
Scalable Data Integration for Linked Data

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D i s s e R t a t i o n
zur Erlangung des akademischen Grades

DoctoR ReRum NatuRalium
(DR. ReR. nat.)

im Fachgebiet Informatik

vorgelegt von
M. Sc. Informatik Markus Nentwig

geboren am 15. April 1986 in Lutherstadt Wittenberg

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Erhard Rahm (Universität Leipzig)
2. Prof. Dr. Peter Christen (Australian National University)

Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 24.
Juni 2020 mit dem Gesamtprädikat magna cum laude.

Acknowledgments

This dissertation is the result of the past seven years while working as a research
assistant in the Database Group at Leipzig University. For most of this time, my work
was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) in
the LOD Link Discovery project. I would like to thank Prof. Dr. Erhard Rahm for the
opportunity to do all the research that ultimately led to this thesis. Thank you for the
professional support and guidance during my time at the Database Group.

A significant part of the dedication to mywork is due to my colleagues. I would like to
thank all of them for the wonderful time we spent together, the constructive character
of many professional and philosophical discussions as well as the joint activities. In
particular, I would like to thank Prof. Dr. Anika Groß, who has given me the necessary
encouragement atmany points to be able to pursue the ambitious goal of this dissertation.
Further thanks goes to Martin Junghanns and André Petermann, who influenced my
thematic direction towards distributed processing on graph data structures. I would also
like to thank Victor Christen and Alieh Saeedi for the inspiring discussions on research
topics and the feedback on my dissertation. Another thank you goes to our secretary
Andrea Hesse, who besides her actual work always made sure that there is a nice social
atmosphere in the working group.

I owe special thanks to my parents Ursula and Peter Nentwig as well as my sisters
Susi and Juliane and my brother Johannes – who always lovingly supported me. Last
but not least, a huge thank you goes to Josephine Rast for the effort in proofreading, all
the little things that brightened up my day, and her good sense when I need a little extra
pressure to get ahead. Certainly that includes our son Moritz, who also gave me a lot of
strength to finish the work.

Leipzig, 18. Dezember 2019 Markus Nentwig

v

Abstract

Linked Data describes an extensive set of structured but heterogeneous data sources
where entities are connected by formal semantic descriptions. In the vision of the Se-
mantic Web, these semantic links are extended towards the World Wide Web to provide
as much machine-readable data as possible for search queries. The resulting connec-
tions allow an automatic evaluation to find new insights into the data. The Semantic
Web benefits from the use of standardized web technologies and semantic vocabularies
such as ontologies to allow computer systems to associate data from different sources.
Identifying these semantic connections between two data sources with automatic ap-
proaches is called link discovery. We derive common requirements and a generic link
discovery workflow based on similarities between entity properties and associated prop-
erties of ontology concepts. Many link discovery approaches with extensive techniques
have been proposed to determine links between two sources. But most of the previ-
ous approaches disregard the fact that in times of Big Data, an increasing volume of data
sources poses new demands on link discovery. In particular, the problem of complex and
time-consuming link determination escalates with an increasing number of intersecting
data sources. To overcome the restriction of pairwise linking of entities, holistic clus-
tering approaches are needed to link equivalent entities of multiple data sources to con-
struct integrated knowledge bases. In this context, the focus on efficiency and scalability
is essential. For example, reusing existing links or background information can help to
avoid redundant calculations. However, when dealing with multiple data sources, addi-
tional data quality problems must also be dealt with. This dissertation addresses these
comprehensive challenges by designing holistic linking and clustering approaches that
enable reuse of existing links. At first, the LinkLion portal will be introduced to provide
existing links for new applications. These links act as a basis for a physical data inte-
gration process to create a unified representation for equivalent entities from many data
sources. Unlike previous systems, we execute the complete data integration workflow
via a distributed processing system.

The development of the LinkLion platform permits numerous link discovery frame-
works to manage calculated or inferred links and make them available for reuse. The
easy-to-use web portal allows the upload of new links for arbitrary semantic relations
as well as the addition and maintenance of provenance information. Moreover, the links

vii

between knowledge bases can be accessed via open interfaces such as a SPARQL end-
point in any other application. We then propose a holistic clustering approach to form
consolidated clusters for same real-world entities frommany different sources. The reuse
of existing links from the LinkLion repository reduces unnecessary entity comparisons.
At the same time, we exploit the semantic type of entities to improve the quality of the
result. The process identifies errors in existing links and can find numerous additional
links. A preliminary evaluation of geographic real-world Linked Data shows the effec-
tiveness of the approach. Additionally, the entity clustering has to react to the high
dynamics of the data. In particular, this requires scalable approaches for continuously
growing data sources with many entities as well as additional new sources. Previous
entity clustering approaches are mostly static, focusing on the one-time linking and clus-
tering of entities from few sources. Therefore, we propose and evaluate new approaches
for incremental entity clustering that supports the continuous addition of new entities
and data sources. A detailed performance evaluation with real and synthetically cus-
tomized datasets shows the effectiveness and scalability of the incremental clustering
approaches.

To cope with the ever-increasing number of Linked Data sources, efficient and scal-
able methods based on distributed processing systems are required. Thus we propose
distributed holistic approaches to link many data sources based on a clustering of enti-
ties that represent the same real-world object. The implementation is realized on Apache
Flink. In contrast to previous approaches, we utilize efficiency-enhancing optimizations
for both distributed static and dynamic clustering. This includes the use of blocking
strategies to reduce the search space. A compact representation of the clusters by fused
representatives allows a further reduction of unnecessary comparisons. Also, the ap-
proach detects errors in existing links and many new links. The extensive evaluation of
the distributed clustering strategies shows high effectiveness for datasets from multiple
domains as well as scalability on a multi-machine Apache Flink cluster. Furthermore, a
comprehensive comparative evaluation of various general-purpose and specialized dis-
tributed clustering approaches is performed considering both match quality as well as
scalability for a varying number of machines and data sizes.

Overall, the presented holistic clustering approaches produce results of high quality
and are scalable for large sets of entities and sources. The approaches allow for intercon-
necting entities from multiple Linked Data sources while providing a compact reusable
representation to build consolidated knowledge graphs. The solution enables a holistic
data integration that serves interesting applications and analytics based on the combi-
nation of data from a variety of Linked Data sources.

viii

Contents

AcKnowledgments v

AbstRact vii

List of FiguRes xi

List of Tables xvi

I Foundations 1

1 IntRoduction 3
1.1 Motivation . 3
1.2 Scientific Contributions . 11
1.3 Structure of Thesis . 13

2 BacKgRound 15
2.1 Semantic Web . 15
2.2 Data Model . 27

3 LinK DiscoveRy 33
3.1 Problem Definition . 34
3.2 Requirements . 35
3.3 Generalized Workflow . 36
3.4 Comparison of Frameworks . 40
3.5 Conclusion and Distinction to this Thesis 45

II Reuse of Link Discovery Results and Clustering Strategies 47

4 LinKLion: A LinK RepositoRy foR the Web of Data 49
4.1 Motivation . 49
4.2 Implementation . 50
4.3 Use Cases . 52

ix

CONTENTS

4.4 Conclusion . 55

5 Holistic Entity ClusteRing foR LinKed Data 57
5.1 Motivation . 57
5.2 Problem statement . 60
5.3 Holistic clustering based on existing links 60
5.4 Evaluation . 66
5.5 Related Work . 69
5.6 Conclusion . 71

6 IncRemental ClusteRing on LinKed Data 73
6.1 Motivation . 73
6.2 Problem definition . 75
6.3 Incremental Clustering Approach . 76
6.4 Evaluation . 79
6.5 Related Work . 85
6.6 Conclusion . 85

III Parallelization of Clustering Strategies 87

7 IntRoduction to DistRibuted Data PRocessing 89
7.1 Background and Basic Concepts . 89
7.2 State of the Art . 91

8 DistRibuted ClusteRing StRategies 97
8.1 Motivation . 97
8.2 Problem Statement . 99
8.3 Distributed SplitMerge Clustering . 100
8.4 Distributed Incremental Clustering . 103
8.5 Evaluation . 104
8.6 Related Work . 115
8.7 Conclusion . 116

9 CompaRative Evaluation of ClusteRing Methods 119
9.1 Motivation . 119
9.2 Problem Statement . 121
9.3 Similarity Graph Generation . 123
9.4 Clustering approaches . 124

x

CONTENTS

9.5 Related Work . 131
9.6 Evaluation . 132
9.7 Conclusion . 138

IV Conclusion and Outlook 139

10 Conclusion and OutlooK 141
10.1 Conclusion . 141
10.2 Outlook . 144

BibliogRaphy 149

xi

CONTENTS

xii

List of Figures

1.1 General workflow for physical data integration. 5
1.2 General link discovery workflow. 7

2.1 Linked Open Data cloud. 17
2.2 W3C Semantic Web technology stack. 19
2.3 Example for RDF Triple. 21
2.4 Overview on provenance vocabulary PROV. 25
2.5 Linked Data life cycle. 27
2.6 RDF statements transferred to graphical representation of data model. . . 31
2.7 Clustered representation with unified property values. 31

3.1 General workflow link discovery frameworks. 37

4.1 LinkLion frontend and backend architecture. 51
4.2 Overview of the LinkLion ontology. 52
4.3 LinkLion homepage with statistics regarding the content. 53
4.4 LinkLion frontend view mapping browser. 53

5.1 Application of the holistic SplitMerge clustering to the running example. 62
5.2 Dataset structures for ED1 and ED2 with number of entities and links. . 67

6.1 Incremental update of entity clusters, e. g., in knowledge graphs. 74
6.2 Cluster scenarios for base and source-specific incremental approaches. . 77

8.1 Running example for distributed SplitMerge clustering workflow. 100
8.2 Sub-workflowswith operators for type-based grouping (a) and similarity-

based refinement (b). 101
8.3 Sequence of transformations for the cluster merge using Flink DeltaIter-

ation. 102
8.4 Exemplary dataset structures with number of entities and links. 106
8.5 Visualization of an incorrect cluster for two different settlements. 107
8.6 SplitMerge execution times and speedup for single workflow phases and

total workflow. 111

xiii

LIST OF FIGURES

8.7 Precision, recall and F-measure for incremental clustering. 113
8.8 Incremental clustering execution times in seconds and speedup. 115

9.1 Workflow overview for multi-source clustering in the FAMER system. . . 121
9.2 Clustering phases showing generated similarity graph and perfect clus-

tering result for example entities. 124
9.3 Running example processed with SplitMerge clustering. 127
9.4 Running example processed with CLIP clustering. 131
9.5 Match quality of selected clustering approaches. 135
9.6 Speedup for varying cluster sizes (number of workers 4, 8 and 16). 138

xiv

List of Tables

1.1 Person entities for challenges in data integration. 4

2.1 SPARQL query forms according to general syntax. 23
2.2 Resulting table for example SELECT SPARQL query. 24
2.3 Mapping of URIs for entities and consecutive determined IDs. 29

3.1 Compared link discovery frameworks. 41
3.2 Characteristics of link discovery frameworks. 43

5.1 Sample geographical entities to show holistic entity clustering. 59
5.2 Cluster sizes in workflow phases for evaluation datasets. 68
5.3 Cluster accuracy for a sample of result clusters in datasets. 68

6.1 General information for evaluation datasets. 80
6.2 Overview of perfect cluster sizes and best configuration values. 80
6.3 Blocking and similarity functions used for incremental clustering. 81
6.4 Effect of data source ordering for DS-G1. 83
6.5 Incremental compared to static clustering. 84

7.1 Exemplary dataset transformation operations used in general-purpose
distributed processing systems, e. g., for Apache Flink. 92

8.1 Overview of evaluation datasets for distributed clustering. 105
8.3 SplitMerge evaluation of cluster quality for geography dataset. 109
8.4 SplitMerge evaluation of cluster quality for music dataset. 110
8.5 Incremental clustering runtime (s) for different blocking key (bk) lengths

and tmin values (16 workers). 114
8.6 Runtimes for single steps with source-specific incremental clustering. . . 114

9.1 Sample person entities to show problems for clustering approaches. . . . 122
9.2 Blocking keys. 122
9.3 Properties of the utilized datasets. 132
9.4 Default blocking and match configuration for different datasets. 133
9.5 Runtimes for all clustering schemes. 137

xv

Part I

Foundations

1

1
Introduction

This opening chapter discusses the background to relevant subjects and gives an out-
line for the structure of the dissertation. Section 1.1 motivates the topic with an intro-
duction to data integration and the relation towards the Semantic Web as well as the
phenomenon of Big Data. Requirements are derived from the identified challenges to
perform scalable data integration for Linked Data. On this basis, scientific contributions
are specified in Section 1.2. Finally, Section 1.3 gives an overview of the remaining work.

1.1 Motivation

Global corporations like Google, Microsoft or IBM make investments to create substan-
tial knowledge bases and to integrate information from many different data sources [46,
59, 196]. One motivating example is IBM Watson, a question-answering system to sup-
port human experts in specialized tasks using many interconnected data sources [59].
These sources include dictionaries, encyclopedias and literary writings, which are be-
ing enriched with additional semantic descriptions. A commonly known use case for
Watson is the successful challenge of human experts in the “Jeopardy!” show. Besides
other applications, Watson is also applied to health care scenarios, e. g., supporting the
discovery of novel therapeutics [29]. Search engines are another example of combin-
ing information from different sources, in this case, to provide answers to complex user
queries. By detecting the semantic context of the query, the quality of the results can be
improved by presenting relevant additional information. A search query for a current
movie results in the expected list-based outcome. But in addition, the user is also in-

3

CHAPTER 1. INTRODUCTION

formed of nearby showtimes, movie ratings and background information on the actors.
The basic principle for both examples is the combination of knowledge from different
data sources to derive additional information for users. Within the healthcare use case,
IBM Watson includes data sources covering patents, genes, drugs, chemical compounds
and published studies; for themovie use case, search engines pairWikipedia information
with movie rating pages, and location information enables the search engine provider to
show nearest screenings for the requested movie.

1.1.1 Data IntegRation

eq
ui
va

le
nc

e
re
la
tio

n

This consolidation of knowledge from different data sources to find additional insights
is summarized under the term data integration [114]. Starting in the 1980s, the idea of
integrating databases emerged with the need for querying data located on physically
isolated computer systems [173]. The data distribution typically leads to increased au-
tonomy and heterogeneity of the data sources, which generates problems for data in-
tegration [43, 115]. The autonomy of a data source describes its dependence on other
sources. A high degree of autonomy enables the possibility of structuring the contained

Table 1.1: Person entities from two data sources with challenges for data integration, e. g., missing,
wrong or misspelled values (Leibntz instead of Leibniz, Stagira (Greece) instead of Leipzig

(Germany)), semantic ambiguities on instance and schema level. Arrows indicate entities
representing equivalent objects.

(a) Example person entities in source A.

ID name surname birthPlace type

A1 Gottfried Wilhelm Leibniz Leipzig (Germany) person
A2 Friedrich Leibniz - person

…

(b) Example person entities in source B.

ID label place_of_birth type

B0 Gottfried W. Leibntz Stagira (Greece) philosopher
B1 Friedich Leibniz Leipzig (Germany) philosopher
B2 Aristotle - philosopher

…

4

1.1. MOTIVATION

Data Trans-
formation

Schema
Matching

Data
Matching Data Fusion

Figure 1.1: General workflow for physical data integration.

data individually. The downside of this individuality is increased heterogeneity between
data sources, for example, by using different data models or technical requirements. The
need for data integration for heterogeneous data sources causes plenty of problems. We
illustrate some of these problems in Table 1.1 based on person entities for data sources
A and B. Thus, we show data quality problems, such as inconsistent or misspelled data
entries as well as general heterogeneity problems [158].

When creating workflows to integrate data from multiple data sources, two basic ap-
proaches are distinguished. Physical data integration focuses on combining data from
different sources to establish a new representation, e. g., the creation of data warehouses
or knowledge graphs. Alternatively, virtual data integration retrieves the required data
from the sources and combines them at runtime as required, e. g., for federated query
processing [43, 155]. Typical use cases for the integration of a large number of data
sources frequently rely on physical data integration [155]. This integration primarily
takes place at the instance level, for example, by matching or clustering entities from
different data sources.

In this work, we use a physical data integration approach to create an integrated
knowledge representation [45, 155]. The central components of the workflow are data
transformation, schema matching, data matching and data fusion (see Figure 1.1). In the
first place, there is a data transformation (or data preprocessing) process to extract rele-
vant data from multiple data sources [31, 44]. In preparation for subsequent steps, data
quality problems are resolved at this point by applying data cleaning approaches [158].
Schema matching is the following process to discover identical structural entities for
multiple, heterogeneous data sources (see [157] for a survey). For example, the column
names from Table 1.1a can be mapped to their equivalent in Table 1.1b, such as (ID↔
ID), (name + surname↔ label) and so on. After integrating the schema information, the
actual records from the data sources are aligned in a process called data matching (also
instance matching or entity resolution) to find equal real-world entities and to classify
them accordingly [31]. The correct alignment of entities generally involves the compar-
ison of relevant attribute values; in Table 1.1, this leads to the matching entities (A1↔
B0) and (A2↔ B1). The final task of data fusion merges matching entities into a single
and unified entity representation [31].

5

CHAPTER 1. INTRODUCTION

1.1.2 Semantic Web

The complex problem of data integration has been of interest to researchers for many
decades. In other research areas, data is also combined using data integration processes
(e. g., see Figure 1.1). In this section, we show the application of the data integration
process to support the development of the Semantic Web – a supplement to the existing
World Wide Web.

One of the main reasons for the success of the World Wide Web in the 1990s is the
usage of hyperlinks to connect web documents. Additional structured features for web
documents (metadata), such as information on authorship as well as technical informa-
tion like date of creation or expiry date, have always been an integral part of theWeb [14].
Through the use of new technologies and the establishment of standards, theWorldWide
Web has since been continually adapted to the changing requirements and needs of users.
Instead of static websites, dynamic content is used. Search engines have replaced web
directories for a long time, and communication and collaboration take place in social
networks and online encyclopedias. Both consumed as well as produced data have be-
come more and more heterogeneous and extensive, such as text, sound and video data
from interconnected devices. To counter this increased complexity and as a complement
to the classical Web of Documents, the Web of Data (also Semantic Web) was initiated
by the W3C to annotate data with useful metadata and make it machine-readable [187].
Corresponding description languages such as RDF, XML or OWL aim at ensuring that
semantic connections can be derived from the data and that data can be linked together.

Data published in compliancewith SemanticWeb specifications, such asmachine read-
ability and use of open formats, is referred to as Linked Data [19]. If the data is also
available under the public domain or an open license [150], the term Linked Open Data
is common. To realize the principles of Linked Data, adding links to data sources is fun-
damental. Links are semantic relations that can be identified across entities, e. g., equiva-
lence or part-of relationship. These links can exist both within data sources and between
different data sources. The visualization of the resulting interlinked data sources results
in a graph structure – the Linked Open Data Cloud1. By focusing on the links between
the data sources, themain objective of Linked Data is pointed out. New links between en-
tities are intended to make information more accessible across data sources. Compared
to data matching, where equivalence between objects is typically determined, Linked
Data supports arbitrary semantic relations. Searching for these semantic relations is
called link discovery. Link discovery focuses on the creation of binary links between
two data sources with efficient and effective methods (see [132] for a survey).

1Linked Open Data Cloud https://lod-cloud.net/

6

https://lod-cloud.net/

1.1. MOTIVATION

Preprocessing
(Configuration,
Data Cleaning,

Runtime
Optimization)

Matching
(Pairwise

Comparison)

Postprocessing
(Classification)

Figure 1.2: General link discovery workflow.

Ageneralizedworkflow for link discoverywith the three typical components is shown
in Figure 1.2. Preprocessing handles data problems before the matching step. The con-
figuration specifies which attributes should be compared in the matching step. Good
data quality helps to achieve good matching results; therefore, the use of data cleaning
methods can be useful [158]. Runtime optimization is the critical step in preprocessing.
The aim is to avoid as many comparisons between dissimilar entities as possible, e. g.,
by applying filtering or blocking methods [31, 156]. Filtering relies on early pruning of
dissimilar entities, e. g., by using indices. In contrast, blocking splits the data into several
partitions and compares all entities within these partitions. Thematching step performs
the pairwise comparison of the entities based on the defined configuration. More elab-
orate configurations can also define how different attribute similarities are combined.
This may be necessary if individual attributes are not sufficient for a distinction. The
similarity values from the matching step are used as decision support for a classification
problem. This classification is part of the postprocessing, along with an optional refine-
ment of the results. For example, to achieve high quality, a classification can include that
threshold values for similarities must be exceeded. The resulting set of links, according
to the semantic relation, forms a so-called mapping.

These mappings can either be integrated into existing knowledge bases or made avail-
able for further use in portals, such as Datahub2 or BioPortal3. Thus, existing links can
be reused as an essential basis for data matching to avoid time-consuming complete re-
computations. Link portals can also store additional provenance information related to
mappings. Using meta information, such as creation date or matching strategy, can help
identify falsely created links as well as inconsistent data. As the number of data sources
in the Web of Data increases, high connectivity between the data sources becomes more
laborious. Therefore, new sources calculate links to selected Linked Data sources. As a
result, some data sources are only indirectly connected. By reusing links, equivalent en-
tities over multiple data sources can be discovered despite the indirect connection [76].

2Datahub platform https://datahub.io/
3BioPortal platform https://bioportal.bioontology.org/

7

https://datahub.io/
https://bioportal.bioontology.org/

CHAPTER 1. INTRODUCTION

To enable the physical integration of entities into knowledge graphs, the determina-
tion of binary links from the link discovery is not sufficient. Instead of mappings with bi-
nary links, related entities can be clustered as an alternative result representation. These
clusters can then combine the information of the contained entities as a form of physi-
cal data integration (data fusion). The link discovery should therefore be complemented
by a clustering process that simplifies the creation of integrated knowledge bases for
multiple data sources. After the creation of clusters, particularly large clusters point to
well-linked entities. The information given by these consolidated clusters can thus be
significant for further analysis or improvement of quality.

1.1.3 Big Data
Data integration plays a vital role in many research areas, including the Semantic Web.
Due to semantic links, the addressing of heterogeneity between data sources becomes
increasingly relevant. With the current trend towards digitization in many areas of life,
it is possible to link many more data sources. Interlinked data sources promise new op-
portunities for data analysis and decision making. For this purpose, ever-larger amounts
of heterogeneous data are accumulated and often summarized under the term Big Data.
A description of the ”V” dimensions of Big Data clarifies the differences to previous data
storage, processing and analysis [45]. This leads to the introduction of methods and
techniques to perform data integration tasks on Big Data.

A study by the market research company IDC in 2018 [160] shows that data growth
continues to increase strongly. The worldwide data volume increased from less than
5 ZB4 in 2012 to already 33 ZB in 2019. By 2025, according to estimates, 175 ZB must
be stored and made usable. Thus, the ability to handle massively growing amounts of
data (volume) in both individual source systems and across a vast number of systems
is a significant task. Since many new data-generating systems produce unstructured
data, the inherent heterogeneity (variety) also increases. With the term velocity, both
the increased speed of data generation as well as the increased speed of data processing
is described. Veracity is the fourth component often used to describe Big Data, along
with volume, variety, and velocity. It describes the necessity to ensure the quality of the
data as much as possible and is directly related to the three V’s mentioned above [197].
Achieving high data quality is a complex task [158], even more with an increasing num-
ber of heterogeneous data sources that are subject to continuous change.

Various frameworks in the Big Data ecosystem improve the handling of enormous
amounts of data. In this context, Apache Hadoop5 and the associated platform was a

41 ZB (Zettabyte)= 1× 109 TB (Terabyte).
5Apache Hadoop https://hadoop.apache.org/

8

https://hadoop.apache.org/

1.1. MOTIVATION

significant development. Hadoop implements the programming model MapReduce [39],
which enables the distributed execution of algorithms on large amounts of data. The
functions Map and Reduce allow the expression of user-defined program logic. Map cre-
ates key/value pairs using the data values on each partition, which are then aggregated
according to the resp. key using the Reduce function. Besides the MapReduce implemen-
tation, the Hadoop framework contains a collection of open-source software libraries,
such as HDFS or YARN, to simplify the storage and processing of Big Data. Hadoop ab-
stracts all details of data distribution and load balancing in complex computations and
ensures reliable execution even in the event of hardware errors. The free availability of
the software means that all relevant cloud providers offer Hadoop solutions for execut-
ing compute- and data-intensive workflows on computer systems of any size. However,
disadvantages of MapReduce, such as the materialization of intermediate results [112],
led to the development of new distributed processing systems. These systems are either
specialized for applications like data warehousing or data analytics, or general-purpose
processing platforms with additional support for, e. g., stream processing or graph pro-
cessing. For the latter, Apache Spark [194] and Apache Flink [27] are relevant systems
to enable the execution of arbitrary user-defined programs.

1.1.4 CHallenges and ReiRements

The thematically broad introduction outlines the need for optimized data integration
processes for Linked Data. The processing and analysis of growing amounts of heteroge-
neous data can benefit from findings and techniques of the Big Data environment. Con-
sequently, this dissertation deals with solutions for the integration of different Linked
Data sources using Big Data technologies.

A central component of many data integration processes is data matching, which iden-
tifies equivalent entities between data sources. For Linked Data, link discovery can be
used to determine equivalence relations as well as any other semantic relations. The
determination of new links is of central importance for Linked Data and many other
applications in the Semantic Web. For this reason, this thesis focuses on the application
of Big Data frameworks to make the link discovery process more efficient and effective.
At the same time, we investigate how Big Data frameworks can be used beyond link
discovery for the associated data integration tasks. Due to the preliminary discussion,
the following important requirements for data integration in the Semantic Web should
be adhered to.

Reuse of Existing Data Matching Results A major strength of the Semantic Web is
the existence of semantic links between data sources. These links can be valuable

9

CHAPTER 1. INTRODUCTION

for data integration in general and data matching in particular. Approaches for
determining new links should therefore offer methods that support the reuse of
existing links. For example, the transitivity of indirectly linked entities can be used
to determine new links. The benefit of reuse-based methods should be evaluated
based on qualitative metrics.

To enable the reuse of links in the first place, the availability of links must be
increased. Public data portals should be used to allow researchers to exchange re-
sults. Provenance information related to the creation process, such as date, meth-
ods used, and resulting similarity values, should also be stored. Thus, the origin
of links can be used in future linking processes, e. g., by inferring new statements
from existing data with logical reasoning.

Holistic Clustering and Support for Dynamic Data Sources Previous link discov-
ery approaches mostly perform pairwise comparisons of data sources. When en-
tities from multiple data sources are compared, the number of comparisons rises
significantly. Consequently, there is a strong need for efficient and effective holis-
tic approaches to link multiple data sources. For this purpose, methods should
combine attribute values of equivalent entities from different data sources. The
aim is to create a holistic cluster with unified attributes that can be enriched with
metadata from the data sources. The cluster representation gives the possibility for
central maintenance for each real-world object. Also, the reuse of existing links
should be possible for holistic methods. This makes it possible to use attribute
values as well as semantic types to remove incorrect links and to determine links
that have been missing so far.

Furthermore, approaches should offer a convenient way to add new entities or data
sources to existing clustered results. Thus, a continuous adjustment of dynamic
data sources should be made possible without the need to recalculate all mappings
between sources.

Scalable and Distributed Processing of Data Integration Workflows Thescalabil-
ity of linking approaches becomes an important problemwith the increasing num-
ber of data sources and entities per source. For an efficient data integration process
that is scalable to large amounts of data, two conditions have to be satisfied. First,
by using Big Data frameworks, computation workload can be distributed on a clus-
ter of machines for parallel processing. These distributed processing frameworks
should be used to perform efficient linking and clustering. Secondly, runtime op-
timizations should be implemented to limit the number of comparisons between

10

1.2. SCIENTIFIC CONTRIBUTIONS

dissimilar entities. The partitioning of the data into disjoint blocks results in syn-
ergy effects combined with the distributed processing framework. These effects
should be used within the linking and clustering approaches.

1.2 Scientific ContRibutions

The initial analysis of challenges for data integration within Linked Data led to the fol-
lowing scientific contributions. All contributions are both peer-reviewed and published
in journals or proceedings of conferences resp. workshops.

Comparison of Current Link Discovery Approaches State-of-the-art link discov-
ery systems are categorized by common requirements such as effectiveness and
efficiency to assess strengths andweaknesses. Based on these findings, we derive a
generic architecture for the link discovery process. The background for this analy-
sis is a survey article accepted for publication in the Semantic Web Journal in 2015
and then published in 2017 [132]. In the context of this dissertation, a limitation
to four tools takes place to represent a current state of development. For these
tools, an overview of functional features is provided, e. g., configuration approach,
runtime optimization and support for parallel processing.

Platform for Reuse of Links and Provenance The free and open-source web portal
LinkLion increases the visibility for link discovery results and enables researchers
to share computed mappings. Alternatively, existing mappings can be reused and
analyzed. Ontology vocabulary is used to facilitate the handling of provenance in-
formation. For new mappings, researchers can add information such as the used
algorithm and link discovery system. Besides viewing links, mappings and meta-
data on the portal relevant data can be acquired by querying via SPARQL or REST
API, or directly by downloading the raw files. The web portal and its functionality
were presented in a practical demonstration at the ESWC 2014 and published as
part of the corresponding conference proceedings [134].

Holistic Entity Clustering Link discovery approaches typically compare entities from
two data sources. When integrating many data sources, this process is difficult to
apply, thus limiting the scalability of link discovery. We therefore propose Split-
Merge as a holistic approach for linking many data sources to integrate equiva-
lent real-world objects into clusters. By efficiently using existing match results,
new links can be found while correcting erroneous links at the same time. The

11

CHAPTER 1. INTRODUCTION

approach was accepted for presentation at the DINA workshop in 2016 and subse-
quently published as part of the ICDM 2016 workshop proceedings [131].

Distributed Clustering for Linked Data Theparallel execution of linking workflows
promises increased effectiveness using state-of-the-art Big Data frameworks. For
this reason, we propose an implementation of the holistic entity clustering on the
distributed processing system Apache Flink and show the scalability of the ap-
proach. The implementation shows that efficiency can be further increased by
blocking strategies, compliance with consistency rules and exploitation of data
properties. The presentation of the approach took place at the ODBASE confer-
ence in 2017 and was published in the respective conference proceedings of the
OTM 2017 [130].

Comparative Evaluation of Scalable Clustering Approaches Integratingmany da-
ta sources to create clustered objects is especially challenging for Big Data appli-
cations. For this reason, we compare various clustering approaches for Apache
Flink, which use holistic methods to combine entities from different data sources.
A uniform workflow allows a comparative evaluation of the presented approaches
across different domains. The journal article was published in CSIMQ in 2017 [162].

Incremental Entity Clustering For the handling of dynamically growing LinkedData
sources, we present clustering methods for the incremental extension of existing
knowledge bases without completely recalculating the results. The clustering can
manage completely new data sources as well as new entities frommultiple sources.
As a result, entities can be added to existing clusters or form new clusters. To
achieve scalability for large amounts of data, the distributed data processing sys-
tem Apache Flink abstracts the actual parallelization. A comparison with current
static clustering methods complements the study on incremental clustering. Eval-
uation results show scalability and high quality of the resulting clusters for dif-
ferent domains. The incremental clustering concept was presented at the DINA
workshop in 2018 and published in the ICDM workshop proceedings [133].

Resulting Software Systems and Open Source Implementations The approaches
for holistic and incremental clustering are combined into a single data integration
system for multiple Linked Data sources. In addition to the central data matching
step with link discovery and clustering, preprocessing (data cleaning) and post-
processing (data fusion) is also performed. All work steps of the data integration
process are performed in the distributed processing system Apache Flink.

12

1.3. STRUCTURE OF THESIS

All implementations of the proposed approaches in this dissertation are available
as open-source software on GitHub, e. g., the techniques for scalable holistic and
incremental entity clustering6 and the LinkLion repository7. In addition, the Link-
Lion web portal is available for the reuse of link discovery results8.

1.3 StRuctuRe of THesis

This dissertation consists of three main parts. The introductory Part I contains two fur-
ther chapters:

Chapter 2 gives an introduction to the topic of Semantic Web. For this purpose, the
most important topical areas and the corresponding technical structure are pre-
sented, which are used to implement applications and research activities. With
these technological basics, the data model is defined for application in the further
course of the work.

Chapter 3 places a special focus on the topic of link discovery as a central element of
the Semantic Web to pursue the idea of Linked Data. Based on the requirements
for a reliable link discovery process, we present a generalized workflow. Finally,
the comparison of relevant approaches for link discovery is carried out.

Part II – Reuse of Link Discovery Results and Clustering Strategies – presents strategies
to increase the efficiency and effectiveness of link discovery procedures.

Chapter 4 describes the LinkLion data portal for storing and maintaining link discov-
ery results. The published data can be enriched with provenance information to
enable continued analysis on the links. The permanent online access allows the
use of the built-in Linked Data browser as well as SPARQL queries and download
of raw data.

Chapter 5 presents a holistic approach for clustering entities from many data sources.
Additional relationships between entities can be identified and at the same time
erroneous data can be detected. In detail, clusters are refined by split and merge
operations. The evaluation uses a real dataset from the geographical domain.

6GitHub Clustering https://github.com/freeclimbing/mapping-analysis
7GitHub LinkLion https://github.com/AKSW/LinkLion
8LinkLion Portal http://www.linklion.org/portal/

13

https://github.com/freeclimbing/mapping-analysis
https://github.com/AKSW/LinkLion
http://www.linklion.org/portal/

CHAPTER 1. INTRODUCTION

Chapter 6 complements holistic clustering with two incremental approaches to pro-
cess dynamically changing data sources. The approaches distinguishes a set-based
method for adding entities from different sources and a source-specific method. In
addition to a comparison of the incremental methods, an evaluation against typical
static clustering approaches is carried out.

Part III deals with the Parallelization of Clustering Strategies.

Chapter 7 begins with a brief outline of the development of distributed data processing
frameworks to capture basic concepts. These lead to a detailed discussion of state
of the art and it’s derived features. For the following chapters, the distributed pro-
cessing framework Apache Flink is used due to good support for graph algorithms
and iterative computations.

Chapter 8 deals with distributed data processing to implement the holistic clustering
of multiple data sources on very large datasets. We achieve an efficient cluster de-
termination by applying abstract programming models provided by Apache Flink.
The evaluation shows scalability and high-quality results for datasets from geog-
raphy and music.

Chapter 9 shows that it is possible to compare different clustering strategies on dis-
tributed data processing systems. Due to very large data volumes, this compari-
son is elaborate. The presented FAMER system allows a comparison of approaches
based on a detailed evaluation for datasets of variable size. With this knowledge,
we provide an assessment of the efficiency of the investigated approaches.

The final Part IV – Conclusion and Outlook – then concludes the results of this disserta-
tion and provides an outlook on future work.

14

2
Background

2.1 Semantic Web

As an extension to the Web of Documents, the idea of a Semantic Web was postulated
by Tim Berners-Lee et al. in 2001 [15]. The presented vision shows how computer sys-
tems automatically process Web content to assist users in specific tasks. As an example,
the system sets up doctoral appointments in accordance with the personal calendar and
checks facts for complex questions. In this context, the integration of different, hetero-
geneous knowledge repositories is possible by using semantic data descriptions. As a
result, they make it feasible to show correlations between the data. Since then, stan-
dards for the Semantic Web, such as RDF Schema, RDF, OWL and SPARQL, have been
published and are used for a plethora of applications and research activities [17]1.

2.1.1 Topical Main AReas

The following classification is given by the W3C [85] and shows all relevant areas of
the Semantic Web with the appropriate description. Typically, applications as well as
research activities can be categorized into one or more areas of the classification.

1Extended timeline up to 2016: http://www.dblab.ntua.gr/~bikakis/XML%20and%
20Semantic%20Web%20W3C%20Standards%20Timeline-History.pdf

15

http://www.dblab.ntua.gr/~bikakis/XML%20and%20Semantic%20Web%20W3C%20Standards%20Timeline-History.pdf
http://www.dblab.ntua.gr/~bikakis/XML%20and%20Semantic%20Web%20W3C%20Standards%20Timeline-History.pdf

CHAPTER 2. BACKGROUND

LinKed Data

The idea to linkweb data in away thatmachines can exploit the knowledge automatically
was formulated in 2006 by Berners-Lee [13]. Together with the idea, he outlines four
principles to create the so-called Linked Data based on related “things” – expressing any
real objects like Leipzig2 or abstract concepts like calculus3 [13]:

1. “Use URIs as names for things.”

2. “Use HTTP URIs so that people can look up those names.”

3. “When someone looks up a URI, provide useful information, using the standards
(RDF*, SPARQL).”

4. “Include links to other URIs. so that they can discover more things.”

According to these principles and driven by the idea to interlink data, the Linking
Open Data project [186] promoted the publication of datasets for public use. Up to June
2018, researchers and contributors published 1234 datasets based on the Linked Open
Data principles (see Figure 2.1). The resulting graph is called Linked Open Data Cloud4

and consists of interconnected data sources of different domains such as publications,
life sciences, government or cross-domain. As an example, open government initiatives
improve the availability and usability of governmental and administration data [79] by
providing Open Data platforms567.

VocabulaRies

Vocabularies (also called ontologies) are used to provide a structure for data in the Seman-
tic Web, e. g., to define relationships or properties of objects. According to Gruber [70],
the term ontologies defines a set of basic types of objects to model a knowledge domain,
e. g., classes, their relationships and attributes. Also, the basic types allow logical con-
straints to be added to provide a consistent overall representation.

