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CHAPTER I 

INTRODUCTION 

 
 

Sudoku puzzles provide a logical challenge for people of all ages.  These puzzles 

can be found in newspapers, magazines, puzzle books, and even in cell phones.  The 

format of a Sudoku puzzle is of an n� � n� grid divided into nine smaller mini-grids.  

Each mini-grid is n � n.  Bold lines generally separate the mini-grids.  Although one can 

create similar puzzles to Sudoku with many different � values, � is normally equal to 

three, which makes the entire grid 9 � 9.  The objective of the game is to fill each row, 

column, and mini-grid with the numbers 1 through 9 without duplicate numbers in any 

row, column or mini-grid.  Puzzle difficulty is partially related to how many cells are 

filled at the beginning, although the placement and quality of the starting hints play a 

much larger role in determining whether a puzzle is ‘Easy’ or ‘Fiendish.’  The empty 

cells are traditionally symmetric with respect to a 180 degree turn around the center cell 

as shown in Figure 1.  The filled cells are considered static for each particular problem 

[1] However, there are some publications that have asymmetric Sudoku grids [2]. 
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9 7 1 6 2
3 7
5 3 7

3 9 7
1 6 9

3 9 2
5 7 9

3 4
4 9 8 1 7  

Figure 1: Sample unsolved ‘easy’ puzzle with symmetric blanks.  Blanks are symmetric about the 

center cell. 

 

Sudoku puzzles are also an interesting combinatorial problem, and although not 

extensively researched, several papers have been published on the use of searching 

algorithms with respect to solving Sudoku puzzles [3][4][5] .  Sudoku is often viewed as 

an excellent testing application for combinatorial solvers.   

 

 Genetic algorithms are powerful tools used in solving optimization problems.  

They are most effective when applied to problems with large, variable search spaces with 

unknown patterns.  They use the ‘survival of the fittest’ concept to maintain a population 

of good quality solutions while working towards an optimum.  Genetic algorithms have 

been applied successfully to the traveling salesman problem [6][7][8] , the N-Queens 

problem [9], flowshop sequencing [10][11], and also to solving Sudoku puzzles 

[5][12][4] .  All of these problems are of the type NP-Complete [13].   
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This thesis will begin by describing optimization problems, genetic algorithms, 

and the combinatorial and NP-Complete problem types.  Chapter II will discuss different 

approaches to creating a genetic algorithm, and it will explain why the use of genetic 

algorithms is an effective method for solving optimization problems. 

 

In Chapter III, this thesis will first outline an effective puzzle generation method 

for Sudoku, followed by a solver that surpasses its genetic algorithm predecessors in 

terms of effectiveness.  Following that, it will describe the creation of a new type of 

Sudoku game – six Sudoku puzzles in the form of a box, called a SudoKube.  Most 

significantly, this section will describe the modified operators used in the algorithm that 

will effectively and consistently solve a SudoKube, which is a combinatorial optimization 

problem with varying constraints.   

 

The results will be outlined in Chapter IV.  Results from the proposed solver and 

similar existing algorithms will be compared.  Results comparing the 2D and 3D solvers’ 

effectiveness when applied to the SudoKube are also included in Chapter IV.  The 

relevant conclusions will be drawn in Chapter V.  
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CHAPTER II 

REVIEW OF LITERATURE 

 

II.A  Optimization Algorithms 

Optimization algorithms are designed to find the best solution for a given problem 

and set of constraints.  There are several challenges that face any optimization algorithm.  

A large search space often makes finding a global optimum difficult.  The larger the 

search space, the more challenging it is to find and verify an optimal solution.  Also, any 

case that has only one global optimum within a plethora of sub-optimal solutions results 

in the proverbial ‘needle in a haystack’ scenario.  Finally, finding the optimal solution 

may require the algorithm to perform an extensive search any time it reaches a local 

optimum, which is generally impractical in terms of the time it would take to find the 

optimal solution.  For problems such as the travelling salesman problem, the only way to 

verify that a solution is the global optimum is an exhaustive search of every possible 

solution.  

 

Many problems contain local optimums that can ‘trap’ many searching algorithms 

(these local optimums are often called ‘basins’).  A searching algorithm can find a local 

optimum within a basin and, unless the algorithm is designed to be able to escape said 

basin, it will likely never find a better solution than the one in its current location.  

Without the capacity to escape, the algorithm could easily (and incorrectly) determine 

that it has found the global optimum.  Local optimums are much easier to find compared 

to global optimums in the majority of cases [14].   
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II.B Evolutionary Algorithms/Genetic Algorithms 

Evolutionary algorithms are a grouping of heuristic solving techniques that 

include processes such as genetic algorithms, particle swarm optimization, and 

evolutionary programming.  This thesis will focus primarily on genetic algorithms and 

their characteristics.  Another type of optimization algorithm is simulated annealing.  

Genetic algorithms can be augmented by methods found in simulated annealing.  This 

section will discuss some concepts behind simulated annealing and will cover some of its 

unique characteristics [15].   

 

II.C Genetic Algorithms 

A genetic algorithm (GA) is a heuristic optimization method originally proposed 

by Holland [16] that is based on some of the most basic biological concepts: survival of 

the fittest, natural selection, and the transfer of biological characteristics (genetic 

material) from parents to children.   

 

A potential solution in a genetic algorithm fits a genotype that is defined at the 

outset of the program.  For example, a genotype for a traveling salesman problem may be 

a one dimensional array containing a permutation of the cities the salesman must visit.  

The following array could be a population member for a specific traveling salesman 

problem. 

 

�  ��. 
��
�, �����, �������� �
��, ��� ����, ������, ��������, � �
�!"
��# $ 



 6

However, in the interest of programming simplicity, each of these cities may be 

assigned a number according to their position, and the resulting permutation may look 

like this: 

�   1, 2, 3, 4, 5, 6, 7 $ 

Genetic algorithms initially used binary representation, with 1’s and 0’s defining a 

parent’s genetic material [17].  It is more common now to see real valued representation. 

 
A genetic algorithm works by first initializing and then maintaining a population 

of potential solutions and evolving them over the course of many generations through the 

use of different types of functions, called operators.  The quality of a solution is described 

by its ‘fitness,’ which is a problem dependent objective.  The better a solution’s fitness, 

the more likely it is that it will be selected for reproduction.  This is where the survival of 

the fittest concept comes into play for a genetic algorithm.  For a distance-minimizing 

problem (say, a sales route for a traveling salesman), an individual population member 

would be a specific sales route, and the fitness would be the total distance traveled.   A 

good sales route would have a low fitness value, which would be a direct result of short 

travel distance [6]. 

 

After determining each existing solution’s fitness, a genetic algorithm will apply 

crossover and mutation operators in order to generate new population members.  The 

crossover operator simulates a mating process, and the mutation operator simulates the 

unlikely event of a gene being mutated within a population member.  Depending on the 

genetic algorithm, crossover will either generate a new generation equal to the size of the 
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original generation before re-integration or it will generate one child and integrate it back 

into the population immediately.  Generating a number of children equal to the 

population size occurs in a ‘generational’ algorithm, and generating one child at a time 

occurs in a ‘steady state’ algorithm [14].  In a steady state algorithm, a child could be 

selected as a parent immediately after its insertion into the general population.  In a 

generational algorithm, the children are not available in the parent selection process until 

their entire generation has been created and inserted back into the general population.  

The creator of genetic algorithms, Holland, described the generational algorithm as 

having ‘intrinsic parallelism.’  When dealing with large search spaces, this can be very 

beneficial [18].  The process is outlined below in Figure 2.  

 
Figure 2: Pseudo code outlining a basic genetic algorithm 
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Genetic algorithms can be very powerful tools to solve problems that would be 

too complex or cumbersome to attack with brute force or with an algorithm that relied 

strictly on problem logic.  This includes problems with large search spaces or problems 

for which the pattern of solutions is not known or not easily found.  Sudoku provides an 

example of a very large, variable search space that depends solely on the initial hint 

distribution [19].  The size of the search space for a specific Sudoku puzzle grows 

exponentially with each starting blank.  A genetic algorithm has the ability to find 

optimal solutions within a large search space without requiring much user supplied 

information. 

 

The successful use of genetic algorithms in optimization problems of both the 

continuous and the combinatorial variety indicates a good deal of flexibility within the 

genetic algorithm concept itself [20][21].   

 

Through the use of standard operators and the situational application of modified 

operators, a genetic algorithm can be used to solve both individual and linked (3D) 

Sudoku puzzles correctly and efficiently.  Genetic algorithms are a method of searching 

for an optimal solution rather than a method of solving a Sudoku puzzle to obtain the 

answer.  There are many Sudoku solvers that can use human puzzle-solving techniques to 

arrive at a valid answer for a given Sudoku puzzle [1][22]. This thesis will not compare 

the results of this genetic algorithm with those solvers, but it is worth noting that there are 

a few puzzles that are virtually impossible to solve using human logic techniques, such as 



 9

the ‘Escargot’ puzzle [22], which requires a player to consider eight cells simultaneously 

in order to begin the puzzle.   

 

There are a few drawbacks that come with the use of genetic algorithms.  

Qualitative analysis of these algorithms is quite lacking in the literature.  Results are not 

repeatable due to the stochastic nature of the algorithm itself.  While the genetic 

algorithm may arrive at the same answer on virtually every run, the method by which it 

reaches the final result will be different each time.  These qualities can make genetic 

algorithms somewhat difficult to troubleshoot and analyze [16].   

 

Parent selection is a staple within any genetic algorithm.  As stated previously, 

crossover is the manifestation of the ‘survival of the fittest’ concept within a solving 

algorithm, and crossover essentially begins with parent selection.  Another operator 

within a standard genetic algorithm is mutation.  There are many different methods for 

applying crossover and mutation, and there are even more methods that involve slight 

modifications to those operators.  Designing an appropriate crossover and mutation 

combination to fit a specific problem is both a science and an art [21].  There are many 

different settings to choose and decisions to make before finalizing this operator pair.   

