
REVIEW ARTICLE
published: 13 January 2015

doi: 10.3389/fpsyg.2014.01543

Revisiting vocal perception in non-human animals: a review
of vowel discrimination, speaker voice recognition, and
speaker normalization
Buddhamas Kriengwatana1,2*, Paola Escudero3 and Carel ten Cate1,2

1 Behavioural Biology, Institute for Biology Leiden, Leiden University, Leiden, Netherlands
2 Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
3 The MARCS Institute, University of Western Sydney, Sydney, NSW, Australia

Edited by:

Janet F. Werker, The University of
British Columbia, Canada

Reviewed by:

LouAnn Gerken, University of Arizona,
USA
Andrew J. Lotto, University of
Arizona, USA
Marilyn Vihman, University of York, UK

*Correspondence:

Buddhamas Kriengwatana,
Behavioural Biology, Institute for
Biology Leiden, Leiden University,
Sylviusweg 72, Leiden 2333BE,
Netherlands
e-mail: bkrieng@alumni.uwo.ca

The extent to which human speech perception evolved by taking advantage of predis-
positions and pre-existing features of vertebrate auditory and cognitive systems remains
a central question in the evolution of speech. This paper reviews asymmetries in vowel
perception, speaker voice recognition, and speaker normalization in non-human animals –
topics that have not been thoroughly discussed in relation to the abilities of non-human
animals, but are nonetheless important aspects of vocal perception. Throughout this
paper we demonstrate that addressing these issues in non-human animals is relevant and
worthwhile because many non-human animals must deal with similar issues in their natural
environment. That is, they must also discriminate between similar-sounding vocalizations,
determine signaler identity from vocalizations, and resolve signaler-dependent variation
in vocalizations from conspecifics. Overall, we find that, although plausible, the current
evidence is insufficiently strong to conclude that directional asymmetries in vowel
perception are specific to humans, or that non-human animals can use voice characteristics
to recognize human individuals. However, we do find some indication that non-human
animals can normalize speaker differences. Accordingly, we identify avenues for future
research that would greatly improve and advance our understanding of these topics.
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INTRODUCTION
The answer to how humans perceive speech has eluded researchers
for over half a century (Jusczyk and Luce, 2002; Samuel, 2011).
Remarkably, studies in non-human animals (hereafter referred to
as animals) have shown that animals can also solve certain prob-
lems that are crucial to human speech perception, such as lack
of invariance and compensation for co-articulation (e.g., Kluen-
der et al., 1987; Lotto et al., 1997a). The results of these pioneering
studies have shown remarkable similarities, but also differences, in
perception, discrimination, and sensitivity to acoustic properties
of speech in humans and animals (reviewed by Kuhl, 1981; Lotto
et al., 1997b; Kluender et al., 2005; Beckers, 2011; Carbonell and
Lotto, 2014; ten Cate, 2014). Consequently, many researchers have
adopted the general auditory approach outlined by Diehl et al.
(2004), which is a framework for the idea that human speech per-
ception is achieved via general learning mechanisms and auditory
principles common to humans and animals.

From a general auditory approach, categorical perception
occurs at natural psychophysical boundaries constrained by the
functioning of the auditory system (Kuhl and Miller, 1975), com-
pensation for coarticulation is possible by contrasting spectral
patterns of high and low energy in particular frequency regions
(Lotto et al., 1997b; Diehl et al., 2004), and the lack of invariance in
speech can be solved in ways similar to concept formation for visual
categories that cannot be defined by any single cue (Kluender et al.,

1987). Furthermore, phonetic category learning by humans and
animals can potentially be achieved via statistical learning and per-
ceptual learning mechanisms. Statistical learning can account for
how human infants (Maye et al., 2002), but also rats (Pons, 2006),
use the distributional properties of acoustic input to learn phonetic
categories, such that exposure to a speech sound continuum with
unimodal or bimodal distribution can result in acquisition of one
or two phonetic categories, respectively. Statistical learning also
appears to underlie our ability to use recurring sound sequences
in speech to denote word boundaries (Saffran et al., 1996; Peluc-
chi et al., 2009), which is also observed when stimuli are tones or
musical sounds (Saffran et al., 1999; Gebhart et al., 2009). Thus,
statistical learning is a general learning mechanism that is not spe-
cific to speech, but is useful for speech perception because it can
be used to map acoustic properties onto phonetic categories in a
probabilistic manner (Holt et al., 1998).

Altogether, these studies culminate to form the current dom-
inant view that at least several processes involved in speech
perception in humans can be traced back to predispositions, learn-
ing mechanisms and rudimentary features of vertebrate cognitive
and auditory systems also present in other species (e.g., Car-
bonell and Lotto, 2014). Nevertheless, an enduring and central
question in the evolution of speech and language is whether
our extraordinary abilities to deal with the enormous variety
of speech sound and voices is a matter of degree compared to
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the abilities of animals, or the result of an evolutionary quan-
tum leap resulting in novel and unique specialized mechanisms.
Animals have, of course, never been under selection to process
speech sounds or recognize voices. If they would also process
their own communication sounds similar to how humans do,
this might indicate a more general mechanism, but might also
indicate an independently evolved perceptual mechanism highly
specific to their own vocal communication. Hence, a much
stronger indication for the presence of general perceptual mecha-
nisms would be if animals process human speech sounds similar
to humans. This would indicate that our ability to handle the
complexities of speech likely arose from an amalgamation and
adaptation of simpler mechanisms present in other vocalizing
animals. Comparative studies can thus provide an invaluable
window into the uniqueness and origin of speech processing
mechanisms.

