SUDOKUBE — USING GENETIC ALGORITHMS
TO SIMULTANEOUSLY SOLVE MULTIPLE

COMBINATORIAL PROBLEMS

By
DAVID ISAAC WATERS
B.S. Electrical Engineering
Oklahoma State University
Stillwater, OK

2005

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 2008

SUDOKUBE — USING GENETIC ALGORITHMS
TO SIMULTANEOUSLY SOLVE MULTIPLE

COMBINATORIAL PROBLEMS

Thesis Approved:

Dr. Gary Yen

Thesis Adviser

Dr. Keith Teague

Dr. George Scheets

Dr. A. Gordon Emslie

Dean of the Graduate College

TABLE OF CONTENTS
Chapter Page
[. INTRODUGCTION ..ottt e e e e e e e et e e e e e e e e e e e e e e aaaa s 1

Il. LITERATURE REVIEW

[LA Optimization AlgOrtMS......cooi e 4
[I.B Genetic Algorithms/Evolutionary Algorithmscccceeeeiiiiii s 5
[1.C GenetiC AlQOMTNMS..... oo e 5
| O R =T o= (o @ 01T = 1o] £ USURR 9
[.C.1.a Parent SeIECHIONcooeiiiiiiiiiiiee e 9
N Ot I o T O {0 =0 V= PP 11
L@ A o 1Y/ V) = 1 o] o PP 14
[1.D Simulated ANNEAIINGuuueeiiii et e e e e e e e as 16
[LLE NP COMPIEBLE ... e e e e e e e e e eeeeeeees 17
[I.F Combinatorial vs. Continuous Optimizationeeiiiiiieeeeeeeeeeeeeeeeeeieenns 18
]I ST U T (o (U PSPPSR 24
[LLH 3D SUAOKUccoieiiiiiiii ettt r e e e e e e e e e e e e e e e e e 28
lll. DESIGN METHODOLOGY
[HI.LA DeSign INtrOAUCTION........cooeiiiiiiiiiiiiiiee et e e e e e e e e e eeeeeeeanees 31
1= B2 I 2 Yo V=T 31
[[1.B.1 GENELIC OPEIAtOrS. ... uiiiiieeeeeeeeieeeeeeeeeiti e e e e e as 33
[1.B.1.a Parent SEIECHONcciiiiiiee et e e 33
1= 300 B o o [T USSR 34
[1.B.1.C UNIfOrM CrOSSOVENceeeeeeiiiiiiiiiee e e e e e e e eeeeeeeeeeaaaasee s s s e e e e e e e aaeeeeenannees 36
[11.B.1.d Mutation/Natural Growthcccooiiiiiiiiiiiii e 38
[11.C PUZZIE GENEIALIONcceeeeeeeeeeeeeite e e e e e et e e e e e e e e e e e aaeeeeeennnnnes 42
[11.D Puzzle COmMDINALIONuuuiiiiiiiieee e 45
[II.E 3D Representation -- SUdOKUDE............ooviviiiiiiic 48
[ILE.1 SudoKube INtrodUCHIONccooiiiiiiiiiieeiii e 48
11 2 =T (] 4 o L= PSP PP 48
[[ILE.3 GENELIC OPEIAtOrS ...ccceveiiiriiiiiee e e e e e e e e et e ettt e e e e e e e e e e e eeeeeeeeennnnes 49
[LE.3.a Parent SEIECHONuuuueiiiiiiee et e e e e e e e e e e 49
[H1LE.3.0 CrOSSOVETttt e e e e e e e e e eeeeeenenee 49
= X o |V 1] = U1 o o USRS 52
[1.LE.3.d Fitness CalCulationooooii oo 52

Chapter Page

T4 SEEHNGS ..oeeeiieiiiieeie ettt e e e e e e e e e et eeeeaae et b a e s e e e e e e e e eaeeeeeeeeennes 53
[LE.4.a MUtation CeiliNguuiiiiiiie e 53
= o LT A 0o 11 | TP 54
[II.LE.4.c Mutation Rate MUILIPIIENccooeeeiiiieeeeeeeere e 57
HLE.4.d MaxXimum IREIrationsScoooeiiiiiiiiiiiiiiiiiiee e 58
[I1.LE.4.€ Mutation RerationS..........coooviiiiiiiiiiiiiiiiiiie e 59
HLE.4.f POPUIAtION SIZE... oo 60
[[I.LE.4.Q Difference DEQIEEuuuuueuiiiiiiiie e e ettt e e e e e e e e e e e eeeaaanenns 61

V. RESEARCH FINDINGS ...ttt e e e e e e e e e e eaeeas 64

V. CONCLUSIONS / FUTURE RESEARCHcutttiiiiiiiiiiiiiiiiieeeeeeeeii 76
V.A 2D RepresSentation — SUCCESSuuuuuiiiiieeeeeeeeeeeeereeeesssssnnnnanaaaaeaeaaeaaseerseemnmnnn 76
V.B 3D Representation — SUCCESSccovviiiiiiiiiiiiiiiiiae e e e e e e e e e eeeeeeeneanin e 76
V.C FULUIE WOTK ..ttt e e e e 77

REFERENGCES ..ottt ettt e e e e e e e e e e e e as 79

Table

LIST OF TABLES

Page
Comparison of continuous vs. combinatorial problemscccccceeiiiiiieeeeeenn, 23
Number Of SOIULIONS PEF SIAEvvieiiiiiee e e e e e e e e e e 30
Example of fithess-dependent CrOSSOVETuuuuuuiiiiiiieeeeeeeeeeeeeeeeeiene s 52
Solutions found out of 30 AEMPLScvvvveeiiiiiiiie e 65
Solutions found out Of 100 @tteMPLSevvveiiiiiiiie e 66
Overall solver results — Helsingin Sanomat...........cccccoeviiieeeeeiiiieeceeeeeen 67
Overall solver results — Aamulenti ... 68
Comparison of sequential solver vs. 3-D SOIVEruviiiiiiiiiiiieeeeeeceeeeeeeiiiie, 73

LIST OF FIGURES

Figure Page

1. Sample unsolved ‘easy’ puzzle with symmetric blankscccccoeeeiiiiiiiiineennenn, 2

2. Pseudo code outlining a basic genetic algorithm ... 7
3. Uniform CroSsSover @Xamplecoooo oo 12
4. One PoINt CroSSOVET EXAMPIEuiiiii e 12
5. TwO pOoINt CroSSOVEr €XAMPIEovviiiiiiiiiiee et eeeeeeeeeeeee 13
6. MULAtiON EXAMPIE ... 15
7. Solution of an N-QUEEeN ProbIeMuuiiiiiiiii e 18
8. Rosenbrock’s Valley — DeJong™s BUNCHONcooveveveveeeeeeeeeeeeeeeeeeeeeen 19

9. Gradient @XAMPIEooeeieiiiieir e 21
10. SAMPIE SOIVEA PUZZIE..... .o 26
11. Example SudoKube with three solved edges..........oooeuviiiiiiiiiiiieeeeeeiiis 29
12. Basic genetic algorithm flow chart ... 33

13. Example of the aging operator performing an exchangec...cccoooovvviiiiiieennnn, 35
14. Uniform crossover flow Chartooouviiiiiiiiii e 37

15. ROW CroSSOVEr @XaMPIEcooiiiiiiiiiiiiiee et e e e e e eeeeaannes 38
16. Unsolved Sudoku grid with dupliCatesccoooeiiiiiiiiiiiiiiieii e 41

17. Mutation operator flOW CRartuueiiiiiii e 42

18. Randomly generated MiNi-gridS............uuuueuuiiiiiie e 44
19. Overview Of five liNKed PUZZIESouuveiiiiiiiie e 46

Vi

Figure Page

20. Initialization flOW Chart..........oooi i a7
21. Fitness dependent with difference degree CroSSOVETeceeiiieiieeeeieeieeeieeiiianns 51
22. Solve time vs. MUutation CeIIINGuuiiiiiiiie e 54
23. SOIVE tIMe VS. r€SEL COUNT (A) ..euiuiiiiiiiei e e ettt e e e e e e e e e e e eeeeeaeennnnas 55
24. Solve time Vs. reset COUNt (B)ooiiiiiiiiiiiiiiii e 56
25. Fitness vs. mutation rate multiplier (0.90) ..o 57
26. Fitness vs. mutation rate multiplier (0.991) ... 58
27.Time VS. MULALION ItEIAtIONS. .. .eevuuieeerieeeeriie e et e et e e e e e e e e et e e et e e eaaaeeeanans 60
28. Time VS. POPUIALION SIZE ...coeeeiiiiiiiiiiee e e e 61
29. Time vS. differenCe degree........oooiiiiiiiiiiiiiiie e eeeeeeeeees 62
30. FitNeSS VS. ILEratioNS (EASY)uuueeiiiieieeeiiiiieeeeeeiiiiiees s e e e e 70
31. Fitness vs. iterations (MeaiUM).........oooeiiiiiiiiiiiiii e 70
32. Fitness vS. Iterations (HArd)cooiooiiooeieeeeeeeeeiis e 71
33. SUAOKUDE SCIrEENSNOL......uueeiiiiii s 72
34. Solve time vs. puzzle type & diffiCulty ... 74
35. SOIVEd SUAOKUDE.......eeiiie e e e e e e e e e e 78

Vii

CHAPTERI1

INTRODUCTION

Sudoku puzzles provide a logical challenge for people of all ages. These puzzles
can be found in newspapers, magazines, puzzle books, and even in cell phones. The
format of a Sudoku puzzle is of aA x n? grid divided into nine smaller mini-grids.

Each mini-grid im1 X n. Bold lines generally separate the mini-grids. Although one can
create similar puzzles to Sudoku with many differentilluesn is normally equal to

three, which makes the entire grick®. The objective of the game is to fill each row,
column, and mini-grid with the numbers 1 through 9 without duplicate numbers in any
row, column or mini-grid. Puzzle difficulty is partially related to how manis @k

filled at the beginning, although the placement and quality of the starting hinpis pla
much larger role in determining whether a puzzle is ‘Easy’ or ‘Fiendishe empty

cells are traditionally symmetric with respect to a 180 degree turn arounchtbe @l

as shown in Figure 1. The filled cells are considered static for each panicabéem

[1] However, there are some publications that have asymmetric Sudok{Ryrids

Figure 1: Sample unsolved ‘easy’ puzzle with symmet blanks. Blanks are symmetric about the

center cell.

Sudoku puzzles are also an interesting combinatorial problem, and although not
extensively researched, several papers have been published on the use of searching
algorithms with respect to solving Sudoku puzzBgt][5]. Sudoku is often viewed as

an excellent testing application for combinatorial solvers.

Genetic algorithms are powerful tools used in solving optimization problems.
They are most effective when applied to problems with large, variable seatels spth
unknown patterns. They use the ‘survival of the fittest’ concept to maintain a population
of good quality solutions while working towards an optimum. Genetic algorithms have
been applied successfully to the traveling salesman prdBIEAl8] , the N-Queens
problem[9], flowshop sequencind0][11], and also to solving Sudoku puzzles

[5][12][4]. All of these problems are of the type NP-Comp|&83.

This thesis will begin by describing optimization problems, genetic #hgosi
and the combinatorial and NP-Complete problem types. Chapter Il will disciesgmlif
approaches to creating a genetic algorithm, and it will explain whysth@f genetic

algorithms is an effective method for solving optimization problems.

In Chapter lll, this thesis will first outline an effective puzzle getr@mamethod
for Sudoku, followed by a solver that surpasses its genetic algorithm prextedrss
terms of effectiveness. Following that, it will describe the creatiomeivaype of
Sudoku game — six Sudoku puzzles in the form of a box, called a SudoKube. Most
significantly, this section will describe the modified operators used ialgjogithm that
will effectively and consistently solve a SudoKube, which is a combinatorial iaption

problem with varying constraints.

The results will be outlined in Chapter IV. Results from the proposed solver and
similar existing algorithms will be compared. Results comparing the 2D and\38ss
effectiveness when applied to the SudoKube are also included in Chapter IV. The

relevant conclusions will be drawn in Chapter V.