 

II.C.1 Operators 

II.C.1.a Parent Selection 

Genetic algorithms weed out solutions with bad fitness values partially through 

the use of parent selection methods.  The goal of these methods is to allow the best 
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solutions to mate more often than the poor solutions so that the next generation will 

receive the best genetic information from the parents’ generation.  Simply put, a solution 

with good fitness will pass on much more genetic material than a solution with bad 

fitness. 

 

 The parent selection operator is exactly what its name implies.  It is a method of 

selecting parents to mate and create a child or a number of children.  Traditionally, the 

number of parents allowed for any individual child is two [20].   

 

Depending on the type of genetic algorithm, parents may or may not pass on 

‘learned’ information to their children.  If the algorithm allows for the transfer of learned 

information from one generation to the next, it is called Lamarckian evolution [14].  

However, a ‘purer’ form of genetic algorithm would not pass on learned information via 

genetics, based on the Darwinian model of evolution.  Rather than keeping and using the 

learned traits, the Darwinian model directs the search toward the areas with those traits.  

A large portion of genetic algorithms apply Lamarckian evolution over the Darwinian 

model because the Lamarckian model does not discard the learned information.  

However, Darwinian evolution can be more useful when basins are large or when the 

algorithm does not include a mutation operator [14]. 

 

Regardless of the evolution type used, Lamarckian or Darwinian, the population 

members with the best fitness are the most likely to be chosen for reproduction.  

Selections can be directly proportional to fitness, or they can be based solely on a 
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solution’s rank within its generation.  Parent selection is often a random process that has 

its probabilities based on solution fitness [21].  In a traditional genetic algorithm, the 

crossover operator is applied immediately after parents are selected. 

 

II.C.1.b Crossover 

A crossover operator in a genetic algorithm is designed to combine attributes of 

two parents in creating new members of the population.  Normally only one or two 

children will be created from two parents, and the biological basis for genetic algorithm 

does not seem to allow more than two parents for a single child.  Several forms of 

crossover were considered during the design of the proposed algorithm [20].   

 

One of the most basic crossover methods is uniform crossover [20]. In uniform 

crossover, a child is created from equal parts of two parents.  This would be analogous to 

a child having his or her mother’s hair, but father’s eyes, mother’s nose, but father’s 

mouth and so on, all the way down to the feet.  In a combinatorial problem (described 

further on in this section), uniform crossover is often not an ideal option.  For illustrative 

purposes, consider the following rows taken from a potential solution to a Sudoku puzzle.  

Each number represents the digit placed in its corresponding cell on the Sudoku grid.  For 

example, Row 1 would have the number 1 in its first cell.   

,�� 1   � 1, 2, 3, 4, 3, 6, 9, 7, 8 $ 
,�� 2   � 1, 1, 2, 3, 5, 6, 7, 8, 9 $ 

Notice that Row 1 has duplicate 3’s in its third and fifth slots, and Row 2 has 

duplicate 1’s in its first and second slots.  If fitness is defined as the number of duplicates 
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in a given solution, both of these rows would have fairly good fitness values individually 

due to each of them only having one duplicate. However, if a crossover operator used 

them for uniform crossover, the child would have a much worse fitness value than either 

of the parents as shown in Figure 3. 

 

,�� 1   � /, 2, 0, 4, 0, 6, 1, 7, 2 $ 
,�� 2   � 1, /, 2, 0, 5, 3, 7, 2, 9 $ 
��
�#    � 1, 1, 3, 3, 3, 6, 9, 8, 8 $ 

Figure 3: Example of uniform crossover 

 
The child in the previous example would have more than double the duplicates (and 

therefore double the fitness value) of either of its parents.  Applying uniform crossover 

resulted in a population member that has a fitness value that is much worse than either of 

its parents’ fitness values. 

 

Single point crossover is another simple way to create new children from two 

parents.  An example is below in Figure 4.  An initial ‘cut’ point is determined at random, 

and the beginning segment of one parent is attached to the ending segment of the other.  

Again, consider the same two rows from a Sudoku puzzle as an example. 

 

,�� 1   � /, 4, 0, 5, 0, 6, 9, 7, 8 $ 
,�� 2   � 1, 1, 2, 3, 5, 3, 6, 2, 1 $ 
��
�#    � 1, 2, 3, 4, 3, 6, 7, 8, 9 $ 

Figure 4: Example of single point crossover 
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Notice how the number of duplicates in the child is equivalent to the duplicates in 

each parent.  This will not always be the case, but single point crossover can often yield 

better results than uniform crossover in a combinatorial problem [20].  This is due to the 

fact that each parent may have a segment that is a completely correct permutation.  This 

type of crossover is more useful when applied to a problem where the ordering of a single 

permutation is the process by which a final answer is obtained. 

 

Another form of crossover that lends itself more to the combinatorial problem 

domain is 2-point crossover.  Two endpoints of a genotype segment are selected, and two 

children are created.  The segments are then swapped between genotypes, which 

generates two new members of the population.  In the form of crossover shown below in 

Figure 5, a ‘fixing’ operator is applied to the new generation after the initial crossover in 

order to iron out duplicates – making the child a valid permutation [21].  The fixing 

operator could also be applied to other types of crossover, such as single point crossover, 

and it probably should be used for combinatorial problems that require every population 

member to be a valid permutation. 

 

,�� 1                    � 1, 3, 6, 7, 5, 4, 7, 8, 9 $ 
,�� 2                    � 6, 4, 3, 6, /, 7, 2, 8, 9 $ 
��
�#                     � 1, 3, 6, 7, 1, 5, 7, 8, 9 $ 

�!�� ��
�#        � 1, 3, 6, 4, 2, 5, 7, 8, 9 $ 

Figure 5: Example of two point crossover 
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Arithmetic crossover (described below) is a useful tool in continuous optimization 

problems.  

 

As mentioned above, many forms of crossover do not work as well for 

combinatorial problems compared to continuous problems.  This is due to the fact that the 

combination of two completely dissimilar parents often yields a child with poor fitness, 

regardless of the parents’ fitness quality.  For combinatorial problems, the difference 

degree method [23] allows an algorithm to use crossover methods while addressing this 

issue.  In difference degree crossover, after two parents are selected, all of their 

individual elements are compared.  If the difference is greater than a set threshold 

percentage, an alternate parent set is selected.  This helps limit crossover to ‘couples’ that 

have a sufficient amount of similarities to produce useful children. 

 

II.C.1.c Mutation 

A mutation operator introduces an essential element of randomness into the 

search algorithm.  The goal of the operator is to apply occasional changes to members of 

the new generations as they are created.  This allows the algorithm to discover different 

areas in which to search – otherwise it would be permanently limited by the starting 

population’s ‘gene pool’.  For example, if every initial population member for a Sudoku 

puzzle had its empty cells filled with 1’s, there would be no way to reach the optimal 

solution.  All of the genetic material passed from parents to children would be completely 

incorrect, regardless of the crossover method used.   
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,�� 1 8 8 � 1, 1, 1, 1, 1, 1, 1, 1, 1 $ 
,�� 2 8 8 � 1, 1, 1, 1, 1, 1, 1, 1, 1 $ 
��
�# 8 8 � 1, 1, 1, 1, 1, 1, 1, 1, 1 $ 

 
While the above example is quite extreme, it illustrates the need for mutation for 

diversity preservation.  Somehow the elements within the row need to change, but 

crossover will not provide that change, but mutation will introduce variants into the gene 

pool. 

 

Typically, the probability of a mutation occurrence is very low – often as low as 

1% for any given population member.  In a traditional genetic algorithm (one with binary 

representation), mutation would require merely a single bit flip.  For a combinatorial 

problem such as Sudoku, mutation will often involve a random reordering of nodes [5].  

Figure 6 is an example of mutation applied to a population member defined as a row 

within a Sudoku puzzle. 

 

��
!
��� �""� �
�! �  1, 2, 3, 4, 5, 6, 7, 8, 9 $ 
9�����# �""� �
�! �  1, 2, 3, 4, 7, 6, 5, 8, 9 $ 

Figure 6: Example of mutation 

 

 The mutated offspring had its 5th and 7th values exchanged.  This change was not 

based on any previous genetic information. It was a random alteration that the mutation 

operator imposed on the offspring. 
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II.D Simulated Annealing 

Simulated annealing is another powerful optimization algorithm.  It is a 

combination of global and local search techniques, and it is generally regarded as an 

effective method to reach an acceptable (if not optimal) solution [14].  Simulated 

annealing is based on the phenomenon that occurs when cooling certain metals – if done 

correctly, the metal reforms with a purer lattice structure than it was before it was heated.  

The molecules move from a high heat (and therefore high energy) state to a low heat 

state, where they can settle in to an ideal structure.   

 

Unlike genetic algorithms, simulated annealing does not maintain a population.  

Instead, it sustains one solution from start to finish, choosing whether or not to accept a 

‘move’ to a new solution based on its energy state.  Whether the algorithm is in a high or 

low energy state depends on the ‘temperature’.  When starting the algorithm, a high 

initial temperature is used.  Each iteration brings a reduction to the temperature, with the 

amount of temperature reduction being dependent on a user-defined cooling schedule.  

Two common cooling schedules are linear and proportional.  In linear cooling, the 

temperature is reduced by a set number of degrees each iteration, and in proportional 

cooling the temperature is reduced by a set percentage of degrees each iteration. 

