RESEARCH FINDINGS

Chapter III of this thesis outlined the standard 2D Sudoku solver, the 3D

SudoKube solver, and puzzle generation for the 3D SudoKube. This chapter will

describe the performance of both the 2D and the 3D solvers.

The 2D solver within the genetic algorithm being tested was applied to puzzles

taken from the same periodicals as [5] in order to have analogous results. The genetic

algorithm described in this thesis had an overall performance that was better than the

comparable genetic algorithms that were described in similar research.

The first and most important factor in measuring the effectiveness of a Sudoku

solver is its rate of success. The speed of a solver is only significant if it can find

solutions on virtually every run. Below, Table 4 shows the results of the 2D solver

described in this thesis as compared to other research. The algorithm attempted to solve

each puzzle 30 times. In order to match the testing done in [5], 3 easy puzzles, one

medium puzzle, and one hard puzzle were selected for testing.

 65

Table 4: Solutions found out of 30 attempts – Puzzles taken from [30]

Regardless of the challenge rating, the proposed algorithm solved every given

puzzle with no difficulties. The large difference between maximum iterations allowed

between this genetic algorithm and the one described in [5] can be attributed to the

implementation of the mutation and natural growth operator in the proposed algorithm.

With the natural growth operator in place, there is no need to run the algorithm for so

many generations, because each generation is greatly improved by applying natural

growth.

 The algorithm designed by Mantere and Koljonen also solved each puzzle 30

times out of 30 attempts, but only when allowed to run indefinitely. When limited to

5,000 iterations, it solved 10 out of 30 on the medium difficulty and 2 out of 30 on the

hard difficulty. The puzzles were taken from [30], which has a free downloadable

Sudoku game.

 The following table compares the results of this solver and solvers from [4] and

[5]. The puzzles rated 1 Star through 5 Star were taken from [2], and the puzzles rated

‘Easy’, ‘Challenging’, ‘Difficult’, and ‘Super Difficult’ were taken from [31]. While it is

Puzzle

Proposed

Algorithm (2,000

iterations)

Mantere/Koljonen

(Unlimited Iterations)

[5]

Mantere/Koljonen

(5,000 Iterations) [5]

Hamming

Space

Crossovers

[4]

Swap Space

Crossovers

[4]

Hill

Climbers

[4]

Easy 1 30 30 29 5 28 30

Easy 2 30 30 30 8 21 30

Easy 3 30 30 30 14 30 30

Medium 30 30 10 0 0 0

Hard 30 30 2 0 15 0

Total 150 150 101 27 94 90

 66

unlikely that the exact same puzzles were used for testing, the testing method used was

the same. The solver was applied to three puzzles from each difficulty level 100 times

each. The results in Table 5 show the mean number of times the solver worked for each

difficulty.

Table 5: Solutions found out of 100 attempts – Puzzles taken from [31] & [2]

 Again, the genetic algorithm designed for the research in this thesis performed

very well. When allowed unlimited iterations, the algorithm from [5] also solved the

puzzles 100% of the time. However, when limited to only 5,000 iterations, the solve rate

dropped to approximately 22%. According to [5], the largest number of iterations

required to solve a puzzle when allowed to run indefinitely was approximately 203,300 –

more than 40 times the 5,000 limit.

The difference in solver effectiveness indicates that the genetic algorithm

described in this thesis is a better solver in terms of solving percentage. It also compared

favorably when measuring both solution time and required solution generations.

In the tables below, (Table 6 & Table 7) the mean solve times for each individual

puzzle is listed along with the mean solve iterations. Included in the tables are the

maximum and minimum numbers of iterations required per solution. Each puzzle was

1 Star 2 Star 3 Star 4 Star 5 Star Easy Challenging Difficult Super Difficult
Proposed GA 100 100 100 100 100 100 100 100 100
Old GA* 100 69 46 26 23 100 30 4 6
GA w/Unlimited Iterations* 100 100 100 100 100 100 100 100 100
GA w/5,000 Iterations* 100 100 96 63 47 100 60 10 8

* Indicates results from [5]

 67

solved exactly 100 times. Solve time was calculated by taking the difference between the

DateTime.Now value before the solver was run and the DateTime.Now value after the

solver had finished working. The DateTime.Now value is accessible in C# when ‘using

system’ is included in the ‘using’ statements.

