
Distributed Semantic Social
Networks: Architecture, Protocols

and Applications

Der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

DISSERTATION
zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat)

im Fachgebiet
Informatik

vorgelegt

von Dipl.-Inf. Sebastian Tramp

geboren am 29. September 1977 in Leipzig

Die Annahme der Dissertation wurde empfohlen von:
1. Prof. Dr. Klaus-Peter Fähnrich, Universität Leipzig

2. Prof. Dr. Roberto Garcia, University of Lleida, Spain

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 27.10.2014 mit dem Gesamtprädikat

magna cum laude.

author:
Dipl. Inf. Sebastian Tramp

title:
Distributed Semantic Social Networks: Architecture, Protocols and Applica-
tions

institution:
Institute of Computer Science, Faculty of Mathematics and Computer
Science, University of Leipzig

bibliographic data:
2014, XX, 136p., 31 illus. in color., 5 tables, 20 listings

supervisors:
Prof. Dr. Klaus-Peter Fähnrich
Prof. Dr. Sören Auer

© April 2014

A B S T R A C T

Online social networking has become one of the most popular ser-
vices on the Web. Especially Facebook with its 845Mio+ monthly
active users and 100Mrd+ friendship relations creates a Web inside
the Web. Drawing on the metaphor of islands, Facebook is becoming
more like a continent. However, users are locked up on this continent
with hardly any opportunity to communicate easily with users on
other islands and continents or even to relocate trans-continentally.
In addition to that, privacy, data ownership and freedom of commu-
nication issues are problematically in centralized environments. The
idea of distributed social networking enables users to overcome the
drawbacks of centralized social networks. The goal of this thesis is
to provide an architecture for distributed social networking based on
semantic technologies. This architecture consists of semantic artifacts,
protocols and services which enable social network applications to
work in a distributed environment and with semantic interoperability.
Furthermore, this thesis presents applications for distributed seman-
tic social networking and discusses user interfaces, architecture and
communication strategies for this application category.

Z U S A M M E N FA S S U N G

Soziale Netzwerke gehören zu den beliebtesten Online Diensten
im World Wide Web. Insbesondere Facebook mit seinen mehr als
845 Mio. aktiven Nutzern im Monat und mehr als 100 Mrd. Nutzer-
Beziehungen erzeugt ein eigenständiges Web im Web. Den Nutzern
dieser Sozialen Netzwerke ist es jedoch schwer möglich mit Nutzern
in anderen Sozialen Netzwerken zu kommunizieren oder aber mit
ihren Daten in ein anderes Netzwerk zu ziehen. Zusätzlich dazu wer-
den u.a. Privatsphäre, Eigentumsrechte an den eigenen Daten und
uneingeschränkte Freiheit in der Kommunikation als problematisch
empfunden. Die Idee verteilter Soziale Netzwerke ermöglicht es, diese
Probleme zentralisierter Sozialer Netzwerke zu überwinden. Das Ziel
dieser Arbeit ist die Darstellung einer Architektur verteilter Soziale
Netzwerke welche auf semantischen Technologien basiert. Diese Ar-
chitektur besteht aus semantischen Artefakten, Protokollen und Dien-
sten und ermöglicht die Kommunikation von Sozialen Anwendungen
in einer verteilten Infrastruktur. Darüber hinaus präsentiert diese
Arbeit mehrere Applikationen für verteilte semantische Soziale Netz-
werke und diskutiert deren Nutzer-Schnittstellen, Architektur und
Kommunikationsstrategien.

iii

P U B L I C AT I O N S

related in the context of this thesis

Some ideas and figures have appeared previously in the following
publications. Please note that the author of this thesis is listed with
two names (S.Tramp and S.Dietzold).

S. Auer, S. Dietzold, and T. Riechert. OntoWiki - A Tool for Social, Se-
mantic Collaboration. In I. F. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, editors, The Seman-
tic Web - ISWC 2006, 5th International Semantic Web Conference, ISWC
2006, Athens, GA, USA, November 5-9, 2006, Proceedings, volume 4273

of Lecture Notes in Computer Science, pages 736–749, Berlin / Heidel-
berg, 2006. Springer. ISBN 3-540-49029-9. doi: 10.1007/11926078_53.

S. Auer, S. Dietzold, J. Lehmann, and T. Riechert. OntoWiki: A tool for
social, semantic collaboration. In N. F. Noy, H. Alani, G. Stumme,
P. Mika, Y. Sure, and D. Vrandecic, editors, Proceedings of the Workshop
on Social and Collaborative Construction of Structured Knowledge (CKC
2007) at the 16th International World Wide Web Conference (WWW2007)
Banff, Canada, May 8, 2007, volume 273 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007a.

S. Auer, S. Dietzold, and T. Riechert. Social Software für Kollaborative
Wissensarbeit. In C. Müller and N. Gronau, editors, Analyse sozialer
Netzwerke und Social Software - Grundlagen und Anwendungsbeispiele,
pages 235–256. GITO-Verlag – Expertenwissen für die industrielle
Praxis, 2007b.

S. Auer, S. Dietzold, and M. Martin. Entwicklung semantischer We-
bapplikationen: Auf dem Weg vom Dokumenten- zum Daten-Web.
T3N Magazin, 12:30–33, 2008.

S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumueller.
Triplify: Light-weight linked data publication from relational
databases. In J. Quemada, G. León, Y. S. Maarek, and W. Nejdl,
editors, Proceedings of the 18th International Conference on World Wide
Web, WWW 2009, Madrid, Spain, April 20-24, 2009, pages 621–630.
ACM, 2009. ISBN 978-1-60558-487-4. doi: 10.1145/1526709.1526793.

S. Dietzold and S. Auer. Access Control on RDF Triple Stores from a
Semantic Wiki Perspective. In C. Bizer, S. Auer, and L. Miller, editors,
Proc. of 2nd Workshop on Scripting for the Semantic Web at ESWC, Budva,
Montenegro, June 12, 2006, volume 183 of CEUR Workshop Proceedings
ISSN 1613-0073, June 2006.

iv

S. Dietzold and S. Auer. Realisierung von Sozialen Netzwerken im
Semantic Web mit OntoWiki. i-com - Zeitschrift für interaktive und
kooperative Medien, 3:20–24, 2009. doi: 10.1524/icom.2009.0032.

S. Dietzold, S. Auer, and T. Riechert. Kolloborative Wissensarbeit mit
OntoWiki. In Proceedings of the INFORMATIK 2006 Workshop: Bildung
von Sozialen Netzwerken in Anwendungen der "Social Software", 2006.

S. Dietzold, T. Riechert, and S. Auer. Semantische Datenintegration mit
Hilfe von Semantic Web und Wiki-Technologien. In K.-P. Fähnrich,
M. Thränert, and P. Wetzel, editors, Integration Engineering: Moti-
vation – Begriffe – Methoden – Anwendungsfälle, Leipziger Beiträge
zur Informatik, pages 277–283. Leipziger Informatik-Verbund (LIV),
Leipzig, Germany, 2007.

S. Dietzold, S. Hellmann, and M. Peklo. Using JavaScript RDFa Wid-
gets for Model/View Separation inside Read/Write Websites. In
Proceedings of the 4th Workshop on Scripting for the Semantic Web, 2008a.

S. Dietzold, J. Unbehauen, and S. Auer. xOperator - Interconnecting
the Semantic Web and Instant Messaging Networks. In Proceedings
of 5th European Semantic Web Conference (ESWC 2008), 1-5 June, 2008,
Tenerife, Spain., pages 19–33, 2008b.

S. Dietzold, J. Unbehauen, and S. Auer. xOperator - An Extensible
Semantic Agent for Instant Messaging Networks. In Proceedings of
5th European Semantic Web Conference (ESWC 2008), 1-5 June, 2008,
Tenerife, Spain., pages 787—791, 2008c.

T. Ermilov, N. Heino, S. Tramp, and S. Auer. OntoWiki Mobile
— Knowledge Management in your Pocket. In Proceedings of the
ESWC2011, 2011.

N. Heino, S. Dietzold, M. Martin, and S. Auer. Developing Seman-
tic Web Applications with the OntoWiki Framework. In T. Pelle-
grini, S. Auer, K. Tochtermann, and S. Schaffert, editors, Networked
Knowledge - Networked Media, volume 221 of Studies in Computational
Intelligence, pages 61–77. Springer, Berlin / Heidelberg, 2009. doi:
10.1007/978-3-642-02184-8_5.

C. Rieß, N. Heino, S. Tramp, and S. Auer. EvoPat – Pattern-Based
Evolution and Refactoring of RDF Knowledge Bases. In Proceedings
of the 9th International Semantic Web Conference (ISWC2010), Lecture
Notes in Computer Science, Berlin / Heidelberg, 2010. Springer. doi:
10.1007/978-3-642-17746-0_41.

H. Story, A. Sambra, and S. Tramp. Friending On The Social Web. In
Federated Social Web Europe 2011, Berlin June 3rd-5th 2011, 2011.

S. Tramp, P. Frischmuth, T. Ermilov, and S. Auer. Weaving a Social
Data Web with Semantic Pingback. In P. Cimiano and H. Pinto,

v

editors, Proceedings of the EKAW 2010 - Knowledge Engineering and
Knowledge Management by the Masses; 11th October-15th October 2010 -
Lisbon, Portugal, volume 6317 of Lecture Notes in Artificial Intelligence
(LNAI), pages 135–149, Berlin / Heidelberg, October 2010a. Springer.
doi: 10.1007/978-3-642-16438-5_10.

S. Tramp, P. Frischmuth, and N. Heino. OntoWiki – a Semantic
Data Wiki Enabling the Collaborative Creation and (Linked Data)
Publication of RDF Knowledge Bases. In O. Corcho and J. Voelker,
editors, Demo Proceedings of the EKAW 2010, October 2010b.

S. Tramp, N. Heino, S. Auer, and P. Frischmuth. Making the Semantic
Data Web easily writeable with RDFauthor. In L. A. et al., editor,
Proceedings of 7th Extended Semantic Web Conference (ESWC 2010), vol-
ume 6089 of Lecture Notes in Computer Science, pages 436—440, Berlin
/ Heidelberg, 2010c. Springer. doi: 10.1007/978-3-642-13489-0_39.

S. Tramp, N. Heino, S. Auer, and P. Frischmuth. RDFauthor: Employing
RDFa for collaborative Knowledge Engineering. In P. Cimiano
and H. Pinto, editors, Proceedings of the EKAW 2010 - Knowledge
Engineering and Knowledge Management by the Masses; 11th October-
15th October 2010 - Lisbon, Portugal, volume 6317 of Lecture Notes
in Artificial Intelligence (LNAI), pages 90–104, Berlin / Heidelberg,
October 2010d. Springer.

S. Tramp, T. Ermilov, P. Frischmuth, and S. Auer. Architecture of a
Distributed Semantic Social Network. In Federated Social Web Europe
2011, Berlin June 3rd-5th 2011, 2011a.

S. Tramp, P. Frischmuth, N. Arndt, T. Ermilov, and S. Auer. Weav-
ing a Distributed, Semantic Social Network for Mobile Users. In
Proceedings of the ESWC2011, 2011b.

S. Tramp, H. Story, A. Sambra, P. Frischmuth, M. Martin, and S. Auer.
Extending the WebID Protocol with Access Delegation. In A. Harth,
O. Hartig, and J. Sequeda, editors, Proceedings of the Third Inter-
national Workshop on Consuming Linked Data (COLD2012), CEUR
Workshop Proceedings. CEUR-WS.org, 2012.

S. Tramp, P. Frischmuth, T. Ermilov, S. Shekarpour, and S. Auer. An
Architecture of a Distributed Semantic Social Network. Semantic
Web, 5(1):77–95, 2014.

J. Unbehauen, S. Hellmann, M. Martin, S. Dietzold, and S. Auer. xOp-
erator - Chat with the Semantic Web, 2008. Poster @ the ISWC
2008.

vi

related in the context of semantic web research in gen-
eral

In addition to these publications, the following publications of the au-
thor are not directly related to the topic of this thesis but nethertheless
cover the same research area in a more general sense:

S. Auer, R. Doehring, and S. Dietzold. LESS - Template-Based Syndica-
tion and Presentation of Linked Data. In Proceedings of 7th Extended
Semantic Web Conference (ESWC2010) 30 May – 3 June, Heraklion,
Greece, May 2010. doi: 10.1007/978-3-642-13489-0_15.

S. Auer, L. Bühmann, C. Dirschl, O. Erling, M. Hausenblas, R. Isele,
J. Lehmann, M. Martin, P. N. Mendes, B. van Nuffelen, C. Stadler,
S. Tramp, and H. Williams. Managing the life-cycle of Linked Data
with the LOD2 Stack. In Proceedings of International Semantic Web
Conference (ISWC 2012), 2012. 22

T. Berger, S. Dietzold, and T. Riechert. Der Einsatz semantischer
Daten-Wikis in frühen Phasen des Requirements Engineering. In
S. Auer, K. Lauenroth, S. Lohmann, and T. Riechert, editors, Agiles
Requirements Engineering für Softwareprojekte mit einer großen Anzahl
verteilter Stakeholder, volume XVIII of Leipziger Beiträge zur Informatik,
pages 27–38. Leipziger Informatik-Verbund (LIV), 2009.

S. Dietzold. Generating RDF Models from LDAP Directories. In
S. Auer, C. Bizer, and L. Miller, editors, Proceedings of the SFSW 05
Workshop on Scripting for the Semantic Web , Hersonissos, Crete, Greece,
May 30, 2005, volume 135 of CEUR Workshop Proceedings. CEUR-WS,
2005.

S. Dietzold and S. Auer. Integrating SPARQL Endpoints into Directory
Services. In S. Auer, C. Bizer, T. Heath, and G. A. Grimnes, editors,
Proceedings of the ESWC’07 Workshop on Scripting for the Semantic Web,
SFSW 2007, Innsbruck, Austria, May 30, 2007, volume 248 of CEUR
Workshop Proceedings. CEUR-WS.org, 2007a.

S. Dietzold and S. Auer. Accessing RDF Knowledge Bases via LDAP
Clients. In T. Pellegrini and S. Schaffert, editors, Proceedings of Inter-
national Conference Semantics Systems 2007, I-SEMANTICS’07, Graz,
Austria; September 5 – 7, 2007, pages 290–296. Journal of Univeral
Computer Science, 09 2007b.

S. Dietzold and T. Riechert. Realisierung einer Web-basierten Plat-
tform für das verteilte Requirements Engineering auf Basis des
Application-Frameworks OntoWiki. In S. Auer, K. Lauenroth,
S. Lohmann, and T. Riechert, editors, Agiles Requirements Engineering

vii

für Softwareprojekte mit einer großen Anzahl verteilter Stakeholder, vol-
ume XVIII of Leipziger Beiträge zur Informatik, pages 49–58. Leipziger
Informatik-Verbund (LIV), 2009.

P. Frischmuth, T. Riechert, and S. Tramp. Realisierung einer web-
basierten Plattform für die verteilte Akquise von Professorendaten
auf Basis des OntoWiki-Frameworks. In U. Morgenstern and
T. Riechert, editors, Catalogus Professorum Lipsiensis – Konzeption,
technische Umsetzung und Anwendungen für Professorenkataloge im Se-
mantic Web, volume XXI of Leipziger Beiträge zur Informatik, pages
65–75. Leipziger Informatik-Verbund (LIV), 2010.

D. Gerber, M. Frommhold, M. Martin, S. Tramp, and S. Auer. Learning
Semantic Web Technologies with the Web-Based SPARQLTrainer.
In Proceedings of the 6th International Conference on Semantic Systems
2010, ACM, Graz / Austria, September 2010.

N. Heino, S. Tramp, and S. Auer. Managing Web Content using Linked
Data Principles — Combining semantic structure with dynamic con-
tent syndication. In Proceedings of the 35th Annual IEEE International
Computer Software and Applications Conference (COMPSAC 2011). IEEE
Computer Society, 2011.

J. Lehmann, S. Auer, L. Bühmann, and S. Tramp. Class expression
learning for ontology engineering. Journal of Web Semantics, 9:71 –
81, 2011.

S. Lohmann, S. Dietzold, S. Auer, and J. Ziegler, editors. Proceedings
of the International Workshop on Interacting with Multimedia Content
in the Social Semantic Web (IMC-SSW 2008), volume 417 of CEUR
Workshop Proceedings, December 2008a.

S. Lohmann, P. Heim, S. Auer, S. Dietzold, and T. Riechert. Seman-
tifying Requirements Engineering – The SoftWiki Approach. In
Proceedings of the 4th International Conference on Semantic Technologies
(I-SEMANTICS ’08), J.UCS, pages 182–185, 2008b.

S. Otto and S. Dietzold. Caucasian Spiders - A faunistic Database on
the spiders of the Caucasus - http://caucasus-spiders.info. Newsl.
Brit. Arachn. Soc., 108:14, 2007.

T. Riechert, U. Morgenstern, S. Auer, S. Tramp, and M. Martin. Knowl-
edge Engineering for Historians on the Example of the Catalogus
Professorum Lipsiensis. In P. F. Patel-Schneider, Y. Pan, P. Hit-
zler, P. Mika, L. Zhang, J. Z. Pan, I. Horrocks, and B. Glimm,
editors, Proceedings of the 9th International Semantic Web Confer-
ence (ISWC2010), volume 6497 of Lecture Notes in Computer Sci-
ence, pages 225–240, Shanghai / China, 2010a. Springer. doi:
10.1007/978-3-642-17749-1_15.

viii

T. Riechert, U. Morgenstern, S. Auer, S. Tramp, and M. Martin. The
Catalogus Professorum Lipsiensis – Semantics-based Collaboration
and Exploration for Historians. In Proceedings of the 9th International
Semantic Web Conference (ISWC2010), Lecture Notes in Computer
Science, Shanghai / China, 2010b. Springer.

C. Rieß, N. Heino, S. Tramp, and S. Auer. EvoPat – Pattern-Based
Evolution and Refactoring of RDF Knowledge Bases. In Proceedings
of the 9th International Semantic Web Conference (ISWC2010), Lecture
Notes in Computer Science, Berlin / Heidelberg, 2010. Springer. doi:
10.1007/978-3-642-17746-0_41.

ix

A C K N O W L E D G M E N T S

The thesis was written within the research network Agile Knowledge
Engineering and Semantic Web (AKSW) hosted by the Chair of Busi-
ness Information Systems (BIS) at the University of Leipzig. I thank my
supervisors Prof. Dr. Sören Auer and Prof. Dr. Klaus-Peter Fähnrich
for granting me the freedom to develop and pursue my research ideas
that have lead to this work.

I want to thank all my colleagues in the AKSW network – I am glad
to be part of this group! I thank all my co-authors and committers
of the respective open source projects. In particular, I want to thank
Philipp Frischmuth, Michael Martin, Jörg Unbehauen, Tim Ermilov,
Natanael Arndt, Norman Heino and Thomas Riechert for their scien-
tific input and implementation work. I want to thank Nadine Jänicke
and Amrapali Zaveri for their support in language issues and Daniel
for sitting beside me in the library.

Finally, I thank Tina for supporting me in stressful times and man-
aging our family.

x

C O N T E N T S

i introduction and preliminaries 1

1 motivation and research questions 2

2 background and state of the art 11

2.1 The Semantic Web . 11

2.1.1 Resource Description Framework 12

2.1.2 Schema and Ontology Languages 14

2.1.3 Linked Data . 16

2.1.4 SPARQL Query Language 17

2.2 Social Networks . 18

2.2.1 Types of Social Network based websites 18

2.2.2 Federated and Distributed Social Networks . . 22

3 structure and contributions of this thesis 26

ii architecture and protocols 29

4 architectural overview 30

4.1 Basic Design Principles 31

4.2 Data Layer . 32

4.2.1 Resources . 32

4.2.2 Feeds . 34

4.3 Protocol Layer . 36

4.3.1 WebID (protocol) 36

4.3.2 Semantic Pingback 37

4.3.3 PubSubHubbub 39

4.4 Service Layer . 41

4.5 Application Layer . 43

5 semantic pingback 45

5.1 Requirements . 46

5.2 Overview . 48

5.3 Client Behavior . 51

5.4 Server Behavior . 53

5.4.1 Spam Prevention 53

5.4.2 Backlinking . 54

5.4.3 Provenance Tracking 55

6 access delegation for the webid protocol 56

6.1 Requirements . 57

6.2 Extending WebID for Access Delegation 59

6.3 Application Scenarios 60

iii applications 64

7 xoperator – an instant messaging agent 65

7.1 Communication Scenarios and Requirements 66

xi

contents xii

7.1.1 Personal Agent 68

7.1.2 Group Agent . 68

7.1.3 Agent Network 69

7.2 Technical Architecture 69

7.2.1 Evaluation of AIML Templates 70

7.2.2 Administration and Extension Commands . . . 73

7.2.3 XMPP Communication and Behavior 74

7.3 Evaluation . 76

7.4 Related Work . 79

8 mssw – a mobile client for the distributed seman-
tic social network 81

8.1 Mobile Use Cases and Requirements 81

8.1.1 Make new friends 82

8.1.2 Be in sync with your social network 82

8.1.3 Annotate contacts profiles 82

8.1.4 General requirements 83

8.2 Implementation of a Mobile Interface 84

8.2.1 Android System Integration 84

8.2.2 Model Management 85

8.2.3 Rules and Data Processing 86

8.2.4 User perspective 87

8.3 Related Work . 89

9 ontowiki – a data wiki with integrated dssn ca-
pabilities 91

9.1 Feature Introduction . 91

9.1.1 Navigation and Visualisation 91

9.1.2 Authoring . 92

9.1.3 Linked Data . 94

9.2 DSSN Implementation for OntoWiki 94

9.2.1 Creating and Updating Data Artefacts 95

9.2.2 Maintaining Social Network Connections 96

9.2.3 Ignoring Activities and WebIDs 96

9.2.4 Generating and Distributing Activities 97

9.2.5 Pingback Integration 98

iv evaluation, conclusion and future work 99

10 evaluation 100

10.1 Qualitative Evaluation: Social Web Acid Test 100

10.1.1 Social Web Acid Test – Level 0 100

10.1.2 Social Web Acid Test – Level 1 103

10.2 Quantitative Evaluation: DSSN Performance 103

10.2.1 Evaluation Framework Architecture 104

10.2.2 Data Generation and Testbed Configuration . . 105

10.2.3 Results and Discussion 108

11 conclusions and future work 111

11.1 Architecture of a Distributed Semantic Social Network 111

contents xiii

11.1.1 The LUCID project 112

11.1.2 The xodx project 113

11.2 Semantic Pingback . 113

11.3 Access Delegation . 114

11.4 xOperator . 115

11.5 Mobile DSSN Client . 116

11.6 OntoWiki/DSSN . 116

v appendix 118

a curriculum vitæ 119

a.1 Community Services . 119

a.1.1 Organizing Committee 119

a.1.2 Research Program Committee 119

a.1.3 Reviewing . 121

a.2 Seminars and Teaching 122

a.3 Supervision . 123

a.3.1 Bachelor . 123

a.3.2 Master . 123

a.3.3 Diploma . 124

bibliography 125

L I S T O F F I G U R E S

Figure 1 Motivation – The growth of social media 2

Figure 2 Motivation – Facebook information aggregation 4

Figure 3 Motivation – PSN outage of 2011 5

Figure 4 Motivation – Twitters fail whale 6

Figure 5 Motivation – Enemies of the Internet Map 2014 8

Figure 6 Background – Microblogging service Twitter . . 18

Figure 7 Background – Content sharing site Youtube . . 19

Figure 8 Background – Q&A network StackOverflow . . 20

Figure 9 Background – Academic network ResearchGate 21

Figure 10 Background – Distributed network Diaspora∗ . 23

Figure 11 Architecture – Big Picture 30

Figure 12 Architecture – Publish / subscribe workflow . . 40

Figure 13 Architecture – Semantic Pingback overview . . 49

Figure 14 Architecture – Semantic Pingback sequence . . 51

Figure 15 Architecture – WebID authentication sequence . 63

Figure 16 xOperator – Agent communication scenarios . . 67

Figure 17 xOperator – Technical architecture 70

Figure 18 xOperator – XMPP communication example . . 75

Figure 19 xOperator – Client screenshot 76

Figure 20 MSSW – Mobile centered architecture 83

Figure 21 MSSW – Android integration 85

Figure 22 MSSW – Client sceenshots 87

Figure 23 MSSW – More client sceenshots 88

Figure 24 OntoWiki – Generic list view 92

Figure 25 OntoWiki – Generic resource view 93

Figure 26 OntoWiki – Activity stream view 95

Figure 27 OntoWiki – Semantic Pingback integration . . . 97

Figure 28 Evaluation – Social Web Acid Test Level 0 . . . 101

Figure 29 Evaluation – Framework workflow 104

Figure 30 Evaluation – Simulated triple scatter plot 109

Figure 31 Conclusion – The xodx DSSN client 114

xiv

L I S T O F TA B L E S

Table 1 Overview on DSSN concepts with description
and references . 31

Table 2 Typical RDF statements which can cause ping
activities. 39

Table 3 Average xOperator response time in seconds . . 77

Table 4 Runtime (in ms) of different evaluation queries 110

Table 5 Comparison of all three applications according
to their used architecture assets 112

xv

L I S T I N G S

Listing 1 Example SPARQL query to demonstrate the lan-
guage features . 17

Listing 2 A minimal WebID profile with personal informa-
tion and two rel:worksWith relations to other
WebIDs. 33

Listing 3 Activity feed with a single example activity en-
try: The activity is defined from line 9–27 and
the feed has an attached PubSubHubbub service
(line 6). 35

Listing 4 An extension of the minimal WebID from List-
ing 2: Description of an RSA public key, which
is associated to the WebID by using the cert

:identity property from the W3C certificates
and crypto ontology. 37

Listing 5 Extension of the minimal WebID profile from
Listing 2: Assignment of an external Semantic
Pingback service which can be used to ping this
specific resource. 38

Listing 6 Provenance model of an example Semantic Ping-
back request. 55

Listing 7 Extension of the minimal WebID profile from
Listing 2: Adding a secretary relationship to the
WebID of an OntoWiki instance (see Section 6.3) 59

Listing 8 Extension of the minimal WebID profile from
Listing 2: Integrating a machine readable calen-
dar description. 68

Listing 9 Example transformation rule: If a foaf:jabber

ID is present with a WebID (line 7), then a new
blank node of RDF type acontacts:Im is created
(line 7), which is of Android IM type HOME (line
11) and which gets an IM protocol as well as the
IM identifier (line 12 and 10). 86

Listing 10 Social Web Acid Test – Level 0 100

Listing 11 SWAT0: Image description with autodiscovery
links and license (the foaf:Image media artifact
in Figure 28). 101

Listing 12 SWAT0: Tagging description (the tag:Tagging

data artifact in Figure 28). 102

Listing 13 SWAT0: Post activity description. 102

Listing 14 SWAT0: Comment description posted by User C
(the sioct:Comment data artifact in Figure 28). . 103

xvi

http://purl.org/vocab/relationship/
http://purl.org/vocab/relationship/worksWith
http://www.w3.org/ns/auth/cert
http://www.w3.org/ns/auth/cert
http://www.w3.org/ns/auth/cert#identity
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/jabberID
http://xmlns.com/foaf/0.1/jabberID
http://ns.aksw.org/Android/
http://ns.aksw.org/Android/Im
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Image
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/Tagging
http://rdfs.org/sioc/types
http://rdfs.org/sioc/types#Comment

Listings xvii

Listing 15 Example status note resource and corresponding
activity. 105

Listing 16 Example user account and FOAF person resource.106

Listing 17 Ordered list of the last ten status posts (Q1). . . 106

Listing 18 A list of verbs connected to a list of activities (Q2).107

Listing 19 List the next five upcoming birthdays (Q3). . . . 107

Listing 20 Ask for all known title attributes for a given list
of resources (Q4). 108

L I S T O F U S E D P R E F I X A N D N A M E S PA C E S

This document references the following namespaces for datasets,
schemas or ontologies by using these corresponding prefixes.

aair . http://xmlns.notu.be/aair#
This specification describes the Atom Activity Streams in RDF Vocabulary
(AAIR), defined as a dictionary of named properties and classes using W3C’s
RDF technology, and specifically a mapping of the Atom Activity Streams
work to RDF [Minno and Palmisano, 2010] 39

acontacts http://ns.aksw.org/Android/
A native Android system vocabulary which represents the Android contacts
database defined by the Android API. This vocabulary is deeply integrated
into the Android system since it re-uses class and attribute names from the
Android API and represents them as OWL class and datatype properties
[Tramp et al., 2011b] . 86

cc . http://creativecommons.org/ns#
Describing Copyright in RDF – The Creative Commons Rights Expression
Language is a small schema to link lincense documents and describe usage
rules. 101

cert http://www.w3.org/ns/auth/cert#

Ontology for Certificates and crypto stuff, authored by Henry Story . . 59

dbpedia http://dbpedia.org/resource/

The DBpedia namespace is the root for all extracted concepts from the english
Wikipedia [Auer et al., 2007] . 42

dc http://purl.org/dc/elements/1.1/
Dublin Core Metadata Element Set, Version 1.1 54

dct . http://purl.org/dc/terms/

This document is an up-to-date specification of all metadata terms maintained
by the Dublin Core Metadata Initiative, including properties, vocabulary
encoding schemes, syntax encoding schemes, and classes. 105

dssn . http://purl.org/net/dssn/
Vocabulary to describe some Distributed Semantic Social Network relations
[Tramp et al., 2014] . 42

foaf . http://xmlns.com/foaf/0.1/
The Friend of a Friend (FOAF) RDF vocabulary 38

xviii

http://xmlns.notu.be/aair
http://xmlns.notu.be/aair#
http://ns.aksw.org/Android/
http://ns.aksw.org/Android/
http://creativecommons.org/ns
http://creativecommons.org/ns#
http://www.w3.org/ns/auth/cert
http://www.w3.org/ns/auth/cert#
http://dbpedia.org/resource/
http://dbpedia.org/resource/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://purl.org/net/dssn/
http://purl.org/net/dssn/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/

Listings xix

ex . http://example.com/
This namespace is typically used for example resource descriptions as de-
scribed in Eastlake and Panitz [1999]. .
101

ical http://www.w3.org/2002/12/cal/ical#

This schema defines an RDF transformation of objects and components from
the iCalendar specification [Dawson and Stenerson, 1998] 68

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
This is the RDF Schema for the RDF vocabulary terms in the RDF Namespace,
defined in RDF 1.1 Concepts. 12

rdfs http://www.w3.org/2000/01/rdf-schema#
The RDF Schema vocabulary (RDFS) . 15

ping http://purl.org/net/pingback/
This vocabulary defines resources which are used in the context of Semantic
Pingback [Tramp et al., 2010a] . 41

rel http://purl.org/vocab/relationship/
A vocabulary for describing relationships between people, authored by Ian
Davis and Eric Vitiello Jr. 33

sioc . http://rdfs.org/sioc/ns#

SIOC (Semantically-Interlinked Online Communities) is an ontology for
describing the information in online communities. This information can
be used to export information from online communities and to link them
together. The scope of the application areas that SIOC can be used for
includes (and is not limited to) weblogs, message boards, mailing lists and
chat channels [Breslin et al., 2006] . 39

sioct . http://rdfs.org/sioc/types#
Extends the SIOC Core Ontology (Semantically-Interlinked Online Commu-
nities) by defining subclasses and subproperties of SIOC terms [Bojars et al.,
2008] . 39

swandr . . . http://purl.org/swan/1.2/discourse-relationships/
Discourse relationships vocabulary v. 1.0 [Ciccarese et al., 2008] 47

tag http://www.holygoat.co.uk/owl/redwood/0.1/tags/

An ontology that describes tags, as used in the popular del.icio.us and Flickr
systems, and allows for relationships between tags to be described. The tag
ontology was created by Richard Newman with contributions by Danny
Ayers and Seth Russell . 101

xsd http://www.w3.org/2001/XMLSchema#
The vocabulary namespace to provide resources defined in XML Schema
[Peterson et al., 2012]. 107

http://example.com/
http://example.com/
http://www.w3.org/2002/12/cal/ical
http://www.w3.org/2002/12/cal/ical#
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#
http://purl.org/net/pingback/
http://purl.org/net/pingback/
http://purl.org/vocab/relationship/
http://purl.org/vocab/relationship/
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#
http://rdfs.org/sioc/types
http://rdfs.org/sioc/types#
http://purl.org/swan/1.2/discourse-relationships/
http://purl.org/swan/1.2/discourse-relationships/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema#

Part I

I N T R O D U C T I O N A N D P R E L I M I N A R I E S

In Chapter 1 we outline major problems of centralized
Social Networks. These issues were the main driving force
behind our research and affect all requirements which were
constructed for all parts of the thesis. We then lead over to
the main reasearch questions which we want to answer in
this thesis.

In Chapter 2 we give an overiew on the Semantic Web and
its different technologies. In addition to that we list and
evaluate the current state of the art regarding distributed
and federated Social Web applications and frameworks.

Finally, in Chapter 3 we outline the thesis structure and
emphasize specific contributions made to the research field.

1
M O T I VAT I O N A N D R E S E A R C H Q U E S T I O N S

Online social networking has become one of the most popular services
on the Web. Especially Facebook with its 845Mio+ monthly active
users and 100Mrd+ friendship relations creates a Web inside the Web1.
The growth of Social Media services seems not to end in a short future.
According to Jones [2013], both Facebook and Google+ and have an
user base of over 1 Billion registered users with an increasing trend
(cf. Figure 1).

2
0

0
3

2
0

0
4

2
0

0
6

2
0

0
7

2
0

0
8

2
0

1
0

2
0

1
1

2
0

1
2

0

0.5

1

·109

Google+
Instagram

Twitter
Facebook

Figure 1: The growth of social networks registered user accounts in the last
ten years (image recreated according to the data in Jones [2013])

Drawing on the metaphor of islands, Facebook is becoming more
like a continent. However, users are locked up on this continent with
hardly any opportunity to communicate easily with users on other
islands and continents or even to relocate trans-continentally. Users
are bound to a certain platform and hardly have the chance to mi-
grate easily to another social networking platform if they want to
preserve their connections. Once users have published their personal
information within a social network, they often also lose control over
the data they own, since it is stored on a single company’s servers.
Interoperability between platforms is very rudimentary and largely
limited to proprietary APIs. In order to keep data up-to-date on multi-
ple platforms, users have to modify the data on every single platform
or information will diverge. Since there are only a few large social net-
working players, the Web also loses its distributed nature. According
to a recent comScore study2, Facebook usage times already outnumber

1 http://www.sec.gov/Archives/edgar/data/1326801/000119312512034517/d

287954ds1.htm

2 http://allthingsd.com/20110623/the-web-is-shrinking-now-what/

2

http://www.sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm
http://www.sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm
http://allthingsd.com/20110623/the-web-is-shrinking-now-what/

motivation and research questions 3

traditional Web usage by factor two and this divergence is continuing
to increase.

We argue that solutions to social networking should be engineered
in distributed fashion so that users are empowered to regain control
over their data. The currently vast oceans between social networking
continents and islands should be bridged by high-speed connections
allowing data and users to travel easily and quickly between these
places. In fact, we envision the currently few social networking con-
tinents to be complemented by a large number of smaller islands
with a tight network of bridges and ferry connections between them.
Compared with the currently prevalent centralized social networks
such an approach has a number of advantages, which are the most
important motivational points for this work.