 

In simulated annealing, when the algorithm is in a high energy state, the 

probability of accepting a move to a solution with a worse fitness than the current 

solution is relatively high.  In a low energy state, it is highly unlikely (although not 
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impossible) for the algorithm to allow a move to a solution with a poorer fitness.  A move 

to a solution with a better fitness is always allowed within simulated annealing as 

described in the equation below [14].  The current temperature is represented by ‘Temp’, 

and the change in fitness from the current solution to the proposed solution is represented 

by ∆"
�. 

 

;<���� � ��=�> ? @1               
" ∆"
� A 0
� ∆CDE

FGHI     
" ∆"
� � 0 J             (1) 

 

II.E NP-Complete 

 Simulated annealing and genetic algorithms are solving methods that are often 

applied to problems of the NP-Complete class.  A decision problem, X,  is considered 

NP-Complete if it is of the Non-Deterministic Polynomial Time (NP) type and if every 

other problem in the NP set can be reduced to X.  Sudoku, the Traveling Salesman 

Problem (TSP), and Tetris are all well-known examples of NP-Complete problems [24].  

 

Another famous combinatorial problem that is also of the type NP-Complete is 

the N-Queens problem, in which the objective is to place n queens on a N �  N sized 

chessboard in such a way that no queen can ‘take’ another queen with a single horizontal, 

vertical, or diagonal move.  A solution to the N-Queens problem is shown in Figure 7. 
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Figure 7: Example of a solved N-Queen problem [25]. 
 

Some practical examples of NP-Complete problems are scheduling and network routing 

[14].  

 

II.F Combinatorial vs. Continuous Optimization 

 Both genetic algorithms and simulated annealing are two powerful searching 

algorithms that can be applied to different types of optimization problems. 

 

There are two distinct types of optimization problems – combinatorial and 

continuous.  A combinatorial problem is concerned with the reordering of a given set of 

elements in order to achieve an acceptable solution.  For Sudoku, this is essentially a 

search for permutations of {1, 2…9} that satisfy the row, column, and mini-grid 

constraints.  A continuous problem is concerned with exploring a continuous range of 

values (possibly to the extent of <– ∞ , ∞>> in order to discover the solution. 
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In general, the combinatorial optimization problem set is considered to be more 

difficult to handle than the continuous optimization problem set.  There are several 

reasons for this.  For a continuous optimization problem (such as one of DeJong’s 

functions – Figure 8 [26]), there is a full range of options available for crossover 

operators as a result of the function’s use of a practically infinite number set.   With 

continuous problems, solving techniques that involve using the gradient of the fitness 

with respect to the change of the population can be applied.  Continuous problems have 

easily definable neighborhoods and local minima/maxima.  Combinatorial problems do 

not [14]. 

 

Figure 8 [26]: Rosenbrock’s Valley – DeJong’s 2nd function, described by the following equation: 

∑ O/PP Q <R<S T /> 8 R<S>4>4 T U/ 8 R<S>V4WXY/SZ/                                                                   (2) 
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One of the more useful crossover operators for a continuous problem is the 

arithmetic crossover, where the new value ‘c’ is equal to the mean of the previous 

parents’ values ‘a’ and ‘b’ that occupy the same place within a chromosome. 

 

  � ? [\]
�                 (3) 

 

For example, if the optimal solution were ‘3.5’ and the parents selected had 

values of ‘3’ and ‘4’, the algorithm would discover the optimal solution simply by 

performing arithmetic crossover.  However, this averaging strategy would not work if the 

given problem were of a combinatorial nature, because a combination of this type could 

give a result that is not permitted. 

 

Consider the case of the traveling salesman again.  If two cities on the route are 

St. Louis (a) and Oklahoma City (b), using a crossover operator to yield a midpoint may 

land the salesman in Joplin, MO (c).  If the salesman is expected to travel to both St. 

Louis and Oklahoma City and not to Joplin, this would be unacceptable.  The arithmetic 

crossover operator would result in a point that is not an option in the given problem.   

 

Another key difference between combinatorial and continuous problems is the 

concept of ‘direction’ [14][27].  In a continuous problem, if the algorithm moves from 

2.0 to 2.1 and finds that 2.1 is a better solution, it can continue on the same gradient 

toward 2.2.  In a combinatorial problem, if the algorithm switches nodes 2 and 3 to reach 

a better solution, it cannot use that information to determine that switching nodes 3 and 4 
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would also be beneficial. Many optimization techniques are gradient based, but these 

algorithms can only be applied to continuous problems due to the lack of direction 

inherent to the combinatorial problem.   

 

The Figure 9 is a plot that demonstrates the value of being able to use gradient 

information when searching for a global optimum.  Assuming that the objective of the 

optimization problem is to minimize fitness, and assuming that the plot shows the entire 

fitness function for the problem, the global optimum will have a fitness of 0 at a value of 

13.  Suppose the algorithm found its way to the corner of the plateau at value 11.  If it 

took a small step to the right, it would calculate the gradient to be negative.  The 

algorithm could potentially follow the same monotonically decreasing path until it found 

the global optimum at a value of 13.   

 

Figure 9: Example of gradient usage 
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 In a combinatorial problem, an algorithm cannot make use of the gradient 

information, in part because the fitness function cannot be represented as a continuous 

curve with a slope.  Again, the lack of an exploitable ‘direction’ for combinatorial 

problems limits a programmer’s options. 

  

Often coupled with direction is the idea of step size.  In a continuous problem, an 

algorithm can use step sizes that are very large or very small, with the limits dependent 

only on the system on which the algorithm is being run.   This allows the optimization 

algorithm to make great leaps away from its current neighborhood to explore a different 

area.  It also allows the algorithm to take small steps in order to fine tune a solution. 

 

A combinatorial problem can make use of different step sizes, but only by 

increasing or decreasing the number of nodes swapped per step, since there is no way to 

perform fractions of a swap or permutation.  However, increasing the step size for a 

combinatorial problem from one swap to two greatly increases the gap between the 

original solution and the new solution [14].   

 

For combinatorial problems, a single step cannot move a solution out from a 

basin.  However, a solution can still improve its fitness in one step by moving from one 

basin to another, even without being able to escape [14].   Below, table 1 outlines some of 

the key differences between continuous and combinatorial optimization problems. 
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Table 1: Comparison of continuous vs. combinatorial problems 

 Continuous Combinatorial 

Able to use direction 
information 

Yes No 

Able to fine tune step size Yes No 

Well defined local search Yes No 

Easy to scale/define 
neighborhoods 

Yes No 

 

One of the characteristics of the combinatorial problem type is that every possible 

solution is essentially reordering a given set of elements.  For example, in Sudoku, an 

algorithm can sort through different potential solutions by shuffling the numbers {1, 

2…9} in each row.  This limits the styles of crossovers and mutations available to the 

algorithm.  Arithmetic crossover would not be possible for a Sudoku puzzle, because it 

could result in numbers that are not part of the set of allowable values in a Sudoku grid. 

 

Many heuristic algorithms have been applied to the N-Queens problem with 

varying degrees of success.  Genetic algorithms performed fairly well when applied to the 

N-Queens problem [9], and so the transition to Sudoku – a similar type of problem – is 

quite logical. 

 

There are many different parent selection methods from which to choose for a 

combinatorial problem, including roulette, tournament, and partially matched.  Roulette 

selection is a simple and effective selection method.  Parent selection can also be in direct 

proportion to the fitness of a solution [20].   
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Local minimums are a significant stumbling block for many genetic algorithms 

when it comes to combinatorial problems.  With a limited population, it is quite possible 

to get stuck in a local minimum in which swapping one or two cells (in an N-Queen or 

Sudoku problem) would result in a worse fitness value than the previous solution.  As 

stated previously, a combinatorial problem cannot remove itself from a basin with a 

single swap.  A way to counter this issue of reaching ‘dead-ends’ is re-initializing the 

starting population for the algorithm.  However, one must be careful to limit the use of 

this method, as it can severely impact the efficiency of the algorithm [11]. If an algorithm 

restarts itself often enough, it acts similar to a random search, which is ineffective at best.   

 

II.G Sudoku  

Sudoku is a logical puzzle in which a player attempts to fill in all blanks with the 

numbers {1, 2…9} such that no row, column, or 3 � 3 mini-grid contains a duplicate 

number.  Sudoku puzzles are actually a subset of an older puzzle called a ‘Latin Square.’ 

According to Will Shortz [24], Sudoku was likely developed in 1979 by Howard Garns, 

and it was initially called ‘Number Place.’  Dell Magazines published it, but it did not 

catch on in the U.S. initially. In 1984, Sudoku was introduced in Japan by Nikoli – a 

publisher that specializes in logic puzzles.  Even then it did not gain in popularity until 

Nikoli imposed restrictions on the game:  no more than 32 clues were allowed, and the 

puzzles were made to be symmetrical 180 degrees around the center cell.  There are 

approximately 6.67 ^ 10�_ valid Sudoku grids [28].   
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The lowest possible number of starting hints that can provide a unique solution is 

17.  It has not been proven that there are no puzzles with 16, but to date, none have been 

found.  Another prerequisite for a unique solution is using 8 of the 9 possible values 

when giving hints.  If only 7 values are used (say, the numbers 1 through 7), then any 

solution found would not be unique.  This is due to the fact that another trivial solution 

could be found just by exchanging the two unused numbers (the 8 and the 9) [29]. 

 

For a player, there are many simple logical checks to perform in order to find the 

values that belong in each of the blank cells.  For the simplest of puzzles, the solution can 

be found by using just a straightforward process of elimination.  For more complicated 

grids, the user needs to identify multiple possible values in each of the cells and proceed 

from there.  There are also very complex logical solving methods, with names like ‘X-

Wing’, ‘Y-Wing’, and ‘Death-Blossom’ [22].  