CHAPTER I

REVIEW OF LITERATURE

LA Optimization Algorithms

Optimization algorithms are designed to find the best solution for a given proble
and set of constraints. There are several challenges that face anyaifmaigorithm.
A large search space often makes finding a global optimum difficult. Tder e
search space, the more challenging it is to find and verify an optimabsolutiso, any
case that has only one global optimum within a plethora of sub-optimal solutions result
in the proverbial ‘needle in a haystack’ scenario. Finally, finthiegptimal solution
may require the algorithm to perform an extensive search any timeliesea local
optimum, which is generally impractical in terms of the time it would takmtbtihe
optimal solution. For problems such as the travelling salesman problem, the onty way t
verify that a solution is the global optimum is an exhaustive search of everglpossi

solution.

Many problems contain local optimums that can ‘trap’ many searchingtaigsri
(these local optimums are often called ‘basins’). A searching dgodéan find a local
optimum within a basin and, unless the algorithm is designed to be able to estape sai
basin, it will likely never find a better solution than the one in its currentitocat
Without the capacity to escape, the algorithm could easily (and indg)yetermine
that it has found thglobal optimum. Local optimums are much easier to find compared

to global optimums in the majority of cadéd].

[I.B Evolutionary Algorithms/Genetic Algorithms

Evolutionary algorithms are a grouping of heuristic solving techniques that
include processes such as genetic algorithms, particle swarm optimizatbn
evolutionary programming. This thesis will focus primarily on gendgicrahms and
their characteristics. Another type of optimization algorithm is siradlabnealing.
Genetic algorithms can be augmented by methods found in simulated annealing. This
section will discuss some concepts behind simulated annealing and will coveofibsn

unique characteristidd5].

[I.C Genetic Algorithms

A genetic algorithm (GA) is a heuristic optimization method originally praghose
by Holland[16] that is based on some of the most basic biological concepts: survival of
the fittest, natural selection, and the transfer of biological charditteiigenetic

material) from parents to children.

A potential solution in a genetic algorithm fits a genotype that is definbeé at t
outset of the program. For example, a genotype for a traveling salesman pralyldra m
a one dimensional array containing a permutation of the cities the salesntassihus
The following array could be a population member for a specific travelingnsale

problem.

< St.Louis, Tulsa, Oklahoma City, New York, Dallas, Scranton, Springfield >

However, in the interest of programming simplicity, each of these cithgsom
assigned a number according to their position, and the resulting permutatiéwoikay
like this:

< 1,2,3,4,5,6,7 >
Genetic algorithms initially used binary representation, with 1's and 0’s dgfai

parent’s genetic materigl7]. It is more common now to see real valued representation.

A genetic algorithm works by first initializing and then maintaining a pdjula
of potential solutions and evolving them over the course of many generations through the
use of different types of functions, called operators. The quality of a solution igddsc
by its ‘fitness,” which is a problem dependent objective. The better a soluiioe’sst
the more likely it is that it will be selected for reproduction. This is whersuhaval of
the fittest concept comes into play for a genetic algorithm. For a déstaimimizing
problem (say, a sales route for a traveling salesman), an individual populatid@mem
would be a specific sales route, and the fithess would be the total distant=ltrae
good sales route would have a low fitness value, which would be a direct result of short

travel distancg6].

After determining each existing solution’s fitness, a genetic ighgomwill apply
crossover and mutation operators in order to generate new population members. The
crossover operator simulates a mating process, and the mutation operatdesithala
unlikely event of a gene being mutated within a population member. Depending on the

genetic algorithm, crossover will either generate a new geoermgual to the size of the

original generation before re-integration or it will generate one child aegrate it back
into the population immediately. Generating a number of children equal to the
population size occurs in a ‘generational’ algorithm, and generating one chitared
occurs in a ‘steady state’ algoritljd®]. In a steady state algorithm, a child could be
selected as a parent immediately after its insertion into the generahipopulin a
generational algorithm, the children are not available in the parent@elpcicess until
their entire generation has been created and inserted back into the gepelation.
The creator of genetic algorithms, Holland, described the generationathalgas
having ‘intrinsic parallelism.” When dealing with large search spacasgani be very

beneficial[18]. The process is outlined below in Figure 2.

Initialize Populati
Size M

Fitness Cal

Create Mew
Crussuveﬁ“

Mo

Figure 2: Pseudo code outlining a basic genetic a@dthm

Genetic algorithms can be very powerful tools to solve problems that would be
too complex or cumbersome to attack with brute force or with an algorithm tleak reli
strictly on problem logic. This includes problems with large search spacesbtems
for which the pattern of solutions is not known or not easily found. Sudoku provides an
example of a very large, variable search space that depends solely onahleimtiti
distribution[19]. The size of the search space for a specific Sudoku puzzle grows
exponentially with each starting blank. A genetic algorithm has the aloiliigd
optimal solutions within a large search space without requiring much user supplied

information.

The successful use of genetic algorithms in optimization problems of both the
continuous and the combinatorial variety indicates a good deal of flexibititywthe

genetic algorithm concept its¢#0][21].

Through the use of standard operators and the situational application of modified
operators, a genetic algorithm can be used to solve both individuahketi(3D)
Sudoku puzzles correctly and efficiently. Genetic algorithms are a metiseat dfing
for an optimal solution rather than a methoda¥ing a Sudoku puzzle to obtain the
answer. There are many Sudoku solvers that can use human puzzle-solving tetbiniques
arrive at a valid answer for a given Sudoku pugER2]. This thesis will not compare
the results of this genetic algorithm with those solvers, but it is worth nbanghtere are

a few puzzles that are virtually impossible to solve using human logic technigciesss

the ‘Escargot’ puzzl¢2?], which requires a player to consider eight cells simultaneously

in order to begin the puzzle.

There are a few drawbacks that come with the use of genetic algorithms.
Qualitative analysis of these algorithms is quite lacking in the literatdesults are not
repeatable due to the stochastic nature of the algorithm itself. While theegene
algorithm may arrive at the same answer on virtually every run, the methodddyitvhi
reaches the final result will be different each time. These qual@remake genetic

algorithms somewhat difficult to troubleshoot and analy6¢.

Parent selection is a staple within any genetic algorithm. As statadysiy,
crossover is the manifestation of the ‘survival of the fittest’ concept withinvangol
algorithm, and crossover essentially begins with parent selection. Aopirator
within a standard genetic algorithm is mutation. There are many differethods for
applying crossover and mutation, and there are even more methods that involve slight
modifications to those operators. Designing an appropriate crossover angémutati
combination to fit a specific problem is both a science and 4B13rt There are many

different settings to choose and decisions to make before finalizing thiscrpemt

[I.C.1 Operators
II.C.1.a Parent Selection
Genetic algorithms weed out solutions with bad fitness values partially through

the use of parent selection methods. The goal of these methods is to allow the best

solutions to mate more often than the poor solutions so that the next generation will
receive the best genetic information from the parents’ generation. ySampla solution
with good fitness will pass on much more genetic material than a solution with bad

fitness.

The parent selection operator is exactly what its name implies. mésheod of
selecting parents to mate and create a child or a number of children. Trégijttbea

number of parents allowed for any individual child is {2@Q].

Depending on the type of genetic algorithm, parents may or may not pass on
‘learned’ information to their children. If the algorithm allows for the ti@nsf learned
information from one generation to the next, it is called Lamarckian evold#dn
However, a ‘purer’ form of genetic algorithm would not pass on learned informasion vi
genetics, based on the Darwinian model of evolution. Rather than keeping and using the
learned traits, the Darwinian model directs the search toward the aredsos traits.

A large portion of genetic algorithms apply Lamarckian evolution over the Diawi
model because the Lamarckian model does not discard the learned information.
However, Darwinian evolution can be more useful when basins are large or when the

algorithm does not include a mutation operid.

Regardless of the evolution type used, Lamarckian or Darwinian, the population

members with the best fithess are the most likely to be chosen for reproduction.

Selections can be directly proportional to fitness, or they can be based solely on a

10

solution’s rank within its generation. Parent selection is often a random pthaébas
its probabilities based on solution fitng2&]. In a traditional genetic algorithm, the

crossover operator is applied immediately after parents are selected.

I1.C.1.b Crossover

A crossover operator in a genetic algorithm is designed to combine attributes of
two parents in creating new members of the population. Normally only one or two
children will be created from two parents, and the biological basis for getgoirithm
does not seem to allow more than two parents for a single child. Several forms of

crossover were considered during the design of the proposed algf@@thm

One of the most basic crossover methods is uniform crosgjefn uniform
crossover, a child is created from equal parts of two parents. This would be anatogous t
a child having his or her mother’s hair, but father’s eyes, mother’s nose, butsfather
mouth and so on, all the way down to the feet. In a combinatorial problem (described
further on in this section), uniform crossover is often not an ideal option. For ilstrati
purposes, consider the following rows taken from a potential solution to a Sudoku puzzle.
Each number represents the digit placed in its corresponding cell on the Sudoku grid. For
example, Row 1 would have the number 1 in its first cell.

Row1l <1,2,3,4,3,6,9,7,8 >
Row?2 <1,1,2,3,5,6,7,8,9 >
Notice that Row 1 has duplicate 3’s in its third and fifth slots, and Row 2 has

duplicate 1's in its first and second slots. If fitness is defined as the number oatisgplic

11

in a given solution, both of these rows would have fairly good fitness values individually
due to each of them only having one duplicate. However, if a crossover operator used
them for uniform crossover, the child would have a much worse fitness value than either

of the parents as shown in Figure 3.

Rowl1l <1,2,3,4,3,6,9,7,8 >
Row2 <1,1,2,3,5,6,7,8,9 >
Child <1,1,3,3,3,6,9,8,8>

Figure 3: Example of uniform crossover

The child in the previous example would have more than double the duplicates (and
therefore double the fitness value) of either of its parents. Applying unifornoeerss
resulted in a population member that has a fitness value that is much worse thaof eithe

its parents’ fitness values.

Single point crossover is another simple way to create new children from two
parents. An example is below in Figure 4. An initial ‘cut’ point is determinechdona,
and the beginning segment of one parent is attached to the ending segment of the other.

Again, consider the same two rows from a Sudoku puzzle as an example.

Row1l <1,2,3,4,3,69,7,8>
Row?2 <1,1,2,3,5,6,7,8,9 >
Child <1,2,3,4,3,6,7,8,9 >

Figure 4: Example of single point crossover

12

Notice how the number of duplicates in the child is equivalent to the duplicates in
each parent. This will not always be the case, but single point crossover canebdten
better results than uniform crossover in a combinatorial prof28m This is due to the
fact that each parent may have a segment that is a completely corradiapierm This
type of crossover is more useful when applied to a problem where the ordering oéa singl

permutation is the process by which a final answer is obtained.

Another form of crossover that lends itself more to the combinatorial problem
domain is 2-point crossover. Two endpoints of a genotype segment are selected, and two
children are created. The segments are then swapped between genotypes, which
generates two new members of the population. In the form of crossover shown below in
Figure 5, a ‘fixing’ operator is applied to the new generation after thel ioiossover in
order to iron out duplicates — making the child a valid permutf2ibja The fixing
operator could also be applied to other types of crossover, such as single point grossove
and it probably should be used for combinatorial problems that require every population

member to be a valid permutation.

Row 1 <13,6,542,7,8,9 >
Row 2 <6,4,3,7,1,5,2,8,9 >
Child <13,6,71,57,8,9 >

Legal Child <13,6,4257,8,9>

Figure 5: Example of two point crossover

13

Arithmetic crossover (described below) is a useful tool in continuous optimization

problems.

As mentioned above, many forms of crossover do not work as well for
combinatorial problems compared to continuous problems. This is due to the fact that the
combination of two completely dissimilar parents often yields a child with piness,
regardless of the parents’ fithess quality. For combinatorial problemsfférenice
degree methofR3] allows an algorithm to use crossover methods while addressing this
issue. In difference degree crossover, after two parents are seldaéthat
individual elements are compared. If the difference is greater thanhaesttald
percentage, an alternate parent set is selected. This helps limit craesowaples’ that

have a sufficient amount of similarities to produce useful children.

