24 research outputs found

    Sensory exploitation, sexual dimorphism, and human voice pitch

    Get PDF
    Selection for low male voice pitch is generally assumed to occur because it is a valid cue of formidability. Here we summarize recent empirical challenges to this hypothesis. We also outline an alternative account in which selection for low male voice pitch is a byproduct of sensory exploitation

    Object-Oriented Echo Perception and Cortical Representation in Echolocating Bats

    Get PDF
    Echolocating bats can identify three-dimensional objects exclusively through the analysis of acoustic echoes of their ultrasonic emissions. However, objects of the same structure can differ in size, and the auditory system must achieve a size-invariant, normalized object representation for reliable object recognition. This study describes both the behavioral classification and the cortical neural representation of echoes of complex virtual objects that vary in object size. In a phantom-target playback experiment, it is shown that the bat Phyllostomus discolor spontaneously classifies most scaled versions of objects according to trained standards. This psychophysical performance is reflected in the electrophysiological responses of a population of cortical units that showed an object-size invariant response (14/109 units, 13%). These units respond preferentially to echoes from objects in which echo duration (encoding object depth) and echo amplitude (encoding object surface area) co-varies in a meaningful manner. These results indicate that at the level of the bat's auditory cortex, an object-oriented rather than a stimulus-parameter–oriented representation of echoes is achieved

    A general auditory bias for handling speaker variability in speech? Evidence in humans and songbirds

    Get PDF
    Different speakers produce the same speech sound differently, yet listeners are still able to reliably identify the speech sound. How listeners can adjust their perception to compensate for speaker differences in speech, and whether these compensatory processes are unique only to humans, is still not fully understood. In this study we compare the ability of humans and zebra finches to categorize vowels despite speaker variation in speech in order to test the hypothesis that accommodating speaker and gender differences in isolated vowels can be achieved without prior experience with speaker-related variability. Using a behavioral Go/No-go task and identical stimuli, we compared Australian English adults’ (naĂŻve to Dutch) and zebra finches’ (naĂŻve to human speech) ability to categorize / I/ and /Δ/ vowels of an novel Dutch speaker after learning to discriminate those vowels from only one other speaker. Experiments 1 and 2 presented vowels of two speakers interspersed or blocked, respectively. Results demonstrate that categorization of vowels is possible without prior exposure to speaker-related variability in speech for zebra finches, and in non-native vowel categories for humans. Therefore, this study is the first to provide evidence for what might be a species-shared auditory bias that may supersede speaker-related information during vowel categorization. It additionally provides behavioral evidence contradicting a prior hypothesis that accommodation of speaker differences is achieved via the use of formant ratios. Therefore, investigations of alternative accounts of vowel normalization that incorporate the possibility of an auditory bias for disregarding inter-speaker variability are warranted.Publisher PDFPeer reviewe

    Auditory object cognition in dementia

    Get PDF
    The cognition of nonverbal sounds in dementia has been relatively little explored. Here we undertook a systematic study of nonverbal sound processing in patient groups with canonical dementia syndromes comprising clinically diagnosed typical amnestic Alzheimer's disease (AD; n = 21), progressive nonfluent aphasia (PNFA; n = 5), logopenic progressive aphasia (LPA; n = 7) and aphasia in association with a progranulin gene mutation (GAA; n = 1), and in healthy age-matched controls (n = 20). Based on a cognitive framework treating complex sounds as 'auditory objects', we designed a novel neuropsychological battery to probe auditory object cognition at early perceptual (sub-object), object representational (apperceptive) and semantic levels. All patients had assessments of peripheral hearing and general neuropsychological functions in addition to the experimental auditory battery. While a number of aspects of auditory object analysis were impaired across patient groups and were influenced by general executive (working memory) capacity, certain auditory deficits had some specificity for particular dementia syndromes. Patients with AD had a disproportionate deficit of auditory apperception but preserved timbre processing. Patients with PNFA had salient deficits of timbre and auditory semantic processing, but intact auditory size and apperceptive processing. Patients with LPA had a generalised auditory deficit that was influenced by working memory function. In contrast, the patient with GAA showed substantial preservation of auditory function, but a mild deficit of pitch direction processing and a more severe deficit of auditory apperception. The findings provide evidence for separable stages of auditory object analysis and separable profiles of impaired auditory object cognition in different dementia syndromes. (C) 2011 Elsevier Ltd. All rights reserved