The following subsections introduce our motivational points more
in detail. Each subsection complemented with real-world examples
from the last ten years.

privacy

Users of the distributed semantic social network (DSSN) can setup
their own DSSN node or chose a DSSN node provider with particularly
strict privacy rules in order to ensure a maximum of privacy. This
would facilitate a competition of social network operators about the
privacy rules most beneficial for users. Currently, due to the oligopoly
in the social networking market, which is dominated by big players
such as Facebook, Google or Twitter, privacy regulations are often
more driven by commercialization interests. Such privacy policies are
not subject of individual discussions or agreements. A user can agree
on a policies or she is not allowed to use the service. Even partial
agreement is not possible. In addition to that, privacy policies can be
subject of changes in the future. Also here, the user is able to agree or
has to quit using the service.

Considerable examples of privacy issues are:

• In 2010, Facebook was criticized because of a personal infor-
mation aggregation techniques called connections3. A connection
is created whenever a Facebook user likes a resource either on
the Web or inside the social network (cf. Figure 2). Facebook
treats such relationships to other resources as public information,
and the identity of the Facebook user may be displayed on the
Facebook page of the product or service.

• In 2011, Google launched its own social network service Google+.
To join the service, users had to fill mandatory real-name and
gender information. Google treated these information as public,
using the gender information for adapting the user interface,

3 https://www.eff.org/deeplinks/2010/04/handy-facebook-english-translator

https://www.eff.org/deeplinks/2010/04/handy-facebook-english-translator

motivation and research questions 4

Figure 2: A typical Like button for social network integration: clicking the
button as well as visiting the page creates a connection between
the users account and the website resource.

such as changing words like he, she and they. Even on the most
private settings, non-friends could still see names, gender infor-
mation and profile pictures4.

data security

Due to the distributed nature it is more difficult to steal large amounts
of private data. Also, security is ensured through public review and
testing of open-standards and to a lesser extend through obscurity
due to closed proprietary implementations. As is confirmed very fre-
quently, centralized solutions are always more endangered of attacks
on data security. Even with the best technical solutions in place, insider
threats can hardly be prevented in a centralized setting but can not
cause that much harm to a DSSN.

The history of social network security breaches include these more
or less well known events:

• The PlayStation Network is a social network for online mul-
tiplayer gaming which is provided by Sony Computer Enter-
tainment. In 2011, this service had a major security breach and
outage which affected 77 million registered accounts5 (cf. Fig-
ure 3). As reported by Sony, user data was stolen in a huge
dimension. This included names, adresses, birthdays, purchase
history, passwords and other important data items.

• In 2013, Facebook infrastructure was hacked by using a zero
day Java exploit deployed on a mobile developer website which
was visited by multiple Facebook employees6. The compromised
website allowed malware to be installed on these employee

4 http://www.pcmag.com/article2/0,2817,2388120,00.asp

5 http://en.wikipedia.org/wiki/PlayStation_Network_outage

6 http://www.cnet.com/news/facebook-says-it-was-hacked-claims-member-data

-safe/

http://www.pcmag.com/article2/0,2817,2388120,00.asp
http://en.wikipedia.org/wiki/PlayStation_Network_outage
http://www.cnet.com/news/facebook-says-it-was-hacked-claims-member-data-safe/
http://www.cnet.com/news/facebook-says-it-was-hacked-claims-member-data-safe/

motivation and research questions 5

Figure 3: The PSN security breach of 2011 affected 77 million registered user
accounts and its data.

laptops. In an official statement, Facebook claimed that no user
data was compromised7.

data ownership

Users can have full ownership and control over the use of their data.
They are not restricted to ownership regulations imposed by their
social network provider. Instead DSSN users can implement fine-
grained data licensing options according to their needs. A DSSN
would moreover facilitate a competition of DSSN node providers for
the most liberal and beneficial data ownership regulations for users.

• In 2008, the Facebook account of the famous blogger Robert
Scoble was blocked because he ran a screen scraper on his Face-
book account in order to export his Facebook profile including
information about his friends8. The story was a starting point
for a fascinating debate on who is the owner of the data and can
export it. Facebook was criticized for not allowing their users to
export their data (a feature which is no available).

• The process of deleting a Facebook account and its data is con-
tinuously criticized by multiple organisations. In 2010, Facebook
began allowing users to permanently delete their accounts in

7 https://www.facebook.com/notes/facebook-security/protecting-people-on

-facebook/10151249208250766

8 http://scripting.com/stories/2008/01/03/scobleAndHisFacebookData.html

https://www.facebook.com/notes/facebook-security/protecting-people-on-facebook/10151249208250766
https://www.facebook.com/notes/facebook-security/protecting-people-on-facebook/10151249208250766
http://scripting.com/stories/2008/01/03/scobleAndHisFacebookData.html

motivation and research questions 6

order to react on critical articles from important publications
such as the New York Times9.

extensibility

The representation of social network resources like WebIDs and data
artefacts is not limited to a specific schema and can grow with the
needs of the users. Although extensibility is also easily to realize in
the centralized setting (as is confirmed by various APIs such as Open
Social), a centralized social network setting could easily prohibit (or
censor) certain extensions for commercial (or political) reasons and
thus constrain the freedom of its users.

• In 2013, Google disabled the Google+ feature to embed videos
from Vimeo in its posts. Vimeo is a video-sharing website with
emphasis on high definition playback and professional users and
a competitor to Googles own video-sharing platform Youtube.

reliability

Again due to the distributedness the DSSN is much less endangered
of breakdowns or cyberterrorism, such as denial-of-service attacks.

Figure 4: Twitters fail whale is a pictorial synonym for unreliability of a
service.

• In 2012, Facebook was not available in Germany and other Eu-
ropean countries for some hours due to an error in the DNS

9 http://www.nytimes.com/2013/04/18/technology/personaltech/how-to-sever

-ties-to-social-networks-and-other-web-sites.html

http://www.nytimes.com/2013/04/18/technology/personaltech/how-to-sever-ties-to-social-networks-and-other-web-sites.html
http://www.nytimes.com/2013/04/18/technology/personaltech/how-to-sever-ties-to-social-networks-and-other-web-sites.html

motivation and research questions 7

resolution. In 2013, technical problems in Facebooks infrastruc-
ture were the reason for worldwide access problems to the social
network and its payment service.

• The social networking and microblogging service Twitter has
a long history of outages due to an overloading amount of
users and messages. The service was long time very unstable
due to the scale of growth of the user base. When the service
experiences an outage, users see the fail whale error message (cf.
Figure 4) which is by now a well know internet meme.

freedom of communication

As we observed recently during the Arab Spring where social network-
ing services helped protesters to organize them self, social networks
can play a crucial role in attaining and defeating civil liberties. A cen-
tralized infrastructure can be more easily controlled and suppressed
by powerful governmental and non-governmental organizations in
order to hinder people to communicate and organize them self. This
is not an exception but rather the norm, as Reporters without Borders
document yearly in their Enemies of the Internet report10 (cf. Figure 5).
A DSSN with a vast amount of nodes is much less endangered to
these attacks.

• The Chinese government frequently blackouts social network-
ing services such as Twitter and Flickr11 because of political
commentary and self organization12.

• In 2014, Twitter was blackouted by the Turkish government a
few days ahead of local elections. This ban was a direct reaction
of the Turkish prime minister Recep Tayyip Erdoğan after audio
recordings of his alleged conversations suggesting corruption
were leaked13.

All these points motivate our research towards distributed social
networks based on semantic technologies. More in detail, the folowing
research questions will be addressed.

10 Downloaded from http://12mars.rsf.org/2014-en/ and used under terms of Cre-
ative Commons CC BY-NC-SA 3.0

11 http://usatoday30.usatoday.com/tech/news/2009-06-02-china-twitter

-tiananmen-protests_N.htm

12 http://news.smh.com.au/breaking-news-technology/internet-activists

-discuss-online-democracy-20091122-isc9.html

13 http://www.theguardian.com/world/2014/mar/21/turkey-blocks-twitter-prime

-minister

http://12mars.rsf.org/2014-en/
http://usatoday30.usatoday.com/tech/news/2009-06-02-china-twitter-tiananmen-protests_N.htm
http://usatoday30.usatoday.com/tech/news/2009-06-02-china-twitter-tiananmen-protests_N.htm
http://news.smh.com.au/breaking-news-technology/internet-activists-discuss-online-democracy-20091122-isc9.html
http://news.smh.com.au/breaking-news-technology/internet-activists-discuss-online-democracy-20091122-isc9.html
http://www.theguardian.com/world/2014/mar/21/turkey-blocks-twitter-prime-minister
http://www.theguardian.com/world/2014/mar/21/turkey-blocks-twitter-prime-minister

motivation and research questions 8

Figure 5: Map of the Institutions in Enemies of the Internet by Reporters
without Borders

research questions

The research reported in this thesis addresses the following principal
question:

To what extent can Semantic Web technologies be deployed
to support the structure, the maintenance as well as the
usage of Distributed Social Networks on the World Wide
Web?

This principal question can be broken down into a number of
specific research questions:

motivation and research questions 9

Q1: Which overall architecture based on Semantic Web technologies is suitable
in a distributed environment to build Social Networks?

The overall architecture of a proposed Distributed Semantic Social
Network is the minimal core on which all participants have to agree to
be interoperable in a global scale. Which building blocks are used to
form such an architecture and how do they interact with each other?

Q2: Which protocols and data definition standards are needed to provide a
robust framework for social interactions?

This question goes into detail with protocols and data definition:
Which specific protocols need to be established to form a network
which is extensible and robust? Which schemata and ontologies should
be used to describe user generated content with Semantic Web stan-
dards?

Q3: Which services are needed in such an environment and which infrastruc-
ture is needed to provide these services?

Since centralized social networks pool different services to a combined
interface, we have to think about a minimal infrastructure of services
which need to be established in a way that they can handle similar
requests but as a distributed team.

Q4: To what extent can we use and extend the existing architecture of the
World Wide Web which has proved to be scalable and stable?

The World Wide Web is growing constantly and up to now there
seems to be no limitation for this process. The Architecture of the
Web is a major reason for this development and a proposed DSSN
architecture should emphasize the scalable parts of the more general
Web architecture in order to reuse it. In addition to that we need to
clarify, which parts need to be extended.

Q5: How can we enable existing social applications to be part of a DSSN?

The best way of growing is to integrate existing resources. For our
proposed architecture we need to develop methods and best practice
on integrating existing social web applications such as wiki, blog and
forum applications.

motivation and research questions 10

Q6: Which types of applications can provide user interfaces to a DSSN?

A distributed environment has certain drawbacks compared to a cen-
tralized environment. DSSN applications need to hide these drawbacks
from the user and should provide similar used interfaces in terms
of performance, usability and productivity. This goal rises different
requirements for the underlying semantic technology which should
be tackled too.

Q7: How can we support the transformation of social data from existing
social applications?

Part of the integration of existing applications is the transformation of
a social web applications database in order to allow other applications
access these data in the same way as they can access native DSSN data
resources.

2
B A C K G R O U N D A N D S TAT E O F T H E A RT

In this Chapter we give an overiew on the Semantic Web and its
different technologies. In addition to that we list and evaluate the
current state of the art regarding distributed and federated Social Web
applications and frameworks.

2.1 the semantic web

The Semantic Web provides a common framework that
allows data to be shared and reused across application,
enterprise, and community boundaries. — W3C Semantic
Web Activity Homepage14

This quotation captures the essence and goals of all activities around
the well known buzz word Semantic Web. The Semantic Web is based
on the idea of preparing content and data so as to allow machines
to read and process it in a way which goes far beyond the simple
presentation and indexation of dump data such as plain text and plain
images today. In Berners-Lee et al. [2001] the authors define it as

. . . not a separate Web but an extension of the current one,
in which information is given well-defined meaning, better
enabling computers and people to work in cooperation.

This extension allows for an evolution of the Web from a document-
centric Web to a data- and information-centric Web with a strong
emphasis on data integration by using globally shared semantic con-
cepts. In Shadbolt et al. [2006] the progress of this evolution is outlined
as a process of specifying, developing and deploying languages for shared
meaning. These languages provide a foundation for semantic inter-
operability and, together with protocols, the framework for sharing
machine-readable content on the Web.

The Semantic Web is based on the World Wide Web (WWW) as
described in Jacobs and Walsh [2004] and re-uses or re-defines key con-
cepts of the WWW such as Universal Resource Identifiers (URI, Berners-
Lee et al. [2005]) or the Hypertext Transfer Protocol (HTTP, Fielding
et al. [1999]).

In the context of this thesis the important parts of the Semantic
Web framework include: the Resource Description Framework (RDF)
with its core concepts and serializations (Section 2.1.1), the concept of

14 http://www.w3.org/2001/sw/

11

http://www.w3.org/2001/sw/

2.1 the semantic web 12

Linked Data (Section 2.1.3), and an introduction to the query language
SPARQL (Section 2.1.4).

A more comprehensive introduction to the topic is provided by Hit-
zler et al. [2007] and Heath and Bizer [2011].

2.1.1 Resource Description Framework

2.1.1.1 Concepts

According to Schreiber and Raimond [2014] the RDF data model
consists of the following basic concepts:

resource is a term to denote all things in the Web as well as in the
real world which we can identify. This range of things includes
documents, images and applications from the web as well as
physical objects, abstract concepts and even fantasy heroes from
the real world. The term is used in the broadest sense imaginate.

iri is an abbreviation for International Resource Identifier (IRI, Duerst
and Suignard [2005]) which is a sequence of Unicode charac-
ters. IRIs are used to identify resources. A subset of IRIs are
URLs, which provide not only an identifier but also a locator
for a resource in order to allow to access this resource with an
application.

qname IRIs can be written abbreviated by using a QName (qualified
name). Qnames were introduced by Bray et al. [2009] in order to
be used as IRI references. They consist of a prefix part and a local
part in the form prefix:local. While the prefix part identifies a
local abbrevation for a namespace, the local part together with
the prefix identifies a resource inside that namespace. This thesis
uses hence a list of prefix / namespace abbreviations, which are
are listed on Page xviii.

literal is a sequence of Unicode characters which are associated
with a datatype and an optional language tag.

datatype is a resource identified by an IRI. Datatype definitions
enable application to parse and interpret a literal correctly. RDF
re-uses many of the XML Schema datatypes from Peterson
et al. [2012] as normative, such as xsd:string and xsd:date,
and defines two additional non-normative datatypes: rdf:HTML
and rdf:XMLLiteral. In addition to the normative datatypes,
application-specific datatypes can be used and expressed.

language tags can be associated only if the literal is of type rdf

:langString (the datatype of language-tagged string values).
Language tags identify a language or sub-language as defined
in Phillips and Davis [2009].

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString

2.1 the semantic web 13

blank nodes represent resources in the same way as IRIs do, how-
ever they do not identify them globally (but locally). They are
used if the IRI of a resource is not (yet) known or if it is not
needed to identify a resource in a global scope.

Based on these fundamental concepts, the following advanced con-
cepts form the foundation of RDF.

triple is the most granular knowledge item which can be managed
by RDF. The terms triple and statements are equivalent. State-
ments always have the following structure, that consists of three
components (hence the name triple):

<subject> <predicate> <object>

Statements express a relationship between the <subject> and
the <object>. The type (or nature) of this relationship is stated
by the <predicate>. The relation is always unidirectional from
the <subject> to the <object>.

On the <subject> position of a triple, IRIs and blank nodes can
be used. On the <predicate> position of a triple, IRIs can be
used. On the <object> position of a triple, IRIs, blank nodes and
literals can be used.

Here is an example triple which uses all available concepts:

<[]> <rdfs:label> <“DSSN”^^rdf:langString@en>

In this example the three components have the following values:

• The <subject> is a blank node resource.

• The <predicate> is a resource from the rdfs namespace (cf.
Section 2.1.2) with the local name label.

• The <object> is a literal with the value of DSSN, an associ-
ated datatype and a language tag for the English language.

RDF statements are identified by their components only. That
is, two statements with the same <subject>, <predicate> and
<object> are regarded as identical.

graphs are used to manage different collections of triples. A graph
can be identified by an IRI which means graphs are also re-
sources as well and can be subject and object of an RDF triple.

dataset A new concept in RDF 1.1 is the term of a dataset. An RDF
dataset is a collection of RDF graphs, and comprises:

• Exactly one default graph, being an RDF graph. The default
graph does not have a name and may be empty.

• Zero or more named graphs. Each named graph is a pair
consisting of an IRI or a blank node (the graph name), and
an RDF graph. Graph names are unique within an RDF
dataset.

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/2000/01/rdf-schema

2.1 the semantic web 14

[Cyganiak et al., 2014]

2.1.1.2 Serializations

In order to allow machines to read and write RDF data, the following
RDF serializations are standardized:

rdf/xml [Beckett, 2004] was the first syntax recommended by the
W3C. It defines a syntax for RDF graphs in XML. RDF/XML is
criticized for performance and complexity issues. Nevertheless
RDF/XML has a broad tool support and is required by the Web
Ontology Language (OWL, cf. Section 2.1.2) as an interchange
format.

turtle [Beckett and Berners-Lee, 2004] started as a small syntax
to list RDF in scientific papers. It is very famous because of
its simplicity and is designed to be written by humans. Turtle
supports Qnames / namespace declarations as well as some
abbreviations to avoid double content. All examples in this thesis
are written in turtle.

trig [Bizer and Cyganiak, 2007] is an extension to Turtle which sup-
ports RDF 1.1 datasets.

n-triples [Carothers and Seaborne, 2014] are the easiest way to
write RDF triples. Each line represents one triple. Neither Qnames
/ namespaces nor datasets and newlines have to be encoded.
N-Triples started as a line-based format to represent the correct
answers for parsing RDF/XML test cases. It is known to be the
fastest syntax available for parsing.

n-quads [Carothers, 2014] is an extension to N-Triples which sup-
ports RDF 1.1 datasets.

json-ld [Sporny et al., 2014] is, rather, a method to transform JSON
documents to RDF graphs, than a new syntax. It is based on the
concept of a context where JSON structures are mapped to RDF
properties and classes.

Apart from these common serializations, RDF can be represented in
HTML with RDFa [Adida et al., 2008] or as plain JSON [Davis et al.,
2013].

2.1.2 Schema and Ontology Languages

The described basic RDF data model with triples, graphs and datasets
is far away from being a universal framework to share and re-use
data across application, enterprise, and community boundaries. To be
able to do this, one needs to specify not only the structure and syntax
of the data but also the semantic in terms of a logical language. The

2.1 the semantic web 15

common understanding of the Semantic Web community is, to use
description logics to describe semantics in RDF. To achieve this goal,
two standards are recommended by the W3C:

rdf schema (RDFS, Brickley and Guha [2014]) represents the first
level of terminology languages created on top of plain RDF.
RDFS provides a vocabulary for describing simple class and
property hierarchies and is used with the prefix rdfs for qnames.
Apart from the definition of fundamental top terms15, the most
important terms which are provided by RDFS are terms to de-
scribe classes and properties16.

rdfs:Class represents the class of all classes. To define an in-
stance of a class resource, the property rdf:type is used. Classes
can be defined in a hierarchy using the rdfs:subClassOf prop-
erty. All instances of a subclass will also be instances of the
superclass too.

rdfs:Property represents the class of all properties. All re-
sources which are used at the <predicate> position of a state-
ment are an instance of this class. Properties can be defined in a
hierarchy using the rdfs:subPropertyOf property. All resources
which are in relation to each other with a sub property will be
in relation with each other with the super property too. Domain
and range restrictions can be defined by the rdfs:domain and
rdfs:range properties which relate a property with a class.

In addition to these terms, RDFS provides some properties
for schema documentation (rdfs:label, rdfs:comment), link-
ing (rdfs:seeAlso, rdfs:isDefinedBy) and container descrip-
tion (rdfs:member, rdfs:Container, rdf:ContainerMembership
Property).

web ontology language (OWL) is, compared to RDFS, a huge
step forward to provide a rich language for defining ontologies.
While RDFS provides 16 terms, OWL (Version 2) provides 77

terms. To name and describe all these terms is far beyond the
scope of this section. The following overview introduces just
some of the most important language elements:

• OWL provides terms for ontology management and ver-
sioning (prior version, version info, deprecated terms, . . .).

• OWL provides terms to describe complex classes (union,
complement, . . .) and cardinality restrictions on properties
(min, max, . . .).

15 rdfs:Resource represents all RDF resources (everything), rdfs:Literal represents
the class of all literal, rdfs:Datatype represents the class of all datatypes

16 A best practice for publishing RDF vocabularies is to create local names in camel
case as well as start property local names with lower case and class local names
with upper case. Other design patterns for modeling, consuming and publishing
vocabularies can be found in Dodds and Davis [2014].

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#Property
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#subPropertyOf
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#range
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#comment
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#isDefinedBy
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#member
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#Container
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#ContainerMembershipProperty
http://www.w3.org/1999/02/22-rdf-syntax-ns#ContainerMembershipProperty
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#Literal
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#Datatype

2.1 the semantic web 16

• OWL provides terms to annotate properties with a logic
feature (functional, transitive, . . .).

This brief selection of terms is just to show the expressiveness
of OWL. For a complete overview of OWL features, see Hitzler
et al. [2012].

2.1.3 Linked Data

The term Linked Data refers to a method for publishing and consuming
structured and linkable data on the web in order to build something
more powerful based on small parts. The term was coined and defined
by Berners-Lee [2006] in a way that he required four rules which
should the web of data allow for growing:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information using
the standards (RDF*, SPARQL).

• Include links to other URIs, so that they can discover more
things.

These simple rules were clarified by Bizer et al. [2007] to form some
kind of protocol which allows for publishing and consuming RDF data
based on HTTP. The main problem which had to be discussed was the
issue on how this protocol should distinguish between information
resources (web documents such as HTML files, JPEG images, . . . every-
thing which is on the web and can be retrieved) and non-information
resources (concept, persons, . . . everything which is not on the web).

The main reason to distinguish between these types of resources
is based on the requirement to allow for annotation of both types of
resources esp. in cases where one resource represents a concept (non-
information resource) and another resource represents a document
which is about this concept. To make this clearer: the time of creation of
the Berlin Wall is not the same as the time of creation of the Wikipedia
page about the Berlin Wall (but both data items are important).

There exist two solutions to solve this problem, both of which are
heavily in use:

• Use an IRI with a fragment identifier to represent the non-
information resource so that the IRI without that fragment iden-
tifier is automatically the corresponding information resource.
This solution is often used for small RDF documents such as
vocabularies.

• Use an HTTP re-direction with a status code 303 to provide a re-
direction from the non-information resource to the information

2.1 the semantic web 17

resource. In combination with the HTTP Access header field, this
solution provides better support for different representations of
the same data (e.g. Turtle and RDF/XML). Another advantage
of the HTTP Access header is the capability of publishing RDF
data in combination with classic HTML pages which describe a
concept for human consumption. Due to a more complicated de-
ployment process, this solution is mostly in use with support of
Linked Data enabled tools such as the data wiki OntoWiki (Chap-
ter 9, Auer et al. [2006]) or the RDF triple store Virtuoso [Erling
and Mikhailov, 2007].

2.1.4 SPARQL Query Language

The query language SPARQL [Harris and Seaborne, 2013] is a further
key technology and important building block for the Semantic Web.
SPARQL 1.1 defines a query and update language together with result
syntax specifications in XML and JSON and a HTTP protocol. With
SPARQL, an application can retrieve and manipulate RDF data, graphs
and datasets managed by a SPARQL endpoint. SPARQL allows for a
query to consist of triple patterns, conjunctions, disjunctions, optional
patterns as well as add-ons such as filter, order, slices and other query
features.

The basic query feature of SPARQL is a triple pattern which consists
of a triple with potential variables at the <subject>, <predicate> and
<object> position.

1 SELECT DISTINCT ?person ?bday

2 WHERE {

3 ?person a foaf:Person.

4 ?person foaf:birthday ?bday.

5 FILTER (xsd:string(?bday) >= xsd:string("01-29"))

6 }

7 ORDER BY ASC(?bday)

8 LIMIT 5

Listing 1: Example SPARQL query to demonstrate the language features

Listing 1 demonstrates multiple query features of SPARQL such as
projection (line 1), triple patterns (line 3 an 4), a FILTER clause (line
5) as well as clauses for ordering and limiting the output (line 7 and
8). The English language explanation of this query is something like:
Give me the next 5 persons whose birthday is on January 20 or after and sort
them by birthday.

2.2 social networks 18

2.2 social networks

2.2.1 Types of Social Network based websites

While Facebook, Youtube and Twitter might be the first social media
services that come to mind, these examples do not represent the full
scope of social networks that exist on the Web. According to Kaplan
and Haenlein [2010] six different types of social media exist:

collaborative projects such as Wikipedia17 and OpenStreetMaps18.
In this projects, users collaborate in a certain way on a resource
and connect to each other in order to organize this collaboration.
Users are typical interested in changes to resources or changes
from specific users.

Figure 6: Microblogging service Twitter: A famous tweet from the Oscar
award show 2014

blogs and microblogs such as Twitter19 and WordPress.com20. In
this projects, the communication between users and the publi-
cation of a users posts is the most important feature. Beside the
reception of their own posts by the community (e.g. via re-tweets,
see Figure 6) users are interested in new posts from other users
or regarding specific topics.

content communities such as Youtube21 (Videos) and Flickr22 (Im-
ages). Organizing and sharing their content is the most important

17 http://wikipedia.org

18 http://openstreetmap.org

19 http://twitter.com

20 http://wordpress.com

21 http://youtube.com

22 http://flickr.com

http://wikipedia.org
http://openstreetmap.org
http://twitter.com
http://wordpress.com
http://youtube.com
http://flickr.com

2.2 social networks 19

feature here. Beside that, the communication about content is
important as well (bookmarks, bookmarks, likes, see Figure 7).

Figure 7: Content sharing site Youtube: likes, dislikes, follower count as
well as visitor count support users to interpret the quality and
reputation of a video

social networking sites such as Facebook23 and Google+24. These
services enable their users connect to each other by creating
personal information profiles as well as inviting friends and
colleagues to have access to those profiles. In addition to that,
sending emails and instant messages between each other is an
important feature. Social networking sites exist in many flavours
and sub types regarding their target community or there main
connection relation (friends, co-worker, fellow student).

virtual game worlds such as World of Warcraft25 and Eve On-
line26. In addition to playing with or against each other, virtual
game worlds support their players in finding new opponents or
allies. The game world is most often complemented by a social
network site where users can communicate outside the game as
well as inspect game statistics and news.

virtual social worlds such as Second Life27 and Habbo Hotel28.
Similar to game worlds, virtual social worlds enable users to act
in a virtual world with an customizable avatar. In difference to
game worlds, there is no primary game target to achieve. Instead
of that, virtual social worlds enable their users to create virtual

23 http://facebook.com

24 http://plus.google.com

25 http://www.warcraft.com

26 http://eveonline.com

27 http://secondlife.com

28 http://habbo.com

http://facebook.com
http://plus.google.com
http://www.warcraft.com
http://eveonline.com
http://secondlife.com
http://habbo.com

2.2 social networks 20

objects and interact with them (e.g. to equip a users virtual
apartment in the Habbo Hotel with virtual furniture).

White [2014] complements this classification with seven major social
network categories. This classification overlaps partially with Kaplan
and Haenlein [2010] and is more strictly social network site based:

social connection networks such as Facebook and Google+. Users
want to keep in touch with friends and family members. The
shared content is more or less private and the social network
interface is centered around activity feeds and status messages.

multimedia sharing networks such as Vimeo29 and Picasa30. Users
primarily want to share content on the Web, either public or
restricted to some or all contacts in the social network. The social
network interface is centered around the content (comments,
likes, activity feeds).

professional networks such as LinkedIn31 and Xing32. These social
networks are primarily used for recruiting and finding business
partners. Profile descriptions emphasizes the business related
points in the curriculum vitae of a user in order to allow for
recruiters to better match with their requirements. In addition to
that, business related groups with interests in specific topics can
be started.

Figure 8: Question / Answer network StackOverflow: Users can up-vote
unanswered questions in order to place them more prominent in
the list

29 http://vimeo.com

30 http://picasa.google.com

31 http://linkedin.com

32 http://xing.com

http://vimeo.com
http://picasa.google.com
http://linkedin.com
http://xing.com

2.2 social networks 21

informational networks such as StackOverflow33 and the Do-It-
Yourself Chatroom34. These sites represent informational commu-
nities where users seeking answers to common questions on a
certain topic. Informational social networks often use a forum-
based site concept. A special sub category of informational social
networks are question-answering platforms such as StackOver-
flow where users create and answer questions from other users
as well as vote for and against questions or answers (see Fig-
ure 8). These sites have a strict page model including categories
and tags for questions in order to maximize the value of the
user-generated content. In addition to that, users gain reputation
points by answering questions or other activities.

educational social networks such as The Student Room35 and The
Math Forum36. These social networks have mostly student users
which seek for other students in order to collaborate in projects.

hobbies based social networks such as YardShare37 and DigTheDirt38

esp. for gardening enthusiasts. These social networks connect
people which are interested in a specific topic or hobby as well
as provide specific content for this group.

Figure 9: Academic social network ResearchGate: A user profile with detailed
publication description

33 http://stackoverflow.com

34 http://www.diychatroom.com

35 http://www.thestudentroom.co.uk

36 http://mathforum.org

37 http://www.digthedirt.com

38 http://www.digthedirt.com

http://stackoverflow.com
http://www.diychatroom.com
http://www.thestudentroom.co.uk
http://mathforum.org
http://www.digthedirt.com
http://www.digthedirt.com

2.2 social networks 22

academic social networks such as Academia.edu39 and ResearchGate40.
Users of these social networks are interested in possible co-
authors and project partners. In order to achieve this, academic
network profiles include publications and research topics (see
Figure 9).

2.2.2 Federated and Distributed Social Networks

Most Social Web applications operate as silos of information. This
model poses some drawbacks such as the lack of interoperability be-
tween applications, having a one-single ownership model, the inability
of fully exporting data as well as the opacity in using or transmitting
private data. These challenges are the reasons for addressing a dis-
tributed model. Various architectures for achieving a federated social
network have been proposed and numerous projects based on those
architectures have been developed to provide convenient functionality
to the users. With the advent of the Semantic Web, research in this
field was adapted to taking advantage of machine-readable data and
ontologies. We can roughly divide the related work into distributed
social networks on the Web 2.0 and distributed social networks on the
Semantic Web.

2.2.2.1 Web 2.0 Approaches

The distributed social network model has emerged to overcome short-
comings attributed to centralized models. The foundation of the dis-
tributed model lies on a set of standards and technologies. This set
of standards and protocols, which together are referred to as Open
Stack, contains RSS41, PubSubHubbub42, Pingback43 Webfinger44, Activi-
tyStreams45, Salmon46, OAuth authorization (Hammer [2010] and Hardt
[2012]), OpenID47, XMPP [Saint-Andre, 2004], OpenSocial [OpenSocial
Spec], OStatus [Prodromou et al., 2010] and DSNP [Thurston, 2011].

39 http://academia.edu

40 https://www.researchgate.net

41 http://www.rssboard.org/rss-specification

42 https://code.google.com/p/pubsubhubbub/

43 Pingback [Langridge and Hickson, 2002] is one of three approaches which allow
the automated generation of backlinks on the Social Web. Pingback supports the
propagation of untyped links only.

44 Webfinger, https://code.google.com/p/webfinger/, enables users to make email
addresses valuable by adding meta data.

45 http://activitystrea.ms/

46 http://www.salmon-protocol.org/

47 http://openid.net/

http://academia.edu
https://www.researchgate.net
http://www.rssboard.org/rss-specification
https://code.google.com/p/pubsubhubbub/
https://code.google.com/p/webfinger/
http://activitystrea.ms/
http://www.salmon-protocol.org/
http://openid.net/

2.2 social networks 23

Some of the projects which were developed using these technologies
include: StatusNet48, DiSo49, GNU Social50, The Mine Project51, OneSo-
cialWeb52, BuddyPress53, and Diaspora54. These projects differ in the
employed protocols and federation policy. The focus in projects such as
DiSo, The Mine Project, Appleseed and BuddyPress is on equipping peo-
ple with tools and functionalities. This approach allows users to build
their own networks which enable them to manage and share data and
relations. For instance, the DiSo project releases WordPress plugins
which build up on OpenID, microformats and OAuth. It creates open
and interoperable building blocks for launching decentralized social
networks. In contrast, another strategy is to bridge between social
networks to make a joint network. In a nut shell, StatusNet is a mi-
croblogging platform which extends OStatus for providing federated
status updates; GNU Social is designed above StatusNet as a decentral-
ized social network; OneSocialWeb aims at connecting social networks
by employing XMPP [Saint-Andre, 2004] for instant messaging.

Figure 10: Diaspora∗: Activity stream of the hashtag #Leipzig

Diaspora is a distributed social network which gained much aware-
ness thanks to an article in the New York Times55. It uses Activ-
ity Streams / PubSubHubbub for public federation of posts and
Webfinger to discover remote users (identified by addresses such
as user@server). To communicate with remote users, Diaspora in-
stances (so called pods) send Salmon messages which are signed and

48 http://status.net/, now http://pump.io

49 http://diso-project.org/

50 http://gnu.io, now a continuation of the StatusNet project
51 http://themineproject.org/, see also Lukas [2008]
52 http://onesocialweb.org/

53 http://buddypress.org/

54 https://www.joindiaspora.com/, see also Bielenberg et al. [2012]
55 http://www.nytimes.com/2010/05/12/nyregion/12about.html

http://status.net/
http://pump.io
http://diso-project.org/
http://gnu.io
http://themineproject.org/
http://onesocialweb.org/
http://buddypress.org/
https://www.joindiaspora.com/
http://www.nytimes.com/2010/05/12/nyregion/12about.html

2.2 social networks 24

encrypted. Additionally OStatus 2 and OAuth are used. Diaspora fea-
tures privacy enhanced Status messages, blogging and photo sharing
(see Figure 10).

Centralized models benefit from short development time, no re-
quired routing, central control and storage as well as data mining
capabilities. In addition to these features, using distributed models is
solely subject to disadvantages e.g. reachability of interlinked data or
the maintenance of many peers. While a federated model as a hybrid
model improves some of those disadvantages (e.g. reachability maybe
higher, since the number of peers may be smaller), some of them
still remain (e.g. full control over your owned data). There are many
different views for tackling distributed social network challenges on
the way to a federation in the Web 2.0. A well-known view is the
network of networks which employs existing protocols and standards
for providing foundations on the basis of which networks can easily
communicate with one another.

Another view is using mashups. Mashups are Web applications
that combine data from more than one service provider to create new
services. An example is the buddycloud project56, running an inbox
server as a centralized manager over federated social networks. This
server aggregates all the posts and updates from social networks to
which a user has subscribed. Here again, the XMPP protocol [Saint-
Andre, 2004] is used for messaging and federation.

A user-centric architecture, used in Danube [Sabadello, 2011], relies
on individuals for maintaining personal data and relations. It allows
them to manage their relationships with each other and with vendors.
A similar view has been proposed by PrPl [Seong et al., 2010] which
builds on a person-centric, social networking infrastructure, where a
person’s data is logically collected in one place, and social networking
applications can be executed in a distributed manner without a central
service.

