91 research outputs found

    Distributed Semantic Social Networks: Architecture, Protocols and Applications

    Get PDF
    Online social networking has become one of the most popular services on the Web. Especially Facebook with its 845Mio+ monthly active users and 100Mrd+ friendship relations creates a Web inside the Web. Drawing on the metaphor of islands, Facebook is becoming more like a continent. However, users are locked up on this continent with hardly any opportunity to communicate easily with users on other islands and continents or even to relocate trans-continentally. In addition to that, privacy, data ownership and freedom of communication issues are problematically in centralized environments. The idea of distributed social networking enables users to overcome the drawbacks of centralized social networks. The goal of this thesis is to provide an architecture for distributed social networking based on semantic technologies. This architecture consists of semantic artifacts, protocols and services which enable social network applications to work in a distributed environment and with semantic interoperability. Furthermore, this thesis presents applications for distributed semantic social networking and discusses user interfaces, architecture and communication strategies for this application category.Soziale Netzwerke gehören zu den beliebtesten Online Diensten im World Wide Web. Insbesondere Facebook mit seinen mehr als 845 Mio. aktiven Nutzern im Monat und mehr als 100 Mrd. Nutzer- Beziehungen erzeugt ein eigenständiges Web im Web. Den Nutzern dieser Sozialen Netzwerke ist es jedoch schwer möglich mit Nutzern in anderen Sozialen Netzwerken zu kommunizieren oder aber mit ihren Daten in ein anderes Netzwerk zu ziehen. Zusätzlich dazu werden u.a. Privatsphäre, Eigentumsrechte an den eigenen Daten und uneingeschränkte Freiheit in der Kommunikation als problematisch empfunden. Die Idee verteilter Soziale Netzwerke ermöglicht es, diese Probleme zentralisierter Sozialer Netzwerke zu überwinden. Das Ziel dieser Arbeit ist die Darstellung einer Architektur verteilter Soziale Netzwerke welche auf semantischen Technologien basiert. Diese Architektur besteht aus semantischen Artefakten, Protokollen und Diensten und ermöglicht die Kommunikation von Sozialen Anwendungen in einer verteilten Infrastruktur. Darüber hinaus präsentiert diese Arbeit mehrere Applikationen für verteilte semantische Soziale Netzwerke und diskutiert deren Nutzer-Schnittstellen, Architektur und Kommunikationsstrategien. 

    Developing a Benchmark Suite for Semantic Web Data from Existing Workflows

    Get PDF
    This paper presents work in progress towards developing a new benchmark for federated query processing systems. Unlike other popular benchmarks, our queryset is not driven by technical evaluation, but is derived from workflows established by the pharmacology community. The value of this queryset is that it is realistic but at the same time it comprises complex queries that test all features of modern query processing systems

    Executing, Comparing, and Reusing Linked Data-Based Recommendation Algorithms With the Allied Framework

    Get PDF
    International audienceData published on the Web following the Linked Data principles has resulted in a global data space called the Web of Data. These principles led to semantically interlink and connect different resources at data level regardless their structure, authoring, location, etc. The tremendous and continuous growth of the Web of Data also implies that now it is more likely to find resources that describe real-life concepts. However, discovering and recommending relevant related resources is still an open research area. This chapter studies recommender systems that use Linked Data as a source containing a significant amount of available resources and their relationships useful to produce recommendations. Furthermore, it also presents a framework to deploy and execute state-of-the-art algorithms for Linked Data that have been re-implemented to measure and benchmark them in different application domains and without being bound to a unique dataset

    Linked Data Entity Summarization

    Get PDF
    On the Web, the amount of structured and Linked Data about entities is constantly growing. Descriptions of single entities often include thousands of statements and it becomes difficult to comprehend the data, unless a selection of the most relevant facts is provided. This doctoral thesis addresses the problem of Linked Data entity summarization. The contributions involve two entity summarization approaches, a common API for entity summarization, and an approach for entity data fusion