The objective of this paper is to extend the discussion of
species-shared perceptual mechanisms to aspects of human speech
perception and voice recognition that have not been consid-
ered central to conventional theories of speech perception, but
nonetheless cannot be ignored. Specifically, we focus our review on
asymmetries in vowel perception, speaker voice recognition, and
speaker normalization and underline how these areas of research
can benefit from incorporating comparative perspectives. Review-
ing these topics contributes significantly to the debate about the
nature and specialness (or generality) of human speech percep-
tion because asymmetries in vowel perception may play a crucial
role in the development of infant speech perception (Polka and
Bohn, 2011), voice perception impacts speech perception (e.g.,
Nygaard and Pisoni, 1998), and intrinsic speaker normalization
is just as meaningful an issue as extrinsic speaker normaliza-
tion because both are concerned with the problem of perceptual
invariance in vowel perception (e.g., Johnson, 2005). Thus, our
manuscript provides the first detailed review necessary for a more
thorough understanding of whether the mechanisms that mediate
asymmetries in vowel perception, voice recognition, and speaker
normalization in humans arose from an evolutionary quantum
leap, or from tuning and remodeling of existing mechanisms
that are also present in non-human species (whether by common
descent or by independent evolution unconnected to the presence
of speech).

ASYMMETRIES IN VOWEL PERCEPTION
Polka and Bohn (2003, 2011) review numerous studies on vowel
discrimination in human infants and adults. These studies demon-
strate a striking directional asymmetry: discrimination of native
or non-native vowels by infants and of non-native vowels by adults
is easier when the change is from a vowel occupying a more cen-
tral position in the F1/F2 vowel space to a vowel occupying a more
peripheral position (e.g., from /e/ to /i/). Of the dozens of studies
reviewed, only one showed that a change from a more to a less
peripheral vowel was easier to discriminate than a change in the
reverse direction (Best and Faber, 2000 as cited in Polka and Bohn,
2003, 2011), and this was attributed to effects of vowel rounding
in F3. Polka and Bohn (2003, 2011) assert that this directional
asymmetry helps infants to acquire phonetic categories because
the most peripheral vowels /i/, /a/, and /u/ found in all human

languages act as stable referents from which infants can perceptu-
ally organize their vowel space (see, Polka and Bohn, 2011 for these
ideas in the context of the natural referent vowel framework). The
authors propose that these biases are specific to humans due to
their role in organizing the vowel space and presence very early in
development. Emphatically, Polka and Bohn (2003, 2011) claim
that these directional asymmetries do not reflect a general audi-
tory processing bias and therefore will not be present in other
animals.

To support their claim of species-specificity in the asymme-
tries observed in human vowel perception, Polka and Bohn (2003)
examined vowel discrimination data from red-winged blackbirds
(Agelaius phoeniceus), pigeons (Columba livia), and cats (Hienz
et al., 1981, 1996). While red-winged blackbirds and cats (but not
pigeons) also exhibited asymmetries in vowel perception, discrim-
ination was almost always easier when formant frequencies were
shifted upward (e.g., from /O/ to /A/ or from /U/ to /æ/).

These results, however, do not resolutely show that the cen-
tral to peripheral bias found in humans is uniquely human. This
is because these experiments do not test discrimination between
more and less peripheral vowels. Hienz et al. (1981) tested dis-
crimination of the peripheral vowels /O/, /A/, /æ/, /E/, which does
not test whether animals find the change from a central vowel
to a peripheral vowel easier to discriminate. Hienz et al. (1996)
tested discrimination between the slightly more central vowel /U/
and the peripheral vowels /A/, /æ/, and /E/, and found that the
change from /U/ to /A/, /U/ to /æ/, and //U/ to /E/ was easier to
discriminate than the change in the opposite direction (e.g., /A/ to
/U/). Therefore, these results in fact suggest that animals also find
the change from a central vowel to peripheral vowel easier to dis-
criminate. Nevertheless, differences in discrimination by humans
and non-human animals on the same speech contrasts are cer-
tainly needed to conclude that the asymmetry patterns observed
in humans are truly unique to humans. The only contrast that was
tested in both humans and red-winged blackbirds was the /E/-/æ/
contrast. In this case, 6–8 and 10–12 month-old human infants
found the discrimination easier if the change occurred from /E/
to /æ/, whereas birds found the change in the reverse direction
easier to discriminate (Hienz et al., 1981; Polka and Bohn, 1996).
This directional asymmetry was recently found in even younger
infants (2–3 month-olds) that were exposed to /E/ and /æ/ vowels
that were bimodally distributed along an [E-æ] continuum (Wan-
rooij et al., 2014), and was treated as further evidence to support
the central to peripheral bias in humans (Bohn and Polka, 2014).
However, as both /E/ and /æ/ occupy peripheral positions in vowel
space, this asymmetry can only falsify the central to peripheral
bias if we assume that the change from /E/ to /æ/ is easier to dis-
criminate because /æ/ is closer to the vowel referent /a/ than /E/ is
to the vowel referent /i/ – according to the natural vowel referent
framework, /a/, /i/, and /u/ are vowel referents because they are
the most peripheral vowels (Polka and Bohn, 2011). Whether this
assumption is correct is not explicitly stated in Polka and Bohn
(2003, 2011), but if it is then it is the only vowel contrast so far that
could be argued to reflect a human-specific vowel discrimination
bias.

Missing from Polka and Bohn’s (2003, 2011) reviews was work
by Sinnott (1989), who compared detection and discrimination of
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synthetic English vowels by human adults and monkeys (vervets
Cercopithecus aethiops and Japanese macaque Macaca fuscata).
Subjects had to discriminate between two sets of vowels: /i-I-E-
æ-Ç-2-A/ (mostly front vowels with higher F2) and /2-A-O-U-u/
(mostly back vowels with lower F2). Sinnott (1989) used a repeat-
ing standard XA task, where subjects pressed a lever to hear a
repeating standard vowel followed by two repetitions of a com-
parison vowel. Subjects had to release the lever if they perceived
the comparison vowel to be different from the standard vowel.
Every vowel in each of the two sets served as both standard and
comparison vowels. We used these data to assess the asymmetries
in monkey vowel discrimination (Sinnott, 1989, Table II, p. 560).
These directional asymmetries are portrayed visually in Figure 1.
We only considered directional asymmetries to be present when
the difference between the percent of time a vowel comparison was
missed following a particular standard was greater than 25. For
example, the /u-U/ asymmetry for vervets was included because
vervets missed the change from /u/ to /U/ 93 percent of the time,
but missed the change from /U/ to /u/ only 2% of the time.