    Revisiting vocal perception in non-human animals : a review of vowel discrimination, speaker voice recognition, and speaker normalization

    Get PDF
    The extent to which human speech perception evolved by taking advantage of predispositions and pre-existing features of vertebrate auditory and cognitive systems remains a central question in the evolution of speech. This paper reviews asymmetries in vowel perception, speaker voice recognition, and speaker normalization in non-human animals topics that have not been thoroughly discussed in relation to the abilities of non-human animals, but are nonetheless important aspects of vocal perception. Throughout this paper we demonstrate that addressing these issues in non-human animals is relevant and worthwhile because many non-human animals must deal with similar issues in their natural environment. That is, they must also discriminate between similar-sounding vocalizations, determine signaler identity from vocalizations, and resolve signaler-dependent variation in vocalizations from conspecifics. Overall, we find that, although plausible, the current evidence is insufficiently strong to conclude that directional asymmetries in vowel perception are specific to humans, or that non-human animals can use voice characteristics to recognize human individuals. However, we do find some indication that non-human animals can normalize speaker differences. Accordingly, we identify avenues for future research that would greatly improve and advance our understanding of these topics.Publisher PDFPeer reviewe

    Revisiting vocal perception in non-human animals: a review of vowel discrimination, speaker voice recognition, and speaker normalization

    Get PDF
    The extent to which human speech perception evolved by taking advantage of predispositions and pre-existing features of vertebrate auditory and cognitive systems remains a central question in the evolution of speech. This paper reviews asymmetries in vowel perception, speaker voice recognition, and speaker normalization in non-human animals – topics that have not been thoroughly discussed in relation to the abilities of non-human animals, but are nonetheless important aspects of vocal perception. Throughout this paper we demonstrate that addressing these issues in non-human animals is relevant and worthwhile because many non-human animals must deal with similar issues in their natural environment. That is, they must also discriminate between similar-sounding vocalizations, determine signaler identity from vocalizations, and resolve signaler-dependent variation in vocalizations from conspecifics. Overall, we find that, although plausible, the current evidence is insufficiently strong to conclude that directional asymmetries in vowel perception are specific to humans, or that non-human animals can use voice characteristics to recognize human individuals. However, we do find some indication that non-human animals can normalize speaker differences. Accordingly, we identify avenues for future research that would greatly improve and advance our understanding of these topics