 

Puzzle difficulty often hinges on which solving techniques are required in order 

to complete a Sudoku without guessing.  Many times this will relate to the number of 

starting hints, but not always [1].  Difficulty of Sudoku puzzles varies drastically from 

one puzzle to the next, and a puzzle’s given difficulty level (e.g. – 4 Star, 5 Star) does not 

always accurately indicate how challenging it may be [5]. 

 

Standard (read: non – evolutionary based) algorithms can use this same type of 

logic or a combination of logic and brute force in order to solve Sudoku puzzles [1].  This 

approach is feasible for solving one grid, but when attempting to apply straight logic or 
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the brute force and logic combination to multiple puzzles simultaneously, it can begin to 

become unwieldy.  Figure 10 is an example of a solved Sudoku puzzle. 

 

9 7 1 5 8 6 4 3 2
3 8 4 7 2 1 5 9 6
5 2 6 3 9 4 1 7 8
8 3 9 2 7 5 6 4 1
2 4 5 1 6 9 7 8 3
6 1 7 4 3 8 9 2 5
1 5 2 8 4 7 3 6 9
7 9 8 6 1 3 2 5 4
4 6 3 9 5 2 8 1 7  

Figure 10: Sample solved puzzle.  This is the same puzzle as in Figure 1. 

 

Sudoku has become very popular in the US over the past few years.  It can be 

found in many magazines and newspapers, and it is available for handheld gaming 

systems such as the Nintendo DS, the Sony PSP, and even cell phones.   

 

Sudoku is in the NP-Complete problem class, which indicates that it is a difficult 

problem to solve consistently.  For combinatorial problems, genetic algorithms are 

typically designed to quickly approach the optimal solution, because waiting to find the 

global optimum is not always practical.  In fact, if the global optimum is unknown, the 

algorithm would never have a set (problem-defined) stopping point. 

 

For Sudoku, these guidelines do not apply.  The objective is to reduce the number 

of duplicates in every row, column, and mini-grid to zero.  The optimum for any given 
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problem is ‘zero duplicates’.  In one respect, knowing the objective before beginning is 

quite helpful, since the algorithm has a very clear stopping point.  However, designing a 

Sudoku solving genetic algorithm only to approach the optimum but not reach it is as 

impractical as it is unacceptable.  No Sudoku solver should be considered complete if it 

frequently solves puzzles down to one or two duplicates but not to the optimal solution.   

 

Several papers have been published on using evolutionary algorithms to search 

for Sudoku solutions, including [4] and [5]. 

 

In [4], the authors tested many different novel forms of crossover, including what 

they called ‘product geometric’ crossover.  Their puzzle representation was a single array 

of 81 integers, with every 9 integers making one row of the Sudoku grid.  Starting 

solutions were initialized by inserting random numbers from the set {1, 2…9} into every 

blank cell, or by creating a random valid permutation of the numbers 1 to 9 in each row.  

The population size was set to 5000, and the top half of the population was retained after 

each iteration.  Most of the crossover operators tested in [4] were applied to individual 

rows, with the exceptions of two-point crossover.  The authors designed the algorithm to 

apply both point mutation (changing one number to a random number from the set {1, 

2…9}) and swap mutation.  The algorithm stopped its search after making no progress 

for 20 generations.   

 

In [5], the authors used a somewhat different approach to solving Sudoku puzzles.  

The puzzle representation was the same as the one in [4], but their crossover and 
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mutation methods were different.  The population size was merely 21, and they only 

applied elitism (saving the best solutions) to a single population member.  The authors 

used two types of mutation, swap mutation and ‘cataclysmic mutation’, which is a 

random reset.  Rather than checking for the number of duplicates in each row, column, 

and mini-grid, the algorithm in [5] checked to make sure that each individual row and 

column had values that both summed to 45 and had a product equal to 9!.  The fitness 

function also verified that every value from the set {1, 2…9} appeared in each row and 

column.  The algorithm would only stop if a solution was found.   

 

II.H 3D Sudoku 

After extensive research, it seems evident that there is not much (if any) 

information on the problem of 3D Sudoku.  The 3D variety of Sudoku is just an extension 

of the well known NP-Complete problem of 2D Sudoku, and an example is shown in 

Figure 11.  Six individual Sudoku puzzles are used as the faces of a cube.  A requirement 

of the puzzle is that adjacent edges must match. 



 

. 

Figure 

For the purposes of this research, the 3D puzzle does not follow all of the 

traditional Sudoku guidelines.  For a standard Sudoku puzzle, there tends to be only one 

solution.  Also, the blanks are typically rotationally symmetrical about the center cell on 

the grid [1].  

 

For this 3D representation, each individual side ma

This is due to the need to present a problem in which 

solutions with intertwined constraints
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Figure 11: Example SudoKube with three solved edges 

 

For the purposes of this research, the 3D puzzle does not follow all of the 

udoku guidelines.  For a standard Sudoku puzzle, there tends to be only one 

solution.  Also, the blanks are typically rotationally symmetrical about the center cell on 

For this 3D representation, each individual side may have more than one solution.  

This is due to the need to present a problem in which the goal is to discover

with intertwined constraints.  If the sides could be solved individually

 

For the purposes of this research, the 3D puzzle does not follow all of the 

udoku guidelines.  For a standard Sudoku puzzle, there tends to be only one 

solution.  Also, the blanks are typically rotationally symmetrical about the center cell on 

y have more than one solution.  

the goal is to discover simultaneous 

individually, then 
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there would be no guaranteed need for a 3D solver.  A single Sudoku solver could be 

applied to each side in turn, the edges would match by default, and then the cube would 

be solved.  However, if a side has multiple possible solutions, there is only a slim chance 

that solving each side individually would generate a valid 3D solution.   

 

For a SudoKube, the set of six puzzles itself is more limited in the number of 

solutions available compared to one of its single sides.  For example, the number of 

solutions per side for one particular ‘hard’ rated puzzle is displayed below (Table 2) [22].  

The reason an entire cube has a reduced number of solutions is due to the fact that having 

a side with only one solution essentially increases the number of givens for adjacent 

sides, which reduces the number of possible solutions for the adjacent sides.  

 

Table 2: Number of solutions per side 

Side 
Number 

Number of 
Solutions 

Number of solutions when given edges of sides with 
only 1 solution 

Center – 1 1 1 

Top – 2 143 3 

Right – 3 4 2 

Left – 4 1 1 

Bottom - 5  8 4 

Back  - 6 44 15 
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CHAPTER III 

DESIGN METHODOLOGY 

 

III.A Design Introduction 

There are several different elements in the proposed genetic algorithm that creates 

and solves 3-D Sudoku puzzles, called SudoKubes.  These elements include a 2D solver, 

a 3D generator, and a 3D solver.  There is no existing standard publication of 3D Sudoku 

cube puzzles.  Therefore, the algorithm was designed to first create six ‘linked’ Sudoku 

puzzles before solving them.  The program was coded in Microsoft Visual Studio 2005 

using C#. 

 

The creation process has several key steps.  First, the 2D puzzle generator sets up 

an initial blank puzzle. Next, the remainder of the cube’s sides are linked to the first 

puzzle and solved sequentially.  This yields a solved SudoKube with touching edges set 

equal to each other.   Finally, the algorithm removes a random amount of numbers from 

the completed puzzle so that it can be solved.  The pattern of removal and significance of 

the amount of numbers removed in order to create a puzzle with a unique solution is an 

interesting problem, but it will not be addressed here. 

 

III.B 2-D Solver  

In order to effectively generate SudoKubes, a 2D solver was developed.  A 

benefit to having a 2D solver was being able to research and fine-tune operators that 
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would also work on SudoKubes.  This provided useful information when coding the 3D 

solver. 

 

For the 2D problem, each member of the population is represented by a filled 

Sudoku grid with dimensions of 9 � 9.  The given numbers for each puzzle are static, so 

they will not change as the algorithm works towards a solution.  Each grid space that 

does not contain a given (the ones that would be blank if the puzzle was taken from a 

newspaper) holds a number from the set {1, 2…9}.  

 

Fitness is calculated by counting the number of duplicates in each row, column, 

and mini-grid.  The goal is for the fitness of each row, column, and mini-grid to be as low 

as possible, with an optimum value of zero.  Fitness is calculated separately for rows, 

columns, and mini-grids.  Total fitness for a given population member is the sum of each 

individual fitness value for every row, column, and mini-grid.  Therefore, a correctly 

solved puzzle will have a total fitness of zero, because there will be no duplicates within 

the population member.  A flowchart for a basic genetic algorithm is shown below in 

Figure 12. 
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Figure 12: Basic genetic algorithm 

 

 

III.B.1 Genetic Operators 

III.B.1.a Parent Selection 

The 2D algorithm uses a modified version of a parent selection method taken 

from [10].  Originally, the algorithm selected a random member from the top half of the 
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population and another member from the whole population to determine a pair of parents.  

Although somewhat effective, this approach did not fully utilize the ability of a genetic 

algorithm to select the best population members more frequently than unfit population 

members.  In the final algorithm, the probability of selecting a population member k from 

a population of size M is given by the following equation:  

 

 <�> ? 2 ^ `Ya
`^<`\_>                                                                                                           (4) 

 

The population is ordered from best to worst before parent selection occurs, so the 

population member with the best fitness (at the top of the ordered list) is approximately 

twice as likely to be selected for reproduction as the population member halfway down 

the list.  Two parents are selected to create one child, and the selection process occurs 

once for each population member.   

 

After the crossover step is complete, the new generation of solutions is combined 

with the previous generation, and the fitness of each potential solution is calculated.  

Next, the combined solution set is ordered from best to worst.  Finally, the top half – the 

half with the best fitness – of the combined solution set is kept and used as the next 

parent generation.  

 

III.B.1.b Aging 

After much testing of the standard 2D solver, an aging operator was introduced.  