II.C.1.c Mutation

A mutation operator introduces an essential element of randomness into the
search algorithm. The goal of the operator is to apply occasional changashenmnef
the new generations as they are created. This allows the algarithetdover different
areas in which to search — otherwise it would be permanently limited byattingst
population’s ‘gene pool’. For example, if every initial population member for a Sudoku
puzzle had its empty cells filled with 1's, there would be no way to reach the optimal
solution. All of the genetic material passed from parents to children would beateiypl

incorrect, regardless of the crossover method used.

14

Rowl --<1,1,1,1,1,1,1,1,1 >
Row?2 --<1,1,1,1,1,1,1,1,1 >

Child - -<1,1,1,1,1,1,1,1,1 >

While the above example is quite extreme, it illustrates the need for mutation
diversity preservation. Somehow the elements within the row need to change, but
crossover will not provide that change, but mutation will introduce variants into the gene

pool.

Typically, the probability of a mutation occurrence is very low — often as ow a
1% for any given population member. In a traditional genetic algorithm (one wéhybi
representation), mutation would require merely a single bit flip. For a combahator
problem such as Sudoku, mutation will often involve a random reordering of [Bbdes
Figure 6 is an example of mutation applied to a population member defined as a row

within a Sudoku puzzle.

Original Of fspring < 1,2,3,4,5,6,7,8,9 >
Mutated Of fspring < 1,2,3,4,7,6,5,8,9 >

Figure 6: Example of mutation

The mutated offspring had it€ &nd 7" values exchanged. This change was not
based on any previous genetic information. It was a random alteration that thermuta

operator imposed on the offspring.

15

[I.D Simulated Annealing

Simulated annealing is another powerful optimization algorithm. Itis a
combination of global and local search techniques, and it is generally regarded as a
effective method to reach an acceptable (if not optimal) sol{ti#jn Simulated
annealing is based on the phenomenon that occurs when cooling certain metals — if done
correctly, the metal reforms with a purer lattice structure than ibegse it was heated.
The molecules move from a high heat (and therefore high energy) state to atow he

state, where they can settle in to an ideal structure.

Unlike genetic algorithms, simulated annealing does not maintain a population.
Instead, it sustains one solution from start to finish, choosing whether or notpbacce
‘move’ to a new solution based on its energy state. Whether the algorithm is in a high or
low energy state depends on the ‘temperature’. When starting the algoritigh, a hi
initial temperature is used. Each iteration brings a reduction to the temeevdthrthe
amount of temperature reduction being dependent on a user-defined cooling schedule.
Two common cooling schedules are linear and proportional. In linear cooling, the
temperature is reduced by a setnber of degrees each iteration, and in proportional

cooling the temperature is reduced by gpsetentage of degrees each iteration.

In simulated annealing, when the algorithm is in a high energy state, the

probability of accepting a move to a solution with a worse fitness than the current

solution is relatively high. In a low energy state, it is highly unlikelyh¢agh not

16

impossible) for the algorithm to allow a move to a solution with a poorer fithess. A move
to a solution with dpetter fitness is always allowed within simulated annealing as

described in the equation bel¢¥]. The current temperature is represented by ‘Temp’,

and the change in fitness from the current solution to the proposed solution is represented

by Afit.

1 if Afit >0
P(accept move) = { afie 1)
eTemp if Afit <0

II.LE NP-Complete

Simulated annealing and genetic algorithms are solving methods thateare oft
applied to problems of the NP-Complete class. A decision problem, X, is considered
NP-Complete if it is of the Non-Deterministic Polynomial Time (N®etand if every
other problem in the NP set can be reduced to X. Sudoku, the Traveling Salesman

Problem (TSP), and Tetris are all well-known examples of NP-Complete psjaém

Another famous combinatorial problem that is also of the type NP-Complete is
the N-Queens problem, in which the objective is to place n queenN on A sized
chessboard in such a way that no queen can ‘take’ another queen with a single horizontal,

vertical, or diagonal move. A solution to the N-Queens problem is shown in Figure 7.

17

Figure 7: Example of a solved N-Queen problem [25].

Some practical examples of NP-Complete problems are scheduling and netwioik rout

[14].

II.LF Combinatorial vs. Continuous Optimization
Both genetic algorithms and simulated annealing are two powerfuhgegrc

algorithms that can be applied to different types of optimization problems.

There are two distinct types of optimization problems — combinatorial and
continuous. A combinatorial problem is concerned with the reordering of a given set of
elements in order to achieve an acceptable solution. For Sudoku, this is essentially a
search for permutations of {1, 2...9} that satisfy the row, column, and mini-grid

constraints. A continuous problem is concerned with exploring a continuous range of

values (possibly to the extent @foo,)) in order to discover the solution.

18

In general, the combinatorial optimization problem set is considered to be more
difficult to handle than the continuous optimization problem set. There are several
reasons for this. For a continuous optimization problem (such as one of DeJong’s
functions — Figure §6]), there is a full range of options available for crossover
operators as a result of the function’s use of a practically infinite numibeNgih
continuous problems, solving techniques that involve using the gradient of the fitness
with respect to the change of the population can be applied. Continuous problems have
easily definable neighborhoods and local minima/maxima. Combinatorial protems

not[14].

2000

1300

1000

300 1

-1 -2 P.A. Simionescu

Figure 8 [26]: Rosenbrock’s Valley — DeJong’s" function, described by the following equation:

1 (100 - (x(i + 1) - 2% + (1 - x(®)°) 2)

19

One of the more useful crossover operators for a continuous problem is the
arithmetic crossover, where the new value ‘c’ is equal to the mean of theysre

parents’ values ‘a’ and ‘b’ that occupy the same place within a chromosome.

=L 3)

For example, if the optimal solution were ‘3.5’ and the parents selected had
values of ‘3’ and ‘4’, the algorithm would discover the optimal solution simply by
performing arithmetic crossover. However, this averaging strategylwotvork if the
given problem were of a combinatorial nature, because a combination of thisuigbe co

give a result that is not permitted.

Consider the case of the traveling salesman again. If two cities on teereut
St. Louis (a) and Oklahoma City (b), using a crossover operator to yieltpaintimay
land the salesman in Joplin, MO (c). If the salesman is expected to travel to.both St
Louis and Oklahoma City andot to Joplin, this would be unacceptable. The arithmetic

crossover operator would result in a point that is not an option in the given problem.

Another key difference between combinatorial and continuous problems is the
concept of ‘direction[14][27]. In a continuous problem, if the algorithm moves from
2.0to 2.1 and finds that 2.1 is a better solution, it can continue on the same gradient
toward 2.2. In a combinatorial problem, if the algorithm switches nodes 2 and 3 to reach

a better solution, it cannot use that information to determine that switching naugl 3 a

20

would also be beneficial. Many optimization techniques are gradient based, but thes
algorithms can only be applied to continuous problems due to the lack of direction

inherent to the combinatorial problem.

The Figure 9 is a plot that demonstrates the value of being able to use gradient
information when searching for a global optimum. Assuming that the objective of the
optimization problem is to minimize fitness, and assuming that the plot shows tiee enti
fitness function for the problem, the global optimum will have a fitness of O at aofalue
13. Suppose the algorithm found its way to the corner of the plateau at value 11. If it
took a small step to the right, it would calculate the gradient to be negative. The
algorithm could potentially follow the same monotonically decreasing pathtuiotind

the global optimum at a value of 13.

Direction / Gradient Example

. [\

3 /\

, // \ \
v \

\
\

1 2 3 4 5 6 7 8 9 10 11 12 13

Fitness Values

Fitness Function

0.5

Input value into fitness function

Figure 9: Example of gradient usage

21

In a combinatorial problem, an algorithm cannot make use of the gradient
information, in part because the fitness function cannot be represented as a continuous
curve with a slope. Again, the lack of an exploitable ‘direction’ for combinatorial

problems limits a programmer’s options.

Often coupled with direction is the idea of step size. In a continuous problem, an
algorithm can use step sizes that are very large or very small, witiniteedependent
only on the system on which the algorithm is being run. This allows the optimization
algorithm to make great leaps away from its current neighborhood to explore entiffer

area. It also allows the algorithm to take small steps in order to fine talet@n.

A combinatorial problem can make use of different step sizes, but only by
increasing or decreasing the number of nodes swapped per step, since thereyiono wa
perform fractions of a swap or permutation. However, increasing the steprsaze f
combinatorial problem from one swap to two greatly increases the gap between the

original solution and the new soluti¢h4].

For combinatorial problems, a single step cannot move a solution out from a
basin. However, a solution can still improve its fitness in one step by moving from one
basin to another, even without being able to esfiatle Below, table 1 outlines some of

the key differences between continuous and combinatorial optimization problems.

22

Table 1: Comparison of continuous vs. combinatoriaproblems

Continuous Combinatorial
Able to use direction Yes No
information
Able to fine tune step size Yes No
Well defined local search Yes No
Easy to scale/define Yes No
neighborhoods

One of the characteristics of the combinatorial problem type is that pessible
solution is essentially reordering a given set of elements. For exampleldhus an
algorithm can sort through different potential solutions by shuffling the numbers {1,
2...9}in each row. This limits the styles of crossovers and mutations available to the
algorithm. Arithmetic crossover would not be possible for a Sudoku puzzle, because it

could result in numbers that are not part of the set of allowable values in a Sudoku grid.

Many heuristic algorithms have been applied to the N-Queens problem with
varying degrees of success. Genetic algorithms performed faitlywien applied to the
N-Queens problerf®], and so the transition to Sudoku — a similar type of problem —is

quite logical.

There are many different parent selection methods from which to choase for
combinatorial problem, including roulette, tournament, and partially matched. Roulett
selection is a simple and effective selection method. Parent selectidsacae & direct

proportion to the fitness of a solutif20].

23

Local minimums are a significant stumbling block for many genetic algosit
when it comes to combinatorial problems. With a limited population, it is quite possible
to get stuck in a local minimum in which swapping one or two cells (in an N-Queen or
Sudoku problem) would result in a worse fitness value than the previous solution. As
stated previously, a combinatorial problem cannot remove itself from a baisia wi
single swap. A way to counter this issue of reaching ‘dead-ends’ is rdéizmtahe
starting population for the algorithm. However, one must be careful to limit the use of
this method, as it can severely impact the efficiency of the algofithinIf an algorithm

restarts itself often enough, it acts similar to a random search, whingffective at best.

.G Sudoku

Sudoku is a logical puzzle in which a player attempts to fill in all blanks with the
numbers {1, 2...9} such that no row, column, axk 3 mini-grid contains a duplicate
number. Sudoku puzzles are actually a subset of an older puzzle called a ‘Latin’ Square
According to Will Short424], Sudoku was likely developed in 1979 by Howard Garns,
and it was initially called ‘Number Place.” Dell Magazines published it, lulitlihot
catch on in the U.S. initially. In 1984, Sudoku was introduced in Japan by Nikoli — a
publisher that specializes in logic puzzles. Even then it did not gain in popularity until
Nikoli imposed restrictions on the game: no more than 32 clues were allowed, and the
puzzles were made to be symmetrical 180 degrees around the center cellar@here

approximately6.67 = 102! valid Sudoku grid§28].

24

The lowest possible number of starting hints that can provide a unique solution is
17. It has not been proven that there are no puzzles with 16, but to date, none have been
found. Another prerequisite for a unique solution is using 8 of the 9 possible values
when giving hints. If only 7 values are used (say, the numbers 1 through 7), then any
solution found would not be unique. This is due to the fact that another trivial solution

could be found just by exchanging the two unused numbers (the 8 and2Bg 9)

For a player, there are many simple logical checks to perform in order tbdind t
values that belong in each of the blank cells. For the simplest of puzzles, thenscduti
be found by using just a straightforward process of elimination. For more conplicate
grids, the user needs to identify multiple possible values in each of the cells aratlproce
from there. There are also very complex logical solving methods, with namés-like

Wing', ‘Y-Wing’, and ‘Death-Blossom[22].