In the tables below, ‘Solve Time’ is the mean solve time over 100 solve attempts.

‘Solve Iterations’ is the mean number of generations required to solve the puzzle over

100 attempts. ‘Max’ and ‘Min’ represent the maximum and minimum number of

generations required to solve the puzzle out of the 100 attempts. ‘Fit Calc Per Puzzle’ is

the mean number of fitness calculations performed per solve attempt.

Table 6: Results on puzzles from [31]

Puzzle Type Solve Time Solve Iterations Max Min Fit Calc Per Puzzle

5 Star - A 2.87 73.34 300.00 2.00 97786.67

5 Star - B 3.55 88.68 376.00 1.00 118240.00

5 Star - C 4.61 108.64 379.00 6.00 144853.33

4 Star - A 2.89 72.61 301.00 2.00 96813.33

4 Star - B 12.49 273.26 1620.00 21.00 364346.67

4 Star - C 3.13 66.46 279.00 2.00 88613.33

3 Star - A 1.55 32.13 128.00 1.00 42840.00

3 Star - B 2.75 68.60 225.00 2.00 91466.67

3 Star - C 3.18 69.66 201.00 1.00 92880.00

2 Star - A 1.91 39.60 128.00 1.00 52800.00

2 Star - B 1.60 33.49 121.00 1.00 44653.33

2 Star - C 2.01 42.63 131.00 1.00 56840.00

1 Star - A 0.56 9.11 76.00 1.00 12146.67

1 Star - B 0.27 2.14 37.00 1.00 2853.33

1 Star - C 1.78 38.67 137.00 1.00 51560.00

Helsingin Sanomat 3.01 67.93 295.93 2.93 90579.56

 68

For the Helsingin Sanomat online newspaper publication (one of the main sources

for Sudoku puzzles in [5]), the overall mean solve time for this genetic algorithm was

3.01 seconds, and the mean for the solve generations was 67.93. The approximate mean

number of fitness calculations over 100 solve attempts was 90,580.

Table 7: Results on puzzles from [2]

For the Aamulehti online publication (another main source for Sudoku puzzles in

[5]), the overall mean solve time for this genetic algorithm was 2.70 seconds, and the

mean for the solve generations was 64.04. The approximate mean number of fitness

calculations over 100 solve attempts was 80,196.

Overall, the algorithm in [5] solved all of the puzzles with an average of 4.11

seconds per Sudoku grid. It was run on a 3GHz Pentium 4 processor, and programmed in

Java. The algorithm described in this thesis solved all of the puzzles with an overall

Puzzle Type Solve Time Solve Iterations Max Min Fit Calc Per Puzzle

V. Hard - A 3.30 80.89 296.00 2.00 107853.33

V. Hard - B 4.84 107.14 370.00 2.00 142853.33

V. Hard - C 3.69 80.87 256.00 2.00 107826.67

Hard - A 2.92 87.95 320.00 4.00 117266.67

Hard - B 2.24 66.70 334.00 2.00 88933.33

Hard - C 6.70 201.29 943.00 4.00 268386.67

Normal - A 0.91 16.74 79.00 1.00 22320.00

Normal - B 0.46 6.13 77.00 1.00 8173.33

Normal - C 3.17 70.66 215.00 2.00 94213.33

Easy - A 0.17 1.13 2.00 1.00 1506.67

Easy - B 0.16 1.12 2.00 1.00 1493.33

Easy - C 0.17 1.14 2.00 1.00 1520.00

Aamulehti 2.39 60.15 241.33 1.92 80195.56

Total Averages 2.70 64.04 268.63 2.43 85387.56

 69

average of 2.7 seconds per Sudoku grid, but both the processor and programming

language differ from [5]. The processor for the machine that tested the proposed

algorithm was a Pentium Core 2 – 2.0 GHz, and the programming language was C# in

Visual Studio 2005. The system also had 2GB of RAM installed.