The operator was designed to help the algorithm escape local minima without having to 
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resort to ‘cataclysmic mutation’, which is essentially a random reset [5]. Each population 

member has an age assigned to it.  When a child is generated, its age is set to zero.  For 

every generation a particular solution survives, its age is incremented by one.  A solution 

that has reached a predetermined age threshold is replaced with the next best solution that 

is not due to be retained in the top half of the population.   

 

Figure 13 illustrates the aging operator.  For clarity and brevity, the population 

size is only 5 and the maximum age is 5.  After performing crossover to make a new 

generation and then evaluating the fitness of each solution, the solutions are sorted in 

order of ascending quality.  Typically, the top half of the list is retained and used for 

creating a new generation, while the bottom half of the list is discarded. 

 

 

Figure 13: Example of the aging operator performing an exchange 
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In the above example, the third population member on the list has aged to the 

limit set in the algorithm.  The aging operator determines that it must be discarded.   

The next best member of the population (member 6) then takes the place of the ‘elderly’ 

individual (member 3).   

 

III.B.1.c Crossover 

There are three forms of crossover used in the proposed genetic algorithm:  row 

crossover, column crossover, and grid crossover.  These are all applied with equal 

probability to two parents in order to create one child.  Figure 14 is a chart that outlines 

the crossover operator. 
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Figure 14: Uniform Crossover 

 

In row crossover, rows 1, 3, 5, 7, and 9 are taken from the first parent, and rows 2, 

4, 6, and 8 are taken from the second parent.  The rows hold the same positions in the 

resulting child as they held in their respective parents.  For example, row 1 from parent 1 

would be row 1 in the child.  An example of this concept is shown in Figure 15.    
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Parent 1 Parent 2 Child 
1   1 
  2 2 
3   3 
  4 4 
5   5 
  6 6 
7   7 
  8 8 
9   9 

 

Figure 15: Row crossover  

 

Column crossover works in the same fashion, taking alternate columns from their 

respective parents and combining them into a child.  Mini-grids are also numbered 1-9 

starting from the top left corner of the puzzle and ending at the bottom right corner.  As 

with row and column crossover, alternate mini-grids are taken from each parent to create 

a child.  

 

Another tested method was fitness based crossover, which is discussed in the 3D 

Sudoku section found further in this thesis. 

 

III.B.1.d Mutation / Natural Growth 

Although not always beneficial, there is something to be said for applying some 

problem-specific logic to solving a Sudoku puzzle, even with a heuristic algorithm such 

as this.  For the proposed algorithm, the logic is implemented in the mutation operator.   

Concepts from simulated annealing are also applied within this operator.  As with 

crossover, there are three types of mutations available for application.  Row, column, and 

mini-grid mutation all occur with equal probability.   
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To begin, a random number from [1, 100] is generated.  If the number is below 

the threshold set by the user, the operator will perform standard mutation.  Otherwise it 

will perform ‘Natural Growth’ (described below) on the given population member. 

 

 The standard mutation operator selects a number from the set {1, 2 … 9} and 

places it in a random cell that is not specified by the initial problem.  This type of 

operation occurs infrequently.  The likelihood of mutation is predetermined.  Generally, 

the threshold that defines the frequency of standard mutation is set so that mutation 

occurs between 1 and 3 percent of the time.  This component of the mutation operator is 

typical to many genetic algorithms in combinatorial problems, and it often results in an 

invalid row, column, or mini-grid.  However, the placement of a random number, while 

not always immediately helpful, often helps the algorithm explore regions of the search 

space that may be inaccessible through crossover alone.   

 

If the random number does not fall below the given value, the second component 

of the mutation operator, called ‘natural growth’, is applied.  It is not a true mutation 

operator, as it is guided by problem logic and puzzle-specific constraints.  It uses the 

simple rules of the Sudoku problem to ‘mature’ a solution.  The algorithm randomly 

chooses to look at row, column, or mini-grids, and it performs growth on the selected 

sections.   

 

Row, column, or mini-grid ‘growth’ is selected at the start of the natural growth 

operator – all with equal probability.  If ‘row’ is selected, the operator references the 
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fitness value of each row to see if it contains duplicates.  If at least one duplicate is 

present, the operator replaces one of the duplicate numbers with a number from the set 

{1, 2…9} that is not already used within the row.  If there are no duplicates within a row 

(or column, or mini-grid), the operator will generate a second random number from [1, 

100].  If the random number is less than the current set mutation rate (e.g.: if the mutation 

rate is 3, and the random number is a 1), then a random swap is performed. 

 

A swap takes two existing values in a given puzzle segment (row, column, or 

mini-grid) and exchanges their positions.  This ensures that the segment in question 

maintains its fitness value of zero, but it also allows the population member to change in 

a way that could potentially aid the search.  As mentioned previously, numbers given in 

the original problem are static and will not be altered by any operators. 

 

The mutation/natural growth operator goes through several iterations before 

moving to the next member of the population.  This allows each individual member of the 

population to realize its full potential.  The growth operator eliminates duplicates in any 

segment on which is it working, but each step in the growth process has the potential to 

introduce more duplicates in other segments.  Fortunately, the crossover operator and the 

iterative nature of the growth operator solve the problem of these duplicates.   

 

 

 For standard mutation, any non-static number could be replaced with any number 

from {1, 2…9}.  For row growth, one of the 7’s or 6’s in the first row of Figure 16 would 
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be replaced with a 1 or a 2 (the unused numbers for that row).  The chart following the 

Sudoku example (Figure 17) describes the mutation process. 

 

3 8 7 7 6 6 9 4 5
9 1 4 5 3 8 6 2 7
6 5 2 7 9 4 1 3 8
4 7 3 2 5 9 8 6 1
8 9 5 6 4 1 3 7 2
1 2 6 8 7 3 4 5 9
2 3 1 4 8 7 5 9 6
5 4 8 9 2 6 7 1 3
7 6 9 3 1 5 2 8 4  

Figure 16:  Unsolved Sudoku grid with duplicates. 
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Figure 17: Mutation Operator 

 

III.C Puzzle Generation 

Generating Sudoku puzzles is more complex than solving a given puzzle out of a 

newspaper or book, because it is not difficult to generate unsolvable puzzles if an 

algorithm places starting hints incorrectly.   

 



 43

Initialization presented an interesting problem when attempting to generate a valid 

Sudoku puzzle.  It is not necessary to explicitly define every cell.  Initialization of the 

puzzle can be done in stages.  If one attempts to completely initialize a blank grid in only 

one step, the process essentially leads to solving a completely blank Sudoku puzzle, 

which can be difficult for a genetic algorithm due to the very large search space and the 

availability of multiple solutions. 

 

Originally, if the proposed algorithm was given a blank Sudoku grid to solve, the 

algorithm would run for an extended length of time before finding a solution.  There are 

~6.67 x 1021 possible Sudoku grids [28], and therefore there are that many solutions with 

a fitness of zero – assuming the given puzzle is an empty set of cells.  The large number 

of potential solutions created challenges for the proposed algorithm, because the 

algorithm was designed to take one puzzle and converge to its one optimal solution.  

With a blank puzzle, there are many optimal solutions.  Therefore, the proposed 

algorithm’s selection and crossover operators did not function as intended.  The 

algorithm could select two parents with similar (good) fitness values but entirely different 

puzzle layouts between them.  If crossover were to be performed on these two good (but 

different) solutions, it would most likely result in a solution with high fitness.  As a result 

of this crossover challenge, the introduction of difference degree crossover became 

essential.  Potentially useful for combinatorial problems in general, difference degree 

crossover was especially useful in the situation in which each population member had the 

potential to differ greatly from every other population member. Difference degree 

crossover prevented solutions that were too disparate from mating.   
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At first, the puzzle generation component of the proposed algorithm utilized an 

effective initialization tool in order to overcome the problem of having too many possible 

solutions.  The algorithm randomly generated three mini-grids and placed them in 

opposite corners and in the middle of the Sudoku grid as shown in Figure 18. Generating 

a mini-grid was simple.  The algorithm placed the numbers {1, 2…9} in a 3 x 3 box to 

create a valid mini-grid for a Sudoku puzzle. 

9 7 1
3 8 4
5 2 6

2 7 5
1 6 9
4 3 8

3 6 9
2 5 4
8 1 7  

Figure 18:  Randomly generated mini-grids, one of two choices for puzzle initialization. 

 

The key to this particular initialization technique was that no mini-grid interfered 

with any other mini-grid.  Each initialized mini-grid was completely independent of the 

other two mini-grids.  This independence ensured that there would be no duplicates in 

any row, column, or mini-grid when the solver began its work.  

 

Giving the solver 27 static numbers to start with allowed it to reach a solution 

quickly and efficiently, but adding difference degree crossover eventually eliminated the 

need for this particular initialization technique.   
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Another way to initialize a Sudoku puzzle is by setting the four edges of a puzzle 

to valid permutations of the numbers {1, 2 … 9} before solving it.  Doing this serves the 

same purpose as initializing the mini-grids, but edge initialization was more effective 

when forming the linked grids.   

 

III.D Puzzle Combination 

In order to fully realize the potential of using a genetic algorithm to solve Sudoku 

puzzles, ‘linked’ or ‘3-D’ puzzles were connected and generated while the solver and 

generator mentioned in the above sections.   

 

First, a ‘seed puzzle’ is generated and is used as the base for the remainder of the 

puzzles that are placed around it.  Rather than initializing the starting puzzle with three 

mini-grids, the algorithm initializes all four sides of the Sudoku grid.  Each attached 

puzzle shares an edge with the main grid.  This results in top, right, left, back, and bottom 

puzzles as well as the main (front) puzzle.  The auxiliary puzzles (top, right, left, bottom, 

and back) share sides with each other as well as shown in Figure 19.   
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Figure 19:  Overview of five linked puzzles. It is displayed like an unfolded cube. For clarity, the 
puzzle that would be the back of the cube is not shown. 