For this purpose, we give an example from the geographical domain, a route descrip-
tion from one place to another. Diverse classes of objects such as highways, points of
interest or forms of land use togetherwith their properties form an ontology and are used

2DBpedia Leipzig http://dbpedia.org/page/Leipzig
3DBpedia Calculus http://dbpedia.org/page/Calculus
4Linked Open Data Cloud https://lod-cloud.net/
5Open Data platform USA https://www.data.gov/
6Open Data platform UK https://data.gov.uk/
7Open Data platform Germany https://www.govdata.de/

16

http://dbpedia.org/page/Leipzig
http://dbpedia.org/page/Calculus
https://lod-cloud.net/
https://www.data.gov/
https://data.gov.uk/
https://www.govdata.de/

2.1. SEMANTIC WEB

Figure 2.1: Linked Open Data cloud (Source: https://lod-cloud.net/).

to find a suitable route [34]. The classes simplify the route calculation and allow compli-
ance with modeled constraints, such as avoiding residential areas on long distances or
respecting turning restrictions at intersections.

Due to this fundamental modeling, ontologies are essential for the integration of data
sources in the SemanticWeb. The term ontology is partly distinguished from the term vo-
cabulary when a large number of complex interconnected classes are paired with formal
or logical constraints [70, 85]. The integration of knowledge bases in the life sciences is
an example of successful data integration using ontologies. Thus, it is possible to link the
side effects of drugs (e. g., SIDER [111]) to general medical terms (e. g., UMLS [20]). As

17

https://lod-cloud.net/

CHAPTER 2. BACKGROUND

a result, side effects and medical terms can be associated with individual patient data so
that medical staff can obtain additional information for treatment [22, 174]. The ontolo-
gies RDF, RDFS and OWL (details in Section 2.1.2) provide fundamental concepts for the
description of further ontologies, enabling the creation of new vocabularies consistently.

QeRy

Programmatic mechanisms are used to access data in the Semantic Web, which can be
accessed via the SPARQL query language (similar to SQL for relational databases or
XQuery for XML). SPARQL employs RDF vocabulary and variables to find triple patterns.
The combination of queries from several data sources is possible aswell as different result
types, e. g., as table format or as RDF [85]. More details on SPARQL can be found in
the corresponding Section 2.1.2, which describes the components of the Semantic Web
technology stack.

InfeRence

The term inference is strongly connected with the formal modeling that takes place in
ontologies. Resources can implicitly utilize properties based on the affiliation to certain
ontology concepts [85]. For instance, given the ontology concepts ’village’ and ’city’, it
can be derived that both are a sub-concept of ’settlement’. This assignment can be used
to derive further attributes, such as population numbers or the associated country.

This process of deducing new relations from the data is called inference or reasoning.
Logical expressions are defined by an ontology using a formal knowledge representation
language (OWL) or rule-based mechanisms (RIF, see following Section 2.1.2). Depend-
ing on the application, the logical expressions are then evaluated using automatic meth-
ods [159]. Besides the objective of deducing new relations, the verification of logical
integrity is essential. The verification ensures consistency according to logical expres-
sions for existing as well as new data.

VeRtical Applications

Vertical applications describe generic application scenarios that are examined concern-
ing possible purposes and potential problems when using Semantic Web technologies.
Generally, domain-specific technologies from the previously mentioned four areas are
involved. During implementation, the users give detailed feedback to develop seman-
tic technologies further [85]. A positive example of this is “The Health Care and Life

18

2.1. SEMANTIC WEB

Science Interest Group”8. They investigated the usability of Semantic Web technologies
for drug discovery, patient care management and reporting as well as the publication
of scientific knowledge from 2005 to 2018. The results of this interest group have led to
new standards and technologies jointly developed and used by universities and research
companies alike9.

2.1.2 TecHnology StacK

The Semantic Web technology stack (also called layer cake) is illustrated in Figure 2.2. It
integrates relevant technology blocks to form a single model that can be used to imple-
ment semantic user interfaces and applications [85]. The importance of each building
block varies for different areas of application (see previous Section 2.1.1). For instance,
SPARQL is crucial for performing queries on Linked Data, whereas OWL and RIF are
more appropriate for determining logical rules to perform inference. In this section,
relevant technology blocks are discussed in more detail.

Figure 2.2: W3C Semantic Web technology stack, showing how the technology layers build on each
other (Source: [189]).

8The Health Care and Life Science Interest Group https://www.w3.org/2001/sw/hcls/
9W3C Semantic Web Vertical Applications https://www.w3.org/standards/

semanticweb/applications

19

https://www.w3.org/2001/sw/hcls/
https://www.w3.org/standards/semanticweb/applications
https://www.w3.org/standards/semanticweb/applications

CHAPTER 2. BACKGROUND

ResouRce IdentifieRs

Theapplication of unique identifiers allows efficient operations on individual data records.
In relational databases, e. g., a unique candidate key is defined for each table, often an au-
tomatically generated unique number (ID). Instead, the Semantic Web uses existingWeb
standards, namely RFC 3987, to describe Internationalized Resource Identifiers (IRIs) [48].
As an extension to the existing URI standard [12], IRI allows a broader range of charac-
ters from the Unicode character set.

In other respects, IRIs have the same basic characteristics as URIs. Accordingly, the
properties of URIs (Uniform Resource Identifiers) are described hereafter. A generic URI
syntax achieves the Uniformity property with certain mandatory and optional compo-
nents. Using http://dbpedia.org/resource/Leipzig as an example, typ-
ical components are shown without claiming complete representation of the standard:
The schema name ’http’ is followed by the authority ’dbpedia.org’ with the con-
cluding (optional) path ’/resource/Leipzig’. Both URI and IRI describe resources,
which are generally used for arbitrary objects to be described, e. g., electronic documents
and web services to abstract or real-world objects as well as persons. Finally, the identi-
fier describes the property that the URI contains a unique expression to distinguish the
resource from other resources.

ResouRce DescRiption FRamewoRK (RDF)

The Resource Description Framework (RDF) [37] describes an abstract data model to
express information on the Web. The W3C recommendation for RDF describes the de-
sign goals as follows. Based on a simple data model with formal semantics and provable
inference, statements should be possible about any resources. Therefore, URI-based vo-
cabulary, XML-based syntax and XML schema datatypes should be supported [37]. The
RDF model is the common basis for many Semantic Web technologies. Various forms
and dialects express different data serialization formats for storing or exchanging RDF,
such as Turtle10 or JSON-LD11, but also the query language SPARQL and the schema
description language RDFS (see following sections).

The basic form of expression in RDF is a triple consisting of <subject, predicate, object>.
The so-called statement is reflecting a relationship (given by the predicate) between the
subject and the object. Triples, as well as collections of triples, form an RDF graph; sub-
jects and objects are considered as graph vertices and predicates as graph edges [37]. In
the remainder of the work, the Turtle serialization format is used to provide easy-to-read

10RDF 1.1 Turtle https://www.w3.org/TR/turtle/
11JSON-LD 1.0 https://www.w3.org/TR/json-ld/

20

http://dbpedia.org/resource/Leipzig
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/json-ld/

2.1. SEMANTIC WEB

examples for statements about things, e. g., by using prefix definitions as abbreviations
for URIs. For the rest of the work, uniform prefixes are obtained via a lookup service12.
A simple example of an RDF graph is shown in Figure 2.3 by expressing the birthplace of
philosopher Leibniz. Besides the IRIs used here for subject, predicate and object, literals
or blank nodes can also be used as so-called RDF terms. Literals contain textual informa-
tion such as strings, numbers or dates values attached with a datatype. Blank nodes are
disjoint from IRIs and literals and are used as intermediate nodes in a local scope when
no unique identifier via IRI or literal is wanted (or possible). There are certain restric-
tions for placing RDF terms in statements. As Figure 2.3 shows, all positions can be IRIs,
but only subjects or objects can be blank nodes and only objects qualify as a position
for literals. IRIs and literals refer to resources as they represent a tangible entity in the
world. Compared to literals, IRIs have a global scope and the same IRI always refers to
the same resource. Typically IRIs can be dereferenced and are thus a good starting point
for web interaction [37].

Object

dbr:Leipzig15

Subject

dbr:Gottfried_Wilhelm_Leibniz13

Predicate
dbo:birthPlace14

Figure 2.3: Basic example for a single RDF Triple having subject, predicate and object.

The concept reification is used to add new information or statements to existing RDF
triples with the appropriate vocabulary16. The non-normative description for reification
in the RDF standard suggests the use of a new IRI to link the statements together. As an
example, a single statement about the birthplace of Leibniz is reified. For this purpose,
the new IRI ex:leibniz is used to form the following four reified statements.

ex : l e i b n i z r d f : type r d f : S t a t emen t .
ex : l e i b n i z r d f : s u b j e c t dbr : Go t t f r i e d _Wi l h e lm_Le i bn i z .
ex : l e i b n i z r d f : p r e d i c a t e dbo : b i r t h P l a c e .
ex : l e i b n i z r d f : o b j e c t dbr : L e i p z i g .

With this description of the RDF triple, it is now possible tomake statements regarding
the triple, e. g., the journalistic source:

ex : l e i b n i z prov : wasGeneratedBy ” Wik iped ia ” .

12Namespace lookup http://prefix.cc
13DBpedia Leibniz http://dbpedia.org/page/Gottfried_Wilhelm_Leibniz
14DBpedia ontology birthPlace http://dbpedia.org/ontology/birthPlace
15DBpedia Leipzig http://dbpedia.org/resource/Leipzig
16RDF 1.1 Semantics https://www.w3.org/TR/rdf11-mt/

21

http://prefix.cc
http://dbpedia.org/page/Gottfried_Wilhelm_Leibniz
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/Leipzig
https://www.w3.org/TR/rdf11-mt/

CHAPTER 2. BACKGROUND

In addition to the standard reification, alternative proposals for reification exist [75,
80]. The authors of [80] present multiple methods to attach additional information to
existing statements with reification, e. g., to include details on provenance. The proposal
of Hartig et al. [75] is an interesting alternative to embed existing RDF triples in new
statements. For our example, this leads to the following representation:

<<dbr : Go t t f r i e d _Wi l h e lm_Le i bn i z dbo : b i r t h P l a c e dbr :
↪→ Le i p z i g >> prov : wasGeneratedBy ” Wik iped ia ” .

SPARQL

The query language SPARQL (SPARQL Protocol and RDFQuery Language) allows struc-
tured reading and manipulating queries on RDF data as well as result presentation. A
SPARQL endpoint processes these queries according to the SPARQL 1.1 Protocol17. End-
points access the specified dataset and return the results matching the query. Therefore,
SPARQL endpoints are the interface between the requesting side and the data store con-
taining the RDF data. An overview of typical data stores with SPARQL support [118]
compares multiple options, which rely on either relational or graph database stores.

The required syntax and semantics for the query language are specified in the W3C
SPARQL 1.1 Overview standard [178]. Since the extensive SPARQL standard is not en-
tirely relevant for this work, we limit ourselves to a detailed description of the relevant
parts, especially the language specification. Basic terms and operators are defined in
SPARQL 1.1 Query Language18. In principle, the general syntax of a query q is always
a quintuple of q(query type qt, variable selection vs, dataset clause dc, where clause wc,
solution modifiers sm)19. Table 2.1 shows the characteristics and relevant restrictions.
The table demonstrates that the dataset clause dc always points to an RDF dataset IRI
(when omitted, the default graph is used). Likewise, the where clause wc always needs
a graph pattern on which the resulting triples must match. A graph pattern in SPARQL
can be defined in different ways, e. g., by combining triple patterns, value constraints
and optional graph patterns or by joining the results of multiple graph patterns. A triple
pattern is then again an RDF statement20 where subject, predicate and object can be
replaced by query variables to specify which information should be retrieved from the
actual RDF dataset. A simple graph pattern is realized in the example SELECT query

17SPARQL 1.1 Protocol https://www.w3.org/TR/sparql11-protocol/
18SPARQL 1.1 Query Language https://www.w3.org/TR/sparql11-query/
19SPARQL 1.1 Query Language 19.8 Grammar
20According to the SPARQL standard, the subject of the triple pattern could also be a literal. Practically,

triple stores that allow SPARQL queries do not allow literals as subject to correctly implement the RDF
standard. It follows that a triple pattern with literal as subject would never return a result.

22

https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-query/

2.1. SEMANTIC WEB

Table 2.1: Possible SPARQL query forms to retrieve result sets or RDF graphs from RDF datasets
according to the general SPARQL syntax.

Query Type
(qt)

Variable/IRI
selection (vs)

Dataset
Clause (dc)

Where
Clause (wc)

Solution
Modifiers
(sm)

resulting
in

SELECT list of
variables

RDF
Dataset IRI

graph
pattern

order, limit,
offset

table result
set

CONSTRUCT triple pattern RDF
Dataset IRI

graph
pattern

order, limit,
offset

graph

DESCRIBE list of
variables/IRIs

RDF
Dataset IRI

graph
pattern

order, limit,
offset

graph

ASK - RDF
Dataset IRI

graph
pattern

order, limit,
offset

boolean

(shown in Listing 2.1) by specifying two triple patterns and two variables (?idea and
?label) in combination with the value constraint to the language "de". Further-
more, the result set can be restricted or ordered by solution modifier sm, e. g., shown in
Listing 2.1 for order and limit.

Listing 2.1: Example query to show general syntax of SPARQL language, retrieve german labels for
notable ideas of Leibniz

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?idea ?label
FROM <http://dbpedia.org>
WHERE {
dbr:Gottfried_Wilhelm_Leibniz dbo:notableIdea ?idea .
?notableIdea rdfs:label ?label .
FILTER (lang(?label) = 'de')

}
ORDER BY ?idea
LIMIT 5

Depending on the selected query type qt, input parameters vs are selected. While
SELECT and DESCRIBE require a list of query variables (optionally, DESCRIBE
needs a list of IRIs), CONSTRUCT requires a triple pattern. The query type selection
also determines the result format, e. g., Table 2.2 shows the SQL-like table result for the
SELECT query. For the sake of clarity, the result set is limited to five result tuples in

23

CHAPTER 2. BACKGROUND

Table 2.2: Resulting table for example SELECT SPARQL query.

idea german label
dbr:Alternating_series_test ”Leibniz-Kriterium”@de
dbr:Best_of_all_possible_worlds ”Die beste aller möglichen Welten”@de
dbr:Calculus ”Infinitesimalrechnung”@de
dbr:Characteristica_universalis ”Universalsprache”@de
dbr:Fermat’s_little_theorem ”Kleiner fermatscher Satz”@de

the query. In contrast, CONSTRUCT queries return a newly created RDF graph based
on the given pattern and DESCRIBE returns an RDF document whose structure is de-
termined by the SPARQL query processor. Finally, ASK can be used if a binary yes/no
response is sufficient.

In addition to these query forms, combined sub-queries can also be formulated, and
typical grouping and aggregate functions can also be expressed. Even more complex
analytical questions can be answered with SPARQL 1.1, e. g., the search for arbitrary
graph patterns in RDF graphs. The SPARQL standard is completed by miscellaneous ex-
tensions, some of which are still under development. Possible extensions are the update
operator to support manipulating RDF data21, federated queries over different SPARQL
endpoints22 or automatic detection of SPARQL services via HTTP [178].

RDF ScHema and Web Ontology Language

Both RDF Schema (RDFS) [23] and the Web Ontology Language (OWL) [188] are seman-
tic extensions for RDF by using the underlying data model with its fundamental com-
ponents. RDFS provides a vocabulary that can be used to describe properties of classes,
entity sets and the relations between them. Thus RDFS offers the possibility to specify
simple ontologies such as FOAF23 or Schema.org24. Both RDFS and OWL can be used to
publish semantic schema information. With OWL, a formal description language for the
Semantic Web, another set of basic terms for the creation of ontologies is defined. OWL
supplements existing constructs that are specified by RDF and RDF schema and uses the
expressiveness of RDF. Information specified in OWL is also valid RDF.

In the area of Linked Data, the description of ontologies using RDFS or OWL implies
the structured description of things, groups of things and relations between them. In
this context, things described with logical statements are restricted or choices are given,

21SPARQL 1.1 Update https://www.w3.org/TR/sparql11-update/
22SPARQL 1.1 Federated Query http://www.w3.org/TR/sparql11-federated-query/
23FOAF Vocabulary Specification 0.99 http://xmlns.com/foaf/spec/
24Schema.org core schema https://schema.org/docs/schema_org_rdfa.html

24

http://dbpedia.org/resource/Alternating_series_test
http://dbpedia.org/resource/Best_of_all_possible_worlds
http://dbpedia.org/resource/Calculus
http://dbpedia.org/resource/Characteristica_universalis
http://dbpedia.org/resource/Fermat's_little_theorem
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-federated-query/
http://xmlns.com/foaf/spec/
https://schema.org/docs/schema_org_rdfa.html

2.1. SEMANTIC WEB

Entity

Activity

AgentgeneratedAtTime

startedAtTime
endedAtTime

rdfs:label
foaf:homepage

wasGeneratedBy
used

wasAttributedTo

wasAssociatedWith

wasDerivedFrom

Figure 2.4: High level overview on PROV records and how they are linked to each other and some
possible attributes (grey boxes). Concepts and properties without prefix are part of the
PROV vocabulary. Figure modified based on [10].

e. g., a person who has the attribute male as gender cannot be female at the same time.
These formalized and structured terms can then be used to gain new insights by logical
inference (reasoning), using description logic (DL) in different expressions depending on
the purpose. Also, the check of logical statements for consistency can be realized with
OWL-based vocabulary25.

RIF

The Rule Interchange Format (RIF) enables declarative rules and their exchange between
different rule systems, e. g., with RDF and OWL ontologies [102]. RIF is not relevant in
this thesis and will not be elaborated.

TRust, Logic and Unifying Logic

The complex of trust and proof deals with the question of how trustworthy statements
in the Semantic Web are. As with previously described technology blocks such as OWL,
where underlying layers (such as RDF, IRI) are used, trust and proof also rely on those
layers. Both the layer trust and proof require further standardization work. However,
with the PROV Standard [69], there are already approaches to facilitate the traceability
of decisions. Additional information about entities, activities, people and interactions
between those can be stored together with the actual data to understand the origin of
information [10]. A basic example of interacting PROV concepts together with proper-
ties such as date/time of generation is provided in Figure 2.4. The use of PROV allows
changes to the data to be tracked more easily, e. g., by providing the inference rule for

25OWL 2 Web Ontology Language Primer (Second Edition) https://www.w3.org/TR/2012/
REC-owl2-primer-20121211/

25

https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/

CHAPTER 2. BACKGROUND

adding new relations. Together with (not yet standardized) cryptography techniques,
e. g., for authentication or non-deniability of events, it is assumed that the establishment
of trust in the Semantic Web is feasible [126]. For further work, we neglect components
like cryptography and trust and limit ourselves to the logging of available provenance
information.

2.1.3 Conclusion and Distinction to tHis THesis

In the last two sections, the description of the main application areas of the Semantic
Web leads to the introduction of associated technology blocks. Since the application
areas are typically data-driven, Linked Data is of particular importance. The objective
for existing as well as new Linked Data sources is the creation of additional semantic
links to increase the usability of interlinked datasets. To express this relevance, Auer et
al. [7] describe an extensive Linked Data life cycle, as shown in Figure 2.5.

Besides techniques for storing and querying RDF data [56], various collaboration and
networking techniques [5, 101] support the authoring of new knowledge bases. The
following components deal with the interlinking and classification of datasets, which
corresponds to the research topic of this dissertation (highlighted in Figure 2.5). Inter-
linking datasets is a significant task to advance data integration in the Semantic Web.
Link discovery frameworks are employed to determine additional connections while de-
livering high-quality results with minimal configuration effort [132]. Based on these
links, both entities of the data sources and concepts of the associated ontologies can be
classified [7]. This enables knowledge bases to be enriched, e. g., by adding axioms to
ontology concepts [26] or to physically integrate entities to create unified knowledge
bases [155]. Published Linked Data sources and knowledge bases can then be qualita-
tively analyzed. Surveys comparing quality analysis approaches provide an overview of
the metrics and dimensions used to improve data quality [135, 195]. A further improve-
ment of data quality in the Web of Data can be driven by services that continuously
analyze datasets concerning quality metrics [40]. Together with the quality analysis, re-
pair strategies are usually applied, which simultaneously monitor changes to the data
and make them traceable. Ultimately, new interfaces and visualizations allow RDF data
to be searched, explored [16, 120] or extracted for new applications [7].

The presentation of the components in the Linked Data life cycle makes it easy to see
that modifications to individual components can have an influence on the entire process.
For example, recognizing and removing incorrect links between data sources can help
to improve a subsequent linking step. As a result, components of the life cycle are often
considered in combination to improve the overall Linked Data quality [7].

26

2.2. DATA MODEL

Interlinking/
Fusing

Classifi-
cation/

Enrichment

Quality
Analysis

Evolution/
Repair

Search/
Browsing/
Exploration

Extraction

Storage/
Querying

Manual
revision/
authoring

Linked Data
Life Cycle

Figure 2.5: Linked Data life cycle (Source: [7]) with spotlighting (black ellipse) of the focused compo-
nents in this thesis.

This dissertation combines the components interlinking/fusing and classification/en-
richment to enable the integration of data sources to form a holistic knowledge repre-
sentation. In addition, strategies for quality analysis and repair are used to improve
linking results. To close the circle, existing links are also made available via the Link-
Lion web portal. Together with provenance information, these results can be reused for
new applications, e. g., for a follow-up linking process.

2.2 Data Model

This section deals with the conception of a general data model for the subsequent inte-
gration of Linked Data sources. After presenting relevant definitions in Section 2.2.1,
the data model is applied to example RDF statements in Section 2.2.2.

27

CHAPTER 2. BACKGROUND

2.2.1 Definitions

We consider a set of k data sources S = {S1, . . . , Sk}, each containing an arbitrary
number of entities E such as e1, e2. Entities are referenced by a URI and have additional
property values such as a label, semantic type information or domain-specific properties,
e. g., ’place of birth’. For better readability, URIs are typically shortened to IDs like (1)
or (2) (e. g., for e1 and e2) in examples and tables. Entities have different semantic
types T = {T1, · · · , Tm}, that can be used for a basic classification, such as ’person’
or ’settlement’. Because different data sources may use various vocabularies to identify
semantic types, they must be unified before they can be used further.

Two entities of different sources can be connected by a owl:sameAs link stating
that they represent the same real-world object. Besides, a similarity value sim can be
given for a link to indicate the strength of the relation, e. g., the highest similarity 1 to
state equality. On this basis, a binary equivalence mappingMi,j = {(e1, e2, sim)|e1 ∈
Si, e2 ∈ Sj, sim[0, 1]} is defined for allowl:sameAs links between two sourcesSi and
Sj(1 ≤ i, j ≤ k, i ̸= j). In our case, however, we consider the set of united equivalence
mappings and therefore define L = ∪k

i,j=1Mi,j and thus simply refer to the set of all
links.

To achieve the goal of integrated data sources, we determine clusters of entities linked
by equivalence relationships and denote them as C. Ultimately, for each semantic type
Ti (1 ≤ i ≤ m), a set of ni clusters Ci = {ci,1, . . . , ci,ni

} is created. Each cluster ci,j

(1 ≤ i ≤ m, 1 ≤ j ≤ ni) only includes matching entities of type Ti (denoting the same
real-world object). Furthermore, different clusters always correspond to distinct entities.
Clusters ci,j also have a cluster representative ri,j , which is derived from the properties
of all the entities in the cluster. Thus, a unified entity representation is provided. The set
of all representatives ri,j is called R in the following. In the remainder of the work, we
will use these representativesR to compare new entities with existing clusters to avoid
a more expensive comparison with all cluster members.

2.2.2 TRansfoRmation to Data Model foR ClusteRing

The defined concepts are used to transfer the RDF representation into the data model,
followed by a discussion of the advantages. We return to the alreadymentioned example
of the philosopher Leibniz and show the representation in various data sources. Starting
with DBpedia, RDF statements in Listing 2.2 show properties of Leibniz such as name,
place of birth and semantic type.

28

2.2. DATA MODEL

Listing 2.2: RDF statements DBpedia

dbr : Go t t f r i e d _Wi l h e lm_Le i bn i z dbo : b i r t h P l a c e ” L e i p z i g ” .
dbr : Go t t f r i e d _Wi l h e lm_Le i bn i z r d f s : l a b e l

↪→ ” G o t t f r i e d ␣ Wilhelm ␣ L e i b n i z ” .
dbr : Go t t f r i e d _Wi l h e lm_Le i bn i z r d f : type dbo : Person .

Listing 2.3: RDF statements Freebase

f b :m. 0 3 7 2 p fb : p l a c e _ o f _ b i r t h ” L e i p z i g ” .
f b :m. 0 3 7 2 p r d f s : l a b e l ” G o t t f r i e d ␣ Wilhelm ␣ L e i b n i z ” .
f b :m. 0 3 7 2 p r d f : type f b : peop l e / person .

Listing 2.4: RDF statements Wikidata

wd : Q9047 wd : p l a c e _ o f _ b i r t h ” L e i p z i g ” .
wd : Q9047 r d f s : l a b e l ” G o t t f r i e d ␣ Wilhelm ␣ L e i b n i z ” .
wd : Q9047 r d f : type wd : human .
wd : Q75925 r d f s : l a b e l ” F r i e d r i c h ␣ L e i b n i z ” .
wd : Q75925 r d f : type wd : human .
wd : Q1094559 r d f s : l a b e l ” L e i bn i z−Keks ” .
wd : Q1094559 r d f : type wd : t rademark .

By stating the same properties for the two sources Freebase and Wikidata in List-
ings 2.3 and 2.4, characteristic features and differences can be determined. The attribute
values for the place of birth and the philosopher’s name are identical in all sources, but
different vocabularies (dbo:person, fb:people/person and wd:human) are
used for the semantic type rdf:type. These heterogeneous attribute names and val-
ues must be unified in the course of the data integration process. In this example, the
term ’Person’ is used uniformly for the mentioned semantic types.

Table 2.3: Mapping of URIs for entities and consecutive determined IDs.

Entity ID Entity URI
1 dbr:Gottfried_Wilhelm_Leibniz (DBpedia)
2 fb:m.0372p26 (Freebase Gottfried Wilhelm Leibniz)
3 wd:Q9047 (Wikidata Gottfried Wilhelm Leibniz)
4 wd:Q75925 (Wikidata Friedrich Leibniz)
5 wd:Q1094559 (Wikidata Leibniz-Keks)

29

http://dbpedia.org/page/Gottfried_Wilhelm_Leibniz
http://rdf.freebase.com/ns/m.0372p
https://www.wikidata.org/wiki/Q9047
https://www.wikidata.org/wiki/Q75925
https://www.wikidata.org/wiki/Q1094559

CHAPTER 2. BACKGROUND

In Listing 2.4, two further entities are given forWikidata – Friedrich Leibniz (father of
the philosopher) and the Leibniz-Keks (cookie named after G.W. Leibniz). Together with
the three entities describing the philosopher, the mapping to the data model is carried
out and relevant corner cases are shown.

The set of data sources can be described as S = {DBpedia, Freebase,Wikidata}. The
five entities are grouped in Table 2.3 and each one is labeled with a consecutive ID. A
manual unification of the semantic types results in T = {Person,Trademark}. To cre-
ate binary mappings, the links between different sources are calculated for all entities
with type ’Person’ as seen in Equations (2.1) to (2.3). Due to the same property values,
the entities describing Leibniz have a very high similarity simhigh, which is stored in the
links (1, 2), (1, 3) and (2, 3). The low similarity simlow given for the links (1, 4) and (2, 4)
reflects that two different persons are described. For further use within a clustered rep-
resentation, we join the binary mappings to the total set of all links L in Equations (2.4)
to (2.7).

MDBpedia, Freebase = {(1, 2, simhigh)} (2.1)
MDBpedia, Wikidata = {(1, 3, simhigh), (1, 4, simlow)} (2.2)
MFreebase, Wikidata = {(2, 3, simhigh), (2, 4, simlow)}. (2.3)

L =
k∪

i,j=1
Mi,j (2.4)

= {(1, 2, simhigh)} ∪ {(1, 3, simhigh), (1, 4, simlow)} (2.5)
∪ {(2, 3, simhigh), (2, 4, simlow)} (2.6)

= {(1, 2, simhigh), (1, 3, simhigh), (1, 4, simlow), (2, 3, simhigh), (2, 4, simlow)}. (2.7)

This situation is illustrated graphically in Figure 2.6, with semantic types and calcu-
lated links (green and red) highlighted. For improved comprehension, the original rela-
tionships between entities (owl:sameAs, wd:fatherOf and wd:namedAfter)
are also displayed. In this way, the owl:sameAs links reconfirm the exemplarily cal-
culated (green) links. Also, this shows that entities from a single data source are not com-
pared (assumption of duplicate-free data sources), e. g., (3) and (4). Likewise, entities
with different semantic types are never compared, so there is no similarity calculation

26Freebase is no longer in production, but URIs are still valid and can be used via data dumps.

30

2.2. DATA MODEL

TPerson

TTrademark

1

3

2

5

4

label=’Gottfried
Wilhelm Leibniz’

birthPlace=’Leipzig’

label=’Gottfried
Wilhelm Leibniz’

birthPlace=’Leipzig’

label=’Gottfried
Wilhelm Leibniz’

birthPlace=’Leipzig’

label=’Friedrich Leibniz’

label=’Leibniz-Keks’

owl:sameAs

owl:sameAs

owl:sameAs

wdo:fatherOf

wdo:namedAfter

SDBpedia

SWikidata

SFreebase

SWikidata

SWikidata

high similarity simhigh

low similarity simlow

semantic type Ti

data source Sj

Figure 2.6: RDF statements transferred to graphical representation of data model.

for (5) despite the agreement in parts of the label. Figure 2.7 shows the clustered rep-
resentation for the example. Besides a standardization of the property values, metadata
on the contained entities and already covered data sources are listed.

TPerson

TTrademark

Cluster c1

21 3

Cluster c2

4

Cluster c3

5

label=’Gottfried Wilhelm Leibniz’
birthPlace=’Leipzig’
sources={DBpedia, Freebase, Wikidata}

label=’Friedrich Leibniz’
sources={Wikidata}

label=’Leibniz-Keks’
sources={Wikidata}

Figure 2.7: Clustered representation with unified property values.

31

CHAPTER 2. BACKGROUND

32

3
Link Discovery

Link discovery is of considerable importance for the Semantic Web to advance the idea
of Linked Data (see Section 2.1.1). Therefore, identifying new semantic relationships be-
tween entities of different data sources plays a central role for numerous applications,
e. g., federated queries [74, 154, 165] or answering complex questions [117, 168]. It is
related to the problem of entity resolution (also deduplication, reference reconciliation
or object matching), which is being investigated extensively [31, 49, 109]. For exam-
ple, comparable techniques are used to increase efficiency and determine a similarity
between objects. However, significant differences such as large amounts of data and
semantic heterogeneity have led to the development of link discovery frameworks.

A notable distinction is the support for varying semantic relations. Entity resolution
methods are limited to search for equivalence relations. Instead, link discovery allows
determining arbitrary semantic relations. Due to many interrelated resources, link dis-
covery has to deal with high heterogeneity. Additionally, resources are often described
by properties from ontologies. These properties or underlying ontology classes can then
be linked to each other, which can lead once again to an increase in heterogeneity. By
contrast, most entity resolution approaches focus on homogeneous datasets of relatively
simple, structured objects, described by a set of single-valued attributes (e. g., benchmark
datasets in [110]). For this reason, link discovery methods often rely on a combination
of instance and ontology matching.

Accordingly, there are surveys for data linking in the Semantic Web that describe
different techniques and frameworks [58, 191]. Based on these surveys and by analyzing
additional frameworks, we published a comprehensive link discovery survey [132]. In

33

CHAPTER 3. LINK DISCOVERY

addition to a definition and requirements for link discovery, frameworks are compared
using a generalized workflow. This survey was reassessed in this thesis to present a
range of current link discovery frameworks. While pointing out desirable features, it
also identifies flaws that offer the potential for improvement. Furthermore, we show the
relevance of link discovery in the context of data integration. Following the structure
from the survey, Section 3.1 will provide a formal description of the concept of link
discovery as a basis for determining semantic relations.

To further support the development of Linked Data, new data must be added and links
to existing sources have to be calculated. However, the number of links between differ-
ent data sources is often low because the process of creating them is both error-prone
and time-consuming [167]. For instance, it takes less than 20 minutes to compare two
data sources where each source consists of 1000 entities if a comparison is computed
in 1 ms. With 1 million resources in each data source, the number of comparisons adds
up to 112, which corresponds to more than 30 years of calculation time. Thus, the naive
comparison of all resources of the two data sources is not anymore feasible. The rea-
son for this is the quadratic complexity for evaluating the Cartesian product between
two sets of entities. The calculation of new semantic relations for Linked Data requires
reliable automatic processes that are efficient and effective. For this reason, we define
requirements (Section 3.2) and a generalized workflow (Section 3.3) that lead to a stable
link discovery process as far as possible. The comparison (Section 3.4) is then performed
using link discovery frameworks that are actively under development. Besides the sum-
mary, differentiation to the remaining work is given in Section 3.5.

3.1 PRoblem Definition

The link discovery problem can be described as follows: Given two sets of resources
S and T and a relation R (e. g., owl:sameAs1 or dbo:producer2), find all pairs
(s, t) ∈ S × T such that R(s, t) holds. The identified pairs are referred to as links.
Depending on the data sources, different data properties are used to determine the links.
A combination of data properties used for link discovery is called link configuration or
specification. The set of resulting links is called a mapping: MS,T = {(ai, R, bj)|ai ∈
A, bj ∈ B}. Optionally a similarity score (sim ∈ [0, 1]) computed by a link discovery
tool can be added to the entries of mappings to express the confidence of a computed
link. In this case, links can be represented as quadruples (ai, R, bj, sim(ai, bj)).

1Equivalence http://www.w3.org/2002/07/owl#sameAs
2Producer of a creative work http://dbpedia.org/ontology/producer

34

http://www.w3.org/2002/07/owl#sameAs
http://dbpedia.org/ontology/producer

3.2. REQUIREMENTS

3.2 ReiRements

To retrieve improved results for data integration for the Semantic Web, we define re-
quirements for linking entities that are used in the remainder of the thesis.

Effectiveness An essential criterion for linking entities is a high-quality result, which
is usually determined by the measures precision, recall and F-Measure compared
to a known perfect result. Therefore, a linking system is better suited if it can
determine both a high number of correct links in the set of calculated links (pre-
cision) and high coverage of links in the set of all relevant links (recall). In other
words, the result should only contain links between entities that belong together
in reality, according to the relation used. For an effective determination of links,
match techniques of varying complexity or a combination of different techniques
are used. Besides, different semantic link types should be supported.

Efficiency Theprocessing of extensive datasets should be quickly feasible and approaches
to scalability must be recognizable. The naive comparison of all possible pairs of
two entity sets (Cartesian product) results in a problem of quadratic complexity.
Increased efficiency is mainly achieved by reducing the search space, i. e., avoid-
ing unnecessary comparisons by exploiting the distribution of the properties of
entities. Another possibility is the efficient use of parallel computing units. This
includes parallelization on a single computer (processor cores) as well as on dis-
tributed computer systems (clusters) or graphic cards (GPUs).

Configuration and Tuning Effort Different link specifications are required to achieve
high effectiveness and efficiency, depending on the data. The combination of vari-
ous similarity measures, entity attributes and other configuration parameters such
as similarity thresholds create complex specifications. Manually specifying such
configurations is very difficult and time-consuming so that automated approaches
should primarily reduce this effort. This automation can be achieved by learning-
based methods, e. g., by supervised approaches using training data of matching
and non-matching pairs of resources. Alternatively, the link discovery framework
can analyze the datasets, e. g., to select suitable similarity measures or properties
to evaluate. It should also be ensured that the automated approaches minimize the
configuration overhead, e. g., by avoiding additional parameters or a low amount
of necessary training data.

Powerful Infrastructure The link discovery workflow should be executable on dif-
ferent platforms, preferably with parallel processing. Furthermore, frameworks

35

CHAPTER 3. LINK DISCOVERY

should offer extensive possibilities to configure all parts of the workflow. In partic-
ular, link discovery tools should come with flexible libraries with different similar-
ity functions, support different performance optimizations and provide different
possibilities to access data sources. Overall, the user interface should be easy-to-
use and configurable via graphical (web) interfaces. Mechanisms for collaborative
work in groups or crowd-sourcing should be provided for easier labeling of train-
ing data or generation of gold standards. Overall, frameworks should be designed
domain-independent. Still, it should be possible to flexibly customize it for more
specific link discovery tasks, e. g., linking geographical resources or knowledge
from the life sciences.

Static and Dynamic Link Discovery In addition to the classical one-time execution
of link discovery on static data sources, more and more applications rely on the
continuous integration of data sources. Therefore, link discovery approaches should
be able to process both static and dynamically changing data. For example, already
calculated similarity values can be reused to recognize changed relationships with
incremental methods.

3.3 GeneRalized WoRKflow

Current link discovery frameworks rely on various substeps that lead to the generic
workflow represented in Figure 3.1. The visualized objects can be divided into resources
(gray) and processes (blue), with cylindrical resources representing either data sources
or data sinks. Optional work steps or resources are marked with dashed borders.

The generic workflow itself consists of three main steps: preprocessing, matching and
postprocessing. Preprocessing deals with two important tasks: finalizing the linking
specification with parameters from the configuration and improving runtime efficiency,
e. g., by reducing the search space for following similarity computations. The central
phase consists of instance matching and the optional ontology matching to generate
links according to the specified relation between source and target dataset. While the
matching phase is entirely automatic, there may be user interaction for preprocessing,
e. g., to label training data for learning-based linking and postprocessing, e. g., to verify
computed links with lower confidence. The output of the workflow is the set of links
representing the mapping between the source and target datasets. We now describe the
components of the individual phases in detail and show differences in implementation.