 As a result of using different systems on which to test the algorithms, a better

benchmark for comparable effectiveness is the mean number of generations required to

solve these puzzles. In [5], the overall mean was approximately 9745 generations per

solution, which corresponds to approximately 195,000 fitness calculations per solution.

For the testing on the algorithm described in this thesis, the overall mean was

approximately 64 generations, which corresponds to about 85,388 fitness calculations per

solution – less than half the calculations as the algorithm in [5].

 The following pages illustrate the solver’s effectiveness in rapidly reducing the

number of duplicates within a potential solution (Figures 30, 31, & 32). It is evident that

more difficult puzzles take many more iterations to solve. The puzzles for the following

charts were taken from [30].

 70

Figure 30: Fitness vs. iterations (easy)

Figure 31: Fitness vs. iterations (medium)

14

10
9

0

4

2 2

24

8

4

2

5

2 2

0

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
v

e
ra

g
e

 F
it

n
e

ss

Fitness vs. Iterations -- Easy Puzzle

Solution #1 Solution #2

5

7

2
4

2

15

4

2

12

0

16

13

2 2

0

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

A
v

e
ra

g
e

 F
it

n
e

ss

Fitness vs. Iterations -- Medium Puzzle

Solution #1 Solution #2

 71

Figure 32: Fitness vs. iterations (hard)

 The solver was applied to the same puzzle twice, and the two runs are represented

in the plots by the names ‘Solution #1’ and ‘Solution #2’. It is obvious that the algorithm

solved the puzzle in a different way on each run. The first run on the easy puzzle took 5

iterations to solve, but the second run took only 30. For the medium puzzle, the first run

took 27 iterations, and the second run took 32 iterations. However, the path that the

algorithm took to get to the solution was quite different between the two runs. The hard

puzzle had the largest difference between the two runs. The first run took 35 iterations,

and the second run took 61 iterations. The spike in fitness at iteration multiples of 20

corresponds to a ‘reset count’ of 20, where the mutation rate is greatly increased for a

time.

6

4

7

6

7
7

12

7

30

2

12

17

14

12

2

10

2

4

2

10

0

9

2 2

20

14

6
5

2

00

5

10

15

20

25

30

35

1 6 11 16 21 26 31 36 41 46 51 56 61

A
v

e
ra

g
e

 F
it

n
e

ss

Fitness vs. Iterations -- Hard Puzzle

Solution #1

 72

The 2D solver was quite successful, and the 3D solver was modeled on the 2D

type. Using the method described in the previous section, 50 puzzles of each difficulty

(Easy, Medium, Hard, and Very Hard) were generated. Each one was solved 100 times

for a total of 20,000 SudoKubes solved. Each SudoKube (Figure 33) contains six valid

Sudoku grids, which gives a total of 80,000 Sudoku grids solved.

Figure 33: Screen shot of a SudoKube

 73

 In order to determine whether or not solving six puzzles simultaneously is an

effective approach to this type of combinatorial problem, the tests were run on both the

3D solver and also the 2D solver. The 2D solver was run sequentially on each individual

side. The 2D sequential solver was not required to have the edges of the cube match.

Below is a table that outlines the overall results of the testing.