    Voice- Identity Processing in Patients with Brain Lesions

    Get PDF
    Hintergrund: Die menschliche Stimme wird in der Fachliteratur als “auditorisches Gesicht” bezeichnet (Belin et al., 2004), weil sie neben der Sprache auch Informationen zu IdentitĂ€t und Emotionen des Sprechers vermittelt, die wir in der alltĂ€glichen Kommunikation mĂŒhelos wahrnehmen und verarbeiten. Zerebrale Pathologien, beispielsweise ischĂ€mische Hirninfarkte oder HĂ€morrhagien, können in der Folge verschiedene Kommunikationsdefizite verursachen. Ein bedeutsames Kommunikationsdefizit auf sprachlicher Ebene ist die Aphasie. Defizite der Stimmerkennung als eine EntitĂ€t der nicht-sprachlichen Ebene werden durch den Begriff Phonagnosie definiert. Phonagnosie beschreibt ein Defizit der Stimmidentifizierung einschließlich der Analyse akustischer vokaler Signale, dem Wiedererkennen bekannter Stimmen und der semantischen Assoziation einer erkannten Stimme (Roswandowitz C, Maguinness C, von Kriegstein K., in rev.). Klinische Studien wiesen die Existenz von Stimmerkennungsdefiziten als eine mögliche Folge zerebraler LĂ€sionen nach (Van Lancker and Canter, 1982; Van Lancker et al., 1989; Neuner and Schweinberger, 2000; Lang et al., 2009; Hailstone et al., 2011). Hierbei wurden insbesondere LĂ€sionen der rechten HemisphĂ€re als zugrundeliegende neuronale ReprĂ€sentationen hervorgehoben, allerdings gelang bisher keine exakte Lokalisierung der betroffenen Hirnregionen bei isolierten Stimmerkennungsdefiziten. In funktionellen MRT-Studien an gesunden Probanden zeigten sich stimmspezifische Areale entlang des rechten superioren temporalen Gyrus und Sulcus (STG/S) (Belin et al., 2000; von Kriegstein et al., 2003; Kriegstein and Giraud, 2004). Zielsetzung: Ziel der vorliegenden Patientenstudie war es, mögliche isolierte Stimmerkennungsdefizite als Folge einer zerebralen LĂ€sion nachzuweisen und zu charakterisieren. In einem zweiten Schritt widmete sich die Studie der Frage nach den neuronalen Korrelaten von Stimmerkennungsdefiziten. Wir stellten die Hypothesen auf, dass Stimmerkennungsdefizite (i) hĂ€ufiger bei Patienten mit rechtshemisphĂ€rischen LĂ€sionen und (ii) darĂŒber hinaus als isoliertes Stimmerkennungsdefizit gegenĂŒber kombinierten Defiziten von Stimm- und Gesichtererkennung auftreten können. Die Untersuchung von neuronalen Korrelaten dieser Defizite wurde in einer weiterfĂŒhrenden Analyse mittels Voxel-based lesion symptom mapping (VLSM) vorgenommen (Roswandowitz, C., Kappes, C., Obrig, H., von Kriegstein K., accepted, Brain). Material und Methoden: 40 Patienten der Tagesklinik fĂŒr kognitive Neurologie der UniversitĂ€t Leipzig nahmen an der Studie teil. Alle Patienten wiesen unilaterale HirnlĂ€sionen (n = 14 links, 24 rechts) auf, die entweder Folge eines cerebrovaskulĂ€ren Ereignisses oder einer Tumorextraktion waren. Wir fĂŒhrten eine umfangreiche experimentelle Testreihe durch, die insbesondere der Stimmerkennung (Stimmlerntests und Tests zur Erkennung bekannter Stimmen) galt. Außerdem wurde die KontrollmodalitĂ€t der Gesichtererkennung und die Verarbeitung akustischer vokaler Signale (Pitch und Timbre) ĂŒberprĂŒft. Die individuelle Patientenwahrnehmung zur Stimm- und Gesichtererkennung erhoben wir in einem Fragebogen. Wir analysierten die Daten in IBM SPSS 22, fĂŒr die Gruppenvergleiche wendeten wir sowohl parametrische als auch nicht-parametrische Tests, Varianzanalysen und bivariate Korrelationen an. In einem weiterfĂŒhrenden Teil der Studie wurden die behavioralen Daten und strukturelle MRTs anhand von Voxel-based lesion symptom mapping (VLSM) analysiert. Ergebnisse: In der Datenanalyse fanden sich im Gruppenvergleich der Patientien mit rechts- bzw. linkshemisphĂ€rischen LĂ€sionen keine signifikanten Unterschiede in den Tests zur Stimmerkennung. Allerdings wiesen 9 Patienten, deren LĂ€sionen ausschließlich rechtshemisphĂ€risch