2.2.2.2 Semantic Web Approaches

Primarily, Semantic Web based attempts have concentrated on the
conformation of traditional technologies such as microblogging, instant
messaging or pingback for Semantic Web. Thus, these adapted technolo-
gies can form the basis for a new generation of social networks. SMOB
is a semantic and distributed microblogging framework introduced
by Passant et al. [2010]. It presents some main requirements for us-
ing microblogging at a large scale, i.e. machine-readable meta data,
a decentralized architecture, open data as well as re-usability and
interlinking of data. These challenges have been addressed in SMOB
by using RDF(a)/OWL data, distributed Hubs for exchanging infor-
mation and a sync protocol (based on SPARQL/Update over HTTP)

56 http://buddycloud.com/

http://buddycloud.com/

2.2 social networks 25

and interlinking components. sparqlPuSH [Passant and Mendes, 2010]
utilizes the PubSubHubbub protocol to broadcast RDF query result
updates. In this project, a SPARQL query which is associated with
the agent is at first created and monitored in an RDF triple store.
The registered user is notified whenever the result set changes. The
PSI BackLinking Service for the Web of Data57 supports the manual
creation of backlinks on the Data Web by employing a number of
large-scale knowledge bases, as for example, data of the UK Public
Sector Information domain. Since it is based on crawling a fixed set of
knowledge bases, it cannot be applied for the entire Data Web. Another
service that amongst others is integrated with the PSI BackLinking
Service is SameAs.org58 [Glaser et al., 2009]. This service crawls the
Web of Data in order to determine URIs describing the same resources.
OKKAM [Bouquet et al., 2008] is a system that aims at unifying re-
source identifiers by employing meta data about resources in order to
match them on entities. The approaches above support interlinking of
resources and thus building Social Networks by employing centralized
hubs, but do not support decentralized, on-the-fly backlinking, since
they are based on crawling the Data Web on a regular basis.

Two important prerequisites for establishing a distributed social net-
work on the Semantic Web is firstly to transform social network data
into RDF and secondly, to aggregate the exported datasets by linking
between person instances in different datasets. For the former prereq-
uisite, an appropriate ontology is essential for representing social data.
FOAF (Friend of a Friend) [Brickley and Miller, 2004], which specifies
how to describe personal information and relationships with other
people in a social network, is well-suited for this purpose. The SIOC
project [Breslin et al., 2006] also extends FOAF in order to describe
rich social data. The work presented in Bojars et al. [2008] uses SIOC
for the representation of blog and bookmark content. For the second
prerequisite, a graph matching model is needed to provide linkages.
The work which has been carried out by Rowe [2009] describes a
method for interlinking user profiles from different social networks
such as Facebook, MySpace and Twitter. The core idea is to generate RDF
graphs which can then be interlinked based on the corresponding user
identifiers in each graph. Beyond these activities, an infrastructure is
necessary to which these technologies can be employed.

57 http://backlinks.psi.enakting.org

58 http://sameas.org

http://backlinks.psi.enakting.org
http://sameas.org

3
S T R U C T U R E A N D C O N T R I B U T I O N S O F T H I S
T H E S I S

In this Chapter, we outline the thesis structure and emphasize specific
contributions made to the research field.

structure

This thesis consists of four parts which we describe in the following
subsections.

Part i – Introduction and Preliminaries

In Chapter 1 we outline major problems of centralized Social Networks.
These issues were the main driving force behind our research and
affect all requirements which were constructed for all parts of the
thesis. We then lead over to the main reasearch questions which we
want to answer in this thesis.

In Chapter 2 we give an overiew on the Semantic Web and its
different technologies. In addition to that we list and evaluate the
current state of the art regarding distributed and federated Social Web
applications and frameworks.

Finally, in Chapter 3 we outline the thesis structure and emphasize
specific contributions made to the research field.

Part ii – Architecture and Protocols

In this part of the thesis we describe the main technological ingredi-
ents for a DSSN as well as their interplay. The semantic representation
of personal information is facilitated by a WebID profile. The WebID
protocol allows for using a WebID profile for authentication and access
control purposes. Semantic Pingback facilitates the first contact between
users of the social network and provides a method for communication
about resources (such as images, status messages, comments, activi-
ties) on the social network. Finally, PubSubHubbub-based subscription
services allow for obtaining near-instant notifications of specific in-
formation as WebID profile change sets and activity streams from
people in one’s social network. Together, these standards and proto-
cols provide all necessary ingredients to realize a distributed social
network having all the crucial social networking features provided by
centralized ones.

26

structure and contributions of this thesis 27

After providing a big picture overview of the overall architecture
in Chapter 4, we give a detailed insight into two specific protocol
extensions in Chapter 5 (Semantic Pingback) and Chapter 6 (Access
Delegation).

Part iii – Applications

This part is structured in three chapters each describing an application
which is to an extend integrated into the proposed architecture of
Part ii. xOperator (Chapter 7) is an Instant Messaging agent which al-
lows for querying the content of the DSSN data layer by using natural
language templates. The MSSW client (Chapter 8) is deeply integrated
Android DSSN client which allows for Social Network contact manage-
ment by using the DSSN data layer and the Semantic Pingback service.
OntoWiki (Chapter 9) is a semantic data wiki massively extended to
be well connected in the DSSN architecture both as a consumer and a
producer of Social Network data.

All three applications use a different subset of the proposed DSSN
architecture as well as provide fundamental different user interfaces
and usage concepts. xOperator provides query capabilities by using a
natural language chat interface to "talk" to the Social Network. The
MSSW client is a backend service provider of the Android plattform
and is seamless integrated to bridge the DSSN data layer and the
local phones contact data. OntoWiki is a browser based client which
allows for sending and receiving activities as well as managing Social
Network contacts.

Part iv – Evaluation, Conclusion and Future Work

In this part of the thesis, we evaluate the proposed architecture in a
different way than providing prototypes such as the application in
Part iii. Instead, we simulate a DSSN based on real data from the well
known Twitter service and measure triple distribution as well as query
performance for different DSSN node types. Finally, we conclude this
thesis and provide some directions for future work.

contributions

This thesis proposes approaches to tackle each of the aforementioned
research questions. The main contributions of this thesis respective
the research questions (cf. Chapter 1) are:

• A Semantic Web enabled but backward compatible Pingback pro-
tocol to tackle some pressing obstacles of the emerging Linked
Data Web, namely the quality, timeliness and coherence of data,

structure and contributions of this thesis 28

which are prerequisites in order to provide direct end user bene-
fits. (Q2, Q3)

• The Demonstration of its usefulness by showcasing use cases of
the Semantic Pingback implementations. (Q2, Q3)

• An adoption of the publish/subscribe communication pattern
in order to use this as a fast and reliable transport protocol in a
Linked Data enabled Social Network infrastructure. (Q2, Q3)

• An extension of the WebID authentication protocol to tackle
an important issue on how users can use and describe soft-
ware agents as their trusted secretaries. This allows for personal
trusted machine to machine communication between user agents
and rises software agents to a level of first class citizens of the
Linked Data Web. (Q2, Q3)

• An overall architecture to build Distributed Semantic Social
Networks based on the previous contributions and further third
party ingredients (Q1–Q4).

• A Social Network simulation framework in order to evaluate
triple distribution as well as query performance of selected DSSN
environments and an evaluation of the proposed architecture on
the basis of the simulation framework and three different DSSN
enabled application prototypes. (Q1–Q3)

• The concept and development of a DSSN user interface, which
shows how a deeply and synergistic coupling of Distributed
Semantic Social Networks and Instant Messaging networks can
be achieved. This interface approach naturally combines the
well-balanced trust and provenance characteristics of IM net-
works with semantic representations and query answering of
the Semantic Web. (Q5, Q6)

• The concept and development of a mobile DSSN client which
showcases how different (social) Semantic Web standards, tech-
nologies and best practices can be integrated into a compre-
hensive architecture for social networking (on mobile devices).
(Q6)

• The extension of a data wiki in order to showcase the integration
of existing Social Web applications into the DSSN based on
the proposed architecture. This full featured user interface and
personal information management also demonstrates, which
interface features are needed in the distributed context of a
DSSN and which query strategies are suitable to drive such a
rich featured UI. (Q5–Q7)

Part II

A R C H I T E C T U R E A N D P R O T O C O L S

In this part of the thesis we describe the main technologi-
cal ingredients for a DSSN as well as their interplay. The
semantic representation of personal information is facil-
itated by a WebID profile. The WebID protocol allows for
using a WebID profile for authentication and access control
purposes. Semantic Pingback facilitates the first contact be-
tween users of the social network and provides a method
for communication about resources (such as images, status
messages, comments, activities) on the social network. Fi-
nally, PubSubHubbub-based subscription services allow for
obtaining near-instant notifications of specific information
as WebID profile change sets and activity streams from
people in one’s social network. Together, these standards
and protocols provide all necessary ingredients to realize
a distributed social network having all the crucial social
networking features provided by centralized ones.

After providing a big picture overview of the overall ar-
chitecture in Chapter 4, we give a detailed insight into
two specific protocol extensions in Chapter 5 (Semantic
Pingback) and Chapter 6 (Access Delegation).

4
A R C H I T E C T U R A L O V E RV I E W

The results presented
in this chapter were
primarily published
in Tramp et al.
[2014] as well as in
Tramp et al. [2011a]
and Story et al.
[2011].

In this chapter, we describe the DSSN reference architecture. After
introducing a few design principles on which the architecture is based,
we present its different layers, i.e. the data, protocol, service and
application layers.

announce

Application Layer

Profile

Manager

Bookmark

Collection

Foto

Sharing

Ping PushSearchUpdate

search

d
e

le
g

a
te

a
cc

e
ss

 t
o

announce

Resources Feeds

Data & Media

Artifacts

WebIDs

indexupdate

ping

...

create

updatecreate push subscribe

read

access

Activity

Streams

History

Feeds

Service Layer

Data Layer

2

4

5

6

1

4

5
1

3

7

1

announce

Figure 11: Architecture of a Distributed Semantic Social Network

As a first introduction, we describe the depicted box elements in
Table 1 as well as the depicted arrows in the following enumeration:

(1) Resources announce services and feeds via links or header fields,
feeds announce services — in particular a push service.

(2) Applications initiate ping requests to spin the Linked Data net-
work.

(3) Applications subscribe to feeds on push services and receive
instant notifications on updates.

(4) SPARQL Update services are able to modify resources (e.g. on
demand of an application, cf. Section 2.1.4).

(5) Personal and global search services can index resources and are
used by applications.

(6) Access to resources and services can be delegated to applications
by a WebIDs, i.e. the application can act in the name of the
WebID owner (cf. Access Delegation, Chapter 6).

30

4.1 basic design principles 31

(7) The majority of all access operations is executed through stan-
dard Web requests (cf. Linked Data, Section 2.1.3).

Table 1: Overview on DSSN concepts with description and references

Concept Description and Reference

WebID RDF document which describes an user or
agent in the Social Network (Section 4.2.1)

Data artifact RDF document which describes a resource such
as a comment, an event or any other concept
which is linked from the DSSN (Section 4.2.1)

Media artifact Media objects such as images together with an
RDF representation (Section 4.2.1)

Activity stream A feed document which describes recent activi-
ties regarding a subject agent or object resource
(Section 4.2.2)

History feed A feed document which describe recent changes
in terms of added or deleted RDF statements of
a resource (Section 4.2.2)

Ping Service A service which receives Semantic Pingback
requests (Chapter 5)

Update Service A service which receives SPARQL update re-
quests (Section 4.4)

Push Service A service which handles subscriptions to feeds
as well as the distribution of published feed
items (Section 4.4)

Search Service A services which answers search request based
on a resource index (Section 4.4)

In the next sections we introduce basic design principles as well as
discuss each DSSN layer in detail.

4.1 basic design principles

Our DSSN architecture is based on the following three design princi-
ples.

Linked Data.

The main protocol for data publishing, retrieval and integration is
based on the Linked Data principles Berners-Lee [2006]. All of the in-
formation contained in the DSSN is represented according to the RDF

4.2 data layer 32

paradigm, made dereferencable and interlinked with other resources.
This principle facilitates heterogeneity as well as extensibility and
enables the distribution of data and services on the Web. The resulting
overall distributive character of the architecture fosters reliability and
freedom of communication and leads to more data security by design.

Service Decoupling.

A second fundamental design principle is the decoupling of user data
from services as well as applications Krohn et al. [2007]. It ensures
that users of the network are able to choose between different services
and applications. As a result, this principle enables an even more
distributed character of the social network which stresses the same
issues as distributed Linked Data. In addition, this principle helps
users of the DSSN to distinguish between their own data, which they
share with and license to other people and services, and foreign data,
which they create by using these services and which they do not
own. This turns the unbalanced power structure of centralized social
networks upside down by strictly settling the ownership of the data to
the user side and allowing access to that data in an opt-in way, which
leads to more privacy.

Protocol Minimalism.

The main task for social networking protocols is to communicate
RDF triples between DSSN nodes, not to enforce a specific work flow
nor an exact interpretation of the data. This constraint ensures the
extensibility of the data model and keeps the overall architecture clean
and reliable.

4.2 data layer

The data layer comprises two main data structures:

• resources for the description of static entities and

• feeds for the representation and publishing of events and activi-
ties.

4.2.1 Resources

We distinguish between three main categories of DSSN resources:
WebIDs for persons as well as applications, data artefacts and media
artefacts. The properties, conditions and roles in the network of these
resources are described in the next paragraphs.

4.2 data layer 33

WebID

WebID [Story et al., 2013]59 recently conceived in order to simplify the
creation of a digital ID for end users. Since its focus lies on simplicity,
the requirements for a WebID profile are minimal. In essence, a WebID
profile is a de-referenceable RDF document (possibly even an RDFa-
enriched HTML page) describing its owner60. That is, a WebID profile
contains RDF triples which have the IRI identifying the owner as
subject. The description of the owner can be performed in any mix
of suitable vocabularies and FOAF [Brickley and Miller, 2004] as
the fundamental ‘industry standard’ which can be extended61. An
example WebID profile comprising some personal information (lines 8–
12) and two rel:worksWith62 links to co-workers (lines 6–7) is shown
in Listing 2.

9 @prefix rdfs:<http://www.w3. org/2000/01/rdf−schema#> .

10 @prefix foaf:<http://xmlns.com/foaf/0.1/> .

11 @prefix rel:<http://purl . org/vocab/relationship/> .

12 <http://philipp . frischmuth24 .de/id/me> a foaf:Person;

13 rdfs:comment "This is my public profile only, more information available with

FOAF+SSL";

14 rel:worksWith <http://sebastian .tramp.name>,
15 <http://www. informatik . uni−leipzig .de/~auer/foaf . rdf#me>;
16 foaf:depiction <http://img. frischmuth24 .de/people/me. jpg>;
17 foaf:firstName "Philipp"; foaf:surname "Frischmuth";

18 foaf:mbox <mailto : frischmuth@informatik . uni−leipzig .de>;
19 foaf:phone <tel:+49−341−97−32368>;
20 foaf:workInfoHomepage <http://bis . informatik . uni−leipzig .de/PhilippFrischmuth>.

Listing 2: A minimal WebID profile with personal information and two rel

:worksWith relations to other WebIDs.

Apart from the main focus on representing user profiles, our archi-
tecture extends the WebID concept by facilitating two additional tasks:
service discovery and access delegation.

Service discovery is used to equip a WebID with relations to trusted
services which have to be used with that WebID. The usage of the
WebID itself ensures that an agent can trust this service in the same
way as she trusts the owner of the WebID. The most important service
in our DSSN architecture is the Semantic Pingback service, which we
describe in detail in Section 4.3.2.

In addition to this service, we introduce access delegation for the
WebID protocol. WebID access delegation is an enhancement to the
current WebID authentication process in order to allow applications

59 Formerly know as the FOAF+SSL best practice [Story et al., 2009], the latest specifica-
tion is available at http://webid.info/spec/.

60 The usage of an IRI with a fragment identifier allows for indirect identification of an
owner by reference to the (FOAF) profile document.

61 In theory, FOAF can be replaced by another vocabulary but as a grounding for
semantic interoperability, we suggest to use it.

62 Taken from RELATIONSHIP: A vocabulary for describing relationships between people at
http://purl.org/vocab/relationship.

http://purl.org/vocab/relationship/
http://purl.org/vocab/relationship/
http://purl.org/vocab/relationship/worksWith
http://webid.info/spec/
http://purl.org/vocab/relationship

4.2 data layer 34

to access resources and services on behalf of the WebID owner, but
without the need to introduce additional application certificates in a
WebID. We describe the WebID protocol as well as our access delega-
tion extension in detail in Section 4.3.1.

Agents and Applications play an important role in today’s social
networks63. They have access to large parts of the profile data and
can add or change some of the profile information, e.g. create activity
descriptions or create and link images. Applications on the DSSN are
also identified by using WebID profiles, but are not described as a
person but as an application. They can act on behalf of a person but
rely on delegated access rights for such an activity. This process is
described in Section 4.3.1.

Data Artefacts

Data artefacts are resources on the Web which are published according
to the Linked Data principles. Data artefacts includes posts, comments,
tag assignments, activities and other Social Web artefacts which have
been created by services and applications on the Web. Most of them
are described by using specific Web ontologies such as SIOC [Breslin
et al., 2006], Common Tag64 or Activity Streams in RDF [Minno and
Palmisano, 2010].

Media Artefacts

Media artefacts are also created by services and applications but
consist of two parts — a binary data part which needs to be decoded
with a specific codec or decoding application, and a meta-data part
which describes this artefact65. Usually, such artefacts are audio, video
and image files, but office document types are also frequently used on
the Social Web. Media artefacts can be easily integrated into the DSSN
by using the Semantic Pingback mechanism, which is described in
Section 4.3.2, and a link to a push-enabled activity stream. An example
photo-sharing application is described in Section 4.5.

4.2.2 Feeds

Feeds are used to represent temporally ordered information in a
machine-readable way. Feeds are widely used on the Web and play
a crucial role in combination with the PubSubHubbub protocol to en-
able near real-time communication between different services. In the
context of the DSSN architecture, two types of feeds are worth consid-
ering:

63 Social network games such as FarmVille can have more than 80 million users (accord-
ing to appdata.com), which constantly create activity descriptions.

64 http://commontag.org/Specification

65 Typically, the user uploads the binary part and the service creates the meta-data part
based on additional form data and extracted meta-data from the binary part.

appdata.com
http://commontag.org/Specification

4.2 data layer 35

Activity Feeds

Activity feeds describe the latest social network activities of a user
in terms of an actor -- verb -- object triple where activity verbs
are used as types of activities (e.g. to post, to share or to bookmark
a specific object)66. Activity feeds can be used to produce a merged
view of the activities of one’s own social network.

1 <?xml version="1.0" encoding="utf−8"?>
2 <feed xmlns="http://www.w3. org/2005/Atom"
3 xmlns: activity="http://activitystrea .ms/schema/1.0/">
4 <t i t l e>Activity Feed of Sebastian Tramp</t i t l e>
5 <id>http://xodx.aksw.org/?c=person&id=seebi</id>
6 <link rel="hub" href="http://pubsubhubbub. appspot .com"/>
7 <link rel="self " type="application/atom+xml" href =" . . . "/>
8 <updated>2014-04-22T18:34:45+02:00</updated>
9 <entry>

10 <t i t l e>"Sebastian Tramp posted a Post"</t i t l e>
11 <id>http://xodx.aksw.org/?c=activity&id=aa9eb16a86a18f5a6cbb</id>
12 <link href="http://xodx.aksw. org/?c=activity& id=aa9eb16a86a18f5a6cbb" />
13 <published>2014-04-22T18:34:45+02:00</published>
14 <updated>2014-04-22T18:34:45+02:00</updated>
15 <author>
16 <name>Sebastian Tramp</name>
17 <uri>http://xodx.aksw.org/?c=person&id=seebi</uri>
18 </author>
19 <activity : verb>http://xmlns.notu.be/aair#Post</activity : verb>
20 <activity : object>
21 <id>http://xodx.aksw.org/?c=resource&id=b8273f2a97a4c47313ee</id>
22 <content>Just test the awesome xodx!</content>
23 <published>2014-04-22T18:34:45+02:00</published>
24 <activity : object−type>http://rdfs.org/sioc/ns#Post</activity : object−type>
25 </activity : object>
26 <content>New Activity: "Sebastian Tramp posted a Post": Just test

the awesome xodx!</content>
27 </entry>
28 </feed>

Listing 3: Activity feed with a single example activity entry: The activity
is defined from line 9–27 and the feed has an attached
PubSubHubbub service (line 6).

In our DSSN architecture, each activity is created as a Linked Data
resource (i.e. a DSSN data artefacts), which links to the actor and object
of the activity (cf. Listing 3). In addition, each activity is equipped
with a Pingback Server in order to allow for receiving reactions on
this activity (called pingbacks) and thus to spin a content network
between these artefacts.

History Feeds

History feeds are used to allow syndication of change sets of specific
resources between a publisher of a resource and many subscribers

66 Activity streams (http://activitystrea.ms) are Atom format extensions to describe
activity feeds. It is extensible in a way that allows publishers to use new verb- or
object-type IRIs to identify site-specific activities.

http://activitystrea.ms

4.3 protocol layer 36

of the resource. History feeds describe changes in RDF resources
in terms of added and deleted statements which are boxed in an
Atom feed entry. A subscriber’s social network application can use
this information to maintain an exact copy of the original resource
for caching and querying purposes. History feeds are in particular
important for the syndication of changes of WebID profiles (e.g. if a
contact changes its phone number).

4.3 protocol layer

The protocol layer consists of the WebID identity protocol and two
networking protocols which provide support for two complete dif-
ferent communication schemes, namely resource linking and push
notification.

4.3.1 WebID (protocol)

From a more technical perspective, the WebID protocol [Story et al.,
2013] incorporates authentication and trust into the WebID concept.
The basic idea is to connect an SSL client certificate with a WebID
profile in a secure manner and thus allowing owners of a WebID to
authenticate against 3rd-party websites with support for the WebID
protocol. The WebID (i.e. a dereferencable URI) is, therefore, embed-
ded into an X.509 certificate67 by using the Subject Alternative Name
(SAN) extension. The document, which is retrieved through the URI,
contains the corresponding public key. Given that information, a re-
lying party can assert that the accessing user owns a certain WebID.
Furthermore, the WebID protocol can provide access control function-
ality for social networks shaped by WebIDs in order to regulate access
to certain information resources for different groups of contacts (e.g.
as presented with dgFOAF in Schwagereit et al. [2010]). An example
of a WebID profile, which is annotated with a public key, is shown in
Listing 4. This WebID profile contains additionally a description of an
RSA public key (line 15), which is associated to the WebID by using the
cert:identity property from the W3C certificates and crypto ontology
(line 19).

Nevertheless, the described approach requires the user to access
a secured resource directly, e.g. through a Web browser which is
equipped with a WebID-enabled certificate. However, in the scenario
of a distributed social network this arrangement is not always the case.
If, for example, the software of user A needs to update its local cache
of user B’s profile, it will do so by fetching the data in the background
and not necessarily when user A is connected. An obvious solution
would be to hand out a WebID-enabled certificate to the software
(agent), but then the user needs to create a dedicated certificate for

67 http://www.ietf.org/rfc/rfc2459.txt

http://www.w3.org/ns/auth/cert
http://www.w3.org/ns/auth/cert#identity
http://www.ietf.org/rfc/rfc2459.txt

4.3 protocol layer 37

29 @prefix rsa: <http://www.w3. org/ns/auth/rsa#>.
30 @prefix cert: <http://www.w3. org/ns/auth/cert #">.
31 [] a rsa:RSAPublicKey;

32 rdfs:comment "used from my smartphone ...";

33 cert:identity <http://philipp . frischmuth24 .de/id/me>;
34 rsa:modulusc "C41199E ... 5AB5"^^cert:hex;

35 rsa:public_exponent "65537"^^cert:int.

Listing 4: An extension of the minimal WebID from Listing 2: Description
of an RSA public key, which is associated to the WebID by using
the cert:identity property from the W3C certificates and crypto
ontology.

all tools that have to access secured information and simultaneously
allows all participating tools to “steal” her identity, which is not the
preferred solution from a security perspective.

To resolve this dilemma, we have extended the WebID protocol by
adding support for access delegation. By delegating access to an agent,
a user allows a particular agent to deputy access-secured information
resources. The agent itself authenticates against the relying party by
using its own credentials, e.g. by employing the WebID protocol, too.
Additionally, it sends a informational HTTP header, which indicates
that a resource is accessed on behalf of a certain WebID user.

The access delegation WebID protocol extension is discussed in
detail in Chapter 6.

4.3.2 Semantic Pingback

The purpose of Semantic Pingback (in detail presented in Chapter 5 and
Tramp et al. [2010a]) in the context of a DSSN architecture is twofold:

• It is used to facilitate the first contact between two WebIDs and
establish a new connection (friending).

• It is used to ping the owner of different social network artefacts
if there are activities related to these artefacts (e.g. commenting
on a blog post, tagging an image, sharing a website from the
owner).

The Semantic Pingback approach is based on an extension of the
well-known Pingback technology [Langridge and Hickson, 2002],
which is one of the technological cornerstones of the overwhelming
success of the blogosphere in the Social Web. It enables bi-directional
links between WebIDs and RDF resources as well as weblogs and
websites in general. It facilitates contact / author / user notifications
in case a link has been newly established. It is based on the adver-
tisement of a lightweight RPC service68 in the RDF document, HTTP

68 In fact, we experimented with different service endpoints. Based on the results, which
are described in more detail in Story et al. [2011], we now prefer simple HTTP post
requests which are not compatible with standard XML-RPC pingbacks.

http://www.w3.org/ns/auth/cert
http://www.w3.org/ns/auth/cert#identity

4.3 protocol layer 38

or HTML header of a certain Web resource, which should be called
as soon as a (typed RDF) link to that resource is established. The
Semantic Pingback mechanism allows casual users and authors of
RDF content, of weblog entries or of an article in general to obtain
immediate feedback when other people establish a reference to them
or their work, thus facilitating social interactions. It also allows to pub-
lish backlinks automatically from the original WebID profile (or other
content, e.g. status messages) to comments or references of the WebID
(or other content) elsewhere on the Web, thus facilitating timeliness and
coherence of the Social Web.

36 @prefix ping: <http://purl . org/net/pingback/>.
37 <http://philipp . frischmuth24 .de/id/me> ping:to <http://pingback .aksw. org>.

Listing 5: Extension of the minimal WebID profile from Listing 2: Assignment
of an external Semantic Pingback service which can be used to
ping this specific resource.

As a result, the distributed network of WebID profiles, RDF re-
sources and social websites can be much more tightly and timelier
interlinked by using the Semantic Pingback mechanism than con-
ventional websites, thus rendering a network effect, which is one of
the major success factors of the Social Web. Semantic Pingback is
completely downwards compatible with the conventional Pingback
implementations, thus allowing the seamless connection and interlink-
ing of resources on the Social Web with resources on the DSSN. An
extension of our example profile with Semantic Pingback functionality
making use of an external Semantic Pingback service is shown in
Listing 5. In line 23, the subject resource is linked with the ping:to

relation to the Semantic Pingback service.
As requested by our third DSSN design paradigm (protocol min-

imalism), Semantic Pingback is a generic data networking protocol
which allows to spin relations between any two Social Web resources.
In the context of the DSSN Architecture, Semantic Pingback is used in
particular for friending, commenting and tagging activities.

friending is the process of establishing a symmetric foaf:knows

relation between two WebIDs. A relationship is approved when both
persons publish this relation in their WebIDs. A typical friending work
flow can be described by the following steps:

• Alice publishes a foaf:knows relation to Bob in her WebID pro-
file.

• Alice’s WebID hosting service pings Bob’s WebID to inform Bob
about this new statement.

• Bob receives a message from his Pingback Service.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows

4.3 protocol layer 39

• Bob can approve this relation by publishing it in his WebID
profile, which sends again a ping back to Alice69.

This basic model of communication can be applied to different
events and activities in the social network. Table 2 lists some of the
more important pingback eventsIn any case, the owner of these re-
sources can be informed about the event and in most cases specific
actions should be triggered. However, a specific reaction is not en-
forced by the protocol.

Table 2: Typical RDF statements which can cause ping activities.

source resource object property target resource

foaf:Person foaf:knows foaf:Person

(friending)

sioct:Comment sioc:about foaf:Image

(commenting an image or any other resource)

sioc:Post sioc:reply_of sioc:Post

(replying to a post)

tag:Tagging tag:taggedResource *

(any resource which is tagged by a user)

aair:Activity aair:activityObject *

(any resource is object of an activity)

4.3.3 PubSubHubbub

PubSubHubbub70 is a web-hook-based publish/subscribe protocol,
as an extension to Atom and RSS, which allows for near instance
distribution of feed entries from one publisher to many subscribers.
Since feed entries are not described as RDF resources, PubSubHubbub
is not the best solution as a transport protocol for a DSSN from a
Linked Data perspective. However, PubSubHubbub with atom feeds is
widely in use and has good support in the Web developer community
which is why we decided to use it in our architecture. Similar to
Semantic Pingback, it is agnostic to its payload and can be used for all
publish/subscribe communication connections.

Figure 12 depicts the workflow of publication, subscription and
notification of the protocol:

1. The feed publisher creates or updates a feed.

69 Please note that the Semantic Pingback protocol does not enforce any specific reaction
on a certain relation type or any reaction at all.

70 http://code.google.com/p/pubsubhubbub/

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person
http://rdfs.org/sioc/types
http://rdfs.org/sioc/types#Comment
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#about
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Image
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#Post
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#reply_of
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#Post
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/Tagging
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/taggedResource
http://xmlns.notu.be/aair
http://xmlns.notu.be/aair#Activity
http://xmlns.notu.be/aair
http://xmlns.notu.be/aair#activityObject
http://code.google.com/p/pubsubhubbub/

4.3 protocol layer 40

Hub

Publisher Subscriber

Feed

1

2

creates / updates

6

3

4

75

announces

fetches

subscribes

fetches

pushnotifies

Figure 12: Publication / Subscription workflow of PubSubHubbub

2. This feed includes a link the responsible subscription hub in the
head of the feed.

3. The possible subscriber fetches the feed for the first time and
discovers the subscription hub.

4. The subscriber subscribes to the feed on the subscription hub.

5. The publisher notifies the hub regarding new content in the feed.

6. The hub fetches the content in order to distribute it.

7. The hub pushes new content to the subscribers.

The main advantage of this communication model is to avoid fre-
quent and unnecessary pulls of all interested subscribers from this
feed and to allow a faster broadcast to the subscriber.

In the DSSN architecture, two specific feeds are important and
interlinked with a WebID to allow for subscriptions:

• activity feeds which are used for activity distribution and

• history feeds which are used for resource synchronization.

Activity Description Distribution

The distribution of activity descriptions is a fundamental communica-
tion channel for any social network. A personal activity feed publishes
the stream of all activities on social network resources (artefacts and
WebIDs) with a specific user as the actor. These activity descriptions
can and should be created by any application which is allowed to
update the feed (ref. access delegation Chapter 6). In addition, activity
feeds should be created for data and media artefacts in order to allow
object-centered push notification. Typically, activity feed updates are
pushed to a personal search / index service of a subscribed user (see
next section).

4.4 service layer 41

Resource Synchronization

The synchronization of resource descriptions between publisher and
consumers is an additional communication scheme based on feeds. It
is required, especially in distributed social networks, to take into ac-
count that relevant data is highly distributed over many locations and
that access to and querying of this data can be very time-consuming
without caching. A properly connected resource synchronization tack-
les this problem by allowing users to subscribe to changes of certain
resources over PubSubHubbub. For a WebID, this process can be in-
cluded into the friending process, while for other resources a user can
subscribe manually (e.g. if a user is member of a certain group, then
she may subscribe to the feed of a group resource to receive updates).
Resource synchronization is a well-known topic when dealing with
distributed resources. We have designed our data model as Linked
Data update logs [Auer et al., 2009] based on the work previously
published by the Triplify project71.

4.4 service layer

Services are applications which are part of the DSSN infrastructure
(in contrast to applications from the application layer). WebIDs can be
equipped with different services in order to allow manipulation and
other actions on the user’s data by other applications. As depicted in
Figure 11, we have defined four essential services for a DSSN.

Ping Service

The ping service provides an endpoint for any incoming pingback
request for the resources of a user. First and foremost, it is used
with the WebID for friending but also for comment notification and
discussions.

One single ping service application instance can provide its services
for multiple resources. In a minimal setup, a ping service provides
only a notification service via email. In a more complex setup, the
ping service has access to the update service of a user (via access
delegation) and can do more than sending notification.

A ping service can be announced with the ping:to relation as shown
in Listing 5.

Push Service

The push service is used for activity distribution and resource synchro-
nization. Both introduced types of feeds announce its push service
in the same way as using the rel="hub" link in the feed head. Since

71 http://triplify.org

http://purl.org/net/pingback/
http://purl.org/net/pingback/to
http://triplify.org

4.4 service layer 42

both types of feeds are valid atom feeds, a DSSN push service can be
a standard PubSubHubbub-based instance.

To equip social network resources with its corresponding activity
and history feeds, we have defined two OWL object properties which
are sub-properties of the more generic sioc:feed relation from the
SIOC project [Breslin et al., 2006]: dssn:activityFeed and dssn:sync

Feed.
In addition to these RDF properties, DSSN agents should pay at-

tention to the corresponding HTTP header fields X-ActivityFeed and
X-SyncFeed, which are alternative representations of the OWL object
properties to allow the integration of media artefacts without too much
effort.

Search and Index Service

Search and index services are used in two different contexts in the
DSSN architecture.

• They are used to search for public Web resources, which are
not yet part of a user’s social network. These search services are
well-known semantic search engines such as Swoogle [Ding et al.,
2004] or Sindice [Tummarello et al., 2007]. They use crawlers to
keep their resource cache up-to-date and provide user interfaces
as well as application programming interfaces to integrate and
use their services in applications.

In our architecture, these public services are used to search for
new contacts as well as other artefacts in the same way as people
can use a standard Web search engine. The main advantage in
using Semantic Web search engines lies in their ability to use
graph patterns for a search activity72.

• In addition to public search services, we want to emphasize the
importance of private search services in our architecture. Private
search services are used in order to have a fast resource cache
not only for public, but also for private data which a user is
allowed to access.

A private search service is used for all users and queries from
applications which act on behalf of the user. The underlying
resource index of a private search service is used as a callback for
all push notifications from feeds to which the user has subscribed.
That is, she is able to query over the latest up-to-date data by
using her private search service. In addition, she can query for
data which has never been public and is published for a few
people only.

72 A motivating example in our context is the search for resources of type foaf:Person,
which are related to the DBpedia topic dbpedia:DataPortability (e.g. with the foaf

:interest object property).

http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#feed
http://purl.org/net/dssn/
http://purl.org/net/dssn/activityFeed
http://purl.org/net/dssn/
http://purl.org/net/dssn/syncFeed
http://purl.org/net/dssn/syncFeed
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person
http://dbpedia.org/resource/
http://dbpedia.org/resource/DataPortability
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/interest

4.5 application layer 43

Since private search services are used by applications which act
on behalf of the user, they must be WebID-protocol-enabled. That
is, they accept requests from the user and her delegated agents only.
In addition, applications need to know which private search service
should be accessed on behalf of the user. This mode is again made
possible by providing a link from the WebID to the search service73

In our architecture we assume that search services accept SPARQL
queries.

Update Service

Finally, an update service provides an interface to modify and create
user resources in terms of SPARQL update queries. In the same way
as private search services, update services are secured by means of
the WebID protocol and accept requests only by the user itself and by
agents in access delegation mode74.

Typical examples of how to use this service are the creation of
activities on behalf of the user or the modification of the user’s WebID,
e.g. by adding a new foaf:knows relation.

In the next section, we give a detailed description of the service
interplay and usage by applications.

4.5 application layer

Social Web applications create and modify all kinds of resources for a
user. In our architecture, they have to use the trusted services which
are related to a WebID instead of their own. Since access to these
services is exclusively delegated by the user to an application, the user
has full control over her data75. To illustrate how DSSN applications
work with a WebID and its services, we will describe a simple photo-
sharing application work flow:

1. When a user creates an account on this service, she uses her
WebID for the first login and delegates access to this application.

73 In our prototypes we use a simple OWL object property dssn:searchService, which
is a sub-property of dssn:trustedService. We assume that such an easy vocabulary
is only the first step to a fully featured service auto-discovery ontology and consider
all dssn terms as unstable.