Table 8: Comparison of sequential solver vs. 3-D solver (based on averages of solving 100 puzzles)

Puzzle
Representation

Average Time to Solve 1
Cube

Shortest
Time

Average

Longest
Time

Average

Average
Variance

2D Easy 0.2962 0.2952 0.3076 0.0017
3D Easy 0.2515 0.2363 0.3135 0.0008
2D Med 1.5247 0.7260 3.7757 0.6489
3D Med 1.3308 0.6481 4.3675 1.6800
2D Hard 1.7234 0.6481 4.4117 1.0390
3D Hard 0.9687 0.4273 3.5490 0.6970
2D VH 2.0540 0.8804 4.9988 1.2069
3D VH 2.0385 0.6291 6.9425 3.2402

Based on 50 puzzles per difficulty for both 2D and 3D representations

Population variance <e�> was calculated with the following formula with N

representing the number of times the algorithm was run and X representing the solve

time:

 e� ? ∑UfgVY∑<f>g/c
c (6)

 74

 For every difficulty setting, the average time to solve one six-sided puzzle was

shorter for the 3D representation than it was for the 2D representation. However, for

three out of the four difficulty levels (Easy, Medium, and Very Hard), the average

‘longest’ time was higher for the 3D representation. In the case of the Very Hard puzzle,

the difference between the ‘longest’ averages was approximately 2 seconds, in favor of

the 2D solver. Also in the case of the Very Hard difficulty level, the 3D solver had a

smaller ‘shorter’ time average than the 2D sequential. The full range of the solve times

as well as the average solve times for each difficulty can be seen below (Figure 34).

From top to bottom, each column displays the maximum solve time, the average solve

time, and the minimum solve time.

 Figure 34: Solve time vs puzzle type/difficulty

0.31 0.31

3.78

4.37 4.41

3.55

5.00

6.94

0.30 0.24

0.73 0.65 0.65
0.43

0.88
0.63 0.30 0.25

1.52
1.33

1.72

0.9687

2.05 2.04

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

2D Easy 3D Easy 2D Med 3D Med 2D Hard 3D Hard 2D VH 3D VH

S

e

c

o

n

d

s

Puzzle Difficulty

Solve Time vs. Puzzle Type/Difficulty

 75

Both versions of the solver solved six Sudoku puzzles quickly, but the use of the

2D solver did not guarantee that the sides of the SudoKube would match. The 3D solver

worked all six sides simultaneously, which allowed it to find equivalent sides as it

worked towards the global optimum.

 During the testing, an attempt was made to use the 2D sequential solver to find a

valid solution for a whole SudoKube. However, since most of the sides had more than

one solution when solved alone, this option was not feasible. The 2D solver would solve

the first side with no problem, but subsequent sides often had the problem of containing

conflicting constraints. The first sides solved created contradictions when their sides

were copied to adjacent puzzles.

 76

CHAPTER V

CONCLUSION

 After running tests on puzzles taken from many different sources, it is reasonable

to state that the solver is effective. As an extension of the 2D solver, the 3D solver was

also effective.

V.A 2D Representation – Success

 The Sudoku solver was a success. It performed better than the genetic algorithm

based Sudoku solvers presented in similar research by a fair margin. The solver

provided an excellent foundation for the 3D representation.

V.B 3D Representation – Success

 The solver was a success. It performed better than the 2D solver operating

sequentially, and the 2D solver itself worked better than its predecessors.

 When solving a problem in which constraints are linked to the solutions of other

problems, it can be beneficial to solve every problem simultaneously. The case of 3D

Sudoku illustrates this. If a different representation was developed for network routing

problems, scheduling problems, or the traveling salesman problem, this method of

solving multiple combinatorial problems could be applied easily.

 77

 Also, the developed program allows a user to play a challenging new Sudoku-type

game. In this respect, the algorithm is also a success (Figure 35).

V.C Future Work

 Future work would include using a genetic algorithm to find every possible

solution to a given Sudoku grid. The goal with such an exercise would be to maintain

population diversity while still finding optimum solutions.

 Due to the large number of different settings within the proposed algorithm, using

another evolutionary algorithm in order to optimize the settings has the potential to be

worthwhile.

 78

Figure 35: Solved SudoKube

 79

REFERENCES

[1] Wei-Meng Lee, Programming Sudoku. New York, NY: Springer-Verlag New

York, Inc., pp. 47-170, 2006.