 
 

If one were to imagine the puzzles folded into a cube, the sides that would join 

together to form an edge would contain the same numbers. 

 

In order to create this linked puzzle setup, some constraints must be imposed upon 

the auxiliary puzzles.  For example, in Figure 19, the top row of section 3 cannot contain 

the numbers 7, 8, 5, or 4 in the two cells immediately to the right of the 9.  If it did 
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contain a 7 or an 8, the bottom right mini-grid in puzzle 1 would be unsolvable, and if it 

contained a 5 or a 4, the top left mini-grid in puzzle 3 would be unsolvable.  Ensuring that 

the resulting auxiliary puzzles are solvable is imperative when generating a linked 

Sudoku puzzle. 

 

After the linked puzzles are initialized, the solver is applied to every puzzle, and 

the result is a set of six solved, linked Sudoku grids.  This process is shown in Figure 20. 

 

 

Figure 20:  Initialization flow chart 
 

 

A traditional Sudoku puzzle typically has a unique solution.  When generating the 

3D cubes, the proposed algorithm does not check for uniqueness of solutions. There are 

two reasons for this.  First, checking for uniqueness would make the puzzle generation 
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process slower.  Second, if each member within a set of six puzzles had a guaranteed 

unique solution, then they are essentially six different puzzles and can be solved 

individually.  If there is no guarantee of a unique solution for each side, then changing the 

values of any of the linked edges has a very real effect on a side’s four neighbors.   

 

III.E 3D Representation – SudoKube 

III.E.1 SudoKube Introduction 

In order to truly test the ability of genetic algorithms in the combinatorial arena, a 

method of solving six linked puzzles simultaneously was developed.  Due to the lack of 

availability of a six sided Sudoku puzzle, a new brainteaser had to be created in order to 

provide the algorithm with something on which to operate.  The previous sections of this 

thesis outlined the generation of the 3D puzzle (SudoKube).  The following pages 

describe the solver algorithm and detail its effectiveness. 

 

III.E.2 Genotype 

In the previous section covering the 2D representation, the genotype was a 9 � 9 

grid.  Each population member was its own copy of the puzzle on which the genetic 

algorithm was operating.  However, in the 3D solver, each population member is a  

6 � 9 � 9 array – corresponding to the six sides of the generated puzzle and each of the 

nine rows and columns per side.   
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III.E.3 Operators 

III.E.3.a Parent Selection 

Originally, the algorithm selected a random member from the top half of the population 

and another member from the entire population to choose a pair of parents.  As stated 

previously, this did not fully utilize the ability of a genetic algorithm to select the fittest 

members the majority of the time.  Instead, the probability of selecting a population 

member k is given by equation 4, defined earlier and shown again below, which is a 

modified form of a selection probability equation that is found in [10].  

 

 <�> ? 2 ^ `Ya
`^<`\_>                                                                                                           (4) 

 

 

III.E.3.b Crossover 

The proposed algorithm initially employed uniform crossover, much like the 2D 

representation.  However, after comparing uniform crossover to fitness based crossover, 

the performance of uniform crossover was not as effective.  Also integrated into the 

proposed algorithm is the difference degree crossover method described above and as 

taken from [23]. 

 

The final version of the proposed algorithm utilizes a fitness based + difference 

degree crossover method.  Two parents are selected based on the parent selection method 

described above.  After selection, every cell in parent 1 is compared to every 

corresponding cell in parent 2.  The proposed algorithm tracks the total number of cells 
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that contain different values.  For a SudoKube there are 81 * 6 <486) cells.  The 

difference degree equation is a simple ratio of the number of cells that differ to the total 

number of cells. 

 

�b ?  cd
c                           (5) 

 

In the above equation, N is the total number of cells and Nd is the total number of 

cells that differ between parent 1 and parent 2. 

 
Next, a crossover type is selected based on total grid, column, or row fitness.  The 

probability of selection for each type is inversely proportional to the fitness values with 

respect to the first parent.  For example, if parent 1 has an excellent row fitness total but 

an abysmal column fitness total, it is likely that row crossover will be selected over 

column crossover.  Figure 21 describes the crossover operator. 
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Figure 21: Fitness dependent crossover with difference degree selection 

 

 

After both parents and the crossover method are selected, each segment (row, 

column, or mini-grid, depending on the crossover type) from each parent is compared.  

The segment with the better fitness is kept and passed on to the new generation.  For 

example, if P1 has a first row with fitness 2, and P2 has a first row with fitness 9, the 

child would acquire the first row from P1.  An example is below in table 3. 
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Table 3:  Example of fitness-dependent crossover. 

Row/Column/Grid 
Index 

Segment Fitness 
Parent A 

Segment Fitness 
Parent B 

Selected Segment – 
Fitness Value 

1 2 0 B - 0 

2 4 6 A - 4 

3 4 4 B - 4 

4 2 6 A – 2 

5 8 10 A – 8 

6 12 10 B - 10 

7 2 4 A – 2 

8 0 2 A – 0 

9 0 0 B - 0 

 

 

III.E.3.c Mutation 

The mutation operator for the 3D representation is very similar to the operator for 

the 2D representation.  However, there is a key difference.  The operator is applied to all 

six sides of the cube, not just to one puzzle.  If row mutation/growth is selected, the 

proposed algorithm applies row mutation/growth (as described previously) to each side in 

succession.   

 

III.E.3.d Fitness Calculation 

Fitness calculations for the 3D representation of Sudoku are calculated in much 

the same manner as the 2D representation.  Duplicates in each row, column and mini-grid 
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are added together to acquire a total side fitness.  Each population member goes through 

this process to calculate the number of duplicates for all six of its sides, and the total 

overall fitness is the sum of the total side fitness values. 

 

The difference between the fitness calculation for the 3D representation and the 

one for the 2D representation is that two rows and two columns have a weighted fitness in 

the 3D representation.  A row or column that is an edge of the cube has its fitness value 

multiplied by ten.  For example, the top row of a side (which is the bottom row of an 

adjacent side) with two duplicates would have a fitness value of 20.  If the fitness is zero, 

this obviously has no effect.  Weighting helps ensure that the outer edges of each Sudoku 

puzzle will not have any duplicates.  

   

III.E.4 Settings 

There are several significant settings that have an effect on how well the proposed 

algorithm performs.  Some of these settings, such as ‘population size’ and ‘maximum 

iterations,’ are common to any genetic algorithm.  Others, such as ‘mutation ceiling’ and 

‘mutation rate multiplier’ are not.  These settings were optimized when testing the 2D 

solver, and the settings were carried over and used in the 3D representation. 

 

III.E.4.a Mutation Ceiling  

The mutation ceiling is the highest value that the mutation probability can attain.  

Setting this number too high causes a chaotic placement of random numbers within 

puzzles for several iterations after the mutation probability is increased to its ceiling.  
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Setting this number too low greatly increases the chance that the algorithm will remain 

stuck in a basin once it enters one.   

 

Figure 22 displays a segment of sample data.  It shows that 10% is an value for 

the mutation ceiling.  Using this value led to finding solutions quickly and effectively. 

 

Figure 22: Time vs. mutation ceiling 

 

III.E.4.b Reset Count 
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count is set low, it does not give the crossover and mutation operators many iterations to 

improve the fitness of the overall population before setting the mutation rate to a high 

value, which could result in the algorithm failing to find a solution for difficult puzzles.  

If the reset count is set high, then the algorithm may spend a disproportionate amount of 

time in a local minimum before the change in the mutation rate allows it to escape.   

 

An additional check is included in the check for the reset count.  If the total 

fitness of the best population member is equal to the total fitness of the worst population 

member, the algorithm is likely stuck in a basin.  In this case the mutation rate would be 

set to the mutation ceiling.  Figure 23 is a plot of solve time versus the reset count value. 

 

Figure 23: Time vs. reset count (A) 
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 For clarity, the results for the ‘Escargot’ puzzle (a very difficult instance of a 

Sudoku puzzle) were moved to its own chart in Figure 24 along with the average of all 

solve times.  The ‘Escargot’ puzzle was used to test the limits of the solver. 

 

Figure 24: Time vs. reset count (B) 

 

The results seem to indicate that the solver benefits from a low reset count if the 

puzzle is not difficult.  This suggests that the proposed algorithm finds local minima 

quickly when solving an easy puzzle, and the low reset count allows the solver to escape 

said minima just as quickly by increasing the mutation rate.  

 

 The reset count used in the final version of the proposed algorithm was 20.  

Lower reset counts often yielded slightly faster results, but they did not always enable the 

proposed algorithm to reach a solution.   
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III.E.4.c Mutation Rate Multiplier 

The mutation rate multiplier is the percentage by which the mutation rate is 

multiplied.  The mutation rate is reduced by this factor each iteration until it reaches the 

starting mutation rate.  For example, if the mutation ceiling set the mutation rate to 25%, 

and the multiplier was 0.5, the sequence of mutation rates over the following few 

iterations would be 12.5%, 6.25%, 3.125%…etc until reaching the initial setting for the 

mutation rate, which is about 1%.  This method of varying the mutation rate is loosely 

based on the temperature change concept in simulated annealing. 

 

 Figure 25 illustrates the behavior that occurs when a mutation rate multiplier of 

0.90 is used.  A reset count of 50 was used in this example.  The solver was run on the 

Escargot Sudoku puzzle.  

 

 

Figure 25: Fitness vs. mutation rate multiplier of 0.90 
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 Figure 26 illustrates the behavior that occurs when a mutation rate multiplier of 

0.991 is used.  A reset count of 50 was also used in this example.  Again, the solver was 

run on the Escargot Sudoku puzzle. 