Figure 1 shows that, for back vowels, vervets perform simi-
larly to red-winged blackbirds and cats (Hienz et al., 1981, 1996).
That is, their discrimination of back vowels is enhanced if the
F1 and F2 of the comparison vowel are increased relative to the
standard vowel. However, vervets and macaques (but not adult
humans) most likely perceive decreases in F2 of these vowels as
decreases in intensity (Sinnott, 1989), and earlier work by Sin-
nott et al. (1985) showed that vervets and macaques have difficulty
detecting decrements in intensity. That is, humans, macaques, and
vervets required similar intensities to be able to detect front vow-
els, but monkeys required back vowels to be presented ∼10–20 dB
louder than humans to be able to detect them (Sinnott, 1989).
Examination of F1, F2, and F3 values of the vowel stimuli showed
that monkeys’ detection thresholds were correlated with decreases
in F2. This suggested that monkeys required higher intensities
in order to be able to detect vowels that decrease in F2 (Sinnott,

FIGURE 1 | Plot of the asymmetries in vowel discrimination of vervets

from Sinnott (1989). Arrows represent the direction of change that was
easier to discriminate. For macaques, only the A-2 contrast was easier to
discriminate than the 2-A contrast. F1 and F2 values of vowel tokens are
those reported in Sinnott (1989).

1989). Decreased sensitivity to pure tones at lower frequencies
of less than 1.0 kHz has also been reported in monkeys com-
pared to humans (Owren et al., 1988). Consequently, perceptual
asymmetries involving back vowel contrasts may simply reflect the
difficulty that monkeys have if the decrease in F2 from the stan-
dard to comparison vowel is perceived as a decrease in intensity.
When vowel detection thresholds of humans and monkeys are
most similar (i.e., for the front vowels /i/ and /I/; Sinnott, 1989),
vervets show the same directional asymmetry as human infants
(Swoboda et al., 1978; Dejardins and Trainor, 1998). Therefore,
we might expect infants to show a similar directional asymmetry
when tested on low back contrasts if they also perceive decreases in
F2 as decreases in vowel intensity. This is because infants, like mon-
keys, are unable to discriminate stimuli that decrease in intensity
(Sinnott and Aslin, 1985).

Therefore, to demonstrate that the directional asymmetries
proposed by Polka and Bohn’s (2011) natural referent vowel
framework are exclusive to humans, we see an absolute need for
more studies on humans and animals that use identical stimuli
and comparable experimental designs in order to enable between-
species comparisons of asymmetries in vowel perception. In
particular, we encourage studies in human infants that test for per-
ceptual asymmetries between low back contrasts that have already
been examined in animals, such has the /U/ – /A/ contrast (where
cats, red-winged blackbirds, and monkeys find the change from /U/
to /A/ easier than the change from /A/ to /U/), and the /u/ – /U/ and
/A/ – /2/ contrasts (where monkeys’ performances contradict the
predictions of the central-to-peripheral asymmetry hypothesis).
Lastly, to properly delineate the function of perceptual asymme-
tries in vowel perception in humans, we must also understand
the causes and possible functions of directional asymmetries in
auditory perception in animals. For example, do animals exhibit
directional asymmetries in detecting a change in their species-
specific communication, and do they make use of these perceptual
asymmetries? Or are directional asymmetries a by-product of
properties of auditory systems (and thus have no functional use)?

Regardless of whether directional biases in vowel perception
are found to be uniquely human, general perceptual biases in
human audition may further our understanding of the existence
of vowel asymmetries. Various auditory perceptual biases have
been found, such as sounds with increasing intensity being per-
ceived as closer than sounds than sounds with decreasing intensity
(Neuhoff, 1998), ramped sounds being perceived as having greater
intensity and longer duration than damped sounds (Irino and
Patterson, 1996; Schlauch et al., 2001), and frequency modulated
sounds being easier to detect among pure tones distractors than
the reverse (Cusack and Carlyon, 2003). Some of these asym-
metries appear to have plausible evolutionary explanations. For
instance, rising harmonic sound intensities are reliable indicators
of an approaching sound source, thus humans and monkeys per-
ceive the source as being closer than reality when sound intensity
increases (but not decreases) in order to account for a “margin of
safety” (Neuhoff, 1998; Ghazanfar et al., 2002).

SPEAKER VOICE RECOGNITION
The speech signal not only contains linguistic information, but
also nonlinguistic information about the speaker from his/her
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voice, such as age, gender, and socio-linguistic background. Voices
are sounds generated by vibrations of the vocal folds in the lar-
ynx, which are then modified by the vocal tract, leading to an
enhancement of particular frequencies (i.e., formant frequencies).
The fundamental frequency and formant frequencies in a per-
son’s voice are influenced by the size of their vocal folds and
vocal tract, which is why men, with their larger vocal folds and
vocal tract, tend to have lower fundamental frequencies and for-
mant frequencies than women and children (reviewed in Belin
et al., 2004; Latinus and Belin, 2011). Voice differences between
speakers may be related to slight variations in the vocal apparatus
of different individuals. Differences in the way the vocal appa-
ratus is used, either intentionally or inadvertently, contributes
to the distinctiveness of voices. For example, nasal voices are
produced when the velum is in a slightly lowered position and
breathy voices are produced when the vocal folds remain slightly
parted during speaking (see Story and Titze, 2002). Human
adults can reliably detect a speaker’s approximate age, gender,
and accented speech (Hartman, 1979; Flege, 1984; Mullennix
et al., 1995; Bachorowski and Owren, 1999), and can also identify
familiar speakers from hearing their voices (Bricker and Pruzan-
sky, 1976). Importantly, speaker voice characteristics interact
with linguistic comprehension during speech perception: famil-
iar speakers elicit better performance in a word identification task
than unfamiliar speakers (Nygaard and Pisoni, 1998), and vowel,
word, and consonant-vowel identification are more accurate in
single speaker compared to multiple speaker conditions (Strange
et al., 1976, 1983; Assmann et al., 1982; Magnuson and Nusbaum,
2007). Knowledge of a speaker’s accent and gender also increases
word and vowel identification accuracy, respectively (Johnson,
2005; Trude and Brown-Schmidt, 2012; Smith, 2014). Conse-
quently, a complete account of how humans perceive speech also
requires consideration of the role that voices play in influencing
speech perception.