lokalisiert waren, Stimmererkennungsdefizite auf. Die Lokalisation der LĂ€sionen innerhalb der rechten HemisphĂ€re war heterogen. WĂ€hrend sechs Patienten dieser Gruppe ein kombiniertes Defizit der Gesichter- und Stimmerkennung zeigten, fand sich bei drei Patienten ein isoliertes Defizit der Stimmerkennung. Wir charakterisieren in der vorliegenden Arbeit das spezifische Verhaltensmuster und die Lokalisation der LĂ€sionen dieser drei Patienten, die alle eine Beteiligung des rechten Temporallappens aufwiesen. Im Hinblick auf grundlegende Mechanismen der Stimmverarbeitung konnte insbesondere Timbre als relevantes akustisches Stimmsignal zur Erkennung neu erlernter Stimmen identifiziert werden. In der weiterfĂŒhrenden Analyse mittels VLSM wurden Assoziationen von (i) selektiven Defiziten der Stimmerkennung mit LĂ€sionen im rechten Temporallappen sowie (ii) der Stimm-Gesichter-Integration im rechten inferioren Parietallappen nachgewiesen. Schlussfolgerungen: Die vorliegende Studie hebt auf der Grundlage des untersuchten Patientenkollektivs die bedeutsame Rolle der rechten HemisphĂ€re bei der Stimmerkennung hervor. Wir identifizierten drei Patienten mit isolierten Stimmerkennungsdefiziten, deren LĂ€sionen sich im rechten Temporallappen befanden. Dieses Ergebnis stĂŒtzt bisherige Evidenz zur Stimmverarbeitung an gesunden Probanden (Belin et al., 2000; Kriegstein and Giraud, 2004). Die weiterfĂŒhrende VLSM-Analyse, auf der Grundlage des vorliegenden Patientenkollektivs, charakterisiert spezifische Areale des rechten Temporallappens und inferioren Parietallappens als neuronale Korrelate defizitĂ€rer Stimmerkennung. In Erweiterung bisheriger klinischer Evidenz liefert die vorliegende Studie neue Erkenntnisse zu neuronalen Korrelaten von isolierten Stimmerkennungsdefiziten und Defiziten der Stimm- Gesichter -Integration (Roswandowitz, C., Kappes, C., Obrig, H. von Kriegstein K., in prep.). Im klinischen Kontext erlaubt die Studie einen weiteren Schritt zum besseren VerstĂ€ndnis von nonverbalen Kommunikationsdefiziten, insbesondere Stimmerkennungsschwierigkeiten, nach zerebralen LĂ€sionen. Literatur: Belin P, Fecteau S, Bedard C (2004) Thinking the voice: neural correlates of voice perception. Trends Cogn Sci 8:129–135. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312. Hailstone JC, Ridgway GR, Bartlett JW, Goll JC, Buckley AH, Crutch SJ, Warren JD (2011) Voice processing in dementia: a neuropsychological and neuroanatomical analysis. Brain 134:2535–2547. Kriegstein K V, Giraud AL (2004) Distinct functional substrates along the right superior temporal sulcus for the processing of voices. Neuroimage 22:948–955. Lang CJ, Kneidl O, Hielscher-Fastabend M, Heckmann JG (2009) Voice recognition in aphasic and non-aphasic stroke patients. J Neurol 256:1303–1306. Neuner F, Schweinberger SR (2000) Neuropsychological impairments in the recognition of faces, voices, and personal names. Brain Cogn 44:342–366. Roswandowitz, C., Kappes, C., Obrig, H. von Kriegstein K (2017) Voice-identity recognition deficits are induced by lesions in the temporal and inferior parietal lobe. Prep. Roswandowitz C., Maguinness C., von Kriegstein K., Deficits in voice-identity processing: acquired and developmental phonagnosia. Oxford Handb Voice Perception, under Rev. Van Lancker DR, Canter GJ (1982) Impairment of voice and face recognition in patients with hemispheric damage. Brain Cogn 1:185–195. Van Lancker DR, Kreiman J, Cummings J (1989) Voice perception deficits: neuroanatomical correlates of phonagnosia. J Clin Exp Neuropsychol 11:665–674. von Kriegstein K, Eger E, Kleinschmidt A, Giraud AL (2003) Modulation of neural responses to speech by directing attention to voices or verbal content. Brain Res Cogn Brain Res 17:48–55. von Kriegstein K, Smith DR, Patterson RD, Kiebel SJ, Griffiths TD (2010) How the human brain recognizes speech in the