The link discovery workflow starts with the preprocessing, where relevant resources
are loaded. This includes the two datasets, parameters for the configuration and optional

36

3.3. GENERALIZED WORKFLOW

Configuration
parameters

Target

Source

Preprocessing
(configuration,

runtime
optimization)

Instance
Matching

Ontology
Matching

Human
Expert

Post-
processing

Mapping
(Set of
Links)

External
Resources

Figure 3.1: General workflow link discovery frameworks (steps with dashed borders are optional).

background knowledge resources. The datasets are provided in RDF/OWL format either
as file dump or retrieved via query-based data access from a SPARQL endpoint. At this
point, a selection of the relevant (ontology) class in the data source can already be made.
This selection ensures, for example, that settlements of a geographical data source are
not compared with persons from a general-purpose data source such as DBpedia. After
importing configuration and resources, further preparatory steps like data cleansing are
executed, e. g., stop words removal or abbreviation resolution.

3.3.1 ConfiguRation

The task of the configuration step is to complete the linking specification by using the in-
put parameters. This linking specification indicates which similarity measures should be
used to compare the properties or semantic context of resources in the matching phase.
Depending on the available properties in the data source, multiple similarity values can
be aggregated using numerical approaches, e. g., weighted average. The application of
minimum thresholds is also common to exclude unlikely results [109]. In contrast, rule-
based approaches use match rules that are combined by logical operators to make a link
decision. For instance, when comparing settlements, it can be required for a match that
the settlement names have a trigram similarity of ≥ 0.9 and a low distance of the geo-
graphic coordinates [109]. Workflow-based approaches, which are not commonly used,
are based on iterative calculations of different similarity values. For example, an initial
similarity computation determines link candidates based on specific properties. These

37

CHAPTER 3. LINK DISCOVERY

results are then restricted via a minimum similarity threshold. Finally, more complex
computations are carried out according to proposals such as [136, 179].

The definition of complex linking specifications, such as combined match approaches
on different data properties, can be provided manually or with automatic methods. A
(semi-)automatic determination of the linking specification is carried out either by apply-
ing adaptive link discovery methods or learning-based methods. Adaptive methods ana-
lyze the input data and deduce parts of the linking specification, e. g., by applying logical
rules [78, 143]. For (semi-)supervised learning-based methods, training data is typically
used. This implies a dependency on appropriate training data where pairs of entities
have been labeled as matching or non-matching in a prior step. Based on this training
data, a classification model is created using techniques such as decision tree, SVM or
genetic algorithms. Reduced effort in the creation of training data can be achieved by
using active learning, where the model is influenced by specific feedback on controver-
sial decisions. Learning-based approaches may also be unsupervised, thereby avoiding
the need for training data. However, these approaches may still require the specifica-
tion of critical parameters such as suitable similarity or distance measures and threshold
values [143, 147].

3.3.2 Runtime Optimization

The runtime can already be considerably reduced by selecting the appropriate configura-
tion parameters, e. g., by restricting it to the relevant entity class. However, the effect of
an optimized pairwise entity comparison can have an even larger influence on the run-
time. With naive methods, the quadratic complexity results in an unreasonably large
number of comparisons. Therefore, this section discusses strategies to limit the num-
ber of necessary comparisons. In the literature, approaches for link discovery, ontology
matching, (privacy preserving) entity resolution and duplicate detection are presented to
realize a search space reduction with the common goal of runtime optimization [31, 47,
49, 152, 156]. Methods for runtime optimization are usually divided into two categories
– blocking and filtering [182].

Blocking methods distribute the entities over several partitions (blocks) to compare
all entities within these employing a (more complex) similarity calculation [152, 156].
This form of search space reduction is dealt with in more detail in the literature [47, 49,
152]. A further distinction in blocking techniques can be observed in the composition of
the blocks. Some surveys [47, 49] explicitly distinguish between blocks with mutually
exclusive subsets such as standard blocking [57] and overlapping subsets such as sorted
neighborhood method [81], q-gram indexing [30] or meta blocking [151].

38

3.3. GENERALIZED WORKFLOW

Filtering methods use the similarity measure or similarity threshold of the linking
specification to exclude comparison pairs that do not meet the similarity conditions [132,
182]. For example, filtering methods may only retain candidate pairs when compared
property values share a certain amount of tokens to exceed a threshold for token-based
string similarity measures such as Jaccard or Dice [3, 9]. Additionally, the position or
length of the string tokens [192] or characteristics of the metric space such as triangle
inequality [139] can be exploited to filter unsatisfactory candidates. According to the
defined link specification, filtering methods detect all matching pairs, whereas blocking
methods may miss matches if the entities are unfavorably divided into blocks. For this
reason, blocking methods are sometimes referred to as approximate methods and filter-
ing as exact methods [30, 152]. Since index data structures are usually used both for
the classification of entities into blocks and for grouping into filtered sets of entities, the
notion indexing is also used to describe search space reduction techniques [31].

Both blocking and filtering methods require parameters in order to operate success-
fully. For blocking techniques, the choice of the blocking key(s) to determine the parti-
tions is of particular importance. Depending on the specific method, other parameters
are relevant, e. g., the length of q-grams for q-gram based indexing or the size of the se-
quential window for window-based methods. Since filtering methods use the similarity
measure given by the linking specification, the corresponding parameters are also used
for the subsequent matching step.

3.3.3 MatcH appRoacHes

After runtime optimization, the main phase determines the similarities for the remaining
candidate pairs. Therefore, similarity measures between defined resource property pairs
are calculated according to the link specification. Link discovery frameworks usually
support a combination of different match techniques (matchers) to cover the require-
ments according to the domain. At this point, background knowledge can also be used,
e. g., to use language- or domain-specific dictionaries, thesauri or abbreviation lists [132].

The literature discriminates schema- or ontology-based matching and instance-based
matching, whereby combinations of both methods are also possible [157]. This discrim-
ination is also the case for link discovery, but with the focus on instance matching be-
tween entities based on most discriminative attributes [132]. Reasons for this include
a large number of entities and, accordingly, the substantial heterogeneity of entity at-
tribute values. Since access to ontology information is also available via the metadata of
the instances, ontology matching offers the potential to increase effectiveness further.

39

CHAPTER 3. LINK DISCOVERY

In detail, match operators can be divided into element- and structure-level matcher,
whereby instance matching is limited to element-level techniques [50, 157]. Element-
level matchers are far more common and calculate similarity measures on individual
atomic property values (e. g., strings, numbers) or domain-specific data types (e. g., dates,
geographical coordinates). Structure-level matchers are usually more sophisticated by
deriving a similarity value for resources from their contextual similarity. For example,
the context of adjacent resources or higher-level ontology concepts can be included to
determine a similarity between entities.

A promising link discovery approach is to utilize already existing links and mappings
to find new links. Based on the transitivity of the equality relation one can compose
several links to derive new owl:sameAs links. Thus, links between previously un-
connected datasets are possible. Effective strategies for such a composition of mappings
and links have been proposed and evaluated in [76]. The initial situation describes two
datasets S and T , which can only be reached indirectly via links to intermediate datasets.
The calculation of all paths between S and T can then be used to select the most promis-
ing candidates. Alternatively, graph-based algorithms like shortest path are used to find
promising link candidates between multiple data sources. To enable the reuse of links
for novel link discovery approaches, public mapping repositories such as BioPortal [149]
or LinkLion (Chapter 4) can be used for storage and maintenance.

3.4 CompaRison of FRamewoRKs

Two critical factors mainly influenced the selection of the link discovery frameworks for
the comparison. Candidate frameworks are expected to support the requirements de-
fined in the previous section as much as possible. Also, the frameworks should show an
active development, including evaluation results, which further limits the selection. The
activity in the source code management system3 shows ongoing work on the framework.
For current evaluation results, successful OAEI benchmark participation4 is important.
In particular, good results for the instance matching or link discovery track are expected
at least twice. Table 3.1 shows the four considered frameworks Silk, LIMES, LogMap and
AML (successor of AgreementMaker[36]) while providing the first classification to cri-
teria such as support for learning-based algorithms or ontology matching capabilities.
Each of them has at least participated in the OAEI benchmark 2017 [1] and 2018 [2]5.

3Several commits on utilized platforms like https://github.com/ within the last year
4Ontology Alignment Evaluation Initiative http://oaei.ontologymatching.org/
5LIMES is not mentioned by name for both OAEI 2017 and 2018, but the algorithm RADON is inte-

grated in LIMES [169] and is therefore used accordingly.

40

https://github.com/
http://oaei.ontologymatching.org/

3.4. COMPARISON OF FRAMEWORKS

Table 3.1: Compared link discovery frameworks (sorted by year of initial publication).

System / initial Year Learning- OAEI IM parti- Support for pure
publication based cipation ontology matching
Silk [184] 2009 ✓ ✓ -

LIMES [139] 2011 ✓ ✓ -

LogMap [90] 2011 - ✓ ✓
AML [53] 2013 - ✓ ✓

The detailed comparison of the functional properties is carried out according to the
generalized link discovery workflow. Table 3.2 shows an overview of the identified main
features. For the specification of the input format, all four frameworks support RDF
data. Additionally, Silk and LIMES can handle CSV files and read data from SPARQL
endpoints. In contrast to the increased flexibility and dynamic for data access, the use
of (public) SPARQL endpoints can also lead to availability and performance problems.
With the original design for ontology matching, LogMap and AML also support reading
OWL files. The use of background knowledge or dictionaries like WordNet, Wikipedia
or ontologies like UMLS is widespread in the field of ontology matching [84]. However,
the tools examined for link discovery usually have limited use for this type of informa-
tion, including existing links and mappings. Therefore, it is not surprising that only the
ontology matching frameworks use background knowledge. For example, AML uses
WordNet to determine similarities to synonyms for instance matching [55]. Similarly,
LogMap specifies the use of WordNet or UMLS to search for synonyms, but only in their
initial publication for ontology matching [90].

The configuration step defines the used semantic relation (link type) and the link spec-
ification. In addition to the equivalence relation (owl:sameAs links), only Silk and
LIMES can handle additional link types given by the user. The link specification states
which properties of the entities are used to determine the similarity values and the cor-
responding weighting. LogMap and AML only accept a manual configuration while
Silk and LIMES additionally allow different learning-based strategies for automatic link
specification determination. In genetic programming, for example, a predefined fitness
function is optimized by adjusting random link specifications. Therefore, the evolution-
ary principles selection and variance are applied to reach a performance criterion of the
fitness function. Silk [87] determines a combination of discriminative properties to learn
the link specification from reference links. This process is improved by applying genetic
programming. Thus, the selection of different distance measures is optimized, includ-
ing thresholds and variants of aggregation functions. Both Silk [86] and LIMES [142]

41

CHAPTER 3. LINK DISCOVERY

combine genetic programming with active learning, i. e., several link specifications that
sufficiently fulfill the performance function are evaluated by an oracle to improve the
result. The LIMES approach is extended by [144], where correlations between link candi-
dates are used to improve link specifications. In detail, two methods are proposed. First,
graph clustering is used to determine correlations for candidates within the class. Sec-
ondly, the spreading activation principle is used to correlate candidates across classes
that are close to each other. The basic idea is that these candidates could belong to one
class. Therefore, the aim is to adjust the boundary of classes if the correlation between
candidates is sufficiently high. The semi-supervised active learning and unsupervised
learning-based methods in LIMES apply a binary classification to search for suitable link
specifications [141, 143]. For example, in [141], potentially matching classes and proper-
ties are determined as a starting point for a link specification using the hospital-resident
optimization problem. The method refines the candidates via active learning by train-
ing user feedback on unclassified property pairs in multiple iterations via a perceptron
neural net.

Link discovery frameworks should provide methods to reduce the search space to
enable scalable link discovery. With AML, LIMES and LogMap, three of the tools use
filtering approaches. AML and LogMap rely on inverted index structures, which are gen-
erated in a preprocessing step by splitting labels into their sub-components. The strategy
of LIMES is to exploit properties of the metric space, in particular, the triangle inequality.
Distance calculations among reference points restrict the search space. When the dis-
tance between two reference points is high (and thus the similarity low), the similarity of
nearby entities is also minimal. In detail, entities of the data source s are assigned to pre-
viously determined reference points. Then, the distances of the entities of source t to the
reference points are used to filter out reference points that are too far away (and thus the
assigned entities of source s). Accordingly, comparisons are only made between entities
that have similar distances to the surrounding reference points. Further optimizations
to search space reduction with LIMES are possible, e. g., for geo-spatial [137, 169] data
with space tiling or temporal data with reasoning based time interval relations [65]. Silk
is the only one of the presented methods that explicitly uses blocking for search space
reduction [88]. Multiple blocking keys can be specified and based on custom similar-
ity measures, indices are built for each of them. Afterward, the indices are aggregated
into a single multi-dimensional index while preserving the individual information of the
properties. The created index is eventually used to link candidates based on entities that
share a block or are located in adjacent blocks. Finally, the link specification can be used
to determine the similarity of candidates in the succeeding matching step.

In the following instance resp. ontology matching step, frameworks apply different
types of matchers to determine similarities between entities. The most common method

42

3.4. COMPARISON OF FRAMEWORKS

Table 3.2: Characteristics of link discovery frameworks. GP - genetic programming, AL - active learn-
ing, “-” means not existing, “*” investigated in [83], but not available in current release

LogMap Silk LIMES AML
Supported link types owl:sameAs owl:sameAs,

user-specified
others

owl:sameAs,
user-specified
others

owl:sameAs

Configuration manual weighted
average

manual (match
rules), supervised
learning (GP, AL)

manual (match
rules), supervised
learning (GP, AL),
unsupervised (GP)

manual weighted
combination

Runtime optimization
- Blocking - multi-dimensional - -
- Filtering indexing - space tiling indexing
String similarity
measures

✓ ✓ ✓ ✓

Further similiarty
measures

- numeric, date
equality

geographical
coordinates,
numeric, date
equality

geographical
coordinates

Structure matcher similarity of
parental ontology
concepts and
neighborhood

- - combined
annotation-
/property-based
similarity

Use of
- external dictionaries WordNet

synonyms
- - WordNet

synonyms
- existing mappings - - - -
Post-processing inconsistency

repair
- - -

Data input RDF, OWL RDF, SPARQL,
CSV

RDF, SPARQL,
CSV

RDF, SPARQL

Data output RDF, OWL RDF, CSV RDF, CSV, XML RDF

Parallel processing - MapReduce (MapReduce)* -

GUI / API ✓/ - ✓ / ✓ ✓ / ✓ ✓/ ✓
Web interface / online ✓/ ✓ ✓ / - ✓ / - ✓/ -

Download tool/source ✓/ ✓ ✓ / ✓ ✓ / ✓ ✓/ ✓
Open Source project ✓ ✓ ✓ ✓

43

CHAPTER 3. LINK DISCOVERY

is to use element-level matchers to compare properties of entities based on their string
similaritymeasures, e. g., edit distance, n-gram, or Jaccard [28]. Support formore special-
ized data types is available for Silk, LIMES and AML, e. g., numerical data, geographical
coordinates or dates. In addition to the use of element-level matchers, LogMap and AML
also apply structure-level techniques based on ontology information. LogMap applies
an instance matching process that first creates candidate mappings, which are then re-
fined [95]. Similar entities are determined via element-matcher on attribute values. This
leads to the creation of a candidate set, which is then reduced by different methods. For
example, candidates are eliminated if no match is found between the higher-level on-
tology concepts of the entities. Other structure-level techniques include the analysis of
neighboring ontology concepts. If neighboring concepts also show a match, the candi-
date mapping is preserved.

The LogMap support for instance matching has been continuously extended [91, 92,
94] to accomplish the tasks within the OAEI. For AML, the instance matching approach
is described in [54]. Besides the already mentioned element-level strategies, separate
match strategies are used in certain situations to compute similarities on a structural
level. If there is a high density of connections between the ontologies involved, a com-
bination of string similarity and structural similarity is used. The case is handled differ-
ently if the structure-matcher detects the very same matches in the ontology for a high
proportion of entities. Since this indicates a generally small structural difference for the
set of entities, only entity-level matcher are used.

Postprocessing of the results only takes place with LogMap and AML. LogMap relies
on a repair technique that generates coherent mappings using logical reasoning [93].
AML uses a similar algorithm, which is also based on logical reasoning to reduce the
number of inconsistent results [166]. The results produced by the link discovery frame-
works can then be stored in output formats such as RDF dialects or CSV.

Only Silk6 and LIMES [83] provide the option for distributed execution of link discov-
ery workload via Apache Hadoop MapReduce. The use of MapReduce has some disad-
vantages, like the mandatory materialization of intermediate results. Therefore, exten-
sions such as Apache Spark or Apache Flink are increasingly used for workloads that
can be easily parallelized. The usability of the examined link discovery frameworks is
very good. They are available as open-source projects and offer interfaces via API or web
interface. Thus, other researchers may use the projects together with new extensions.

6Silk MapReduce https://www.assembla.com/spaces/silk/wiki/Silk_
MapReduce

44

https://www.assembla.com/spaces/silk/wiki/Silk_MapReduce
https://www.assembla.com/spaces/silk/wiki/Silk_MapReduce

3.5. CONCLUSION AND DISTINCTION TO THIS THESIS

3.5 Conclusion and Distinction to tHis THesis

Following the definition of link discovery, resources of two data sources are compared
with each other. The examined frameworks are designed for this purpose and there-
fore support designated techniques that allow effective computation of new links. Com-
plex structure-based match techniques can be found with the tools LogMap and AML,
which also have strong ontology matching capacities. Silk and Limes, by contrast, rely
highly on instance matching strategies with simple property-based matchers. Both use
learning-basedmethods to identify high-quality linking specifications for heterogeneous
data sources. These sophisticated methods optimize the combination of data properties
for subsequent matching, such as using a fitness function. Training with suitable data is
a relevant factor, but should not be too time-consuming. The potential of reusing exist-
ing links or background knowledge has not yet been exploited to a relevant extent by the
frameworks. Only LogMap and AML make use of synonym dictionaries. Efficiency is
mainly addressed by filtering techniques for specific matchers rather than more general
blocking approaches to reduce the search space. Besides single implementations for the
MapReduce approach (Silk and LIMES), there is no support for more recent distributed
processing frameworks.

However, the further development of Linked Data depends on the inclusion of addi-
tional data sources. These data sources have to be compared with many existing sources.
This leads to quadratic complexity in relation to the number of data sources and a poor
scalability of existing link discovery systems. So far, only a limited number of studies
have partially addressed the use of existing link mappings to integrate new data sources
and the resulting quality. Furthermore, the information generated during the creation
of links, such as creation time, applied framework and matching methods, is not suffi-
ciently evaluated. Such provenance information can be crucial for quality assessment
and should be included for data integration. For this reason, this dissertation examines
methods for the scalable integration of semantic data sources.

At first, a repository is presented in Chapter 4 to facilitate the reuse of existing link
discovery results. With the provision of the platform, the storage, retrieval and mainte-
nance of the links together with the associated provenance information can take place
via programmatic interfaces. The stored links with metadata are a useful basis for the
work of the following chapters and show the potential of reusing already calculated link
mappings.

The presentation of a holistic clustering approach in Chapter 5 enables the integration
of knowledge from multiple data sources. The approach relies on existing links and sup-
ports techniques to improve the effectiveness, e. g., by identifying incorrect links and by

45

CHAPTER 3. LINK DISCOVERY

finding additional links. Eventually, this will produce a unified cluster representation of
related resources according to the data model in Section 2.2. Chapter 6 then deals dy-
namically changing Linked Data sources and proposes two strategies to integrate new
resources resp. data sources to existing knowledge graphs. The evaluation investigates
whether dynamic approaches have advantages or disadvantages compared to static ap-
proaches.

Towards the efficient handling of many data sources, we provide a comprehensive
discussion of concepts for distributed data processing in Chapter 7. The distributed im-
plementation of both holistic and incremental clustering is presented in Chapter 8. The
resulting stand-alone system allows the execution of complex workflows based on the
distributed processing system Apache Flink. A detailed evaluation shows the perfor-
mance for multiple large datasets from different thematic domains. To conclude the
topic, a competitive evaluation of multiple scalable clustering methods is provided in
Chapter 9. The comparison is executed on Apache Flink to show scalability and quality
for multiple domains.

46

Part II

Reuse of Link Discovery Results and
Clustering Strategies

47

4
LinkLion: A Link Repository for the Web

of Data

PReamble

This chapter is based on [134]. LinkLion describes a web platform based on Semantic
Web technologies that allow the reuse of link discovery results. By working with estab-
lished ontologies, provenance information can be included in the results. Additionally,
link results can be retrieved and maintained via a SPARQL endpoint or a REST interface.
The portal was presented at a practical demonstration at ESWC 2014 and published in
the associated conference proceedings.

4.1 Motivation

In addition to being central for question answering across several datasets, links also play
a key role in various other domains such as data fusion and federated SPARQL queries.
It is a well-known problem that links make up less than 3% of the RDF triples on the
Web of Data [139]. This problem is being addressed by link discovery and ontology
matching tools and frameworks [103, 138]. However, due to the architectural choices
behind the Web of Data, the results of a link discovery framework cannot be added
directly to the datasets involved in the link discovery process. Further, the direct addition
of links to a knowledge base fails to provide means to track the source of these links for

49

CHAPTER 4. LINKLION: A LINK REPOSITORY FOR THE WEB OF DATA

later reference. Moreover, the availability of some endpoints still remains a major issue1,
making the direct addition of linking results to some endpoints unattractive.

We address these drawbacks by presenting the open-source link repository LinkLion.
The main goal of LinkLion is to facilitate the publication, retrieval and use of links
between knowledge bases. Our repository thus provides dedicated functionality for
the upload, storage, querying and download of large sets of links. Currently, it con-
tains 77.8 million triples, which describe 15.5 million links of 12 different types (e. g.,
owl:sameAs, dbo:spokenIn, foaf:made, spatial:P) distributed on 3247
mappings that link 476 datasets. These links were retrieved from the Web as well as
computed by tools, e. g., LIMES [138] and Silk [185]. Our repository provides a SPARQL
query interface as well as commodity interfaces to access the mappings. In contrast
to other portals such as BioPortal2, LinkLion focuses exclusively on links and provides
dedicated functionality for manipulating them. Moreover, we do not limit ourselves to
a single domain, such as the life sciences. In the following, we give a brief overview
of the repository and show the use cases that will be presented during the demo. The
repository can be accessed at http://www.linklion.org. The source code of
the repository is available on GitHub3. We provide a SPARQL endpoint at http://
www.linklion.org:8890/sparql.

4.2 Implementation

Figure 4.1 shows the overview of LinkLion’s architecture. The backend consists of a
triple store in which we save data according to the vocabulary shown in Figure 4.2. The
ontology4 was designed with usability and reuse in mind. Especially, we wanted to al-
low end-users of the portal to select dedicated portions of certain mappings at will. This
meant designing an ontology that allowed amongst others (1) retrieving all links that
pertain to a particular resource or set of resources, (2) gathering all mappings between
datasets of interest as well as (3) getting aggregated information on how particular links
came about. We implemented this vision by storing the output of a link discovery tool
under an instance of the mapping class. Individual mappings can be described by meta-
data, including the datasets that they link, the tool (including a version number) used to
generate the links and the creation date of the mapping. We refrained from using blank
nodes for links. Instead, we gave each link a unique ID. Note that we reused existing

1http://labs.mondeca.com/sparqlEndpointsStatus.html
2http://www.bioontology.org/BioPortal
3LinkingLodPortal http://github.com/AKSW/LinkingLodPortal
4Available at http://www.linklion.org/ontology.

50

http://www.linklion.org
http://www.linklion.org:8890/sparql
http://www.linklion.org:8890/sparql
http://labs.mondeca.com/sparqlEndpointsStatus.html
http://www.bioontology.org/BioPortal
http://github.com/AKSW/LinkingLodPortal
http://www.linklion.org/ontology

4.2. IMPLEMENTATION

Frontend

Bootstrap framework

Backend

REST interfaces Virtuoso

Read Input to
Jena Model

Transform to
Hibernate objects MariaDB

REST/JSON

SPARQL

Transform Write

Write

Figure 4.1: Architecture visualization of frontend and backend to store the mappings in the Virtuoso
and MariaDB.

vocabularies (especially PROV5, VoID6 and DOAP7) as much as we could. The use of a
triple store pays off as end-users can choose to provide more metadata, such as the link
specification used or parameters of the algorithm they used to discover the link without
us having to alter our schema. For the sake of scalability, we also provide the core of
the data in the triple store as SQL dump. The functionality of the backend is exposed by
RESTful interfaces, which allow programmatic access to LinkLion from code written in
virtually any modern programming language.

The frontend of our repository provides an easyway to use some of the functionality of
LinkLion (see Figure 4.3). First, it allows users to upload new mappings. Users are asked
to provide a source file in the N-Triples format8. Moreover, the framework which was
used to generate the links, as well as the algorithm used, has to be provided (note that we
consider humans also to be linking frameworks). The data (and especially the mapping)
given by the user is then checked for consistency and uploaded into the underlying
triple store. The content of the triple store can be browsed directly from the web page
(see Figure 4.4). Especially, the frontend includes search functionality and pagination,
which allow end-users to search for mappings that link to or from a dataset of interest.

5http://www.w3.org/TR/prov-o/
6http://www.w3.org/TR/void/
7https://github.com/edumbill/doap/
8http://www.w3.org/2001/sw/RDFCore/ntriples/

51

http://www.w3.org/TR/prov-o/
http://www.w3.org/TR/void/
https://github.com/edumbill/doap/
http://www.w3.org/2001/sw/RDFCore/ntriples/

CHAPTER 4. LINKLION: A LINK REPOSITORY FOR THE WEB OF DATA

Link

Mapping

Algorithm

LD Frame-
work Version

LD Frame-
work

rdf:Resource = s
rdf:Resource = p
rdf:Resource = o

VoID:Dataset
VoID:Dataset
llont:storedAt
prov:
generatedAtTime

rdfs:label
prov:generatedAtTime
foaf:homepage

rdfs:label
foaf:
homepage

doap:
revision
rdfs:label

EntityPROV:

Agent

Activity

prov:wasDerivedFrom

prov:wasGeneratedBy prov:wasAssociatedWith

doap:release

Figure 4.2: Overview of the LinkLion ontology. New classes such as Link, Mapping, Algorithm and
LD (link discovery) Framework are specified as subclasses of the PROV vocabulary.

4.3 Use Cases
In this section, we present a selection of use cases to motivate users to adopt LinkLion.

4.3.1 GatHeR all linKs and mappings to a given ResouRce

Gathering and fusing all information on a resource of interest is of central importance
to applications such as question answering systems, Linked Data browsers and quality
assessment tools. LinkLion allows to gather all links pertaining to a particular resource
(dbpedia:Thailand in our example in Listing 4.1) through the following SPARQL
query. By using this information, novel repair-based algorithms for link discovery such
as Colibri can find errors or inconsistencies in the data [145].

Listing 4.1: Retrieve all links associated to a particular resource.

SELECT ?link WHERE { { ?link rdf:subject dbpedia:Thailand .}
UNION { ?link rdf:object dbpedia:Thailand .} }

52

4.3. USE CASES

Figure 4.3: LinkLion homepage with statistics regarding the content.

Figure 4.4: Frontend view for the mapping browser. The search for DBpedia returns 148 mappings.

53

CHAPTER 4. LINKLION: A LINK REPOSITORY FOR THE WEB OF DATA

The portal also allows gathering all mappings that contain links about a particular
resource, e. g., dbpedia:Thailand, as shown in Listing 4.2.

Listing 4.2: Get all mappings associated to Thailand.

SELECT DISTINCT ?mapping WHERE { ?link prov:wasDerivedFrom ?mapping .
{ ?link rdf:subject dbpedia:Thailand }

UNION { ?link rdf:object dbpedia:Thailand } }

4.3.2 Get suppoRt foR a linK

Ensemble learning techniques have been shown to improve the results ofmanifoldmachine-
learning applications, such as named entity recognition frameworks. Our repository fa-
cilitates the use of ensemble learning for combining the results of different link discovery
tools. Especially, LinkLion allows us to retrieve (if any) the list of mappings that contain
a given link, aswell as the algorithms and the frameworks that generated it. In Listing 4.3,
the support for the resources <http://sws.geonames.org/1605651/> and
dbpedia:Thailand connected by a owl:sameAs link is queried.

Listing 4.3: Fetch metadata for mappings where a specific link is contained.

SELECT ?mapping ?algorithm ?framework WHERE {
?mapping prov:wasGeneratedBy ?algorithm .
?algorithm prov:wasAssociatedWith ?framework .
?link prov:wasDerivedFrom ?mapping ;

rdf:predicate owl:sameAs .
{ ?link rdf:subject dbpedia:Thailand;

rdf:object <http://sws.geonames.org/1605651/> }
UNION { ?link rdf:object dbpedia:Thailand;

rdf:subject <http://sws.geonames.org/1605651/> } }

4.3.3 LinK Composition

With the growth of the Linked Data Web, it becomes ever more important to regard
link discovery as a holistic process that goes beyond linking a pair of knowledge bases.
Algorithms based on composition can exploit sequences of links to enrich their mapping
composition graphs [76]. Moreover, algorithms that link several knowledge bases at the
same time [145] can achieve higher accuracies. By using LinkLion, composition and
concurrent linking algorithms are now enabled to gather the data they require without
having to manage all the links by themselves. In the query below, all resources related
to dbpedia:Thailand over two links are retrieved from the repository.

54

4.4. CONCLUSION

Listing 4.4: Get resources related to Thailand over two links.

SELECT DISTINCT ?resource WHERE { {
?link rdf:subject dbpedia:Thailand ; rdf:object ?x .
?link2 rdf:subject ?x ; rdf:object ?resource }
UNION { ?link rdf:object dbpedia:Thailand ; rdf:subject ?x .

?link2 rdf:object ?x ; rdf:subject ?resource } }

4.4 Conclusion

This chapter presents LinkLion, a repository for links between knowledge bases of the
Web of Data. The repository enables users to upload results of a link discovery process
and allows them to add information on how the results were created. Therefore, Link-
Lion provides management and distribution capabilities through both open-access and
open-source web interface. Resulting sets of links can be reviewed in the portal and via
SPARQL queries; additionally, the results can be downloaded via dumps.

In the following chapters, we demonstrate the high value of link portals like LinkLion.
Data contained in LinkLion is therefore used to connect previously unlinked data sources
and to detect incorrect links.

55

CHAPTER 4. LINKLION: A LINK REPOSITORY FOR THE WEB OF DATA

56

5
Holistic Entity Clustering for Linked Data

PReamble

The current chapter is based on [131]. The paper describes a concept for cluster determi-
nation, which can identify same real-world entities across multiple Linked Data sources.
The intention is to avoid a similarity calculation between all entities. For this purpose,
the approach relies on existing link discovery results to create initial clusters. They are
then refined by split and merge operations to achieve the desired cluster representation.
For this reason, the clustering approach is referred to as SplitMerge in the rest of the
work. SplitMerge was presented at the DINA 2016 workshop with the following publi-
cation in the ICDM 2016 workshop proceedings.

5.1 Motivation

Linking entities between sources has been a significant effort in recent years to sup-
port data integration in the so-called Web of Data. A large number of tools for semi-
automatic link discovery has been developed to facilitate the generation of new links
(mostly of type owl:sameAs) [132]. Linked datasets can be accessed via platforms
such as DataHub1 or <sameAs>2 and repositories such as BioPortal [149] or Link-
Lion [134], where numerous links for many sources are collected to improve their avail-

1DataHub platform https://datahub.io
2sameAs platform http://sameas.org

57

https://datahub.io
http://sameas.org

CHAPTER 5. HOLISTIC ENTITY CLUSTERING FOR LINKED DATA

ability and re-usability. The continuous availability of already determined links is im-
portant to avoid their repetitive computation for new applications and use cases.

Despite the advances made, there are significant limitations in the achieved linkage
of data sources and the current approaches for link discovery. First, the degree of inter-
linking is still low and automatically generated links are wrong in many cases [52, 139].
Current approaches for link discovery only match two data sources at a time (pairwise
linking), resulting in poor scalability to many sources because the number of possible
mappings increases quadratically with the number of sources. To be more precise, one
needs up to k·(k−1)

2 binary match mappings for k data sources. Hence, fully interlinking
200 sources in the Web of Data would require the determination and maintenance of
almost 20.000 mappings.

Existing approaches to determine owl:sameAs links also focus on entities of the
same type while many sources contain entities of different types (bibliographic datasets
contain publication and author entities, geographical datasets contain numerous kinds
of entities such as countries, cities, lakes, etc.). Furthermore, existing links are hardly
utilized when additional links need to be determined. A general problem for the Web of
Data is that integrating the information about entities requires users to specify within
SPARQL queries the respective data sources and the links to be traversed. This makes it
difficult to fully reach and combine the available information about entities.

To address these shortcomings, we propose SplitMerge as a clustering-based approach
to holistically match entities between many sources. SplitMerge combines matching en-
tities from k sources in one cluster instead of maintaining a high number of binary links.
The matching entities of a cluster with their different properties can be easily fused
to derive a more comprehensive, integrated entity representation that can be centrally
maintained and accessed, e. g., within a knowledge graph [46, 146]. As sketched in [155],
the clustering-based approach also facilitates the integration of additional sources and
entities. They only need to be matched with the set of already existing clusters rather
than adopting a pairwise linking with numerous different sources. The proposed ap-
proach to determine initial entity clusters can optionally build on already existing links
and it can deal with entities of different semantic types. When existing links are utilized,
SplitMerge can identify and eliminate wrong links and it clusters many previously un-
connected entities. The fact that we can utilize existing links shows that the proposed
clustering-based approach complements the prevalent pairwise linking, e. g., to provide
the fused entities and entity clusters within integrated data sources such as knowledge
graphs.

We illustrate the approach by the example records in Table 5.1 about real geographical
entities of different types from five sources. The black lines on the left indicate existing

58

5.1. MOTIVATION

Table 5.1: Sample entities from the geographical domain to show holistic entity clustering. Black
lines on the left denote same-as links between entities.

id label source type latitude longitude

0 Lake Louise (Canada) NYTimes - 51.42 -116.23

1 Lake Louise GeoNames BodyOfWater 51.41 -116.23

2 Lake Louise, Alberta DBpedia Settlement - -

3 lake louise alberta FreeBase Settlement 51.43 -116.16

4 Lake Louise (Alberta) DBpedia BodyOfWater 51.41 -116.23

5 lake louise FreeBase BodyOfWater 51.41 -116.23

6 Mystic (Conn) NYTimes - 41.35 -71.97

7 N17632379615920 FreeBase - 41.35 -71.97

8 Mystic GeoNames Settlement 41.35 -71.97

9 Black Hill GeoNames Mountain 53.54 -1.89

10 Black Hill DBpedia Mountain 53.53 -1.88

11 Black Hill LinkedGeoData Mountain 53.96 -1.85

12 Black Hill LinkedGeoData Mountain 54.69 -2.15

13 katmandu (nepal) NYTimes - 27.72 85.32

14 Kathmandu GeoNames Settlement 27.7 85.32

15 Kathmandu DBpedia Settlement 27.7 85.33

16 Kathmandu FreeBase Settlement 27.7 85.37

owl:sameAs links that we utilize as input to build the clusters. To achieve a good
clustering, we cannot solely rely on existing links but also have to check the similarity
between records; for this purpose, we consider the entity labels (names), their semantic
type and the geographical coordinates. The table shows that the information about types
and coordinates is typically incomplete, making it difficult to achieve goodmatch quality.
We can also observe potential errors in the given links. For instance, Lake Louise is both
a city (type ’settlement’) and a lake (type ’body of water’), so that entity (0) with an
unknown type should only link to one of the two. The clustering leads tomany additional
matches compared to the initial links. For example, the cluster of the last four records
about Kathmandu implicitly represents six matches, i. e., three new ones ((14)-(15),
(14)-(16), (15)-(16)).

This chapter comprises the following contributions:

• The holistic clustering-based approach SplitMerge formatching entities in theWeb
of Data is proposed. It avoids the determination and maintenance of a huge num-
ber of pairwise mappings.

• We outline an initial method for the holistic clustering of real, possibly incom-
pletely described entities of different semantic types. The approach utilizes exist-
ing links and can identify incorrect as well as many additional links. After some

59

CHAPTER 5. HOLISTIC ENTITY CLUSTERING FOR LINKED DATA

preprocessing, the approach determines initial clusters by computing connected
components that are subsequently refined by cluster splits and merges.

• An initial evaluation of SplitMerge shows the effectiveness for matching real en-
tities from geographical data sources.

In the next section, we outline the problem statement. Section 5.3 describes and illus-
trates the SplitMerge clustering that builds on existing same-as links to determine entity
clusters. A preliminary evaluation is presented in Section 5.4. Finally, we discuss related
work in Section 5.5 and conclude.

5.2 PRoblem statement

The data model presented in Section 2.2 is used to implement the holistic clustering-
based approach. Table 5.1 shows a running example with data sources S and seman-
tic types T . The URIs of the entities E are replaced by short IDs (1 – 15) to provide
better readability. The specification of further properties is the basis for the follow-
ing similarity calculation. Similarities, e. g., determined by a link discovery framework,
provide the possibility to judge the strength of the connection between entities. Our
main algorithm (Section 5.3) uses a set of existing (or pre-determined) link mappings
L = ∪k

i,j=1Mi,j(1 ≤ i, j ≤ k, i ̸= j) as input in addition to the set of associated entities
E of the k data sources. The intention of the holistic entity clustering is the computation
of a set of clusters Ci for each semantic type Ti ∈ T , as described in the data model.
Accordingly, different clusters also represent different real-world entities. With the gen-
eral assumption of duplicate-free data sources, clusters can contain at most k entities. A
cluster is therefore source-consistent if it contains at most one entity per source. Each
cluster of z ≤ k entities represents z·(z−1)

2 match pairs (e. g., in a link discovery result set).
Thus, the cluster is generally a much more compact representation than with the use of
binary links. The unified cluster representatives R are used to compare clusters with
each other. The representative stores the list of encountered data sources to guarantee
source consistency.