Puzzle difficulty often hinges on which solving techniquesreggired in order
to complete a Sudoku without guessing. Many times this will relate to the number of
starting hints, but not alway]. Difficulty of Sudoku puzzles varies drastically from
one puzzle to the next, and a puzzle’'s given difficulty level (e.g. — 4 Star, Si&arhot

always accurately indicate how challenging it maydje

Standard (read: non — evolutionary based) algorithms can use this same type of

logic or a combination of logic and brute force in order to solve Sudoku pyizkleEhis

approach is feasible for solving one grid, but when attempting to apply straighottogi

25

the brute force and logic combination to multiple puzzles simultaneously, it gamtbe

become unwieldy. Figure 10 is an example of a solved Sudoku puzzle.

Ol EE | o @)
(o) Il ol [O2 SN
HhiIN|O|W
RJoO|O|N

N[OOI |W]|©
AN]|
oo |~
RPINJW || O
O|NJO N0

Figure 10: Sample solved puzzle. This is the samazzle as in Figure 1.

Sudoku has become very popular in the US over the past few years. It can be
found in many magazines and newspapers, and it is available for handheld gaming

systems such as the Nintendo DS, the Sony PSP, and even cell phones.

Sudoku is in the NP-Complete problem class, which indicates that it is a difficult
problem to solve consistently. For combinatorial problems, genetic algorithms are
typically designed to quicklgpproach the optimal solution, because waiting to find the
global optimum is not always practical. In fact, if the global optimum is unknown, the

algorithm would never have a set (problem-defined) stopping point.

For Sudoku, these guidelines do not apply. The objective is to reduce the number

of duplicates in every row, column, and mini-grid to zero. The optimum for any given

26

problem is ‘zero duplicates’. In one respect, knowing the objective before begsining
quite helpful, since the algorithm has a very clear stopping point. However, designing
Sudoku solving genetic algorithm only to approach the optimum but not reach it is as
impractical as it is unacceptable. No Sudoku solver should be considered complete if it

frequently solves puzzles down to one or two duplicates but not to the optimal solution.

Several papers have been published on using evolutionary algorithms to search

for Sudoku solutions, including] and[5].

In [4], the authors tested many different novel forms of crossover, including what
they called ‘product geometric’ crossover. Their puzzle repregamiaas a single array
of 81 integers, with every 9 integers making one row of the Sudoku grid. Starting
solutions were initialized by inserting random numbers from the set {1, 2...9} into every
blank cell, or by creating a random valid permutation of the numbers 1 to 9 in each row.
The population size was set to 5000, and the top half of the population was retained after
each iteration. Most of the crossover operators test@d were applied to individual
rows, with the exceptions of two-point crossover. The authors designed the algorithm t
apply both point mutation (changing one number to a random number from the set {1,
2...9}) and swap mutation. The algorithm stopped its search after making no progress

for 20 generations.

In [5], the authors used a somewhat different approach to solving Sudoku puzzles.

The puzzle representation was the same as the ¢k but their crossover and

27

mutation methods were different. The population size was merely 21, and they only
applied elitism (saving the best solutions) to a single population member. The authors
used two types of mutation, swap mutation and ‘cataclysmic mutation’, which is a
random reset. Rather than checking for the number of duplicates in each row, column,
and mini-grid, the algorithm if5] checked to make sure that each individual row and
column had values that both summed to 45 and had a product equal to 9!. The fitness
function also verified that every value from the set {1, 2...9} appeared in each row and

column. The algorithm would only stop if a solution was found.

II.LH 3D Sudoku

After extensive research, it seems evident that there is not much (if any)
information on the problem of 3D Sudoku. The 3D variety of Sudoku is just an extension
of the well known NP-Complete problem of 2D Sudoku, and an example is shown in
Figure 11. Six individual Sudoku puzzles are used as the faces of a cube. A requirement

of the puzzle is that adjacent edges must match.

28

P
P >< >
Nl SN S
Py P . O
NS N T
Py Py Py Py Py
< S N S S ~.
N N 2 N g N
P > > > > > >
P N N N N N N
N N N N N N N N
< > e e hd > > > >
N TN N N N N N N S
< > < < > > > > > T >
S o N N N T N o
o O s s N N O N ~1 4
|3 2 S S S > SN T
N oI~ NN N N N S8BT
R e - 71
~J 7 i N e |
N N LT NL L Nl Nl AT A A P
~ ~N P L < > BN T g
~_ R R e N i Nl B N e e
N N > I S Y P G| A A A
~ ~ RN BN P e gl Bl P e -
N N Nl e T N AT 30 A P P
‘ N N NV e N y P P A
~_ ~_ ~_ ~._l 2 A2 ,/ s ~
h_ S 2 2 . e e e e
~ ~J ~ ~ I e L~ e e
N N N N N | 1 e A A
~N N N N NS P P P P
~ ~ ~ ~.I K 0l e e ~
~L ~L ~L ~ 9 = i e | g A
~ ~ ~ ~N. | ~ ~ -
E\\ -\\ _\\ -‘\ - ~ - //E /(! /,- //
N ~ ~ 1 / I |~ _ »

N N N N N 1 AT 1 1 A1
~L ~L ~L ~L N L~ P 1~ 1~
~ ~_ ~_ ~_ 12 Al - - ~ _~
. \\= \\= \\= \\:‘ =// =// » =I/ A
N N N N ~NL7 ~ e e ~

N~ . . ™. a) 21 .~ 1 -

_ N L ~L NN e p . p J
~ o . o ~ Y A A P d pd P
™~ ~ ~ NN e e - -
~ ™ ™ ~_! 1 e e ~
~ ~No ~No ~, P p L~
N \\\ N {/u |~ L P |~
N 9

Figure 11: Example SudoKube with three solved edges

For the purposes of this research, the 3D puzzs dot follow all of the
traditional Sidoku guidelines. For a standard Sudoku puzzégettends to be only ol
solution. Also, the blanks are typically rotatibpaymmetrical about the center cell

the grid[1].

For this 3D representation, each individual sidy have more than one solutio
This is due to the need to present a problem ichnthe goal is to discov simultaneous

solutionswith intertwined constrain. If the sides could be solvaadividually, then

29

there would be no guaranteed need for a 3D solver. A single Sudoku solver could be
applied to each side in turn, the edges would match by default, and then the cube would
be solved. However, if a side has multiple possible solutions, there is only&halice

that solving each side individually would generate a valid 3D solution.

For a SudoKube, the set of six puzzles itself is more limited in the number of
solutions available compared to one of its single sides. For example, the number of
solutions per side for one particular ‘hard’ rated puzzle is displayed bekie(?)[22].

The reason an entire cube has a reduced number of solutions is due to the fact that having
a side with only one solution essentially increases the number of givensdcerad)

sides, which reduces the number of possible solutions for the adjacent sides.

Table 2: Number of solutions per side

Side Number of Number of solutions when given edges of sides with
Number Solutions only 1 solution
Center-1 1 1
Top-2 143 3
Right — 3 4 2
Left—4 1 1
Bottom -5 8 4
Back -6 44 15

30

CHAPTER III

DESIGN METHODOLOGY

[II.LA Design Introduction

There are several different elements in the proposed genetic algorittoretitas
and solves 3-D Sudoku puzzles, called SudoKubes. These elements include a 2D solver,
a 3D generator, and a 3D solver. There is no existing standard publication of 3D Sudoku
cube puzzles. Therefore, the algorithm was designed tarigee six ‘linked’” Sudoku
puzzles before solving them. The program was coded in Microsoft Visuab 210@h

using C#.

The creation process has several key steps. First, the 2D puzzle gesetsatigpr
an initial blank puzzle. Next, the remainder of the cube’s sides are linkiee fiost
puzzle and solved sequentially. This yields a solved SudoKube with touching edges set
equal to each other. Finally, the algorithm removes a random amount of numbers from
the completed puzzle so that it can be solved. The pattern of removal and sigaifitanc
the amount of numbers removed in order to create a puzzle with a unique solution is an

interesting problem, but it will not be addressed here.

1.B 2-D Solver

In order to effectively generate SudoKubes, a 2D solver was developed. A

benefit to having a 2D solver was being able to research and fine-tune optiiators

31

would also work on SudoKubes. This provided useful information when coding the 3D

solver.

For the 2D problem, each member of the population is represented by a filled
Sudoku grid with dimensions of¥® 9. The given numbers for each puzzle are static, so
they will not change as the algorithm works towards a solution. Each grid space tha
does not contain a given (the ones that would be blank if the puzzle was taken from a

newspaper) holds a number from the set {1,92...

Fitness is calculated by counting the number of duplicates in each row, column,
and mini-grid. The goal is for the fitness of each row, column, and mini-grid to be as low
as possible, with an optimum value of zero. Fitness is calculated separatelys,
columns, and mini-grids. Total fitness for a given population member is the sachof e
individual fitness value for every row, column, and mini-grid. Therefore, a tlyrrec
solved puzzle will have a total fitness of zero, because there will be no duphdhies
the population member. A flowchart for a basic genetic algorithm is shown below in

Figure 12.

32

Initialize

Figure 12: Basic genetic algorithm

[11.B.1 Genetic Operators
ll.B.1.a Parent Selection
The 2D algorithm uses a modified version of a parent selection method taken

from [10]. Originally, the algorithm selected a random member from the top half of the

33

population and another member from the whole population to determine a pair of parents.
Although somewhat effective, this approach did not fully utilize the abiliey génetic
algorithm to select the best population members more frequently than unfit populat
members. In the final algorithm, the probability of selecting a populatiomoeek from

a population of size M is given by the following equation:

p(k) =2« 4

M*(M+1)

The population is ordered from best to worst before parent selection occurs, so the
population member with the best fithess (at the top of the ordered list) is apai@yim
twice as likely to be selected for reproduction as the population member hdtiway
the list. Two parents are selected to create one child, and the selectessmrocurs

once for each population member.

After the crossover step is complete, the new generation of solutions is combined
with the previous generation, and the fitness of each potential solution is calculated.
Next, the combined solution set is ordered from best to worst. Finally, the top half — t
half with the best fitness — of the combined solution set is kept and used as the next

parent generation.

l.B.1.b Aging
After much testing of the standard 2D solver, an aging operator was introduced.

The operator was designed to help the algorithm escape local minima withawf teavi

34

resort to ‘cataclysmic mutation’, which is essentially a random fgsdfach population
member has an age assigned to it. When a child is generated, its age isrset forz

every generation a particular solution survives, its age is incrementet byAcsolution
that has reached a predetermined age threshold is replaced with the heslubes that

is not due to be retained in the top half of the population.

Figure 13 illustrates the aging operator. For clarity and brevity, the ggapul
size is only 5 and the maximum age is 5. After performing crossover to make a new
generation and then evaluating the fitness of each solution, the solutioogedars
order of ascending quality. Typically, the top half of the list is retainedised for

creating a new generation, while the bottom half of the list is discarded.

RETAIM

DIsCARD

Figure 13: Example of the aging operator performingan exchange

35

In the above example, the third population member on the list has aged to the
limit set in the algorithm. The aging operator determines that it must lz@dbsc
The next best member of the population (member 6) then takes the place of thg ‘elderl

individual (member 3).

l.B.1.c Crossover

There are three forms of crossover used in the proposed genetic algorithm: row
crossover, column crossover, and grid crossover. These are all applied with equal
probability to two parents in order to create one child. Figure 14 is a chart tha¢sutli

the crossover operator.

36

Take se

ind

I+

Figure 14: Uniform Crossover

In row crossover, rows 1, 3, 5, 7, and 9 are taken from the first parent, and rows 2,
4, 6, and 8 are taken from the second parent. The rows hold the same positions in the
resulting child as they held in their respective parents. For example, rom bérent 1

would be row 1 in the child. An example of this concept is shown in Figure 15.

37

Parent 1 Parent 2 Child
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Figure 15: Row crossover

Column crossover works in the same fashion, taking alternate columns from their
respective parents and combining them into a child. Mini-grids are also nuhib@re
starting from the top left corner of the puzzle and ending at the bottom right.céser
with row and column crossover, alternate mini-grids are taken from eactt fzaceeate

a child.

Another tested method was fitness based crossover, which is discussed in the 3D

Sudoku section found further in this thesis.

1.B.1.d Mutation / Natural Growth

Although not always beneficial, there is something to be said for applying some
problem-specific logic to solving a Sudoku puzzle, even with a heuristic algorithm suc
as this. For the proposed algorithm, the logic is implemented in the mutatiorooperat
Concepts from simulated annealing are also applied within this operator. PAs wit
crossover, there are three types of mutations available for application. Remncahd

mini-grid mutation all occur with equal probability.