74 We defined dssn:updateService as a relation between a WebID and an update
service.

75 At the moment we distinguish only between access and no access to a service. As an
extension, we can imagine that a private search service can handle access on parts of
the private Social Graph differently (an online game does not need to know which
other activities you pursue on the Web). Access policies for RDF knowledge bases is
a topic of ongoing research and we hope that the results of this research area can be
adapted here.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows
http://purl.org/net/dssn/
http://purl.org/net/dssn/searchService
http://purl.org/net/dssn/
http://purl.org/net/dssn/trustedService
http://purl.org/net/dssn/
http://purl.org/net/dssn/
http://purl.org/net/dssn/updateService

4.5 application layer 44

2. The application analyses the WebID and discovers the trusted
services and some meta-data of the user (e.g. name, short bio
and depiction).

3. The user then uploads her first image to the application.

4. The application creates a new image resource and an activity
stream for that resource.

5. After that, the application creates two activities for the user: one
in the stream of the image resource and one in the personal
stream of the user, employing the recently delegated access right

6. These activities are instantly pushed to all of the user’s friends
and are not part of the data of the image publishing service.

7. Furthermore, the photo-sharing application equips the newly
uploaded image with the pingback service of the user; thus
enabling the image for backlinks and comments.

8. New comments can arrive from everywhere on the Web, but the
application also provides its own commenting service (integrated
in the image Web view).

9. If another user writes a comment on this image, a data artefact is
created in the namespace of the application and a ping request
is sent to the user’s pingback service (since this service is related
to the image).

This simple example demonstrates the interplay and rules of the
DSSN service architecture. A more complex social network application
is described in the next section.

5
S E M A N T I C P I N G B A C K

The results presented
in this chapter were
primarily published
in Tramp et al.
[2010a] and
influenced other
related publications
of the author such as
Story et al. [2011];
Tramp et al.
[2011b,a, 2014].

In this Chapter, we introduce the Semantic Pingback protocol as a part
of the proposed DSSN architecture.

As described briefly in Section 4.3.2, Semantic Pingback is used to
facilitate the first contact between two WebIDs and establish a new
connection (friending) as well as to to ping the owner of different social
network artifacts if there are activities related to these artifacts (e.g.
commenting on a blog post, tagging an image, sharing a website from
the owner). In addition to that, the initial motivation for Semantic
Pingback as a main building block for a Linked Data infrastructure
goes far beyond these DSSN use-cases:

Recently, the publishing of structured, semantic information as
Linked Data, not only data from Social Networks, has gained much
momentum. A number of Linked Data providers meanwhile publish
more than 200 interlinked datasets amounting to 13 billion facts76.
Despite this initial success, there are a number of substantial obstacles,
which hinder the large-scale deployment and use of the Linked Data
Web as well as Linked Data enabled architectures such as Distributed
Social Semantic Networks.

These obstacles are primarily related to the quality, timeliness and
coherence of Linked Data. In particular for ordinary users of the Inter-
net, Linked Data is not yet sufficiently visible and (re-) usable. Once
information is published as Linked Data, authors hardly receive feed-
back on its use and the opportunity of realizing a network effect of
mutually referring data sources is currently unused.

In this chapter we present an approach for complementing the
Linked Data Web with a social dimension. The approach is based
on an extension of the well-known Pingback technology [Langridge
and Hickson, 2002], which is one of the technological cornerstones of
the overwhelming success of the blogosphere in the Social Web. The
Pingback mechanism enables bi-directional links between weblogs
and websites in general as well as author/user notifications in case
a link has been newly established. It is based on the advertising of a
lightweight RPC service, in the HTTP or HTML header of a certain
Web resource, which should be called as soon as a link to that resource
is established. The Pingback mechanism enables authors of a weblog
entry or article to obtain immediate feedback, when other people
reference their work, thus facilitating reactions and social interactions. It
also allows to automatically publish backlinks from the original article

76 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData

/DataSets/Statistics

45

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics

5.1 requirements 46

to comments or references of the article elsewhere on the Web, thus
facilitating timeliness and coherence of the Social Web. As a result, the
distributed network of social websites using the Pingback mechanism
(such as the blogosphere) is much tighter and timelier interlinked than
conventional websites, thus rendering a network effect, which is one
of the major success factors of the Social Web.

With this work we aim to apply this success of the Social Web to
the Linked Data Web. We extend the Pingback mechanism towards
a Semantic Pingback, by adding support for typed RDF links on
Pingback clients, servers and in the autodiscovery process.

When an RDF link from a Semantic Pingback enabled Linked
Data resource is established with another Semantic Pingback enabled
Linked Data resource, the latter one can be automatically enriched
either with the RDF link itself, with an RDF link using an inverse
property or additional information. When the author of a publication,
for example, adds bibliographic information including RDF links to
co-authors of this publication to her semantic wiki, the co-authors’
FOAF profiles can be enriched with backlinks to the bibliographic
entry in an automated or moderated fashion. The Semantic Pingback
supports provenance through tracking the lineage of information by
means of a provenance vocabulary. In addition, it allows to implement
a variety of measures for preventing spam.

Semantic Pingback is completely downwards compatible with the
conventional Pingback implementations, thus allowing to seamlessly
connect and interlink resources on the Social Web with resources on
the Data Web. A weblog author can, for example, refer to a certain Data
Web resource, while the publisher of this resource can get immediately
notified and rdfs:seeAlso links can be automatically added to the
Data Web resource.

This chapter is structured as follows:

• We describe the requirements which guided the development of
Semantic Pingback in Section 5.1.

• We present an architectural overview including client and server
communication behavior as well as autodiscovery algorithms of
our solution in Section 5.2, Section 5.3 and Section 5.4.

5.1 requirements

In this section we discuss the requirements, which guided the devel-
opment of our Semantic Pingback approach.

Semantic links.

The conventional Pingback mechanism propagates untyped HTML
links between websites. In addition the Semantic Pingback mechanism

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#seeAlso

5.1 requirements 47

should be able to propagate typed links (e.g. OWL object properties)
between RDF resources.

Use RDFa-enhanced content where available.

Since most traditional weblog and wiki systems are able to create
semantically enriched content based on RDFa annotations77, these
systems should be able to propagate typed links derived from RDFa
annotations to a Semantic Pingback server without any additional
modification or manual effort.

Downward compatibility with conventional Pingback servers.

Conventional Pingback servers should be able to retrieve and accept
requests from Semantic Pingback clients. Thus, widely used Social
Web software such as WordPress or Serendipity can be pinged by
a Linked Data resource to announce the referencing of one of their
posts. A common use case for this is a Linked Data SIOC [Breslin
et al., 2005] comment which replies and refers to a blog post or wiki
page on the Social Web. Such a SIOC comment typically uses the sioc

:reply_of object property to establish a link between the comment
and the original post78.

Downward compatibility for conventional Pingback clients.

Conventional Pingback clients should be able to send Pingbacks to
Semantic Pingback servers. Thus, a blogger can refer to any pingback-
enabled Linked Data resource in any post of her weblog. Hence, the
conventional Pingback client should be able to just send conventional
Pingbacks to the Linked Data server. Unlike a conventional Pingback
server, the Semantic Pingback server should not create a comment
with an abstract of the blog post within the Linked Data resource
description. Instead an additional triple should be added to the Linked
Data resource, which links to the referring blog post.

Support Pingback server autodiscovery from within RDF resources.

The conventional Pingback specification keeps the requirements on
the client side at a minimum, thus supporting the announcement of
a Pingback server through a <link>-Element in an HTML document.

77 This should be possible at least manually by using the systems HTML source editor,
but can be supported by extensions as for example described in Corlosquet et al.
[2009] for Drupal.

78 Since SIOC is a very generic vocabulary, people can also use more specific relations
as, for instance, swandr:disagreesWith or swandr:alternativeTo from the Scientific
Discourse Relationships Ontology of the SWAN project [Ciccarese et al., 2008].

http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#reply_of
http://purl.org/swan/1.2/discourse-relationships/
http://purl.org/swan/1.2/discourse-relationships/disagreesWith
http://purl.org/swan/1.2/discourse-relationships/
http://purl.org/swan/1.2/discourse-relationships/alternativeTo

5.2 overview 48

Since the Semantic Pingback approach aims at applying the Pingback
mechanism for the Web of Data, the autodiscovery process should be
extended in order to support the announcement of a Pingback server
from within RDF documents.

Provenance tracking.

In order to establish trust on the Data Web it is paramount to preserve
the lineage of information. The Semantic Pingback mechanism should
incorporate the provenance tracking of information, which was added
to a knowledge base as result of a Pingback.

Spam prevention.

Another aspect of trust is the prevention of unsolicited proliferation of
data. The Semantic Pingback mechanism should enable the integration
of measures to prevent spamming of the Data Web. These measures
should incorporate methods based on data content analysis and social
relationship analysis.

5.2 overview

The general architecture of the Semantic Pingback approach is de-
picted in Figure 13. A linking resource (depicted in the upper left) links
to another (Data) Web resource, here called linked resource (arrow 1).
The linking resource can be either an conventional Web resource (e.g.
wiki page, blog post) or a Linked Data resource. Links originating
from Linked Data resources are always typed (based on the used prop-
erty), links from conventional Web resources can be either untyped (i.e.
plain HTML links) or typed (e.g. by means of RDFa annotations). The
Pingback client (lower left) is either integrated into the data/content
management system or realized as a separate service, which observes
changes of the Web resource (arrow 2). Once the establishing of a link
was noted, the Pingback client tries to autodiscover a Pingback server
from the linked resource (arrow 3). If the autodiscovery was successful,
the respective Pingback RPC server is called (arrow 4), with the param-
eters linking resource (i.e. source) and linked resource (i.e. target). In
order to verify the retrieved request (and to obtain information about
the type of the link in the semantic case), the Pingback server fetches
(or dereferences) the linking resource (arrow 5). Subsequently, the
Pingback server can perform a number of actions (arrows 6,7), such as
updating the linked resource (e.g. adding inverse links) or notifying
the publisher of the linked resource (e.g. via email). This approach is
compatible with the conventional Pingback specification [Langridge
and Hickson, 2002], which illustrates the chain of communication
steps with the help of a Alice and Bob scenario. This scenario as well

5.2 overview 49

RPC Layer

Resource LayerLinking Resource
(Source)

Linked Resource
(Target)(typed) linking

observes

announces

RPC request

autodiscovery
fetches

1

2

3

4

5

(updates)
6

Publisher

Link Receiver

Pingback Server

Link Publisher

Pingback Client
(Link Propagator)

(notifies)

7

Figure 13: Architecture of the Semantic Pingback approach: (1) A linking
resource links to another (Data) Web resource, here called linked
resource. (2) The Pingback client is either integrated into the data/-
content management system or realized as a separate service,
which observes changes of the Web resource. (3) Once the es-
tablishing of a link has been noted, the Pingback client tries to
auto-discover a Pingback server from the linked resource. (4) If
the auto-discovery has been successful, the respective Pingback
server is used for a ping. (5) In order to verify the retrieved re-
quest (and to obtain information about the type of the link in the
semantic case), the Pingback server fetches (or de-references) the
linking resource. (6 + 7) Subsequently, the Pingback server can
perform a number of actions such as updating the linked resource
(e.g. adding inverse links) or notifying the publisher of the linked
resource (e.g. via email).

as the general architecture introduce four components, which we now
describe in more detail:

Pingback client.

Alice’s blogging system comprises the Pingback client. The Pingback
client establishes a connection to the Pingback server on a certain
event (e.g. on submitting a new blog post) and starts the Pingback
request.

Pingback server.

Bob’s blogging system acts as the Pingback server. The Pingback server
accepts Pingback request via XML-RPC and reacts as configured by
the owner. In most cases, the Pingback server saves information about
the Pingback in conjunction with the target resource.

5.2 overview 50

Target resource.

Bob’s article is called the target resource and is identified by the target
URI. The target resource can be either a web page or an RDF resource,
which is accessible through the Linked Data mechanism. A target
resource is called pingback-enabled, if a Pingback client is able to glean
information about the target resource’s Pingback server (see item 5.3
for autodiscovery of Pingback server information).

Source resource.

Alice’s post is called the source resource and is identified by the source
URI. Similar as the target resource, the source resource can be either
a web page or an RDF resource. The source resource contains some
relevant information chunks regarding the target resource.

These information chunks can belong to one or more of the follow-
ing categories:

• An untyped HTML link in the body of the web page (this does
not apply for Linked Data resources).

• A (possible RDFa-encoded) RDF triple linking the source URI
with the target URI trough an arbitrary RDF property. That is,
the extracted source resource model contains a direct relation
between the source and the target resource. This relation can be
directed either from the source to the target or in the opposite
direction.

• A (possible RDFa-encoded) RDF triple where either the subject
or the object of the triple is the target resource. This category
represents additional information about the target resource includ-
ing textual information (e.g. an additional description) as well
as assertions about relations between the target resource and a
third resource. This last category will most likely appear only in
RDFa enhanced web pages since Linked Data endpoints are less
likely to return triples describing foreign resources.

Depending on these categories, a Semantic Pingback server will
handle the Pingback request in different ways. We describe this in
more detail later in Section 5.4.

Figure 14 illustrates the complete life-cycle sequence of a (Semantic)
Pingback.

• Firstly, the source publisher updates the source resource, which
is observed by a Pingback client.

• The Pingback client then scans the source resource for links
(typed or untyped) to other resources.

5.3 client behavior 51

:Pingback-
Server:Target:Pingback-

Client :Source

scan for links

links

server autodiscovery

header or document

XML-RPC request (ping)

fetch and check

document with link(s) to target

XML response

:Source-
Publisher

:Target-
Publisher

updates
observes

updates informs

Figure 14: Sequence diagram illustrating the (Semantic) Pingback workflow.

• Each time the client detects a suitable link, it tries to determine
a Pingback server by means of an autodiscovery process.

• Once a Pingback server was determined, the client pings that
server via an XML-RPC request. Section 5.3 contains a more
detailed description of these steps.

• Since the requested Pingback server only receives the source and
target URIs as input, it tries to gather additional information. At
least the source document is fetched and (possibly typed) links
are extracted.

• Furthermore the target resource is updated and the publisher of
the target resource is notified about the changes. In Section 5.4
the server behavior is described in more detail.

• Finally, the Pingback server responds with an XML result.

5.3 client behavior

One basic design principle of the original Pingback specification is
to keep the implementation requirements of a Pingback client as
simple as possible. Consequently, Pingback clients do not even need
an XML/HTML parser for basic functionality. There are three simple
actions to be followed by a Pingback client:

1. Determine suitable links to external target resources,

2. detect the Pingback server for a certain target resource and

3. send an XML-RPC post request via HTTP to that server.

5.3 client behavior 52

Conventional Pingback clients would naturally detect (untyped)
links by scanning HTML documents for <a>-elements and use the
href-attribute to determine the target. Semantic Pingback clients will
furthermore derive suitable links by examining RDFa annotated HTML
or RDF documents. Both conventional and Semantic Pingback clients
are able to communicate with a Semantic Pingback server, since the
Semantic Pingback uses exactly the same communication interface. In
particular, we did not change the remote procedure call, but we intro-
duce a third possible autodiscovery mechanism for Semantic Pingback
clients in order to allow the propagation of server information from
within RDF documents. On the one hand, this enables the publisher
of a resource to name a Pingback server, even if the HTTP header
cannot be modified. On the other hand, this allows caching and in-
dexing of Pingback server information in a Semantic Web application.
Since a large number of Semantic Web applications store the data
retrieved from other parties, they can take advantage of the embedded
Pingback server information without requesting the data again, thus
accelerating the discovery process.

Server autodiscovery

The server autodiscovery is a protocol followed by a Pingback client to
determine the Pingback server of a given target resource. The Pingback
mechanism supports two different autodiscovery mechanisms which
can be used by the Pingback client:

• an HTTP header attribute X-Pingback and

• a link-element in the HTML head with a relation attribute
rel="pingback".

Both mechanisms interpret the respective attribute value as URL
of a Pingback XML-RPC service, thus enabling the Pingback client to
start the request.

The X-Pingback HTTP header is the preferred autodiscovery mech-
anism and all Semantic Pingback server must implement it in order to
achieve the required downward compatibility. We define an additional
autodiscovery method for Linked Data resources which is based on
RDF and integrates better with Semantic Web technologies.

Therefore, we define an OWL object property ping:service79, which
is part of the Pingback namespace and links a RDF resource with a
Pingback XML-RPC server URL. The advantage compared to an HTTP
header attribute is that this information can be stored along with a
cached RDF resource description in an RDF knowledge base. Another
benefit is, that different resources identified by hash URIs can be linked
with different Pingback servers. However, a disadvantage (as for the

79 http://purl.org/net/pingback/service

http://purl.org/net/pingback/
http://purl.org/net/pingback/service
http://purl.org/net/pingback/service

5.4 server behavior 53

HTML link element too) is that Pingback clients need to retrieve and
parse the document instead of requesting the HTTP header only.

5.4 server behavior

While the communication behavior of the server is completely compat-
ible with the conventional Pingback mechanism (as described in Lan-
gridge and Hickson [2002]), the manipulation of the target resource
and other request handling functionality (e.g. sending email notifica-
tions) is implementation and configuration dependent. Consequently,
in this section we focus on describing guidelines for the important
server side manipulation and request handling issues spam prevention,
backlinking and provenance tracking.

5.4.1 Spam Prevention

At some point every popular service on the Internet, be it email, we-
blogs, wikis, newsgroups or instant messaging, had to face increasing
abuse of their communication service by sending unsolicited bulk
messages indiscriminately. Each service dealt with the problem by
implementing technical as well as organizational measures, such as
black- and whitelists, spam filters, captchas etc. The Semantic Ping-
back mechanism prevents spamming by the following verification
method.

When the Pingback Server receives the notification signal, it au-
tomatically fetches the linking resource, checking for the existence
of a valid incoming link or an admissible assertion about the target
resource. The Pingback server defines, which types of links and infor-
mation are admissible. This can be based on two general strategies:

• Information analysis. Regarding an analysis of the links or asser-
tions, the Pingback server can, for example, dismiss assertions
which have logical implications (such as domain, range or car-
dinality restrictions), but allow label and comment translations
into other languages.

• Publisher relationship analysis. This can be based e.g. on the trust
level of the publisher of the linking resource. A possibility to
determine the trust level is to resolve foaf:knows relationships
from the linked resource publisher to the linking resource pub-
lisher.

If admissible links or assertions exist, the Pingback is recorded
successfully, e.g. by adding the additional information to the target
resource and notifying its publisher. This makes Pingbacks less prone
to spam than e.g. trackbacks80.

80 http://en.wikipedia.org/wiki/Trackback

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows
http://en.wikipedia.org/wiki/Trackback

5.4 server behavior 54

In order to allow conventional Pingback servers (e.g. WordPress) to
receive links from the Data Web, this link must be represented in a
respective HTML representation of the linking resource (managed by
the Pingback client) at least as an untyped HTML link. This enables
the server to verify the given source resource even without being
aware of Linked Data and RDF.

5.4.2 Backlinking

The initial idea behind propagating links from the publisher of the
source resource to the publisher of the target resource is to automate
the creation of backlinks to the source resource. In typical Pingback
enabled blogging systems, a backlink is rendered in the feedback area
of a target post together with the title and a short text excerpt of the
source resource.

To retrieve all required information from the source resource for
verifying the link and gather additional data, a Semantic Pingback
server will follow these three steps:

1. Try to catch an RDF representation (e.g. RDF/XML) of the
source resource by requesting Linked Data with an HTTP Accept

header.

2. If this is not possible, the server should try to gather an RDF
model from the source resource employing an RDFa parser.

3. If this fails, the server should at least verify the existence of an
untyped HTML link in the body of the source resource.

Depending on the category of data which was retrieved from the
source resource, the server can react in different ways:

• If there is only an untyped HTML link in the source resource, this
link can be created as an RDF triple with a generic RDF property
like dc:references or sioc:links_to in the servers knowledge
base.

• If there is at least one direct link from the source resource to
the target resource, this triple should be added to the servers
knowledge base.

• If there is any other triple in the source resource where either
the subject or the object of the triple corresponds to the target
resource, the target resource can be linked using the rdfs:see

Also property with the source resource.

In addition to the statements which link the source and the target
resource, meta data about the source resource (e.g. a label and a
description) can be stored as well.

http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/references
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#links_to
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://www.w3.org/2000/01/rdf-schema#seeAlso

5.4 server behavior 55

5.4.3 Provenance Tracking

Provenance information can be recorded using a provenance vocab-
ulary such as Hartig [2009]81. This vocabulary describes provenance
information based on data access and data creation attributes as well
as three basic provenance related types: executions, actors and arti-
facts. Following the specification in Hartig [2009], we define a creation
guideline for Pingback requests, identified by ping:RequestGuideline.
A specific Pingback request execution is then performed by a Pingback
data creating service, which uses the defined creation guideline.

Listing 6 shows an example provenance model represented in Turtle:

1 @prefix : <http://purl . org/net/provenance/ns#> .

2 @prefix rdf: <http://www.w3. org/1999/02/22−rdf−syntax−ns#> .

3 @prefix rdfs: <http://www.w3. org/2000/01/rdf−schema#> .

4 @prefix sioc: <http://rdfs . org/sioc/ns#> .

5 @prefix ping: <http://purl . org/net/pingback/> .

6

7 [a rdf:Statement;

8 rdf:subject <http://example1 . org/Source>;
9 rdf:predicate sioc:links_to;

10 rdf:object <http://example2 . org/Target>;
11 :containedBy [

12 a :DataItem;

13 :createdBy [

14 a :DataCreation;

15 :performedAt "2010-02-12T12:00:00Z";

16 :performedBy [

17 a :DataCreatingService;

18 rdfs:label "Semantic Pingback Service"];

19 :usedData [

20 a :DataItem;

21 :containedBy <http://example1 . org/Source>];

22 :usedGuideline [a ping:RequestGuideline]

23]];].

Listing 6: Provenance model of an example Semantic Pingback request.

This provenance model describes a Pingback from http://example

1.org/Source to http://example2.org/Target. The Pingback was
performed Friday, 12 February at noon and resulted in a single state-
ment, which links the source resource to the target resource using a
sioc:links_to property.

81 The Provenance Vocabulary Core Ontology Specification is available at http://trdf
.sourceforge.net/provenance/ns.html.

http://purl.org/net/pingback/
http://purl.org/net/pingback/RequestGuideline
http://example1.org/Source
http://example1.org/Source
http://example2.org/Target
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#links_to
http://trdf.sourceforge.net/provenance/ns.html
http://trdf.sourceforge.net/provenance/ns.html

6
A C C E S S D E L E G AT I O N F O R T H E W E B I D
P R O T O C O L

The results presented
in this chapter were
primarily published
in Tramp et al.
[2012] as well as
partly in Tramp et al.
[2014].

In this Chapter, we present our WebID protocol extension as part of
the proposed DSSN architecture.

Agents on the web communicate with each other through a limited
number of actions: by making requests for resources (GET), by creat-
ing resources (POST or PUT), or even by deleting resources. Creation
or deletion of resources usually require authentication of the agent
making the request, and so in many cases do requests for information.
A WebID is a URI that refers to an agent — person, robot, group or
other thing that can act intentionally. The WebID should be a URI
which when dereferenced returns a representation whose description
uniquely identifies the agent as the controller of a public key such as
defined in Story et al. [2013].

The notion of an agent include persons directly controlling a browser
or other software as well as software application which are not directly
under the control of a user. This second category includes all types
automation and productivity services such as Pocket82 or IFTTT83 as
well as all applications from DSSN service and application layer (see
Section 4.4).

The WebID protocol enables the global identification of agents
using asymmetric cryptography in a way that fits cleanly with web
architecture namely in such a way that agents can verify each others
identity without having had any previous interactions and in such a
way as to allow trust to build up in a decentralized manner through a
linked web of trust.

It is worth noting that the host serving the WebID profiles con-
trols the identity of every agent whose URI is within that server’s
namespaces. This service is known as the origin server [Barth, 2011].

The WebID protocol is designed for client authentication84. But the
origin server does not just respond to requests, the server is also able
to make requests. Indeed WebID authentication requires the server to
make WebID profile requests to other servers in order to verify the
identity of agents. Please note that fetching a WebID profile for WebID

82 Pocket (http://getpocket.com/) is a management tool for keeping articles for read-
ing later.

83 IFTTT (https://ifttt.com) is an acronym for ’If This Then That’, which is a service
to connect different web applications through simple conditional statements such as
’If someone is posting a picture of me on Facebook, then backup it on my Google
Drive.’

84 Server authentication using IETF DANE follows much the same logic, except that the
lookup for the identity is not done using the HTTP protocol but DNSSEC [Hoffman
and Schlyter, 2012].

56

http://getpocket.com/
https://ifttt.com

6.1 requirements 57

authentication should be done anonymously, for fear of authentication
deadlocks85.

Things get more interesting in the authorization space. Consider a
very natural application of WebID: Allowing friends of one’s friends
access to some resources. This authorization rule will require the
web server to fetch each of the resource owner’s friends profiles, in
order to build up the list of authorized users. But there is a privacy
issue involved here: not everyone wants to make all of their social
network publicly visible, and some may not want to make any of it
publicly visible. Those people may then protect their FOAF profile
with access control rules such as one only allowing friends of their
friends access to it. How can a server that needs access to these FOAF
profiles in order to apply its own access control rules get access to the
information?

This Chapter describes an extension of the WebID protocol in order
to allow access problems as described above. It is structured in the
following way:

• Section 6.1 describes preliminary requirements which we had in
mind for our solution and clarifies some important terms,

• Section 6.2 goes into detail with the WebID specification and
adds support for authorization delegation.

• Finally, in Section 6.3 we describe our reference scenarios based
on two web applications.

6.1 requirements

In order to make discussion of the problems easier, we distinguish the
following roles in the access delegation process:

• The secretary acts in the name of another agent, the principal.

• The principal is the agent who has a secretary that acts on its
behalf.

• The resource guard is the application which has to decide if a
request should be processed or not.

The solution we propose will be based on the following general prin-
ciples:

85 For example one can imagine an agent S with profile Ps requesting a resource
on server R which requires authentication. S would send R its certificate, thereby
requiring R to dereference S’s profile Ps in order to verify the WebID. If Ps itself
requires authentication of R and if R sends a certificate containing a WebID with its
profile Pr, and if Pr itself requires authentication then a deadlock exists.

6.1 requirements 58

Distinguish secretary from principal

The identity of the different agents should as far as possible be trans-
parent. In the context of access delegation this means that a secretary
should have it’s own WebID. The motivation for this is feature-driven
as well as technical:

• It allows resource guards to permit or deny requests based on
this information.

• Secretary that have many principals do not need to switch their
certificate between requests.

• It makes it possible to describe the relationship between a prin-
cipal and its secretary using Linked Data.

• If we do not distinguish secretary and principle in this way, then
either the principal need to create and publish many different
key pairs for each secretary or the principle need to push its
private keys to each of its secretaries in order to allow access for
them.

Easy to use

The one and only place to describe which secretary are allowed to
operate for a principal should be the principal’s WebID profile. To
grant delegated access to a secretary agent, no other actions than
adding 1 triple to the WebID profile should be needed. Retracting this
grant should involve simply removing it from the WebID profile.

Linked Data and Read Write Web integration

The solution we try to architect aims to enhance the communication
for consumption and modification of Linked Data especially from
the applications point of view. This means, that existing Linked Data
as well as Read-Write-Web principles should not be violated by the
architecture.

Minimal protocol footprint

By using HTTP and working declaratively by placing statements
in documents, we make adoption of the delegation easier and avoid
complex protocol developments. We believe that this is a crucial feature
of Linked Data in general.

6.2 extending webid for access delegation 59

Efficiency

Finally, the proposed solution should scale with growing number of
users and connections. In our context this means that an Social Web
application should be able to act in the name of thousands of users.

6.2 extending webid for access delegation

To fulfill the stated requirements, we extended the WebID protocol in
the following way:

Firstly, we defined an OWL object property which connects a prin-
cipal with its secretaries. This object property is currently identified
as cert:secretary in the namespace of the "Ontology for Certificates
and crypto stuff." An example is listed in Listing 7.

25 @prefix cert: <http://www.w3. org/ns/auth/cert #">.
26 <http://philipp . frischmuth24 .de/id/me> cert:secretary <http://akws. org/this>.

Listing 7: Extension of the minimal WebID profile from Listing 2: Adding a
secretary relationship to the WebID of an OntoWiki instance (see
Section 6.3)

Secondly, we extended the WebID authentication sequence in a way
that resource guards can distinguish between the requesting agent
(the secretary) and the agent on which behalf the secretary wants to
request this resource (the principal). This is done by using the defined
cert:secretary as well as an experimental HTTP request header field.
The new authentication sequence is depicted in Figure 15 (on Page
63).

The following enumeration describes each authentication step of
Figure 15 in detail but concentrates on the context of access delegation:

(1) The secretary opens a TLS connection with the server of the
protected resource.

(2) Once TLS is set up, the HTTP request is sent to the server (e.g.
a HTTP GET), with an additional X-On-Behalf-Of header, which
thereby defines the requesting agent as a secretary and the re-
ferred to agent as the principal.

(3) The guard intercepts this request, and in turn requests client
authentication using TLS session renegotiation. The secretary
authenticates as itself by sending a certificate containing a WebID
referring to it. The TLS-Light service verifies that the secretary
really is in possession of the private key corresponding to the
public key sent in the certificate. This is defined in the TLS
protocol [Dierks and Rescorla, 2008].

(4) The guard asks the verification agent to verify the WebID.

http://www.w3.org/ns/auth/cert
http://www.w3.org/ns/auth/cert#secretary
http://www.w3.org/ns/auth/cert
http://www.w3.org/ns/auth/cert#secretary

6.3 application scenarios 60

(5a) The verification agent verifies the secretary WebID which is
named in the certificate. This process is exactly as described
in the WebID protocol [Story et al., 2009]. The guard also asks
the verifier agent to check the secretary claim implied by the
X-On-Behalf-Of header.

(5b) The principal agent’s relation to the secretary is verified by deref-
erencing the principal’s WebID profile, and verifying it responds
with a true to the SPARQL ASK query ASK {$principal :secretary

$secretary.} where the principal and secretary variables have been
bound to the correct URIs.

(6) The authentication and verification process having succeeded,
the authorization process checking if the principal would get
access to the requested resource.

(7) The resource representation can then be returned or not, depend-
ing on the access control rules.

6.3 application scenarios

We describe two different application scenarios where WebID delega-
tion is essential: MyProfile is a WebID identity service application by
Andrei Sambra and OntoWiki a semantic data wiki.

MyProfile

MyProfile86 is a web service demonstrating how easy it is to both create
a WebID profile, and to build up distributed social web applications
upon it. Its main purpose is to provide a unified user account through
a simple user profile. Currently these are tied to the MyProfile project
web site, but it has been designed from the ground up to work with
distributed Linked Data, making it easy to dissociate the software stack
from the MyProfile project domain name, allowing it to be deployed
on a machine under the user’s control such as a FBx.

It is very important for MyProfile to be able to use WebID access del-
egation, because a single MyProfile server instance can host multiple
users, and must fetch resources for each user asynchronously in order
to be able to provide a seamless and rapid user experience. To improve
user experience and overall performance, a caching mechanism is used
to refresh local copies or “views” of external data. With multiple users
coexisting on the same server, the caching mechanism needs to be able
to distinguish views of remote resources as seen by different users, as
they are served by remote servers depending on their access control
and resource filtering policies. As the number of users on MyProfile

86 http://myprofile-project.org/

http://myprofile-project.org/

6.3 application scenarios 61

grows this has to be done efficiently, and so re-using TLS connections
where possible is important.

OntoWiki

OntoWiki (Auer et al. [2006], more in detail discussed in Chapter 9)
is a web application, which allows publication, exploration as well
as manipulation of arbitrary RDF knowledge bases in distributed
scenarios. We refer to it as a data wiki, since it adopts the wiki philos-
ophy (ease of editing, tracking of changes, integrated discussions) on
the one hand, while focusing on structured information on the other
hand. Furthermore OntoWiki is an adaptable application framework,
which supports the creation of Linked Data based applications on the
web [Heino et al., 2009]. In addition to the usual features of wikis,
OntoWiki provides a sophisticated extension system, such that it can
be adapted for a variety of use-cases. Although the wikis usually
enable anyone to edit everything, numerous real-world applications
require access-control mechanisms. OntoWiki has built-in support
for authorization on graph and action level. Furthermore several au-
thentication protocols can be employed, including amongst others the
WebID protocol.

A first use-case for WebID access delegation within OntoWiki arises
from the need to import external data. Since WebID profiles can contain
personal information, access to such data should be restricted with
the WebID protocol. Although a user may (or may not, in the case of
a periodically executed automatic synchronization process) initiate
the import procedure manually via the OntoWiki user interface, the
actual fetching is done in the background. An OntoWiki instance does
not know of any private keys of users of the system. Thus the system
is not able to use that information when requesting data. With WebID
access delegation though, profiles can be fetched on behalf of the user
instead.

Another use-case where access delegation can be employed is within
the Semantic Pinback procedure (see Chapter 5). With Semantic Ping-
back owners of resources can be notified when for example a link to
such a resource is created elsewhere on the web. In order to protect the
protocol against spam attacks, a Pingback server will fetch the desired
resource and check, whether the stated link is indeed contained in the
data. The source resource that links to the target resource and thus is
fetched by a Pingback server might be access restricted, for example
in a scenario where a friending process is initiated Story et al. [2011].
For privacy reasons the owner of the WebID profiles will very likely
hide the triples in question (e.g. foaf:knows) on anonymous access
attempts. With WebID access delegation again, the resources can be
fetched by the Pingback server on behalf of the resource owner.

6.3 application scenarios 62

This will require some further changes to the delegation protocol
discussed up to now. Specifically the :secretary relation currently does
not distinguish what kind of responsibilities the principal wishes to
give to the secretary. It is currently assumed that the secretary has full
rights. For OntoWiki knowing the Social Network is all that is needed
to make access control decisions and full delegation powers may not
be needed. The ability to describe more limited secretary relations
could be very helpful here.

6.3 application scenarios 63

C
ac

h
e

A
li

c
e

's
 S

e
r

v
e

r

C
li

en
t

ce
rt

 r
eq

u
es

tT
L

S
-L

ig
h
t

S
er

v
ic

e
G

u
ar

d
W

eb
ID

V
er

if
ie

r

P
ro

te
ct

ed

R
es

o
u

rc
e

B
o

b
's

S
e

c
r

e
t
a

r
y

S
e

c
r

e
ta

r
y

 S
e

r
v

e
r

S
ec

re
ta

ry

P
ro

fi
le

B
o
b
's

P
ro

fi
le

B
o

b
's

 S
e

r
v

e
r

S
e

c
r

e
ta

r
y

V
e

r
if

ic
a

ti
o

n

C
er

ti
fi

ca
te

 &
 p

ri
v
at

e

k
ey

 v
er

if
ic

at
io

n
H

T
T

P
S

 G
E

T

H
T

T
P

S
 G

E
T

A
u
th

o
ri

za
ti

o
n

T
L

S
 s

et
u
p

5
a

B
o
b

A
li

ce

A
lo

is

S
o

c
ia

l
G

r
a

p
h

5
b

7

4

6

1

2

3

ex
p
o
n
en

t

m
o
d
u
lu

s

m
o
d
u
lu

s

ex
p
o
n
en

t?

??

?