5.3 Holistic clusteRing based on existing linKs

In this section, we outline the SplitMerge approach to determine entity clusters based
on existing mappings between the data sources to integrate. A high-level description of
the approach is given in Algorithm 1. Figure 5.1 illustrates the main workflow and its

60

5.3. HOLISTIC CLUSTERING BASED ON EXISTING LINKS

application to the sample records from Table 5.1. In addition to the existing set of links
and the associated entities from different sources, the input of the algorithm includes
domain knowledge about the semantic entity types, a similarity function fsim and sim-
ilarity thresholds ts, tm to determine the similarity of entities and clusters. While our
algorithm is generic, it can be customized to specific domains by providing appropriate
background knowledge, similarity functions and thresholds. For the considered geo-
graphical domain, the similarity function determines a combined similarity from the
string (trigram) similarity on normalized labels, the semantic type similarity and the
normalized geographical distance. SplitMerge consists of four major steps described in
detail in the rest of this section: preprocessing, initial clustering (connected components),
cluster decomposition and cluster merge.

Algorithm 1: SplitMerge Clustering
Input: Set of entities E from k sources, link set L, domain knowledge D, simFunc fsim,

thresholds ts, tm

Output: Set of clusters C
1 C ← ∅
2 E ,L ← preprocessing(E ,L, fsim, D)

/* initial clustering */
3 Cinit ←computeConnectedComponents(E ,L)
4 Lc ← computeLinkSim(Cinit, fsim)
5 Cinit ←refineConnectedComponents(Cinit,Lc)

/* cluster decomposition */
6 foreach c ∈ Cinit do
7 Csplit ← groupByType(c,Lc)
8 Csplit ← simBasedRefinement(Csplit,Lc, ts)
9 Csplit ← createRepresentatives(Csplit)

10 C ← C ∪ Csplit

/* create cluster mapping CM */
11 CM← computeClusterSim(C, fsim, tm)
12 while CM ̸= ∅ do
13 (c1, c2)← CM.getBestMatch()
14 cm ← mergeClusters(c1, c2)

/* cluster merge */
15 C ← C \ {c1, c2} ∪ {cm}
16 CM← adaptMapping(CM, C, cm, c1, c2, fsim, tm)

17 return C

61

CHAPTER 5. HOLISTIC ENTITY CLUSTERING FOR LINKED DATA

12 r6
11109

10 32

54

76 8

1413 1615

Input Output

109

10

54

6 8

1413 1615

32

7

r1 r2

r3

r4

r6

r5

r7

109

32

10

6 8

1413 1615

54

7

r2

r8

r4 r5

r7

Pre

processing

Initial

Clustering

Cluster

Decomposition
Cluster Merge

11 11

(a) (b) (c) (d)

10 32

54

76 8

109 1211

1413 1615

109 11

10 32

54

76 8

1413 1615

Figure 5.1: Application of the holistic SplitMerge clustering to the running example.

5.3.1 PRepRocessing

During preprocessing, we normalize the property values needed for the similarity com-
putation. In our case, we transform the label property to lower case and remove words
in parentheses and after delimiters. We further harmonize information about the seman-
tic types of entities and check that the input mappings do not violate the assumption of
duplicate-free data sources. Thus, preprocessing already identifies and eliminates incon-
sistent links to start the clustering process with cleaned input data.

Information about the semantic type of entities differs substantially between sources
or may be missing. For instance, DBpedia uses City and Town, whereas Freebase has a
type citytown and other related types. To overcome such differences, we use background
knowledge about the equivalence and comparability of entity types of different sources
to harmonize the type information. For this study, wemanually determine this typemap-
ping for our geographical sources. Alternatively, the mapping can be constructed with
the help of schema or ontology matching approaches based on linguistic and structural
matching techniques[156, 171]. Based on the typemapping, we simplify numerous types
to more general ones, e. g., the types city, village or suburb are treated as type Settlement.
After harmonizing the type information, we remove all links where the linked entities
have incompatible types. Note that we do not exclude links to entities with missing type
information, e. g., entity (0).

For duplicate-free data sources, each entity should have at most one equivalent entity
in any other data source. We therefore check whether the input mappings observe this
one-to-one cardinality restriction. In Table 5.1, this is not the case for the Geonames
entity (9) about Black Hill that links to two LinkedGeoData entities (11,12). In

62

5.3. HOLISTIC CLUSTERING BASED ON EXISTING LINKS

such cases, we only keep the best link for an entity (based on the similarity function
fsim) to obey the one-to-one criterion. In our example, we discard the link (9)-(12)
(see Figure 5.1 a) since (9) is geographically closer to (11) than to (12) according
to the coordinates in Table 5.1.

5.3.2 Initial ClusteRing

Using the preprocessed entities and mappings, we first identify a set of initial clusters
(Cinit) by computing all connected components as the transitive closure from the given
links (see Algorithm 1, line 3). Each resulting connected component builds an initial
cluster c covering all entities that are directly or indirectly connected via a same-as link
in L. In our running example, we create five different clusters covering 2-4 entities (see
Figure 5.1 b).

If the data sources are not really duplicate-free or if there are errors in the prede-
termined same-as links, it may happen that the connected components contain more
than one entity per data source and more than k entities in total. This incorrect as-
sociation can occur despite preprocessing, in which it is ensured that each entity of a
source is linked to at most one entity of a second source. For example, assume entities
a1 and a2 from the same source and entities b1 and c1 from two different sources. The
links (a1 − b1), (b1 − c1), (c1 − a2) obey the 1:1 restriction but result in a connected
component of all four entities of three sources. We thus determine within procedure
refineConnectedComponents (line 5) connected components with more than
one entity per data source and eliminate entities to ensure the restriction to enforce the
assumption of duplicate-free sources. The entities to be removed are selected based on
the similarity to other entities in the cluster. For this purpose, we calculate the similarity
between any two entities of a cluster using similarity function fsim and keep the result
in the link set Lc (line 4). Based on these similarities, we keep from each source with
multiple entities only the entity with the maximal similarity to the other entities.

5.3.3 ClusteR Decomposition

The initially created clusters can contain entities that should actually be separated, e. g.,
due to wrong input links or because of an insufficiently high transitive similarity be-
tween entities. For decomposition, we use two main approaches. First, we split clusters
with elements of different or incompatible semantic types. Second, we split clusters con-
taining entities with insufficient similarity to other cluster members. In Algorithm 1,
we apply the decomposition approach to each cluster in Cinit (see lines 6 to 10). We

63

CHAPTER 5. HOLISTIC ENTITY CLUSTERING FOR LINKED DATA

first apply the two kinds of cluster decomposition (GroupByType and Similarity-based
Refinement). Finally, we compute a cluster representative for each of the resulting clus-
ters (line 9). The resulting clusters from the decomposition phase (Csplit) are successively
added to the result set of clusters C (line 10).

Type-based GRouping

While we eliminate links with incompatible semantic types during preprocessing, there
are entities without type information that can lead to clusters with entities of different
types during the initial clustering. For our running example, this is the case for the
cluster (0,1,2,3) (see Figure 5.1 b). Our method groupByType splits such clusters
into several smaller sub-clusters Csplit with entities of the same type. Entities without
semantic types are then added to the sub-cluster of their most similar neighbor using
the previously computed link similarities in Lc. For the considered cluster of our ex-
ample, we first build sub-cluster (2,3) for type Settlement and the singleton cluster
(1) of type BodyOfWater. The untyped entity (0) is assigned to the cluster of the best
matching (geographically closer) entity (1), resulting in sub-cluster (0,1).

SimilaRity-based Refinement

We further split clusters based on the computed intra-cluster similarity between entities
(line 8 in Algorithm 1). Algorithms 2a and 2b show the computation of the similarity-
based refinement inmore detail. Algorithm 2a covers the iteration over the set of clusters
Csplit determined bygroupByType and calls the actual refinement functionsimCRefine
(Algorithm 2b).

Algorithm 2a: simBasedRefinement
Input: Set of clusters Csplit resulting from type-based grouping, link set Lc, split

threshold ts

Output: Set of clusters Cresult
1 Cresult ← ∅
2 foreach c ∈ Csplit do
3 Cresult ← Cresult∪ simCRefine(c,Lc, ts)

4 return Cresult

For each cluster, we determine the entity e with the lowest average similarity asimmin

(line 1 in Algorithm 2b) of its links to other cluster members using previously calculated
similarity values from Lc. If the average similarity is not below an individual threshold
ts, we do not split the cluster but leave the cluster unchanged (line 6). Otherwise (lines 2

64

5.3. HOLISTIC CLUSTERING BASED ON EXISTING LINKS

Algorithm 2b: simCRefine
Input: Cluster c, link set Lc, split threshold ts

Output: Set of clusters Cresult
1 e, asimmin ← getMinAvgSimEntity(c,Lc)
2 if asimmin < ts then
3 c← c \ {e}
4 return createCluster(e) ∪ simCRefine(c,Lc, ts)
5 else
6 return c

to 4), we separate entity e and recursively call the similarity-based refinement for the
reduced cluster to possibly identify further entities to separate. In the merge phase, such
separated entities may be added to other more similar clusters. In our running example,
the cluster (6,7,8) is decomposed into (6,8) and (7) as shown in Figure 5.1 c,
since entity (7) has a low similarity with (6) and (8) due to its completely different
label (see Table 5.1).

ClusteR RepResentative

For each cluster in the output Cresult of the previous steps, we create a cluster represen-
tative (line 9 in Algorithm 1) to facilitate the computation of inter-cluster similarities in
the merge step. The representatives of the final clusters can also be used to efficiently
match new entities, e. g., from additional data sources. We create the representative by
combining the properties from all entities in a cluster and select a preferred value for
each property with multiple values, e. g., based on a majority consensus, the maximal
length of string values or pre-determined source priorities. In the representative, we
also keep track of the data sources represented in the cluster (this helps to avoid con-
sidering merges with entities of already covered data sources). For our use case, we use
the longest string value for the preferred label value and prefer geo-coordinates from
GeoNames and DBpedia. For the example cluster (2,3), the representative r2 has la-
bel lake louise alberta, type Settlement, coordinates (51.43, -116.16) and sources (DBpedia,
Freebase).

5.3.4 ClusteR MeRge

The last step of our holistic clustering approach is the possible merging of clusters be-
low the maximally possible cluster size k. For this purpose, we first apply method com-
puteClusterSim (line 11) to determine the similarity between clusters by applying simi-

65

CHAPTER 5. HOLISTIC ENTITY CLUSTERING FOR LINKED DATA

larity function fsim on the cluster representatives. This operation is likely expensive as it
incurs a quadratic complexity w.r.t. the number of clusters. We can reduce the number
of comparisons by only considering clusters with fewer than k elements. We further do
not consider all cluster pairs that differ in their entity type or that overlap in their sets
of covered data sources. The cluster mapping CM computed for the remaining cluster
pairs is restricted to the most similar pairs of clusters with a similarity exceeding the
merge similarity threshold tm.

Cluster merging is an iterative process (lines 12 to 16) that continues as long as there
are merge candidates in CM. In each iteration, we select the pair of clusters (c1, c2) with
the highest similarity from CM and merge it into a new cluster cm (lines 13 to 14). This
merging also includes the computation of a new representative for cm. The “old” clusters
c1 and c2 are removed from C and the new cluster cm is added (line 15). We further need
to adapt CM by removing all cluster pairs involving either c1 or c2. Then, we extend CM
by similar cluster pairs for the new cluster cm, if cm has fewer than k elements. For this
purpose, we determine the similarity of cm with all other clusters of the same type and
with different sources. The termination of the merge step is guaranteed since we reduce
the number of clusters in each iteration. The number of potential merge candidates is
further reduced for increasing cluster sizes. Applying the approach to our example leads
to themerging of (0,1,r1) and(4,5,r3) into the new cluster(0,1,4,5,r8) (see
Figure 5.1 c,d) due to a high label, type and geo-coordinate similarity as apparent from
Table 5.1.

For our running example, the proposed approach could holistically cluster matching
entities from five data sources, thereby finding previously unknown links and eliminat-
ing wrong existing links for improved data quality. The six clusters in the result set
(Figure 5.1 d) implicitly represent 17 pairwise entity links compared to 12 initially given
links (Table 5.1), from which 3 turned out to be incorrect. In particular, we could now
identify matches between previously unconnected sources such as GeoNames and Free-
base.

5.4 Evaluation

We evaluate the SplitMerge clustering approach using two datasets. Evaluation dataset 1
(ED1) corresponds to the DI location subtask of the OAEI 2011 Instance Matching bench-
mark3 with links of presumed high quality. Evaluation dataset 2 (ED2) has been down-
loaded from the Linked Open Data repository LinkLion4. Figure 5.2 shows the number of

3OAEI 2011 IM: http://oaei.ontologymatching.org/2011/instance/
4LinkLion: http://www.linklion.org/

66

http://oaei.ontologymatching.org/2011/instance/
http://www.linklion.org/

5.4. EVALUATION

GeoNames

(1780)

Freebase

(1920)

1787

1920

ED1 ED2

GeoNames

(3600)

Freebase

(1917)

1787

1917

NY Times

(1920)

DBpedia

(1920)

DBpedia

(2664)

NY Times

(1920)
Linked

GeoData

(2761)

2526

Figure 5.2: Dataset structures for ED1 and ED2 with number of entities and links.

links between the four (ED1) resp. five (ED2) geographical data sources and the number
of entities that are interconnected by these links. We retrieved additional entity proper-
ties via SPARQL endpoints or REST APIs in the respective sources in 2015. Still, in ED1,
geo-coordinates were missing for 1009 entities (13.4%) and the type information even
for 2525 entities (33.5%). Similarly, in ED2, 957 entities (7.4%) have no geo-coordinates
and 2722 (21.2%) do not cover type information. For instance, NYTimes entities do not
provide any type information. We use the similarity function described in Section 5.3.
For the similarity thresholds ts, tm, we tested different settings, thus using a default of
0.7 that showed to produce good results w.r.t. cluster sizes and accuracy.

We first evaluate the resulting cluster sizes for the different phases of SplitMerge ap-
plied to these datasets (Table 5.2). During the preprocessing (not shown in the Figure),
we already removed seven wrong NYT-GeoNames links based on the one-to-one car-
dinality restriction for ED1. In ED2, the situation is more complex due to many one-
to-one violations (e. g., several entities can be linked among each other between two
data sources). We therefore removed 6921 links, including over 5500 links from Linked-
GeoData to GeoNames, to hold the one-to-one cardinality for each entity. For instance,
there is a group of 94 entities interlinked by 367 links. Each of the 94 entities repre-
sents a ’Black Hill’ whereof 3 entities occur in DBpedia, 45 in LinkedGeoData and 48 in
GeoNames. Within each source, the entities do not represent duplicates but are actually
different ’Black Hills’. In particular, there are 364 links between the 45 LinkedGeoData
and 48 Geo-Names entities, i. e., many entities are interlinked with several entities in the
respective other source. We thus keep only the best link for each entity in preprocessing.

As shown in Table 5.2, the initial clustering leads to clusters of sizes 3 and 4 for ED1,
whereas ED2 provides clusters of size 2–5. This satisfies the condition that a cluster
should not cover more entities than considered data sources. Applying the type-based
grouping and similarity-based refinement results in a significant number of cluster splits
and clusters of size 1 and 2 due to incompatible entity types and partially low intra-

67

CHAPTER 5. HOLISTIC ENTITY CLUSTERING FOR LINKED DATA

Table 5.2: Cluster sizes in workflow phases for evaluation datasets.

cluster

size

initial

clustering

decomposition cluster

mergetype-based sim-based

1 - 50 174 159

2 - 115 153 154

3 140 180 228 229

4 1780 1680 1594 1597

cluster

size

initial

clustering

decomposition cluster

mergetype-based sim-based

1 - 46 362 339

2 711 794 836 831

3 759 773 817 807

4 1067 1011 1063 1075

5 586 580 432 435

ED1 ED2

Table 5.3: Cluster accuracy for a sample of result clusters in datasets.

cluster

size
|cluster|

|sampled

clusters|

cluster

accuracy

link

accuracy

2 154 6 100.0 100.0

3 229 9 88.89 92.59

4 1597 64 98.44 98.96

1980 82 97.47 98.56

cluster

size
|cluster|

|sampled

clusters|

cluster

accuracy

link

accuracy

2 831 37 100.0 100.0

3 807 36 100.0 100.0

4 1075 48 97.91 98.61

5 435 19 100.0 100.0

3148 140 99.29 99.36

ED1 ED2

cluster similarity. In particular, the similarity-based decomposition points out that sev-
eral clusters contain dissimilar entities. During the merge phase, some of the smaller
clusters can be merged into larger ones leading to more clusters of sizes 3, 4 (and 5). In
particular, 15 (23) singleton clusters could be merged into clusters of size 2, 3 (and 4) for
ED1 (ED2). Overall, the resulting clusters in ED1 represent 10 423 links with 4803 new
links compared to the input link set. In particular, we could cluster many entities from
the previously unconnected sources GeoNames, DBpedia and Freebase. For ED2, we
had to remove a high number of links that violate the one-to-one cardinality restriction
(preprocessing), leading to 9641 input links for the initial clustering. Similar to ED1, we
then identify 4411 new links for ED2 in the subsequent workflow phases.

Evaluating the quality of the resulting clusters and thus the linking quality is chal-
lenging as it requires a perfect clustering for comparison. Determining such a perfect
clustering is inherently difficult even for humans and very time-consuming. We there-
fore evaluate the quality for a sample of the result clusters in this initial evaluation (see
Table 5.3). We randomly selected 4–5% of the clusters according to the distribution of
the cluster sizes in the datasets. This selection leads to 82 clusters for ED1 and 140 clus-
ters for ED2. We manually check the accuracy of the created clusters with all implicitly
contained links. The cluster accuracy denotes the percentage of correct clusters (clusters
that only contain entities with same-as semantics) in all sampled clusters, and the link
accuracy is the proportion of correctly created links. For ED1, all determined links in

68

5.5. RELATED WORK

clusters of size 2 are correct such that the cluster and link accuracy is 100%. For cluster
size 3, there is one wrong cluster with two wrong links and one wrong cluster of size 4
with 4 wrong links. The cluster of size 4 should have been actually separated into two
clusters of size 2. Overall, the evaluated clusters in ED2 showed to be very accurate.
Only one cluster of size 3 contained two incorrect links.

Overall, we achieve a very high cluster accuracy of 97.5% (99.3%) and a link accuracy
of 98.6% (99.4%) for ED1 (ED2). This meets our requirements for creating highly accu-
rate clusters that can later be iteratively expanded by adding further entities. So far, we
still have clusters of the size 1 and need to check whether those entities build separate
clusters or need to be added to other clusters. Based on these results, we will extend
our dataset samples and do more extensive evaluations w.r.t. the cluster quality in the
future.

5.5 Related WoRK

Link discovery has been studied intensively and a large number of approaches and pro-
totypes has been developed as surveyed in [132]. Virtually all approaches determine
links between only two sources and for entities of one semantic type. A few approaches
such as [21, 76] try to utilize existing mappings for deriving additional mappings, e. g.,
by their transitive composition. Similarly, [145] uses data from multiple Linked Data
sources to detect weak or not existing relations based on the transitivity of correct links.
In [100], the authors aim at improving the quality of joins on Linked Open Data by deter-
mining highly connected entity groups in a set of given links using metrics such as edge
betweenness. Although these approaches reuse existing links, the focus is primarily on
deriving new or correcting existing pairwise links. By contrast, our goal is a holistic
clustering of entities from many data sources and central maintenance of such clusters
for easy usability and extensibility. Our approach can deal with entities of different se-
mantic types, finds many additional links, and identifies and eliminates wrong links for
improved match quality.

A holistic matching of concepts in Linked Open Data sources has been proposed
in [72]. The authors first apply a topical grouping of concepts and then perform pair-
wise matching of concepts within groups (based on keywords from the concept labels
and descriptions) to determine clusters of matching concepts finally. The approach is
interesting as it tries to holistically combine conceptual knowledge across data sources,
e. g., as useful for the construction of knowledge graphs. However, the approach suffers
from scalability and coverage limitations and does not address the clustering of entities

69

CHAPTER 5. HOLISTIC ENTITY CLUSTERING FOR LINKED DATA

as in our scheme. In contrast, the approach of Bellare et al. [11] enables scalable cluster-
ing of data sources from the SemanticWeb based on distributed processing using Apache
Hadoop. The proposed framework allows the clustering of (potentially dynamic) multi-
ple sources based on connected components and subsequent refinement of the clusters.
Disadvantages are the restriction to the outdated Hadoop MapReduce platform and the
lack of public availability of the source code.

Clustering-based approaches have also been studied for entity resolution [31] outside
the Web of Data, however, mainly for only one or two data sources. For two sources,
proposed clustering approaches have similarities to our scheme in that they derive the
clusters from a binary mapping consisting of pairs of matching entities [77]. For the re-
lated problem of deduplication, Costa et al. [35] propose an incremental clustering proce-
dure that solves the assignment of new entities via two individual approaches. Both ap-
proaches use hash-based index structures to determine the optimal clustering. In a naive
approach, an inverted index is built that contains the word tokens of the attribute values
of the entities. The index is used to find similar entities for new elements for which the
set-based Jaccard distance should be determined by the word tokens. All candidates that
exceed a defined distance threshold are used to perform the cluster assignment for the
new element via a voting mechanism. The second approach employs locally-sensitive
hashing (LSH) [66] on sets of contiguous entity value substrings of length q (q-grams) to
find similar entities. Using min-wise independent permutations to encode the q-grams
of each entity to a hash-based fingerprint, similar entities have more agreements in the
fingerprints than dissimilar entities. The evaluation shows that the LSH-based approach
is more efficient because fewer similarity computations are needed for deduplication.
The approach by Costa et al. [35] treats all information of an entity as a single textual
attribute value. It is therefore limited in the evaluation of semantic properties and does
not support domain-specific attributes.

Some entity resolution approaches construct a similarity graph from the match corre-
spondences and determine subgraph clusters of connected and highly similar entities [71,
153]. These approaches are not only limited to two data sources but also consider only
one type of entities. They also do not consider the data quality issues we had to deal
with regarding wrong links and missing property values. The clustering approaches of
Saeedi et al. [163, 164] also use similarity graphs for entity resolution. Further similari-
ties to the herein presented approach, like support for multiple data sources and holistic
clustering of entities, allow a more detailed comparison. For this reason, the approaches
of Saeedi et al. are introduced at appropriate points in this dissertation and compared
with the evaluation results obtained as follows. In Chapter 6, the results of two static
entity clustering approaches [130, 164] are compared to the results for the newly intro-

70

5.6. CONCLUSION

duced incremental clustering. With the additional support for distributed processing
systems in Chapter 8, the subsequent comparison of multiple distributed clustering ap-
proaches [162] on Apache Flink is carried out in Chapter 9 together with the relevant
discussion of results.

5.6 Conclusion

In this chapter, we proposed the holistic SplitMerge approach for clustering-based link
discovery for many data sources. The approach utilizes existing links and canmatch enti-
ties of different semantic types. The determined entity clusters facilitate the integration
of more data sources without having to link them to each other data source individu-
ally. An initial evaluation for Linked Data from the geographical domain confirmed that
SplitMerge holds great promise as it can identify wrong links and many additional links
even between previously unconnected sources.

However, this holistic clustering approach on multiple data sources offers the poten-
tial for further work. For this reason, a distributed implementation of SplitMerge is
evaluated in Chapter 8 while an optimized domain-specific variant of SplitMerge is pre-
sented in Chapter 9. Furthermore, data sources are not always static, e. g., sources like
DBpedia are regularly updated and new entities are added. Alternatively, data sources
that have not yet been considered can be thematically relevant. An extension of the
holistic clustering approach to continuously changing data sources is thus discussed in
the following Chapter 6.

71

CHAPTER 5. HOLISTIC ENTITY CLUSTERING FOR LINKED DATA

72

6
Incremental Clustering on Linked Data

PReamble

The subsequent chapter is based on [133]. The concept of incremental clustering allows
a continuous addition of new entities and data sources. This complement to previously
often static linking and clustering can be used onmultiple data sources. Optimized meth-
ods are proposed to cover different use cases. An effective integration of entities from
several sources is possible as well as the addition of complete data sources. The incre-
mental clustering concept was presented on the DINA workshop in 2018 and published
in the appropriate ICDM workshop proceedings.

6.1 Motivation

Identifying and linking equivalent entities in different sources is the main challenge
within the Web of Data – many approaches have been developed to address this prob-
lem [132]. Besides pairwise linking of sources, there is an increasing need to integrate
equivalent entities from arbitrary sources more holistically, e. g., for entity clustering
within knowledge graphs [155]. Such a clustering facilitates the combination of the
property values of all clustered entities, e. g., persons, products or cities, for enriched
data representation. Entity clustering is a challenging problem since the degree of se-
mantic data heterogeneity and differences in data quality increase with the number of
sources from which equivalent entities should be clustered. In addition to high match
and cluster quality, high efficiency and scalability are essential for large data volumes

73

CHAPTER 6. INCREMENTAL CLUSTERING ON LINKED DATA

Cluster Set

DS 2

DS 1

DS n

new
DS

Data sources
(continuously

changing)

Integrated
knowledge graph

Entities of new source

Stream of new entities

…

Figure 6.1: Incremental update of entity clusters, e. g., in knowledge graphs.

and many sources. Finally, there is a strong need for dynamic or incremental entity
clustering that is not limited to a one-time computation of entity clusters, but that can
continuously update entity clusters to cope with changing and new entities, including
the incorporation of additional sources (see Figure 6.1).

Previous approaches to entity clustering [77, 163], including our ones [131, 164], are
mostly static, i. e., they determine entity clusters a single time from a fixed number of
static data sources. The clustering approaches use as input a set of binaryowl:sameAs
links connecting equivalent entities of different sources. These links either exist already
in theWeb of Data or have to be computed as a preparatory step. The links are commonly
organized within a similarity graph where vertices correspond to entities and edges to
similarity links. Unfortunately, the overhead to determine similarity graphs and thus
for static entity clustering is very high and grows quadratically with both the number
and size of the sources1. This holds even if one exploits common performance optimiza-
tions such as blocking [31] which reduces the number of entity comparisons only by a
constant factor k when we partition the entities of a source into k blocks (since an entity
only needs to be compared with the entities of one block per source). As a result, the
scalability of static entity clustering is likely limited to a smaller number of sources of
moderate size.

We thus argue for the use of dynamic or incremental entity clustering that can con-
tinuously update entity clusters for new entities and new sources without having to

1For n sources with m entities each, we have to compare each entity of a source with (n − 1) · m
entities given a total of n·(n−1)

2 ·m2 comparisons if we link every entity pair only once.

74

6.2. PROBLEM DEFINITION

completely recompute entity clusters. One approach could be to use a static clustering
scheme to create an initial set of clusters and use a separate approach to keep the clusters
up-to-date. We favor, however, a single dynamic approach that treats the entities of one
of the sources as an initial set of clusters and incrementally adds further entities from
the same or other sources as similarly sketched in [155]. This approach also promises
a reduced runtime compared to a static clustering of many sources since entity clusters
can incrementally be created in several steps without the need for the expensive creation
of large similarity graphs.

Specifically, the following contributions are made in this chapter:

• A proposal of incremental approaches to cluster entities from multiple sources
where new entities either result in new clusters or the addition to existing clus-
ters. The addition of entities to clusters is set-oriented, so that multiple entities
are considered together for an optimized assignment, compared to the isolated ad-
dition of individual entities. Furthermore, we provide a separate approach to add
entities of a single source.

• An evaluation for the incremental approaches analyzes cluster quality and runtime
for three domains and provides a comparison to static entity clustering.

In Section 6.2, we define the problem and provide background information on entity
clustering. Section 6.3 explains the proposed approach describing two strategies to real-
ize incremental clustering, which are then evaluated in Section 6.4. Finally, we briefly
discuss related work in Section 6.5 and conclude in Section 6.6.

6.2 PRoblem definition

While data sources may contain entities of many kinds, we focus on clustering entities
of a specific type of interest T , e. g., cities, persons or music songs for our evaluation
datasets. We assume further that there are no duplicates within data sources but only
between data sources. We adhere to the data model from Section 2.2.

An entity cluster or just cluster c groups a set of entities e1, . . . , ek that are assumed to
represent the same real-world entity. For each cluster, we determine a so-called cluster
representative r fused from the properties of all entities in the cluster. Specific properties
of the cluster representatives are used to determine the similarity between a new entity
and an existing cluster as a basis for deciding whether the entity should be added to the
cluster. We call a cluster source-consistent if it contains at most one entity per source,

75

CHAPTER 6. INCREMENTAL CLUSTERING ON LINKED DATA

otherwise source-inconsistent since it violates the assumption of duplicate-free sources.
The task of entity clustering has as input a set of data sources and determines and main-
tains a set of source-consistent and disjoint entity clusters C such that all entities within
a cluster match and different clusters refer to different real-world objects. This entity
clustering should be efficient and scalable to many sources and large data volumes.

For static entity clustering, the input is a fixed set of sources and the clustering is
performed only once. For dynamic or incremental clustering, however, the number and
contents of data sources can continuously change so that the entity clusters are to be
adapted accordingly to reflect the current state of the input data correctly. While entities
of a source may be added, changed or deleted, we focus on the addition of new entities
as the most complex case for maintaining entity clusters. Similarly, we only consider
the addition of new sources but not their removal.

The problem of incremental clustering thus has as input an existing (possibly empty)
set of source-consistent and disjoint entity clusters as well as a set of new entities. The
objective is then to create a new set of source-consistent and disjoint entity clusters
that include the new entities. In the general case, we have to find an n:1 assignment
between the new entities and the existing clusters. This is the case because an entity
is added to at most one of the previously existing clusters (or to a new cluster). How-
ever, several entities (of different sources) may be added to the same cluster. A special
case is given when all new entities come from the same source (e. g., when a new data
source is to be incorporated). Then, a 1:1 assignment is required, in which each exist-
ing cluster is extended by at most one new entity to avoid source-inconsistent clusters.
The 1:1 assignment problem between two sets of entities has already been studied exten-
sively in the past. Thus, approximate solutions such as stable marriage [63], Hungarian
algorithm [128] and the so-called Max-Both approach [42] have been proposed for its
solution. A recent study [60] has compared these alternatives and found the overall best
effectiveness and runtime efficiency for Max-Both. With this strategy, an element ei of
the first set is assigned to the best matching entity (cluster) cj of the second set only
if ei is also the top match for cj , e. g., there is no other entity for which the similarity
with cj is higher. Therefore, we apply the Max-Both approach in our source-specific
incremental matching.

6.3 IncRemental ClusteRing AppRoacH

This section describes the approach for the integration of dynamically added entities into
existing clusters. A first step creates all possible cluster candidates for integrating the

76

6.3. INCREMENTAL CLUSTERING APPROACH

C1 0.9

0.7
0.9 C2

C3

C4

0.95
0.8

e1

e2

e3

e4

e5

e6

e1

e3

e4

e5

C1

C2

C3

C4

C5

0.8

0.9

0.7

0.85

0.7

e2

C3 0.9

0.7

(a) Base approach (b) Source-specific approach

Figure 6.2: Cluster scenarios for base and source-specific approaches (colors imply different data
sources, all links are assumed to exceed the minimal similarity threshold).

new entities into existing clusters. Thus, the conditions of source-consistency as well as
exceeding a minimum similarity threshold tmin according to a domain-specific similarity
function fsim must be adhered to.

To limit the effort for finding the cluster candidates and improve the performance
of our incremental clustering, we apply standard blocking [31]. Both clusters and new
entities are partitioned into several blocks with a blocking function fblocking on selected
properties. For example, person entities could be partitioned based on a fixed-length
prefix of their surnames so that we only consider clusters for which the cluster repre-
sentative has the same prefix than the new person entity.

A straight-forward approach would consider each new entity e in isolation and add
it to the cluster with the highest similarity above tmin that does not yet contain another
entity from e’s source. If no such cluster exists, a new cluster is created for e. While this
is a reasonable approach, it may not be the best one if there are several entities to be
added at the same time. For the example in Figure 6.2a, the assignment of entity e2 to
cluster c2 would mean that no further entity of e2’s source could be added to c2, thereby
preventing that the more similar entity e3 is assigned to c2. This problem is especially
pronounced if all new entities are from the same source where we have to find a near-
optimal 1:1 assignment.

In the following, we therefore present two set-based approaches for incremental entity
clustering that try to avoid sub-optimal cluster assignments. We start with the general
approach that applies for new entities of different sources and outline then the source-

77

CHAPTER 6. INCREMENTAL CLUSTERING ON LINKED DATA

Algorithm 3: Set-based incremental entity clustering (base approach)
Input: Existing clusters Cexist, new entities Enew, similarity function fsim, blocking

function fblocking, minimum similarity threshold tmin
Output: cluster set C

1 Cnew ← createInitClusters(Enew, fblocking)
2 Cexist ← addBlockingInfo(Cexist, fblocking)
3 for block i in Parallel do
4 Li ← getClusterCandidates(Cexist, Cnew, fsim, tmin)
5 Lsorted ← sortLinkSims(Li)
6 foreach (cnew, cexist, sim) ∈ Lsorted do
7 if cexist ̸∈ Cnew then
8 continue()

9 if isSrcConsistent(cnew, cexist) then
10 cexist.add(cnew)
11 Cnew.remove(cnew)

12 return Cexist ∪ Cnew

specific approach to determine a 1:1 assignment between new entities and clusters. We
assume that the set of existing entity clusters is non-empty. This is not a limitation since
the approach can easily be bootstrapped by using the entities of one of the sources as
the initial clusters.

6.3.1 Base appRoacH

The pseudocode for set-based incremental clustering for entities of different sources is
shown in Algorithm 3. It uses as input the set of new entities Enew, the set of existing
clusters Cexist as well as blocking function fblocking, similarity function fsim and the mini-
mum similarity threshold tmin. Initially, a cluster is created for each new entity (cluster
set Cnew) and assigned to one of the blocks according to fblocking.

The main processing is performed independently (in parallel) for each of the blocks
with new entities. First, we compare every new entity with every cluster representative
of a block using fsim and create a set Li with candidate links. Li only contains links
(cnew, cexist, sim) that exceed a threshold tmin and where cexist does not yet contain an
entity from the source of cnew. To avoid sub-optimal cluster assignments, we then sort
the Li links and process them in descending order of their similarity so that the cluster
assignments with the highest similarity can be realized first. A new entity from cluster
cnew is only added to cluster cexist if it does not lead to a source-inconsistent cluster. The
addition to the cluster (function add) also involves adapting the cluster representative.
Since there are generally several candidate clusters for a new entity, we can ignore all

78

6.4. EVALUATION

further links for an assigned cnew. We achieve this by removing cnew from the set Cnew of
not yet assigned entities and check at the beginning of each iteration (line 7) whether the
current entity still needs to be assigned. The final result consists of the adapted cluster
set Cexist as well as the singleton clusters for new entities that remain in Cnew.

Figure 6.2a shows an example for the base approach with three blocks where thick
lines indicate the determined assignments. We observe that entity e3 is assigned to c2

since it is considered before e2 due to its higher similarity. The assignment of e2 is not
considered since its source is now already represented in c2. Entity e4 has two cluster
candidates, but after the assignment to c2, it is removed from Cnew so that its further
cluster candidates like c3 are ignored.

6.3.2 SouRce-specific incRemental entity clusteRing

We now deal with incremental clustering of new entities from a single source where we
determine a 1:1 assignment to the existing clusters based on theMax-Both approach. The
pseudocode in Algorithm 4 uses the same input parameters than before and determines
source-consistent candidate links between the new entities and the existing clusters in
parallel within partitioned blocks. To implement Max-Both, we determine a set of top
links for new entities (Lleft) and another link set for clusters (Lright). For each new entity,
Lleft contains the link to the most similar cluster and accordingly, Lright contains for each
cluster the link to the most similar entity. The assignment is then only done for links that
have the maximal similarity from both sides. The intersection of Lleft and Lright (line 11)
thus leads to the set of resulting links.

For the example of Figure 6.2b, the algorithm assigns only three entities to existing
clusters for which the Max-Both condition is satisfied. Note that the base approach
would have assigned entity e3 to cluster c3 while this assignment is not taken for Max-
Both since e3 has a higher similarity with c2. In general, Max-Both leads thus to fewer
cluster additions than the base approach to achieve high precision with only safe cluster
additions.

6.4 Evaluation

We first describe the evaluation datasets and setup and then analyze the effectiveness
and runtime efficiency of the proposed incremental clustering approaches.