Perceiving speaker identity from voice information is impor-
tant for human social interactions. In adults, mechanisms involved
in analyzing linguistic and speaker information appear to be par-
tially dissociable (reviewed in Belin et al., 2004, 2011; Belin, 2006).
Neuroimaging studies demonstrate that the brain can differenti-
ate “who” from “what” is being said (Formisano et al., 2008), and
cortical regions in the mid and anterior superior temporal gyrus
respond selectively to human voices and are sensitive to speaker
identity (Imaizumi et al., 1997; Belin et al., 2000; Nakamura et al.,
2001; Belin and Zatorre, 2003; von Kriegstein et al., 2003). For
pre-linguistic infants, extracting the identity of the speaker is
likely just as important as deciphering meaning in speech. Even
in utero, infants respond differently to the voice of their mother
compared to a stranger (Kisilevsky et al., 2003), and behavioral
and neuroimaging findings confirm that very young infants can
indeed discriminate their mother’s voice from a stranger’s voice
(DeCasper and Fifer, 1980; Dehaene-Lambertz et al., 2010), their
father’s voice from other males (DeCasper and Prescott, 1984), and
male from female voices (Jusczyk et al., 1992). Interestingly, the
age at which infants become able to identify voices of individuals
other than their mother’s remains unsettled (Brown, 1979; Hepper
et al., 1993; Kisilevsky et al., 2003, 2009; Lee and Kisilevsky, 2014).
In any case, these studies indicate that specialization for processing

human voices appears to develop over infancy in conjunction
with language experience (Grossmann et al., 2010; Vouloumanos
et al., 2010; Johnson et al., 2011; Friendly et al., 2014; Schultz et al.,
2014).

Humans are not the only species that can extract different types
of information from conspecific vocalizations. The ability to dis-
tinguish and recognize individual conspecifics in the context of
neighbor-stranger recognition has been found in numerous ani-
mals (including invertebrates) across the entire animal kingdom
(see Tibbetts and Dale, 2007). For instance, Kentucky warblers
and hooded warblers know both identity and location of each of
their neighbors, and will respond aggressively to neighbor songs
that are broadcasted at incorrect territorial boundaries (Godard,
1991; Godard and Wiley, 1995). Female great tits can discrim-
inate between the highly similar songs of their mate and male
neighbors (Blumenrath et al., 2007), and may eavesdrop on ter-
ritorial mate-neighbor singing interactions in order to assess
potential extra-pair partners (Otter et al., 1999). Vocal kin recog-
nition has also been repeatedly demonstrated in various birds
and mammals (e.g., Rendall et al., 1996; Holekamp et al., 1999;
McComb et al., 2000; Illmann et al., 2002; Sharp et al., 2005;
Janik et al., 2006; Akçay et al., 2014). Parent-offspring recogni-
tion by non-nesting penguins such as the king penguin offers
a very strong case of vocal recognition because the chicks must
accurately identify the calls of its parents within a crowded and
noisy colony with almost no aid from visual or spatial cues.
To identify parents, king penguin chicks pay attention to fre-
quency modulations over time in conjunction with a beat analysis
(Jouventin et al., 1999; Aubin et al., 2000). In contrast, chicks
of nesting penguin species, such as Adelie penguin and gen-
too penguin, that can use nesting site as an additional cue for
parent identification will use simpler identification mechanisms
that rely primarily on pitch and ignore frequency modulations
(Jouventin and Aubin, 2002).

The difference between nesting and non-nesting penguins
described above highlights the fact that individual recognition
by auditory means may be achieved in many ways depending
on ecological pressures and evolutionary history. For instance,
birds can recognize a conspecific by the songs in his repertoire,
by a particular variation in his song, or by his voice characteris-
tics (Weary and Krebs, 1992). European starlings that each have
a large song repertoire do not recognize other individual star-
lings by voice characteristics but rather by memorizing song motifs
of different individuals (Gentner and Hulse, 1998; Gentner et al.,
2000). On the other hand, great tits also possess a song repertoire
but rely on voice characteristics to identify conspecific individuals
(Weary and Krebs, 1992). In these experiments, recognition was
assessed by training birds to discriminate songs from two indi-
viduals and testing their ability to discriminate other previously
unheard songs from the same individuals (Weary and Krebs, 1992;
Gentner and Hulse, 1998; Gentner et al., 2000). Animals are also
capable of heterospecific vocal recognition of familiar individu-
als, as demonstrated in some monkey species that differentiated
between the vocalizations of familiar and unfamiliar members of
other monkey species (Candiotti et al., 2013). Observations like
this suggests that animals may also be able to distinguish different
humans based on their voice characteristics.
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Identification of particular human individuals can be useful
for animals because they can behave adaptively toward threaten-
ing and unthreatening humans by interrupting normal behavior
or ignoring them, respectively. Visual discrimination and recog-
nition of individual humans has been documented in several
animals such as the magpie (Pica pica; Lee et al., 2011), mock-
ingbird (Mimus polyglottos; Levey et al., 2009), crow (Corvus
brachyrynchos; Marzluff et al., 2010, 2012), and octopus (Ente-
roctopus dofleini; Anderson et al., 2010). Some evidence also
exists that animals raised in close contact with humans can
distinguish between different human voices, which we have
summarized in Table 1. In most of these studies, recognition
was measured by preferential looking times when animals were
presented with human faces and a voice that did or did not
match one of the faces being shown. The design and interpre-
tation of these studies are similar to those reported for infant
studies (see Houston-Price and Nakai, 2004): longer looking
times when faces and voices were mismatched were taken as
an indication that subject’s expectations about the relationship
between speaker face and speaker voice (i.e., speaker identity) were
violated.