B
as

ic
 W

eb
ID

 C
h

ec
k

S
ec

re
ta

ry
 C

h
ec

k

Figure 15: Extended WebID authentication sequence

Part III

A P P L I C AT I O N S

This part is structured in three chapters each describing
an application which is to an extend integrated into the
proposed architecture of Part ii. xOperator (Chapter 7) is
an Instant Messaging agent which allows for querying
the content of the DSSN data layer by using natural lan-
guage templates. The MSSW client (Chapter 8) is deeply
integrated Android DSSN client which allows for Social
Network contact management by using the DSSN data
layer and the Semantic Pingback service. OntoWiki (Chap-
ter 9) is a semantic data wiki massively extended to be well
connected in the DSSN architecture both as a consumer
and a producer of Social Network data.

All three applications use a different subset of the proposed
DSSN architecture as well as provide fundamental differ-
ent user interfaces and usage concepts. xOperator provides
query capabilities by using a natural language chat inter-
face to "talk" to the Social Network. The MSSW client is
a backend service provider of the Android plattform and
is seamless integrated to bridge the DSSN data layer and
the local phones contact data. OntoWiki is a browser based
client which allows for sending and receiving activities as
well as managing Social Network contacts.

7
X O P E R AT O R – A N I N S TA N T M E S S A G I N G A G E N T

The results presented
in this chapter were
primarily published
in Dietzold et al.
[2008b] and Dietzold
et al. [2008c]. In
addition to that, a
vague idea of this
application was
coined by my
colleagues Michael
Martin and
Sebastian Hellmann
in 2007.

In this Chapter, we present the Intant Messaging client xOperator
as specific user interface to access data from the proposed DSSN
architecture via text based chat communication.

With estimated more than 500 million users Instant Messaging (IM)
is in addition to Web and Email the most popular service on the
Internet. Instant Messaging is used to maintain a list of close contacts
(such as friends or co-workers), to synchronously communicate with
those, exchange files or meet in groups for discussions. Examples
of IM networks are ICQ, Skype, AIM or the Jabber protocol and
network87. The latter is an open standard and the basis for many
other Instant Messaging networks such as Google Talk, Meebo and
Gizmo. With xOperator we present a strategy and implementation
which deeply integrates Instant Messaging networks with the Semantic
Web in general and the data layer of a DSSN more specifically (see
Section 4.2).

The xOperator application is a collaborative information agent to
query RDF documents or SPARQL endpoints via natural language
templates. The agents and its users as well as the agents among them-
selves communicate over for the Jabber network with the Extensible
Messaging and Presence Protocol (XMPP). User inputs are mapped
with Artificial Intelligence Markup Language (AIML) templates to
SPARQL queries. These queries are requested from the agents SPARQL
endpoints or routed to other agents in the Jabber roster network. The
resulting agent network exists on top of the existing social network
from the jabber rosters. In this chapter we present usage scenarios, the
technical architecture of our implementation and evaluation results.

While there were some proposals and first attempts to bring seman-
tic technologies together with Instant Messaging (e.g. Osterfeld et al.
[2005], Franz and Staab [2005] and Shum et al. [2002]) we present a
strategy and implementation, which deeply integrates both realms
in order to maximize benefits for prospective users. The xOperator
concept is based on the idea of additionally equipping an users’ In-
stant Messaging identity with a number of information sources from
the DSSN data layer this user owns or trusts (e.g. his WebID profile,
iCal calendar etc.). Thus the Instant Messaging network is overlaid
with a network of trusted knowledge sources. An Instant Messaging
user can query his local knowledge sources using a controlled (but
easily extensible) language based on Artificial Intelligence Markup
Language (AIML) templates [Wallace, 2005]. In order to pass the gen-

87 http://www.jabber.org/

65

http://aksw.org/MichaelMartin
http://aksw.org/MichaelMartin
http://aksw.org/SebastianHellmann
http://www.jabber.org/

7.1 communication scenarios and requirements 66

erated machine interpretable queries to other xOperator agents of
friends in the Instant Messaging network, xOperator makes use of
the standard message exchange mechanisms provided by the Instant
Messaging protocol. After evaluation of the query by the neighboring
xOperator agents, results are transferred back, filtered, aggregated
and presented to the querying user.

Such a deep integration of semantic technologies and Instant Mes-
saging bears a number of advantages and benefits for users when
compared to the separated use of Semantic Web technologies and
Instant Messaging. From our point of view the two most crucial ones
are:

• Context awareness. Users are not required to world wide uniquely
identify entities, when it is clear what/who is meant from the
context of their social network neighborhood. When asked for
the current whereabout of Sebastian, for example, xOperator can
easily identify which person in my social network has the name
Sebastian and can answer my query without the need for further
clarification.

• Provenance and trust. Instant Messaging networks represent care-
fully balanced networks of trust. People only admit friends and
colleagues to their contact list, who they trust seeing their on-
line presence, not being bothered by SPAM and sharing contact
details with. Overlaying such a social network with a network
for semantic knowledge sharing and querying naturally solves
many issues of provenance and trust.

The Chapter is structured as follows:

• After presenting envisioned usage scenarios and requirements
in Section 7.1,

• we exhibit the technical xOperator architecture in Section 7.2.

• We report about a first xOperator evaluation according to differ-
ent use cases in Section 7.3,

• and present related work in Section 7.4.

7.1 communication scenarios and requirements

This section describes the three envisioned agent communication sce-
narios for xOperator. We will introduce some real-world application
scenarios also later in Section 7.3. Figure 16 shows a schematic depic-
tion of the communication scenarios. The figure is divided vertically
into four layers.

7.1 communication scenarios and requirements 67

Figure 16: Agent communication scenarios: (A) personal agent, (B) group
agent, (C) agent network.

• The first two layers represent the DSSN data layer in the World
Wide Web. Mutually interlinked data layer resources (such as
WebID profiles) reference each other using relations such as
foaf:knows. These DSSN data layer resources could have been
generated manually, exported from databases or could be gener-
ated from other information sources. These can be, for example,
mailing list archives which are represented as SIOC ontologies
or personal calendars provided by public calendaring servers
such as Google calendar. In order to make such information
available to the DSSN a variety of transformation and mapping
techniques can be applied. For the conversion of iCal calendar
information for example we used Masahide Kanzaki’s ical2rdf
service88.

• The lower two layers in Figure 16 represent the Jabber Network.
Here users are interacting synchronously with each other, as well
as users with artificial agents (such as xOperator) and agents
with each. A user can pose queries in natural language to an
agent and the agent transforms the query into one or multiple
SPARQL queries. Thus generated SPARQL queries can be for-
warded either to a SPARQL endpoint or neighboring agents via
the Instant Messaging networks transport protocol (XMPP in the
case of Jabber). SPARQL endpoints evaluate the query using a
local knowledge base, dynamically load RDF resources from the
Linked Data Web or convert Web accessible information sources
into RDF. The results of SPARQL endpoints or other agents
are collected, aggregated, filtered and presented to the user de-
pending on the query as a list, a table or a natural language
response.

The different communication scenarios are described in the follow-
ing subsections:

88 http://www.kanzaki.com/courier/ical2rdf

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows
http://www.kanzaki.com/courier/ical2rdf

7.1 communication scenarios and requirements 68

7.1.1 Personal Agent (A)

This scenario is the most important one and also builds the founda-
tion for the other two communication scenarios. A user of an Instant
Messaging network installs his own personal agent and configures
information sources he owns or trusts. For easy deployment the soft-
ware representing the agent could be distributed together with (or as a
plugin of) the Instant Messaging client (such as Pidgin89 or Adium90).

Information sources can be for example a WebID profile of the user
containing personal information about herself and about relationships
to other people she knows and where to find further information about
these. This information is represented in FOAF using the properties
foaf:knows and rdfs:seeAlso. Please have a look on Listing 2 for an
example of a minimal WebID profile.

Additionally this WebID profile can link to other RDF documents
in the DSSN data layer which contain more information about the
user and his activities. The RDF version of his calendar (using ical

:Vcalendar from the ical namespace), for example, could be linked
as follows:

1 @prefix ical: <http://www.w3. org/2002/12/cal/ical#>.
2 <http://philipp . frischmuth24 .de/id/me> rdfs:seeAlso <http ://.. ./ ical2rdf?u=http . . .

> .

3 <http ://.. ./ ical2rdf?u=http . . . > a ical:Vcalendar;

4 rdfs:label "My Calendar" .

Listing 8: Extension of the minimal WebID profile from Listing 2: Integrating
a machine readable calendar description.

Such links span a network of information sources as depicted in
Figure 16. Each user maintains his own part of the DSSN data layer
and links to resources of his acquaintances. Depending on the query,
the agent will access the respective resources. The following example
queries are possible, when WebID profiles are known to the agent:

• Tell me the phone / homepage / . . . of Frank!

• What is the birthday of Michael?

• Where is Dave now?

• Who knows Alex?

7.1.2 Group Agent (B)

This communication scenario differs from the Personal Agent scenario
in that multiple users get access to the same agent. The agent should

89 http://pidgin.im/

90 https://adium.im/

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://www.w3.org/2002/12/cal/ical
http://www.w3.org/2002/12/cal/ical
http://www.w3.org/2002/12/cal/ical#Vcalendar
http://www.w3.org/2002/12/cal/ical
http://pidgin.im/
https://adium.im/

7.2 technical architecture 69

be able to communicate with multiple persons at the same time and
to answer queries in parallel. As this is also depicted in Figure 16 the
agent furthermore does not only access DSSN data layer resources but
can also use a triple store for answering queries. When used within a
corporate setting this triple store, can for example, contain a directory
with information about employees or customers. The triple store can be
also used to cache information obtained from other sources and thus
facilitates faster query answering. For agents themselves, however, the
distinction between resources on the Web and information contained
in a local triple store is not relevant.

7.1.3 Agent Network (C)

This scenario extends the two previous ones by allowing communi-
cation and interaction between agents. The rationale is to exploit the
trust and provenance characteristics of the Instant Messaging network:
Questions about or related to acquaintances in my network of trust
can best be answered by their respective agents. Hence, agents should
be able to talk to other agents on the Instant Messaging network.

First of all, it is crucial that agents on the Instant Messaging network
recognize each other. A personal agent can use the account of its
respective owner and can access the contact list (also called roster) and
thus a part of its owner’s social network. The agent should be able to
recognize other personal agents of acquaintances in this contact list
(auto discovery) and it should be possible for agents to communicate
without interfering with the communication of their owners. After
other agents are identified it should be possible to forward SPARQL
queries (originating from a user question) to these agents, collect their
answers and present them to the user.

7.2 technical architecture

First of all, the xOperator agent is a mediator between the Jabber In-
stant Messaging network on one side and the World Wide Web on the
other side. The xOperator is a client in both networks. He communi-
cates anonymously (or using configured authentication credentials) on
the WWW by talking HTTP with Web servers. On the Jabber network
xOperator utilizes the Extensible Messaging and Presence Protocol
(XMPP, Saint-Andre [2004]) using the Jabber account information pro-
vided by its owner. Jabber clients only communicate with the XMPP
server associated with the user account. Jabber user accounts are have
the same syntax as email addresses (e.g. soerenauer@jabber.ccc.de).
The respective Jabber server cares about routing messages to the server
associated with the target account or temporarily stores the message
in case the target account is not online or its server is not reachable.
Since 2004 XMPP is a standard of the Internet Engineering Task Force

soerenauer@jabber.ccc.de

7.2 technical architecture 70

Figure 17: Technical architecture of xOperator.

and is widely used by various services (e.g. Google Talk). Figure 17

depicts the general technical architecture of xOperator.
The agent works essentially in two operational modi:

1. (Uninterrupted line) Answer natural language questions posed
by a user using SPARQL queries and respond to the user in
natural language according to a predefined template. Questions
posed by a user (a) are either directly mapped to a SPARQL
query template (b) or SPARQL queries are generated by a query
script (c), which might obtain additional information by means
of sub queries (d). The resulting SPARQL query will be evalu-
ated on resources of the user (e), as well as passed on the Jabber
network to neighboring agents for evaluation (f). All returned
results are collected and prepared by a result renderer for pre-
sentation to the user (g). Algorithm 1 demonstrates the workings
of xOperator.

2. (Dotted line) Receive SPARQL queries from neighbouring agents
(1) on the IM network, evaluate these queries (2) on the basis
of locally known RDF documents and SPARQL endpoints and
send answers as XML SPARQL Result Set [Beckett and Broekstra,
2013] back via XMPP (3).

In both cases the agent evaluates SPARQL queries by querying a
remote SPARQL endpoint via HTTP GET Request according to the
SPARQL HTTP Bindings [Clark, 2013] or by retrieving an RDF docu-
ment as well via HTTP and evaluating the query by means of a local
SPARQL query processor.

In the following we describe first the natural language component on
the basis AIML templates and address thereafter the communication
in the Jabber network.

7.2.1 Evaluation of AIML Templates

The Artificial Intelligence Markup Language (AIML, Wallace [2005]) is
an XML dialect for creating natural language software agents. In Freese
[2007] the authors describe AIML to enable pattern-based, stimulus-
response knowledge content to be served, received and processed

7.2 technical architecture 71

Algorithm 1: Evaluation of XMPP user input.
Input: User input I from XMPP
Output: Sendable Agent response
Data: set S = A∪D∪ E of agents, documents and endpoints
Data: set C of AIML categories
Data: set R = ∅ of results
if I is an admin or extension command then return executeCommand1

(I)
else if I has no match in C then return defaultmsg2

else if I has standard match in C then return aimlResult (I,C)3

else4

if I has SPARQL template match in C then5

Query = fillPatterns (aimlResult (I,C))6

else if I has query script match in C then7

Query = runScript (aimlResult (I,C))8

if Query then9

foreach s ∈ S do10

R = R∪ executeQuery(Query, s)11

return renderResults (R);12

else13

return error14

on the Web and offline in the manner that is presently possible with
HTML and XML. AIML was designed for ease of implementation,
ease of use by newcomers, and for interoperability with XML and
XML derivatives such as XHTML. Software reads the AIML objects
and provides application-level functionality based on their structure.
The AIML interpreter is part of a larger application generically known
as a bot, which carries the larger functional set of interaction based
on AIML. A software module called a responder handles the human-
to-bot or bot-to-bot interface work between an AIML interpreter and
its object(s). In xOperator AIML is used for handling the user input
received through the Instant Messaging network and to translate it into
either a query or a call to a script for more sophisticated evaluations.

The most important unit of knowledge in AIML is the category. A
category consists of at least two elements, a pattern and a template
element. The pattern is evaluated against the user input. If there is a
match, the template is used to produce the response of the agent. It is
possible to use the star (*) as a placeholder for any word in a pattern.
We have extended this basic structure in two ways:

7.2 technical architecture 72

Simple Query Templates

In order to enable users to create AIML categories on the fly we have
created an extension of AIML. It allows to map natural language
patterns to SPARQL query templates and to fill variables within those
templates with parameters obtained from *-placeholders in the natural
language patterns.

1 <category>

2 <pattern>TELL ME THE PHONE OF *</pattern>

3 <template>

4 <external name="query"

5 param="SELECT DISTINCT ?phone WHERE {...}" />

6 </template>

7 </category>

Within the SPARQL template variables in the form of %%n%% refer
to *-placeholder (n refers to the nth

*-placeholder in the category
pattern). The question for the phone number of a person, for example,
can be represented with the following AIML template:

1 TELL ME THE PHONE OF *

A possible (very simple) SPARQL template using the FOAF vocabu-
lary could be stored within the AIML category as follows:

1 SELECT DISTINCT ?phone WHERE

2 { ?s foaf:name "%%1%%". ?s foaf:phone ?phone. }

On activation of a natural language pattern by the AIML interpreter
the corresponding SPARQL templates variables are bound to the val-
ues of the placeholders and the resulting query is send independently
to all known SPARQL endpoints and neighboring agents. These an-
swer independently and deliver result sets, which can complement
each other, contain the same or contradictory results. The agent ren-
ders results as they arrive to the user, but filters duplicates and marks
contradictory information. The agent furthermore annotates results
with regard to their provenance.

This adoption of AIML is easy to use and directly extensible via the
Instant Messaging client (cf. Section 7.2.2). However, more complex
queries, which for example join information from multiple sources are
not possible. In order to enable such queries we developed another
AIML extension, which allows the execution of query scripts.

Query Scripts

Query scripts basically are small pieces of software, which run in a
special environment where they have access to all relevant subsystems.
They are given access to the list of known data sources and neigh-
boring agents. xOperator, for example, allows the execution of query
scripts in the Groovy scripting language for Java.The execution of a
query script results in the generation of a SPARQL query, which is

7.2 technical architecture 73

evaluated against local information sources and passed to other agents
as described in the previous section. We motivate and illustrate the
workings of query scripts using an application scenario based on the
WebID profile based Linked Data network (cf. Figure 16), which has
the following characteristics:

• The foaf:knows relation points to other people known by this
person.

• Other resources are linked through rdfs:seeAlso, allowing bots
and agents to crawl through the FOAF space and to gather
additional RDF documents like calendars or blog feeds.

To enable the agent to retrieve and evaluate additional information
from sources, which are referenced from the user’s WebID profile, a
query script can contain subqueries, whose results are used within
another query91. Query scripts also enable the usage of special place-
holders such as now or tomorrow, which can be populated for the
querying of iCal calendars with the concrete values.

In order to extend the agent for other application domains or usage
scenarios, xOperator allows to dynamically assign new query scripts
to AIML categories. A query script is assigned to an AIML template
by means of an external tag (as are also simple SPARQL templates). An
example script implementing a subquery to retrieve relevant resources
about a foaf:person is presented in Section 7.3.

7.2.2 Administration and Extension Commands

Users can easily change the configuration of their agents by using a
set of administration and extension commands. These commands have
a fix syntax and are executed without the AIML engine and consists
of the following categories:

• commands to manage trusted data sources

– list ds

– add ds {name} {uri}

– del ds {name}

Each source is locally identified by a name which is associated
to an URI.

• template commands, to manage simple query templates which
are associated by its AIML pattern

– list templates

– add template {pattern} {query}

91 Note that this is possible with SPARQL 1.1 subqueries too. TODO: reference!!

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/person

7.2 technical architecture 74

– del template {pattern}

• A command to send on-the-fly SPARQL queries to the xOperator

– query {SPARQL query}:

The query will be evaluated on every data store and routed
to every agent in the neighborhood. The query results will be
rendered by a default renderer.

• namespace management commands

– list ns

– add ns {prefix} {uri}

– del ns {prefix}

The namespaces will be added to the namespace section in the
on-the-fly query.

• an entry point for the help system

– help

7.2.3 XMPP Communication and Behavior

While the HTTP client of the agent uses standard HTTP for querying
SPARQL endpoints and the retrieval of RDF documents, we extended
XMPP for the mutual communication between the agents. This ex-
tension complies with standard extension routines of XMPP will be
ignored by other agents. With regard to the IM network the following
functionality is required:

• The owner of the agent should be able to communicate easily
with the agent. He should be able to manage the agent using the
contact list (roster) and the agent should be easily recognizable.

• The agent has to have access to the roster of its owner in order
to identify neighboring agents.

• It should be possible for other agents to obtain information about
the ownership of an agent. Its requests will not be handled by
other agents for security reasons if it can not be clearly assigned
to an owner.

• The agent should be only visible for his owner and neighboring
agents (i.e. agents of contacts of his owner) and only accept
queries from these XMPP accounts.

As a consequence from those requirements it is reasonable that
the agent acts using the account of its owner (main account) for the
communication with other agents, as well as an additional account

7.2 technical architecture 75

Figure 18: XMPP Communication example

(proxy account) for the communication with its owner92. Due to the
usage of the main account other agents can trust the agents answers
and easily track the provenance of query results. Figure 18 depicts
the concept of using two different accounts for the communication
with the owner and other agents. For unique identification of senders
and recipients so called resource names (in the figure Home, Work and
Agent) are used and simply appended to the account name.

We demonstrate the agent communication with two XMPP mes-
sages:

Agent Autodiscovery

Goal of the autodiscovery is the identification of agents among each
other. For that purpose each agent sends a special message of type
info/query (iq) to all known and currently active peers. Info/query
messages are intended for internal communication and queries among
Instant Messaging clients without being displayed to the human users.
An autodiscovery message between the two agents from Figure 18, for
example, would look as follows:

1 <iq from="user1@example.com/Agent" type=’get’

2 to="user2@example.com/Agent" id=’...’>

3 <query xmlns=’http://jabber.org/protocol/disco#info’/>

4 </iq>

A positive response to this feature discovery message from an xOp-
erator agent would contain a feature with resource ID http://www.w

3.org/2005/09/xmpp-sparql-binding. This experimental identifier/-
namespace was created by Dan Brickley for SPARQL / XMPP experi-
ments (cf. Section 7.4). The response message to the previous request
would look as follows:

1 <iq from=’user2@example.com/Agent’ type=’result’

2 to=’user1@example.com/Agent’ id=’...’ />

3 <query xmlns=’http://jabber.org/protocol/disco#info’>

4 <identity

92 Technically, it is sufficient for the agent to use the owner’s account which, however,
could create confusing situations for the user when communicating with ‘herself’.

http://www.w3.org/2005/09/xmpp-sparql-binding
http://www.w3.org/2005/09/xmpp-sparql-binding

7.3 evaluation 76

5 category=’client’ name=’xOperator’ type=’bot’/>

6 <feature

7 var=’http://www.w3.org/2005/09/xmpp-sparql-binding’/>

8 <!-- ... more here -->

9 </query>

10 </iq>

Similar XMPP messages are used for sending SPARQL queries and
retrieving results. The latter are embedded into a respective XMPP
message according to the SPARQL Query Results XML Format.

Routing and Recall

Queries are propagated to all neighboring xOperator agents. As cur-
rently there is no way of anticipating which agent could answer a
question, asking all directly connected agents offers the best compro-
mise between load and recall. Flooding the network beyond adjacent
nodes would cause excessive load. Especially in the domain of per-
sonal information, persons or their respective agents directly related
to the querying person or agent should be most likely to answer the
query.

7.3 evaluation

The xOperator concept was implemented in Java and is available as
open-source software from: http://aksw.org/Projects/xOperator.
The agent is able to log into existing accounts and can receive querying
and configuration commands.

Figure 19: Communication with the xOperator agent by means of an ordinary
Jabber client.

We evaluated our approach in a number of scenarios, which in-
cluded various heterogeneous information sources and a different

http://aksw.org/Projects/xOperator

7.3 evaluation 77

Template Scenario: 1 2 3

1 What is / Tell me (the) * of * 2.3 3.9 1.5

2 Who is member of * 3.5 4.3 1.6

3 Tell me more about * 3.2 5.6 1.1

4 Where is * now 5.1 6.7 4.2

5 Free dates * between * and * 5.1 6.8 4.7

6 Which airports are near * – – 3.4

Table 3: Average response time in seconds (client to client) of some AIML
patterns used in three scenarios: (1) 20 documents linked from
one WebID profile, 1 personal agent with no neighborhood (2) 20

documents linked from different FOAF profiles and spread over a
neighborhood of 5 agents (3) one SPARQL endpoint as an interface
to a Semantic Wiki or DBpedia store with one group agent

number of agents. As information sources we used WebID profiles
(20 documents, describing 50 people), the SPARQL endpoint of our
semantic Wiki OntoWiki [Auer et al., 2006] (containing information
about publications and projects), information stored in the LDAP
directory service of our department, iCal calendars of group mem-
bers from Google calendar (which are accessed using iCal2RDF) and
publicly available SPARQL endpoints such as DBpedia [Auer et al.,
2007]. Hence the resulting information space contains information
about people, groups, organizations, relationships, events, locations
and all information contained in the multidomain ontology DBpe-
dia. We created a number of AIML categories, interacting with this
information space. Some example patterns and corresponding timings
for obtaining answers from the agent network in the three different
network scenarios (personal agent, agent network and group agent)
are summarized in Table 3.

The first three templates represent queries which are answered using
simple SPARQL templates. Template 4 makes use of a reserved word
(now), which is replaced for querying with an actual value. Template 5

is implemented by means of a query script which retrieves all available
time slots from the calendars of a group of people and calculates the
intersection thus offering suitable times to arrange meetings or events,
where the attendance of all group members is required. Template
6 uses the DBpedia SPARQL endpoint in a group agent setting to
answer questions about the geographic location of places (such as
airports). These query templates are meant to give some insights in
the wealth of opportunities for employing xOperator. Further, AIML
templates can be created easily, even directly from within the IM client
(using the administration and extension commands as presented in
Section 7.2.2).

7.3 evaluation 78

A typical user session showing the communication with the agent
is depicted in Figure 19. The response timings indicate that the major
factor are latency times for retrieving RDF documents or querying
SPARQL endpoints. The impact of the number of agents in the agent
network as well as the overhead required by the xOperator algorithm
is rather small. The timings are furthermore upper bounds, since an-
swers are presented to the user as they arrive. This results in intuitive
perception that xOperator is a very responsive and efficient way for
query answering.

Experiences during the evaluation have led to the following rules
for creating patterns and queries in xOperator.

Query as fuzzy as possible

Instant Messaging is a very quick means of communication. Users
usually do not capitalize words and use many abbreviations. This
should be considered, when designing suitable AIML patterns. If in-
formation about the person ‘Sören Auer’ should be retrieved, this can
be achieved using the following graph pattern: ?subject foaf:name

"Auer". However, information can be represented in multiple ways
and often we have to deal with minor misrepresentations (such as
trailing whitespace or wrong capitalizations), which would result for
the above query to fail. Hence, less strict query clauses should be used
instead. For the mentioned example the following relaxed SPARQL
clause, which matches also substrings and is case insensitive, could be
used:

1 ?subject foaf:name ?name.

2 FILTER regex(?name,’.*Auer.*’,’i’)

Please note that the usage of regular expressions is resource consuming
and should be avoided if better FILTER clauses are available (such as
bif:contains in Openlinks Virtuoso triple store).

Use patterns instead of qualified identifiers for properties

Similar, as for the identification of objects, properties should be matched
flexible. When searching for the homepage of ‘Sören Auer’ we can add
an additional property matching clause to the SPARQL query instead
of directly using, for example, the property identifier foaf:homepage:

1 ?subject ?slabel ?spattern.

2 ?subject ?property ?value.

3 ?property ?plabel ?ppattern.

4 FILTER regex(?spattern,’.*Auer.*’,’i’)

5 FILTER regex(?ppattern,’.*homepage.*’,’i’)

This also enables multilingual querying if the vocabulary contains
the respective multilingual descriptions. Creating fuzzy queries, of

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/homepage

7.4 related work 79

course, significantly increases the complexity of queries and will
result in slower query answering by the respective SPARQL endpoint.
However, since we deal with a distributed network of endpoints, where
each one only stores relatively small documents this effect is often
negligible. One important assumption for this rule is the availability
of the vocabulary namespaces (including the rdfs:label values).

Use sub queries for additional documents

In order to avoid situations where multiple agents retrieve the same
documents (which is very probable in a small worlds scenario with
a high degree of interconnectedness) it is reasonable to create query
scripts, which only distribute certain tasks to the agent network (such
as the retrieval of prospective information sources or document loca-
tions), but perform the actual querying just once locally.

7.4 related work

Proposals and first prototypes which are closely related to xOperator
and inspired its development are Dan Brickley’s JQbus93 and Chris
Schmidt’s SPARQL over XMPP94. However, both works are limited to
the pure transportation of SPARQL queries over XMPP.

Quite different but the xOperator approach nicely complement-
ing are works regarding the semantic annotation of IM messages. In
Osterfeld et al. [2005] for example the authors present a semantic
archive for XMPP instant messaging which facilitates search in IM
message archives. Franz and Staab [2005] suggests ways to make IM
more semantics aware by facilitating the classification of IM messages,
the exploitation of semantically represented context information and
adding of semantic meta-data to messages. Comprehensive collabo-
ration frameworks which include semantic annotations of messages
and people, topics are, for example, CoAKTinG [Shum et al., 2002]
and Haystack [Karger et al., 2005]. The latter is a general purpose
information management tool for end users and includes an instant
messaging component, which allows to semantically annotate mes-
sages according to a unified abstraction for messaging on the Semantic
Web [Quan et al., 2003].

In Kaufmann and Bernstein [2007] natural language interfaces (NLIs)
are used for querying semantic data. The NLI used in xOpertor em-
ploys only a few natural language processing techniques, like stop
word removal for better template matching. Generic templates would
be possible to define, but as Kaufmann and Bernstein [2007] shows
user interaction is necessary for clarifying ambiguities. For keeping IM
conversation as simple as possible, domain specific templates using

93 http://svn.foaf-project.org/foaftown/jqbus/intro.html

94 http://crschmidt.net/semweb/sparqlxmpp/

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#label
http://svn.foaf-project.org/foaftown/jqbus/intro.html
http://crschmidt.net/semweb/sparqlxmpp/

7.4 related work 80

AIML were chosen. Finally, in Freese [2007] the author enhanced AIML
bots by generating AIML categories from RDF models. Different to
xOperator, these categories are static and represent only a fixed set of
statements.

8
M S S W – A M O B I L E C L I E N T F O R T H E
D I S T R I B U T E D S E M A N T I C S O C I A L N E T W O R K

The results presented
in this chapter were
primarily published
in Tramp et al.
[2011b].

In this Chapter, we present a smartphone hosted user interface to ac-
cess and manipulate resources from the proposed DSSN architecture.

Smartphones, which contain a large number of sensors and inte-
grated devices, are becoming increasingly powerful and fully featured
computing platforms in our pockets. For many people they already
replace the computer as their window to the Internet, to the Web as
well as to social networks. Hence, the management and presentation
of information about contacts, social relationships and associated in-
formation is one of the main requirements and features of today’s
smartphones.

The problem is currently solved solely for centralized proprietary
platforms (such as Google mail, contacts & calendar) as well as data-
silo-like social networks (e.g. Facebook). As a result of this data cen-
tralization, users’ data is taken out of their hands, they have to accept
the predetermined privacy and data security regulations; users are
dependent of the infrastructure of a single provider, they experience a
lock-in effect, since long-term collected profile and relationship infor-
mation cannot be easily transferred. Increasingly, many people argue
that social networks should be evolving. That is, they should allow
users to control what to enter and to keep a control over their own
data. Also, the users should be able to host the data on an infrastruc-
ture, which is under their direct control, the same way as they host
their own website [Berners-Lee, 2010].

A possibility to overcome these problems and to give the control
over their data back to the users is the mobile realization of an interface
for a truly distributed and semantics based social network such as the
DSSN architecture depicted on Figure 11.

This Chapter is structured in the following way:

• Firstly, we briefly reviewing some use cases and requirements
for a mobile, semantic social network application in Section 8.1.

• Then, we give an detailed insight on the implementation of an
integrated user interface for the Android plattform in Section 8.2.

• After that, we give an overview on related work in Section 8.3

8.1 mobile use cases and requirements

Before describing the overall strategy, the technical architecture and
our implementation we want to briefly outline in this section the

81

8.1 mobile use cases and requirements 82

key requirements, which guided our work. These requirements are
common sense in the context of social networks and are not newly
coined by us. Unfortunately most of them are not achieved in the
context of semantics enabled and distributed social networks, so we
describe them especially from this point of view.

8.1.1 Make new friends

Adding new contacts to our social network is the precondition in order
to gather useful information from this network. Maintaining our social
network directly from your mobile phones means that we are able to
instantly connect with new contacts (e.g. on conferences or parties). In
the context of a distributed social network, this use-case also includes
the employment of semantic search engines to acquire the WebID of a
new contact based on parts of its information (typically the contacts
name). In order to shorten the overall effort for adding new contacts,
functionality for scanning and decoding a contacts business cards QR
code95 are also included in this use-case.

8.1.2 Be in sync with your social network

Once our social network is woven and social connections are estab-
lished, we want to be able to gather information from this network. For
a distributed social network this means, that a combination of push
and pull communications is needed to be as timely updated as needed
and as fast synced as possible. Especially this use-case is bound to a
bunch of access control requirements96, where people want to permit
and deny access to specific information in fine grained shades and
based on groups, live contexts and individuals.

8.1.3 Annotate contacts profiles

It should be possible to annotate profiles of contacts freely, e.g. with
updated information or contact group categorizations (e.g. friends,
family, co-workers). These annotations should be handled in the same
way as the original data from the friend’s WebID profile, except that
this data is not updated with the WebID but persists as an annotation.
One additional feature request in this use-case is to share these anno-
tations across ones personal devices on the web, e.g. by pushing them
to a triple store which is attached to ones WebID profile.

95 QR codes are two-dimensional barcodes which can encode URIs as well as other
information. They are especially famous in Japan, but their popularity grows more
and more worldwide since mobile applications for decoding them with a standard
camera can be used on a wide range of devices.

96 A typical requirement: Disallow access to my mobile number except for friends and
family members.

8.1 mobile use cases and requirements 83

8.1.4 General requirements

The development of the Mobile DSSN Client was driven by a few
general requirements which derived from our own experience with
mobile phones and WebID profiles:

• Be as decent as possible: Today’s WebID profile based social net-
works are mostly driven by uploaded RDF files. In order to
support such low end profiles, there should be no other required
feature on a WebID than the availability as Linked Data. All
other features (WebID protocol, Semantic Pingback, subscription
service) should be handled as optional features and our client
should require as little infrastructure as possible.

• Be as transparent as possible: Mobile user interfaces are built for
efficiency and daily use. People become accustomed with them
and any changes in the daily work flow of using information
from the social network will annoy them. The client we had in
mind should work mostly invisible from the user, which means
it should be well integrated into the hosting mobile operating
system.

• Be as flexible as possible: This is especially needed in an envi-
ronment where vocabularies are not yet standardized and are
subject to changes and extensions. Our solution should be flex-
ible in the sense that we do not want built-in rules on how to
deal with specific attributes or relations.

Based on these preliminaries we located as well as integrated our
mobile client in the DSSN architecture from Chapter 4. Figure 20

depicts this mobile usecase centered DSSN architecture.

foaf:knows

WebID B
(FOAF file)

WebID A
(OntoWiki)

WebID C
(OntoWiki)

WebID D
(ODS)

Data Web

PubSubHubbub
server

Semantic
Pingack server

Data Web Services

rel:worksWith

Sindice

1

2

3

5

6

Mobile Devices

8

4

7

Figure 20: Mobile usecase centered DSSN Architecture

8.2 implementation of a mobile interface 84

As clearly shown, the mobile device is well connected to the DSSN
data layer and service layer (cf. Section 4.2 and Section 4.4). The
relations between these layers and the mobile device can be described
in the following way:

(1) A mobile user may retrieve updates from his social network
via his WebID provider, e.g. from an OntoWiki or MyProfile (cf.
Section 6.3).

(2) He may also fetch updates directly from the sources of the
connected WebIDs.

(3) A WebID provider can notify a subscription service about changes.

(4) The subscription service notifies all subscribers.

(5) As a result of a subscription notification, another node can
update its data.

(6) A mobile user can search for a new WebID by using a semantic
search engine, e.g. Sindice.

(7) To connect to a new WebID he sends a Semantic Pingback re-
quest.

(8) The ping service notifies of the resource owner.

8.2 implementation of a mobile interface

After describing the architecture of a mobile usecase centered dis-
tributed, semantic social network we now present our implementation
of a mobile interface for this network.

8.2.1 Android System Integration

Figure 21 depicts the mobile social Semantic Web client consisting of
two application frameworks, which are built on top of the Android
runtime and a number of libraries. In particular, androjena97 is one
of those libraries, which itself is a partial port of the popular Jena
framework [McBride, 2002] to the Android platform. Both frameworks
provided by the client share the feature that they are accessible through
content providers. The Mobile Semantic Web middleware (MSW) is
responsible for importing Linked Data resources (in particular via
WebID auth) and persisting that data. It operates on triple level and
provides access to the various triple stores through a content provider
called TripleProvider. Each resource is stored separately, since named
graphs are currently not supported. The Mobile Social Semantic Web
middleware (MSSW) queries the triple data provided by MSW and

97 http://code.google.com/p/androjena/

http://code.google.com/p/androjena/

8.2 implementation of a mobile interface 85

ContactsTriple FOAF

FOAF BrowserNative Contacts ...