context of changing speakers. J Neurosci 30:629–638. Hintergrund: Die menschliche Stimme wird in der Fachliteratur als “auditorisches Gesicht” bezeichnet (Belin et al., 2004), weil sie neben der Sprache auch Informationen zu IdentitĂ€t und Emotionen des Sprechers vermittelt, die wir in der alltĂ€glichen Kommunikation mĂŒhelos wahrnehmen und verarbeiten. Zerebrale Pathologien, beispielsweise ischĂ€mische Hirninfarkte oder HĂ€morrhagien, können in der Folge verschiedene Kommunikationsdefizite verursachen. Ein bedeutsames Kommunikationsdefizit auf sprachlicher Ebene ist die Aphasie. Defizite der Stimmerkennung als eine EntitĂ€t der nicht-sprachlichen Ebene werden durch den Begriff Phonagnosie definiert. Phonagnosie beschreibt ein Defizit der Stimmidentifizierung einschließlich der Analyse akustischer vokaler Signale, dem Wiedererkennen bekannter Stimmen und der semantischen Assoziation einer erkannten Stimme (Roswandowitz C, Maguinness C, von Kriegstein K., in rev.). Klinische Studien wiesen die Existenz von Stimmerkennungsdefiziten als eine mögliche Folge zerebraler LĂ€sionen nach (Van Lancker and Canter, 1982; Van Lancker et al., 1989; Neuner and Schweinberger, 2000; Lang et al., 2009; Hailstone et al., 2011). Hierbei wurden insbesondere LĂ€sionen der rechten HemisphĂ€re als zugrundeliegende neuronale ReprĂ€sentationen hervorgehoben, allerdings gelang bisher keine exakte Lokalisierung der betroffenen Hirnregionen bei isolierten Stimmerkennungsdefiziten. In funktionellen MRT-Studien an gesunden Probanden zeigten sich stimmspezifische Areale entlang des rechten superioren temporalen Gyrus und Sulcus (STG/S) (Belin et al., 2000; von Kriegstein et al., 2003; Kriegstein and Giraud, 2004). Zielsetzung: Ziel der vorliegenden Patientenstudie war es, mögliche isolierte Stimmerkennungsdefizite als Folge einer zerebralen LĂ€sion nachzuweisen und zu charakterisieren. In einem zweiten Schritt widmete sich die Studie der Frage nach den neuronalen Korrelaten von Stimmerkennungsdefiziten. Wir stellten die Hypothesen auf, dass Stimmerkennungsdefizite (i) hĂ€ufiger bei Patienten mit rechtshemisphĂ€rischen LĂ€sionen und (ii) darĂŒber hinaus als isoliertes Stimmerkennungsdefizit gegenĂŒber kombinierten Defiziten von Stimm- und Gesichtererkennung auftreten können. Die Untersuchung von neuronalen Korrelaten dieser Defizite wurde in einer weiterfĂŒhrenden Analyse mittels Voxel-based lesion symptom mapping (VLSM) vorgenommen (Roswandowitz, C., Kappes, C., Obrig, H., von Kriegstein K., in prep.). Material und Methoden: 40 Patienten der Tagesklinik fĂŒr kognitive Neurologie der UniversitĂ€t Leipzig nahmen an der Studie teil. Alle Patienten wiesen unilaterale HirnlĂ€sionen (n = 14 links, 24 rechts) auf, die entweder Folge eines cerebrovaskulĂ€ren Ereignisses oder einer Tumorextraktion waren. Wir fĂŒhrten eine umfangreiche experimentelle Testreihe durch, die insbesondere der Stimmerkennung (Stimmlerntests und Tests zur Erkennung bekannter Stimmen) galt. Außerdem wurde die KontrollmodalitĂ€t der Gesichtererkennung und die Verarbeitung akustischer vokaler Signale (Pitch und Timbre) ĂŒberprĂŒft. Die individuelle Patientenwahrnehmung zur Stimm- und Gesichtererkennung erhoben wir in einem Fragebogen. Wir analysierten die Daten in IBM SPSS 22, fĂŒr die Gruppenvergleiche wendeten wir sowohl parametrische als auch nicht-parametrische Tests, Varianzanalysen und bivariate Korrelationen an. In einem weiterfĂŒhrenden Teil der Studie wurden die behavioralen Daten und strukturelle MRTs anhand von Voxel-based lesion symptom mapping (VLSM) analysiert. Ergebnisse: In der Datenanalyse fanden sich im Gruppenvergleich der Patientien mit rechts- bzw. linkshemisphĂ€rischen LĂ€sionen keine signifikanten Unterschiede in den Tests zur Stimmerkennung. Allerdings wiesen 9 Patienten, deren LĂ€sionen ausschließlich rechtshemisphĂ€risch lokalisiert waren, Stimmererkennungsdefizite