Of the studies in Table 1, only Sliwa et al. (2011) and Proops
and McComb (2012) have shown that animals can identify human
individuals by their voices because the researchers tested dis-
crimination among multiple familiar humans. This is critically
important for proving individual identification, as discriminat-
ing familiar from unfamiliar individuals is recognition at the
class-level, not the individual level (Tibbetts and Dale, 2007). In

our opinion, however, even these two studies do not definitively
prove human voice recognition because they used the animal’s
name or phrases that the animal may have been frequently exposed
to. This could lead animals to form an association between the spe-
cific phrase(s) and the speaker, such that they may not generalize
their recognition to novel utterances by the speaker. Thus, animals’
performances in these studies may not necessarily reflect genuine
recognition of different human speakers based on voice charac-
teristics. We encourage future studies in human voice recognition
to incorporate this method of training (i.e., initial discrimina-
tion between sounds from two familiar speakers and then testing
their ability to recognize different sounds from the same speakers)
because it eliminates class-level recognition and learned associa-
tions between speaker and specific phrases as confounding factors.
Alternatively, researchers may also consider using a habituation-
dishabituation paradigm, where subjects are habituated to various
speech sounds from one speaker and then tested on whether they
dishabituate to speech sounds of a different speaker (e.g., Johnson
et al., 2011).

Another fundamental component that these studies do not
address is what auditory cues animals may be using to discrim-
inate different human voices, and whether they use the same
cues to identify conspecific calls. The question of which cues are
used to identify speakers is highly relevant to humans as well,
as there is currently no consensus on this matter (see Creel and
Bregman, 2011). Some studies have found that adults use pitch
and/or formants to identify speakers (e.g., Remez et al., 1987;
Fellowes et al., 1997; Baumann and Belin, 2010), whereas others

Table 1 | List of studies that have tested animals’ discrimination of different human voices.

Reference Species Method Comparison Stimulus

Adachi et al. (2007) Dogs Face-voice matching FvU Animal’s name

Sliwa et al. (2011) Rhesus macaques Face-voice matching FvF Six standardized phrases

(e.g., “bonjour tout le monde”, “voila”)

Lampe and Andre (2012) Horses Live person-voice matching FvU Standardized phrase

“Hey, [animal’s name], what are you doing

there? Are you having a good day today? We

have many riding lessons this week don’t we?

The semester has started at JMU. You be a

good boy/girl today!”

Proops and McComb (2012) Horses Live person-voice matching FvU

FvF

Animal’s name

Wascher et al. (2012) Crows Playback FvU “Hey”

Saito and Shinozuka (2013) Cats Habituation–dishabituation FvU Animal’s name

Ratcliffe et al. (2014) Dogs Live person-voice matching Male vs. female Four standardized phrases

“Hey!”, “Come on then”, “Good dog!”, “What’s

this?”

McComb et al. (2014) Elephants Playback Male vs. female

Man vs. boy

Masaai vs. Kamba

standardized sentence

“Look, look over there, a group of elephants is

coming”

*Note: FvU, familiar versus unfamiliar voice, FvF, familiar versus familiar voice.
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have suggested that these spectral cues are important for gen-
der determination while temporal patterns are used for individual
identification (Fellowes et al., 1997). Furthermore, not all listeners
use the same cues to distinguish voices, and different cues may
be more important for distinguishing particular voices (Kreiman
et al., 1992).

We are not aware of any studies that investigate what acous-
tic cues animals may be using to discriminate or identify human
voices, although this is surely a question that merits rigorous inves-
tigation. Work by Zoloth et al. (1979) suggests that conspecifics
and heterospecifics may attend to different cues, as Japanese
macaques used peak of a frequency inflection while other monkey
species used initial pitch to discriminate between coos of other
Japanese macaques. But if animals use the same cues for recogni-
tion of conspecific vocalization as heterospecific vocalization, then
we expect that only some species will use voice characteristics for
individual recognition. That is, following the example described
above, we would expect great tits but not European starlings to
recognize different human voices because great tits discriminate
conspecifics based on voice characteristics while starlings discrim-
inate conspecifics based on song motifs (Weary and Krebs, 1992;
Gentner and Hulse, 1998; Gentner et al., 2000). Even then, great
tits may rely on different parameters than human listeners, as the
song parameters that show significant variation between individ-
ual great tits are the number of phrases in a song, duration of the
first phase minus the last phase, maximum frequency, and pitch
(Weary,1990; Weary et al., 1990). The acoustic similarities between
human speech and species-specific vocalizations may also deter-
mine which cues are used. For example, zebra finches distance
calls have harmonic structures that resemble vowel formants in
human speech (Dooling et al., 1995). This similarity may explain
why zebra finches perform similarly to humans during discrimi-
nation of speech sounds (Dooling et al., 1995; Ohms et al., 2012),
and why neurons in a secondary auditory area of the zebra finch
brain respond more strongly to human speech and species-specific
calls than calls of other songbirds that are acoustically less similar
(Chew et al., 1996).

Findings from animal studies are valuable for understand-
ing the extent to which human voices can be differentiated and
recognized without the need for human voice-specific neural net-
works (Leaver and Rauschecker, 2010; Belin et al., 2011). However,
research on human voice processing in animals to date is scarce,
and of the studies that do exist, the ability to recognize voices
(defined as discriminating between different familiar voices, as
opposed to discriminating between familiar and unfamiliar voices)
has yet to be compellingly demonstrated. An understanding of
the differences and similarities of acoustic cues and mechanisms
used for acoustic recognition of conspecifics and heterospecifics
is also currently severely lacking. We strongly believe that these
issues must be addressed in future studies if we are to dis-
cover parallels between voice processing in humans and animals,
and consequently shed light onto the evolution of human voice
perception.