38

To begin, a random number from [1, 100] is generated. If the number is below
the threshold set by the user, the operator will perform standard mutation. i©¢herw

will perform ‘Natural Growth’ (described below) on the given population member.

The standard mutation operator selects a number from the set {1, 2 ... 9} and
places it in a random cell that is not specified by the initial problem. Tresofyp
operation occurs infrequently. The likelihood of mutation is predetermined. Ggnerall
the threshold that defines the frequency of standard mutation is set so thedrmutat
occurs between 1 and 3 percent of the time. This component of the mutation operator is
typical to many genetic algorithms in combinatorial problems, and it ofterig@s@n
invalid row, column, or mini-grid. However, the placement of a random number, while
not alwaysmmediately helpful, often helps the algorithm explore regions of the search

space that may be inaccessible through crossover alone.

If the random number doest fall below the given value, the second component
of the mutation operator, called ‘natural growth’, is applied. It is not antitation
operator, as it is guided by problem logic and puzzle-specific constrétintses the
simple rules of the Sudoku problem to ‘mature’ a solution. The algorithm randomly
chooses to look at row, column, or mini-grids, and it performs growth on the selected

sections.

Row, column, or mini-grid ‘growth’ is selected at the start of the natuoatgr

operator — all with equal probability. If ‘row’ is selected, the operatereaces the

39

fitness value of each row to see if it contains duplicates. If at least oneadelpsi

present, the operator replaces one of the duplicate numbers with a number from the set
{1, 2...9} that is not already used within the row. If there are no duplicates within a row
(or column, or mini-grid), the operator will generate a second random number from [1,
100]. If the random number is less than the current set mutation rate (e.g.: utéti®m

rate is 3, and the random number is a 1), then a random swap is performed.

A swap takes two existing values in a given puzzle segment (row, column, or
mini-grid) and exchanges their positions. This ensures that the segment ionquest
maintains its fitness value of zero, but it also allows the population member to amange
a way that could potentially aid the search. As mentioned previously, numbers given in

the original problem are static and will not be alteredyyoperators.

The mutation/natural growth operator goes through several iterations before
moving to the next member of the population. This allows each individual member of the
population to realize its full potential. The growth operator eliminates dtgdigaany
segment on which is it working, but each step in the growth process has the potential to
introduce more duplicates other segments. Fortunately, the crossover operator and the

iterative nature of the growth operator solve the problem of these duplicates.

For standard mutation, any non-static number could be replaced with any number

from {1, 2...9}. For rowgrowth, one of the 7’s or 6’s in the first row of Figure 16 would

40

be replaced with a 1 or a 2 (the unused numbers for that row). The chart following the

Sudoku example (Figure 17) describes the mutation process.

318]717]16]6]19]4(5
9111415]3[8]6]2]|7
615|2)7(9({4]11(3]8
4171312]15]9]18]6]1
819]15]16]14[1]13[7]2
1{2]6]8[7]314[5]9
213]1114[(8[7]15[9]6
5141819]12[6})7]1(3
/71619]3[1[5]2]8]4

Figure 16: Unsolved Sudoku grid with duplicates.

41

Figure 17: Mutation Operator

[II.C Puzzle Generation
Generating Sudoku puzzles is more complex than solving a given puzzle out of a
newspaper or book, because it is not difficult to generate unsolvable puzzles if an

algorithm places starting hints incorrectly.

42

Initialization presented an interesting problem when attempting toagereeralid
Sudoku puzzle. Itis not necessary to explicitly define every cell. Inétadn of the
puzzle can be done in stages. If one attempts to completely initialize a btk gnly
one step, the process essentially leads to solving a completely blank Sudoku puzzle,
which can be difficult for a genetic algorithm due to the very large search apd the

availability of multiple solutions.

Originally, if the proposed algorithm was given a blank Sudoku grid to solve, the
algorithm would run for an extended length of time before finding a solution. &freere
~6.67 x 16" possible Sudoku grig@8], and therefore there are that many solutions with
a fitness of zero — assuming the given puzzle is an empty set of cells. Ehedariger
of potential solutions created challenges for the proposed algorithm, because the
algorithm was designed to take one puzzle and convergeotitptimal solution.

With a blank puzzle, there are many optimal solutions. Therefore, the proposed
algorithm’s selection and crossover operators did not function as intended. The
algorithm could select two parents with similar (good) fitness values brglgmlifferent
puzzle layouts between them. If crossover were to be performed on these two good (but
different) solutions, it would most likely result in a solution with high fithess.aAesult

of this crossover challenge, the introduction of difference degree crosscaearde

essential. Potentially useful for combinatorial problems in general,affferdegree
crossover was especially useful in the situation in which each population memllee ha
potential to differ greatly from every other population member. Differelegree

crossover prevented solutions that were too disparate from mating.

43

At first, the puzzle generation component of the proposed algorithm utilized an
effective initialization tool in order to overcome the problem of having too manibpmss
solutions. The algorithm randomly generated three mini-grids and placed them in
opposite corners and in the middle of the Sudoku grid as shown in Figure 18. Generating
a mini-grid was simple. The algorithm placed the numbers {1, 2...9} in a 3 x 3 box to

create a valid mini-grid for a Sudoku puzzle.

91711
318[4
5126

=
o
(o}

w
(0))
(o)

N
(@)]
N

Figure 18: Randomly generated mini-grids, one ofwo choices for puzzle initialization.

The key to this particular initialization technique was that no mini-grid erkeaif
with any other mini-grid. Each initialized mini-grid was completely independeiieof
other two mini-grids. This independence ensured that there would be no duplicates in

any row, column, or mini-grid when the solver began its work.

Giving the solver 27 static numbers to start with allowed it to reach a solution

quickly and efficiently, but adding difference degree crossover eventlaiinated the

need for this particular initialization technique.

44

Another way to initialize a Sudoku puzzle is by setting the four edges of a puzzle
to valid permutations of the numbers {1, 2 ... 9} before solving it. Doing this serves the
same purpose as initializing the mini-grids, but edge initialization vess gffective

when forming the linked grids.

[1.D Puzzle Combination
In order to fully realize the potential of using a genetic algorithm to saldeks
puzzles, ‘linked’ or ‘3-D’ puzzles were connected and generated while the solver and

generator mentioned in the above sections.

First, a ‘seed puzzle’ is generated and is used as the base for the remaimeler of t
puzzles that are placed around it. Rather than initializing the starting puzkaree
mini-grids, the algorithm initializes all four sides of the Sudoku grid. Eaabhet
puzzle shares an edge with the main grid. This results in top, right, left, back, and bottom
puzzles as well as the main (front) puzzle. The auxiliary puzzles (top, righboteom,

and back) share sides with each other as well as shown in Figure 19.

45

To Back (&)

] 2
] 7
7 5
3 A F]
2 4
3 L !
5 3 A
4 [4
Laa::srs;&*v\.\ \
ITTIITTIT 0L
V|2 |3|5[4)|6|7|8[9q9|6(3)|1[4]|2|3]|7|8
3 513
7 Al 44
8 3l {3 —
To Back (6)—— 3 :] 2l42 = To Back (6)
Il Thd7? s
3 8|8
2 6116
alal7]e]s]a]ale]]t]¢]7]5]a]a]5]8]z
[LLTII{LT
ofal7]e|s]s[3]2]s
5 r
1 7
] 5
nenVAREEE
3 3
& 9
7 8
B 2

To Back (&)

Figure 19: Overview of five linked puzzles. It iglisplayed like an unfolded cube. For clarity, the
puzzle that would be the back of the cube is not skwvn.

If one were to imagine the puzzles folded into a cube, the sides that would join

together to form an edge would contain the same numbers.

In order to create this linked puzzle setup, some constraints must be imposed upon

the auxiliary puzzles. For example, in Figure 19, the top row of section 3 cannot contain

the numbers 7, 8, 5, or 4 in the two cells immediately to the right of the 9. If it did

46

contain a 7 or an 8, the bottom right mini-grid in puzzle 1 would be unsolvable, and if it
contained a 5 or a 4, the top left mini-grid in puzzle 3 would be unsolvable. Ensuring that
the resulting auxiliary puzzles are solvable is imperative when gergeealinked

Sudoku puzzle.

After the linked puzzles are initialized, the solver is applied to every puzzle, and

the result is a set of six solved, linked Sudoku grids. This process is shown in Figure 20.

*

Generate center (See

Set Iinked-gl
Solve side }Mﬂl

+

4

Figure 20: Initialization flow chart

A traditional Sudoku puzzle typically has a unique solution. When generating the
3D cubes, the proposed algorithm doetscheck for uniqueness of solutions. There are

two reasons for this. First, checking for uniqueness would make the puzzletiganera

47

process slower. Second, if each member within a set of six puzzles had a gdarantee
unique solution, then they are essentially six different puzzles and can be solved
individually. If there is no guarantee of a unique solution for each side, then chdrgging t

values of any of the linked edges has a very real effect on a side’s four neighbors.

lII.LE 3D Representation — SudoKube
[1l.E.1 SudoKube Introduction

In order to truly test the ability of genetic algorithms in the combinatargma, a
method of solving six linked puzzlesnultaneously was developed. Due to the lack of
availability of a six sided Sudoku puzzle, a new brainteaser had to be creatddrito
provide the algorithm with something on which to operate. The previous sections of this
thesis outlined the generation of the 3D puzzle (SudoKube). The following pages

describe the solver algorithm and detail its effectiveness.

lIl.E.2 Genotype

In the previous section covering the 2D representation, the genotype wa8 a 9
grid. Each population member was its own copy of the puzzle on which the genetic
algorithm was operating. However, in the 3D solver, each population member is a
6 X 9 x 9 array — corresponding to the six sides of the generated puzzle and each of the

nine rows and columns per side.

48

[1l.E.3 Operators

lIl.E.3.a Parent Selection

Originally, the algorithm selected a random member from the top half pbindation
and another member from the entire population to choose a pair of parents.eds stat
previously, this did not fully utilize the ability of a genetic algorithm tedethe fittest
members the majority of the time. Instead, the probability of selectingudgbion
membelk is given by equation 4, defined earlier and shown again below, which is a

modified form of a selection probability equation that is founid @j.

M-k
pl) = 2% s (4)
.E.3.b Crossover

The proposed algorithm initially employed uniform crossover, much like the 2D
representation. However, after comparing uniform crossover to fithesk drassover,
the performance of uniform crossover was not as effective. Also intdgnabethe
proposed algorithm is the difference degree crossover method described aba/e and a

taken from[23].

The final version of the proposed algorithm utilizegrsess based + difference
degree crossover method. Two parents are selected based on the parent selection method
described above. After selection, every cell in parent 1 is compared to every

corresponding cell in parent 2. The proposed algorithm tracks the total numbés of cel

49

that contain different values. For a SudoKube ther@ares (486) cells. The
difference degree equation is a simple ratio of the number of cellsffieattdithe total

number of cells.

D, =Ya (5)

In the above equation, N is the total number of cells and te total number of

cells that differ between parent 1 and parent 2.

Next, a crossoveype is selected based on total grid, column, or row fitness. The
probability of selection for each type is inversely proportional to the fithndses/aith
respect to the first parent. For example, if parent 1 has an excellerntress total but
an abysmal column fitness total, it is likely that row crossover will et over

column crossover. Figure 21 describes the crossover operator.

50

Select Parents (F

K]

Baszed on Fitt

forindegi:

Figure 21: Fitness dependent crossover with differee degree selection

After both parents and the crossover method are selected, each segment (row,
column, or mini-grid, depending on the crossover type) from each parent is compared.
The segment with the better fitness is kept and passed on to the new generation. For
example, if P1 has a first row with fithess 2, and P2 has a first row with fitndss 9, t

child would acquire the first row from P1. An example is below in table 3.

51

Table 3: Example of fitness-dependent crossover.