auf. Die Lokalisation der LĂ€sionen innerhalb der rechten HemisphĂ€re war heterogen. WĂ€hrend sechs Patienten dieser Gruppe ein kombiniertes Defizit der Gesichter- und Stimmerkennung zeigten, fand sich bei drei Patienten ein isoliertes Defizit der Stimmerkennung. Wir charakterisieren in der vorliegenden Arbeit das spezifische Verhaltensmuster und die Lokalisation der LĂ€sionen dieser drei Patienten, die alle eine Beteiligung des rechten Temporallappens aufwiesen. Im Hinblick auf grundlegende Mechanismen der Stimmverarbeitung konnte insbesondere Timbre als relevantes akustisches Stimmsignal zur Erkennung neu erlernter Stimmen identifiziert werden. In der weiterfĂŒhrenden Analyse mittels VLSM wurden Assoziationen von (i) selektiven Defiziten der Stimmerkennung mit LĂ€sionen im rechten Temporallappen sowie (ii) der Stimm-Gesichter-Integration im rechten inferioren Parietallappen nachgewiesen. Schlussfolgerungen: Die vorliegende Studie hebt auf der Grundlage des untersuchten Patientenkollektivs die bedeutsame Rolle der rechten HemisphĂ€re bei der Stimmerkennung hervor. Wir identifizierten drei Patienten mit isolierten Stimmerkennungsdefiziten, deren LĂ€sionen sich im rechten Temporallappen befanden. Dieses Ergebnis stĂŒtzt bisherige Evidenz zur Stimmverarbeitung an gesunden Probanden (Belin et al., 2000; Kriegstein and Giraud, 2004). Die weiterfĂŒhrende VLSM-Analyse, auf der Grundlage des vorliegenden Patientenkollektivs, charakterisiert spezifische Areale des rechten Temporallappens und inferioren Parietallappens als neuronale Korrelate defizitĂ€rer Stimmerkennung. In Erweiterung bisheriger klinischer Evidenz liefert die vorliegende Studie neue Erkenntnisse zu neuronalen Korrelaten von isolierten Stimmerkennungsdefiziten und Defiziten der Stimm- Gesichter -Integration (Roswandowitz, C., Kappes, C., Obrig, H. von Kriegstein K., in prep.). Im klinischen Kontext erlaubt die Studie einen weiteren Schritt zum besseren VerstĂ€ndnis von nonverbalen Kommunikationsdefiziten, insbesondere Stimmerkennungsschwierigkeiten, nach zerebralen LĂ€sionen. Literatur: Belin P, Fecteau S, Bedard C (2004) Thinking the voice: neural correlates of voice perception. Trends Cogn Sci 8:129–135. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312. Hailstone JC, Ridgway GR, Bartlett JW, Goll JC, Buckley AH, Crutch SJ, Warren JD (2011) Voice processing in dementia: a neuropsychological and neuroanatomical analysis. Brain 134:2535–2547. Kriegstein K V, Giraud AL (2004) Distinct functional substrates along the right superior temporal sulcus for the processing of voices. Neuroimage 22:948–955. Lang CJ, Kneidl O, Hielscher-Fastabend M, Heckmann JG (2009) Voice recognition in aphasic and non-aphasic stroke patients. J Neurol 256:1303–1306. Neuner F, Schweinberger SR (2000) Neuropsychological impairments in the recognition of faces, voices, and personal names. Brain Cogn 44:342–366. Roswandowitz, C., Kappes, C., Obrig, H. von Kriegstein K (2017) , accepted, Obligatory and facultative brain regions for voice-identity recognition, Brain Roswandowitz C., Maguinness C., von Kriegstein K., Deficits in voice-identity processing: acquired and developmental phonagnosia. Oxford Handb Voice Perception, under Rev. Van Lancker DR, Canter GJ (1982) Impairment of voice and face recognition in patients with hemispheric damage. Brain Cogn 1:185–195. Van Lancker DR, Kreiman J, Cummings J (1989) Voice perception deficits: neuroanatomical correlates of phonagnosia. J Clin Exp Neuropsychol 11:665–674. von Kriegstein K, Eger E, Kleinschmidt A, Giraud AL (2003) Modulation of neural responses to speech by directing attention to voices or verbal content. Brain Res Cogn Brain Res 17:48–55. von Kriegstein K, Smith DR, Patterson RD, Kiebel SJ, Griffiths TD (2010) How the human brain recognizes speech in the context of changing speakers. J Neurosci 30:629–638