SPEAKER NORMALIZATION
The counterpart of being able to extract information about speaker
identity is being able to handle acoustic variations of the same

utterance caused by speaker differences. The acoustic realizations
of phonemes and words can vary tremendously between speakers,
due to physical, contextual, environmental, and sociolinguistic
factors (i.e., age and gender differences in vocal tract size and
shape, coarticulation, background noise, and accents). Conse-
quently, speaker normalization refers to our ability to recognize
phonologically identical utterances despite high acoustic variabil-
ity across speakers (Johnson, 2005). A compelling example of the
immense variability in the speech signal resulting from differences
between speakers is in vowel production. Vowels are reliably distin-
guished by the first and second formant frequencies (F1 and F2);
however, F1 and F2 values of vowels produced by different speakers
(and especially different genders) are highly variable within a vowel
category and greatly overlap between categories, to the extent that
the acoustic distance within a vowel category can be just as large as
the acoustic distance between vowel categories (Potter and Stein-
berg, 1950; Peterson and Barney, 1952; Hillenbrand et al., 1995).
Consequently, studies that seek to understand our impressive abil-
ity to normalize vowels despite this intensive overlap (Peterson
and Barney, 1952; Strange et al., 1976, 1983; Assmann et al., 1982)
can provide convincing evidence of what processes contribute to
speaker normalization.

Researchers have not yet reached a consensus on how vowel
normalization in humans is achieved (reviewed in Nearey, 1989;
Johnson et al., 1999; Adank, 2003; Johnson, 2005). Some argue
that normalization occurs via low-level auditory perceptual pro-
cesses, by computation of particular formant ratios that allow
vowel categories to be distinctively represented in discrete regions
in acoustic space (Potter and Steinberg, 1950; Syrdal and Gopal,
1986; Miller, 1989), or by using F0 or F3 values (i.e., fundamen-
tal frequency and third formant frequency) that are correlated
with vocal tract length to disambiguate ambiguous F1 and
F2 values (e.g., Ladefoged and Broadbent, 1957; Fujisaki and
Kawashima, 1968; Wakita, 1977; Nearey, 1989). A recent paper
suggests that humans normalize for speaker differences by com-
puting ratios between F1 and F2 in relation to F3. Specifically,
Monahan and Idsardi (2010) showed that transforming F1 and F2
values into F1/F3 and F2/F3 ratios effectively eliminated variation
between speakers in a corpus of American English vowels from
Hillenbrand et al. (1995). They also provided neurophysiologi-
cal evidence that the human brain is sensitive to F1/F3 ratios,
complementing prior work showing that the brain is sensitive
to F2/F3 ratios (Monahan and Idsardi, 2010). Alternatively, oth-
ers argue that listeners form rich perceptual representations of
speaker identity by incorporating vocal tract length with other
learned factors such as familiarity or socio-cultural expectations;
these abstract speaker representations subsequently influence
vowel normalization (i.e., “talker normalization”; Johnson, 1990;
Johnson et al., 1999).

Both types of views have merits and drawbacks, and they have
also both received empirical support. The auditory perceptual
approaches can account for how vowel normalization occurs with
limited linguistic capabilities and familiarity with novel speakers
(Monahan and Idsardi, 2010). Behavioral and neurophysiologi-
cal studies indicate that humans normalize speaker differences in
vowels without linguistic comprehension or attention. In adults,
extraction and processing of vowel formants takes place at a
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subcortical and pre-attentional level (von Kriegstein et al., 2006;
Monahan and Idsardi, 2010; Tuomainen et al., 2013), and that even
pre-linguistic infants can categorize vowels of different speakers
and genders (Kuhl, 1983). On the other hand, talker normalization
approaches explain how listeners can learn speaker-specific and
language-specific patterns of speech (Johnson et al., 1999). Several
findings support the idea that learning of non-acoustic speaker-
related variables is indeed involved in accommodating for speaker
differences in phonetic realizations (Samuel and Kraljic, 2009).
For instance, expectations of speaker gender can alter phoneme
boundaries (Johnson et al., 1999), single speaker and familiar
speakers conditions yield better vowel identification (Strange et al.,
1976, 1983; Assmann et al., 1982; Mullennix et al., 1989; Nygaard
and Pisoni, 1998), and infants and adults can rapidly adapt to
accented speech (Clarke and Garrett, 2004; Bradlow and Bent,
2008; White and Aslin, 2011; Cristia et al., 2012; van Heugten and
Johnson, 2014)

Comparative studies in animals represent one way to address
whether speaker normalization mechanisms are unique to
humans. Although normalization is necessary for word recogni-
tion, normalization also occurs for phonetic segments. Indeed,
normalization has been demonstrated in 6 month-old infants
before they acquire words, and at the level of vowels (Kuhl, 1983).
That is, non-verbal infants can normalize speech even before they
have learned words. Even for the few words that 6–9 month-old
infants do seem to recognize (Bergelson and Swingley, 2012), nor-
malization may not have been required for recognition, since
the words were spoken by a familiar speaker (i.e., a parent).
Therefore, it is important to discern what perceptual processes
infants use to normalize speech, and whether these mechanisms
are rudimentary processes that are available to infants because they
are species-shared or non-speech related perceptual mechanisms.
Unfortunately, only a handful of animal studies have considered
speaker variability as a factor, even though the ability to account
for speaker-dependent variation is fundamental for speech percep-
tion. A possible reason for lack of interest in how animals handle
speaker-dependent variation in speech may have to do with skep-
ticism regarding what, if any, benefits this investigation would
yield. In other words, as suggested by Trout (2001), what reason
would an animal have to normalize speaker variation in speech?
What advantages would it confer to the animal? And even if ani-
mals do appear to normalize speech, are they applying similar
mechanisms to humans? We argue that studying speaker nor-
malization in non-human animals is ecologically valid because
animals also have to deal with signal variability when recogniz-
ing vocalizations made by other individuals of the same species
(conspecifics) and other individuals of a different species (het-
erospecifics). On the other hand, whether animals and humans
attend to the same cues and have shared mechanisms for normal-
izing human speech is an open and exciting question that is yet to
be answered.