Row/Column/Grid Segment Fitness | Segment Fitness | Selected Segment
Index Parent A Parent B Fitness Value
1 2 0 B-0
2 4 6 A-4
3 4 4 B-4
4 2 6 A-2
5 8 10 A-8
6 12 10 B-10
7 2 4 A-2
8 0 2 A-0
9 0 0 B-0
ll.E.3.c Mutation

The mutation operator for the 3D representation is very similar to the openrator
the 2D representation. However, there is a key difference. The operaipliesl 4o all
six sides of the cube, not just to one puzzle. If row mutation/growth is selected, the
proposed algorithm applies row mutation/growth (as described previously) tadaah s
succession.
l.E.3.d Fitness Calculation
Fitness calculations for the 3D representation of Sudoku are calculated in much

the same manner as the 2D representation. Duplicates in each row, column anaimini-g

52

are added together to acquire a total side fitness. Each population memblbraogs
this process to calculate the number of duplicates for all six of its sides, andthe tot

overall fitness is the sum of the total side fitness values.

The difference between the fitness calculation for the 3D representation and the
one for the 2D representation is that two rows and two columns Ivearghaed fitness in
the 3D representation. A row or column that isedge of the cube has its fithess value
multiplied by ten. For example, the top row of a side (which is the bottom row of an
adjacent side) with two duplicates would have a fitness value of 20. If the fitrzess,is
this obviously has no effect. Weighting helps ensure that the outer edgeb Suelmku

puzzle will not have any duplicates.

[1l.E.4 Settings

There are several significant settings that have an effect on hothe/glioposed
algorithm performs. Some of these settings, such as ‘population size’ and tmaxim
iterations,” are common to any genetic algorithm. Others, such as ‘mutaitiog’and
‘mutation rate multiplier’ are not. These settings were optimized whengeke 2D

solver, and the settings were carried over and used in the 3D representation.

lIl.LE.4.a Mutation Celiling
The mutation ceiling is the highest value that the mutation probabilityttzan. a
Setting this number too high causes a chaotic placement of random numbers within

puzzles for several iterations after the mutation probability is increasedceiling.

53

Setting this number too low greatly increases the chance that the algorithemain

stuck in a basin once it enters one.

Figure 22 displays a segment of sample data. It shows that 10% is an value for

the mutation ceiling. Using this value led to finding solutions quickly and efféctive

Time vs. Mutation Ceiling
6
5 /
()
=
(=]
w ©
es ¢4
v
EL
E o 3
% 8§
Sa
i 2
1
0
5% 10% 15% 25%
—&—Puzzle 1 3.085 2.494 3.091 4.992
== Puzzle 2 3.847 1.945 3.2 3.726
Puzzle 3 4.534 2.87 2.908 3.165
== Average 3.822 2.436 3.066 3.961

Figure 22: Time vs. mutation ceiling

l.E.4.b Reset Count
The reset count represents the number of iterations the algorithm will run before
changing the mutation rate to the mutation ceiling. Like the mutation ceilitingg if

number is set incorrectly, it would be detrimental to the proposed algorithire réget

54

count is set low, it does not give the crossover and mutation operators mamgnseiat
improve the fitness of the overall population before setting the mutation rategto a hi
value, which could result in the algorithm failing to find a solution for difficult puzzle
If the reset count is set high, then the algorithm may spend a disproportionate amount of

time in a local minimum before the change in the mutation rate allows itdpessc

An additional check is included in the check for the reset count. If the total
fitness of the best population member is equal to the total fithess of the worst population
member, the algorithm is likely stuck in a basin. In this case the mutatiomaale be

set to the mutation ceiling. Figure 23 is a plot of solve time versus the sesétvalue.

Time vs. Reset Count
3.00
2.50
3
g 2.00
(=]
o
(]
23
o 1.50
£
=
(%] /
0.50 e
0.00
5 10 15 20 25
= Puzzle 1 0.94 0.80 0.96 1.00 1.14
Puzzle 2 0.30 0.42 0.58 0.68 0.90
Puzzle 3 2.76 2.76 2.36 2.52 2.74

Figure 23: Time vs. reset count (A)

55

For clarity, the results for the ‘Escargot’ puzzle (a very difficultanse of a
Sudoku puzzle) were moved to its own chart in Figure 24 along with the average of all

solve times. The ‘Escargot’ puzzle was used to test the limits of the solver.

Time vs. Reset Count
6.00
5.00 —
2 4.00
o
(8]
& 3.00
g /
= 2.00 B —
g
° 1.00
(7]
0.00
5 10 15 20 25
Escargot 4.22 4.66 4.26 4.18 5.52
Average 2.06 2.16 2.04 2.10 2.58

Figure 24: Time vs. reset count (B)

The results seem to indicate that the solver benefits from a low reset cinent if
puzzle is not difficult. This suggests that the proposed algorithm finds locahanini
quickly when solving an easy puzzle, and the low reset count allows the solver to escape

said minima just as quickly by increasing the mutation rate.

The reset count used in the final version of the proposed algorithm was 20.

Lower reset counts often yielded slightly faster results, but they dialways enable the

proposed algorithm to reach a solution.

56

lll.E.4.c Mutation Rate Multiplier

The mutation rate multiplier is the percentage by which the mutation rate is
multiplied. The mutation rate is reduced by this factor each iteratidritustiches the
starting mutation rate. For example, if the mutation ceiling set the mutation rate to 25%,
and the multiplier was 0.5, the sequence of mutation rates over the following few
iterations would be 12.5%, 6.25%, 3.125%...etc until reaching the initial setting for the
mutation rate, which is about 1%. This method of varying the mutation rate is loosely

based on the temperature change concept in simulated annealing.

Figure 25 illustrates the behavior that occurs when a mutation rate reulopli
0.90 is used. A reset count of 50 was used in this example. The solver was run on the

Escargot Sudoku puzzle.

0.90 Multiplier
20
15 ﬂ l
Fitness 10 l
Value
5 A
|
0
1 16 31 46 61 76 91 106 121 136 151 166 181 196
Fitness Function

Figure 25: Fitness vs. mutation rate multiplier 0f0.90

57

Figure 26 illustrates the behavior that occurs when a mutation rate reulopli
0.991 is used. A reset count of 50 was also used in this example. Again, the solver was

run on the Escargot Sudoku puzzle.

991 Multiplier

20

15

Fitness

Value 5 \ AA‘ A
\ VALV |

1 6 11 16 21 26 31 36 41 46 51 56 61 66

Fitness Function

Figure 26: Fitness vs. mutation rate multiplier 0f0.991

With a mutation rate multiplier of 0.991, the algorithm maintained a high
mutation rate for several iterations. With a mutation rate multiplier of h8Gnutation
rate decreased too fast to be effectizgentually, the algorithm with a mutation rate
multiplier of 0.90 was able to escape the local minimum, but it took the solventwer
resets before it was able to find the solution. The final version of the proposethaigori

uses a multiplier of 0.99.

l.E.4.d Maximum lterations

The maximum iteration setting determines how many generations the proposed

algorithm will create. If this number is set too low, it is unlikely thatatgerithm will

58

find the optimal solution tany Sudoku puzzle. If this value is set to an infinite number

of generations, it would be virtually impossible for the algoritiotnto find a solution to

any valid Sudoku puzzle. However, the time it may take to reach that solution would be
unacceptable. Also, many of the other settings in the algorithm becomkftitie

allowed to run indefinitely. Even a random search is able to find a solution givieis

enough time. For the purposes of solving the SudoKubes, 2000 iterations were more than

enough to reach the optimal fitness value of zero.

lll.LE.4.e Mutation Iterations

The maximum iterations setting for the mutation operator determinesandief
‘Natural Growth’ operator is allowed to take each member of the population. Each
mutation iteration represents one application of row/column/mini-grid mutation as
described previously. Applying the mutation operator multiple times per population
member serves a dual purpose. If the mutation rate is low, the operator elsmivaaty
duplicates throughout the population member. If the mutation rate is high (adteeit i
to the mutation ceiling), it allows the algorithm to escape a local minirha.pfioposed
algorithm uses a mutation iteration setting of 200, because it yielded tibst fdve
time coupled with a 100% solve rate. A plot of solve time versus mutation iterations is

shown below in figure 27.

59

Time vs. Mutation Iterations
9.00
8.00 |—1»
e~ 7.00
S®
'g = 6.00
S 3
2 5.00
v >
¢ o 4.00 _ —
- 9
c \\\
3 3.00 \ ——x
s 2.00 o—
1.00
0.00
25 50 75 100 150 200 250 300
=—@=—Puzzle 1 3.86 2.40 2.16 2.18 2.14 2.10 2.06 2.26
== Puzzle 2 7.90 1.88 1.36 1.46 1.46 1.30 1.58 1.62
Puzzle 3 8.04 4.02 4.32 3.90 3.62 3.84 4.14 4.72
=>¢=Total Average 6.60 2.77 2.61 2.51 2.41 2.41 2.59 2.87

l.E.4.f

The population size is the number of solutions created by crossover during each
iteration (generation). It is also the number of solutions kept at the end of eatbrite
Genetic algorithms have the benefit of being able to scale their oveaeathsaccording
to population size. Increasing the population size allows the genetic algarittower
more of the search space. However, for each additional population member added to the
gene pool, a significant amount of time is added per iteration. The final vershmn of t

proposed algorithm uses a population size of 20. A smaller population size did not yield

Figure 27: Time vs. mutation iterations

Population Size

a 100% solve rate. Figure 28 is a plot of solve time versus population size.

60

Time vs. Population Size
10.00
9.00
__ 8.0
8 é 7.00
% E 6.00
© -
;;3 g 5.00
£ g" 00 /
3 3 3.00 S
=~ 2.0 —%
1.00 \./.
0.00
10 20 30 40 50
—4—Puzzle 1 2.40 3.28 3.36 3.88 6.00
——Puzzle 2 1.98 1.57 2.14 0.92 1.48
Puzzle 3 3.90 6.00 7.48 8.96 9.26
== Average 2.76 3.62 4.33 4.59 5.58
Figure 28: Time vs. population size
l.E.4.g Difference Degree

The difference degree represents the percentage of elements thiaverd i
differ between parents selected for a crossover operation. If teeedife degree value
is set to 1.0, then it completely negates the difference degree operataroak iallow
mating between solutions that were 100% different. If the value is set to 0.0, then
crossover would be completely useless, since the only parents allowed tocukatdev

exactly alike. This value is best set somewhere between 0.3 and 0.5, as showrein Figur

29.

61

Time vs. Difference Degree

4/\\\//\\/(/\\//

S0 | — T~ /\/*
I‘:l=.>-—-—.=‘ﬁt‘:‘

0.1* 0.2 0.3 0.4 0.5 0.6* 0.7* 0.8* 0.9* 1*
——Puzzlel | 330 | 236 | 2.08 1.88 1.92 1.86 1.72 | 2.56 1.90 1.90
——Puzzle2 | 2.00 | 1.78 1.54 1.88 1.92 1.52 1.24 | 1.70 1.04 1.06
Puzzle3 | 4.46 | 426 | 4.00 | 3.90 | 420 | 3.74 | 3.42 | 444 | 4.18 3.44
=>¢=Escargot| 15.10 | 16.26 | 13.82 | 13.12 | 17.52 | 13.44 | 14.28 | 19.32 | 13.74 | 17.80
==Average | 6.21 | 6.16 | 536 | 519 | 6.39 | 514 | 516 | 7.01 | 521 6.05

Secons Per Solution
(Average Over 50 Trials)

0.00

Figure 29: Time vs. difference degree — *Indicatesettings without a 100% solve rate

Although a difference degree setting of 0.6 had the best overall average times,
only four difference degree settings solved the ‘Escargot’ problem on eventian. |
worth noting that the time difference between the best and the worst settitiges for
Escargot puzzle is 6.2 seconds, and the time difference for a much easiey puzzle
2,is 0.94 seconds. This discrepancy between easy and difficult puzzles leads to the
conclusion that adjusting settings to account for the possibility of solving a viécyldif

puzzle is the best approach.