Core Libraries

Dalvik VM

SSL

androjena

...

WiFi Networking ...

Mobile Semantic Web
(MSW)

Mobile Social Semantic Web
(MSSW)

LOD

Applications

Content Provider

Application Frameworks

Libraries Android Runtime

Linux Kernel

query

fetch

Figure 21: Android Integration Layer Cake

transforms that data into a format that is more appropriate for social
applications. It propagates two content providers, one that integrates
well with the layout of contact information on Android phones (Con-
tactProvider) and one that is suitable for WebID based applications
(FoafProvider).

8.2.2 Model Management

Since WebIDs are Linked Data enabled, they usually return data de-
scribing that resource. This circumstance makes it feasible to store a
graph (referred to as a model here) for each WebID, since the redun-
dancy between models is expected to be marginal. In reality MSW
keeps more than one model per WebID for different purposes. On the
mobile phones’ user data space (SD card or emulated) we keep these
models in the following subdirectories:

• web – This folder contains exact copies of the documents retrieved
from the Web.

• inf – Models stored in this folder contain all entailed triples
(more on this in Section 8.2.3).

• local – The user can annotate all WebIDs with personal infor-
mation, which will be stored in this folder.

We decided to store all data as RDF files in the user space, since we
expect the following user benefits:

• The data is more portable and can be reused on another phone
or device. This makes the whole system more fail-proof.

• Most modern computers can handle SD-cards or USB cables and
hence data can be easily backed up.

8.2 implementation of a mobile interface 86

• Other applications on the Android phone running the mobile
Semantic Web client can access and modify the data stored on
the card. Thus they can further annotate the information and the
client can again take advantage of such annotations.

8.2.3 Rules and Data Processing

One of our initial requirements from Section 8.1 is flexibility in the
sense that specific vocabulary resources should not be encoded in the
source code of the WebID provider. In order to achieve this require-
ment, we decided to encode as much data processing as possible in
terms of user extensible rules. Since we employ the androjena frame-
work, we were able to use the included Jena rules engine as well. All
rules processed by this rule-based reasoner are defined as lists of
body terms (premises), lists of head terms (conclusions) and optional
names98.

1 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
2 @prefix android: <http://ns .aksw. org/Android/>.
3 @prefix acontacts: <http://ns .aksw. org/Android/ContactsContract .CommonDataKinds.>.
4 @prefix im: <http://ns .aksw. org/Android/ContactsContract .CommonDataKinds.Im.>.
5

6 [jabber:

7 (?s foaf:jabberID ?o), makeTemp(?d) ->

8 (?s android:hasData ?d),

9 (?d rdf:type acontacts:Im),

10 (?d im:DATA ?o),

11 (?d im:TYPE im:TYPE_HOME),

12 (?d im:PROTOCOL im:PROTOCOL_JABBER)

13]

Listing 9: Example transformation rule: If a foaf:jabberID is present with a
WebID (line 7), then a new blank node of RDF type acontacts:Im

is created (line 7), which is of Android IM type HOME (line 11) and
which gets an IM protocol as well as the IM identifier (line 12 and
10).

Since we also did not want our implementation to depend on the
FOAF vocabulary (alternative solutions include RDF vCards [Iannella
et al., 2010]), we decided to create a native Android system vocabu-
lary which represents the Android contacts database defined by the
Android API. This vocabulary is deeply integrated into the Android
system since it re-uses class and attribute names from the Android
API and represents them as OWL class and datatype properties99.

Based on this vocabulary, the given rules transform the downloaded
WebID statements into Android-specific structures which are well
suited for a straightforward import into the contacts provider. These

98 http://jena.sourceforge.net/inference/#RULEsyntax

99 An example class identifier is acontacts:ContactsContract.CommonDataKinds.

StructuredName. Please have a look at the Android API reference as well (http
://developer.android.com/).

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/jabberID
http://ns.aksw.org/Android/
http://ns.aksw.org/Android/Im
http://jena.sourceforge.net/inference/#RULEsyntax
http://ns.aksw.org/Android/
http://ns.aksw.org/Android/ContactsContract.CommonDataKinds.StructuredName
http://ns.aksw.org/Android/ContactsContract.CommonDataKinds.StructuredName
http://developer.android.com/
http://developer.android.com/

8.2 implementation of a mobile interface 87

structures are very flat and relate different Android data objects (e.g.
email, photo, structured name etc.) via a acontacts:hasData property
to a WebID. An example rule which creates an instant messaging
account for the contact is presented in Listing 9.

After applying the given set of rules, the Android application post-
processes the generated data in order to apply other constraints which
we could not achieve with Jena rules alone. At the moment all mailto:
and tel: resources are transformed to literal values, which is re-
quired for instantiating the corresponding Java class. In addition we
download, resize and base64-encode all linked images. After that, the
application goes through the generated data resources and imports
them one by one.

8.2.4 User perspective

The Mobile Semantic Social Web client implementation consists of two
software packages – the Android Semantic Web Core library containing
the triple store and the WebID content provider for Android. Both are
available on the Android Market since August 2010 (cf. upper left
screenshot in Figure 22). According to the market statistics, they were
installed more than 1000 times in 02/2014.

Figure 22: Screenshots of the Mobile Social Semantic Web Client: upper left
side – The client as well as the triple store can be found in the
official Google application market; right side – After installation,
users can add a WebID account the same way they add an LDAP
or Exchange account; lower left side – The account can be synchro-
nized on request or automatically.

http://ns.aksw.org/Android/
http://ns.aksw.org/Android/hasData

8.2 implementation of a mobile interface 88

Once installed, a few initial configuration options have to be sup-
plied. The right screenshot in Figure 22 shows the accounts and syn-
chronization settings configuration menu, which allows a user to
associate his WebID with his profile on the smartphone (the same way
as adding an LDAP or Exchange account) and to configure synchro-
nization intervals. The lower left screenshot in Figure 22 shows an
actual WebID with the last synchronization date and the option to
trigger the synchronization manually.

Figure 23: Screenshots of the Mobile Social Semantic Web Client: left – A
contacts profile page merges the data from all given accounts;
right – By using the FOAF browser, people can add contacts or
browse the contacts of their friends.

After the user associated his profile with his WebID, information
from linked WebIDs of the users contacts are synchronized regu-
larly and the information are made available via the Android content
provider to all applications on the device. During the import of the
WebID contacts, they are merged based on the assumption of unique
names. Independent of this automatic merge, the user can split and
merge contacts manually in the edit view of these contacts. The left
screenshot in Figure 23 shows the standard Android contact applica-
tion, where our WebID content provider seamlessly integrates infor-
mation obtained from WebIDs. Information obtained from WebIDs is
not editable, since it is retrieved from the authoritative sources, i.e. the
WebIDs of the respective contacts.

The right screenshot in Figure 23 shows the FOAF browser, allowing
people to add contacts or to browse the contacts of their friends. In
order to facilitate the process of connecting with new contacts the

8.3 related work 89

Android implementation also allows to scan QR-codes of WebIDs (e.g.
from business cards) and to search for WebIDs using Sindice.

8.3 related work

Related work can be roughly divided into mobile Semantic Web
projects and mobile social network clients. A comprehensive overview
is contained in the final report of the W3C Social Web Incubator
Group [Halpin and Tuffield, 2010].

Mobile Semantic Web applications

The application of Semantic Web technologies on mobile devices is not
new – one of the earlier works dates back to 2003 [Lassila and Adler,
2003]. However, this research area was not pursued very actively due
to the large number of mobile device limitations common in that era.
In the light of increasing processing power and data connectivity of
modern mobile devices, the use of mobile Semantic Web technologies
is becoming more feasible. There are a few publications which review
the state of the mobile Semantic Web and the possibilities thereof to
improve mobile Web (such as Lassila [2005]). Also, there are publi-
cations on more complex systems, such as SmartWeb [Sonntag et al.,
2007] which uses semantic technologies to enhance the backends of
mobile web service. On the frontend side there are semantic mobile
applications like DBpedia Mobile [Becker and Bizer, 2009] or mSpace
Mobile [Wilson et al., 2005] that implement or utilize Semantic Web
technologies directly on mobile devices. However, these frontend ap-
plications focus on very specific use cases – information about points
of interest in the case of DBpedia Mobile and information for uni-
versity students in the case of mSpace. Finally, there are publications
which describe proof of concept applications as well as algorithms for
consuming and replicating Linked Data and RDF in general (David
and Euzenat [2010], Le-Phuoc et al. [2010] as well as Schandl and
Zander [2009]).

Mobile social networking clients

All major social networking services (such as Facebook and LinkedIn100)
have meanwhile clients for different mobile platforms, which are more
or less integrated with the mobile phone platform itself. In addition
to this, the Android market place lists more than 3500 applications in
the category social networks with our implementation being one of
them. However, up to our knowledge our MSSW client is the first to

100 An ordered list can obtained from Wikipedia: http://en.wikipedia.org/wiki/List_
of_social_networking_websites

http://en.wikipedia.org/wiki/List_of_social_networking_websites
http://en.wikipedia.org/wiki/List_of_social_networking_websites

8.3 related work 90

consequently employ W3C standards as well as Social Semantic Web
best practices with regard to all aspects of data representation and
integration.

9
O N T O W I K I – A D ATA W I K I W I T H I N T E G R AT E D
D S S N C A PA B I L I T I E S

The results presented
in this chapter were
primarily published
in Tramp et al.
[2014], Dietzold and
Auer [2009] as well
as in Tramp et al.
[2010b].

In this chapter we give an overview to the web application OntoWiki
and how we extended as well as integrated it into the proposed DSSN
architecture.

OntoWiki is a semantic data wiki. We refer to it as a Wiki, since the
focus of the application is on simplicity, adaptability and collabora-
tion. However, other than annotating text-based Wiki pages with a
special syntax (as suggested by text-based Semantic Wiki approaches),
OntoWiki uses RDF in the first place to represent information. For
human users, OntoWiki allows to create different views on data, such
as tabular representations or maps. For machine consumption it sup-
ports various RDF serialisations as well as RDFa, Linked Data and
SPARQL interfaces. Since its introduction in Auer et al. [2006], the
application has evolved into a framework for building Semantic Web
applications [Heino et al., 2009] and was recently updated to support
the collaboration across multiple domains and application via Seman-
tic Pingback [Tramp et al., 2010a] and RDFauthor [Tramp et al., 2010d].
After a general introduction, we go into detail with its latest extension
in order to integrate this application into the DSSN architecture.

9.1 feature introduction

OntoWiki is a Semantic data wiki as well as Linked Data publishing
engine. It can be used to author, manage and publish RDF-based
knowledge bases. Instead of presenting architecture and design issues,
we concentrate just on the core features here to provide an overview
of the capabilities of the application.

9.1.1 Navigation and Visualisation

OntoWiki provides a number of ways for navigating through RDF
knowledge bases. This includes taxonomy and hierarchy browsing, such
as SKOS taxonomies [Miles and Bechhofer, 2009], the class hierarchy
of RDF Schema or an organizational hierarchy [Reynolds, 2014], facet-
based browsing (with complex filter conditions and attribute based tag
clouds) and full-text search.

These different navigation facilities can be used as a combined navi-
gation, for example a user can start with a full-text search and refine
the results using faceted-search or restrict them to a certain part of

91

9.1 feature introduction 92

the selected hierarchy. OntoWiki translates these different navigation
features into a single SPARQL query.

Figure 24: Generic OntoWiki view – resource list with two selected properties,
an applied filter, map display and an attribute cloud.

In addition to rendering the results of such a query as a resource list,
OntoWiki provides an extension mechanism for implementing dedicated
views such as maps and calendars (Figure 24).

Once a specific entity has been selected, the resource view shows
all available information for that entity (Figure 25). Besides render-
ing this information generically in a tabular way, OntoWiki can be
extended with domain specific resource views (i.e. vocabulary based).
Specific resource views for the SKOS and FOAF vocabularies are
already included.

9.1.2 Authoring

All views in OntoWiki can be equipped with corresponding RDFa
annotations. OntoWiki employs the RDFauthor mechanism [Tramp et al.,
2010c] to automatically transform these views into editable forms. As
a consequence, all information items displayed in OntoWiki can be
directly edited in place. This allows OntoWiki users to edit the knowl-
edge base even without being acquainted with the RDF, RDF-Schema
or OWL data models. Following the Wiki design principles [Leuf and
Cunningham, 2001] all changes are put under version control and can
be easily rolled back.

In addition to this, the integration of RDFauthor as our main au-
thoring mechanism led to two additional usage options:

9.1 feature introduction 93

Figure 25: Generic OntoWiki view – resource view with similar instances,
linking instances as well as a module for tagging.

• By using OntoWiki’s RDFauthor bookmarklet, users can collect
data from different web pages and import it directly into their per-
sonal knowledge bases (such as contacts or events).

• OntoWiki can be used as a service for hosting editable mash-ups.
These mash-ups use data from OntoWiki’s SPARQL endpoint and
other data sources (which are interpreted as named graphs) and
provide a merged view on this data. The bookmarklet is able to
distinguish the statements from these named graphs and allow
the user to edit these data directly inside the mash-up as well as
to propagate the changes back to the different sources [Tramp et al.,
2010c].

Knowledge Base Evolution

OntoWiki tries to support the creation of RDF Knowledge Bases from
the scratch (rather than using predefined ontologies only) in a wiki
way. This means that our users often follow the learning by doing
path, where requirements, priorities and understanding of the domain
change over time. Our evolution framework allow OntoWiki users to
apply predefined evolution pattern from a pattern repository to their
data, as well as to create their own pattern in order maintain the data
quality of their Knowledge Base with little effort. Examples for such
evolution patterns include the splitting of classes by using their property

9.2 dssn implementation for ontowiki 94

values or the transition from a data property to an object property, such as
the transition from literal based tagging to resource based tagging.

9.1.3 Linked Data

OntoWiki acts as a Linked Data server as well as an Linked Data client.
Entities that use identifiers being governed by the OntoWiki instal-
lation are automatically served as Linked Data. OntoWiki supports
access control on Linked Data employing the WebID protocol as well as
traditional local account based authentication. References to entities
using foreign identifiers can be de-referenced (i.e. consumed by Onto-
Wiki) in order to obtain additional information from the original source.
Even non-linked data resources can be consumed by utilising custom
data-wrapper, that allow the generation of RDF data (e.g. from images,
videos or web services).

9.2 dssn implementation for ontowiki

As described in the last section, OntoWiki is already well connected
in a Linked Data infrastructure. We took this application as a starting
point for the development of a DSSN client. From the wiki point of
view we specialized the application with specific view for important
types of Social Network activities.

We provide a prototypical implementation of our approach. All
features were realized by employing the extension mechanisms of-
fered by OntoWiki. One main backend feature of OntoWiki is its
storage layer independence. This means that an OntoWiki setup can
use a high-performance RDF triple store (such as Openlink Virtuoso
described Erling [2012]) for knowledge bases up to the size of the
DBpedia project [Bizer et al., 2009] as well as a MySQL backend with a
SPARQL2SQL query rewriter for small and mid-size knowledge bases.
We tested and used the DSSN implementation with both backends.

The prototype described here, can be summarized as a WebID
provider with an integrated communication hub. The following fea-
tures are implemented so far:

• Users can create and manage their WebID profiles and any other
Linked Data enabled resource (Section 9.2.1).

• Users can make friends, subscribe to their activities and profile
updates and receive changes instantly on change (Section 9.2.2).

• Users can search and browse for friends and activities inside
their social network as well as filter these resources by facets
based on object and datatype properties (Section 9.2.3).

9.2 dssn implementation for ontowiki 95

• Users can comment on and subscribe to any DSSN resource
which is equipped with a Semantic Pingback service or a PubSubHubbub-
enabled activity stream (Section 9.2.4).

• Users receive notifications if someone comments or links her
WebID and send a pingback notification (Section 9.2.5).

1

6

2

5

3

4

Figure 26: Screenshot of the OntoWiki DSSN activity stream view.

We now describe the implementation of these features and provide
insights into our rationale for choosing certain technologies. A screen-
shot of the central activity stream interface can be seen on Figure 26.

The following interface elements are visible:

1. The Share it! activity creation module where users can post status
notes and share links and media artefacts.

2. The main interface view tab to switch between configuration
screen, profile manager, friending interface and the activity
stream.

3. The activity filter and search module, to allow a facet-based
browsing of activities.

4. The events module, which queries the cache of social network
data for birthdays and other events.

5. The activity stream, which is the result of the SPARQL query
modified by the filter module.

6. The generic wiki interfaces to create any type of Linked Data
resource (e.g. comments).

9.2.1 Creating and Updating Data Artefacts

Creating and managing Linked Data enabled RDF resources can be
achieved without modifying the OntoWiki basic functionality. We em-

9.2 dssn implementation for ontowiki 96

ploy the RDFauthor [Tramp et al., 2010d] JavaScript widget library
in order to automatically create forms out of RDFa annotated HTML
documents101. Without any user effort, a newly created resource will
be Linked Data enabled if it shares the namespace of the OntoWiki
installation. In addition to that, we added support for WebID authen-
tication as well as for certificate creation by implementing a dedicated
WebID extension. Since there is quite some cryptographic processes
involved, this extension needs some prior configuration steps, e.g. the
OntoWiki instance needs to be configured as a SSL/TLS enabled Web
application.

9.2.2 Maintaining Social Network Connections

In order to maintain friend connections and other social network
connections we execute the following steps in our implementation:

1. When a user enters a WebID inside the friending module, Onto-
Wiki adds a new statement (foaf:knows) into the RDF graph
containing the users profile data. This automatically generates a
Pingback request so the new friend will be notified.

2. The corresponding OntoWiki creates a new RDF graph, which
will act as a cache for the WebID profile data about that particular
friend. This new Knowledge Base is configured in such a way,
that it is imported into the users graph automatically.

3. The wiki fetches the data from the friends WebID by employing
the Linked Data principles. The newly generated graph caches
that data in order to enhance the performance. Since those in-
formation is stored in a separate graph, a synchronization is
trivial.

4. Finally, the wiki is subscribed to these feeds if they are published
within the users profile:

a) The users activity feed, which the wiki uses to create the
network activity timeline for the user. The incoming atom
activity entries are transformed to AAIR resources and
imported to an additional activity RDF graph.

b) The history feed for the friends’ profile. This feed is em-
ployed in order to keep the cached WebID profile data
up-to-date.

9.2.3 Ignoring Activities and WebIDs

Since a user may not be interested in all activities of her friends (e.g.
gaming activities), we offer functionality to hide certain activities in

101 Each output page, which is created by OntoWiki, is RDFa enhanced.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows

9.2 dssn implementation for ontowiki 97

Figure 27: Semantic Pingback Integration – Backlinks that were established
via the Pingback service are displayed in the standard OntoWiki
user interface.

the timelines that visualize the activity streams to which a user is
subscribed. We therefore employ EvoPat [Rieß et al., 2010], a pattern-
based approach for the evolution and refactoring of RDF knowledge
bases. EvoPat is integrated also as an OntoWiki extension and in
conjunction with our DSSN implementation we apply this component
to allow users to clean up their timelines.

Each time a user selects a Hide all activities . . . button next to an
activity, we create a new pattern, which subsequently matches such
statements in the graph and removes them. Possible hide patterns are
generated from the activity data itself, for instance . . . from this user,
. . . of this language or . . . about this object. Once new data for a given
user is added, we re-apply the pattern. In this way it also applies for
future changes of the knowledge base.

9.2.4 Generating and Distributing Activities

A user is able to generate different kinds of activities in our implemen-
tation. In the current state we support three types of activities: status
updates, photo sharing and recommendations. We implemented a
small extension, which displays a Share It! module inside the OntoWiki
user interface. As a result the user can quickly access this functionality
so that sharing is facilitated for the user. Once the user generates an
activity, her activity feed is updated and subscribers to that feed are
delivered with the new content by the push service.

9.2 dssn implementation for ontowiki 98

9.2.5 Pingback Integration

All activities as well as every resource created by the user in an
accessible namespace of the application are represented as Linked Data
resources that refer to a Pingback service and a corresponding activity
feed. Thus, users can comment on any resource in their own social
application and additionally subscribe to changes to that resource (e.g.
comments by others).

Each time someone comments on a resource (or otherwise links to
it on the Linked Data Web), a Pingback request is sent to the owning
OntoWiki instance. Consequently the publisher gets notified and is
able to react again on that new activity, which facilitates conversations
in a distributed manner (Figure 27). If a user is subscribed to a resource
activity feed (which is automatically done, once she comments on a
particular resource), she gets notified about other comments, even if
she is not the commenting person or the owner of the resource.

Part IV

E VA L U AT I O N , C O N C L U S I O N A N D F U T U R E
W O R K

In this part of the thesis, we evaluate the proposed archi-
tecture in a different way than providing prototypes such
as the application in Part iii. Instead, we simulate a DSSN
based on real data from the well known Twitter service and
measure triple distribution as well as query performance
for different DSSN node types. Finally, we conclude this
thesis and provide some directions for future work.

10
E VA L U AT I O N

The results presented
in this chapter were
primarily published
in Tramp et al.
[2014].

In this Chapter, we present our work in regards to the evaluation of
the proposed DSSN architecture.

We divided our evaluation process into two independent parts:
Firstly, the qualitative evaluation part aims to prove the functionality
of the DSSN architecture by assessing use cases from the Social Web
acid test (Section 10.1). Secondly, the quantitative evaluation part aims
to prove the real-world usefulness of our prototypical implementation
by testing the performance and distribution of data in the social
network (Section 10.2). This evaluation is carried out by using a social
network simulation approach.

10.1 qualitative evaluation: social web acid test

The Social Web Acid Test (SWAT) is an integration use case test
conceived by the Federated Social Web Incubator Group of the W3C.
Currently, only the first and very basic level of the test (SWAT0

102) has
been developed and described completely. Nevertheless, those parts
of the next level (SWAT1) which are currently published are discussed
here too.

10.1.1 Social Web Acid Test – Level 0

The objectives of the first SWAT level have been specified in the
following use case103:

1 User A takes a photo of user B from her phone and posts it.

2 User A explicitly tags the photo with user B.

3 User B gets notified that she is in a photo.

4 User C who follows user A gets the photo.

5 User C leaves a comment on the photo.

6 User A and user B get notified about the comment.

Listing 10: Social Web Acid Test – Level 0

Utilizing all technologies described before, our DSSN architecture
passes the SWAT0 without any problems. The following enumeration
describes the corresponding steps. Each step is mapped in Figure 28.

102 http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT0

103 For this use case the following assumptions are made: (1) Users employ at least two
(ideally, three) different services each of which is built with a different code base. (2)
Users only need to have one account on the specific service of their choice. (3) Ideally,
participants A, B, and C use their own sites (personal URLs).

100

http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT0

10.1 qualitative evaluation : social web acid test 101

Application Layer

Profile

Manager

Foto

Sharing

Ping Pushd
e

le
g

a
te

a
cc

e
ss

 t
o

announce

Resources Feeds

Data & Media

Artifacts

WebIDs

...

read

access

Activity

Streams

History

Feeds

Service Layer

Data Layer

1

announce

upload

User B

tag:Tagging foaf:Image

User A

2 tag

3 4Update

post activity

4

update feed4

sioct:Comment

5

post6

Figure 28: Social Web Acid Test Level 0 – Solution based on the proposed
DSSN architecture

1. User A takes a photo of user B and uploads it: The photo upload
application creates a new media artifact including an RDF de-
scription. This RDF description links to the creators WebID as
well as to the Pingback Server. Optionally, the Web space returns
a link to the user’s pingback server in the HTTP header of the
uploaded image. In addition to that, the RDF description has a
link to the WebID of User A as the creator of the image resource.
A possible minimal RDF description is listed in Listing 11.

1 ex:Image a foaf:Image ;

2 foaf:name "Me and UserB at the party ..." ;

3 foaf:maker ex:UserA ;

4 cc:license <http://creativecommons . org/licenses/by/3.0/> ;

5 ping:to <http://pingback .aksw. org/> .

Listing 11: SWAT0: Image description with autodiscovery links and license
(the foaf:Image media artifact in Figure 28).

2. User A explicitly tags the photo with user B: This is done by creating
a tagging resource (tag:Tagging) which links to the image (tag
:taggedResource), to the creators WebID (tag:taggedBy) as well
as to the WebID of user B (tag:associatedTag).

A pingback client sends a ping request to all linked resources
after publishing the tagging on the Web.

3. User B is notified that she is on a photo: The notification is created
by the pingback service of the WebID of User B. The pingback
service has received the request from the tagging application
(in this case, the photo sharing tool) which was used by User
A. Depending on User Bs setup, he will receive an email or just

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Image
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/Tagging
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/taggedResource
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/taggedBy
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/associatedTag

10.1 qualitative evaluation : social web acid test 102

1 ex:Tagging a tag:Tagging;

2 tag:taggedResource ex:Image;

3 tag:taggedBy ex:UserA ;

4 tag:associatedTag ex:UserB ;

5 cc:license <http://creativecommons . org/licenses/by/3.0/> ;

6 ping:to <http://pingback .aksw. org/> .

Listing 12: SWAT0: Tagging description (the tag:Tagging data artifact in
Figure 28).

get a new entry in his social network client such as depicted in
Figure 27 (Page 97).

4. User C, who follows user A, receives the photo: User C is instantly
provided with an update in her activity stream, informing her
about the new image. The post / upload as well as the tagging
activity result in new feed entries in the activity stream of the
User A. In case of a full featured social network client such as
described in Chapter 9, the activity can simply be written to
the triple store which feeds the activity stream. In the SWAT
example, the photo sharing application is different from the main
profile management application. This means the photo sharing
application needs to use the update service of the WebID of User
A. This is done by using the access delegation extension to the
WebID authentication protocol which is presented in Chapter 6.
The photo sharing application acts as a secretary of User A and
insert a new activity description to the profile triple store. This
example activity is listed in Listing 13.

1 [] a aair:Activity;

2 atom:published "2014-01-19T08:04:14"^^xsd:dateTime;

3 rdfs:label "User A posted an image." ;

4 aair:activityActor ex:UserA ;

5 aair:activityVerb aair:Post;

6 aair:activityObject ex:Image .

Listing 13: SWAT0: Post activity description.

5. User C leaves a comment on the photo: This is done in the same
way as publishing the tagging resource. The SWAT use case
does not specify, which application should publish the comment
about User As photo. In a distributed network of application,
any application could be used – our example has at least two
candidates: the photo sharing application and User Cs profile
management application. We assume that in this case the profile
management application is used since User C receives the photo
post activity via push notification here. If she wants to comment
on the photo now, her profile management application needs
to publish a comment resource in its own namespace and send
pings to all linked resources. Listing 14 depicts a valid comment

http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://www.holygoat.co.uk/owl/redwood/0.1/tags/Tagging

10.2 quantitative evaluation: dssn performance 103

which is linked to all important stakeholder of the SWAT 0 use
case.

1 ex:Comment a sioct:Comment ;

2 sioc:reply_of ex:Image ;

3 foaf:maker ex:UserC ;

4 sioc:conent "nice! :-)" ;

5 cc:license <http://creativecommons . org/licenses/by/3.0/> ;

6 ping:to <http://pingback .aksw. org/> .

Listing 14: SWAT0: Comment description posted by User C (the sioct

:Comment data artifact in Figure 28).

6. User A and user B are notified about the comment: User A is the
publisher of the image. She will be notified because her pingback
service informs her about this comment. User B will be notified
only if she has subscribed to the activity feed of the photo
resource. Such an subscription could be created automatically
based on the fact that User B was tagged on the photo. However,
this is an optional step for User B.

10.1.2 Social Web Acid Test – Level 1

SWAT level is currently not finally defined104, so an evaluation can be
a rough sketch only. The next SWAT level will require a few different
use cases which introduce some new Social Web concepts. However,
most of the user stories are satisfied already as a consequence of the
fully distributed nature of the DSSN architecture (e.g. data portability
and social discovery). The more interesting user stories are:

1. The Private content and Groups use cases will require a dis-
tributed ACL management. Some ideas on using WebIDs for
group ACL management are already published with dgFOAF in
Schwagereit et al. [2010] and we think that this is a good starting
point for further research.

2. The Social News use case introduces a new vote activity. Since our
architecture applies schema agnostic social network protocols,
this new type of activity can be communicated as any other
activity.

Our next aim was to evaluate the architecture in quantitative terms.

10.2 quantitative evaluation: dssn performance

Based on the proposed architecture, a DSSN will be distributed over
hundreds of servers. These social network nodes will have hardware

104 Available online at http://www.w3.org/2005/Incubator/federatedsocialweb/wiki
/SWAT1_use_cases (received 29.07.2011).

http://rdfs.org/sioc/types
http://rdfs.org/sioc/types
http://rdfs.org/sioc/types#Comment
http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT1_use_cases
http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT1_use_cases

10.2 quantitative evaluation: dssn performance 104

specifications which can range from very light-weight (e.g. plug com-
puters as proposed by the FreedomBox105 project, smartphones and
small virtual hosts) to medium and heavy class systems (e.g. cloud
instances, hosted services and full root servers). Each of these nodes
accesses only a small part of the complete social network graph since
the information is shared only with the connected nodes.

Consequently, we need to pose the following questions in our quan-
titative evaluation:

1. How many incoming triples need to be cached from an averagely
connected node in a week of average social network activity?

2. If a DSSN node queries these incoming triples with SPARQL, are
the queries fast enough to provide the data for the user interface
on such weak hardware?

To answer these research questions, we created an evaluation frame-
work that allows for simulating the traffic within a DSSN. We apply
this framework to measure the performance of our DSSN in a testbed
using a large social network dataset.

10.2.1 Evaluation Framework Architecture

Profile Data

Activities
Network and

Activity Dump

Triplify

Profile
Distributor Replay Agents

1 2 3 4

Figure 29: Workflow of the social network evaluation framework: (1) An
activity and profile graph is preprocessed and dumped as RDF. (2)
The knowledge base is split up into a part for every single profile
and can be distributed to a list of server machines. (3) For each
profile, a replay agent is initialized which will create and update a
specific profile as well as activities on a single social network node.
(4) The social network node (in our case an OntoWiki instance)
connects to other nodes as well as creates activities for the social
network in the same way as it would be achieved under control of
a human user.

We decided to use a simulation approach in which activities are
created artificially (but based on real data, see Section 10.2.2) on the
social network rather than arranging a user evaluation, which strongly
depends on the graphical user interface. In a first step, we added an
additional service for remote procedure calls to the OntoWiki DSSN

105 http://www.freedomboxfoundation.org/

http://www.freedomboxfoundation.org/

10.2 quantitative evaluation: dssn performance 105

node as well as an execution client (replay agent) which can inject
activities remotely controlled and based on input activity data in RDF.
Then we used the public Twitter dataset described in Abel et al. [2011]
and transformed it to an RDF graph as a base for a replay of activities
of type status note.

The workflow of the evaluation framework is depicted in Figure 29.
It has a pipeline architecture which is built by using three additional
tools that help us to generate and manage the generated replay agent
test data. The generated data was processed by the profile distributor
which splits the data into separate user profiles, each with personal
data and activities. After splitting the data into single parts, the profile
distributor passes each part on to a corresponding replay agent. Upon
call the replay agent can instantiate a new OntoWiki-based DSSN node
with the given user profile and activities.

10.2.2 Data Generation and Testbed Configuration

In a first step, we used Triplify [Auer et al., 2009] to generate the
activity data from the relational database. The database consists of
2.3 Mio public tweets fetched from 1701 Twitter accounts over a time
frame of two months. For each posted tweet, we created a status note
resource description and added two SIOC properties to link the creator
account and publish the creation timestamp. In addition to that, we
linked each status note to the Twitter terms of services to demonstrate
the usage of licensing in our architecture (the data ownership issue
from the Introduction)106. Listing 15 shows an example status note
resource taken from the database107

1 :o5516682621620224 a aair:Note;

2 rdfs:seeAlso <http://twitter .com/#!/youngglobal/status/5516682621620224>;
3 sioc:created_at "2010-11-19T08:04:14"^^xsd:dateTime;

4 sioc:has_creator :youngglobal;

5 dct:license <http://twitter .com/tos>;
6 aair:content "I’m at Norwood (241 W 14th St, btw 7th & 8th, New York) w/ 5

others. http://4sq.com/66OndN".

7

8 :a5516682621620224 a aair:Activity;

9 atom:published "2010-11-19T08:04:14"^^xsd:dateTime;

10 aair:activityActor :youngglobalPerson;

11 aair:activityVerb aair:Post;

12 aair:activityObject :o5516682621620224.

Listing 15: Example status note resource and corresponding activity.

For the creation of the corresponding activities we intepreted re-
tweets as sharing and (original) tweets as posting activities and as-
signed different activity verbs based on the data. Each activity is linked

106 Licensing statements can be easily added to any resource in the DSSN, e.g. by using
the dct:license property.

107 The Listings in this section uses several prefixes which are explained at Page xviii.

http://purl.org/dc/terms/
http://purl.org/dc/terms/license

10.2 quantitative evaluation: dssn performance 106

to a FOAF person resource (without WebID specific enhancements)
which we additionally enriched with a random foaf:birthday.

1 :youngglobal a sioc:UserAccount;

2 sioc:name "youngglobal";

3 sioc:account_of :youngglobalPerson;

4 rdfs:seeAlso <http://twitter .com/youngglobal>.
5

6 :youngglobalPerson a foaf:Person;

7 foaf:name "youngglobal";

8 foaf:knows :RdubuchePerson;

9 foaf:birthday "01-31";

10 foaf:depiction <http://a2 .twimg.com/profile_images/1152004614/
pip_2825_0370_normal . jpg>;

11 foaf:account :youngglobal.

Listing 16: Example user account and FOAF person resource.

Listing 16 shows the user account and FOAF person resource which
is linked from the activity in Listing 15.

In order to evaluate the query performance on different types of
DSSN nodes in our architecture, we extracted four exemplary queries,
which are crucial for rendering the user interface depicted in Figure 26.

Query Q1 asks for an ordered list of the last ten status posts of a
given time frame. The query is exemplary for fetching a resource
list based on a given user defined configuration. The query is
used for area 2 on Figure 26 and is typically followed by a query
which fetches the needed data of exactly these ten activities
(rather than doing both in one single query).

1 SELECT DISTINCT ?r

2 WHERE {

3 ?r a aair:Activity.

4 ?r atom:published ?pub.

5 ?r aair:activityObject ?aairObject.

6 ?aairObject a aair:Note.

7 FILTER

8 (?pub >= "2010-12-01T00:00:00"^^xsd:dateTime)

9 FILTER

10 (?pub <= "2010-12-01T23:59:59"^^xsd:dateTime)

11 }

12 ORDER BY ?pub

13 LIMIT 10

Listing 17: Ordered list of the last ten status posts (Q1).

Query Q2 is used to build the facet-based exploration module de-
picted in area 3 on Figure 26. It asks for all values of a specific
exploration facet of the activities of a given time frame. The
query that is depicted in Listing 9 asks for the used verbs in the
selected set of activities (possible verbs are post, share, comment
etc.).

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/birthday

10.2 quantitative evaluation: dssn performance 107

1 SELECT DISTINCT ?verb

2 WHERE {

3 ?r a aair:Activity.

4 ?r atom:published ?pub.

5 ?r aair:activityObject ?aairObject.

6 ?aairObject a aair:Note.

7 ?r aair:activityVerb ?verb.

8 FILTER

9 (?pub >= "2010-12-01T00:00:00"^^xsd:dateTime)

10 FILTER

11 (?pub <= "2010-12-01T23:59:59"^^xsd:dateTime)

12 }}

Listing 18: A list of verbs connected to a list of activities (Q2).