Signal variability in animal vocalizations can be caused by
inter-individual differences, such as physical size (Fitch, 1997,
1999; Growcott et al., 2011), intra-individual differences, such
as affective state (e.g., stress; Perez et al., 2012), and a combina-
tion of inter-and intra-individual differences such as fluctuations
in endocrine state (Galeotti et al., 1997; Soma et al., 2002). Yet

animals must still be able to acquire information about the type of
vocalization (such as calls indicating predator versus food source)
and in some contexts, the identity of the signaler. Thus, in par-
allel to how humans can extract linguistic information despite
speaker-dependent variation in the speech signal, animals can also
categorize vocalizations of conspecific as well as heterospecific
vocalizations despite individual variation in the signal. Indeed,
responding to hetereospecific signals is widespread in many ani-
mals because of the advantages it confers to the receiver (Seppänen
et al., 2007). For example, red-breasted nuthatches (Sitta canaden-
sis) are sensitive to variations in black-capped chickadee (Poecile
atricapillus) mobbing calls that encode information about the size
and degree of threat of predators (Templeton and Greene, 2007),
avian brood parasites may eavesdrop on sexual signals of host
species to assess parental quality (Parejo and Avilés, 2007), and
hornbills can respond to differentially to alarm calls of Diana
monkeys that signal significant and non-significant threats for the
hornbills (Rainey et al., 2004).

The red-breasted nuthatches’ extraction of information from
the black-capped chickadee chick-a-dee call is particularly com-
pelling because of the highly sophisticated nature of this vocal-
ization, both at a contextual and an acoustic level. In addition to
signaling predators, the chick-a-dee call is used in other contexts,
such as to maintain group cohesion and coordinate group move-
ments (Ficken et al., 1978). Significant individual differences in
the chick-a-dee call can occur in every 100-Hz interval between
500 and 7000 Hz, with greater variation between individuals than
within individuals of the same group in various temporal and
spectral parameters (Mammen and Nowicki, 1981). Acoustically,
the call is made of four note types (A, B, C, D) sung in a fixed
sequence, but note types can be repeated or omitted to create 100s
of variations such as ACCDD, AABBCD, or ADDDD (Hailman
et al., 1985). Black-capped chickadees can also modify spectral
components of the D note so that this note converges amongst
members of the same group (Nowicki, 1989).

Importantly, the same variations in syntax (number of D
notes), temporal and spectral characteristics (duration and inter-
val between D notes, frequency overtone spacing and bandwidth)
are also used to convey information about predator threat (Tem-
pleton et al., 2005). That is, the same acoustic properties that
encode predator threat also vary depending on the individual.
Yet despite the apparent overlap between acoustic parameters that
signal individual/group identity and predator threat, nuthatches
are still able to obtain information relevant for their behaviors.
Thus, this constitutes a naturally occurring example of normaliza-
tion of heterospecific vocal signals by a non-human animal (i.e.,
disregarding irrelevant variation caused by individual differences
in the vocalizations of another species). In this light, the idea that
non-human animals can account for speaker differences in human
vocalizations seems quite plausible, and in the following sections
we review studies that suggest that speaker normalization of speech
is not a uniquely human ability.

The ability to normalize speaker differences in naturally spoken
vowels or correlates of gender differences in synthetic vowels (i.e.,
F0, which is generally higher in female than male voices and is uti-
lized in perception of voice gender by humans; Hillenbrand et al.,
1995; Mullennix et al., 1995; Lavner et al., 2000) has been tested
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in cats, rhesus monkeys, dogs, chimpanzees, chinchillas, budgeri-
gars, rats, and ferrets (Dewson, 1964; Dewson et al., 1969; Baru,
1975; Burdick and Miller, 1975; Kojima and Kiritani, 1989; Dool-
ing and Brown, 1990; Eriksson and Villa, 2006; Bizley et al., 2013).
All of these studies reported that animals were able to differenti-
ate stimuli based on vowel category and ignore speaker-dependent
variation. However, we argue that none of these studies robustly
demonstrate speaker normalization. This is because the experi-
ments on cats, dogs, rhesus monkeys, chimpanzees, chinchillas,
and budgerigars tested discrimination of the vowels /i/, /u/, and
or /a/ (Dewson, 1964; Dewson et al., 1969; Baru, 1975; Burdick
and Miller, 1975; Kojima and Kiritani, 1989). As these vowels
occupy distant acoustic spaces, the variability between these vowel
categories is likely larger than the variability between speakers.
Consequently, a stronger test for vowel normalization would use
vowel categories where speaker differences and vowel category dif-
ferences have relatively equal variation. This was addressed by
Dooling and Brown (1990), who found that budgerigars could
discriminate between the psychoacoustically closer vowels /i/ and
/E/ produced by different male speakers. However, they did not
examine whether budgerigars could also discriminate these vow-
els produced by different female speakers, so we cannot be sure
that budgerigars can in fact normalize these vowels because much
of the acoustic overlap between vowel categories are due to gender
differences (see Peterson and Barney, 1952). Lastly, the experi-
ments in rats, ferrets, and chimpanzees used synthetic vowels that
differed only in one acoustic parameter (Kojima and Kiritani,1989;
Eriksson and Villa, 2006; Bizley et al., 2013). This is problematic
for conclusions about speaker normalization because voices differ
in various dimensions, and no single acoustic cue has been found
that reliably predicts speaker characteristics that can be used to
normalize vowels.

As far as we know, Ohms et al. (2010) are the only researchers
that have clearly demonstrated that an animal can normalize vow-
els of different speakers. Specifically, Ohms et al. (2010) found that
zebra finches can generalize their discrimination of two words that
differ only in vowels (wIt and wEt) to multiple, different male or
female speakers after being trained to discriminate these words
from a single speaker of the same sex. Their results show that birds
are indeed learning something about the phonemic differences
between wIt and wEt, and are able to apply these criteria to unfa-
miliar speakers while ignoring speaker-dependent differences in
production of these words. Notably, zebra finches could also rec-
ognize the same word produced by male and female speakers after
learning the word from a set of speakers of the other sex (Ohms
et al., 2010; see also ten Cate, 2014). Remarkably, this ability seems
lacking in human infants (Houston and Jusczyk, 2000). A logical
follow up of these results would be a test for normalization of iso-
lated vowels – an ability demonstrated by human adults (Strange
et al., 1976, 1983; Assmann et al., 1982). This is because the birds
in Ohms et al. (2010) could have been using other acoustic cues
instead of vowel differences during generalization, such as for-
mant transitions between consonant and vowel. Recently, a study
by Engineer et al. (2013) reported that rats too could normalize
speaker variation in consonants. Rats could learn to discriminate
between the words dad and tad produced by a female speaker and
generalize this discrimination to novel male and female speakers.