62

After testing all of these different variables, it became clearethet puzzle has
its own set of ‘ideal’ settings. For example, puzzles of easy to moderateltifivere
solved quickest when using a low value for the ‘reset count’ setting, but more tifficul
puzzles needed more iterations between ‘resets’. Throughout testing, it derst évat
each setting was not entirely independent of every other setting. An exahtyb
intertwined settings would be ‘mutation ceiling’ and ‘mutation multiplier’. Withgh h
mutation ceiling, it is desirable to have a large reduction in the mutatiopetaiteration.
With a low ceiling, this is not the case. For the final proposed algorithm, the values for

each setting that yielded a solve rate of 100% in a reasonable amount of teneseck

63

CHAPTERIV

RESEARCH FINDINGS

Chapter Il of this thesis outlined the standard 2D Sudoku solver, the 3D
SudoKube solver, and puzzle generation for the 3D SudoKube. This chapter will

describe the performance of both the 2D and the 3D solvers.

The 2D solver within the genetic algorithm being tested was applied to puzzles
taken from the same periodicals[@kin order to have analogous results. The genetic
algorithm described in this thesis had an overall performance that wasiwett¢he

comparable genetic algorithms that were described in similarcbsea

The first and most important factor in measuring the effectiveness of a Sudoku
solver is its rate of success. The speed of a solver is only significantriffihnda
solutions on virtually every run. Below, Table 4 shows the results of the 2D solver
described in this thesis as compared to other research. The algorithm attenspted t
each puzzle 30 times. In order to match the testing ddgbé, iB easy puzzles, one

medium puzzle, and one hard puzzle were selected for testing.

64

Table 4: Solutions found out of 30 attempts — Puze$ taken from [30]

H "
Proposed Mantere/Koljonen . amming Swap Space Hill
. - . Mantere/Koljonen Space A
Puzzle Algorithm (2,000 | (Unlimited Iterations) i Crossovers | Climbers
X X (5,000 Iterations) [5]| Crossovers
iterations) [5] (4] [4] [4]
Easy 1 30 30 29 5 28 30
Easy 2 30 30 30 8 21 30
Easy 3 30 30 30 14 30 30
Medium 30 30 10 0 0 0
Hard 30 30 2 0 15 0
Total 150 150 101 27 94 90

Regardless of the challenge rating, the proposed algorithm solved exary g
puzzle with no difficulties. The large difference between maximum ibasallowed
between this genetic algorithm and the one describfy] can be attributed to the
implementation of the mutation and natural growth operator in the proposed algorithm.
With the natural growth operator in place, there is no need to run the algorithm for so
many generations, because each generation is greatly improved by appiyragj na

growth.

The algorithm designed by Mantere and Koljonen also solved each puzzle 30
times out of 30 attempts, but only when allowed to run indefinitely. When limited to
5,000 iterations, it solved 10 out of 30 on the medium difficulty and 2 out of 30 on the
hard difficulty. The puzzles were taken fr¢&®], which has a free downloadable

Sudoku game.

The following table compares the results of this solver and solverd4icmnd

[5]. The puzzles rated 1 Star through 5 Star were taken[#prand the puzzles rated

‘Easy’, ‘Challenging’, ‘Difficult’, and ‘Super Difficult’ were tken from[31]. While itis

65

unlikely that the exact same puzzles were used for testing, the testing mstdodas
the same. The solver was applied to three puzzles from each difficulty levein®30 ti
each. The results in Table 5 show the mean number of times the solver workachfor

difficulty.

Table 5: Solutions found out of 100 attempts — Pules taken from [31] & [2]

1 Star| 2 Star| 3 Star| 4 Star| 5 Star| Easy| Challenging | Difficult | Super Difficult
Proposed GA 100 | 100| 100f 100] 100 10D 100 100 100
Old GA* 100 69 46 26 23| 10(30 4 6
GA w/Unlimited Iterations* 100 | 100| 100f 100] 100 10D 100 100 100
GA w/5,000 lterations* 100 | 100 96 63 47 100 60 10 8
* Indicates results fron5]

Again, the genetic algorithm designed for the research in this thesisypedfor
very well. When allowed unlimited iterations, the algorithm fiéijnalso solved the
puzzles 100% of the time. However, when limited to only 5,000 iterations, the solve rate
dropped to approximately 22%. Accordind%®, the largest number of iterations
required to solve a puzzle when allowed to run indefinitely was approximately 203,300 —

more than 40 times the 5,000 limit.

The difference in solver effectiveness indicates that the geneticthigori
described in this thesis is a better solver in terms of solving percentage domsared

favorably when measuring both solution time and required solution generations.

In the tables below, (Table 6 & Table 7) the mean solve times for each individual
puzzle is listed along with the mean solve iterations. Included in the tabkbe are

maximum and minimum numbers of iterations required per solution. Each puzzle was

66

solved exactly 100 times. Solve time was calculated by taking the diftebethween the
DateTime.Now value before the solver was run and the DateTime.Now vauéhaft
solver had finished working. The DateTime.Now value is accessible in C# wheg ‘usi

system’ is included in the ‘using’ statements.

In the tables below, ‘Solve Time’ is the mean solve time over 100 solve attempts.
‘Solve Iterations’ is the mean number of generations required to solve the puzzle ove
100 attempts. ‘Max’ and ‘Min’ represent the maximum and minimum number of
generations required to solve the puzzle out of the 100 attempts. ‘Fit Calc Pef Buzzl

the mean number of fitness calculations performed per solve attempt.

Table 6: Results on puzzles from [31]

Puzzle Type Solve Time | Solve Iterations | Max | Min | Fit Calc Per Puzzle
5 Star- A 2.87 73.34 300.00 | 2.00 97786.67
5 Star- B 3.55 88.68 376.00 | 1.00 118240.00
5 Star-C 461 108.64 379.00 | 6.00 144853.33
4 Star - A 2.89 72.61 301.00 | 2.00 96813.33
4 Star-B 12.49 273.26 1620.00]21.00 364346.67
4 Star-C 3.13 66.46 279.00 | 2.00 88613.33
3 Star- A 1.55 32.13 128.00 | 1.00 42840.00
3 Star-B 2.75 68.60 225.00 | 2.00 91466.67
3 Star-C 3.18 69.66 201.00 | 1.00 92880.00
2 Star- A 1.91 39.60 128.00 | 1.00 52800.00
2 Star-B 1.60 33.49 121.00 | 1.00 44653.33
2 Star-C 2.01 42.63 131.00 | 1.00 56840.00
1 Star- A 0.56 9.11 76.00 | 1.00 12146.67
1 Star-B 0.27 2.14 37.00 | 1.00 2853.33
1Star-C 1.78 38.67 137.00 | 1.00 51560.00

Helsingin Sanomat 3.01 67.93 29593] 2.93 90579.56

67

For the Helsingin Sanomat online newspaper publication (one of the main sources
for Sudoku puzzles ifb]), the overall mean solve time for this genetic algorithm was
3.01 seconds, and the mean for the solve generations was 67.93. The approximate mean

number of fitness calculations over 100 solve attempts was 90,580.

Table 7: Results on puzzles from [2]

Puzzle Type Solve Time | Solve Iterations | Max | Min | Fit Calc Per Puzzle
V. Hard-A 3.30 80.89 296.00 | 2.00 107853.33
V. Hard - B 4.84 107.14 370.00 | 2.00 142853.33
V. Hard - C 3.69 80.87 256.00 | 2.00 107826.67
Hard - A 2.92 87.95 320.00 | 4.00 117266.67
Hard - B 2.24 66.70 334.00 | 2.00 88933.33
Hard - C 6.70 201.29 943.00 | 4.00 268386.67
Normal - A 0.91 16.74 79.00 | 1.00 22320.00
Normal - B 0.46 6.13 77.00 | 1.00 8173.33
Normal - C 3.17 70.66 215.00 | 2.00 94213.33
Easy - A 0.17 1.13 2.00 | 1.00 1506.67
Easy - B 0.16 1.12 2.00 1.00 1493.33
Easy - C 0.17 1.14 2.00 1.00 1520.00
Aamulehti 2.39 60.15 241.331 1.92 80195.56
Total Averages 2.70 64.04 268.63] 2.43 85387.56

For the Aamulehti online publication (another main source for Sudoku puzzles in
[5]), the overall mean solve time for this genetic algorithm was 2.70 seconds, and the
mean for the solve generations was 64.04. The approximate mean number of fitness

calculations over 100 solve attempts was 80,196.

Overall, the algorithm if5] solved all of the puzzles with an average of 4.11

seconds per Sudoku grid. It was run on a 3GHz Pentium 4 processor, and programmed in

Java. The algorithm described in this thesis solved all of the puzzles with ah overal

68

average of 2.7 seconds per Sudoku grid, but both the processor and programming
language differ fronf5]. The processor for the machine that tested the proposed
algorithm was a Pentium Core 2 — 2.0 GHz, and the programming language was C# in

Visual Studio 2005. The system also had 2GB of RAM installed.

As a result of using different systems on which to test the algorithmsea bett
benchmark for comparable effectiveness is the mean number of generatioresiregui
solve these puzzles. [8], the overall mean was approximately 9745 generations per
solution, which corresponds to approximately 195,000 fitness calculations pesrsoluti
For the testing on the algorithm described in this thesis, the overall mean was
approximately 64 generations, which corresponds to about 85,388 fithess calculations per

solution — less than half the calculations as the algoritHs].in

The following pages illustrate the solver’s effectiveness in rapidiyaiag the
number of duplicates within a potential solution (Figures 30, 31, & 32). It is evident that
more difficult puzzles take many more iterations to solve. The puzzles for iheifal

charts were taken frop30].

69

Fitness vs. Iterations -- Easy Puzzle

30
25
w 20
4
S
e 14
o 15
[-T:]
e
g 04 \
< 10 3
. 4 \4 >
2 2
0
1234567 8 91011121314151617 181920212223 24252627282930
—@=—Solution #1 =ll=Solution #2
Figure 30: Fitness vs. iterations (easy)
Fitness vs. Iterations -- Medium Puzzle
16 15
R 13
(7}
b 12 \
c
£ 10
g | By /
©
A 4 |
é 4
4 2 2 2
2 0
0

5 7 9 11 13 15 17

=¢=—>Solution #1 ==Solution #2

19 21

23 25 27 29 31

33

Figure 31: Fitness vs. iterations (medium)

70

Average Fitness

35

30

25

20

15

10

Fitness vs. Iterations -- Hard Puzzle

=—¢—Solution #1

30
20
AU
14 14
Klz 12 12
10
“9 A
7 zl
7
6 6 6 s 4
Ll um
2 2902
2 2 n
\v)
6 11 16 21 26 31 36 41 46 51 56 61

in the plots by the names ‘Solution #1’ and ‘Solution #2’. It is obvious that the algorithm
solved the puzzle in a different way on each run. The first run on the easy puzzle took 5
iterations to solve, but the second run took only 30. For the medium puzzle, the first run
took 27 iterations, and the second run took 32 iterations. However, the path that the

algorithm took to get to the solution was quite different between the two runs. The hard

Figure 32: Fitness vs. iterations (hard)

The solver was applied to the same puzzle twice, and the two runs are represented

puzzle had the largest difference between the two runs. The first run tookaBbnter

and the second run took 61 iterations. The spike in fitness at iteration multiples of 20
corresponds to a ‘reset count’ of 20, where the mutation rate is greatly etcfeaa

time.

71

The 2D solver was quite successful, and the 3D solver was modeled on the 2D
type. Using the method described in the previous section, 50 puzzles of each difficulty
(Easy, Medium, Hard, and Very Hard) were generated. Each one was solved 100 times
for a total of 20,000 SudoKubes solved. Each SudoKube (Figure 33) contains six valid

Sudoku grids, which gives a total of 80,000 Sudoku grids solved.

SudoCube

Puzzle Type

2

3
2
E
g
4
7
|
A
1

Figure 33: Screen shot of a SudoKube

72

In order to determine whether or not solving six puzzles simultaneously is an
effective approach to this type of combinatorial problem, the tests were run ohdoth t
3D solver and also the 2D solver. The 2D solver was run sequentially on each individual
side. The 2D sequential solver was not required to have the edges of the cube match.

Below is a table that outlines the overall results of the testing.