Query Q3 is used to fetch the list of the next five upcoming birthdays
together with the associated person. Since foaf:birthday val-
ues are of datatype xsd:string, a string comparison has to be
executed. Query 3 (see Listing 19) is used for area 4 on Figure 26.

1 SELECT DISTINCT ?person ?bday

2 WHERE {

3 ?person a foaf:Person.

4 ?person foaf:birthday ?bday.

5 FILTER (xsd:string(?bday) >= xsd:string("01-29"))

6 }

7 ORDER BY ASC(?bday)

8 LIMIT 5

Listing 19: List the next five upcoming birthdays (Q3).

Query Q4 is applied to prepare a human readable label for all the re-
sources which are currently visible in the interface. This includes
schema resource as well as instance data. The query uses a list
of resources (line 5) and a list of possible label attributes (line
6) and fetches them in a vertical result set (e.g. with a minimal
amount of projection variables). The client receives the data and
has to select a value based on an ordered internal list (e.g. a foaf

:name value is preferred over an rdfs:label value, because the
latter is more general). This query strategy is especially useful
in combination with incomplete data (e.g. use the foaf:nick if
you do not have a foaf:name).

Since one of the ideas of a distributed social network is the usage
of low-end hardware, which everyone can afford or which already
exists in most households (e.g. DSL router or WLAN access points),
we defined three prototypical categories of DSSN nodes where for
which we would like to test the query performance:

A server is a typical host in a computing center which can be used
for a rental fee per month. Privacy is moderatly preserved on such a
system since the computing center staff can access the system. This
category of DSSN node is used mostly by people with a strong tech-

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/birthday
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema#string
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/name
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/nick
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/name

10.2 quantitative evaluation: dssn performance 108

1 SELECT DISTINCT ?s ?p ?o

2 FROM <http://aksw.org/>

3 WHERE {

4 OPTIONAL {?s ?p ?o.}

5 FILTER(sameTerm(?s, <...>) || sameTerm(?s, <...>) || ...)

6 FILTER(sameTerm(?p, skos:prefLabel) || sameTerm(?p, dc:title) || sameTerm(?p, dct:

title) || sameTerm(?p, foaf:name) || sameTerm(?p, aair:name) || sameTerm(?p,

sioc:name) || sameTerm(?p, rdfs:label) || sameTerm(?p, foaf:accountName) ||

sameTerm(?p, foaf:nick) || sameTerm(?p, foaf:surname) || sameTerm(?p, skos:

altLabel))}

Listing 20: Ask for all known title attributes for a given list of resources (Q4).

nical background. In this category, we tested a Virtuoso 6.1.4 backed
OntoWiki DSSN node on a dual core 2.4GHz system, with 4GB of
RAM and an SSD.

A FreedomBox is a personal server running on a low-end system
in an area where the users privacy can be preserved (e.g. as a DSL
router in his household). No-one else has access to the system which
runs 24 hours a day in the same way a server does. In this category,
we used a virtual machine with 1GB of memory, one core and a 25%
CPU limitation from the server system above. In addition to that, we
limited the triple store process to 300MB of RAM.

Smartphones are very important for social network activities today,
but they are used mostly as a thin client without a backend. We argue
that connection stability and battery issues will be solved in the near
future and smartphones can be used as first class DSSN nodes. In
this category, we used an in-browser JavaScript API store based on
rdfQuery108 and deployed the data as well as the triple store without
a frontend on an iPhone 4S.

10.2.3 Results and Discussion

As described in Section 10.2.2, the testbed consists of 1701 DSSN node
profiles with 2.3 Mio activities. We first looked, how this data was
shared over these DSSN nodes to overview what amount of data these
nodes have to store. Regarding this, two characteristic indices are
important:

1. the number of activities of an account and

2. the number of related accounts which will receive these activities.

Figure 30 shows a scatter plot where each account corresponds to
one point. The x axis represents the number of foaf:knows relations
to other persons from the testbed network and the y axis depicts
the amount of triples which are produced with the node’s frontend
(profile triples and activity triples).

108 https://github.com/alohaeditor/rdfQuery

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows
https://github.com/alohaeditor/rdfQuery

10.2 quantitative evaluation: dssn performance 109

● ●●● ●●●●●●● ●●● ● ●●● ●●● ●●●●●●● ●

● ● ● ● ● ● ●●

● ● ● ● ●

● ● ● ● ●

● ●● ● ● ● ●
● ● ● ●●●● ●

● ●● ● ● ●
●● ● ● ●

● ● ● ● ●
●●● ●● ● ● ●● ●

●● ●●●● ●●
● ● ●● ●● ● ● ●● ●● ● ● ●● ● ● ● ●●●● ● ●● ● ● ●● ●● ●●● ● ●● ● ●●● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ●●● ● ● ●● ● ● ●●●● ● ● ●● ●● ● ● ● ● ●● ● ● ● ● ●● ●●● ● ●●● ●● ● ● ●● ●● ● ● ● ●● ●●● ●● ●●● ● ●● ● ● ●● ● ● ● ● ●● ●●● ● ●● ●● ● ● ●●●●● ●● ●● ● ●●● ●● ●● ● ● ●●● ● ●● ●●● ● ● ●● ● ● ● ●● ● ● ●●● ● ●●● ●● ●● ● ●● ● ●● ●●● ● ● ● ● ●● ●●● ● ●●● ● ●●● ●●● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ●● ● ● ● ● ● ●●● ●●● ●●●● ●● ●● ● ● ●●●● ●● ● ●● ● ● ●●● ● ● ● ● ●●● ● ● ● ● ●●●● ●● ●●●● ● ● ● ●● ● ● ●●● ●● ●● ● ●● ● ● ● ●●● ●●●●● ● ● ● ● ●● ●●● ● ● ● ● ● ●● ● ●● ● ● ●● ● ●● ●●● ● ●● ● ● ●● ● ●● ● ●●●●● ● ● ● ●●●● ●● ● ●● ● ●● ● ●●● ● ● ● ●● ●● ●●● ● ● ● ● ●● ●●●● ● ●● ●● ● ● ●● ●● ● ●● ● ●● ●● ● ●●● ●● ●● ●● ● ● ●●● ●● ●● ●● ● ●●●● ● ● ●●●●●●●●●● ●●● ●● ● ●●● ● ● ●● ● ●● ● ● ● ●●●● ● ●● ● ● ● ●● ●● ● ● ●● ● ● ●●●● ● ●●● ●●● ●● ● ● ●● ● ●● ● ● ●●●● ● ●● ● ● ●● ● ●● ●● ●● ●● ●●● ● ●● ● ●● ● ●●● ●● ●● ●● ● ● ●● ● ● ● ●● ● ●●●●● ● ●● ●● ● ● ●● ● ● ●● ●● ●●● ● ●● ● ● ●● ● ●●● ●●● ●● ●● ●● ●●●● ● ● ● ●●●● ● ●● ●●●● ●● ● ●● ● ●● ●● ● ●●● ●●● ●● ● ●● ●● ●● ●●● ● ● ●● ● ●● ● ● ● ● ●● ●● ● ●● ● ●● ● ● ● ●● ●● ●● ● ● ● ● ●● ●●● ●● ● ●●● ● ● ● ● ●●● ● ● ●● ●●● ● ●●●●● ● ● ●● ● ●● ●●●● ●● ● ●●● ●● ● ●● ●● ● ● ●● ● ● ● ●●● ● ●●● ●● ● ● ● ●●● ● ● ●● ●● ● ●●● ● ●● ● ●● ● ● ●● ●● ● ●●●● ●● ● ● ●● ● ● ●● ● ● ●●● ● ● ●● ●● ●● ●●● ●● ● ● ●● ●● ●●● ●●● ●● ●● ●● ● ● ● ●●● ● ● ●●● ● ● ●●●● ●● ● ●●● ● ●● ● ● ●●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●●● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ●●● ●● ● ●●● ● ●● ●● ● ●●● ● ● ● ●●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●●● ● ●●● ●● ● ● ● ● ●● ●● ●● ●● ●● ●●● ●●●● ● ●● ● ●● ● ●● ●●●● ● ●●● ●● ● ●● ● ● ● ●● ● ●● ● ● ●● ●● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ●● ●●● ●●● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ●●● ● ●● ●● ● ●● ● ●● ●● ●● ● ● ●● ●● ●●●● ● ● ●●●● ●● ● ● ●● ● ●●●●● ● ● ●●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●●● ●● ● ●●●● ●●● ●● ●● ●●● ● ● ●● ● ●● ● ●● ● ●● ●●● ●●● ●●● ●● ●● ● ● ●●● ● ●● ●●● ● ●●● ● ● ●● ● ●● ● ● ●● ●● ● ●● ● ●● ● ●● ● ●●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●● ●● ● ● ●● ●●●● ● ● ●●● ●● ●● ● ●● ● ●●●● ● ●● ●● ●●● ● ●●● ●●● ●●● ● ●● ●●● ●● ●● ● ● ●●● ●● ●●● ●●● ●●●● ● ●●● ● ●● ● ●●● ● ● ●●● ●● ●● ● ● ●●● ●● ●● ●● ●●●● ●● ●● ● ●●●●● ● ●● ●● ● ●● ●● ● ● ● ●●● ● ●●● ●●● ●● ● ●● ● ●●● ●● ● ●● ●●● ● ●● ●● ●● ● ● ●● ● ●● ●● ●● ●●● ●●● ●●● ● ●● ●● ● ●● ●●● ●●● ●● ●●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●●● ● ●● ● ●● ● ● ●●●●● ●●● ● ●●●●

●

●

1 10 100 1000 10000

10
50

10
0

50
0

50
00

50
00

0

foaf:knows relations

pr
od

uc
ed

 tr
ip

le
 in

 o
ne

 w
ee

k

Figure 30: Scatter plot with logarithmic axes of related accounts vs. the num-
ber of created outgoing triples after one week of social network
activity (taken from Abel et al. [2011], uncleaned).

Given this plot, we assume that the amount of friendship relations of
an account and the amount of activities of an account do not correlate
with each other. Since the given raw data included extreme values
not suitable for our approach (see below), we cleaned the data by
eliminating outliers in both dimensions. The average size of outgoing
triples for all profiles after one week of activity is 1589 triples. The
average amount of related contacts in the cleaned data is 225. We used
these values as an artificial point in the graph and identified one single
account which had the smallest distance to this point. This account
was used for the query evaluation.

The motivation behind this approach is to evaluate the average
performance of a DSSN node. Morsey et al. [2011] analyzed the cor-
relation between knowledge base size and query performance. This
setup simplifies these results and assumes a linear correlation which
is acceptable in the context of this evaluation.

The evaluated account has 212 foaf:knows relations with other
accounts, shared 113 foreign notes and posted 5 original notes in one

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/knows

10.2 quantitative evaluation: dssn performance 110

week. With this activities, the owner produced 1425 triples (including
his profile). In addition to that, he received 396346 triples from his
friends over Linked Data and PubSubHubbub.

We used this graph and executed the introduced queries on the
three different systems, described in Section 10.2.2. Table 4 shows the
average execution time in milliseconds after 5 runs for each query.

Table 4: Runtime (in ms) of different evaluation queries

Query Server FreedomBox Smartphone

Q1 (posts) 35 71 41325

Q2 (facets) 150 312 37558

Q3 (birthdays) 29 36 11324

Q4 (titles) 522 2205 n/a

The results show, that querying this data is possible at least on real
triple stores and with a moderate time frame. Using a DSSN node
on a dedicated server should even work with much more data. The
results from the smartphone demonstrate a gap of working triple store
implementations for HTML5 applications.

Query 1–3 are similar in its structure since they combine at least
two graph patterns with one or two filter. Query 2 is the slowest here
since it uses graph pattern most which results in a query plan with
many joins. Query 1 uses an ORDER clause on a big result set (all status
notes timestamps). This may be the reason for being the slowest query
on the smartphone.

Query 4 is hardest query in our experiment, since it does not use any
graph pattern which can be used for filtering on index level. Instead it
uses two complex filter which have to be evaluated on a lot of triple.
Given these results, we will consider a different query strategy for
querying the title attributes. One option is to send a query for each
resource thus allow to restrict the index based on the subject.

The huge amount of data which is received by DSSN nodes in a
realistic environment should be controlled not only by faster triple
stores and more hardware, but also by implementing smart interfaces
which cache at the right places and pre-calculate many interface
elements fostering a faster user experience.

As a nice spin-off, this evaluation demonstrates how social network
federation can be achieved if semantic interoperability is guaranteed.
If a user wants to federate her DSSN node with other social networks,
a semantic agent can easily fetch and write data from social network
APIs, translate it to RDF and publish it as Linked Data including the
discoverable services described in Chapter 4. The RDF translation can
moreover be realized by the user’s own DSSN node so that the user
can be in full control of her data.

11
C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter, we conclude our work and discuss our results based
on the initial research questions from Chapter 1

109. Furthermore, we
give some directions for future work.

11.1 architecture of a distributed semantic social net-
work

In this thesis we described a reference architecture and proof-of-
concept implementations of a distributed Social Network based on
semantic technologies (Q1). Compared with the currently prevalent
centralized social networks, this approach has a number of advantages
regarding privacy, data security, data ownership, extensibility, relia-
bility and freedom of communication. However, the work presented
in thesis can only be a first step of a larger research and development
agenda aiming at realizing a truly distributed social network based
on semantic technologies.

We defined and re-used a robust framework of protocols and data
definition standards for social interactions (Q2). We added services for
a Linked Data infrastructure in order to shape a full featured DSSN
architecture (Q3). Finally, we demonstrated that this architecture based
on Semantic Web technologies is suitable in a distributed environment
to build Social Networks (Q4).

Our prototype applications (each providing different user interfaces
and usage concepts) demonstrate the usefulness of this architecture
(Q1). Each application uses different parts of the architecture to pro-
vide its user interface (cf. Table 5).

• xOperator uses WebID profiles and attached data artifacts from
the DSSN data layer and provides a read only chat interface
based on an existing social network (Q5+6).

• MSSW fetches WebID profiles of the user and her linked friends.
It uses the attached ping service to provide friending notification.
A public search service is used to look for new friends. MSSW
provides an integrated DSSN view for the mobile platform An-
droid (Q6).

• OntoWiki/DSSN uses or provides the complete service layer.
It can produce and consume history and activity streams as
well as any type of data and media artifact incl. WebID profiles.

109 Research questions are referenced by its identifier Q1 – Q7.

111

11.1 architecture of a distributed semantic social network 112

Table 5: Comparison of all three applications according to their used archi-
tecture assets

Service xOperator MSSW OntoWiki/DSSN

WebID profiles query fetch fetch / provide

Data artifacts query fetch / provide

Media artifacts link / provide

Activity streams consume / provide

History feeds consume / provide

Ping Service use use / provide

Update Service provide

Search Service use use / provide

Push Service use / provide

OntoWiki/DSSN integrates a well known data wiki applica-
tion and transforms all data of the wiki into DSSN artifacts by
enhancing them with DSSN services (ping and push, Q6+7).
OntoWiki/DSSN can consume data artifacts as a users secretary
using access delegation for the WebID protocol.

For a widespread use, the usability, scalability and the multi-client
capabilities have to be improved. Likewise, the distributed realization
of social networking applications (apps) as implemented in centralized
social networks through APIs has to be investigated. We hope that the
combination of standards and protocols as described in this thesis will
be implemented in a number of additional platforms (e.g. Wordpress
and Drupal), thus making them first-class nodes of the DSSN.

In addition to that, the proposed architecture is by no means limited
to a specific set of agents, data artifacts and activities. In the same way
as the architecture can be used by persons who share and comment
pictures of their domestic animals, the architecture can be used to
manage e.g. supply chains of a manufacturer. Some agents, artifacts
and activities will change but the architecture is able to support such
an usage scenario.

11.1.1 The LUCID project

As part of our future work we will work on the project LUCID – Linked
valUe ChaIn Data. The project LUCID will tackle the data management
problems in distributed supply chains networks. It is part of the small
and medium enterprise (SME) innovation program in information

11.2 semantic pingback 113

and communication technologies funded by the Federal Ministry of
Education and Research in Germany.

One major issue of the LUCID project is the management of decen-
tralized, secure and agile information streams. As part of this issue,
the following research questions will be treated:

• How can we enable SMEs to publish relevant company data
for supply chain networks up-to-date and secure on the Web
in order to provide information for customers, suppliers and
potential partners and to build supply networks on the fly and
in an agile manner?

• Which attributes do we need in company profiles to allow for
building of value added supply networks?

• How can we support the creation and management of company
profiles and more detailed company information in order to
allow SMEs to publish these data with minimal effort?

• How can we realize search features on this distributed catalog
of data?

The LUCID project directly re-uses parts of the proposed architec-
ture for distributed semantic social networks, esp. Semantic Pingback
and WebID access delegation. In order to prepare the architecture for
business use-cases we will extend them with more authorization and
authentication control.

11.1.2 The xodx project

As a result of the presented research and esp. the presented architec-
ture, the xodx project was created by former students of the University
of Leipzig110. xodx is a more straightforward approach of creating an
end-user interface for a distributed semantic social network node (cf.
Figure 31). It implements the basic functionalities of a DSSN node
which includes a WebID provider, Semantic Pingback functionality for
friending / commenting and push notifications via PubSubHubbub.
xodx is in use by a growing number of students as well as part of
community projects such as the Leipzig Data project111.

11.2 semantic pingback

Although the Data Web is currently substantially growing, it still
lacks a network effect as we could observe for example with the bl-
ogosphere in the Social Web. In particular coherence, information

110 https://github.com/white-gecko/xodx

111 http://www.leipzig-data.de/

https://github.com/white-gecko/xodx
http://www.leipzig-data.de/

11.3 access delegation 114

Figure 31: The xodx DSSN client

quality, and timeliness are still obstacles for the Data Web to become
an Web-wide reality. With Semantic Pingback we aimed at extending
and transferring the technological cornerstone of the Social Web the
Pingback mechanism towards the Linked Data Web and thus a Dis-
tributed Semantic Social Network. The resulting mechanism has the
potential to significantly improve the coherence on the Data Web, since
linking becomes bi-directional. With its integrated provenance and
spam prevention measures it helps to increase the information quality.
Notification services based on Semantic Pingback such as used in the
DSSN architecture increase the timeliness of distributed data. In addi-
tion these different benefits will mutually strengthen each other. Due
to its complete downwards compatibility our Semantic Pingback also
bridges the gap between the Social and the Data Web. We also expect
the Semantic Pingback mechanism to support the transition process
from data silos to flexible, decentralized structured information assets.

11.3 access delegation

By presenting application use cases, we justified the need for an agent,
such as a DSSN application or service, to act on behalf of a user in the
role of a secretary. Our proposal for supporting such a communication
schema involves adding a :secretary relation from the principal’s
profile to the agent that acts on its behalf. The secretary then con-
nects to the resource using her own WebID. In addition to that, the
secretary making the request need to add an X-On-Behalf-Of header
field referring to the WebID of the principal in whose name she acts.
This is especially useful if resources return different representations

11.4 xoperator 115

depending on who makes the request, or on behalf of whom a request
is made.

In our future work we will try to close the gap between the policy
and access control vocabularies on the one hand and WebID authen-
tication on the other hand. This will require mostly standardization
work and seeing which type of solution is the most apt to gain traction
in a wider community. As we deploy Social Web servers the need for
a such a standard will be felt more and more strongly.

11.4 xoperator

With the xOperator concept and its implementation, we have showed
how a deeply and synergistic coupling of Semantic Web technology
and Distributed Semantic Social Networks as well as Instant Messag-
ing networks can be achieved. The approach naturally combines the
well-balanced trust and provenance characteristics of IM networks
with semantic representations and query answering of the Semantic
Web. The xOperator approach goes significantly beyond existing work
which mainly focused either on the semantic annotation of IM mes-
sages or on using IM networks solely as transport layers for SPARQL
queries. It overlays the IM network with a network of personal (and
group) agents, which have access to knowledge bases and Web re-
sources of their respective owners. The neighbourhood of a user in
the network can be easily queried by asking questions in a subset of
natural language. By that xOperator resembles knowledge sharing
and exchange in offline communities, such as a group of co-workers
or friends. We have showcased how the xOperator approach natu-
rally facilitates contacts and calendar management as well as access
to large scale heterogeneous information sources. In addition to that,
its extensible design allows a straightforward and effortless adoption
to many other application scenarios such as, for example, sharing of
experiment results in Biomedicine or sharing of account information
in Customer Relationship Management.

In addition to adopting xOperator to new domain application we
view the xOperator architecture as a solid basis for further techno-
logical integration of IM networks and the Semantic Web. This could
include adding light-weight reasoning capabilities to xOperator or the
automatic creation of AIML categories by applying NLP techniques.
A more fine grained access control will be implemented in a future
version. Instead of simply trusting all contacts on the roster, individual
and group based policies can be created. Another issue for further re-
search is the implementation of a more sophisticated routing protocol,
that allows query traversal beyond directly connected nodes without
flooding the whole network.

11.5 mobile dssn client 116

11.5 mobile dssn client

The MSSW client is a further crucial piece in the medium-term agenda
of realizing a truly distributed social network based on semantic
technologies. Since mobile devices are playing an increasingly impor-
tant role as clients and platforms for social networks, our realization
focused on providing a extensible framework for social semantic net-
working on the Android platform. With this work we aimed at show-
casing how different (social) Semantic Web standards, technologies
and best practices can be integrated into a comprehensive architecture
for social networking e.g. on mobile devices.

With regard to future work we plan to further decrease the entrance
barrier for ordinary users. A current obstacle is that users are required
to have a WebID and – if they want to use authentication and access
control features – a FOAF+SSL enabled WebID. In particular creating
a FOAF+SSL enabled WebID is, due to the certificate creation, still a
cumbersome process. A possible simplification of this process would
be to enable mobile phone users to create and upload the required
profile and certificates directly from their mobile device. We also plan
to implement a more efficient and user-friendly way for subscribing to
updates of contacts. These will include profile changes, status updates,
(micro-)blog posts as well as updates retrieved from social networking
apps. This feature would be facilitated by a proxy infrastructure,
which caches updates until the device re-connects to the network
after a period of absence (e.g. due to limited network connection or
switched-off devices). A further important aspect to be developed is
the standardization and realization of social networking applications,
which seamlessly integrate with and run on top of the DSSN. Such
applications would comprise everything we know from centralized
social networks (e.g. games, travel, quizzes etc.), but would make use
of WebID Profiles and the other DSSN components for authentication,
access control, subscription/notification etc.

11.6 ontowiki/dssn

With the extension of the data wiki application OntoWiki, we demon-
strated how existing social web applications can be enabled to be part
of the DSSN. With OntoWiki/DSSN users can interact in multiple
ways with resources and services from their DSSN. OntoWiki/DSSN
provides can handle incoming activity and history feed pushes, sends
ping messages in each outgoing as well es receives and checks incom-
ing ping requests. These enhancements are not only useful in a DSSN
context but in a more general Linked Data infrastructure context as
well. By using these protocols an enabling its managed resources,
OntoWiki/DSSN is able consume and spin a multidomain Linked
Data Web and not only a Web of social content. In addition to that, by

11.6 ontowiki/dssn 117

developing OntoWiki/DSSN, we evaluated which query requirements
such DSSN applications impose on their triple backends.

With regard to future work we want to emphasize the xodx project
again, which uses backend APIs and some libraries of OntoWik-
i/DSSN and places a more user-friendly and more social network
specific user interface on top.

Part V

A P P E N D I X

A
C U R R I C U L U M V I TÆ

personal data

Sebastian Tramp, geb. Dietzold

Born on 29.09.1977

http://sebastian.tramp.name112

November 4, 2014

a.1 community services

a.1.1 Organizing Committee

• LSWT2013: 5. Leipziger Semantic Web Tag – Von Big Data zu
Smart Data; Leipzig, Germany; September 23-24, 2013

• LSWT2011: 3. Leipziger Semantic Web Tag – Linked Data für die
Massen; Leipzig Germany; May 4-5, 2011

• IMC-SSW2008: International Workshop on Interacting with Mul-
timedia Content in the Social Semantic Web; in conjunction with
the 3rd International Conference on Semantic and Digital Me-
dia Technologies (SAMT 2008); December 03, 2008; Koblenz,
Germany

a.1.2 Research Program Committee

• WASABI2014: Workshop on Semantic Web Enterprise Adoption
and Best Practice @ ESWC2014; Crete, Greece; May 26, 2014

• SWCS2013: Workshop on Semantic Web Collaborative Spaces;
Montpellier, France; May 27, 2013

• WASABI2013: Workshop on Semantic Web Enterprise Adoption
and Best Practice @ ISWC2013; Sydney, Australia; October 22,
2013

• Linked Data Cup @ I-Semantics; Graz, Austria; September 5-7,
2012

112 Usable as WebID

119

http://sebastian.tramp.name

A.1 community services 120

• LDOW2012: Workshop on Linked Data on the Web; Lyon, France;
April 16, 2012

• SWCS2012: Workshop on Semantic Web Collaborative Spaces;
Lyon, France; April 17, 2012

• ESWC2012: The 9th Extended Semantic Web Conference 2012 –
Research Track; Heraklion, Crete, Greece; May 27-31, 2012

• STAKE2011: Semantic Technology and Knowledge Engineering;
Putrajaya Campus, Uniten, Malaysia; July 2011

• SDoW2011: Social Data on the Web Workshop; Bonn, Germany;
October 23, 2011

• SDoW2010: 3rd Social Data on the Web workshop; Shanghai,
China; November 8, 2010

• STAKE2010: 2nd Semantic Technology and Knowledge Engineer-
ing Conference; Kuching, Sarawak, Malaysia; July 28, 2010

• SKIL2010: Studentenkonferenz Informatik Leipzig 2010; Leipzig,
Germany; September 28, 2010

• SFSW2010: 6th Workshop on Scripting and Development for the
Semantic Web; Hersonissos, Crete, Greece; May 31, 2010

• SemWiki2010: Fifth Workshop on Semantic Wikis – Linking Data
and People; Hersonissos, Crete, Greece; May 31, 2010

• SDoW2009: 2nd Social Data on the Web workshop; co-located
with the 8th International Semantic Web Conference (ISWC2009);
Washington DC (USA); October 25, 2009

• ESIW 2009: Workshop on Exploiting Structured Information on
the Web; in conjunction with 10th International Conference on
Web Information Systems Engineering (WISE 2009); Poznań,
Poland; October 5–7, 2009

• SFSW2009: 5th Workshop on Scripting and Development for
the Semantic Web; Colocated with ESWC 2009; May/June, 2009;
Crete, Greece

• SemWiki2009: Fourth Workshop on Semantic Wikis, co-located
with the 6th Annual European Semantic Web Conference (ESWC2009)
in Crete, Greece

• SAW2009: 3rd Workshop on Social Aspects of the Web; in con-
junction with the 12th International Conference on Business
Information Systems (BIS 2009); April 27 2009; Poznan, Poland

A.1 community services 121

• SDoW2008: 1st Social Data on the Web Workshop; co-located
with the 7th International Semantic Web Conference (ISWC2008);
October 26/27, 2008; Karlsruhe, Germany

• SemWiki2008: 3rd Semantic Wiki Workshop; co-located with the
5th European Semantic Web Conference (ESWC2008); June 02,
2008; Tenerife, Spain

• SFSW2008: 4th Workshop on Scripting for the Semantic Web;
co-located with the 5th European Semantic Web Conference
(ESWC2008); June 01, 2008; Tenerife, Spain

a.1.3 Reviewing

• I-Challenge 2013 on 9th International Conference on Semantic
Systems; Graz, Austria; September 4-6, 2013

• International Journal On Semantic Web and Information Systems;
2013

• JWS: Journal of Web Semantics – Special Issue on the Semantic
and Social Web, 2012

• Open Data Challenge 2011; June 2011

• ICWE2011: 11th International Conference on Web Engineering;
Paphos, Cyprus; 20-24 June, 2011

• KEOD2011: International Conference on Knowledge Engineering
and Ontology Development; Paris, France; 26 Oktober 2011

• SWJ: Semantic Web Journal – Interoperability, Usability, Applica-
bility

• Springer Science+Business Media, Publishing Group, Heidelberg;
Book in Computer Science

• IJSWIS: International Journal On Semantic Web and Information
Systems, Special Issue on Linked Data

• ESWC2009: The 6th Annual European Semantic Web Conference
– Demonstrations Track; 31 May – 4 June 2009, Heraklion, Greece

• LDOW2008: Linked Data on the Web; Workshop at the 17th
International World Wide Web Conference (WWW2008); April
22, 2008; Beijing, China

• CSSW2007: Conference on Social Semantic Web; September
26–28, 2007; Leipzig, Germany

A.2 seminars and teaching 122

a.2 seminars and teaching

• Web-Engineering, Web-Anwendungssysteme und Mobile Com-
puting (WS2013/2014, Leipzig School of Media)

• Praktikum Distributed Semantic Social Networks (WS2012/2013,
Institute of Computer Science at University of Leipzig)

• Web-Engineering, Web-Anwendungs- systeme und Mobile Com-
puting (WS2012/2013, Leipzig School of Media)

• Semantic Web Software (SS2012, Information Systems Institute
at University of Leipzig)

• Praktikum Semantic Web (SS2012, Institute of Computer Science
at University of Leipzig)

• Distributed Semantic Social Networks (2012, LOD2 Indian Sum-
mer School)

• Web-Engineering und Web-Anwendungssysteme (WS2011/2012,
Leipzig School of Media)

• Web-Engineering und Web-Anwendungssysteme (WS2010/2011,
Leipzig School of Media)

• Semantic Web (SS2010, Gastvorlesung Information Systems In-
stitute at University of Leipzig)

• Semantic Web Praktikum (SS2010, Institute of Computer Science
at University of Leipzig)

• Softwaretechnik-Praktikum (SS2009, Institute of Computer Sci-
ence at University of Leipzig)

• Semantik Web Praktikum (SS2009, Institute of Computer Science
at University of Leipzig)

• Schwerpunktpraktikum Semantische Technologien / Social Se-
mantic Web (WS2008/2009, Institute of Computer Science at
University of Leipzig)

• Semantische Unterstützung von Software Entwicklungsprozessen
(SS2008, Institute of Computer Science at University of Leipzig)

• Softwaretechnik-Praktikum (SS2008, Institute of Computer Sci-
ence at University of Leipzig)

• Entwicklung von Semantischen Webanwendungen (SS2007, In-
stitute of Computer Science at University of Leipzig)

• Semantic Web Services und Interfaces (WS2006/2007, Institute
of Computer Science at University of Leipzig)

A.3 supervision 123

• Agiles Software and Knowledge Engineering (SS2006, Institute
of Computer Science at University of Leipzig)

a.3 supervision

a.3.1 Bachelor

• Markus Freudenberg: Konzept und Implementierung eines Triple
Store Event Frameworks

• Norman Radtke: Konzept und Implementierung aktivitätsbasierter
Kommunikation für verteilte semantische Soziale Netzwerke

• Alrik Hausdorf: Konzept und Implementierung erweiterter Meth-
oden für Web-basierte Präsentationen

• Matthias-Christian Ott: Spezifikation einer Ausführungsumge-
bung für Web-Anwendungen in Mozilla Firefox

• Konrad Abicht: Gewichtung von Aussagen in RDF Graphen

• Natanael Arndt: Entwicklung eines mobilen Social Semantic
Web Clients

• Jonas Brekle: Ein SPARQL Query Komponente für die API-
basierte Manipulation von SPARQL Abfragen

• Leszek Kotas: Evaluation und Erweiterung des OntoWiki Plugin-
Systems

• Maria Moritz: Integration des DL-Learners in OntoWiki

• Thanh Nghia Lam: SPARQL Templates für die Darstellung von
RDF Inhalten

• Thomas Sobik: Management von Standard Operation Procedures

• Atanas Alexandrov: Implementierung eines Oracle basiertem
RDF Store Backends

• Martin Peklo: Semantische Supportdatenbank

a.3.2 Master

• Natanael Arndt: Xodx – Konzeption und Implementierung eines
Distributed Semantic Social Network Knotens

• Rolland Brunec: Ein modularer und backend-unabhängiger SPARQL
/ SPARUL Parser für PHP

• Atanas Alexandrov: Tagging in Semantischen Daten-Wikis

A.3 supervision 124

• Martin Peklo: JavaScript API zur Manipulation von RDF Mod-
ellen

• Jörg Unbehauen: Konzept und Implementierung eines Semantis-
chen Agenten

• Thomas Kappel: Integration von Sozialen Netzwerken mit dem
Sozializr

• Christian Lehmann: Implementierung eines D2RQ Mapping
Backends für RAP

a.3.3 Diploma

• Elena Kop: Eine Semantic Web Ontologie für den Gasmarkt

• Christoph Riess: Evaluations-Pattern in Semantic Web Wissens-
basen

• Philipp Frischmuth: Interwiki-Kommunikation in semantischen
Daten-Wikis

• Nomunbilegt Batsukh: Unterstützung von Online Shop Syste-
men mit Semantischen Technologien

• Feng Qiu: Semantisches Plugin Repository

• Norman Heino: Intelligente RDFa-Widgets

• Michael Haschke: Semantic Personal Knowledge Management
mit OntoWiki

• Stefan Berger: Access Control on Triple Stores

• Enrico Popp: WebDAV Dateisystem für RDF Modelle

• Denis Gärtner: LDAP Query to SPARQL Transformation

B I B L I O G R A P H Y

F. Abel, I. Celik, G.-J. Houben, and P. Siehndel. Leveraging the Se-
mantics of Tweets for Adaptive Faceted Search on Twitter. In
10th International Semantic Web Conference, Bonn, Germany, October
23-27, 2011, Proceedings, volume 7031 of LNCS, pages 1–17, 2011.
ISBN 978-3-642-25072-9. URL http://link.springer.com/chapter

/10.1007%2F978-3-642-25073-6_1.

B. Adida, M. Birbeck, S. McCarron, and S. Pemberton. RDFa in
XHTML: Syntax and Processing. Recommendation, W3C, 2008.
URL http://www.w3.org/TR/rdfa-syntax/.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G.
Ives. DBpedia: A Nucleus for a Web of Open Data. In 6th In-
ternational Semantic Web Conference, 2nd Asian Semantic Web Con-
ference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15,
2007, Proceedings, number 4825 in LNCS, pages 722–735, 2007.
ISBN 978-3-540-76297-3. URL http://link.springer.com/chapter

/10.1007%2F978-3-540-76298-0_52.

A. Barth. The Web Origin Concept. RFC 6454, IETF, Dec. 2011. URL
https://tools.ietf.org/html/rfc6454.

C. Becker and C. Bizer. Exploring the Geospatial Semantic Web with
DBpedia Mobile. J. Web Sem., 7(4):278–286, 2009. URL http://www

.websemanticsjournal.org/index.php/ps/article/view/266.

D. Beckett. RDF/XML Syntax Specification (Revised). Rec-
ommendation, Word Wide Web Consortium, 10 Feb. 2004.
URL http://www.w3.org/TR/2004/REC-rdf-syntax-grammar

-20040210/. http://www.w3.org/TR/2004/REC-rdf-syntax-
grammar-20040210/.

D. Beckett and T. Berners-Lee. Turtle - Terse RDF Triple Language.
Member Submission, W3C, 2004. URL http://www.w3.org/Team

Submission/turtle/.

D. Beckett and J. Broekstra. SPARQL Query Results XML Format.
Recommendation, W3C, Mar. 2013. URL http://www.w3.org/TR/

rdf-sparql-XMLres/.

T. Berners-Lee. Linked Data – Design Issues, July 2006. URL http

://www.w3.org/DesignIssues/. last change: 2010/04/12; retrieved:
2014/03/05.