79

CHAPTER 6. INCREMENTAL CLUSTERING ON LINKED DATA

Algorithm 4: Source-specific incremental entity clustering
Input: Existing clusters Cexist, new entities Enew, similarity function fsim, blocking

function fblocking, minimum similarity threshold tmin
Output: cluster set C

1 Cnew ← createInitClusters(Enew, fblocking)
2 Cexist ← addBlockingInfo(Cexist, fblocking)
3 for block i in Parallel do
4 Li ← getClusterCandidates(Cexist, Cnew, fsim, tmin)
5 Lleft = ∅
6 Lright = ∅
7 foreach cnewi ∈ Cnew do
8 Lleft.add(Li.getBestLeftCandidate(cnewi))
9 foreach cexisti ∈ Cexist do
10 Lright.add(Li.getBestRightCandidate(cexisti))
11 Lmax-both ← Lleft ∩ Lleft
12 foreach (cnew, cexist, sim) ∈ Lmax-both do
13 cexist.add(cnew)
14 Cnew.remove(cnew)

15 return Cexist ∪ Cnew

Table 6.1: General information for evaluation datasets.

domain entity properties #entities # sources
DS-G1 geography name, longitude, latitude 3,054 4

DS-M1 music artist, title, album, 19,375 5
DS-M2 year, length 1,937,500 5

DS-P1 persons name, surname, 5,000,000 5
DS-P2 suburb, postcode 10,000,000 10

Table 6.2: Overview of perfect cluster sizes and best configuration values.

perfect result results best configuration
clusters # links conf(tmin, bk) # correct links F-measure

DS-G1 820 4,391 conf(0.4, 1) 4,109 0.983

DS-M1 10,000 16,250 conf(0.5, 1) 15,066 0.955
DS-M2 1,000,000 1,624,503 conf(0.7, 1) 1,396,520 0.874

DS-P1 3,500,840 3,331,384 conf(0.7, 6) 2,720,479 0.814
DS-P2 6,625,848 14,995,973 conf(0.7, 6) 11,847,678 0.805

80

6.4. EVALUATION

6.4.1 Datasets and Setup

We use five datasets of three domains (geography, music and persons) that have already
been used for static entity clustering [130, 163]. Tables 6.1 and 6.2 give an overview
of the datasets, including available properties and the number of entities. The small-
est dataset DS-G1 comprises real geographic data on settlements from the four knowl-
edge bases DBpedia, GeoNames, Freebase and NYTimes. The datasets for the music and
person domains are based on real data, which are then synthetically changed with the
DaPo tool [82] to introduce corruptions of property values as well as duplicates across
sources. Music datasets DS-M1 and DS-M2 originate from MusicBrainz2, while the per-
son datasets DS-P1 and DS-P2 are based on publicly available voter data from North
Carolina. The largest dataset, DS-P2, has 10 sources and 10 million entities. The datasets
with their perfect cluster result can be obtained from our website3.

Table 6.3 shows the blocking and similarity functions applied in the experiments. For
blocking, we apply load-balanced standard blocking using a prefix of a single property
(geographic and music datasets) or the concatenated prefixes of two properties (person
datasets) as a blocking key. We consider prefixes of different lengths to vary the block
sizes and thus the number of necessary comparisons and achievable recall. For similarity
computation, we mostly compute the Cosine Trigram similarity for string attributes; for
the geographical entities, we additionally consider the normalized geographic distance.
For the music datasets, we apply Cosine Trigram on the concatenation of three property
values. For DS-P1 and DS-P2, we determine the average of four property similarities.
For all datasets, a match requires that the computed similarity values meet a variable
minimum similarity threshold tmin.

Table 6.3: Blocking and similarity functions used for incremental clustering.

dataset blocking key similarity function
DS-G1 prefixLength(name): 1 Trigram (name) + normalized geographical

distance
DS-M1 /
DS-M2

prefixLength: 1-5 of (artist +
title + album)

Trigram (artist + title + album)

DS-P1 /
DS-P2

prefixLength(surname): 1-3 +
prefixLength(name): 1-3

avg(Trigram (name) + Trigram (surname) +
Trigram (suburb) + Trigram (postcode))

2Musicbrainz https://musicbrainz.org/
3FAMER project https://dbs.uni-leipzig.de/research/projects/object_

matching/famer

81

https://musicbrainz.org/
https://dbs.uni-leipzig.de/research/projects/object_matching/famer
https://dbs.uni-leipzig.de/research/projects/object_matching/famer

CHAPTER 6. INCREMENTAL CLUSTERING ON LINKED DATA

The quality of the incrementally determined entity clusters is compared with the per-
fect cluster results that are available for our datasets. Each cluster corresponds to several
match links (correspondences) by assuming that each pair of entities within a cluster
matches. So the resulting link sets of the computed clusters and the perfect clusters
are used to determine the standard metrics precision, recall and the harmonic mean, F-
measure, to measure cluster quality. Table 6.2 includes the number of clusters and links
of the perfect cluster result as well as the number of correct links and F-measure for the
best incremental clustering configurations. Hence, the incremental clustering schemes
achieve F-Measure results of more than 95% for the two smaller datasets DS-G1 and
DS-M1 and more than 80% for the larger datasets.

The experiments are carried out on a cluster with 16 workers, each of them equipped
with an Intel Xeon E5-2430 6x 2.5 GHz, 48 GiB RAM, 2x 4 TiB SATA disks and 1 Gbit
Ethernet connection. The machines operate on OpenSUSE 13.2 and Flink 1.5.0. All ex-
periments are carried out three times to determine the average execution time. Together
with a description of the implementation on Apache Flink, the scalability of incremental
clustering is examined in Chapter 8.

6.4.2 ExpeRimental Results

We analyze the cluster quality and runtime of incremental clustering for our datasets.
Mostly, we consider the incremental addition of entire sources and, thus, the use of
source-specific incremental clustering. However, we also examine the partial addition
of data sources and compare source-specific clustering with the base approach as well
as the static entity clustering.

Effect of data souRce oRdeRing

Theproposed incremental approaches are likely dependent on the order inwhich sources
and entities are added to the integrated set of clusters. For example, an incorrect addition
of entities to clusters impacts the cluster representatives and thus all further cluster
decisions. We thus evaluated different orderings for the incremental addition of data
sources for our datasets. We found that the ordering had little impact on the synthetically
generated music and person datasets because the sources are largely of the same size and
quality.

However, for the real dataset DS-G1, we observed significant differences for the or-
derings. In general, we could achieve very good clustering quality for this small dataset
with the best F-measure of 98.4% (precision 99.98%, recall 96.8%), which meets the best
results for static entity clustering [130, 164]. The top result is achieved by the sequence

82

6.4. EVALUATION

Table 6.4: Effect of data source ordering for DS-G1.

Source Freebase GeoNames NYTimes DBpedia
Position for clustering 1./2. 3./4. 1./2. 3./4. 1./2. 3./4. 1./2. 3./4.
Avg. F-measure 0.971 0.955 0.970 0.964 0.974 0.952 0.944 0.982

(Freebase, GeoNames, NYTimes, DBpedia). We analyzed all possible order permutations
and found that source DBPedia should not be used in the beginning since it lacks the
geographical coordinates for 57 % of its records, while the other sources have the coor-
dinates for almost all entities. In Table 6.4 we show for each of the four sources the
average F-measure results for all permutations where the source has either been used in
the beginning (as first or second source) or at the end (source no. 3 or 4) in the sequence
of added sources. We observe that the use of DBpedia in the beginning leads to much
lower quality than its use towards the end (average F-measure of 94.4 % vs. 98.2 %)
since the missing information can lead to many wrong match decisions. By contrast,
using other sources at the start leads to generally better F-measure than using them last.
We conclude that data quality (w.r.t. the properties used for matching) has a high impact
and that incremental clustering should start with high-quality data sources.

For comparison, we also used the base approach for incremental clustering rather than
the source-specific approach. As expected, the base approach resulted in a somewhat re-
duced cluster quality with 97.3% F-measure for the best sequence (instead of 98.4%). We
further investigated a more dynamic change scenario without adding entire sources. For
this, we initially add 80% of the entities of the four sources (randomly selected) followed
by two further batches of new entities, each consisting of 10% of the entities of the four
sources. The base approach for incremental clustering achieved an F-Measure of 97.0%
for this scenario, indicating that the partial addition of sources does not significantly
reduce cluster quality.

CompaRison of incRemental and static clusteRing

We now compare the runtime and cluster quality for the two incremental approaches
with static entity clustering for datasets DS-M2 and DS-P1. We focus the analysis on
a specific blocking key (length 4 for DS-M2, length 6 for DS-P1), similarity threshold
(tmin 0.7) and use the same blocking and similarity functions to determine the similarity
graphs for static entity clustering. We consider two state-of-the-art approaches formulti-
source entity clustering on the similarity graph, namely the CLIP approach of [164] and
the SplitMerge approach from Chapter 5.

83

CHAPTER 6. INCREMENTAL CLUSTERING ON LINKED DATA

Table 6.5: Incremental compared to static clustering for DS-M2 and DS-P1 with blocking key length 4
and 6 resp. with tmin = 0.7.

(a) Runtime and quality for DS-M2.

DS-M2 Incremental Static
Base Source CLIP SplitMerge

runtime (s) 4148 1093 1748 + 68 1748 + 659
precision 0.744 0.888 0.848 0.838
recall 0.844 0.826 0.815 0.822
F-measure 0.791 0.856 0.831 0.830

(b) Runtime and quality for DS-P1.

DS-P1 Incremental Static
Base Source CLIP SplitMerge

runtime (s) 614 217 107+101 107+752
precision 0.553 0.811 0.850 0.798
recall 0.836 0.817 0.821 0.851
F-measure 0.665 0.814 0.835 0.824

Table 6.5 shows the obtained runtime and F-measure results where the runtime of
static entity clustering consists of the sum of the time to create the similarity graph
and the time for clustering itself. We observe that source-specific incremental cluster-
ing reaches not only substantially better F-measure than the base incremental approach
but also much better runtime due to the fast Max-Both approach to determine 1:1 assign-
ments. The 1:1 assignments of source-specific incremental matching lead to dramatically
improved precision over the base approach, especially for DS-P1 the precision increases
from 55.3% to 81.1%; that more than outweighs the somewhat reduced recall thereby
achieving a substantial improvement in F-Measure (85.6% vs. 79.1% for DS-M2 and
81.4% vs. 66.5% for DS-P1). At the same time, the improved quality is achieved by a
much-lowered runtime by factor 3.8 for DS-M2 and factor 2.8 for DS-P1.

In comparison to static clustering, we expect better runtime and a reduced match
quality for incremental clustering since we only optimize cluster assignment for a sub-
set of entities at a time. For DS-M2, the time to generate the similarity graph for static
entity clustering (1748 s) is already higher than for the entire source-specific incremen-
tal clustering despite the use of blocking key length 4 and therefore small blocks. For
DS-P1, we used blocking keys of length 6, which reduces the overhead for the graph

84

6.5. RELATED WORK

generation for the static approach to only 107 s. Therefore, overall runtime for graph
generation and CLIP (107 s + 101 s) is about the same as for the source-based incremen-
tal approach (217 s), while the static approach SplitMerge is slower by a factor of 4. The
base incremental approach is mostly slower than the static approaches. However, the
runtime for the incremental approaches is the sum for all source additions, while each
incremental addition of entity sets and sources is typically faster than a complete static
(re-)computation of clusters.

In terms of match quality, we observe that the base incremental approach is always
inferior to the static approaches but that the source-specific incremental approach is
actually better for DS-M2 (2.5% higher F-measure) and only slightly worse for DS-P1
(1.0-2.1% lower F-measure than SplitMerge and CLIP). We can thus conclude that the
source-specific incremental clustering reaches comparable cluster quality than the static
approaches with typically faster runtime and support for the dynamic addition of new
entities and sources.

6.5 Related WoRK

Previous approaches to cluster entities (including connected components and correlation
clustering) weremostly static and often considered only entities from a single source [77].
Static clustering of entities from multiple sources has been studied in [11, 131, 163, 164].
An overview of previous research for matching both schemas (ontologies) and entities
from multiple sources for holistic data integration is provided in [155].

Relatively little work has been published on incremental entity resolution. Most pre-
vious approaches, including [35, 190], follow the straight-forward approach to consider
new entities in isolation and add it to the cluster with the highest similarity above a
threshold.

The incremental clustering approach of Gruenheid et al. [71] is more sophisticated.
They determine and incrementally update a similarity graph to find the best cluster as-
signments. Their approaches are also able to repair previous cluster decisions. The eval-
uation focuses on changes for two single datasets of small size, thus leaving open the
scalability to large datasets and several data sources, which is the focus of our work.

6.6 Conclusion

This chapter proposed and evaluated incremental approaches to clustermatching entities
frommultiple sources. In contrast to static entity clustering, the new approaches can con-

85

CHAPTER 6. INCREMENTAL CLUSTERING ON LINKED DATA

tinuously integrate additional sources and entities and avoid the expensive computation
of similarity graphs for entities frommany sources. To optimize the cluster assignments,
we consider sets of new entities together. Especially promising is the source-specific in-
cremental clustering determining a 1:1 assignment between entities and existing clusters
using a Max-Both strategy. The evaluation for datasets from three domains showed that
the proposed approaches are highly effective and efficient and often faster than with
static entity clustering. The source-specific approach outperforms the base approach in
both cluster quality and runtime and should thus be applied whenever possible.

With the presentation of holistic and incremental approaches, we already showed ef-
fective linking and clustering strategies in the last two Chapters 5 and 6. We thus applied
methods to improve scalability on large datasets. This includes the avoidance of un-
necessary comparison calculations between participating entities. Therefore, blocking
strategies and the reuse of existing links from portals such as LinkLion (see Chapter 4)
are essential.

Still, the constant growth and new data sources present a challenge to the continuous
integration of knowledge bases. For this reason, the following chapters address strate-
gies for distributed execution using modern Big Data frameworks.

86

Part III

Parallelization of Clustering
Strategies

87

7
Introduction to Distributed Data

Processing

This chapter gives an overview of developments regarding distributed data processing.
First, the ApacheMapReduce system is used to show basic concepts in Section 7.1. Subse-
quently, state-of-the-art distributed processing systems and the corresponding concepts
are presented in Section 7.2. The decision on the distributed processing system for ap-
plication in this work is then derived based on the collected information.

7.1 BacKgRound and Basic Concepts

Distributed processing frameworks apply ideas being already used in early models de-
signed for parallel data processing such as bulk-synchronous processing [181] or parallel
message-passing [68]. Thus, modern frameworks apply variations of the following com-
ponents to enable computations on distributed data.

• Physically distributed processing units for parallel calculation/storage

• Exchange of messages between the processing units

• Possibilities to synchronize between processing units

This also applies to the MapReduce programming model, which was introduced in
2004 [39] and outperformed previous systems in terms of hardware abstraction and ease
of use. At this time, it was the first system to support the processing of very large

89

CHAPTER 7. INTRODUCTION TO DISTRIBUTED DATA PROCESSING

amounts of data on shared-nothing clusters consisting of commodity hardware. The
following description of the concepts behind MapReduce provides an initial overview of
distributed processing systems. In addition to strengths, weaknesses are also addressed
to transition to current distributed data processing systems.

The MapReduce paradigm allows the processing of large amounts of data on concur-
rent computer systems. Its central concept is the use of the two higher-order functions
Map and Reduce to execute arbitrary user-defined logic. Meanwhile, partitioning of data,
scheduling execution, handling hardware failures and communicating between comput-
ers is handled by the underlying abstraction layer – the Apache Hadoop platform1. Typ-
ically, distributed file systems like Apache HDFS are used to maintain data, e. g., to en-
able desired features like redundancy and scalability. This includes immutability for all
stored data collections, since writing a new version is less complex than changing ex-
isting data. Starting a MapReduce computation for the common example of counting
words for multiple lines of text (l1, . . . , ln), the lines are automatically partitioned and
distributed across the available machines. Then, each machine applies the user-defined
map function (e. g., split words) on the initial key/value pairs (line number/list of words,
e. g., (l1, [example, words])) to create intermediate key/value pairs (e. g., (example, 1),
(words, 1)). The intermediate result is redistributed so that entries with the same key
are on the same physical machine. These key/value pairs are then grouped on the key to
apply the user-defined reduce function (e. g., sum up the word frequency) to form a final
set of key/value pairs (e. g., the individual frequency for each word). Alternatively, the
reduce function can combine complex values via custommerge or aggregation functions.

The ease of developing individual programs and providing the MapReduce implemen-
tation as part of Apache Hadoop has made a significant contribution to this popular-
ity. The integration of functionality for implementing fault tolerance in the event of
hardware failures and exploiting data locality ensures a higher level of performance and
successful execution of calculations [39]. In summary, the strengths of MapReduce are

• Abstraction layer to handle distribution, storage, communication and hardware
failures

• Efficient execution of calculations on immutable collections of data

• Mapping of all user-defined logic to transformation functions Map and Reduce.

Unfortunately, MapReduce has also disadvantages due to its architecture [112]. For
example, the materialization of intermediate results between Map and Reduce function

1Apache Hadoop https://hadoop.apache.org/

90

https://hadoop.apache.org/

7.2. STATE OF THE ART

leads to a decrease in efficiency, especially for MapReduce jobs that are executed itera-
tively or sequentially [108]. In addition, MapReduce cannot utilize global state informa-
tion that would be useful for iterative algorithms. Thus, iterative processes have to write
(and read) intermediate results over and over again from disk. Consequently, unneces-
sary resources are consumed for these I/O operations [112]. Due to these fundamental
limitations, new general-purpose distributed processing frameworks have been devel-
oped. In the following section, two current approaches and underlying concepts are
presented to point out improvements.

7.2 State of tHe ARt

Current general-purpose distributed processing systems avoid disadvantages of prede-
cessors while pushing new developments. Two well-known representatives of general-
purpose distributed processing systems used in both industry and research are Apache
Flink [27] and Apache Spark [194]. They are are designed for batch as well as continuous
streaming workloads.

Data transformations already known from MapReduce are supplemented by estab-
lished transformations from the domain of relational databases. Operations such as
filter, join, union or group-by together with aggregation functions offer scope for ef-
ficient workflow processing. A brief overview on transformation operations is given in
Table 7.1 along with minimal examples. Complex workflows therefore combine dif-
ferent transformations, which can be mapped to a directed acyclic graph (DAG). In this
graph, vertices reflect transformations that are connected by edges indicating data flow.
This form of modeling corresponds to the dataflow paradigm [41], which is used in vari-
ous Big Data frameworks. For this reason, the term distributed dataflow system is also
accepted.

When starting a dataflow program, transformations in the DAG are not executed di-
rectly due to the so-called lazy evaluation. Only the explicit triggering by specific com-
mands, e. g., by writing the results into a data sink, leads to the actual evaluation of
all necessary transformations. Depending on the execution environment, an execution
plan is then created to make optimal use of the computing resources and to carry out any
possible optimizations. Finally, data “flows” across the graph through transformations
until it is stored in a data sink as a result.

An unnecessary and too frequent materialization of (intermediate) results is avoided
by keeping results of the workflow in in-memory data structures. Therefore, datasets are
always an immutable collection of in-memory data objects, which are distributed across

91

CHAPTER 7. INTRODUCTION TO DISTRIBUTED DATA PROCESSING

Table 7.1: Exemplary dataset transformation operations used in general-purpose distributed process-
ing systems, e. g., for Apache Flink.

Operation Description

Filter Return all dataset elements for which the UDF returns true.
input.filter(udf: IN -> Boolean)

(Flat)Map

Map- and FlatMap transformations apply a UDF on each element
of the dataset. Map functions emit exactly one resulting element
per input while FlatMap functions may emit arbitrary result ele-
ments (including none). Input IN and output type OUT do not
need to be identical.
input.map(udf: IN -> OUT)

Reduce

By executing a UDF, (possibly grouped) elements are combined
to form a single value resp. multiple result values (for each
group). One of many possibilities is a dataset grouped by speci-
fied keys to reduce/combine the key/value pairs as follows.
input.groupBy(keys)

.reduceGroup(udf: IN -> OUT)

(Flat)Join

A Join transformation combines elements of two datasets with
equal values on (tuple) key(s) and creates exactly one result ele-
ment for Join and arbitrary result elements for the FlatJoin based
on a UDF .
leftInput.join(rightInput)

.where(leftKey).equalTo(rightKey)

.with(udf: (left,right) -> OUT)

CoGroup

Similar to the join operator, elements from two datasets are
grouped on a key. Matching elements are processed in the UDF
by iterating over both result groups.
leftInput.cogroup(rightInput)

.where(leftKey).equalTo(rightKey)

.with(udf: (left,right) -> OUT)

Union Create the union of two datasets having the same type.
leftInput.union(rightInput);

Aggregate
Aggregations like sum, min, max or UDFs can be applied to
grouped datasets
input.aggregate(SUM, key);

92

7.2. STATE OF THE ART

the computer cluster. The results of transformations are always immutable datasets
again.

A central job scheduler distributes the operators of the dataflow graph to the individ-
ual workers in the cluster. The job scheduler also coordinates the handling of execution
errors via checkpoints and recovery options. The data shuffling required for many op-
erators such as join is handled directly between individual workers via a network con-
nection. Results can be materialized into various data sinks, e. g., HDFS, Apache Kafka
or custom output formats. In addition to the respective basic functionality, Spark and
Flink offer optimized engines for the execution of relational SQL-like operators, machine
learning and graph processing algorithms.

In summary, current distributed processing systems have significant advantages over
previous systems, such as

• Support for batch and streaming workload,

• Extended set of transformation operators,

• Efficient use of dataflow paradigm,

• Lazy evaluation of transformations in the DAG and

• In-memory data structures without (unnecessary) materialization.

7.2.1 CompaRison of DistRibuted PRocessing Systems

When comparing the features of Apache Spark and Apache Flink, the two systems are
similar in many ways. Both support the characteristics summarized in the last section,
whereby the individual realizations differ. For example, Flink and Spark diverge in the
implementation of streaming concepts. Apache Flink uses its internal streaming engine
and defines transformation operators that can process streaming data at event time. For
batch processing, Apache Flink provides the DataSet API as a special case of stream
processing, allowing to apply transformation operators to the entire dataset as well as
optimizations, e. g., for the execution order of the operators [27]. By contrast, Spark’s
streaming approach collects streaming data for a short time interval and performs a
minimalistic batch computation [194]. The Flink DataSet API enables the optimized
execution of operators in the DAG. A cost-based approach selects the best execution
plan from several options to optimally arrange grouping and join operators [27]. Apache

93

CHAPTER 7. INTRODUCTION TO DISTRIBUTED DATA PROCESSING

Spark provides similar operator optimization functionality with the DataFrame API but
is limited to relational operators [4]. Due to this limitation, the complex workflow for
data integration and clustering with custom logic cannot be adequately covered by the
DataFrame API.

Both systems support additional libraries to provide functionality such as graph pro-
cessing, machine learning or features regarding relational operators. In complex general-
purpose workflows, these additions allow the use of specialized operators. Still, it is nec-
essary to consider the share of specialized operators, since, e. g., systems optimized for
graph-processing or machine-learning deliver higher performance with a suitable work-
load [104, 193]. In performance comparisons of general-purpose distributed processing
systems, both Apache Spark and Apache Flink achieve good results [64, 98, 116, 183]
for a broad set of algorithms, including graph algorithms. In [98], execution times of
graph algorithms like PageRank [24] and the semi-clustering algorithm of Pregel [119]
are compared within the graph libraries GraphX (Apache Spark) and Gelly (Apache
Flink). For the clustering algorithm, Flink improves the runtime by factor 5.1 for the
largest dataset with 3.2× 106 edges. Similarly, the runtime results for PageRank are
consistently faster using Apache Flink. Another study [183] is evaluating six algorithms
(including three iterative ones) on Apache Spark, Flink and Hadoop. The authors con-
clude that both Apache Spark and Apache Flink deliver significant performance gains
over Hadoop MapReduce. Compared to Spark over Flink, however, the former is more
mature and provides better performance on average. Through native support for itera-
tive algorithms, Apache Flink can achieve up to 3.6x better runtime than Apache Spark
for algorithms like PageRank. Li et al. [116] show mixed results for the comparison of
different algorithms. In detail, Apache Spark performs better for WordCount, linear re-
gression and ALS, while Apache Flink shows better results for PageRank and SSSP. The
frameworks also have critical dependencies towards the corresponding system configu-
ration and the used datasets [98, 183]. This is the case for both Apache Spark and Apache
Flink meaning that new releases can bring significant performance changes or necessary
configuration adjustments.

The continuous development of both systems allows the introduction of new features
and the revision of existing ones. For example, Apache Spark improves the support
for streaming workload and adds a stronger integration of deep learning frameworks2.
In contrast, Apache Flink takes steps to unify the batch and streaming APIs and intro-

2Apache Spark release notes version 2.3.0 (https://spark.apache.org/releases/
spark-release-2-3-0.html) and 2.4.0 (https://spark.apache.org/releases/
spark-release-2-4-0.html)

94

https://spark.apache.org/releases/spark-release-2-3-0.html
https://spark.apache.org/releases/spark-release-2-3-0.html
https://spark.apache.org/releases/spark-release-2-4-0.html
https://spark.apache.org/releases/spark-release-2-4-0.html

7.2. STATE OF THE ART

duces new features for streaming, such as managed state3 or transactions with ACID
support [38].

7.2.2 ApacHe FlinK

The implementation of the data integration workflows in the following Chapters 8 and 9
relies on Apache Flink [27]. This section describes criteria and the Apache Flink features
that led to the framework decision and shows the mapping of the data model to the data
structure. For the integration of different Linked Data sources, batchwise processing
with the Apache Flink DataSet API using general transformations (Table 7.1) is preferred
over stream processing. The immutable, in-memory and distributed data structures are
called DataSets and provide data for transformations within Flink programs. Transfor-
mations manipulate DataSets by applying user-defined functions with application logic.
The entire set of transformations then spans the DAG, which is optimized before exe-
cution. The optimizer selects the best execution plan for the DAG with a cost-based
estimation, e. g., network, I/O and CPU cost. This includes reusing data partitioning and
sort orders for successive transformations such as joins as well as chained execution for
successive (map) functions for better performance4. Depending on the physical data dis-
tribution, data needs to be shuffled across cluster nodes to execute transformations such
as join or reduce. Still, the network traffic for data shuffling can be reduced by various
techniques. For example, instead of a reducer, a combiner transformation can be used
to pre-aggregate data. Therefore, when possible, elements are already combined locally
in the context of each worker.

From the set of libraries providing additional functionality, we use the graph process-
ing engine Gelly in our approaches. In particular, we employ Gelly graphs containing a
DataSet of vertices and edges

class Graph<K, VV, EV> graph {
DataSet<Vertex<K, VV>> vertices;
DataSet<Edge<K, EV>> edges;

}.

The complex data types Vertex and Edge are inherited from the Flink Tuple
classesTuple2<K,VV> (typeK as vertex ID,VV as vertex value),Tuple3<K,K,EV>

3Apache Flink release notes version 1.7.0 (https://flink.apache.org/news/2018/
11/30/release-1.7.0.html) and 1.8.0 (https://flink.apache.org/news/2019/
04/09/release-1.8.0.html

4Optimizer Internals Apache Flink https://cwiki.apache.org/confluence/
display/FLINK/Optimizer+Internals

95

https://flink.apache.org/news/2018/11/30/release-1.7.0.html
https://flink.apache.org/news/2018/11/30/release-1.7.0.html
https://flink.apache.org/news/2019/04/09/release-1.8.0.html
https://flink.apache.org/news/2019/04/09/release-1.8.0.html
https://cwiki.apache.org/confluence/display/FLINK/Optimizer+Internals
https://cwiki.apache.org/confluence/display/FLINK/Optimizer+Internals

CHAPTER 7. INTRODUCTION TO DISTRIBUTED DATA PROCESSING

(source vertex ID, target vertex ID (each type K) and EV as edge value), respectively. Op-
erators like join, filter or group-by rely on key expressions or tuple positions (starting
from 0), e. g.,

vertices.join(edges)
.where(0).equalTo(1)
.with((vertex, edge) -> new Tuple1<>(edge.getSimilarity))
.filter(tuple -> tuple.f0 >= 0.9);

This expression joins all edges with the vertices where the vertex ID (tuple position
0 in vertices) equals the target ID of the edge (tuple position 1 in edges). It then
returns the similarity value if the accompanied filter function is successfully evaluated.
Using Gelly’s graphs, the structures from the data model (Section 2.2) can be easily trans-
ferred into vertices and edges. Entities E correspond to Gelly vertices and links L with
their properties are handled as Gelly edges. Similarly, clusters C and representatives R
are mapped to Gelly vertices while potential similarities between clusters resp. repre-
sentatives are depicted by Gelly edges.

Additional programming abstractions provide efficient iterations that can transfer
state information from one iteration to the next. In the special case of DeltaIteration, the
set of elements for the next iteration is kept separate from the set of already finalized
elements. This procedure means that subsequent iteration steps in rapidly converging
procedures require decreasing numbers of calculations. Complete recalculations in each
iteration step can thus be avoided.

By using Gelly, we also benefit from abstract graph processing operators like graph
neighborhood aggregations or operators that apply the above-described iterations to
graphs. Efficient iterations are an important factor for distributed graph processing.
Several programming abstractions have been developed to solve algorithmic problems,
such as vertex-centric, scatter-gather, gather-sum-apply [99]. These programming ab-
stractions are also supported by the graph processing library Gelly which is included
in Apache Flink. Compared to the equivalent GraphX in Apache Spark (vertex-centric
iteration only), Gelly offers more flexibility in choosing the appropriate model [98].

The implementation of the concepts for holistic and incremental clustering (Chapters 5
and 6) for physical data integration on Apache Flink therefore employs various (graph
processing) operators from Flink and Gelly. In particular, we use the delta iteration in
different variations, e. g., vertex-centric iteration (Pregel [119]), gather-sum-apply com-
putation (PowerGraph [67]) or custom implementations.

96

8
Distributed Clustering Strategies

PReamble

The major part of this chapter is based on [130] and describes the distributed implemen-
tation of the SplitMerge clustering approach. It covers all steps of the complex data in-
tegration process leading to the final cluster representation. Accordingly, Apache Flink
and Gelly specific algorithms such as vertex-centric iteration are used and illustrated
with examples. However, results for scalability are presented for both SplitMerge [131]
clustering and incremental clustering [133]. The distributed holistic clustering [130] was
presented at the ODBASE conference in 2017 and was published in the respective con-
ference proceedings of the OTM 2017.

8.1 Motivation

Linking entities from various sources and domains is one of the crucial steps to sup-
port data integration in the Web of Data. A manual generation of links is very time-
consuming and nearly infeasible for the large number of existing entities and data sources.
As a consequence, there has been much research effort to develop link discovery frame-
works [132] for automatic link generation. Platforms like DataHub1 or <sameAs>2

or repositories such as LinkLion [134] collect and provide large sets of links between
numerous different knowledge sources. They can be reused to avoid an expensive re-

1DataHub platform https://datahub.io
2sameAs platform http://sameas.org

97

https://datahub.io
http://sameas.org

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

determination of the links. It is particularly complex to ensure high link quality, i. e.,
the generation of correct and complete link sets. Existing link repositories cover only a
small number of inter-source mappings and automatically generated links can be erro-
neous in many cases [52]. Despite the huge number of sources to be linked, most link
discovery tools focus on a pairwise (binary) linking of sources. However, link discovery
approaches need to scale for n-ary linking tasks as well as for an increasing number of
entities and sources that are added to the Web of Data over time [155].

To address these shortcomings, we recently proposed the SplitMerge approach to clus-
ter Linked Data entities from multiple data sources into a holistic representation with
unified properties [131]. The method combines entities that refer to the same real-world
object in one compact cluster instead of maintaining a high number of binary links for
k sources. The approach is based on existing owl:sameAs links and can deal with
entities of different semantic types as they occur in many sources (e. g., for geographical
datasets, countries, cities, lakes). Input links are checked for consistency and new links
(e. g., for previously unconnected sources) are identified. We also proposed an approach
to handle the addition of new entities or data sources to existing knowledge bases [133],
to support the integration of dynamically changing data sources.

Considering the huge size and number of sources to be linked, scalability becomes a
major issue. Linking and clustering approaches usually comprise complex operations
such as similarity computations to identify entities or clusters according to a given re-
lation. These complex work steps can often be parallelized using distributed Big Data
execution frameworks such as Apache Spark or Flink [27] to reduce execution time sig-
nificantly. With regard to the ever-increasing amount of data to be linked and integrated
in typical Big Data processing workflows, scalable solutions for link discovery and holis-
tic entity clustering are essential.

A further and long-standing problem is the poor availability of reference datasets that
can be used as a gold standard for quality evaluations. Since link discovery usually fo-
cus on pairwise matching, the few existing benchmarks cover links between two data
sources. However, there is an increasing need to evaluate the effectiveness of multi-
source clustering, as holistic data integration scenarios like the construction of knowl-
edge graphs gain increasing research interest [46, 146]. The creation of new reference
datasets for quality evaluation of n-ary linking and clustering approaches can be use-
ful for the community and support the development of improved holistic clustering ap-
proaches.

Herein we study distributed clustering approaches for SplitMerge and incremental
clustering. In contrast to the previous work, we support blocking strategies to reduce
unnecessary comparisons and present a comprehensive evaluation of quality and effi-

98

8.2. PROBLEM STATEMENT

ciency on real-world data for different domains. An extended version with more details
on Flink implementation and creation of a reference dataset can be found in [129]. This
chapter provides the following contributions:

• We present distributed clustering approaches for Linked Data to enable an effec-
tive and efficient clustering of large entity sets from many data sources.

• We provide a novel reference dataset for multi-source clustering from the geo-
graphic domain. We evaluate the effectiveness of our approach with the new gold
standard and a further artificial dataset from the music domain.

• We further evaluate the efficiency and scalability of the distributed implemen-
tation of the SplitMerge and incremental clustering approaches for very large
datasets with millions of entities from various domains.

The remainder of this chapter is organized as follows. After a description of the
problem statement in Section 8.2, the implementation of the distributed clustering ap-
proaches is presented in Sections 8.3 and 8.4. The clustering gold standard is provided in
Section 8.5, together with evaluation results for both distributed clustering approaches.
Finally, we discuss related work in Section 8.6 and conclude.

8.2 PRoblem Statement

In accordance with the data model from Section 2.2, the goal of the holistic clustering
approaches is to cluster same real-world entities from different data sources. For an
efficient determination of clusters for large datasets, the batch processing part of Apache
Flink [27] is employed. The execution of theworkflow is parallelized on a shared-nothing
cluster, while computations are based on in-memory data structures. By using the graph
processing engine Gelly, entities E and clusters C can be mapped to Gelly vertices, and
accordingly, links are mapped to Gelly edges. For the sake of clarity, the common Gelly
terms vertices and edges are used in this chapter rather than entities and links. Our
implementation employs the Flink DataSet API with data transformations like filter, join,
union, group-by or aggregations (relational databases) and map, flat-map and reduce
(MapReduce paradigm). As described in Section 7.2.2, we additionally utilize abstract
Flink and Gelly operators, e. g., to perform efficient iterative computations. Intermediate
results are represented as vertices, edges and graphs, which can be written to disk, e. g.,
in JSON format. Within complex transformations, unneeded properties are removed
using the Flink TupleX representation instead of Vertex or Edge to reduce the
amount of network traffic and memory consumption.

99

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

2

4

6

7

3

5

1.0

0.7

0.9

0.8

0.9

0.3

cid5

Initial Clustering Cluster Decomposition

CC+Sim-Compute

1

A B

C D

C D

E

l3

l2l1

l4

2

4

l6l5

l7

6

7

V={1,2,3,4,5,6,7}
E={{1,2},{1,3},{1,4},
{5,6},{6,7}}
Types T={ t1, t2, -}
Properties: label
Sources S={A,B,C,D}

3

1

5

G = (V, E)

Type-based
Grouping

A B

C D

C D

E

l3

l2l1

l4

2

4

l6l5

l7

6

7

𝒱={1,2,3,4,5,6,7}
ℰ={(1,2), (1,3),
(1,4), (5,6), (6,7)}
Types T={ t1, t2, -}
Properties: label
Sources S={A,B,C,D}

3

1

5

𝒢= (𝒱, ℰ)

cid1

2

4

6

7

3

1

5

1.0

0.9

0.9

0.3

cid1

cid5

cid3

Sim-based
Refine

Cluster
Representative

2

4

6

3

1

5

rcid1=(cid1, {1,2},
l1, T={t1}, S={A,B})

rcid3=(cid3, {3,4},
l4, T={t2}, S={C,D})

rcid5=(cid5, {5,6},
l5, T={t1}, S={C,D})

rcid7=(cid7, {7},
l7, T={t1}, S={E})

𝓒 ={cid1,cid3,cid7}

rcid5
0.9

rcid3

Blocking +
Cluster Similarity

Cluster Aggregation

rcid7

2 651

rcid1=(cid1, {1,2,5,6},
l1,T=t1, S={A,B,C,D})

7

43

rcid7=(…)

rcid3=(…)

Cluster Merge

rcid1

rcid1=(cid1, {1,2,5,6},
l1,T={t1}, S={A,B,C,D})

7

1.0

0.9

0.9

cid1

cid5

cid3

cid7

cid1

cid7

cid3

Figure 8.1: Running example for distributed SplitMerge clustering workflow.

8.3 DistRibuted SplitMeRge ClusteRing

In this section, we discuss the transformation and adaptation of the SplitMerge workflow
towards a distributed processing workflow. From a high-level perspective, entities and
links are loaded into a Gelly graph to generate clusters using a set of transformation
operators. We illustrate the workflow steps using the running example in Figure 8.1.
There are six input edges E and seven input vertices V further described by a label (l1,
l2, …), the originating data source from S and colored dependent on their semantic type
(t1, t2 or no type).

8.3.1 PRepRocessing

In preprocessing, we apply several user-defined functions on the input graph, e. g., to
harmonize semantic type information, remove inconsistent edges and vertices and nor-
malize the label property value. First, we compute similarities for the given input edges
based on vertex property values. For each vertex, we carry out a consistency validation
using grouping on adjacent vertices and associated edges, and further remove neighbors
with equal data sources (for details see Chapter 5). We omit the preprocessing step in
the example (Figure 8.1) and directly start with the preprocessed input graph G.

8.3.2 Initial ClusteRing

To determine initial clusters, we compute the connected components (CC) within G and
assign a cluster ID to each vertex. In the example, vertices 1− 4 obtain cluster IDs cid1
and vertices 5−7 cid5. Intra-cluster edges are then generated within each cluster accom-
panied by a similarity computation based on properties such as a linguistic similarity on
labels or normalized geographical distance.