Table 8: Comparison of sequential solver vs. 3-D ber (based on averages of solving 100 puzzles)

Puzzle Average Time to Solve 1 Sh(_)rtest Longest Average
Representation Cube Time Time Variance
Average Average
2D Easy 0.2962 0.2952 0.3076 0.0017
3D Easy 0.2515 0.2363 0.3135 0.0008
2D Med 1.5247 0.7260 3.7757 0.6489
3D Med 1.3308 0.6481 4.3675 1.6800
2D Hard 1.7234 0.6481 4.4117 1.0390
3D Hard 0.9687 0.4273 3.5490 0.6970
2D VH 2.0540 0.8804 4.9988 1.2069
3D VH 2.0385 0.6291 6.9425 3.2402
Based on 50 puzzles per difficulty for both 2D and 3D representations

Population variancés?) was calculated with the following formula with N
representing the number of times the algorithm was run and X representsuivine

time:

52 = Y(x?)-X(X)?/N
N

(6)

73

For every difficulty setting, the average time to solve one six-sidedepwzd
shorter for the 3D representation than it was for the 2D representation. Hdlwever,
three out of the four difficulty levels (Easy, Medium, and Very Hard), the geera
‘longest’ time was higher for the 3D representation. In the case of the \dedypidzzle,
the difference between the ‘longest’ averages was approximately 2 seodiagsy of
the 2D solver. Also in the case of the Very Hard difficulty level, the 3D solver had a
smaller ‘shorter’ time average than the 2D sequential. The full range of thetsok®
as well as the average solve times for each difficulty can be seen belove (F4gur
From top to bottom, each column displays the maximum solve time, the average solve

time, and the minimum solve time.

Solve Time vs. Puzzle Type/Difficulty
8.00
6.94
7.00
6.00
s
e 500 5.00
¢ 437 4.41
o 4.00
3.78 355
n
g 300
2.04
3 o — 2.05
1.52 .
1.00 031 133 0.9687
933 035 0.73 0.65 0.65 043 088 1063
0.30 0.24 :
0.00
2DEasy 3DEasy 2DMed 3DMed 2DHard 3DHard 2DVH 3D VH
Puzzle Difficulty

Figure 34: Solve time vs puzzle type/difficulty

74

Both versions of the solver solved six Sudoku puzzles quickly, but the use of the
2D solver did not guarantee that the sides of the SudoKube would match. The 3D solver
worked all six sidesimultaneously, which allowed it to find equivalent sides as it

worked towards the global optimum.

During the testing, an attempt was made to use the 2D sequential solver to find a
valid solution for a whole SudoKube. However, since most of the sides had more than
one solution when solved alone, this option was not feasible. The 2D solver would solve
the first side with no problem, but subsequent sides often had the problem of containing
conflicting constraints. The first sides solved created contradictions Wwaiersides

were copied to adjacent puzzles.

75

CHAPTER YV

CONCLUSION

After running tests on puzzles taken from many different sources, it chedds
to state that the solver is effective. As an extension of the 2D solver, the 3bveadve

also effective.

V.A 2D Representation — Success
The Sudoku solver was a success. It performed better than the genetibralgorit
based Sudoku solvers presented in similar research by a fair margin. The solver

provided an excellent foundation for the 3D representation.

V.B 3D Representation — Success
The solver was a success. It performed better than the 2D solver operating

sequentially, and the 2D solver itself worked better than its predecessors.

When solving a problem in which constraints are linked to the solutions of other
problems, it can be beneficial to solve every problem simultaneously. The case of 3D
Sudoku illustrates this. If a different representation was developed fovrketuting
problems, scheduling problems, or the traveling salesman problem, this method of

solving multiple combinatorial problems could be applied easily.

76

Also, the developed program allows a user to play a challenging new Sudoku-type

game. In this respect, the algorithm is also a success (Figure 35).

V.C Future Work
Future work would include using a genetic algorithm to évay possible
solution to a given Sudoku grid. The goal with such an exercise would be to maintain

population diversity while still finding optimum solutions.

Due to the large number of different settings within the proposed algorithm, using

another evolutionary algorithm in order to optimize the settings has the poteitgal t

worthwhile.

77

SudoKube

Puzzle Tvpe

Back Puzzie

1

4121513633 ¢

-t
o
[
o
o
L
w
o

1

46 |7[3|5|3 8

A0 Salvel

PuzzleShow

5
3
8
E
5
|7
2|
i

=

1

2|6 7|4 569|833

8|3([E|2|6 (9|74

1

1

3B 2 8 38 F 5 4

1

443 6|3 |7 (8|52

1

214 /3|7 8|3 |6

Figure 35: Solved SudoKube

78

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

Wei-Meng LeeProgramming Sudoku. New York, NY: Springer-Verlag New

York, Inc., pp. 47-170, 2006.

Aamuulehti.fi, “Sudoku” http://www.aamulehti.fi/sudoku/

T. K. Moon and J. H. Gunther, “Multiple constraint satisfaction by belief
propagation: an example using Sudoku,” Proceedings of IEEE Mountain

Workshop on Adaptive and Learning Systems, pp 122-2Q0@5.

A. Moraglio, J. Togelius, and S. Lucas, “Product geometric crossover for the
Sudoku puzzle,Proceedings of IEEE Congress on Evolutionary Computation,

pp. 470-476, 2006.

T. Mantere and J. Koljonen, “Solving, rating and generating Sudoku puzzres wit
GA,” Proceedings of IEEE Congress on Evolutionary Computation, pp. 1382-

1389, 2007.

M. F. Tasgetiren, P. N. Suganthan, Q. —K. Pan, and Y. —C. Liaing, “A genetic

algorithm for the generalized traveling salesman probl&mgteedings of IEEE

Congresson Evolutionary Computations, pp. 2382-2389, 2007.

79

[7] R. Takahashi, “Solving the traveling salesman problem through genetic
algorithms with changing crossover operatoBs dceedings of the Fourth

International Conference on Machine Learning and Applications, pp. 6-122005.

[8] S. A. Mulder, “Computational intelligence and the traveling salesman,”.Ph.D

dissertation, University of Missouri-Rolla, Rolla, MO, USA, 2004.

[9] A. Homaifar, J. Turner, and S. Ali, “The N-Queens problem and genetic

algorithms,” Proceedings of Southeastcon '92, pp. 262-267, 1992.

[10] C.R. Reeves, “A genetic algorithm for flowshop sequenci@ggiputers Ops

Res., vol. 22, pp. 5-13, 1995.

[11] C.R.Reeves and T. Yamada, “Genetic algorithms, path relinking, and the
flowshop sequencing problentolutionary Computation, vol. 6, pp. 45-60,

1998.

[12] Q. Wang, K. L. Yung, and W. H. Ip, “A pattern-based evolving mechanism for
genetic algorithm to solve combinatorial optimization problermsgteedings of
I[EEE International Workshop on Soft Computing in Industrial Applications, pp.

97-101, June 2003.

[13] Wikipedia.org, “NP-Complete’http://en.wikipedia.org/wiki/Np_complete

80

[14]

[15]

[16]

[17]

[18]

[19]

M. W. S. Land, “Evolutionary algorithms with local search for combinatorial
optimization,” Ph.D. dissertation, University of California - San Diego, San

Diego, CA, USA, 1998.

Ivica Martinjak, Marin Golub, “Comparison of Heuristic Algorithms for the N
Queen Problem,” University of Zagreb, Faculty of Electrical Engingeand

Computing.

Wikipedia.org, “Genetic algorithm”,

http://en.wikipedia.org/wiki/Genetic algorithm

Y. Yusong, “Genetic-combinatorial algorithm of 0-1 programmifygceedings
of the Fourth International Conference on Parallel and Distributed Computing,

Applications and Technologiegp. 698-701, 2003.

C. —M. Lin and M. Gen, “Multi-criteria human resource allocation for solving
multistage combinatorial optimization problems using multiobjective dybri
genetic algorithm,Expert Systems with Applications, vol. 34, pp. 2480-2490,

2008.

L. Aaronson, “Sudoku science: a popular puzzle helps researchers dig into deep

math,” [EEE Spectrum, pp. 16-17Feb 2006.

81

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. —L. Lin, “An analysis of genetic algorithm behavior for combinatorial
optimization problems,” Ph.D. dissertation, University of Oklahoma, Norman,

OK, USA, 1993.

A. Tuson and P. Ross, “Adapting operator settings in genetic algorithms,”

Evolutionary Computation, vol. 6, pp. 161-184, 1998.

ScanRaid.com, Sudoku Solvkttp://www.scanraid.com/sudoku.htm

R. -L. Wang, S. Fukuta, J. —H. Wang, and K. Okazaki, “ A genetic algorithm with
conditional crossover and mutation operators and its application to combinatorial
optimization problems,'EICE Trans. Fundamentals, vol. E90-A, pp. 287-294,

2007.

Wikipedia.org, “Sudoku”http://en.wikipedia.org/wiki/Sudoku

Minimum intrusion grid, N-Queen picture,

http://mig-1.imada.sdu.dk/MiG/Mig/user_tutorial/images/nqueen.png

Mathworks.com, “Genetic algorithm and direct search toolbox”,

http://www.mathworks.com/access/helpdesk/help/toolbox/gads/dejong5fcn. gif

82

[27]

[28]

[29]

[30]

[31]

J. -W. Dang, Y. -P. Wang, and S. —X. Zhao, “Study on a novel genetic algorithm
for the combinatorial optimization problenitoceedings of International

Conference on Control, Automation and Systems, pp. 2538-2541, 2007.

B. Felgenhauer and F. Jarvis, “Enumerating possible Sudoku puzzles,”

http://www.afjarvis.staff.shef.ac.uk/maths/felgenhauer_jarvis_sudoku Dy

2005.

A. M. Herzberg and M. R. Murty, “Sudoku squares and chromatic polynomials,”

Notices of the AMS vol. 54, pp. 708-717, 2007.

WayneGouldPuzzles.com, “Download”,

http://www.wayneqgouldpuzzles.com/sudoku/download

HS.fi, “Sudoku” http://www?2.hs.fi/extrat/sudoku/

83

Thesis:

VITA
David Isaac Waters
Candidate for the Degree of
Master of Science
SUDOKUBE — USING GENETIC ALGORITHMS TO

SIMULTANEOUSLY SOLVE MULTIPLE COMBINATORIAL
PROBLEMS

Major Field: Electrical Engineering

Biographical:

Personal Data:

David goes by his middle name, ‘Isaac’.

Isaac is from St. Louis, MO.

He attended Oklahoma Christian University in Edmond, OK from the fall of
2000 until the spring of 2002, when he transferred to Oklahoma State
University.

Education:

Completed the requirements for the Bachelor of Science in Electrical
Engineering at Oklahoma State University, Stillwater, Oklahoma in R2G5.
Completed the requirements for the Master of Science in Electricaiéargig
at Oklahoma State University, Stillwater, Oklahoma in May, 2008.

Experience:

Isaac worked for Interstates Engineering from 2005 to 2006 before retusning t
Oklahoma State to work towards his masters degree.

Isaac has completed two summer internships with The Benham Companies in

their St. Louis office.

He has completed another 2 year internship with The Benham Companies in
their Oklahoma City office.

Name: David Isaac Waters Date of Degree: May, 2008
Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SUDOKUBE — USING GENETIC ALGORITHMS TO
SIMULTANEOUSLY SOLVE MULTIPLE COMBINATORIAL
PROBLEMS

Pages in Study: 83 Candidate for the Degree of Master of Science
Major Field: Electrical Engineering
Scope and Method of Study:

This thesis proposes a novel genetic algorithm to solve Sudoku puzzles. It also
proposes a new algorithm for generating and solving six linked Sudoku puzzles.
The six puzzles form a box, which is called a SudoKube.

Findings and Conclusions:

Sudoku is a difficult and complex combinatorial problem. Several genetic
algorithms have been developed to solve Sudoku puzzles, but none have been
tested to see if they are capable of solviisgt ®f six Sudoku puzzles in the form

of a cube. This thesis details the development of a standard Sudoku solver that
outperforms its genetic algorithm predecessors, and it goes on to apply the same
solver concepts to a 3D puzzle of the author’s creation. This thesis also
demonstrates that an algorithm meant to solve a set of six puzzles can outperform
a standard solver run six times in succession to solve the same set.

ADVISER’S APPROVAL:_ Dr. Gary Yen