[2] Aamuulehti.fi, “Sudoku”, http://www.aamulehti.fi/sudoku/

[3] T. K. Moon and J. H. Gunther, “Multiple constraint satisfaction by belief

propagation: an example using Sudoku,” Proceedings of IEEE Mountain

Workshop on Adaptive and Learning Systems, pp 122-126, 2006.

[4] A. Moraglio, J. Togelius, and S. Lucas, “Product geometric crossover for the

Sudoku puzzle,” Proceedings of IEEE Congress on Evolutionary Computation,

pp. 470-476, 2006.

[5] T. Mantere and J. Koljonen, “Solving, rating and generating Sudoku puzzles with

GA,” Proceedings of IEEE Congress on Evolutionary Computation, pp. 1382-

1389, 2007.

[6] M. F. Tasgetiren, P. N. Suganthan, Q. –K. Pan, and Y. –C. Liaing, “A genetic

algorithm for the generalized traveling salesman problem,” Proceedings of IEEE

Congress on Evolutionary Computations, pp. 2382-2389, 2007.

 80

[7] R. Takahashi, “Solving the traveling salesman problem through genetic

algorithms with changing crossover operators,” Proceedings of the Fourth

International Conference on Machine Learning and Applications, pp. 6-12, 2005.

[8] S. A. Mulder, “Computational intelligence and the traveling salesman,” Ph.D.

 dissertation, University of Missouri-Rolla, Rolla, MO, USA, 2004.

[9] A. Homaifar, J. Turner, and S. Ali, “The N-Queens problem and genetic

algorithms,” Proceedings of Southeastcon ’92, pp. 262-267, 1992.

[10] C. R. Reeves, “A genetic algorithm for flowshop sequencing,” Computers Ops

Res., vol. 22, pp. 5-13, 1995.

[11] C. R. Reeves and T. Yamada, “Genetic algorithms, path relinking, and the

flowshop sequencing problem,” Evolutionary Computation, vol. 6, pp. 45-60,

1998.

[12] Q. Wang, K. L. Yung, and W. H. Ip, “A pattern-based evolving mechanism for

genetic algorithm to solve combinatorial optimization problems,” Proceedings of

IEEE International Workshop on Soft Computing in Industrial Applications, pp.

97-101, June 2003.

[13] Wikipedia.org, “NP-Complete”, http://en.wikipedia.org/wiki/Np_complete

 81

[14] M. W. S. Land, “Evolutionary algorithms with local search for combinatorial

optimization,” Ph.D. dissertation, University of California - San Diego, San

Diego, CA, USA, 1998.

[15] Ivica Martinjak, Marin Golub, “Comparison of Heuristic Algorithms for the N-

Queen Problem,” University of Zagreb, Faculty of Electrical Engineering and

Computing.

[16] Wikipedia.org, “Genetic algorithm”,

http://en.wikipedia.org/wiki/Genetic_algorithm

[17] Y. Yusong, “Genetic-combinatorial algorithm of 0-1 programming,” Proceedings

of the Fourth International Conference on Parallel and Distributed Computing,

Applications and Technologies, pp. 698-701, 2003.

[18] C. –M. Lin and M. Gen, “Multi-criteria human resource allocation for solving

 multistage combinatorial optimization problems using multiobjective hybrid

 genetic algorithm,” Expert Systems with Applications, vol. 34, pp. 2480-2490,

 2008.

[19] L. Aaronson, “Sudoku science: a popular puzzle helps researchers dig into deep

 math,” IEEE Spectrum, pp. 16-17, Feb 2006.

 82

[20] J. –L. Lin, “An analysis of genetic algorithm behavior for combinatorial

optimization problems,” Ph.D. dissertation, University of Oklahoma, Norman,

OK, USA, 1993.

[21] A. Tuson and P. Ross, “Adapting operator settings in genetic algorithms,”

 Evolutionary Computation, vol. 6, pp. 161-184, 1998.