    Deficits in voice-identity processing: Acquired and developmental phonagnosia

    Get PDF
    The voice contains elementary social communication cues, conveying speech, as well as paralinguistic information pertaining to the emotional state and the identity of the speaker. In contrast to vocal-speech and vocal-emotion processing, voice-identity processing has been less explored. This seems surprising, given the day-to-day significance of person recognition by voice. A valuable approach to unravel how voice-identity processing is accomplished is to investigate people who have a selective deficit in recognising voices. Such a deficit has been termed phonagnosia. In the present chapter, we provide a systematic overview of studies on phonagnosia and how they relate to current neurocognitive models of person recognition. We review studies that have characterised people who suffer from phonagnosia following brain damage (i.e. acquired phonagnosia) and also studies, which have examined phonagnosia cases without apparent brain lesion (i.e. developmental phonagnosia). Based on the reviewed literature, we emphasise the need for a careful behavioural characterisation of phonagnosia cases by taking into consideration the multistage nature of voice-identity processing and the resulting behavioural phonagnosia subtypes

    Seven Computations of the Social Brain

    Get PDF
    The social environment presents the human brain with the most complex of information processing demands. The computations that the brain must perform occur in parallel, combine social and nonsocial cues, produce verbal and non-verbal signals, and involve multiple cognitive systems; including memory, attention, emotion, learning. This occurs dynamically and at timescales ranging from milliseconds to years. Here, we propose that during social interactions, seven core operations interact to underwrite coherent social functioning; these operations accumulate evidence efficiently – from multiple modalities – when inferring what to do next. We deconstruct the social brain and outline the key components entailed for successful human social interaction. These include (1) social perception; (2) social inferences, such as mentalizing; (3) social learning; (4) social signaling through verbal and non-verbal cues; (5) social drives (e.g., how to increase one’s status); (6) determining the social identity of agents, including oneself; and (7) minimizing uncertainty within the current social context by integrating sensory signals and inferences. We argue that while it is important to examine these distinct aspects of social inference, to understand the true nature of the human social brain, we must also explain how the brain integrates information from the social world
    corecore