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications

    Deliverable D9.3 Final Project Report

    Get PDF
    This document comprises the final report of LinkedTV. It includes a publishable summary, a plan for use and dissemination of foreground and a report covering the wider societal implications of the project in the form of a questionnaire

    Scalable Data Integration for Linked Data

    Get PDF
    Linked Data describes an extensive set of structured but heterogeneous datasources where entities are connected by formal semantic descriptions. In thevision of the Semantic Web, these semantic links are extended towards theWorld Wide Web to provide as much machine-readable data as possible forsearch queries. The resulting connections allow an automatic evaluation to findnew insights into the data. Identifying these semantic connections betweentwo data sources with automatic approaches is called link discovery. We derivecommon requirements and a generic link discovery workflow based on similaritiesbetween entity properties and associated properties of ontology concepts. Mostof the existing link discovery approaches disregard the fact that in times ofBig Data, an increasing volume of data sources poses new demands on linkdiscovery. In particular, the problem of complex and time-consuming linkdetermination escalates with an increasing number of intersecting data sources.To overcome the restriction of pairwise linking of entities, holistic clusteringapproaches are needed to link equivalent entities of multiple data sources toconstruct integrated knowledge bases. In this context, the focus on efficiencyand scalability is essential. For example, reusing existing links or backgroundinformation can help to avoid redundant calculations. However, when dealingwith multiple data sources, additional data quality problems must also be dealtwith. This dissertation addresses these comprehensive challenges by designingholistic linking and clustering approaches that enable reuse of existing links.Unlike previous systems, we execute the complete data integration workflowvia a distributed processing system. At first, the LinkLion portal will beintroduced to provide existing links for new applications. These links act asa basis for a physical data integration process to create a unified representationfor equivalent entities from many data sources. We then propose a holisticclustering approach to form consolidated clusters for same real-world entitiesfrom many different sources. At the same time, we exploit the semantic typeof entities to improve the quality of the result. The process identifies errorsin existing links and can find numerous additional links. Additionally, theentity clustering has to react to the high dynamics of the data. In particular,this requires scalable approaches for continuously growing data sources withmany entities as well as additional new sources. Previous entity clusteringapproaches are mostly static, focusing on the one-time linking and clustering ofentities from few sources. Therefore, we propose and evaluate new approaches for incremental entity clustering that supports the continuous addition of newentities and data sources. To cope with the ever-increasing number of LinkedData sources, efficient and scalable methods based on distributed processingsystems are required. Thus we propose distributed holistic approaches to linkmany data sources based on a clustering of entities that represent the samereal-world object. The implementation is realized on Apache Flink. In contrastto previous approaches, we utilize efficiency-enhancing optimizations for bothdistributed static and dynamic clustering. An extensive comparative evaluationof the proposed approaches with various distributed clustering strategies showshigh effectiveness for datasets from multiple domains as well as scalability on amulti-machine Apache Flink cluster

    What are Links in Linked Open Data? A Characterization and Evaluation of Links between Knowledge Graphs on the Web

    Get PDF
    Linked Open Data promises to provide guiding principles to publish interlinked knowledge graphs on the Web in the form of findable, accessible, interoperable and reusable datasets. We argue that while as such, Linked Data may be viewed as a basis for instantiating the FAIR principles, there are still a number of open issues that cause significant data quality issues even when knowledge graphs are published as Linked Data. Firstly, in order to define boundaries of single coherent knowledge graphs within Linked Data, a principled notion of what a dataset is, or, respectively, what links within and between datasets are, has been missing. Secondly, we argue that in order to enable FAIR knowledge graphs, Linked Data misses standardised findability and accessability mechanism, via a single entry link. In order to address the first issue, we (i) propose a rigorous definition of a naming authority for a Linked Data dataset (ii) define different link types for data in Linked datasets, (iii) provide an empirical analysis of linkage among the datasets of the Linked Open Data cloud, and (iv) analyse the dereferenceability of those links. We base our analyses and link computations on a scalable mechanism implemented on top of the HDT format, which allows us to analyse quantity and quality of different link types at scale.Series: Working Papers on Information Systems, Information Business and Operation
    • …
    corecore