 [22] ScanRaid.com, Sudoku Solver, http://www.scanraid.com/sudoku.htm

[23] R. –L. Wang, S. Fukuta, J. –H. Wang, and K. Okazaki, “ A genetic algorithm with

 conditional crossover and mutation operators and its application to combinatorial

 optimization problems,” IEICE Trans. Fundamentals, vol. E90-A, pp. 287-294,

 2007.

[24] Wikipedia.org, “Sudoku”, http://en.wikipedia.org/wiki/Sudoku

[25] Minimum intrusion grid, N-Queen picture,

http://mig-1.imada.sdu.dk/MiG/Mig/user_tutorial/images/nqueen.png

[26] Mathworks.com, “Genetic algorithm and direct search toolbox”,

http://www.mathworks.com/access/helpdesk/help/toolbox/gads/dejong5fcn.gif

 83

[27] J. –W. Dang, Y. –P. Wang, and S. –X. Zhao, “Study on a novel genetic algorithm

for the combinatorial optimization problem,” Proceedings of International

Conference on Control, Automation and Systems, pp. 2538-2541, 2007.

[28] B. Felgenhauer and F. Jarvis, “Enumerating possible Sudoku puzzles,”

http://www.afjarvis.staff.shef.ac.uk/maths/felgenhauer_jarvis_sudoku1.pdf, June

2005.

[29] A. M. Herzberg and M. R. Murty, “Sudoku squares and chromatic polynomials,”

 Notices of the AMS, vol. 54, pp. 708-717, 2007.

[30] WayneGouldPuzzles.com, “Download”,

http://www.waynegouldpuzzles.com/sudoku/download

[31] HS.fi, “Sudoku”, http://www2.hs.fi/extrat/sudoku/

VITA

David Isaac Waters

Candidate for the Degree of

Master of Science

Thesis: SUDOKUBE – USING GENETIC ALGORITHMS TO

SIMULTANEOUSLY SOLVE MULTIPLE COMBINATORIAL
PROBLEMS

Major Field: Electrical Engineering

Biographical:

Personal Data:

David goes by his middle name, ‘Isaac’.
Isaac is from St. Louis, MO.
He attended Oklahoma Christian University in Edmond, OK from the fall of

2000 until the spring of 2002, when he transferred to Oklahoma State
University.

Education:
Completed the requirements for the Bachelor of Science in Electrical
Engineering at Oklahoma State University, Stillwater, Oklahoma in May, 2005.
Completed the requirements for the Master of Science in Electrical Engineering
at Oklahoma State University, Stillwater, Oklahoma in May, 2008.

Experience:

Isaac worked for Interstates Engineering from 2005 to 2006 before returning to

Oklahoma State to work towards his masters degree.
Isaac has completed two summer internships with The Benham Companies in
their St. Louis office.
He has completed another 2 year internship with The Benham Companies in

their Oklahoma City office.

ADVISER’S APPROVAL: Dr. Gary Yen

Name: David Isaac Waters Date of Degree: May, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SUDOKUBE – USING GENETIC ALGORITHMS TO

SIMULTANEOUSLY SOLVE MULTIPLE COMBINATORIAL
PROBLEMS

Pages in Study: 83 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Scope and Method of Study:

This thesis proposes a novel genetic algorithm to solve Sudoku puzzles. It also
proposes a new algorithm for generating and solving six linked Sudoku puzzles.
The six puzzles form a box, which is called a SudoKube.

Findings and Conclusions:

Sudoku is a difficult and complex combinatorial problem. Several genetic
algorithms have been developed to solve Sudoku puzzles, but none have been
tested to see if they are capable of solving a set of six Sudoku puzzles in the form
of a cube. This thesis details the development of a standard Sudoku solver that
outperforms its genetic algorithm predecessors, and it goes on to apply the same
solver concepts to a 3D puzzle of the author’s creation. This thesis also
demonstrates that an algorithm meant to solve a set of six puzzles can outperform
a standard solver run six times in succession to solve the same set.