 

Figure 26: Fitness vs. mutation rate multiplier of 0.991 

 

 With a mutation rate multiplier of 0.991, the algorithm maintained a high 

mutation rate for several iterations.  With a mutation rate multiplier of 0.90, the mutation 

rate decreased too fast to be effective.  Eventually, the algorithm with a mutation rate 

multiplier of 0.90 was able to escape the local minimum, but it took the solver four more 

resets before it was able to find the solution.  The final version of the proposed algorithm 

uses a multiplier of 0.99.   

 

III.E.4.d Maximum Iterations 

The maximum iteration setting determines how many generations the proposed 
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find the optimal solution to any Sudoku puzzle.  If this value is set to an infinite number 

of generations, it would be virtually impossible for the algorithm not to find a solution to 

any valid Sudoku puzzle.  However, the time it may take to reach that solution would be 

unacceptable.  Also, many of the other settings in the algorithm become trivial if it is 

allowed to run indefinitely.  Even a random search is able to find a solution if it is given 

enough time.  For the purposes of solving the SudoKubes, 2000 iterations were more than 

enough to reach the optimal fitness value of zero. 

 

III.E.4.e Mutation Iterations 

The maximum iterations setting for the mutation operator determines how far the 

‘Natural Growth’ operator is allowed to take each member of the population.  Each 

mutation iteration represents one application of row/column/mini-grid mutation as 

described previously.  Applying the mutation operator multiple times per population 

member serves a dual purpose.  If the mutation rate is low, the operator eliminates many 

duplicates throughout the population member.  If the mutation rate is high (after it is set 

to the mutation ceiling), it allows the algorithm to escape a local minima.  The proposed 

algorithm uses a mutation iteration setting of 200, because it yielded the fastest solve 

time coupled with a 100% solve rate.  A plot of solve time versus mutation iterations is 

shown below in figure 27. 
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Figure 27: Time vs. mutation iterations 

  

III.E.4.f Population Size 

The population size is the number of solutions created by crossover during each 

iteration (generation).  It is also the number of solutions kept at the end of each iteration.  

Genetic algorithms have the benefit of being able to scale their overall search according 

to population size.  Increasing the population size allows the genetic algorithm to cover 

more of the search space.  However, for each additional population member added to the 

gene pool, a significant amount of time is added per iteration.  The final version of the 

proposed algorithm uses a population size of 20.  A smaller population size did not yield 

a 100% solve rate.  Figure 28 is a plot of solve time versus population size. 
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Figure 28: Time vs. population size 

 

III.E.4.g Difference Degree  

The difference degree represents the percentage of elements that are allowed to 

differ between parents selected for a crossover operation.  If the difference degree value 

is set to 1.0, then it completely negates the difference degree operator, as it would allow 

mating between solutions that were 100% different.  If the value is set to 0.0, then 

crossover would be completely useless, since the only parents allowed to mate would be 

exactly alike.  This value is best set somewhere between 0.3 and 0.5, as shown in Figure 

29.   
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Figure 29: Time vs. difference degree – *Indicates settings without a 100% solve rate 

 

Although a difference degree setting of 0.6 had the best overall average times, 
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worth noting that the time difference between the best and the worst settings for the 

Escargot puzzle is 6.2 seconds, and the time difference for a much easier puzzle, Puzzle 

2, is 0.94 seconds.  This discrepancy between easy and difficult puzzles leads to the 

conclusion that adjusting settings to account for the possibility of solving a very difficult 

puzzle is the best approach. 
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After testing all of these different variables, it became clear that each puzzle has 

its own set of ‘ideal’ settings.  For example, puzzles of easy to moderate difficulty were 

solved quickest when using a low value for the ‘reset count’ setting, but more difficult 

puzzles needed more iterations between ‘resets’.  Throughout testing, it was evident that 

each setting was not entirely independent of every other setting.  An example of two 

intertwined settings would be ‘mutation ceiling’ and ‘mutation multiplier’.  With a high 

mutation ceiling, it is desirable to have a large reduction in the mutation rate per iteration.  

With a low ceiling, this is not the case.  For the final proposed algorithm, the values for 

each setting that yielded a solve rate of 100% in a reasonable amount of time were used.  
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CHAPTER IV 

RESEARCH FINDINGS 

 
 

Chapter III of this thesis outlined the standard 2D Sudoku solver, the 3D 

SudoKube solver, and puzzle generation for the 3D SudoKube.  This chapter will 

describe the performance of both the 2D and the 3D solvers. 

 

The 2D solver within the genetic algorithm being tested was applied to puzzles 

taken from the same periodicals as [5] in order to have analogous results.  The genetic 

algorithm described in this thesis had an overall performance that was better than the 

comparable genetic algorithms that were described in similar research. 

 

The first and most important factor in measuring the effectiveness of a Sudoku 

solver is its rate of success.  The speed of a solver is only significant if it can find 

solutions on virtually every run.  Below, Table 4 shows the results of the 2D solver 

described in this thesis as compared to other research.  The algorithm attempted to solve 

each puzzle 30 times.  In order to match the testing done in [5], 3 easy puzzles, one 

medium puzzle, and one hard puzzle were selected for testing.   
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Table 4: Solutions found out of 30 attempts – Puzzles taken from [30] 

 

  

Regardless of the challenge rating, the proposed algorithm solved every given 

puzzle with no difficulties.  The large difference between maximum iterations allowed 

between this genetic algorithm and the one described in [5] can be attributed to the 

implementation of the mutation and natural growth operator in the proposed algorithm.  

With the natural growth operator in place, there is no need to run the algorithm for so 

many generations, because each generation is greatly improved by applying natural 

growth. 

 

 The algorithm designed by Mantere and Koljonen also solved each puzzle 30 

times out of 30 attempts, but only when allowed to run indefinitely.  When limited to 

5,000 iterations, it solved 10 out of 30 on the medium difficulty and 2 out of 30 on the 

hard difficulty.  The puzzles were taken from [30], which has a free downloadable 

Sudoku game. 

 

 The following table compares the results of this solver and solvers from [4] and 

[5].  The puzzles rated 1 Star through 5 Star were taken from [2], and the puzzles rated 

‘Easy’, ‘Challenging’, ‘Difficult’, and ‘Super Difficult’ were taken from [31].  While it is 

Puzzle

Proposed 

Algorithm (2,000 

iterations)

Mantere/Koljonen 

(Unlimited Iterations) 

[5]

Mantere/Koljonen 

(5,000 Iterations) [5]

Hamming 

Space 

Crossovers 

[4]

Swap Space 

Crossovers 

[4]

Hill 

Climbers 

[4]

Easy 1 30 30 29 5 28 30

Easy 2 30 30 30 8 21 30

Easy 3 30 30 30 14 30 30

Medium 30 30 10 0 0 0

Hard 30 30 2 0 15 0

Total 150 150 101 27 94 90
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unlikely that the exact same puzzles were used for testing, the testing method used was 

the same.  The solver was applied to three puzzles from each difficulty level 100 times 

each.  The results in Table 5 show the mean number of times the solver worked for each 

difficulty. 

 

Table 5: Solutions found out of 100 attempts – Puzzles taken from [31] & [2] 

 

 

 Again, the genetic algorithm designed for the research in this thesis performed 

very well.  When allowed unlimited iterations, the algorithm from [5] also solved the 

puzzles 100% of the time.  However, when limited to only 5,000 iterations, the solve rate 

dropped to approximately 22%.  According to [5], the largest number of iterations 

required to solve a puzzle when allowed to run indefinitely was approximately 203,300 – 

more than 40 times the 5,000 limit. 

 

The difference in solver effectiveness indicates that the genetic algorithm 

described in this thesis is a better solver in terms of solving percentage.  It also compared 

favorably when measuring both solution time and required solution generations. 

 

In the tables below, (Table 6 & Table 7) the mean solve times for each individual 

puzzle is listed along with the mean solve iterations.  Included in the tables are the 

maximum and minimum numbers of iterations required per solution.  Each puzzle was 

1 Star 2 Star 3 Star 4 Star 5 Star Easy Challenging Difficult Super Difficult
Proposed GA 100 100 100 100 100 100 100 100 100
Old GA* 100 69 46 26 23 100 30 4 6
GA w/Unlimited Iterations* 100 100 100 100 100 100 100 100 100
GA w/5,000 Iterations* 100 100 96 63 47 100 60 10 8

* Indicates results from [5]
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solved exactly 100 times.  Solve time was calculated by taking the difference between the 

DateTime.Now value before the solver was run and the DateTime.Now value after the 

solver had finished working.  The DateTime.Now value is accessible in C# when ‘using 

system’ is included in the ‘using’ statements. 

 

In the tables below, ‘Solve Time’ is the mean solve time over 100 solve attempts.  

‘Solve Iterations’ is the mean number of generations required to solve the puzzle over 

100 attempts.  ‘Max’ and ‘Min’ represent the maximum and minimum number of 

generations required to solve the puzzle out of the 100 attempts.  ‘Fit Calc Per Puzzle’ is 

the mean number of fitness calculations performed per solve attempt. 