100

8.3. DISTRIBUTED SPLITMERGE CLUSTERING

𝓒

ℰ𝓒

Select best type option based
on maximal similarity

For type-less vertices, get
cluster-internal type options

For each cluster, create sub-
clusters for different types

GroupBy + ReduceGroup

GroupReduceOnNeighbors Filter + GroupBy + Aggregate

Join +
Update

(a) VertexCentricIteration

1. Iterate messages, compute asimmin
2. Disable vertex with lowest similarity

(from 2nd superstep on)

1. Get active vertices
2. Send edge similarity to neighbors

MessagingFunction

VertexUpdateFunction

(b)

𝓒

ℰ𝓒 𝓒

ℰ𝓒
𝓒

Figure 8.2: Sub-workflows with operators for type-based grouping (a) and similarity-based refine-
ment (b).

8.3.3 ClusteR Decomposition

Type-based grouping is the first part of the decomposition to split clusters into sub-
components dependent on the compatibility of semantic types. Figure 8.2a shows the
sequence of applied transformations and short descriptions. Within clusters, a Reduce-
Group function assigns new cluster IDs based on semantic types, e. g., vertex 3 and 4 are
separated from vertex 2. Vertices without a type (like vertex 1) require special handling.
We apply GroupReduceOnNeighbors (a Gelly CoGroup function to handle neighboring
vertices and edges) to produce tuples for vertices with missing semantic type. Vertex 1
creates a Tuple (id,sim,type,cid) for each outgoing edge ((1, 2), (1, 3), (1, 4)),
namely (1, 1.0, t_1,cid1) for edge (1, 2) and (1, 0.8, t_2, cid2)
for edge (1, 3) and (1, 4). Grouping on the vertex ID executes an aggregation function
for each group to return the tuple with the highest similarity per vertex, which is (1,
1.0, t_1, cid1) for vertex 1. Processed vertices update their cluster ID accord-
ingly (e. g., vertex 1 → cid1). The result of the type-based grouping is a set of clusters
with intra-cluster edges.

Similarity-based refinement is the second part to decompose clusters by removing non-
similar entities from clusters. We use a Gelly vertex-centric iteration to exchange mes-
sages between vertices and update the vertices accordingly (see Figure 8.2 b for details).
At the end of each iteration (also called superstep), the process is synchronized between
all computer nodes. In the first superstep, all vertices are active and send messages to
all their neighbors. Messages are tuples containing the originating id, the edge simi-
larity and an average edge similarity asim of all incoming messages (0 in the first su-
perstep). Starting with the second superstep, we illustrate the sent messages for vertex
7 in cluster cid5 in our example: vertex 5 sends (5, 0.4, 0.65) to 7, vertex 6
sends (6, 0.3, 0.6) to 7 and vertex 7 sends messages to 5 and 6, resulting in
asim = (0.4 + 0.3)/2 = 0.35 for vertex 7. Now in each cluster, the vertex with the
lowest asim is deactivated (and excluded from the cluster), given that this asim is be-

101

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

DeltaIteration

Join workset with updated clusters
→ update workset

Get most similar candidate per block and
merge → update clusters in solution set

GroupBy + Reduce + FlatMap

Join + Filter + Map

Update

Create initial workset
(merge candidates)

Create initial solution set

Map

ApplyBlocking + Map

𝓒 𝓒
Solution Set

Stepfunction

Figure 8.3: Sequence of transformations for the cluster merge using Flink DeltaIteration.

low a certain similarity threshold. In Figure 8.1, vertex 7 deactivates and is isolated into
cluster cid7. Vertices send only messages if they are updated and deactivated vertices
never send messages again; therefore, iteration termination is guaranteed.

Finally, we create a unified Cluster Representative for each cluster based on contained
entities. Aggregation of property values is used for covered data sources and semantic
types as well as the selection of best label or geographic coordinates, see Figure 8.1.

8.3.4 ClusteR MeRge

For the final merge phase in our distributed holistic clustering workflow, we use the
Flink DeltaIterate operator together with user-defined functions. The main operators
are sketched in Figure 8.3. During merge, we iteratively aggregate highly similar (likely
small) clusters into larger ones. With the creation of representatives for each cluster, we
already reduced the number of entities for the merge step. Since we potentially compare
every cluster with every other cluster, the quadratic complexity can become a problem
for very large cluster sets. Thus we employ blocking strategies and avoid unnecessary
comparisons. Currently, we implement standard blocking on specified property values,
such as using the first letters of the label as a blocking key. We avoid further unneces-
sary comparisons since we do not compare representatives with incompatible semantic
types and check for already covered data sources since we assume duplicate-free data
sources. Our example in Figure 8.1 shows three blocks resulting from the blocking step:
rcid1 and rcid5 need to be compared, such that a triplet (rcid1, 0.9, rcid5) is created as a
merge candidate. For rcid3, no merge candidate is created because there is no other rep-
resentative with type t2, whereas rcid7 is in a separate block due to its dissimilar label
compared to other representatives.

The delta iteration starts with an initial solution set containing the previously deter-
mined clusters and an initial workset (merge candidates), as seen in Figure 8.3. Within
each iteration of DeltaIterate, a custom step function updates the current workset to

102

8.4. DISTRIBUTED INCREMENTAL CLUSTERING

generate changes for the current solution set. The next workset and the updates to the
solution set are then passed to the next iteration step. In detail, the workset is grouped
by the blocking key and for each block, the triplet with the highest similarity exceeding
the minimum similarity is selected using a custom Reduce function. For our running
example, (rcid1, 0.9, rcid5) is the best merge candidate and therefore merged within a
custom FlatMap function. The new cluster rcid1 contains combined values for properties
like sources S = {A, B, C, D}, the list of contained vertices ({1, 2, 5, 6}) and unified
properties like the label l1. This directly affects the cluster representatives in the solu-
tion set, and the already merged cluster rcid5 is deactivated in the solution set. Now the
merge candidates within the workset are adapted based on changed clusters within the
iteration step (see Figure 8.3 solution set). The appropriate new cluster rcid1 replaces
the deactivated cluster representatives and merged triplets ((rcid1, 0.9, rcid5)) as well as
generated duplicate triplets are removed from the workset. Again, triplets are discarded
if the data sources for the participating clusters overlap or exceed the maximum pos-
sible number of covered sources. The delta iteration ends either when the workset is
empty (default, and true for our running example after the first iteration) or a maximum
number of iterations took place. Note, that for larger datasets, parts of the dataset may
converge faster to a solution, when clusters can not be merged anymore. These parts
are not recomputed in following iterations, such that only smaller parts of the data are
processed.

8.4 DistRibuted IncRemental ClusteRing

The concept of incremental clustering and the distributed workflow is described in Chap-
ter 6. This section deals with implementation details related to the distributed execution
of the incremental clustering substeps on Apache Flink.

First, the entities and possibly existing clusters are distributed to the individual work-
ers in the cluster by means of blocking. For this purpose, we apply the blocking strategy
Block Split [106], which is optimized for shared-nothing clusters. This allows load bal-
ancing to be used to distribute skewed blocks to several machines automatically. Within
the parallel generation of cluster candidates based on connected components, the source-
consistency and a minimal similarity between candidates are ensured. From this point
on, two different incremental methods realize a base approach and a source-specific ap-
proach.

The base approach tries to achieve the optimal assignment of entities for each con-
nected component to the existing clusters. For this purpose, a Gelly GroupReduceOn-

103

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

Neighbors function is used to enrich links with useful information from the neighbor-
hood. In particular, this includes information about the source affiliation of the entities
to determine an optimal cluster assignment together with the similarities. Sorting the
links by descending similarity in the next Reduce Function allows to select the best links
that meet the conditions, e. g., regarding source-consistency. Selected links lead to a clus-
ter assignment and at the same time to the removal of the corresponding entity from the
set of cluster candidates to avoid duplicate assignments. A final Reduce function for the
base approach creates new cluster representatives based on connected components.

The source-specific approach aims to achieve a 1:1 assignment of the generated can-
didates, for which Max-Both is used. Based on the similarities between the candidates,
Max-Both calculates two sets of individual top links for both the new entities and the
existing clusters. The parallel execution is handled by basic Flink operators to group and
select the maximum similarity per entity. The intersection of both top link sets is deter-
mined by a join operator and post-processed by a user-defined function. Finally, similar
to the base approach, cluster representatives are adapted to complete the assignment.

8.5 Evaluation

We evaluate the distributed clustering approaches w.r.t. effectiveness and efficiency for
datasets from three domains. First, we describe details of the used datasets (Section 8.5.1)
and present a novel reference dataset for multi-source clustering, including its creation
process (Section 8.5.2). Then, the effectiveness of the distributed clustering approaches
is evaluated in Section 8.5.3. Based on large datasets from various domains, we also
analyze the efficiency and scalability of the distributed clustering approaches.

8.5.1 Datasets

To evaluate the distributed clustering approaches, we utilize seven datasets of differ-
ent sizes from the geographic, music and person domain. Table 8.1 shows the available
property values for entities, the number of covered entities and sources, as well as the
number of correct links and clusters in the reference mappings. We use datasets DS-G1
and DS-M1 to evaluate the quality of entity clusters generated by the distributed Split-
Merge clustering while DS-G2, DS-M2 and DS-M3 are used to analyze the efficiency and
scalability of the approach (see Section 8.5.3). For distributed incremental clustering, we
extend the evaluation of Chapter 6 and focus on large-scale datasets. Therefore, DS-M2
and DS-P1 are employed to describe qualitative results, while both person datasets are
used to show scalability and execution times (see Section 8.5.3). In the following, we

104

8.5. EVALUATION

Table 8.1: Overview of evaluation datasets. Number of resulting clusters and deduced correct links
are given for reference datasets.

domain entity properties #entities #src #correct links #clusters

DS-G1 geography label, semantic type, 3,054 4 4,391 820
DS-G2 longitude, latitude 1,537,243 5 - -
DS-M1

music
artist, title, album, 19,375 5 16,250 10,000

DS-M2 year, length, 1,937,500 5 1,624,503 1,000,000
DS-M3 language, number 19,375,000 5 16,242,849 10,000,000

DS-P1 person name, surname, 5,000,000 5 3,500,840 3,331,384
DS-P2 suburb, postcode 10,000,000 10 6,625,848 14,995,973

briefly introduce the datasets for the given domains before we describe the novel refer-
ence dataset for multi-source clustering in Section 8.5.2. All datasets can be retrieved
from the Database Group Leipzig website3.

GeogRapHic Domain

We use two datasets (DS-G1, DS-G2) from the geographic domain, covering entities from
the data sources DBpedia, GeoNames, NY Times, Freebase for DS-G1 and additionally
LinkedGeoData for DS-G2. Entities for both datasets have been enriched with properties
like entity label, semantic type and geographic coordinates by using provided SPARQL
endpoints or REST APIs. DS-G1 is based on a subset of existing links provided by the
OAEI 2011 Instance Matching Benchmark4 that is also a subset of DS-G2. The 3,054
entities in DS-G1 create a novel reverence dataset for multi-source clustering (see Fig-
ure 8.4 a, dataset creation described in Section 8.5.2). Dataset DS-G2 covers about 1.5
million entities from five sources (see Figure 8.4 b) and originates from the link reposi-
tory LinkLion [134]. We reuse about 1 Mio existing owl:sameAs links from LinkLion
as input for the clustering. However, there is no reference dataset available to evaluate
the quality of created clusters for dataset DS-G2. We use DS-G2 to evaluate the scalabil-
ity of our approach for very large entity sets.

3Benchmark datasets https://dbs.uni-leipzig.de/de/research/projects/
object_matching/benchmark_datasets_for_entity_resolution

4http://oaei.ontologymatching.org/2011/instance/

105

https://dbs.uni-leipzig.de/de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
http://oaei.ontologymatching.org/2011/instance/

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

Figure 8.4: Exemplary dataset structures for DS-G1 (a), DS-G2 (b) and DS-M1 (c) with number of
entities and links.

Music Domain

The publicly available Musicbrainz dataset covers artificially adapted entities to repre-
sent entities from five different data sources [82]5. Every entry in the input dataset
represents an audio recording and has properties like title, artist, album, year, language
and length. The property values have been partially modified and omitted to generate
a certain degree of unclean data and duplicate entities that need to be identified. This
includes format changes for properties like year (e. g., ′06, 06 or 2006) and song length
(2m 4sec, 02:04, 124000 or 2.0667).

The artificially generated datasets cover between 19,375 and 19,375,000 tuples (see
Table 8.1, DS-M1 to DS-M3). Each of the datasets contains a fixed proportion for each
cluster size: cluster size 1 (50 %), size 2 (25 %), size 3 (12.5 %), size 4 and 5 (6.25 %,
resp.). This means that, for instance, 12.5 % of all entities can be assigned to clusters
of size 3. Furthermore, cluster size 3 is the equivalent of three same-as entities from
different sources due to the source-consistency. Besides a set of artificially created du-
plicates, each dataset covers cluster IDs from which links between entities, that refer to
the same object, can be easily derived. Resulting clusters cover between about 16,000
and 16,000,000 links and up to 10 million clusters.

PeRson Domain

The two datasets from the person domain (see Table 8.1, DS-P1 and DS-P2) are based
on publicly available voter data from North Carolina. This voter data was syntheti-
cally duplicated and the contained attribute values name, surname, suburb and postcode
were partially corrupted. Thus five (DS-P1) resp. ten (DS-P2) data sources with up to
10,000,000 entities were generated, which can be used for holistic clustering. Although
DS-P2 does not have the largest number of entities, it has great complexity due to the

5Musicbrainz test data https://vsis-www.informatik.uni-hamburg.de/
oldServer/teaching//projects/QloUD/DaPo/testdata/

106

https://vsis-www.informatik.uni-hamburg.de/oldServer/teaching//projects/QloUD/DaPo/testdata/
https://vsis-www.informatik.uni-hamburg.de/oldServer/teaching//projects/QloUD/DaPo/testdata/

8.5. EVALUATION

Figure 8.5: Visualization of an incorrect cluster for two different settlements named “Brezinka” and
“Birkenau” connected by an incorrect same-as link. Cluster representatives are illustrated
by rectangles (on the left), while vertices are shown as circular pins (on the right).

largest number of data sources and most clusters in the perfect result (nearly 15 million
clusters).

8.5.2 RefeRence Dataset foR Multi-souRce ClusteRing

We created a new manually curated reference dataset for multi-source clustering to sup-
port the evaluation of the quality for generated clusters in holistic clustering approaches.
Available benchmarks usually only contain links between two data sources. We provide
a gold standard based on real-world data from the geographic domain and make it avail-
able for other researchers. The reference dataset covers the input dataset and the perfect
cluster result as JSON files and can be downloaded on the project site6.

The reference dataset is a selection of entities with the semantic type “settlement”
from the location subset of the OAEI 2011 Instance Matching Benchmark. We made a
manual selection decision for vertices using available properties and edges. We further
checked the correctness of semantic types. For instance, the vertex for “Canary Islands”
was removed since its correct type in the geographic dataset should be “island” instead
of “settlement”. Removing a vertex resulted in the deletion of all its associated edges.
For manual curation, we visualized the data using an open-source geographic map tool7

(see Figure 8.5). To determine the perfect clusters and check for the correctness of the
input data, we have two views on the data. First, the original links are represented as
(thick) yellow links. The second view shows the resulting clusters created by SplitMerge
clustering. Colored circular pins represent actual vertices with their properties, while
rectangular pins illustrate the newly determined cluster representatives with label, type
and vertices within the cluster. The pin color distinguishes different clusters.

6https://dbs.uni-leipzig.de/research/projects/linkdiscovery
7uMap https://umap.openstreetmap.fr/en/, import data as GeoJSON

107

https://dbs.uni-leipzig.de/research/projects/linkdiscovery
https://umap.openstreetmap.fr/en/

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

In particular, correct clusters were defined based on the results of the SplitMerge clus-
tering. In case of doubt, Wikipedia was used as an additional knowledge source about
certain geographical entities. For each cluster, we decided whether it is correct or needs
to be deleted, split into several clusters or merged with another cluster. During the man-
ual curation, all clusters of maximum size (w.r.t. the number of data sources) were cor-
rect. Modifications to obtain the perfect result included the addition of further vertices
to a cluster or removing vertices from clusters. For example, in Figure 8.5, the origi-
nal Birkenau/Brzezinka (german/polish name) cluster needs to be split into two clusters
due to a wrong link between two distinct geographic places. In the original data, the
cluster covered all four entities, while SplitMerge determined two clusters. The green
pin labeled Birkenau (Poland) in NYTimes, as well as the purple pin next to it (labeled
Brzezinka in GeoNames), should actually form one cluster. The two vertices of the south-
east cluster are another settlement in Poland, which has the same name, Brzezinka. The
example represents a difficult case for automatic clustering and linking due to very dif-
fering vertex labels. The resulting reference dataset covers 820 cluster representatives
containing information on covered cluster vertices. Based on the cluster IDs, one can
easily derive all intra-cluster links to obtain the set of all correct links.

8.5.3 ExpeRimental Results

We now present evaluation results for the quality of the determined clusters and the
scalability for the distributed implementations of SplitMerge as well as the incremental
clustering for three domains.

Setup and ConfiguRations

Theexperiments are carried out on a clusterwith 16workers, each of them equippedwith
an Intel Xeon E5-2430 6x 2.5 GHz, 48 GB RAM, 2x 4 GB SATA disks and 1 GBit Ethernet
connection. Themachines operate on OpenSUSE 13.2 using Hadoop 2.6.0 and Flink 1.1.2.
All experiments are carried out three times to determine the average execution time.

To obtain input link datasets for SplitMerge clustering on the geographic dataset DS-
G1, we applied link discovery methods on the input entities using three different con-
figurations (config 1, config 2, config 3). All configurations compute similarities based
on JaroWinkler on the entity label; configurations 2 and 3 additionally compute a nor-
malized geographic distance similarity below a maximum distance of 1358 km. Config 1
applies a minimal similarity threshold of 0.9 for labels while configs 2 and 3 apply thresh-
old 0.85 and 0.9 for the average label and geographic similarity, respectively. Links for

108

8.5. EVALUATION

Table 8.3: SplitMerge evaluation of cluster quality for geography dataset DS-G1 based on precision
(P), recall (R) and F-measure (F1).

config 1 config 2 config 3
P R F1 P R F1 P R F1

Input links 0.933 0.806 0.865 0.964 0.938 0.951 0.981 0.799 0.881
Best (Star1, Star2) 0.863 0.844 0.853 0.963 0.941 0.952 0.951 0.838 0.891

SplitMerge 0.903 0.824 0.862 0.913 0.919 0.916 0.968 0.836 0.897

DS-G2 were extracted from the LinkLion [134] repository, and have been computed by
different link discovery tools from the community.

For the music dataset DS-M1, we created input links using a soft TF/IDF implementa-
tion weighted on title (0.6), artist (0.3) and album (0.1) with a threshold of 0.35. DS-M2
and DS-M3 are used to show scalability; therefore, we create edges based on the cluster
ID from the perfect result by linking the first entity of each cluster with all its neighbors.

DistRibuted SplitMeRge ClusteRing

The achieved cluster quality is analyzed for the geographic dataset DS-G1 based on preci-
sion, recall and F-measure. We first use existing input links from the considered subset in
the original OAEI dataset (see Figure 8.4 a). This manually curated benchmark achieves
a precision of 100 %. However, many links between certain data sources are missing
leading to a reduced recall of only 50 % and an F-measure of 66.7 %. With SplitMerge,
we achieve very good results w.r.t. recall (97.1 %) while preserving a good precision
(99.8 %), resulting in the F-measure of 98.5 %. This shows that our approach produces
high-quality clusters based on existing input links, thereby finding many new links.

However, as input mappings are not perfect in real-world situations, we used auto-
matically generated input links for three linking configurations (config 1-3), as described
above. To evaluate the cluster quality, we further provide a comparison to the recently
published results from [163]. The work implemented several existing clustering algo-
rithms. Here, we only select the respectively best results achieved with two versions of
Star clustering [6] (Star1, Star2). It is important to note that in contrast to SplitMerge,
Star clustering creates overlapping clusters. Thus clusters may contain duplicates. Be-
sides, Star clustering does not create a compact cluster representation. Table 8.3 shows
results for the cluster quality for the computed input links, the best result of (Star1, Star2)
and our approach. SplitMerge clustering (F-measure 86.2 %) nearly retains the input link
quality (86.5 %) for config 1, while best(Star1, Star2) achieves slightly worse results. For
config 2, the Star2 implementation achieves a slightly better F-measure (95.2 %) com-

109

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

Table 8.4: SplitMerge evaluation of cluster quality for music dataset DS-M1 w.r.t. precision, recall and
F-measure.

Precision Recall F-Measure
Input links 0.835 0.783 0.808
SplitMerge 0.890 0.861 0.876

pared to the input mapping (95.1 %). For config 3, SplitMerge clustering improves the
quality of the input mapping by 1.6 % w.r.t. F-measure (89.7 %).

For the music domain, we evaluate the cluster quality for DS-M1 using a set of com-
puted input links (see setup in Section 8.5.3). Overall, the quality of the input links is
lower than for DS-G1. Due to strongly corrupted entities and more properties, DS-M1
is more difficult to handle. Applying the SplitMerge clustering, we identify a quality im-
provement for both precision and recall, resulting in a significant increase of F-measure
by approx. 7 % to 87.6 % (see in Table 8.4), showing that our clustering approach can
handle such unclean data.

Overall, the SplitMerge approach achieves competitive results, although the DS-G1
dataset facilitates achieving relatively good input mappings, making it difficult for any
clustering approach to find additional or incorrect links.

Finally, efficiency and scalability of distributed SplitMerge clustering are evaluated.
For this purpose, the execution times and the speedup for the very large geographic
(DS-G2) and music datasets (DS-M2, DS-M3) are determined. In Flink, several options
allow the fine-tuning of parameters for a distributed cluster environment. In most cases,
a reasonable way to improve execution times for very large datasets is the increase of
deployed workers. Another important parameter is the parallelism to specify the maxi-
mum number of parallel instances of operators or data sinks/sources that are available to
process data within a Flink workflow. We here used the parallelism equal to the number
of workers, for which we achieved the best execution times.

Figure 8.6 shows the achieved execution times for DS-G2 and DS-M2, respectively, for
different phases of the clustering workflow as well as the overall workflow execution
time. For each phase, an increased number of workers leads to improved execution
times. For both domains, the best improvement can be achieved for the preprocessing
(pre) and decomposition (dec) phases. The merge phase is far more complex. While
preprocessing and decomposition operate within connected components and clusters,
the merge phase attempts to combine similar clusters based on the assignment in the
blocking step and therefore can suffer from data skew problems for some blocks. These
effects also become clear in Figure 8.6, showing the speedup results compared to the

110

8.5. EVALUATION

#workers pre dec merge total
1 312 668 351 1, 331
2 164 367 268 799
4 79 231 207 518
8 45 130 186 361
16 23 42 162 227

 1

 2

 4

 8

 16

 1 2 4 8 16
S

p
e
e
d
u
p

Cluster size

Linear
pre (preprocessing)
dec (decomposition)
merge
total

(a) Execution times (left) in seconds and speedup (right) for geographic dataset DS-G2.

#workers pre dec merge total
1 423 419 608 1, 450
2 224 236 417 876
4 121 123 301 545
8 62 73 238 372
16 40 35 237 312

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p
e
e
d
u
p

Cluster size

Linear
preprocessing
decomposition
merge
total

(b) Execution times (left) in seconds and speedup (right) for music dataset DS-M2.

Figure 8.6: SplitMerge execution times and speedup for single workflow phases and total workflow.

linear optimum. Preprocessing and decomposition achieve nearly linear speedup, while
the merge phase shows decreased speedup values. In total, we achieve a good speedup
of 5.86 for the large geographic dataset DS-G2 (Figure 8.6a) and 4.65 for the large music
dataset DS-M2 (Figure 8.6b). For the largest dataset DS-M3 with ≈ 20 million entities,
we could determine results for two configurations: 8 workers could finish the complex
task in 43,589 seconds, and 16 workers finished after 24,722 seconds (reduced by factor
≈1.8).

Altogether, the distributed SplitMerge clustering achieves good execution times and
moderate scalability results for very large entity sets. The approach is scalable for differ-
ent data sources and employs a multi-source clustering instead of a basic binary linking
of two sources. The distributed implementation further allows to scale for a growing

111

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

number of entities and data sources and is very useful for complex data integration sce-
narios in Big Data processing workflows.

DistRibuted IncRemental ClusteRing

This part of the evaluation complements the results for incremental clustering in Chap-
ter 6. We analyze the source-specific incremental clustering for the larger music and
person datasets (DS-M2, DS-P2) for different blocking approaches and minimum simi-
larity thresholds tmin. The obtained precision, recall and F-measure results are shown in
Figure 8.7, where the values for tmin (x-axes) range between 0.6 and 0.9 and the prefix
lengths for the blocking keys lie between 1 and 5 for DS-M2 and between 2 and 8 for
DS-P2. As expected, precision increases and recall decreases with growing tmin while
F-Measure is relatively stable across different threshold values with the best result for
tmin = 0.7. Despite the large data volume (0.4 to 1 million entities per source) and the
integration of 5-10 sources, F-measure reaches relatively good values of up to 87.41%
for DS-M2 and up to 80.47% for DS-P2.

The choice of blocking key substantially impacts cluster quality and runtime for both
datasets. For DS-M2, precision is not affected by the blocking key so that it remains
good even for smaller prefixes (larger blocks) probably favored by the high precision
of Max-Both. As a result, the best F-measure is achieved for the smallest prefix length
B = 1 (largest blocks) supporting the highest recall. The downside of this selection,
however, is the large execution time, which is hugely dependent on the chosen blocking
key. As shown in Table 8.5, the runtime for B = 1 is more than 5 times as high than
for B = 2 and more than a factor 40 slower than for B = 4. For the larger dataset
DS-P2 with 10 sources, precision suffers from larger block sizes (small prefix lengths),
while recall is worst for longer prefix values. So we obtain the best precision but lowest
recall for prefix length 8, while prefix length 6 allows for the best compromise value
and thus the best F-Measure. For prefix length 6, we analyze the effect of the block size
distribution. We therefore partition the blocks in three block size ranges: blocks with
1-100, 101-1000 and more than 1000 entities per block. Only 0.03 % of all blocks contain
> 1000 entities (biggest block contains 6617 entities), while these blocks contain 4.6 %
of all entities, they need most of the time for the actual comparison. 1.7 % of all blocks
are within the range 101-1000 but contain 35.3 % of the entities. Finally, 98.3 % of the
blocks have 1-100 entities (60.2 % of all entities belong to these blocks). For bigger prefix
length, the distribution is likely to havemore and smaller blocks reducing computational
effort but also reducing the possibility to compare potentially similar entities with each
other. Again, the runtime differences (Table 8.5) are substantial where blocking with

112

8.5. EVALUATION

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.6 0.7 0.8

P
re

c
is

io
n

DS−M2

B 1

B 2

B 3

B 4

B 5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.6 0.7 0.8

R
e

c
a

ll

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.6 0.7 0.8

F
−

M
e

a
s
u

re

threshold theta

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.6 0.7 0.8 0.9

DS−P2

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.6 0.7 0.8 0.9

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.6 0.7 0.8 0.9

threshold theta

B 2

B 4

B 6

B 8

Figure 8.7: Precision, recall and F-measure for incremental clustering on music dataset DS-M2 (left)
and person dataset DS-P2 (right).

prefix length 6 achieves a fast clustering of only 706 s (12 min) for tmin = 0.7, which is
two orders of magnitude faster than with prefix length 2.

This is especially remarkable since the runtime typically increases strongly with the
number of sources; each new source increases the number of clusters and thus the match
overhead heavily. We illustrate this in Table 8.6 for dataset DS-M2 showing how the total
runtime is distributed over the additions of the different sources. We observe that the
time to add a source increases continuously so that adding the 5th source is more than

113

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

Table 8.5: Incremental clustering runtime (s) for different blocking key (bk) lengths and tmin values (16
workers).

DS-M2 DS-P2
bk length 4 3 2 1 8 6 4 2

tmin 0.6 1071 2044 8292 46346 447 690 3621 67681
tmin 0.7 1093 2077 8062 46678 431 706 3338 72301
tmin 0.8 1139 2210 8875 49154 442 754 3203 96855

Table 8.6: Runtimes (s) for single steps with source-specific incremental clustering for DS-M2 with
different blocking key (bk) lengths and tmin = 0.7.

runtime (s)
bk length 5 4 3 2 1
source 1 + source 2 129 170 315 1183 6456
add source 3 173 235 440 1692 9862
add source 4 218 311 600 2319 13481
add source 5 272 377 722 2868 16879
total 792 1093 2077 8062 46678

twice as slow than adding the second source. This is because 25% of the entities in each
source have no duplicates for DS-M28, thereby resulting in the creation of additional
clusters that have to be considered in the subsequent cluster decisions.

We finally analyze the speedup behavior of source-specific incremental clustering w.r.t.
clusters of different sizes. For this experiment, we focus on the two largest person
datasets DS-P1 (5 sources) and DS-P2 (10 sources). In both cases, we consider two block-
ing configurations with prefix lengths 4 and 6. The resulting runtime and speedup values
for using 1 to 16 workers are shown in Figure 8.8. The results show that we can always
improve runtime by using more workers where the speedup is best for the most ex-
pensive configurations with bigger blocks (prefix length 4). For DS-P2 and we achieve
near-linear speedups of 5.7 for 8 workers and 9.6 for 16 workers in this case. For prefix
length 6, the runtime to incrementally cluster 5 and 10 million entities is less than 4 and
12 minutes, respectively, for 16 workers and thus remarkably fast.

850% of the clusters in DS-M2 (500K) are singletons while the other half of the clusters has between
2 and 5 duplicate entities.

114

8.6. RELATED WORK

runtime (s)
cluster size P1 b4 P1 b6 P2 b4 P2 b6

1 9,751 860 32,093 3,648
2 5,468 732 17,583 2,275
4 2,997 430 9,346 1,494
8 1,785 320 5,677 1,023
16 1,100 217 3,338 706

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p

e
e

d
u

p

Cluster size

Linear
P1 b4
P1 b6
P2 b4
P2 b6

Figure 8.8: Incremental clustering execution times (top) in seconds and speedup (bottom) for datasets
DS-P1 (P1) and DS-P2 (P2) for blocking key lengths 4 and 6.

8.6 Related WoRK

Typical link discovery approaches apply binary linking methods for matching two data
sources but lack efficient and effective methods for integrating entities from k different
data sources to provide a holistic view for Linked Data [132]. Some approaches enable
distributed link discovery or for matching two data sources. For instance, Silk MapRe-
duce [89] and LIMES [83] realized link discovery based onMapReduce before distributed
data processing frameworks like Spark or Flink became state of the art. Similarly, the
entity resolution framework Dedoop [105] allows executing complex matching work-
flows on MapReduce. These tools suffer from limitations of MapReduce, like repeated
data materialization within and between single jobs and the lack of iterations. They fur-
ther focus on pairwise matching and do not support holistic clustering for multiple data
sources or the reuse of existing link sets.

While link discovery is driven by pairwise linking of data sources, support for multi-
ple data sources can be found in related research areas. In [72], ontology concepts from

115

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

multiple data sources are clustered based on topic forests for extracted keywords from
concepts and their descriptions to determine matching concepts within groups of similar
topics. In [122], a maximum-weighted graph matching and structural similarity compu-
tations are applied to concepts of multiple ontologies to find high-quality alignments.
However, these holistic ontology matching approaches do not focus on clustering of
concepts or entities and have limitations w.r.t. scalability for link discovery and many
large entity data sources.

Few link discovery approaches apply clustering or linking for Linked Data on multi-
ple sources. Thalhammer et al. [177] present a pipeline for web data fusion using mul-
tiple data sources applying hierarchical clustering, cluster refinement and selection of
representatives to achieve a similarity-based clustering with unified entities. The unsu-
pervised link discovery approach Colibri [145] considers error detection and correction
for link discovery in multiple knowledge bases relying on the transitivity of interlinked
entities, while clustering of entities is not the main focus. These approaches do not re-
alize distributed clustering or linking and have not been evaluated regarding scalability.
There has been some research for distributed clustering methods such as community de-
tection within social networks, e. g., using MapReduce exclusively [125] or MapReduce
and Spark [73]. However, these approaches do not focus on complex link discovery
and data integration workflows and partially suffer from MapReduce limitations. The
work in [163] considers the implementation of existing clustering algorithms on top of
Apache Flink for entity resolution and de-duplication of several data sources. The ap-
proach does not handle incorrect links and lacks the use of semantic type information.
It further does not create representatives for a compact cluster representation as useful
for further applications.

In our previous work [131], we proposed a holistic clustering approach for multiple
Linked Data sources with few initial evaluation results. Here we present an extended
workflow implementation, in particular, the realization of holistic clustering in a dis-
tributed environment. Besides, we show comprehensive evaluation results w.r.t. cluster
quality based on a new gold standard as well as scalability for datasets covering very
large entity sets from multiple different data sources and domains. The created compact
cluster representation is particularly useful for reuse and incremental cluster extension.

8.7 Conclusion

In this chapter, we presented distributed holistic clustering workflows for Linked Data
using the distributed data processing framework Apache Flink. The first approach is

116

8.7. CONCLUSION

based on the reuse of existing links and can handle entities from various data sources.
Besides this approach for static entity clustering, continuously changing data sources are
supported in a second approach for incremental clustering. We showed the realization of
both holistic clustering workflows with dataset transformations and user-defined func-
tions. Albeit based on Apache Flink, the methods could also be implemented on other
frameworks for distributed data processing such as Apache Spark. We further provide a
novel gold standard for multi-source clustering from the geographic domain to support
the development and evaluation of novel holistic clustering methods. We showed com-
prehensive evaluation results for datasets from three different domains, with up to 20
million entities. Our results showed that the proposed approaches achieve a very high
cluster quality. In particular, we were able to find many new correct links and could
remove incorrect links.

In terms of runtime efficiency, both approaches reached very good execution times for
most of the considered dataset sizes. As shown for incremental clustering, the blocking
strategy and the associated parameters strongly influence the runtime and therefore
need to be adjusted accordingly. Both the distributed SplitMerge and the incremental
clustering showed good scalability on the Apache Flink cluster with up to 16 machines.

Overall, the presented results show that distributed entity clustering is an effective so-
lution to integrate a growing amount of data sources in the Web of Data. So far, there is
no comprehensive comparison of related clustering methods. Consequently, the follow-
ing chapter discusses a comparative evaluation of distributed clustering approaches.

117

CHAPTER 8. DISTRIBUTED CLUSTERING STRATEGIES

118

9
Comparative Evaluation of Clustering

Methods

PReamble

The subsequent chapter is based on [162]. We compare multiple holistic clustering ap-
proaches with an implementation on Apache Flink with each other. The coverage of very
general as well as specialized clustering approaches provides a comprehensive overview.
A standardized workflow is adopted to ensure the comparability of the evaluation with
different datasets. The journal article was published in CSIMQ in 2017.

9.1 Motivation

Withmore frequent use of distributed data processing systems in general, the application
for data integration tasks also increases. Link discovery (also data matching or entity
resolution) is a sub-task for data integration in which approaches link entities from dif-
ferent heterogeneous data sources with each other. The link discovery process must be
realized in compliance with relevant requirements (see Section 3.2 for details). Besides
effective algorithms, the requirements include efficient execution, e. g., by utilization of
distributed processing systems such as Hadoop services.

Therefore, modern distributed processing systems such as Apache Spark or Apache
Flink provide an abstraction layer for the transparent use of shared-nothing computer
clusters. The systems distribute the program code and (if necessary) the required data

119

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

in order to use the available resources as fully as possible. With the application of these
distributed processing systems, the user benefits directly from improvements such as
in-memory processing. Still, varying specializations of the systems ensure that perfor-
mance differences can be detected for distinct classes of workload [64, 98, 116, 183].

Growing data size also makes scalable approaches useful for the integration of Linked
Data. The generalized workflow from Section 3.3 includes all components for the link
discovery process and can be used for more than two data sources. To increase the
efficiency of the procedures, it is necessary to apply measures to avoid the naive com-
parison of all entities with each other. For this reduction of the search space, blocking
or filtering strategies are used to assign the entities (e. g., title starting with the same let-
ters) into blocks. By distributing disjunctive blocks of entities to the existing computer
infrastructure, a local problem solution in each block can lead to a significant reduction
in the amount of data that has to be exchanged between the computer nodes. However,
load balancing problems can occur if the frequency distribution of the selected attributes
for reducing the search space is skewed too much. Various optimizations to avoid load
balancing problems during search space reduction have been investigated, especially for
MapReduce [106, 107].

The subsequent instance matching challenges approaches to deal with multiple data
sources in order to produce high-quality results at the lowest possible runtime. One pos-
sibility to handle equivalent entities from different sources is the integration of unified
clusters, as proposed in Chapter 5. In addition to a compact representation, clusters can
also be used to enable continuous data integration with new data sources or entities, as
shown in Chapter 6. To cope with the larger data sources, these clustering approaches
have been implemented and evaluated on Apache Flink (see Chapter 8). Other systems
for multi-source entity clustering on distributed processing systems use similar tech-
niques to achieve high-quality results and to maintain consistency [164].

While various clustering approaches employ distributed processing systems, there are
no comprehensive and uniform comparisons of quality and runtime on large datasets. As
a scientific question, it is therefore interesting to see how efficiently and effectively dif-
ferent clusteringmethods performwhen using the same datasets. Based on this question,
this chapter contains the following contributions:

• A description of the investigatedmethods formulti-source entity clustering, which
are available for the distributed data processing system Apache Flink.

• We perform a comprehensive evaluation of qualitative results and runtime on dif-
ferent datasets to show the scalability of the investigated methods.

120

9.2. PROBLEM STATEMENT

9.2 PRoblem Statement

We start with a set of data sources k, which are to be connected employing a data inte-
gration workflow. With the use of the distributed processing system Apache Flink, it is
possible to increase overall scalability and to use special operators for iterative or graph-
based computing. Since previous clustering approaches do not always provide a com-
plete processing pipeline, we utilize the multi-source clustering system FAMER [162] to
enable the execution of linking and various clustering algorithms. The general workflow
is shown in Figure 9.1 and consists of two main steps.