125

http://link.springer.com/chapter/10.1007%2F978-3-642-25073-6_1
http://link.springer.com/chapter/10.1007%2F978-3-642-25073-6_1
http://www.w3.org/TR/rdfa-syntax/
http://link.springer.com/chapter/10.1007%2F978-3-540-76298-0_52
http://link.springer.com/chapter/10.1007%2F978-3-540-76298-0_52
https://tools.ietf.org/html/rfc6454
http://www.websemanticsjournal.org/index.php/ps/article/view/266
http://www.websemanticsjournal.org/index.php/ps/article/view/266
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/DesignIssues/
http://www.w3.org/DesignIssues/

bibliography 126

T. Berners-Lee. Long Live the Web: A Call for Continued
Open Standards and Neutrality. Scientific American, Dec. 2010.
URL http://www.scientificamerican.com/article.cfm?id=long

-live-the-web.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.
Scientific American, pages 29–37, May 2001. URL http://www

.scientificamerican.com/article/the-semantic-web/.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identi-
fier (URI): Generic Syntax. RFC 3986, IETF, Jan. 2005. URL https

://tools.ietf.org/html/rfc3986.

A. Bielenberg, L. Helm, A. Gentilucci, D. Stefanescu, and H. Zhang.
The growth of Diaspora - A decentralized online social network in
the wild. In 2012 Proceedings IEEE INFOCOM Workshops, Orlando,
FL, USA, March 25-30, 2012, pages 13–18. IEEE, 2012. ISBN 978-
1-4673-1016-1. URL http://ieeexplore.ieee.org/xpl/abstract

Authors.jsp?arnumber=6193476.

C. Bizer and R. Cyganiak. The TriG Syntax. Syntax Reference, Freie
Universität Berlin, July 2007. URL http://wifo5-03.informatik

.uni-mannheim.de/bizer/trig/.

C. Bizer, R. Cyganiak, and T. Heath. How to Publish Linked
Data on the Web. Technical Report, Freie Universität Berlin,
2007. URL http://wifo5-03.informatik.uni-mannheim.de/bizer

/pub/LinkedDataTutorial/.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann. Dbpedia - a crystallization point for the web of
data. Journal of Web Semantics, 7(3):154–165, 2009. URL http://dx

.doi.org/10.1016/j.websem.2009.07.002.

U. Bojars, A. Passant, R. Cyganiak, and J. Breslin. Weaving SIOC
into the Web of Linked Data. In Proceedings of the Linked Data on
the Web Workshop, 2008. URL http://events.linkeddata.org/ldow

2008/papers/01-bojars-passant-weaving-sioc.pdf.

P. Bouquet, H. Stoermer, C. Niederée, and A. Mana. Entity Name
System: The Back-Bone of an Open and Scalable Web of Data. In Pro-
ceedings of the 2th IEEE International Conference on Semantic Comput-
ing (ICSC 2008), 2008. URL http://www.okkam.org/publications

/stoermer-EntityNameSystem.pdf.

T. Bray, D. Hollander, A. Layman, R. Tobin, and H. S. Thompson.
Namespaces in XML 1.0 (Third Edition). Recommendation, W3C,
Dec. 2009. URL http://www.w3.org/TR/REC-xml-names/.

J. Breslin, A. Harth, U. Bojars, and S. Decker. Towards Semantically-
Interlinked Online Communities. In Second European Semantic

http://www.scientificamerican.com/article.cfm?id=long-live-the-web
http://www.scientificamerican.com/article.cfm?id=long-live-the-web
http://www.scientificamerican.com/article/the-semantic-web/
http://www.scientificamerican.com/article/the-semantic-web/
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6193476
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6193476
http://wifo5-03.informatik.uni-mannheim.de/bizer/trig/
http://wifo5-03.informatik.uni-mannheim.de/bizer/trig/
http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/
http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://events.linkeddata.org/ldow2008/papers/01-bojars-passant-weaving-sioc.pdf
http://events.linkeddata.org/ldow2008/papers/01-bojars-passant-weaving-sioc.pdf
http://www.okkam.org/publications/stoermer-EntityNameSystem.pdf
http://www.okkam.org/publications/stoermer-EntityNameSystem.pdf
http://www.w3.org/TR/REC-xml-names/

bibliography 127

Web Conference, ESWC 2005, Heraklion, Crete, Greece, May 29–June 1,
2005, Proceedings, 2005. URL http://link.springer.com/chapter

/10.1007%2F11431053_34.

J. G. Breslin, S. Decker, A. Harth, and U. Bojars. SIOC: an approach to
connect web-based communities. International Journal of Web Based
Communities, 2(2):133–142, 2006. URL http://www.inderscience

.com/info/inarticle.php?artid=10305.

D. Brickley and R. Guha. RDF Schema 1.1. Recommendation, W3C,
Feb. 2014. URL http://www.w3.org/TR/rdf-schema/.

D. Brickley and L. Miller. FOAF Vocabulary Specification. Namespace
Document 2 Sept 2004, FOAF Project, 2004. URL http://xmlns.com

/foaf/0.1/. http://xmlns.com/foaf/0.1/.

G. Carothers. RDF 1.1 N-Quads: A line-based syntax for RDF datasets.
Recommendation, W3C, Feb. 2014. URL http://www.w3.org/TR/n

-quads/.

G. Carothers and A. Seaborne. RDF 1.1 N-Triples: A line-based syntax
for an RDF graph. Recommendation, W3C, Feb. 2014. URL http

://www.w3.org/TR/n-triples/.

P. Ciccarese, E. Wu, G. T. Wong, M. Ocana, J. Kinoshita, A. Ruttenberg,
and T. Clark. The SWAN biomedical discourse ontology. Journal
of Biomedical Informatics, 41(5):739–751, 2008. URL http://www.j

-biomed-inform.com/article/S1532-0464(08)00058-0/.

K. G. Clark. SPARQL 1.1 Protocol. Recommendation, W3C, Mar. 2013.
URL http://www.w3.org/TR/sparql11-protocol/.

S. Corlosquet, R. Cyganiak, A. Polleres, and S. Decker. RDFa in Drupal:
Bringing cheese to the web of data. In Proc. of 5th Workshop on
Scripting and Development for the Semantic Web at ESWC 2009, 2009.
URL http://ceur-ws.org/Vol-449/ShortPaper3.pdf.

R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Concepts and
Abstract Syntax. Recommendation, W3C, Feb. 2014. URL http

://www.w3.org/TR/rdf11-concepts/.

J. David and J. Euzenat. Linked data from your pocket: The Android
RDFContentProvider. In Posters and Demos of the ISWC2010, 2010.
URL http://iswc2010.semanticweb.org/pdf/492.pdf.

I. Davis, T. Steiner, and A. J. L. Hors. RDF 1.1 JSON Alternate Serial-
ization (RDF/JSON). Working Group Note, W3C, Nov. 2013. URL
http://www.w3.org/TR/rdf-json/.

F. Dawson and D. Stenerson. Internet Calendaring and Scheduling
Core Object Specification (iCalendar). RFC 2445, IETF, Nov. 1998.
URL https://tools.ietf.org/html/rfc3986.

http://link.springer.com/chapter/10.1007%2F11431053_34
http://link.springer.com/chapter/10.1007%2F11431053_34
http://www.inderscience.com/info/inarticle.php?artid=10305
http://www.inderscience.com/info/inarticle.php?artid=10305
http://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://www.w3.org/TR/n-quads/
http://www.w3.org/TR/n-quads/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/n-triples/
http://www.j-biomed-inform.com/article/S1532-0464(08)00058-0/
http://www.j-biomed-inform.com/article/S1532-0464(08)00058-0/
http://www.w3.org/TR/sparql11-protocol/
http://ceur-ws.org/Vol-449/ShortPaper3.pdf
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://iswc2010.semanticweb.org/pdf/492.pdf
http://www.w3.org/TR/rdf-json/
https://tools.ietf.org/html/rfc3986

bibliography 128

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
– Version 1.2. RFC 5346, IETF, Aug. 2008. URL https://tools.ietf

.org/html/rfc5246.

L. Ding, T. W. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. Doshi, and J. Sachs. Swoogle: a search and metadata engine for
the semantic web. In Proceedings of the 2004 ACM CIKM International
Conference on Information and Knowledge Management, Washington,
DC, USA, November 8-13, 2004, pages 652–659, 2004. ISBN 1-58113-
874-1. URL http://ebiquity.umbc.edu/_file_directory_/papers

/116.pdf.

L. Dodds and I. Davis. Linked Data Patterns – A pattern catalogue for
modelling, publishing, and consuming Linked Data. 2014. URL http

://patterns.dataincubator.org/.

M. Duerst and M. Suignard. Internationalized Resource Identifiers
(IRIs). RFC 3987, IETF, Jan. 2005. URL https://tools.ietf.org

/html/rfc3987.

D. Eastlake and A. Panitz. Reserved Top Level DNS Names. RFC 2606,
IETF, June 1999. URL https://tools.ietf.org/html/rfc2606.

O. Erling. Virtuoso, a hybrid rdbms/graph column store. IEEE
Data Eng. Bull., 35(1):3–8, 2012. URL http://sites.computer.org

/debull/A12mar/vicol.pdf.

O. Erling and I. Mikhailov. Rdf support in the virtuoso dbms. In
S. Auer, C. Bizer, C. Müller, and A. V. Zhdanova, editors, The Social
Semantic Web 2007, Proceedings of the 1st Conference on Social Semantic
Web (CSSW), September 26-28, 2007, Leipzig, Germany, volume 113

of LNI, pages 59–68. GI, 2007. URL http://subs.emis.de/LNI/

Proceedings/Proceedings113/gi-proc-113-006.pdf.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,
IETF, June 1999. URL https://tools.ietf.org/html/rfc2616.

T. Franz and S. Staab. SAM: Semantics Aware Instant Messag-
ing for the Networked Semantic Desktop. In Semantic Desk-
top Workshop at the ISWC, 2005. URL http://CEUR-WS.org/Vol

-175/11_franzstaab_sam_final.pdf.

E. Freese. Enhancing AIML Bots using Semantic Web
Technologies. In Proc. of Extreme Markup Languages, 2007.
URL http://conferences.idealliance.org/extreme/html/2007/

Freese01/EML2007Freese01.html.

H. Glaser, A. Jaffri, and I. Millard. Managing Co-reference on the
Semantic Web. In Proceedings of the Linked Data on the Web Workshop

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://ebiquity.umbc.edu/_file_directory_/papers/116.pdf
http://ebiquity.umbc.edu/_file_directory_/papers/116.pdf
http://patterns.dataincubator.org/
http://patterns.dataincubator.org/
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc2606
http://sites.computer.org/debull/A12mar/vicol.pdf
http://sites.computer.org/debull/A12mar/vicol.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings113/gi-proc-113-006.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings113/gi-proc-113-006.pdf
https://tools.ietf.org/html/rfc2616
http:// CEUR-WS.org/Vol-175/11_franzstaab_sam_final.pdf
http:// CEUR-WS.org/Vol-175/11_franzstaab_sam_final.pdf
http://conferences.idealliance.org/extreme/html/2007/Freese01/EML2007Freese01.html
http://conferences.idealliance.org/extreme/html/2007/Freese01/EML2007Freese01.html

bibliography 129

(LDOW2009), 2009. URL http://ceur-ws.org/Vol-538/ldow2009_

paper11.pdf.

H. Halpin and M. Tuffield. A Standards-based, Open and Privacy-
aware Social Web. Incubator Group Report, W3C, Dec. 2010. URL
http://www.w3.org/2005/Incubator/socialweb/XGR-socialweb/.

E. Hammer. The OAuth 1.0 Protocol. RFC 5849, IETF, Apr. 2010. URL
https://tools.ietf.org/html/rfc5849.

D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, IETF,
Oct. 2012. URL https://tools.ietf.org/html/rfc6749.

S. Harris and A. Seaborne. SPARQL 1.1 Query Language. Recom-
mendation, W3C, Mar. 2013. URL http://www.w3.org/TR/sparql

11-query/.

O. Hartig. Provenance Information in the Web of Data. In
Linked Data on the Web Workshop, April 20, 2009, Madrid, Spain.,
2009. URL http://events.linkeddata.org/ldow2009/papers/

ldow2009_paper18.pdf.

T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global
Data Space. Morgan & Claypool Publishers, Feb. 2011. URL http

://linkeddatabook.com/.

P. Hitzler, M. Krötzsch, S. Rudolph, and Y. Sure. Semantic Web: Grund-
lagen. eXamen.press, 2007. URL http://semantic-web-grundlagen

.de/.

P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph.
OWL 2 Web Ontology Language Primer (Second Edition). Rec-
ommendation, W3C, Dec. 2012. URL http://www.w3.org/TR/owl

-primer/.

P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA.
RFC 6698, IETF, Aug. 2012. URL https://tools.ietf.org/html

/rfc6698.

R. Iannella, H. Halpin, B. Suda, and N. Walsh. Representing vCard
Objects in RDF. Member Submission, W3C, Jan. 2010. URL http

://www.w3.org/Submission/vcard-rdf/.

I. Jacobs and N. Walsh. Architecture of the World Wide Web, Volume
One. Recommendation, W3C, Dec. 2004. URL http://www.w3.org

/TR/webarch/.

K. Jones. The growth of social media v2.0. Search Engine Journal, 11-15,
2013. URL http://www.searchenginejournal.com/growth-social

-media-2-0-infographic/77055/.

http://ceur-ws.org/Vol-538/ldow2009_paper11.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper11.pdf
http://www.w3.org/2005/Incubator/socialweb/XGR-socialweb/
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc6749
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper18.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper18.pdf
http://linkeddatabook.com/
http://linkeddatabook.com/
http://semantic-web-grundlagen.de/
http://semantic-web-grundlagen.de/
http://www.w3.org/TR/owl-primer/
http://www.w3.org/TR/owl-primer/
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6698
http://www.w3.org/Submission/vcard-rdf/
http://www.w3.org/Submission/vcard-rdf/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/
http://www.searchenginejournal.com/growth-social-media-2-0-infographic/77055/
http://www.searchenginejournal.com/growth-social-media-2-0-infographic/77055/

bibliography 130

A. M. Kaplan and M. Haenlein. Users of the world, unite! The chal-
lenges and opportunities of Social Media. Business Horizons, 53(1):
59 – 68, 2010. ISSN 0007-6813. doi: http://dx.doi.org/10.1016/j
.bushor.2009.09.003. URL http://www.sciencedirect.com/science

/article/pii/S0007681309001232.

D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha. Haystack:
A General-Purpose Information Management Tool for End Users
Based on Semistructured Data. In Proc. of the Second Biennial Confer-
ence on Innovative Data Systems Research (CIDR2005), Asilomar, CA,
USA, January 4-7, 2005, pages 13–26, 2005. URL http://www.cidrdb

.org/cidr2005/papers/P02.pdf.

E. Kaufmann and A. Bernstein. How Useful are Natural Language
Interfaces to the Semantic Web for Casual End-users? In 6th In-
ternational Semantic Web Conference, 2nd Asian Semantic Web Confer-
ence, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007,
Proceedings, pages 281–294, 2007. URL http://link.springer.com

/chapter/10.1007%2F978-3-540-76298-0_21.

M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A World
Wide Web Without Walls. In 6th ACM Workshop on Hot Topics in
Networking (Hotnets), Atlanta, GA, USA, November 2007. URL http

://pdos.csail.mit.edu/papers/w5-hotnets07.pdf.

S. Langridge and I. Hickson. Pingback 1.0. Technical Report, per-
sonal document, 2002. URL http://hixie.ch/specs/pingback

/pingback.

O. Lassila. Using the Semantic Web in Mobile and Ubiquitous Comput-
ing. In Proc. of the 1st IFIP WG12.5 Working Conference on Industrial
Applications of Semantic Web, Jyväskylä, Finland, volume 188 of IFIP,
pages 19–25, 2005. URL http://www.springerlink.com/index/6t

254j1736537p41.pdf.

O. Lassila and M. Adler. Semantic Gadgets: Ubiquitous Computing
Meets the Semantic Web. In Spinning the Semantic Web: Bringing the
World Wide Web to Its Full Potential, pages 363–376. MIT Press, 2003.
ISBN 0-262-06232-1. URL http://www.lassila.org/publications

/2002/lassila-nist-pervasive-2002.pdf.

D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth. RDF On
the Go: An RDF Storage and Query Processor for Mobile Devices.
In Posters and Demos of the ISWC 2010, Shanghai, China, 2010. URL
http://iswc2010.semanticweb.org/pdf/503.pdf.

B. Leuf and W. Cunningham. The Wiki Way – Quick Collaboration on
the Web. Addison-Wesley Longman, 2001. URL http://www.wiki

.org.

http://www.sciencedirect.com/science/article/pii/S0007681309001232
http://www.sciencedirect.com/science/article/pii/S0007681309001232
http://www.cidrdb.org/cidr2005/papers/P02.pdf
http://www.cidrdb.org/cidr2005/papers/P02.pdf
http://link.springer.com/chapter/10.1007%2F978-3-540-76298-0_21
http://link.springer.com/chapter/10.1007%2F978-3-540-76298-0_21
http://pdos.csail.mit.edu/papers/w5-hotnets07.pdf
http://pdos.csail.mit.edu/papers/w5-hotnets07.pdf
http://hixie.ch/specs/pingback/pingback
http://hixie.ch/specs/pingback/pingback
http://www.springerlink.com/index/6t254j1736537p41.pdf
http://www.springerlink.com/index/6t254j1736537p41.pdf
http://www.lassila.org/publications/2002/lassila-nist-pervasive-2002.pdf
http://www.lassila.org/publications/2002/lassila-nist-pervasive-2002.pdf
http://iswc2010.semanticweb.org/pdf/503.pdf
http://www.wiki.org
http://www.wiki.org

bibliography 131

A. Lukas. The Mine! as VRM infrastructure. Technical Report, 2008.
URL http://www.mediainfluencer.net/wp/wp-content/uploads/

2008/05/mine-paper-v1.pdf.

B. McBride. Jena: A Semantic Web Toolkit. IEEE Internet Computing,
6(6):55–59, 2002. URL http://ieeexplore.ieee.org/xpl/article

Details.jsp?arnumber=1067737.

A. Miles and S. Bechhofer. SKOS Simple Knowledge Organization
System Reference. Recommendation, W3C, Aug. 2009. URL http

://www.w3.org/TR/skos-reference/.

M. Minno and D. Palmisano. Atom Activity Streams RDF mapping.
NoTube Project, 2010. URL http://xmlns.notu.be/aair/.

M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. DBpedia
SPARQL Benchmark – Performance Assessment with Real Queries
on Real Data. In 10th International Semantic Web Conference, Bonn,
Germany, October 23-27, 2011, Proceedings, volume 7031 of LNCS,
pages 454–469, 2011. ISBN 978-3-642-25072-9. URL http://link

.springer.com/chapter/10.1007%2F978-3-642-25073-6_29.

OpenSocial Spec. Opensocial Specification 2.5.1. Techni-
cal Report, OpenSocial and Gadgets Specification Group,
2011. URL http://opensocial.github.io/spec/2.5.1/Open

Social-Specification.xml.

F. Osterfeld, M. Kiesel, and S. Schwarz. Nabu – A Semantic Archive
for XMPP Instant Messaging. In Semantic Desktop Workshop at the
International Semantic Web Conference, 2005. URL http://CEUR-WS.

org/Vol-175/40_kiesel_nabu_final.pdf.

A. Passant and P. N. Mendes. sparqlPuSH: Proactive notification of
data updates in RDF stores using PubSubHubbub. In Proceedings
of the Scripting for the Semantic Web Workshop 2010, 2010. URL http

://ceur-ws.org/Vol-699/Paper6.pdf.

A. Passant, J. G. Breslin, and S. Decker. Rethinking Microblogging:
Open, Distributed, Semantic. In B. Benatallah, F. Casati, G. Kap-
pel, and G. Rossi, editors, 10th International Conference, ICWE 2010,
Vienna, Austria, July 5-9, 2010. Proceedings, volume 6189 of LNCS,
pages 263–277, 2010. URL http://link.springer.com/chapter

/10.1007%2F978-3-642-13911-6_18.

D. Peterson, S. S. Gao, A. Malhotra, C. M. Sperberg-McQueen, and
H. S. Thompson. W3C XML Schema Definition Language (XSD) 1.1
Part 2: Datatypes. Recommendation, W3C, Apr. 2012. URL http

://www.w3.org/TR/xmlschema11-2/.

A. Phillips and M. Davis. Tags for Identifying Languages. BCP 47,
IETF, Sept. 2009. URL http://tools.ietf.org/html/bcp47.

http://www.mediainfluencer.net/wp/wp-content/uploads/2008/05/mine-paper-v1.pdf
http://www.mediainfluencer.net/wp/wp-content/uploads/2008/05/mine-paper-v1.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1067737
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1067737
http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/
http://xmlns.notu.be/aair/
http://link.springer.com/chapter/10.1007%2F978-3-642-25073-6_29
http://link.springer.com/chapter/10.1007%2F978-3-642-25073-6_29
http://opensocial.github.io/spec/2.5.1/OpenSocial-Specification.xml
http://opensocial.github.io/spec/2.5.1/OpenSocial-Specification.xml
http:// CEUR-WS.org/Vol-175/40_kiesel_nabu_final.pdf
http:// CEUR-WS.org/Vol-175/40_kiesel_nabu_final.pdf
http://ceur-ws.org/Vol-699/Paper6.pdf
http://ceur-ws.org/Vol-699/Paper6.pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-13911-6_18
http://link.springer.com/chapter/10.1007%2F978-3-642-13911-6_18
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/
http://tools.ietf.org/html/bcp47

bibliography 132

E. Prodromou, B. Vibber, J. Walker, and Z. Copley. OS-
tatus 1.0 Draft 2. Technical Report, StatusNet Inc, 2010.
URL http://www.w3.org/community/ostatus/wiki/images/9/93/

OStatus_1.0_Draft_2.pdf.

D. Quan, K. Bakshi, and D. R. Karger. A Unified Abstraction for
Messaging on the Semantic Web. In The Twelfth International World
Wide Web Conference (Posters), 2003. URL http://dblp.uni-trier

.de/db/conf/www/www2003p.html#QuanBK03.

D. Reynolds. The Organization Ontology. Recommendation, W3C,
Jan. 2014. URL http://www.w3.org/TR/vocab-org/.

M. Rowe. Interlinking Distributed Social Graphs. In Proceedings of the
Linked Data on the Web Workshop 2009, 2009. URL http://ceur-ws

.org/Vol-538/ldow2009_paper5.pdf.

M. Sabadello. A Federated Social Web for Peace. In
Federated Social Web Europe 2011, Berlin June 3rd-5th 2011,
2011. URL http://d-cent.org/fsw2011/wp-content/uploads/fsw

2011-A-Federated-Social-Web-for-Peace.pdf.

P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Core. RFC 3920, IETF, Oct. 2004. URL https://tools.ietf.org

/html/rfc3920.

B. Schandl and S. Zander. Adaptive RDF Graph Replication for Mobile
Semantic Web Applications. Ubiquitous Computing and Communi-
cation Journal (Special Issue on Managing Data with Mobile Devices),
7 2009. URL http://www.cs.univie.ac.at/upload//223/papers

/2009/ubicc2009-schandl.pdf.

G. Schreiber and Y. Raimond. RDF 1.1 Primer. Working Group Note,
W3C, Feb. 2014. URL http://www.w3.org/TR/rdf11-primer/.

F. Schwagereit, A. Scherp, and S. Staab. Representing Distributed
Groups with dgFOAF. In 7th Extended Semantic Web Conference,
ESWC 2010, Heraklion, Crete, Greece, May 30 - June 2, 2010, Proceed-
ings, pages 181–195, June 2010. URL http://data.semanticweb.org

/conference/eswc/2010/paper/social_web/6.

S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal, S. K. Teh,
R. Chu, B. Dodson, and M. S. Lam. PrPl: a decentralized social
networking infrastructure. In Proceedings of the 1st ACM Workshop
on Mobile Cloud Computing & Services: Social Networks and Beyond,
MCS ’10, pages 8:1–8:8, 2010. ISBN 978-1-4503-0155-8. doi: http
://doi.acm.org/10.1145/1810931.1810939. URL http://doi.acm

.org/10.1145/1810931.1810939.

http://www.w3.org/community/ostatus/wiki/images/9/93/OStatus_1.0_Draft_2.pdf
http://www.w3.org/community/ostatus/wiki/images/9/93/OStatus_1.0_Draft_2.pdf
http://dblp.uni-trier.de/db/conf/www/www2003p.html#QuanBK03
http://dblp.uni-trier.de/db/conf/www/www2003p.html#QuanBK03
http://www.w3.org/TR/vocab-org/
http://ceur-ws.org/Vol-538/ldow2009_paper5.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper5.pdf
http://d-cent.org/fsw2011/wp-content/uploads/fsw2011-A-Federated-Social-Web-for-Peace.pdf
http://d-cent.org/fsw2011/wp-content/uploads/fsw2011-A-Federated-Social-Web-for-Peace.pdf
https://tools.ietf.org/html/rfc3920
https://tools.ietf.org/html/rfc3920
http://www.cs.univie.ac.at/upload//223/papers/2009/ubicc2009-schandl.pdf
http://www.cs.univie.ac.at/upload//223/papers/2009/ubicc2009-schandl.pdf
http://www.w3.org/TR/rdf11-primer/
http://data.semanticweb.org/conference/eswc/2010/paper/social_web/6
http://data.semanticweb.org/conference/eswc/2010/paper/social_web/6
http://doi.acm.org/10.1145/1810931.1810939
http://doi.acm.org/10.1145/1810931.1810939

bibliography 133

N. Shadbolt, T. Berners-Lee, and W. Hall. The Semantic Web Revisited.
IEEE Intelligent Systems, 21(3):96–101, May 2006. URL http://dl

.acm.org/citation.cfm?id=1155373.

S. B. Shum, D. D. Roure, M. Eisenstadt, N. Shadbolt, and A. Tate.
CoAKTinG: Collaborative Advanced Knowledge Technologies in
the Grid. In Proc. of 2. Workshop on Adv. Collab. Env. at the HPDC-
11, 2002. URL http://www.bib.ecs.soton.ac.uk/data/7480/pdf

/CoAKTinG-WACE2002.pdf.

D. Sonntag, R. Engel, G. Herzog, A. Pfalzgraf, N. Pfleger, M. Romanelli,
and N. Reithinger. SmartWeb Handheld – Multimodal Interaction
with Ontological Knowledge Bases and Semantic Web Services.
In Artifical Intelligence for Human Computing – ICMI 2006 and IJCAI
2007 International Workshops, Banff, Canada, November 3, 2006 Hyder-
abad, India, January 6, 2007 Revised Selected Papers, volume 4451 of
LNCS, 2007. ISBN 978-3-540-72346-2. URL http://www.dfki.de

/~romanell/ijcai07-sw.pdf.

M. Sporny, G. Kellogg, and M. Lanthaler. JSON-LD 1.0: A JSON-based
Serialization for Linked Data. Recommendation, W3C, Feb. 2014.
URL http://www.w3.org/TR/json-ld/.

H. Story, B. Harbulot, I. Jacobi, and M. Jones. FOAF+SSL: RESTful
Authentication for the Social Web. In Proceedings of the 1st Workshop
on Trust and Privacy on the Social and Semantic Web (SPOT2009), 2009.
URL http://CEUR-WS.org/Vol-447/paper5.pdf.

H. Story, S. Corlosquet, and A. Sambra. WebID-TLS – WebID Au-
thentication over TLS. Editor’s Draft, W3C, July 2013. URL https

://dvcs.w3.org/hg/WebID/raw-file/tip/spec/tls-respec.html.

A. D. Thurston. DSNP: Distributed Social Networking Protocol. Techni-
cal Report, 2011. URL http://www.complang.org/dsnp/spec/dsnp

-spec.pdf.

G. Tummarello, R. Delbru, and E. Oren. Sindice.com: Weaving the
Open Linked Data. In ISWC’07/ASWC’07 Proceedings of the 6th inter-
national The semantic web and 2nd Asian conference on Asian semantic
web conference, volume 4825 of LNCS, pages 552–565, 2007. ISBN
978-3-540-76297-3. URL http://link.springer.com/content/pdf

/10.1007%2F978-3-540-76298-0_40.

R. Wallace. Artificial Intelligence Markup Language (AIML). Working
Draft, A.L.I.C.E. AI Foundation, 2005. URL http://docs.aitools

.org/aiml/spec/WD-aiml-1.0.1-20050218-007.html. 18 February
2005.

M. G. White. What types of social networks exist? Blogpost, 2014.
URL http://socialnetworking.lovetoknow.com/What_Types_of_

Social_Networks_Exist.

http://dl.acm.org/citation.cfm?id=1155373
http://dl.acm.org/citation.cfm?id=1155373
http://www.bib.ecs.soton.ac.uk/data/7480/pdf/CoAKTinG-WACE2002.pdf
http://www.bib.ecs.soton.ac.uk/data/7480/pdf/CoAKTinG-WACE2002.pdf
http://www.dfki.de/~romanell/ijcai07-sw.pdf
http://www.dfki.de/~romanell/ijcai07-sw.pdf
http://www.w3.org/TR/json-ld/
http://CEUR-WS.org/Vol-447/paper5.pdf
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/tls-respec.html
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/tls-respec.html
http://www.complang.org/dsnp/spec/dsnp-spec.pdf
http://www.complang.org/dsnp/spec/dsnp-spec.pdf
http://link.springer.com/content/pdf/10.1007%2F978-3-540-76298-0_40
http://link.springer.com/content/pdf/10.1007%2F978-3-540-76298-0_40
http://docs.aitools.org/aiml/spec/WD-aiml-1.0.1-20050218-007.html
http://docs.aitools.org/aiml/spec/WD-aiml-1.0.1-20050218-007.html
http://socialnetworking.lovetoknow.com/What_Types_of_Social_Networks_Exist
http://socialnetworking.lovetoknow.com/What_Types_of_Social_Networks_Exist

bibliography 134

M. Wilson, A. Russell, D. A. Smith, A. Owens, and M. C. Schraefel.
mSpace Mobile: A Mobile Application for the Semantic Web. In Proc.
of the ISWC 2005 Workshop on End User Semantic Web Interaction,
Galway, Ireland, 2005. URL http://eprints.soton.ac.uk/261101/

1/iswc-final.pdf.

http://eprints.soton.ac.uk/261101/1/iswc-final.pdf
http://eprints.soton.ac.uk/261101/1/iswc-final.pdf

colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino
and Euler type faces (Type 1 PostScript fonts URW Palladio L and FPL
were used). The listings are typeset in Bera Mono, originally developed
by Bitstream, Inc. as “Bitstream Vera”. (Type 1 PostScript fonts were
made available by Malte Rosenau and Ulrich Dirr.)

Beside multiple standard LATEX 2ε packages, this thesis uses a Se-
mantic Web related package called qname113.

The typographic style was inspired by R. Bringhurst as presented
in The Elements of Typographic Style. It is available for LATEX via CTAN

as “classicthesis”.
The custom size of the textblock was calculated using the directions

given by Mr. Bringhurst (pages 26–29 and 175/176). 10 pt Palatino
needs 133.21 pt for the string “abcdefghijklmnopqrstuvwxyz”. This
yields a good line length between 24–26 pc (288–312 pt). Using a
“double square textblock” with a 1:2 ratio this results in a textblock of
312:624 pt (which includes the headline in this design).

Final Version as of November 4, 2014 at 9:18.

113 https://github.com/white-gecko/qname.sty

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/
https://github.com/white-gecko/qname.sty

D E C L A R AT I O N

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne
unzulässige fremde Hilfe angefertigt zu haben. Ich habe keine anderen
als die angeführten Quellen und Hilfsmittel benutzt und sämtliche
Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder
unveröffentlichten Schriften entnommen wurden, und alle Angaben,
die auf mündlichen Auskünften beruhen, als solche kenntlich gemacht.
Ebenfalls sind alle von anderen Personen bereitgestellten Materialien
oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, April 2014

Sebastian Tramp

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	List of Namespaces
	Introduction and Preliminaries
	1 Motivation and Research Questions
	2 Background and State of the Art
	2.1 The Semantic Web
	2.1.1 Resource Description Framework
	2.1.2 Schema and Ontology Languages
	2.1.3 Linked Data
	2.1.4 SPARQL Query Language

	2.2 Social Networks
	2.2.1 Types of Social Network based websites
	2.2.2 Federated and Distributed Social Networks

	3 Structure and Contributions of this Thesis

	Architecture and Protocols
	4 Architectural Overview
	4.1 Basic Design Principles
	4.2 Data Layer
	4.2.1 Resources
	4.2.2 Feeds

	4.3 Protocol Layer
	4.3.1 WebID (protocol)
	4.3.2 Semantic Pingback
	4.3.3 PubSubHubbub

	4.4 Service Layer
	4.5 Application Layer

	5 Semantic Pingback
	5.1 Requirements
	5.2 Overview
	5.3 Client Behavior
	5.4 Server Behavior
	5.4.1 Spam Prevention
	5.4.2 Backlinking
	5.4.3 Provenance Tracking

	6 Access Delegation for the WebID Protocol
	6.1 Requirements
	6.2 Extending WebID for Access Delegation
	6.3 Application Scenarios

	Applications
	7 xOperator – An Instant Messaging Agent
	7.1 Communication Scenarios and Requirements
	7.1.1 Personal Agent
	7.1.2 Group Agent
	7.1.3 Agent Network

	7.2 Technical Architecture
	7.2.1 Evaluation of AIML Templates
	7.2.2 Administration and Extension Commands
	7.2.3 XMPP Communication and Behavior

	7.3 Evaluation
	7.4 Related Work

	8 MSSW – A Mobile Client for the Distributed Semantic Social Network
	8.1 Mobile Use Cases and Requirements
	8.1.1 Make new friends
	8.1.2 Be in sync with your social network
	8.1.3 Annotate contacts profiles
	8.1.4 General requirements

	8.2 Implementation of a Mobile Interface
	8.2.1 Android System Integration
	8.2.2 Model Management
	8.2.3 Rules and Data Processing
	8.2.4 User perspective

	8.3 Related Work

	9 OntoWiki – A data wiki with integrated DSSN capabilities
	9.1 Feature Introduction
	9.1.1 Navigation and Visualisation
	9.1.2 Authoring
	9.1.3 Linked Data

	9.2 DSSN Implementation for OntoWiki
	9.2.1 Creating and Updating Data Artefacts
	9.2.2 Maintaining Social Network Connections
	9.2.3 Ignoring Activities and WebIDs
	9.2.4 Generating and Distributing Activities
	9.2.5 Pingback Integration

	Evaluation, Conclusion and Future Work
	10 Evaluation
	10.1 Qualitative Evaluation: Social Web Acid Test
	10.1.1 Social Web Acid Test – Level 0
	10.1.2 Social Web Acid Test – Level 1

	10.2 Quantitative Evaluation: DSSN Performance
	10.2.1 Evaluation Framework Architecture
	10.2.2 Data Generation and Testbed Configuration
	10.2.3 Results and Discussion

	11 Conclusions and Future Work
	11.1 Architecture of a Distributed Semantic Social Network
	11.1.1 The LUCID project
	11.1.2 The xodx project

	11.2 Semantic Pingback
	11.3 Access Delegation
	11.4 xOperator
	11.5 Mobile DSSN Client
	11.6 OntoWiki/DSSN

	Appendix
	A Curriculum Vitæ
	A.1 Community Services
	A.1.1 Organizing Committee
	A.1.2 Research Program Committee
	A.1.3 Reviewing

	A.2 Seminars and Teaching
	A.3 Supervision
	A.3.1 Bachelor
	A.3.2 Master
	A.3.3 Diploma

	Bibliography
	Colophon
	Declaration