 

Table 6: Results on puzzles from [31] 

 

 

Puzzle Type Solve Time Solve Iterations Max Min Fit Calc Per Puzzle

5 Star - A 2.87 73.34 300.00 2.00 97786.67

5 Star - B 3.55 88.68 376.00 1.00 118240.00

5 Star - C 4.61 108.64 379.00 6.00 144853.33

4 Star - A 2.89 72.61 301.00 2.00 96813.33

4 Star - B 12.49 273.26 1620.00 21.00 364346.67

4 Star - C 3.13 66.46 279.00 2.00 88613.33

3 Star - A 1.55 32.13 128.00 1.00 42840.00

3 Star - B 2.75 68.60 225.00 2.00 91466.67

3 Star - C 3.18 69.66 201.00 1.00 92880.00

2 Star - A 1.91 39.60 128.00 1.00 52800.00

2 Star - B 1.60 33.49 121.00 1.00 44653.33

2 Star - C 2.01 42.63 131.00 1.00 56840.00

1 Star - A 0.56 9.11 76.00 1.00 12146.67

1 Star - B 0.27 2.14 37.00 1.00 2853.33

1 Star - C 1.78 38.67 137.00 1.00 51560.00

Helsingin Sanomat 3.01 67.93 295.93 2.93 90579.56
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For the Helsingin Sanomat online newspaper publication (one of the main sources 

for Sudoku puzzles in [5]), the overall mean solve time for this genetic algorithm was 

3.01 seconds, and the mean for the solve generations was 67.93.  The approximate mean 

number of fitness calculations over 100 solve attempts was 90,580. 

 

Table 7: Results on puzzles from [2] 

 

 

For the Aamulehti online publication (another main source for Sudoku puzzles in 

[5]), the overall mean solve time for this genetic algorithm was 2.70 seconds, and the 

mean for the solve generations was 64.04.  The approximate mean number of fitness 

calculations over 100 solve attempts was 80,196. 

 

Overall, the algorithm in [5] solved all of the puzzles with an average of 4.11 

seconds per Sudoku grid.  It was run on a 3GHz Pentium 4 processor, and programmed in 

Java.  The algorithm described in this thesis solved all of the puzzles with an overall 

Puzzle Type Solve Time Solve Iterations Max Min Fit Calc Per Puzzle

V. Hard - A 3.30 80.89 296.00 2.00 107853.33

V. Hard - B 4.84 107.14 370.00 2.00 142853.33

V. Hard - C 3.69 80.87 256.00 2.00 107826.67

Hard - A 2.92 87.95 320.00 4.00 117266.67

Hard - B 2.24 66.70 334.00 2.00 88933.33

Hard - C 6.70 201.29 943.00 4.00 268386.67

Normal - A 0.91 16.74 79.00 1.00 22320.00

Normal - B 0.46 6.13 77.00 1.00 8173.33

Normal - C 3.17 70.66 215.00 2.00 94213.33

Easy - A 0.17 1.13 2.00 1.00 1506.67

Easy - B 0.16 1.12 2.00 1.00 1493.33

Easy - C 0.17 1.14 2.00 1.00 1520.00

Aamulehti 2.39 60.15 241.33 1.92 80195.56

Total Averages 2.70 64.04 268.63 2.43 85387.56



 69

average of 2.7 seconds per Sudoku grid, but both the processor and programming 

language differ from [5].  The processor for the machine that tested the proposed 

algorithm was a Pentium Core 2 – 2.0 GHz, and the programming language was C# in 

Visual Studio 2005.  The system also had 2GB of RAM installed. 

  

 As a result of using different systems on which to test the algorithms, a better 

benchmark for comparable effectiveness is the mean number of generations required to 

solve these puzzles.  In [5], the overall mean was approximately 9745 generations per 

solution, which corresponds to approximately 195,000 fitness calculations per solution.  

For the testing on the algorithm described in this thesis, the overall mean was 

approximately 64 generations, which corresponds to about 85,388 fitness calculations per 

solution – less than half the calculations as the algorithm in [5]. 

 

 The following pages illustrate the solver’s effectiveness in rapidly reducing the 

number of duplicates within a potential solution (Figures 30, 31, & 32).  It is evident that 

more difficult puzzles take many more iterations to solve.  The puzzles for the following 

charts were taken from [30]. 
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Figure 30: Fitness vs. iterations (easy) 

 

Figure 31: Fitness vs. iterations (medium) 

 

14

10
9

0

4

2 2

24

8

4

2

5

2 2

0

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
v

e
ra

g
e

 F
it

n
e

ss

Fitness vs. Iterations -- Easy Puzzle

Solution #1 Solution #2

5

7

2
4

2

15

4

2

12

0

16

13

2 2

0

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

A
v

e
ra

g
e

 F
it

n
e

ss

Fitness vs. Iterations -- Medium Puzzle

Solution #1 Solution #2



 71

 

Figure 32: Fitness vs. iterations (hard) 

 

 The solver was applied to the same puzzle twice, and the two runs are represented 

in the plots by the names ‘Solution #1’ and ‘Solution #2’.  It is obvious that the algorithm 

solved the puzzle in a different way on each run.  The first run on the easy puzzle took 5 

iterations to solve, but the second run took only 30.  For the medium puzzle, the first run 

took 27 iterations, and the second run took 32 iterations. However, the path that the 

algorithm took to get to the solution was quite different between the two runs.  The hard 

puzzle had the largest difference between the two runs.  The first run took 35 iterations, 

and the second run took 61 iterations.  The spike in fitness at iteration multiples of 20 

corresponds to a ‘reset count’ of 20, where the mutation rate is greatly increased for a 

time.   
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The 2D solver was quite successful, and the 3D solver was modeled on the 2D 

type.  Using the method described in the previous section, 50 puzzles of each difficulty 

(Easy, Medium, Hard, and Very Hard) were generated.  Each one was solved 100 times 

for a total of 20,000 SudoKubes solved.  Each SudoKube (Figure 33) contains six valid 

Sudoku grids, which gives a total of 80,000 Sudoku grids solved.   

 

 

Figure 33: Screen shot of a SudoKube 
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 In order to determine whether or not solving six puzzles simultaneously is an 

effective approach to this type of combinatorial problem, the tests were run on both the 

3D solver and also the 2D solver.  The 2D solver was run sequentially on each individual 

side.  The 2D sequential solver was not required to have the edges of the cube match.  

Below is a table that outlines the overall results of the testing. 

 

Table 8: Comparison of sequential solver vs. 3-D solver (based on averages of solving 100 puzzles) 

Puzzle 
Representation 

Average Time to Solve 1 
Cube 

Shortest 
Time 

Average 

Longest 
Time 

Average 

Average 
Variance 

2D Easy 0.2962  0.2952  0.3076  0.0017  
3D Easy 0.2515  0.2363  0.3135  0.0008  
2D Med 1.5247  0.7260  3.7757  0.6489  
3D Med 1.3308  0.6481  4.3675  1.6800  
2D Hard 1.7234  0.6481  4.4117  1.0390  
3D Hard 0.9687  0.4273  3.5490  0.6970  
2D VH 2.0540  0.8804  4.9988  1.2069  
3D VH 2.0385  0.6291  6.9425  3.2402  

Based on 50 puzzles per difficulty for both 2D and 3D representations 

 

  
Population variance <e�> was calculated with the following formula with N 

representing the number of times the algorithm was run and X representing the solve 

time: 

 

 e� ?  ∑UfgVY∑<f>g/c
c              (6) 
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 For every difficulty setting, the average time to solve one six-sided puzzle was 

shorter for the 3D representation than it was for the 2D representation.  However, for 

three out of the four difficulty levels (Easy, Medium, and Very Hard), the average 

‘longest’ time was higher for the 3D representation.  In the case of the Very Hard puzzle, 

the difference between the ‘longest’ averages was approximately 2 seconds, in favor of 

the 2D solver.  Also in the case of the Very Hard difficulty level, the 3D solver had a 

smaller ‘shorter’ time average than the 2D sequential.  The full range of the solve times 

as well as the average solve times for each difficulty can be seen below (Figure 34).  

From top to bottom, each column displays the maximum solve time, the average solve 

time, and the minimum solve time. 

 

 Figure 34: Solve time vs puzzle type/difficulty 
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Both versions of the solver solved six Sudoku puzzles quickly, but the use of the 

2D solver did not guarantee that the sides of the SudoKube would match.  The 3D solver 

worked all six sides simultaneously, which allowed it to find equivalent sides as it 

worked towards the global optimum.   

 

 During the testing, an attempt was made to use the 2D sequential solver to find a 

valid solution for a whole SudoKube.  However, since most of the sides had more than 

one solution when solved alone, this option was not feasible.  The 2D solver would solve 

the first side with no problem, but subsequent sides often had the problem of containing 

conflicting constraints.  The first sides solved created contradictions when their sides 

were copied to adjacent puzzles.  
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CHAPTER V 

CONCLUSION 

 
  
 After running tests on puzzles taken from many different sources, it is reasonable 

to state that the solver is effective.  As an extension of the 2D solver, the 3D solver was 

also effective. 

 
V.A 2D Representation – Success 

 The Sudoku solver was a success.  It performed better than the genetic algorithm 

based Sudoku solvers presented in similar research by a fair margin.   The solver 

provided an excellent foundation for the 3D representation.   

 

V.B 3D Representation – Success 

 The solver was a success.  It performed better than the 2D solver operating 

sequentially, and the 2D solver itself worked better than its predecessors.   

  

 When solving a problem in which constraints are linked to the solutions of other 

problems, it can be beneficial to solve every problem simultaneously.  The case of 3D 

Sudoku illustrates this.  If a different representation was developed for network routing 

problems, scheduling problems, or the traveling salesman problem, this method of 

solving multiple combinatorial problems could be applied easily. 
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 Also, the developed program allows a user to play a challenging new Sudoku-type 

game.  In this respect, the algorithm is also a success (Figure 35). 

 

V.C Future Work 

 Future work would include using a genetic algorithm to find every possible 

solution to a given Sudoku grid.  The goal with such an exercise would be to maintain 

population diversity while still finding optimum solutions. 

 

 Due to the large number of different settings within the proposed algorithm, using 

another evolutionary algorithm in order to optimize the settings has the potential to be 

worthwhile. 
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Figure 35: Solved SudoKube
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