The first part includes techniques such as blocking and pairwise comparisons of enti-
ties to create a similarity graph. According to the data model in Section 2.2, the similarity
graph corresponds to the set of entities E as graph vertices and the set of determined
links L between the different sources as graph edges. An efficient process for a simi-
larity calculation can then be migrated towards a dedicated similarity graph generation.
The computed results are made available to arbitrary clustering methods and allow a
comparable initial situation. This also allows the specification of the same configuration
parameters and threshold values in order to create a consistent similarity graph.

DS k

…

DS 2

DS 1

Blocking Pairwise
Comparison

Similarity Graph Generation

Match
Classifier

Configuration Configuration

CC

Star-2

Star-1

Clustering

CLIP

SplitMerge

Set of
Clusters

Figure 9.1: Workflow overview for multi-source clustering in the FAMER system. Our SplitMerge
approach has been added to the set of possible clustering methods.

Based on this similarity graph, the entities are then further processed using a clus-
tering approach. Each resulting cluster reflects a set of equivalent real-world objects.
Compared to the result set for link discovery (see Section 3.3), a cluster with m entities
represents (m · (m − 1))/2 match pairs. In order to focus on the clustering step in the
workflow, we assume comparable entities in the data sources. This is expressed above
all in the equivalent semantic type (e. g., only locations, persons or songs) but also with

121

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

comparable attributes. As in previous chapters, data sources do not contain any dupli-
cates. Accordingly, a source consistency is again assumed for resulting clusters, i. e., for
each source at most one entity and thus not more than k entities in the cluster. These
steps aim to avoid data quality problems by applying data cleaning methods [158] to
create a consistent data representation.

In the following two sections, the similarity graph generation and clustering are dis-
cussed in detail to show the process of multi-source clustering. For this purpose, exem-
plary data entries about persons are used, which can be seen in table Table 9.1. Multiple
property values are used to describe entities of four different data sources. Erroneous
data values make the correct assignment to a cluster more difficult. The partitioning of
the table (horizontal lines) already shows matching entities that correspond to the same
real-world objects. Therefore, Section 9.3 describes how to create a similarity graph us-
ing the steps blocking, pairwise comparison and match classifier. We present a selection
of four appropriate clustering methods in Section 9.4. In addition to a simple method,
which creates connected components based on the available links, three methods using
more complex metrics for the discovery of clusters are described.

Table 9.1: Sample person entities to show problems for clustering ap-
proaches. The partitioning using horizontal separation indicates
different real-world objects.

ID Name Surname Suburb Post code SourceID
a0 Bertha Watkins Wilmington 28282 SrcA
b0 Bertha Watkins Wilmingtn 2822 SrcB
c0 Brtha Watkins Wilmington 28222 SrcC
d0 Bertha Watkens Winington 28223 SrcD
a1 Bernie Watkins Wilmsor 28572 SrcA
b1 Bernie Watkns Winstom 2787z SrcB
c1 Bernii Wakens Windsor 28571 SrcC
a2 ge0rge Walker Winston salem 271o6 SrcA
b2 Gerge Waker Winston salem 27106 SrcB
c2 George Alker Winstons 27106 SrcC
d2 Geoahge Alker Winston 271oo SrcD
a3 Gerald Waker Winston Salem 27707 SrcA
b3 Gera1d Walker Winston Salem 27707 SrcB
d4 Larry Walker salem 28090 SrcD

Table 9.2: Blocking
keys.

ID Key
a0 wa
a1 wa
a2 wa
a3 wa
b0 wa
b1 wa
b2 wa
b3 wa
c0 wa
c1 wa
d0 wa
d4 wa
c2 al
d2 al

122

9.3. SIMILARITY GRAPH GENERATION

9.3 SimilaRity GRapH GeneRation

To create the similarity graph, a blocking step is first performed to reduce the number of
comparisons required between entities from different sources. Blocking can be done by
partitioning the entities according to distinctive features of the data, e. g., only compare
persons starting with the same initial letter. The selection of the blocking technique can
have a decisive influence on the runtime [31, 152].

We will show an example for generating blocking keys with standard blocking based
on the entities from Table 9.1. The first two letters of the surname as blocking key causes
an unequal partitioning of almost all entities into the block “wa”, as shown in Table 9.2.
Still, the number of comparisons is decreased because entities c2 and d2 have been as-
signed to an extra block.

On distributed processing systems, the partitioning of distinct blocks ensures that
parts of the computation can be executed locally. In the context of the blocking step, the
unequal distribution of block sizes can result in individual cluster workers consuming
excessive time. For this reason, the handling of load balancing problems is an important
issue on systems such as Apache Flink. In our case, we therefore use the block split
method [106] to avoid load balancing problems. In detail, too large blocks such as “wa”
are split among the number of available workers in the cluster. In any search space
reduction procedure, data quality problems or inadequate method selection can result in
a reduced recall by not finding relevant links. Example entities with poor data quality
are c2 and d2; they are assigned to an extra block because of the misspelled surname.
The effects of incorrect classification can be mitigated by repeatedly blocking based on
different blocking attributes or by post-processing the results.

The blocking step is followed by the pairwise comparison of all entities within each
block. A similarity function specifies which attribute values are compared for two enti-
ties. This similarity function is provided to the process in the configuration step and can
be determined manually or trained by learning-based approaches. Typically, different
string similarity metrics and domain-specific metrics (e. g., to support geographic coor-
dinates or dates) are used. Based on these similarities, a classifier then determines the
matching links to be included in the similarity graph. For this decision, match rules from
the configuration are utilized, e. g., a minimum average threshold or a weighted average
in favor of certain properties.

The resulting similarity graph SG = (E ,L) contains all entities E (vertices) and all
matching links L (edges) and can be saved for later reuse, e. g., as a basis for clustering
algorithms. The next section presents all relevant information about the clustering step,
including details on the investigated algorithms.

123

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

Figure 9.2: Clustering phases showing generated similarity graph and perfect clustering result for
example entities.

9.4 ClusteRing appRoacHes

The clustering step identifies matching entities from previously determined similarity
values to provide a compact, bundled representation. Therefore, we employ the created
similarity graph with entities E and links L as the input. With the similarity values
stored in the links, the application of more or less complex procedures for grouping en-
tities determines clusters. With the baseline algorithm (weakly) connected components,
all entities that can be reached via arbitrary links are merged into a cluster. The Star
approach determines clusters from entities with the highest number of links. Both ap-
proaches do not consider the constraints for creating clusters (see Section 9.2) and can
therefore contain source-inconsistencies. In contrast, the two approaches CLIP and Split-
Merge only generate source-consistent clusters, i. e., a cluster contains at most one entity
per data source. CLIP uses metadata from the similarity graph such as link strength and
link degree to classify clusters correctly. SplitMerge refines the initial clustering result
in several sub-steps (such as split and merge) and can therefore correct wrong block-
ing assignments as for entities c2 and d2. In the remaining section, the four different
concepts are presented accordingly in detail.

The approaches typically form clusters based on high similarities between entities and
thus build new clusters when only low similarities exist. Thus, in the set of links from the
similarity graph, intra-cluster similarities are maximized while inter-cluster similarities
are minimized, thereby forming the set of resulting clusters. With an efficient clustering
approach, these clusters contain more correct links (all links within the cluster) and no
false links (between different clusters) compared to the initial similarity graph.

124

9.4. CLUSTERING APPROACHES

We implemented all clustering approaches on Apache Flink. The usage of the graph-
processing engine Gelly provides many advantages, e. g., the graph data model, specific
graph-processing operators or programming abstractions for iterative graph processing.
Especially the different iterative graph processing abstractions are a strength of Apache
Flink and are utilized accordingly. Besides the Gelly implementation for weakly con-
nected components (gather-sum-apply [67] or scatter-gather [176]) and vertex-centric
iteration [119], the delta iteration of Apache Flink are also used.

9.4.1 Connected components

Weakly connected components are used as baseline algorithm to determine clusters. This
means that all entities connected by links from the similarity graph span a connected
component. In the exemplary similarity graph, two components of very different sizes
are created. Entities c2 and d2 form the first component and all other entities span up
the second component. Due to potentially large components, which are accepted as a
result without further checking, many additional links will likely be found. Compared
to the similarity graph, it can be expected that a higher number of relevant links will be
found, which can have a positive effect on recall. Similarly, the number of false-positive
links can lead to decreased precision.

In Apache Flink, the computation of weakly connected components can be carried
out using the programming abstraction scatter-gather. In the scatter phase, the iterative
method propagates the unique identifiers of the entities to all neighboring entities. In
the gather phase, each entity then selects the minimum of the received identifiers and
uses them as a starting point for the next iteration. The algorithm terminates when an
iteration no longer updates entity identifiers.

9.4.2 StaR clusteRing

TheStar clustering algorithm [6] originates from the domain of information retrieval and
tries to form clusters based on the strength and proximity of neighborhood relationships
in a graph. These relationships can be determined by similarity calculations between the
property values of entities to create a similarity graph. With the limitation to similarity
values above a threshold, only significant edges remain. Two variants of the algorithm
are presented. The clustering algorithm Star-1 determines iteratively (central) entities
with the highest degree and forms a cluster with the adjacent entities. In our example
graph in Figure 9.2, entities b0, d0, c1 and a2 are selected in the first iteration having
three edges. Clusters are then created by adding all adjacent entities for each of these

125

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

entities. This process may lead to overlapping clusters, e. g., c0 is added to both b0 and
d0. Alternatively, for Star-2, the next central entity is determined by the highest aver-
age similarity across all edges. Accordingly, the neighboring entities create the cluster
together with the central entity.

The Apache Flink implementation is realized with the scatter-gather abstraction and
is described in [164]. In a three-step procedure, first, the edge degree is calculated, then
the central entities are selected and finally, the clusters are spanned around the central
elements.

9.4.3 SplitMeRge clusteRing

TheSplitMerge approach proposed in Chapter 5 is more general than the other clustering
schemes as it can deal with entities of different semantic types as well as dirty input
sources and links, e. g., with duplicates in sources. For this study, we will refine the
existing SplitMerge algorithm in this section to achieve optimal results according to the
task at hand.

In contrast to Chapter 5, we omit the preprocessing since only entities of a single
semantic type and duplicate-free sources are considered. Further improvements include
the application of the already calculated similarity graph. In addition, initial clustering
is optimized and the merge phase is made more efficient through the use of blocking.
Parameters such as similarity thresholds for split/merge and a blocking function for the
merge phase are specified in the configuration.

To show these optimizations for a single semantic type, we apply the refined Split-
Merge to the similarity graph, as shown in Figure 9.3. The pseudo-code fromAlgorithm 5
shows the three phases of the SplitMerge approach: (1) determining initial clusters by ap-
plying connected components and making the components source-consistent, (2) split-
ting clusters to ensure a high intra-cluster similarity and (3) merging similar clusters.
More details on the Flink implementation of SplitMerge are described in Chapter 8.

SplitMerge determines connected components (line 2 of Algorithm 5) on the input
similarity graph to create initial components Cinit. The resulting components may of-
ten violate the required source consistency since entities from the same source may be
indirectly linked and thus become members of the same connected component. In our
example in Figure 9.3, there are only two connected components where the smaller one
(with entities c2 and d2) is source-consistent, while the larger one contains up to four en-
tities per source. To achieve source-consistent clusters, we decompose the inconsistent
components by removing violating links. The links between (a0, b0) and (b0, a1) result
in a source inconsistency for source A and we solve this by removing one of the two

126

9.4. CLUSTERING APPROACHES

Initial Clustering

Connected
components

V={1,2,3,4,5,6,7}
E={{1,2},{1,3},{1,4},
{5,6},{6,7}}
Types T={ t1, t2, -}
Properties: label
Sources S={A,B,C,D}

G = (V, E) SG = (V, E) Cluster Split

Cluster
Representative

rc0=(cidc0, {a0, b0, c0,
d0}, src={A,B,C,D})
rc1=(cidc1, {a1, b1, c1},
src={A,B,C})

rc2=(cidc2, {a2, b2},
src={A,B})
rc3=(cidc3, {c2, d2},
src={C,D})

rc0

Blocking +
Cluster

Similarity
Cluster Aggregation

rc1

Cluster Merge

rc6 =(cidc6,{a2,b2,c2,
d2}, src={A,B,C,D}) b0 a0 d0 c0

b1 a1

d2

c1

b2 a2 c2

b3 a3

d4

b0 a0 d0 c0

b1 a1

d2

c1

b2 a2 c2

b3 a3

d4

Refine cluster
consistency

b0 a0 d0 c0

b1 a1

d2

c1

b2 a2 c2

b3 a3

d4

d2 b2 a2 c2

b3 a3

d4

b0 a0 d0 c0

b1 a1 c1

Split

rc4=(cidc4, {a3, b3},
src={A,B})

rc5=(cidc5, {d4}, src={D})

rc3 0.9 rc2

rc3

rc5

d2 b2 a2 c2

cidc6

rc1 =(…) b1 a1 c1

cidc1
rc4 =(…) b3 a3

cidc4
rc5 =(…) d4

cidc5

rc0 =(…) b0 a0 c0

cidc0
d0

rc4 0.8

Figure 9.3: Running example processed with SplitMerge clustering.

links (the one with lower similarity). Another example with three links resulting in a
source inconsistency is (b1, c1, a2, b2); again, we eliminate at least one link, e. g., (c1, a2),
to solve the problem.

To identify the links to be removed, we record for every entity e the set of already as-
sociated data sources in an element assocSrc(e), which initially contains the source
of e (line 4). We iterate over all links of a component in descending order of their simi-
larity. For each considered link (es, et), we check whether it results in a source inconsis-
tency, which is the case if there is a non-empty overlap between assocSrc(es) and
assocSrc(et). If there is such a conflict, the link will be eliminated (line 8). Other-
wise, we update both sets of associated sources to the union of assocSrc(es) and
assocSrc(et) (line 10). In Figure 9.3, the conflicting links are highlighted (red color)
to indicate the removal. For example, if we first process link (a0, b0), we will add sources
A and B to assocSrc(a0) and assocSrc(b0). The link (b0, a1) will then lead to a
conflict for b0, which is already associated with source A. Thus, the link (b0, a1) is elim-
inated. After the processing of all links, we determine the connected components with
the remaining links to compute the source-consistent subcomponents (line 11). In our
running example, we obtain the four smaller clusters shown (with green borders) in the
third graph from the left in Figure 9.3.

Split

For the split phase, we process the clusters from the first phase in parallel. For each
cluster, we first calculate link similarities for each pair of entities based on the similarity
function fsim provided in the input. This is needed to identify entities with an insuffi-
cient similarity to other cluster members. To detect possible splits (line 15) we determine
for each entity the average similarity of its links to other cluster members and separate
an entity if the average similarity is below the split threshold ts. After the elimination

127

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

of such entities, we iteratively repeat this split processing based on recomputed entity
similarities until the similarity threshold ts is met for all links. This leads to the elimi-
nation of d4 from cluster a2, b2, d4 (fourth graph from the left in Figure 9.3). For each
resulting cluster, we next determine a cluster representative (line 16) from the proper-
ties of the cluster members, e. g., based on the values of preferred sources or a majority
consensus of values. As indicated in Figure 9.3, each cluster representative has a unique
ID and keeps track of the covered cluster entities and their sources as provenance infor-
mation. The representatives are used for a simplified computation of cluster similarities
as needed for the final merge phase.

Algorithm 5: Refined SplitMerge Clustering
Input: SG = (V, E), simFunction fsim, blocking function fblocking, thresholds ts, tm

Output: Cluster set CS
1 CS ← ∅

/* initial clustering */
2 Cinit ←computeConnectedComponents(V, E)
3 for Ci(Vi, Ei) ∈ Cinit in Parallel do
4 Vi ← initAssocSrc(Vi)
5 Esorted ← sortLinkSims(Ei)
6 foreach (es, et) ∈ Esorted do
7 if (assocSrc(es) ∩ assocSrc(et) ̸= ∅) then
8 Ei ← removeLink((es, et))
9 else
10 Vi ← updateAssocSrc(assocSrc(es) ∪ assocSrc(et))

11 C′
i ← computeConnectedComponents(Vi, Ei)

12 CS ← CS ∪ C′
i

13 for Ci ∈ CS in Parallel do
14 Ci ← computeLinkSim(Ci, fsim)
15 Csplit ← clusterSplit(Ci, ts) /* cluster split */
16 Csplit ← createRepresentatives(Csplit)
17 CS ← CS ∪ Csplit

/* create cluster mapping CM */
18 CM← computeClusterSim(CS, fsim, tm, bf)
19 while CM ̸= ∅ do
20 (c1, c2)← getBestMatch (CM)
21 cm ← merge(c1, c2) /* cluster merge */
22 CS ← CS \ {c1, c2} ∪ {cm}
23 CM← adaptMapping(CM, CS, cm, c1, c2, fsim, tm)

24 return CS

128

9.4. CLUSTERING APPROACHES

MeRge

The goal of the merge phase is to identify highly similar pairs of clusters that likely rep-
resent the same real-world entity and should thus be combined. The merge phase can
also help to assign entities separated during the split phase to a more similar cluster.
The first step is to determine a so-called cluster mapping CM (line 18 of Algorithm 5)
consisting of all cluster pairs with a similarity above the merge threshold tm (merge
candidates). The similarity between clusters is computed by applying function fsim on
the cluster representatives. Since the computation of these similarities is an expensive
process for many clusters, we reduce the number of comparisons by applying a block-
ing function fblocking specified as an input parameter (in the current implementation, we
apply standard blocking on selected properties of the cluster representatives). Further-
more, we only compare clusters with entities from different sources since otherwise,
merging them would violate source consistency. In Figure 9.3, we have three clusters in
the first block and only one in the remaining three blocks. For the first block, we obtain
two merge candidates with a sufficiently high cluster similarity.

Cluster merging is an iterative process (lines 19 to 23) that continues as long as there
aremerge candidates in the determined clustermapping CM. In each iteration, we select
the pair of clusters (c1, c2) with the highest similarity from CM (line 20) and merge it
into a new cluster cm (line 21). This merging also includes the computation of a new
representative for cm. The “old” clusters c1 and c2 are removed from the cluster set and
the new cluster cm is added. We further need to adapt CM by removing all cluster pairs
involving either c1 or c2 (line 22). Furthermore, we have to extend CM by similar cluster
pairs (ci, cm) for the new cluster cm with a cluster similarity of at least tm and entities
from different sources (line 23). For our running example, we first process the merge
candidate with similarity 0.9 and obtain the merged cluster {a2, b2, c2, d2}. The second
merge candidate will be removed and it is checked whether the new cluster results in
newmerge candidates. Since the new cluster contains already entities from every source,
merging any other cluster would result in a source inconsistency so that no new merge
candidates result in the example. The outcome of SplitMerge contains five clusters that
correspond to the perfect result in Figure 9.2.

9.4.4 CLIP

The clustering algorithm CLIP (Clustering based on LInk Priority) [164] makes use of
link characteristics given with the similarity graph. Each entity determines the maxi-
mum similarity of all its links – links with this characteristic are called maximum links.
The individual link strength is determinedwith the help of themaximum links and distin-

129

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

guishes between strong, normal and weak. Strong links are a maximum link for entities
on both sides. Because there may be multiple maximum links for an entity, each of these
can be strong if it is also a maximum link for the opposite entity. A normal link implies
that only one entity has determined it as a maximum. For weak links, neither of the
two entities has flagged it as maximum. Furthermore, we use the term link degree as the
minimum number of links of either of the associated vertices. In the similarity graph of
Figure 9.2, we show an example of the link degree for (a2, d4). Given that the link degree
of a2 is 3 and that of d4 is 1, the resulting degree is 1. In addition to the characteristic of
the source-consistency of clusters, a cluster is a complete cluster if it is source-consistent
and contains one entity from each available data source. In the (perfect) clustered result
in Figure 9.2, this applies to the four entities a0–d0 and a2–d2, each forming a separate
complete cluster.

CLIP is a two-phase approach that uses the concepts cluster strength, link degree and
complete cluster for cluster determination. The first phase only determines complete
clusters. To achieve this, the link strength is calculated for all links. Based on the strong
links, connected components are then determined on the graph. Complete clusters are
returned as the result of the first phase and not processed any further. An example of a
complete cluster obtained at the end of the first phase are entities a0–d0. The remaining
entities and links form the basis for the second phase and are shown in Figure 9.4. By ad-
hering to the priorities set by the link strength, source-consistent clusters are constructed
iteratively. This is achieved by redetermining connected components using the remain-
ing strong and all normal links. There are two options for the resulting components. In
the case of source-consistency, the clusters are added to the set of result clusters and
not processed any further. This applies for c2 and d2 creating a cluster and another one
for a3 and b3. In the latter case of source-inconsistency, components are post-processed
as follows. The links within a source-inconsistent component are weighted according
to the link characteristics (link strength, link degree, similarity). This weighted list is
then processed sequentially to build clusters that are source-consistent. In the running
example, this applies to the remaining entities shown in the center of Figure 9.4. Due
to the individual weighting, the strongest links are (a2, b2) and (b1, c1), forming initial
clusters. Next, the evaluation of the link (c1, a2) leads to a source-inconsistency, so the
cluster is not expanded. Finally, a1 extends the cluster that contains b1 and c1. The d4

entity is associated with the cluster containing a2 and b2, as illustrated in the final output
in Figure 9.4. Compared to the perfect result of Figure 9.2, the cluster with index 2 is not
recognized correctly, because the similarity graph already does not contain links to c2

and d2.

130

9.5. RELATED WORK

Figure 9.4: Running example processed with CLIP clustering.

9.5 Related WoRK

Many studies have already investigated link discovery and the related problem of entity
resolution (see Chapter 3). Therefore, we focus on related work that explores efficient
clustering approaches for link discovery and entity resolution, respectively. Most link
discovery tools determine links, but do not process them into a fused representation.
Few approaches allow the physical integration of entities in combination with quality
assessment, for example as part of a linking framework [25, 123]. While clustering tech-
niques are used to handle Linked Data effectively, there are more extensive comparisons
of clustering approaches for entity resolution. As an example, Hassanzadeh et al. [77]
provide a comparative evaluation of multiple clusteringmethods such as star, correlation
or Markov clustering for deduplication within a single data source.

To improve the efficiency of link discovery workflows, distributed data processing sys-
tems can be used. Previously proposed approaches mainly used HadoopMapReduce [83,
105, 140]. Both Apache Spark and Apache Flink improve onMapReduce due to better uti-
lization of in-memory processing and better support for iterative algorithms as needed
for clustering [172]. Various workflows for entity resolution already rely on Apache
Spark [62, 124] or Apache Flink [130, 164].

In [164], the best-performing clustering approaches from [77] are implemented on
Apache Flink. To create the same starting point for all clustering approaches, a similarity
graph is created in a preliminary step. This graph contains binary match links between
all entities of different data sources. Analogously, a similarity graph has already been
used in [71, 153].

The evaluation compares simple and established clustering approaches with the two
specialized multi-source link discovery approaches CLIP and SplitMerge. Contrary to

131

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

Table 9.3: Properties of the utilized datasets.

name domain attributes #entities #sources #perfect #clustersmatch pairs

DS-G geography label, longitude, lati-
tude 3,054 4 4,391 820

DS-M music title, length, artist, al-
bum, year, language 20,000 5 16,250 10,000

DS-P1 person name, surname, 5,000,000 5 3,331,384 3,500,840
DS-P2 suburb, postcode 10,000,000 10 14,995,973 6,625,848

previous studies [77], the implementations of the clustering approaches on Apache Flink
show both runtime and scalability for different domains.

9.6 Evaluation

The goal of this section is a comparative evaluation to show the effectiveness and effi-
ciency of the previously described clustering approaches. We realize all the implementa-
tions within the distributed processing framework Apache Flink. The evaluation is based
on multiple datasets covering three domains. These datasets are described in the follow-
ing Section 9.6.1, together with the configuration, e. g., for creating the similarity graph.
Section 9.6.2 then compares the resulting match and clustering quality for the different
clustering approaches. The evaluation concludes in Section 9.6.3 with an assessment of
scalability and runtime behavior.

9.6.1 Datasets and configuRation setup

First, we will describe the three datasets from different domains. Table 9.3 shows the
most important properties of the already duplicate-free sources. These properties in-
clude the number of entities, the thematic classification by domain and attributes as
well as information about the expected clustering result.

In the first dataset DS-G, real-world entities from the geographical domain are de-
scribed. The dataset comes from the instance matching track of OAEI 20111 and has
already been used by various tools for evaluation. The dataset is limited to 3054 settle-
ment entities from four data sources since the perfect clustering result was determined

1OAEI 2011 instance matching http://oaei.ontologymatching.org/2011/
instance/

132

http://oaei.ontologymatching.org/2011/instance/
http://oaei.ontologymatching.org/2011/instance/

9.6. EVALUATION

Table 9.4: Default blocking and match configuration for different datasets.

dataset blocking key similarity functions match rule
DS-G prefixLength1(label) sim1: JaroWinkler (name) sim1 ≥ θ &

sim2: geographical distance sim2 ≤ 1358 km
DS-M prefixLength1(album) sim1: trigram (title) sim1 ≥ θ

DS-P1& prefixLength3(surname) sim1: JaroWinkler (name) sim1≥ 0.9 &
DS-P2 sim2: JaroWinkler (surname) sim2 ≥ 0.9 &

sim3: JaroWinkler (suburb) sim3 ≥ θ &
sim4: JaroWinkler (postcode) sim4 ≥ θ

manually. The records for the music and person domains were created using data genera-
tors. Many initial entities are corrupted and duplicated by controlled change operations.
Through repeated execution of the data corruption, e. g., with varying attributes or in-
creasing levels of corruption, new artificial data sources can be provided for evaluation.
The dataset DS-M is based on real songs from the MusicBrainz database, which are ma-
nipulated with the data generator DAPO [82]. In comparison to DS-G, a higher number
of attributes and up to five synthetically created data sources present new difficulties
for the algorithms under investigation. By far the largest datasets DS-P1 and DS-P2 are
based on person data from a voter registry in North Carolina. Again, the data generator
(GeCo [32]) utilizes artificial corruptions and attribute omissions to generate duplicates
of existing entities. These duplicates are used to simulate additional data sources, which
leads to 5 (10) data sources for DS-P1 (DS-P2). With one million entities per data source,
the entire dataset can access 5 resp. 10 million entities.

For each of these datasets, we generate a similarity graph as the baseline for clustering.
Based on experience from previous work [130, 163] and adapted to the characteristics
of the datasets, we use a default configuration for blocking and match parameters. De-
tails on the configuration parameters are shown in Table 9.4. For each of the datasets,
standard blocking is applied with the appropriate blocking key. Each similarity func-
tion describes the significant properties for determining the similarity for candidates
in the individual dataset. The compliance to a match rule results in the creation of a
link. Match rules usually contain a combination of logical expressions, e. g., to comply
with thresholds for the individual attribute similarities. As we show in the following
evaluation regarding effectiveness, the created similarity graph already has a relatively
high quality. The clustering approaches are thus faced with the additional challenge of
surpassing this baseline.

133

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

9.6.2 CompaRison MatcHQality

For the evaluation of the clustering results, we utilize precision, recall and F-measure
to compare the calculated results against perfect results of the datasets. On the three
datasets DS-G, DS-M and DS-P2 we compare the quality of the results in Figure 9.5.

The creation of the similarity graph (input graph) is based on the default configuration
from the last section with the threshold θ. For each of the datasets, we apply different
minimum similarity thresholds θ. This is intended to achieve the highest possible quality
for the similarity graph, which should be further improved by clustering. With a higher
minimum similarity threshold, the graph contains fewer links, which usually leads to
increased precision and decreased recall. A reduction of the threshold may be necessary,
for example, if entities in the initial dataset are particularly prone to errors, such as in DS-
M. Therefore, the best F-measure values for DS-M can be achieved within the threshold
range of 0.35 ≤ θ ≤ 0.45. The resulting F-measure values with a maximum of 0.75
are still below the values of DS-G and DS-P2. With thresholds between 0.75 and 0.9,
DS-G and DS-P2 achieve F-measure values for the similarity graph of more than 0.9 and
0.8, respectively. In order to recognize the improvement of the clustering approaches in
comparison to the input, Figure 9.5 also shows the quality of the corresponding input
(similarity) graph.

A comparison of the clustering approaches reveals that there are substantial differ-
ences in the relative match quality. As expected, CC generally achieves the worst values
for F-measure, primarily due to the very low precision values. These are caused by the
fact that CC links all entities being accessible via arbitrary paths, which results in many
false positives. The two Star approaches, which calculate clusters based on neighbor-
hood relationships, show no significant improvement compared to the quality of the
input graph. The cluster center determination usually leads to a slight improvement of
the recall, but at the expense of precision. The reduced precision is especially notice-
able for Star-1 and low θ thresholds. Low θ values provide more similarity links in the
input graph, which then form (too) large clusters based on the vertex degree leading
to increased numbers of false positives. Compared to the input graph, we recognize a
reduction of the F-measure except for DS-G when using Star-2. In general, Star-2 pro-
vides better results as it includes the degree of similarity to neighbors in the formation
of cluster centers.

In contrast, the two newly introduced algorithms CLIP and SplitMerge achieve excel-
lent clustering quality. In addition, we assess a variation of the SplitMerge approach
where the final merge phase is not performed for faster execution (and therefore called
Split). These three clustering approaches outperform the previous algorithms (and the

134

9.6. EVALUATION

 0.8

 0.85

 0.9

 0.95

 1

 0.75 0.8 0.85 0.9

P
re

c
is

io
n

DS−G

CC
Star−1

Star−2
CLIP

Split
SplitMerge

InputGraph

 0.8

 0.85

 0.9

 0.95

 1

 0.75 0.8 0.85 0.9

R
e

c
a

ll

 0.8

 0.85

 0.9

 0.95

 1

 0.75 0.8 0.85 0.9

F
−

M
e

a
s
u

re

threshold theta

 0.6

 0.7

 0.8

 0.9

 1

 0.35 0.4 0.45

DS−M

 0.6

 0.7

 0.8

 0.9

 1

 0.35 0.4 0.45

 0.6

 0.7

 0.8

 0.9

 1

 0.35 0.4 0.45

threshold theta

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.75 0.8 0.85

DS−P2

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.75 0.8 0.85

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.75 0.8 0.85

threshold theta

Figure 9.5: Match quality of selected clustering approaches. In terms of the F-measure, the more
advanced approaches Split, SplitMerge and CLIP show a superior performance for all
datasets.

135

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

input graph) in terms of precision and F-measure for all three datasets. SplitMerge re-
quires additional thresholds for the split and merge routine. We tested different values
for these thresholds and found that the split threshold should be chosen lower than the
similarity threshold θ. As a result, clusters are only split if they contain links with low
similarity. By contrast, the merge threshold should be higher than θ so that only very
similar clusters are merged. The shown results refer to a fixed setting per dataset, e. g.,
a split threshold of 0.4 and a merge threshold of 0.8 for DS-G.

Despite generally strong results for CLIP, Split and SplitMerge on the three datasets,
strengths and weaknesses for the approaches can be identified. While results for DS-G
are fairly even for the three algorithms, CLIP has a slight lead in F-measure because
of better recall values for all configurations. For DS-M and DS-P2, we show relevant
differences between the three approaches. In particular, SplitMerge has the best recall
for both datasets but is only ahead for DS-M in precision. We can identify the reason for
the high recall of SplitMerge by comparing it to Split. Since both methods execute the
split, the increased recall for SplitMerge is due to the subsequently executed merge. The
cluster merge unites entities that cannot be identified by any other algorithm. Therefore,
for DS-M, both Split and SplitMerge outperform CLIP and the other approaches in terms
of F-measure. For the dataset DS-P2, the recall effect of SplitMerge is not so obvious
anymore, because the precision is reduced in the merge phase. However, the resulting
F-measure values of SplitMerge are still higher than those of Split. For DS-P2, CLIP has
the best precision, good recall values and therefore the best F-measure of all methods.

9.6.3 Runtimes and speedup

For the assessment of runtime and speedup, it is helpful to provide information on
the cluster used. The experiments of the clustering approaches are based on a shared-
nothing cluster with 16 workers, each of them running 6 CPUs at 2.5 GHz with 48 GiB
RAM and 1 Gbit Ethernet connection. Themachines operate on OpenSUSE 13.2, Apache
Hadoop 2.6.0 and Apache Flink 1.1.2. The Flink setup makes use of 6 parallel threads and
40 GiB for each worker. Since some clustering approaches are not executable on 1 or
2 workers due to memory requirements, we evaluate the speedup for 4, 8 and 16 work-
ers with full parallelism. For the experiments, we limit ourselves to the largest datasets
DS-P1 and DS-P2 and use the threshold θ = 0.8 to determine the similarity graph. The
similarity graph is generated once and used for all clustering approaches, therefore, the
runtime is not included. Experiments for each configuration are repeated three times to
compute an average runtime.

136

9.6. EVALUATION

Table 9.5: Runtimes for all clustering schemes (seconds). A varying number of workers in the cluster
shows the scalability of the methods.

DS-P1 DS-P2
workers 4 8 16 4 8 16

CC 51 57 55 101 79 79
Star-1 288 149 85 783 367 197
Star-2 214 124 67 720 317 173
Split 255 145 86 873 445 278

SplitMerge 1754 1423 1168 4792 3618 2819
CLIP 190 101 69 674 351 228

In Table 9.5, the runtime for DS-P1 and DS-P2 is shown for all clustering approaches.
As expected, DS-P2 leads to a higher runtime of all approaches by doubling the number
of entities. The simplest method calculates connected components (CC) and, as antici-
pated, has the shortest runtime. Star-1, Star-2, Split and CLIP achieve good runtime on
a similar level. The use of additional workers leads to significantly shorter runtimes for
all approaches except CC.The SplitMerge approach generally shows the worst runtimes.
If the Split approach is executed separately; however, the runtime and also the quality
(see Figure 9.5) is very good. Thus the weak point of SplitMerge is in the merge phase.
This is partly due to the new calculation of similarities between previously unconnected
clusters as the basis for merging. The fact that the merge phase iteratively links clusters
creates additional complexity during execution. An improved implementation of CLIP
(compared to the initial publication [164]) has significantly improved the runtime of the
algorithm and is therefore faster than Split and SplitMerge.

As a final consideration, the runtime will be used to make conclusions regarding the
speedup. Therefore, Figure 9.6 shows how the speedup responds for each clustering ap-
proach, when the worker capacity is doubled. For both datasets DS-P1 and DS-P2, all
clustering approaches except SplitMerge (and the baseline CC) show an almost linear
speedup. Especially for CLIP and Split, this shows good scalability despite high-quality
results. For the larger dataset DS-P2 the speedup is even better, and for the Star ap-
proaches even super-linear. Since the experiments only start with a cluster size of 4
workers, this can also be an unfavorable representation. The elaborate merge phase of
SplitMerge also causes bad speedup performance. The speedup is constant as the num-
ber of workers increases to 8 or 16, but cannot keep up with Split, CLIP or Star. For the
baseline CC, a negative speedup can be observed for DS-P1, since the simple approach
cannot use the complete performance of the cluster.

137

CHAPTER 9. COMPARATIVE EVALUATION OF CLUSTERING METHODS

 1

 2

 4

 4 8 16

S
p

e
e

d
u

p

Cluster size

Linear
CC
Star−1
Star−2
CLIP
Split
SplitMerge

(a) Speedup for dataset DS-P1.

 1

 2

 4

 4 8 16

S
p

e
e

d
u

p

Cluster size

Linear
CC
Star−1
Star−2
CLIP
Split
SplitMerge

(b) Speedup for dataset DS-P2.

Figure 9.6: Speedup for varying cluster sizes (number of workers 4, 8 and 16).

9.7 Conclusion

In this chapter, we compared themethodology and results of several multi-source cluster-
ing approaches. To enable this comparison on the distributed processing system Apache
Flink, equal prerequisites were provided through a standardizedworkflow in the scalable
clustering framework FAMER. An initial similarity graph construction was followed by
the individual clustering strategy of each approach to determine a clustered set of enti-
ties. We then evaluated the investigated methods concerning the achieved quality and
the runtime behavior on very large datasets.

The evaluation of the clustering results clearly shows that the specialized approaches
Split, SplitMerge and CLIP achieve a significantly better quality than previously known
clustering approaches. In particular, they ensure source-consistent clusters with at most
one entity per source as required for duplicate-free sources. Especially Split and CLIP
achieve high match quality, good execution times and scalability making them good
default approaches for multi-source entity clustering. The runtimes of SplitMerge are
too time-consuming for large datasets. However, the improvement in quality for the
music domain shows that post-processing of clustering results can be useful. Across all
datasets from different domains such as geography, music or person, results were found
to be highly dependent on the initial quality of the data and the quality of the calculated
similarity graph.

138

Part IV

Conclusion and Outlook

139

10
Conclusion and Outlook

10.1 Conclusion

This dissertation elaborated and assessed various approaches for scalable integration of
Linked Data. An introductory discussion showed the need for additional methods ac-
cording to new challenges and identified requirements that should lead to more efficient
and effective data integration. An extensive thematic overview then examined the Se-
mantic Web in general and link discovery in particular and concluded with destinctions
compared to this thesis. The second part described new strategies for reuse of existing
linking results and clustering of entities for multiple Linked Data sources. Following the
initial requirements, the third part of the dissertation showed the scalability of the pro-
posed clustering approaches within the distributed processing platform Apache Flink.

10.1.1 Reuse of LinK DiscoveRy Results and ClusteRing
StRategies

Previous research had placed little emphasis on the reuse of existing link discovery re-
sults. Thus, the design and deployment of the LinkLion platform was an essential contri-
bution to enable the reuse of existing links. The publicly accessible web service allows
the storage and retrieval of link discovery results as well as the addition of provenance
information. By using standardized vocabularies, provenance information could be pro-
vided in a transparent way for further reference. A public SPARQL endpoint was set up
to allow the stored link discovery results to be further used in the Web of Data. Over-

141

CHAPTER 10. CONCLUSION AND OUTLOOK

all, the linking repository is a foundation for innovative and holistic methods for data
integration, e. g., to recognize new relations via sequences of links using composition
methods or to link multiple Linked Data sources with each other.