With the same stimuli, rats could also learn to distinguish between
the word dad spoken by a female speaker and the same word that
was pitch-shifted down by one octave, and subsequently general-
ize this discrimination to novel male and female voices (Engineer
et al., 2013). This shows that, like humans, animals can extract
different types of information from speech (see section on speaker
voice recognition).

Griebel and Oller (2012) provide another interesting case that
may potentially reflect normalization of speaker differences by a
Yorkshire terrier (Bailey). They found that Bailey could correctly
retrieve 13 out of 16 familiar toys when verbally requested by a
female experimenter with a German accent and a male exper-
imenter with a western American English (California) accent,
even though Bailey’s owner was female with a southern Amer-
ican English (Tennessee) accent. Bailey’s accurate performance
with these accented voices was not due to training or familiar-
ity, as the experimenters had never previously requested the toys
from Bailey. Again, we do not know which acoustic parameters
Bailey was using to recognize familiar words spoken by unfamil-
iar speakers. The authors note that toy names often consisted of
“two or more words that included intonation and alliteration or
assonance cues that may have made them easier to remember
and discriminate” (Griebel and Oller, 2012). This suggests that
Bailey may not have needed to normalize speaker differences in
vowel production in order to recognize the words, but possibly
relied on prosodic cues – another feature in speech that tamarins
(Ramus et al., 2000), rats (Toro et al., 2003), Java sparrows (Naoi
et al., 2012), and zebra finches (Spierings and ten Cate, 2014) are
sensitive to.

Other studies on word discrimination in dogs have been con-
ducted, but do not offer clear evidence for speaker normalization.
This is because these studies do not control for non-verbal cues
from the trainer that dogs could rely on to perform correct actions
(see Mills, 2005), or they test dogs’ ability to retrieve objects
from the verbal commands of a single familiar trainer (Warden
and Warner, 1928; Kaminski et al., 2004; Fukuzawa et al., 2005).
Another study did not explicitly state in the methods whether com-
mands were consistently given by a single trainer or by multiple
trainers (Ramos and Ades, 2012). In a similar vein, Warfield et al.
(1966) showed that cats could discriminate the words “bat” and
“cat,” but they did not test whether discrimination was affected if
word tokens were produced by multiple speakers.

Responding to categories of heterospecific communication sig-
nals is commonly found in the animal kingdom, and though
few studies provide direct evidence, there is some indication that
animals may be able to normalize speaker differences in human
speech. Yet replication and extension of positive findings such as
those by Ohms et al. (2010) and Engineer et al. (2013) are com-
pulsory. In particular, we point out that the ability to categorize
speech sounds from different speakers and disregard non-essential
information is not an absolute demonstration of normalization,
which is why researchers must test whether animals and humans
apply the same normalization mechanisms. For example, do both
humans and animals successfully categorize vowels of multiple
speakers by computing formant ratios as proposed by Monahan
and Idsardi (2010), or by using other normalization algorithms
that have been previously proposed (reviewed in Escudero and
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Bion, 2007). Such tests would be invaluable in verifying whether
similar behaviors exhibited by humans and animals are mediated
by the same or different mechanisms.

CONCLUSION
In this review we have discussed the current state of animal
research in three aspects of speech and voice perception. We have
presented arguments and evidence that caution against prema-
ture conclusions about whether asymmetries in vowel perception
reflect an innate and uniquely human bias that is present in
inexperienced language learners and not attributable to general
properties of the vertebrate or mammalian auditory system. We
have noted that there is a lack of definitive evidence for animal
recognition of individual human voices in the literature, and we
have suggested ways to improve experimental designs that will
more assuredly test whether animals can use voice characteris-
tics to discern different humans. Lastly, we infer with reservation
from two recent experiments that animals may be able to nor-
malize speaker differences. Consequently, we strongly encourage
researchers to conduct more carefully designed and rigorously
controlled experiments to validate the human-specific claims of
asymmetries in vowel perception, voice perception, and speaker
normalization that we have described. Studies that identify what
acoustic cues animals rely on to perform either individual voice
perception or speaker normalization are also seriously needed as
they are invaluable for our understanding of how these behaviors
are accomplished.

With accumulating empirical results, we can sooner reach the
stage where findings from these three areas can be synthesized to
tackle broader questions in speech perception. An example would
be whether and at what level of processing speaker identification
and speaker normalization mechanisms interact during speech
perception. Some researchers believe that in humans the analysis
of linguistic information and speaker identity during speech per-
ception may be segregated into dissociable but interacting neural
pathways (although the stage at which the integration of these two
streams occurs is undetermined; Belin et al., 2004). Comparative
research on whether animals also analyze conspecific vocalizations
and/or human speech for communicative content and signaler
identity separately would reveal whether or not this compartmen-
talization occurred as a distinctive human adaptation that enables
us to map overlapping and highly variable acoustic information
onto correct phonetic categories while simultaneously processing
speaker identity related cues.

We have emphasized throughout this paper that address-
ing these topics in animals is neither insignificant nor extra-
neous because many social animals encounter similar chal-
lenges to those humans face when discriminating similar-
sounding vocalizations/phonemes, determining signaler/speaker
characteristics from vocalizations/speech, and resolving between-
individual variation in order to perceive the content of vocal-
izations/speech. It is our hope that this review will have
cogently demonstrated that expanding our view to include how
animals perceive speech can offer valuable insights for more
thorough conceptualization of the specificity, simplicity (or
complexity), and specialization of human speech perception
mechanisms.
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