The data from LinkLion was then reused as a basis for multiple clustering-based ap-
proaches to create an integrated knowledge base. A first approach examined the pos-
sibilities of linking entities from multiple Linked Data sources. This holistic clustering
approach created a consolidated data representation based on existing links and allowed
the optimization of clusters with split and merge operators. By including source in-
formation and semantic type information in the split phase, correct clusters are deter-
mined. All entities in the resulting clusters represent equivalent objects from differ-
ent data sources. By bundling these entities into a unified cluster representative, fewer
comparisons are required in the subsequent merge phase. The evaluation showed that
reusing existing links can integrate many previously unconnected entities while avoid-
ing repeated calculations. Furthermore, incorrect links have been detected by analyzing
the semantic types and provenance information of the data sources. Overall, the effec-
tiveness and efficiency of the data integration process were improved by the creation of
a holistic knowledge base.

An additional study investigates how already existing knowledge graphs can be ex-
tended in case of continuously changing data sources. Two generic incremental cluster-
ing approaches allow an optimal assignment of new entities while supporting blocking
strategies. Besides an incremental base method, a more efficient and effective source-
specific approach was presented, which allows an optimal 1:1 assignment of entities to
clusters. The assumption that cluster quality decreases through the deployment of in-
cremental clustering approaches was largely confirmed. However, the source-specific
approach often delivered only slightly worse precision and recall than static clustering
and could even achieve higher quality for a single domain. Interestingly, the evaluation
also showed that the order of the data sources in incremental clustering has a decisive
influence on the results and that high-quality sources should be used earlier, if possible.

10.1.2 PaRallelization of ClusteRing StRategies

A crucial part of the work focused on distributed dataflow systems to parallelize the
proposed static and incremental clustering strategies for improved efficiency. Therefore,
it was examined how systems like Apache Flink can process increasingly complex and
growing Linked Data sources to enable scalable data integration. For the efficient imple-
mentation of SplitMerge, different abstract operators of the Apache Flink platform have
been used. In the first step, a grouping of neighboring entities (vertices) based on seman-

142

10.1. CONCLUSION

tic type characteristics was realized. A second step then removed dissimilar elements
from the initial clusters with a vertex-centric iteration. Finally, an iterative merge algo-
rithm ensured that the clusters are merged if they are sufficiently similar. Since parts of
the cluster set have no merge partners, some of the result clusters converge faster than
others. The DeltaIterate operator thus reduces the number of elements in subsequent
iteration steps by transferring only modified elements to the next iteration.

To avoid unnecessary calculations and for efficient execution on distributed systems,
support for arbitrary blocking strategies was introduced. By partitioning the data into
blocks based on semantic properties (blocking keys), the similarity determination was
carried out locally for each block. This distribution on an Apache Flink cluster promises
a significantly accelerated execution, e.g., by reduced data exchange over the network.
In this blocking process, various possibilities for optimization were investigated to influ-
ence the resulting quality and the runtime. Unequal distribution of attribute values can
lead to load balancing problems. Resulting skewed blocks are redistributed to several
nodes in the cluster to achieve an overall reduced runtime. Regardless of the blocking
strategy, the selection of the blocking key could be optimized in most of the cases. For
the presented clustering approaches, variable lengths of the blocking keys were used to
partition data according to standard blocking. This enabled the blocking key lengths to
be adjusted according to the respective domain to reduce the runtime while maintaining
a high quality of results.

The evaluation examined both scalability and quality of results for very large datasets
with up to 20 million entities. Overall, both the static SplitMerge and the incremental
clustering achieved good execution times for datasets from different domains. In ad-
dition, the influence of an increasing number of workers in the Apache Flink cluster
was evaluated. For the static SplitMerge approach, almost linear speedup values for
large parts of the workflow could be determined. However, the complex merge phase
reduced this speedup and should only be used if the quality of the results requires fur-
ther improvement or the runtime is of secondary importance. Omitting the complex
merge phase resulted in an excellent runtime behavior with very high resulting cluster
quality in many cases. The comparison of this split (only) clustering method with other
multi-source clustering approaches on distributed processing systems showed that the
performance is competitive.

For the support of dynamic data sources, the scalability of the proposed incremental
clustering methods was also analyzed on the Apache Flink platform. In addition to an
incremental base approach, a more efficient and effective source-based approach was
introduced. It finds a 1:1 assignment between clusters and new entities using the Max-
Both strategy. In comparison to static clustering methods, it was observed that a similar

143

CHAPTER 10. CONCLUSION AND OUTLOOK

runtime is achieved when the static method is allowed to process all increments in one
step. However, a realistic approach would require static methods to start a complete
recalculation with each increment. This leads to a clear runtime advantage for the pro-
posed incremental approaches. Ultimately, the investigations for the speedup showed an
almost linear performance increase of 9.6x on the cluster infrastructure with 16 workers.

10.2 OutlooK

This dissertation on the optimization of data integration processes for Linked Data rep-
resents an essential contribution to the advancement of the Semantic Web. Increased
application of Semantic Web technologies and continuously growing volume of data on
the Web requires reliable concepts to integrate data towards interconnected knowledge
graphs. This insight has already led to the development of knowledge graphs at large cor-
porations such as Google, Microsoft or Facebook. A very recent article [148] describes
these corporate experiences and derives future challenges such as managing changing
data sources and scalability for knowledge graph operations. Together with comprehen-
sive findings of this thesis regarding reuse of existing links and clustering strategies on
scalable infrastructure, various important directions for future research can be identified.

Reusability and Provenance Thepresented capabilities to store andmaintain existing
links together with relevant meta-information allows the reuse in new Semantic
Web applications. In addition to describing the metadata using different ontolo-
gies, these also allow easy extensibility for other researchers. For instance, the
possibility of publishing link specifications between data sources on the LinkLion
platform was added by [170]. Thus, relevant and most distinctive properties and
thresholds for different domains can automatically be extracted as a starting point
for future algorithms. The extensibility of the link repository is used to encourage
further research to increase reuse and provenance when integrating Linked Data
sources.

The existing LinkLion capabilities for storing provenance information can be ex-
tended with additional metadata to increase the value of the platform. In partic-
ular, it is necessary to describe the quality of the provided data. Up to now, the
addition of links to the repository lacks a validation process. Thus, erroneous data
or links with insufficient metadata can be uploaded. This finding has also been
supported by an inconsistency detection approach [180] applied to LinkLion. The
method was able to detect that links from frameworks like Silk or LIMES have a
significantly lower error rate than other algorithms. In the future, the consistency

144

10.2. OUTLOOK

of the data should be checked when it is added. Incorrect data could either be
rejected or included in the portal with a semantic description of the error. This
extensive data could then be used to investigate how the continuous evolution of
links influences the quality when new linking frameworks or updated data sources
are utilized. Recent publications [121, 127] also examine link reuse and quality
checks, but limit themselves to specific data sources or do not yet deal with errors.

Data integration approaches based on LinkLion already reuse links, but they do
not attempt to use any of the included metadata. Therefore, linking and cluster-
ing algorithms should be improved to use extensive provenance information for
subsequent match decisions. Simple metrics (e. g., based on a single provenance
feature) could be used to exclude links of individual frameworks that have pro-
duced poor quality results. However, calculating complex quality metrics for a
large number of links can be very time-consuming. It is thus essential to examine
whether quality measures resulting from the provenance information can be com-
bined to introduce a rating for links. For example, this link rating could positively
include the support of different algorithms or frameworks and negatively include
a poor consistency check. The resulting rating can then easily be used for any data
integration task.

Static and Incremental Clustering for Evolving Knowledge Graphs The present-
ed clustering approaches are a significant contribution towards a physical data
integration process for multiple Linked Data sources to form consolidated knowl-
edge bases. A recent study [164] confirms the findings stating that the detection
of inconsistencies leads to significantly improved qualitative results. Overall, the
investigations have also shown promising opportunities for further research di-
rections to improve effectiveness and efficiency.

Existing linking and clustering approaches typically rely on similarity computa-
tions on different entity attributes to identify matching elements. Additional in-
formation such as ontologies or information from highly interconnected groups
of entities is often neglected. Therefore, it is interesting to study how the context
of the surrounding entities (e. g., parental ontology concepts or neighborhood re-
lationships) influences the resulting quality. In particular, it can be investigated if
a higher degree of connectivity of the ontology concepts affects the results with
an increasing number of data sources.

The cluster representatives represent a central component for the physical data
integration. Thus, the selection of optimal property values from equivalent entities

145

CHAPTER 10. CONCLUSION AND OUTLOOK

to form a cluster representative is a crucial task. So far, this thesis as well as a more
recently published related work [61] use simple rule-based procedures such as
majority consensus or priority-based selection. Therefore, a detailed investigation
of clustering methods with a more sophisticated selection of property values for
representatives can further improve the resulting quality.

Besides improving effectiveness, it is also of central importance to optimize the
efficiency of the data integration process. The execution of a complex processing
pipeline to cluster huge datasets could be demonstrated using the distributed pro-
cessing system Apache Flink. The additional use of blocking strategies allowed a
decisive contribution to the runtime reduction. However, the research has shown
that blocking strategies do not react flexibly to the increasing amount of data. Al-
ready implemented optimizations such as load balancing support the distribution
of the workload, but cannot avoid the initial imbalance. To further increase per-
formance, adaptive blocking methods can be investigated to select the appropri-
ate strategy for the respective dataset. One idea is to study how to automatically
execute one or more relevant blocking strategies according to the respective the-
matic domain and the size of the dataset, leading to an optimal distribution of
the data. Already established machine learning methods such as binary classifica-
tion or genetic programming [18, 51] can be used to find the best configurations
while maintaining high-quality results. In this context, the design and implemen-
tation of load balancing mechanisms for adaptive blocking strategies on systems
like Apache Flink can be a challenge. Therefore, future work should investigate
how adaptive blocking methods can be used to partition very large datasets from
different domains for data integration tasks on distributed processing systems like
Apache Flink or Apache Spark.

Given the increasing number of dynamic Linked Data sources, it is also interest-
ing to investigate the proposed optimizations for incremental knowledge graph
integration. To meet the requirements of the integrated knowledge bases, previ-
ously missing operations for adaptation must also be supported. The presented
approaches already allow the addition of new entities. It is thus of interest to in-
vestigate change and delete operations for incremental holistic data integration
processes. Besides the coverage of missing operations, the scalability of incremen-
tal methods has to be studied for varying data sizes. As the runtime reduction
of the proposed incremental clustering methods are lower than expected, future
work could investigate how similar methods [35, 71, 190] perform in compari-
son. Another interesting topic is the combination of continuously changed data

146

10.2. OUTLOOK

sources and the logging of changes for traceability. The availability of information
on the temporal sequence of changes for entities then allows the use of systems
for temporal graph analysis [161]. Recognized inconsistencies could then lead to
repeated checking of the elements added at the same time or restore a backup from
an earlier point of time.

Integration into Existing Systems The comparison of different multi-source cluster-
ing approachesmade it possible to recognize that specialized clustering algorithms
using semantic information achieve better results. These resultswere also achieved
by integrating SplitMerge and other clustering approaches into the FAMER frame-
work [162]. In this context, the question arises, how the general comparability
and applicability of research approaches within an already existing data integra-
tion process is possible.

Future research into scalable data integration strategies should also focus on com-
parability and ease of use for researchers. Comparability of results can, for in-
stance, already be ensured by benchmarking on platforms such as HOBBIT [96].
Various tasks regarding generation, linking and analysis for very large Linked
Data sources are provided to cover components of the Linked Data life cycle.
However, coverage by a benchmark does not guarantee that high-performance
methods can be used by other researchers in the Semantic Web. Therefore, future
data integration approaches should ensure that integration into existing systems
is possible. Recent studies [8, 33] confirm this finding with the proposal to create
stable platforms for data management and analysis. For the management of Big
Data, extensive platforms with easily adaptable modular processes are to be de-
veloped. The Semantic Web platform BDE [8] already offers various modules for
data processing with established platforms like Apache Spark or Flink. Addition-
ally, modules that enable NLP [175], link discovery [185] or large-scale RDF pro-
cessing [113] can also be used. Future work could thus integrate supplementary
frameworks such as FAMER [162] or Gradoop [97] to cover further data integra-
tion or analytics tasks.

This listing of possible future work shows that many interesting problems in the sur-
veyed research areas are still to be adressed. Our contributions for scalable data inte-
gration for Linked Data can serve as a basis for further investigations. The findings and
complications of other researchers also confirm the conclusions made.

147

CHAPTER 10. CONCLUSION AND OUTLOOK

148

Bibliography

[1] Manel Achichi et al. “Results of the Ontology Alignment Evaluation Initiative
2017”. In: Proceedings of the 12th International Workshop on Ontology Matching co-
located with the 16th International Semantic Web Conference (ISWC 2017), Vienna,
Austria, October 21, 2017. Ed. by Pavel Shvaiko et al. Vol. 2032. CEUR Workshop
Proceedings. CEUR-WS.org, 2017, pp. 61–113. uRl: http://ceur-ws.org
/Vol-2032/oaei17_paper0.pdf.

[2] Alsayed Algergawy et al. “Results of the Ontology Alignment Evaluation Initia-
tive 2018”. In: Proceedings of the 13th International Workshop on Ontology Match-
ing co-located with the 17th International Semantic Web Conference, OM@ISWC
2018, Monterey, CA, USA, October 8, 2018. Ed. by Pavel Shvaiko et al. Vol. 2288.
CEUR Workshop Proceedings. CEUR-WS.org, 2018, pp. 76–116. uRl: http://
ceur-ws.org/Vol-2288/oaei18_paper0.pdf.

[3] ArvindArasu, VenkateshGanti, and RaghavKaushik. “Efficient Exact Set-Similarity
Joins”. In: Proceedings of the 32nd International Conference on Very Large Data
Bases, Seoul, Korea, September 12-15, 2006, ed. by Umeshwar Dayal et al. ACM,
2006, pp. 918–929. isbn: 1-59593-385-9. uRl: http://dl.acm.org/cita
tion.cfm?id=1164206.

[4] Michael Armbrust et al. “Spark SQL: Relational Data Processing in Spark”. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, ed. by Timos K.
Sellis et al. ACM, 2015, pp. 1383–1394. isbn: 978-1-4503-2758-9. doi: 10.1145/
2723372.2742797.

[5] Natanael Arndt, Patrick Naumann, Norman Radtke, Michael Martin, and Edgard
Marx. “Decentralized Collaborative Knowledge Management Using Git”. In: J.
Web Semant. 54 (2019), pp. 29–47. doi: 10.1016/j.websem.2018.08.
002.

[6] Javed A. Aslam, Ekaterina Pelekhov, and Daniela Rus. “The Star Clustering Algo-
rithm for Static and Dynamic Information Organization”. In: J. Graph Algorithms
Appl. 8 (2004), pp. 95–129. uRl: http://jgaa.info/accepted/2004/
Aslam+2004.8.1.pdf.

149

http://ceur-ws.org/Vol-2032/oaei17_paper0.pdf
http://ceur-ws.org/Vol-2032/oaei17_paper0.pdf
http://ceur-ws.org/Vol-2288/oaei18_paper0.pdf
http://ceur-ws.org/Vol-2288/oaei18_paper0.pdf
http://dl.acm.org/citation.cfm?id=1164206
http://dl.acm.org/citation.cfm?id=1164206
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1016/j.websem.2018.08.002
https://doi.org/10.1016/j.websem.2018.08.002
http://jgaa.info/accepted/2004/Aslam+2004.8.1.pdf
http://jgaa.info/accepted/2004/Aslam+2004.8.1.pdf

BIBLIOGRAPHY

[7] Sören Auer et al. “Managing the Life-Cycle of Linked Data with the LOD2 Stack”.
In: The Semantic Web - ISWC 2012 - 11th International Semantic Web Conference,
Boston, MA, USA, November 11-15, 2012, Proceedings, Part II, ed. by Philippe Cudré-
Mauroux et al. Vol. 7650. Lecture Notes in Computer Science. Springer, 2012,
pp. 1–16. isbn: 978-3-642-35172-3. doi: 10.1007/978-3-642-35173-
0_1.

[8] Sören Auer et al. “The BigDataEurope Platform - Supporting the Variety Dimen-
sion of Big Data”. In:Web Engineering - 17th International Conference, ICWE 2017,
Rome, Italy, June 5-8, 2017, Proceedings, ed. by Jordi Cabot et al. Vol. 10360. Lecture
Notes in Computer Science. Springer, 2017, pp. 41–59. isbn: 978-3-319-60130-4.
doi: 10.1007/978-3-319-60131-1_3.

[9] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. “Scaling up all pairs
similarity search”. In: Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, ed. by Carey L.
Williamson et al. ACM, 2007, pp. 131–140. isbn: 978-1-59593-654-7. doi: 10.
1145/1242572.1242591.

[10] Khalid Belhajjame et al. PROV Model Primer. W3C Note. W3C, Apr. 2013. uRl:
http://www.w3.org/TR/prov-primer/.

[11] Kedar Bellare, Carlo Curino, AshwinMachanavajihala, PeterMika,Mandar Rahurkar,
and Aamod Sane. “WOO: A Scalable and Multi-tenant Platform for Continu-
ous Knowledge Base Synthesis”. In: PVLDB 6.11 (2013), pp. 1114–1125. doi: 10.
14778/2536222.2536236.

[12] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986. The Internet Society, Jan. 2005. uRl: http://rfc.
net/rfc3986.html.

[13] Tim Berners-Lee. Linked Data design issues. W3C design issue document. June
2009. uRl: http://www.w3.org/DesignIssues/LinkedData.
html.

[14] Tim Berners-Lee. Metadata Architecture design issues. W3C design issue docu-
ment. https://www.w3.org/DesignIssues/Metadata. Jan. 1997. uRl: https://
www.w3.org/DesignIssues/Metadata.

[15] Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic Web”. In: Scien-
tific american 284.5 (2001), pp. 34–43.

150

https://doi.org/10.1007/978-3-642-35173-0_1
https://doi.org/10.1007/978-3-642-35173-0_1
https://doi.org/10.1007/978-3-319-60131-1_3
https://doi.org/10.1145/1242572.1242591
https://doi.org/10.1145/1242572.1242591
http://www.w3.org/TR/prov-primer/
https://doi.org/10.14778/2536222.2536236
https://doi.org/10.14778/2536222.2536236
http://rfc.net/rfc3986.html
http://rfc.net/rfc3986.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/Metadata
https://www.w3.org/DesignIssues/Metadata

BIBLIOGRAPHY

[16] Nikos Bikakis and Timos K. Sellis. “Exploration and Visualization in the Web of
Big Linked Data: A Survey of the State of the Art”. In: Proceedings of the Work-
shops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT Workshops 2016, Bor-
deaux, France, March 15, 2016. Ed. by Themis Palpanas et al. Vol. 1558. CEUR
Workshop Proceedings. CEUR-WS.org, 2016. uRl: http://ceur-ws.org/
Vol-1558/paper28.pdf.

[17] Nikos Bikakis, Chrisa Tsinaraki, Nektarios Gioldasis, Ioannis Stavrakantonakis,
and Stavros Christodoulakis. “The XML and SemanticWebWorlds: Technologies,
Interoperability and Integration: A Survey of the State of the Art”. In: Semantic
Hyper/Multimedia Adaptation - Schemes and Applications, ed. by Ioannis Anag-
nostopoulos et al. Vol. 418. Studies in Computational Intelligence. Springer, 2013,
pp. 319–360. isbn: 978-3-642-28976-7. doi: 10.1007/978-3-642-28977-
4_12.

[18] Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. “Adaptive Blocking:
Learning to Scale Up Record Linkage”. In: Proceedings of the 6th IEEE International
Conference on Data Mining (ICDM 2006), 18-22 December 2006, Hong Kong, China.
IEEE Computer Society, 2006, pp. 87–96. isbn: 0-7695-2701-9. doi: 10.1109/
ICDM.2006.13.

[19] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked Data - The Story So
Far”. In: Int. Journal on Semantic Web and Information Systems (IJSWIS) 5.3 (Mar.
2009), pp. 1–22. issn: 1552-6283. doi: 10.4018/jswis.2009081901.

[20] Olivier Bodenreider. “The Unified Medical Language System (UMLS): integrat-
ing biomedical terminology”. In: Nucleic Acids Research 32.Database-Issue (2004),
pp. 267–270. doi: 10.1093/nar/gkh061.

[21] Christoph Böhm,Gerard deMelo, Felix Naumann, andGerhardWeikum. “LINDA:
distributed web-of-data-scale entity matching”. In: 21st ACM International Con-
ference on Information and Knowledge Management, CIKM’12, Maui, HI, USA, Oc-
tober 29 - November 02, 2012, ed. by Xue-wen Chen et al. ACM, 2012, pp. 2104–
2108. isbn: 978-1-4503-1156-4. doi: 10.1145/2396761.2398582.

[22] LoesM.M. Braun, FlorisWiesman, H. Jaap van denHerik, Arie Hasman, and Erik
Korsten. “Towards patient-related information needs”. In: I. J. Medical Informatics
76.2-3 (2007), pp. 246–251. doi: 10.1016/j.ijmedinf.2006.03.004.

[23] Dan Brickley and R. V. Guha. RDF Schema 1.1. W3C Recommendation. W3C, Feb.
2014. uRl: https://www.w3.org/TR/rdf-schema/.

151

http://ceur-ws.org/Vol-1558/paper28.pdf
http://ceur-ws.org/Vol-1558/paper28.pdf
https://doi.org/10.1007/978-3-642-28977-4_12
https://doi.org/10.1007/978-3-642-28977-4_12
https://doi.org/10.1109/ICDM.2006.13
https://doi.org/10.1109/ICDM.2006.13
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1145/2396761.2398582
https://doi.org/10.1016/j.ijmedinf.2006.03.004
https://www.w3.org/TR/rdf-schema/

BIBLIOGRAPHY

[24] Sergey Brin and Lawrence Page. “The Anatomy of a Large-Scale Hypertextual
Web Search Engine”. In: Computer Networks 30.1-7 (1998), pp. 107–117. doi: 10.
1016/S0169-7552(98)00110-X.

[25] Volha Bryl et al. “Interlinking and Knowledge Fusion”. In: Linked Open Data -
Creating Knowledge Out of Interlinked Data - Results of the LOD2 Project, ed. by
Sören Auer et al. Vol. 8661. Lecture Notes in Computer Science. Springer, 2014,
pp. 70–89. isbn: 978-3-319-09845-6. doi: 10.1007/978-3-319-09846-
3_4.

[26] Lorenz Bühmann, Jens Lehmann, Patrick Westphal, and Simon Bin. “DL-Learner
Structured Machine Learning on Semantic Web Data”. In: Companion of the The
Web Conference 2018 onTheWeb Conference 2018, WWW2018, Lyon , France, April
23-27, 2018, ed. by Pierre-Antoine Champin et al. ACM, 2018, pp. 467–471. doi:
10.1145/3184558.3186235.

[27] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. “Apache Flink™: Stream and Batch Processing in a Single
Engine”. In: IEEE Data Eng. Bull. 38.4 (2015), pp. 28–38. uRl: http://sites.
computer.org/debull/A15dec/p28.pdf.

[28] Michelle Cheatham and Pascal Hitzler. “String Similarity Metrics for Ontology
Alignment”. In: The Semantic Web - ISWC 2013 - 12th International Semantic Web
Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part II, ed. by
Harith Alani et al. Vol. 8219. Lecture Notes in Computer Science. Springer, 2013,
pp. 294–309. isbn: 978-3-642-41337-7. doi: 10.1007/978-3-642-41338-
4_19.

[29] Ying Chen, JD Elenee Argentinis, and GriffWeber. “IBMWatson: How Cognitive
Computing Can Be Applied to Big Data Challenges in Life Sciences Research”.
In: Clinical Therapeutics 38.4 (2016), pp. 688–701. issn: 0149-2918. doi: https:
//doi.org/10.1016/j.clinthera.2015.12.001.

[30] Peter Christen. “A Survey of Indexing Techniques for Scalable Record Linkage
and Deduplication”. In: IEEE Trans. Knowl. Data Eng. 24.9 (2012), pp. 1537–1555.
doi: 10.1109/TKDE.2011.127.

[31] Peter Christen. Data Matching - Concepts and Techniques for Record Linkage, En-
tity Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer, 2012. isbn: 978-3-642-31163-5. doi:10.1007/978-3-642-31164-
2.

152

https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1007/978-3-319-09846-3_4
https://doi.org/10.1007/978-3-319-09846-3_4
https://doi.org/10.1145/3184558.3186235
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1007/978-3-642-41338-4_19
https://doi.org/10.1007/978-3-642-41338-4_19
https://doi.org/https://doi.org/10.1016/j.clinthera.2015.12.001
https://doi.org/https://doi.org/10.1016/j.clinthera.2015.12.001
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2

BIBLIOGRAPHY

[32] Peter Christen and Dinusha Vatsalan. “Flexible and extensible generation and
corruption of personal data”. In: 22nd ACM International Conference on Informa-
tion and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27 -
November 1, 2013, ed. by Qi He et al. ACM, 2013, pp. 1165–1168. isbn: 978-1-4503-
2263-8. doi: 10.1145/2505515.2507815.

[33] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. “End-to-End Entity Resolution for Big Data: A Survey”. In:
CoRR abs/1905.06397 (2019). arXiv: 1905.06397.

[34] Mihai Codescu, Daniel CoutoVale, Oliver Kutz, and TillMossakowski. “Ontology-
based Route Planning for OpenStreetMap”. In: Proceedings of the Terra Cognita
Workshop on Foundations, Technologies and Applications of the Geospatial Web,
Boston, USA, November 12, 2012, ed. by Dave Kolas et al. Vol. 901. CEUR Work-
shop Proceedings. CEUR-WS.org, 2012, pp. 62–73. uRl: http://ceur-ws.
org/Vol-901/paper6.pdf.

[35] Gianni Costa, Giuseppe Manco, and Riccardo Ortale. “An incremental clustering
scheme for data de-duplication”. In:Data Min. Knowl. Discov. 20.1 (2010), pp. 152–
187. doi: 10.1007/s10618-009-0155-0.

[36] Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. “AgreementMaker:
Efficient Matching for Large Real-World Schemas and Ontologies”. In: PVLDB 2.2
(2009), pp. 1586–1589. doi: 10.14778/1687553.1687598.

[37] RichardCyganiak, DavidWood, andMarkus Lanthaler. Resource Description Frame-
work (RDF) 1.1 Concepts and Abstract Syntax. W3C Recommendation. W3C, Feb.
2014. uRl: https://www.w3.org/TR/rdf11-concepts/.

[38] Data Artisans. data Artisans Streaming Ledger - Serializable ACID Transactions on
Streaming Data. Tech. rep. Data Artisans, 2018.

[39] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: 6th Symposium on Operating System Design and Implementa-
tion (OSDI 2004), San Francisco, California, USA, December 6-8, 2004, ed. by Eric
A. Brewer et al. USENIX Association, 2004, pp. 137–150. uRl: http://www.
usenix.org/events/osdi04/tech/dean.html.

[40] Jeremy Debattista, Christoph Lange, Sören Auer, and Dominic Cortis. “Evaluat-
ing the quality of the LOD cloud: An empirical investigation”. In: Semantic Web
9.6 (2018), pp. 859–901. doi: 10.3233/SW-180306.

153

https://doi.org/10.1145/2505515.2507815
https://arxiv.org/abs/1905.06397
http://ceur-ws.org/Vol-901/paper6.pdf
http://ceur-ws.org/Vol-901/paper6.pdf
https://doi.org/10.1007/s10618-009-0155-0
https://doi.org/10.14778/1687553.1687598
https://www.w3.org/TR/rdf11-concepts/
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.3233/SW-180306

BIBLIOGRAPHY

[41] Jack B. Dennis. “First version of a data flow procedure language”. In: Program-
ming Symposium, Proceedings Colloque sur la Programmation, Paris, France, April
9-11, 1974, ed. by Bernard Robinet. Vol. 19. Lecture Notes in Computer Science.
Springer, 1974, pp. 362–376. isbn: 3-540-06859-7. doi: 10.1007/3-540-
06859-7_145.

[42] Hong Hai Do and Erhard Rahm. “COMA - A System for Flexible Combination of
Schema Matching Approaches”. In: Proceedings of 28th International Conference
on Very Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002. Morgan
Kaufmann, 2002, pp. 610–621. isbn: 978-1-55860-869-6. doi: 10.1016/B978-
155860869-6/50060-3.

[43] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. Principles of Data Integration.
Morgan Kaufmann, 2012. isbn: 978-0-12-416044-6. uRl: http://research.
cs.wisc.edu/dibook/.

[44] Xin Luna Dong andTheodoros Rekatsinas. “Data Integration andMachine Learn-
ing: A Natural Synergy”. In: Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018, ed. by Gautam Das et al. ACM, 2018, pp. 1645–1650. doi: 10.1145/
3183713.3197387.

[45] Xin Luna Dong and Divesh Srivastava. Big Data Integration. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, 2015. doi: 10.2200/
S00578ED1V01Y201404DTM040.

[46] Xin Dong et al. “Knowledge Vault: AWeb-Scale Approach to Probabilistic Knowl-
edge Fusion”. In: The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014,
ed. by Sofus A. Macskassy et al. ACM, 2014, pp. 601–610. isbn: 978-1-4503-2956-9.
doi: 10.1145/2623330.2623623.

[47] Uwe Draisbach and Felix Naumann. “A generalization of blocking and window-
ing algorithms for duplicate detection”. In: 2011 International Conference on Data
and Knowledge Engineering, ICDKE 2011, Milano, Italy, September 6, 2011, ed. by
Ji Zhang et al. IEEE, 2011, pp. 18–24. isbn: 978-1-4577-0865-7. doi: 10.1109/
ICDKE.2011.6053920.

[48] M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs). RFC 3987.
The Internet Society, Jan. 2005. uRl: https://tools.ietf.org/html/
rfc3987.

154

https://doi.org/10.1007/3-540-06859-7_145
https://doi.org/10.1007/3-540-06859-7_145
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.1016/B978-155860869-6/50060-3
http://research.cs.wisc.edu/dibook/
http://research.cs.wisc.edu/dibook/
https://doi.org/10.1145/3183713.3197387
https://doi.org/10.1145/3183713.3197387
https://doi.org/10.2200/S00578ED1V01Y201404DTM040
https://doi.org/10.2200/S00578ED1V01Y201404DTM040
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1109/ICDKE.2011.6053920
https://doi.org/10.1109/ICDKE.2011.6053920
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987

BIBLIOGRAPHY

[49] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. “Dupli-
cate Record Detection: A Survey”. In: IEEE Trans. Knowl. Data Eng. 19.1 (2007),
pp. 1–16. doi: 10.1109/TKDE.2007.250581.

[50] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer, 2007. doi: 10.
1007/978-3-540-49612-0.

[51] Luiz Osvaldo Evangelista, Eli Cortez, Altigran Soares da Silva, andWagner Meira
Jr. “Adaptive and Flexible Blocking for Record Linkage Tasks”. In: JIDM 1.2 (2010),
pp. 167–182. uRl: http://seer.lcc.ufmg.br/index.php/jidm/
article/view/45.

[52] Daniel Faria, Ernesto Jiménez-Ruiz, Catia Pesquita, Emanuel Santos, and Fran-
cisco M. Couto. “Towards Annotating Potential Incoherences in BioPortal Map-
pings”. In: The Semantic Web - ISWC 2014 - 13th International Semantic Web Con-
ference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II, ed. by Peter
Mika et al. Vol. 8797. Lecture Notes in Computer Science. Springer, 2014, pp. 17–
32. isbn: 978-3-319-11914-4. doi: 10.1007/978-3-319-11915-1_2.

[53] Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Palmonari, Isabel F. Cruz,
and Francisco M. Couto. “The AgreementMakerLight Ontology Matching Sys-
tem”. In: On the Move to Meaningful Internet Systems: OTM 2013 Conferences -
Confederated International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE
2013, Graz, Austria, September 9-13, 2013. Proceedings, ed. by Robert Meersman et
al. Vol. 8185. Lecture Notes in Computer Science. Springer, 2013, pp. 527–541.
isbn: 978-3-642-41029-1. doi: 10.1007/978-3-642-41030-7_38.

[54] Daniel Faria et al. “OAEI 2016 results of AML”. In: Proceedings of the 11th In-
ternational Workshop on Ontology Matching co-located with the 15th International
Semantic Web Conference (ISWC 2016), Kobe, Japan, October 18, 2016. Ed. by Pavel
Shvaiko et al. Vol. 1766. CEURWorkshop Proceedings. CEUR-WS.org, 2016, pp. 138–
145. uRl: http://ceur-ws.org/Vol-1766/oaei16_paper2.
pdf.

[55] Daniel Faria et al. “Results of AML in OAEI 2017”. In: Proceedings of the 12th In-
ternational Workshop on Ontology Matching co-located with the 16th International
Semantic Web Conference (ISWC 2017), Vienna, Austria, October 21, 2017. Ed. by
Pavel Shvaiko et al. Vol. 2032. CEURWorkshop Proceedings. CEUR-WS.org, 2017,
pp. 122–128. uRl: http://ceur- ws.org/Vol- 2032/oaei17_
paper2.pdf.

155

https://doi.org/10.1109/TKDE.2007.250581
https://doi.org/10.1007/978-3-540-49612-0
https://doi.org/10.1007/978-3-540-49612-0
http://seer.lcc.ufmg.br/index.php/jidm/article/view/45
http://seer.lcc.ufmg.br/index.php/jidm/article/view/45
https://doi.org/10.1007/978-3-319-11915-1_2
https://doi.org/10.1007/978-3-642-41030-7_38
http://ceur-ws.org/Vol-1766/oaei16_paper2.pdf
http://ceur-ws.org/Vol-1766/oaei16_paper2.pdf
http://ceur-ws.org/Vol-2032/oaei17_paper2.pdf
http://ceur-ws.org/Vol-2032/oaei17_paper2.pdf

BIBLIOGRAPHY

[56] David C. Faye, Olivier Curé, and Guillaume Blin. “A survey of RDF storage ap-
proaches”. In: Revue Africaine de la Recherche en Informatique et Mathématiques
Appliquées 15 (2012), pp. 11–35. uRl: https://hal.inria.fr/hal-
01299496.

[57] Ivan P. Fellegi and Alan B. Sunter. “A Theory for Record Linkage”. English. In:
Journal of the American Statistical Association 64.328 (1969), pp. 1183–1210. issn:
01621459.

[58] Alfio Ferrara, Andriy Nikolov, and François Scharffe. “Data Linking for the Se-
mantic Web”. In: Int. J. Semantic Web Inf. Syst. 7.3 (2011), pp. 46–76. doi: 10.
4018/jswis.2011070103.

[59] David A. Ferrucci et al. “Building Watson: An Overview of the DeepQA Project”.
In: AI Magazine 31.3 (2010), pp. 59–79. uRl: http://www.aaai.org/
ojs/index.php/aimagazine/article/view/2303.

[60] Martin Franke, Ziad Sehili, Marcel Gladbach, and Erhard Rahm. “Post-processing
Methods for High Quality Privacy-Preserving Record Linkage”. In: Data Privacy
Management, Cryptocurrencies and Blockchain Technology - ESORICS 2018 Inter-
national Workshops, DPM 2018 and CBT 2018, Barcelona, Spain, September 6-7,
2018, Proceedings, ed. by Joaquıń Garcıá-Alfaro et al. Vol. 11025. Lecture Notes
in Computer Science. Springer, 2018, pp. 263–278. isbn: 978-3-030-00304-3. doi:
10.1007/978-3-030-00305-0_19.

[61] Johannes Frey, Marvin Hofer, Daniel Obraczka, Jens Lehmann, and Sebastian
Hellmann. “DBpedia FlexiFusionThe Best of Wikipedia >Wikidata > Your Data”.
In: The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference,
Auckland, NewZealand, October 26-30, 2019, Proceedings, Part II, ed. by Chiara Ghi-
dini et al. Vol. 11779. Lecture Notes in Computer Science. Springer, 2019, pp. 96–
112. isbn: 978-3-030-30795-0. doi: 10.1007/978-3-030-30796-7_7.

[62] LucaGagliardelli, Song Zhu, Giovanni Simonini, and Sonia Bergamaschi. “Bigdedup:
a Big Data integration toolkit for duplicate detection in industrial scenarios”. In:
25th International Conference on Transdisciplinary Engineering (TE2018). Vol. 7.
2018, pp. 1015–1023.

[63] D. Gale and L. S. Shapley. “College Admissions and the Stability of Marriage”. In:
The American Mathematical Monthly 120.5 (2013), pp. 386–391. doi: 10.4169/
amer.math.monthly.120.05.386.

156

https://hal.inria.fr/hal-01299496
https://hal.inria.fr/hal-01299496
https://doi.org/10.4018/jswis.2011070103
https://doi.org/10.4018/jswis.2011070103
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303
https://doi.org/10.1007/978-3-030-00305-0_19
https://doi.org/10.1007/978-3-030-30796-7_7
https://doi.org/10.4169/amer.math.monthly.120.05.386
https://doi.org/10.4169/amer.math.monthly.120.05.386

BIBLIOGRAPHY

[64] Diego García-Gil, Sergio Ramírez-Gallego, Salvador García, and Francisco Her-
rera. “A comparison on scalability for batch big data processing on Apache Spark
and Apache Flink”. In: Big Data Analytics 2.1 (Mar. 2017). doi: 10.1186/
s41044-016-0020-2.

[65] Kleanthi Georgala, Mohamed Ahmed Sherif, and Axel-Cyrille Ngonga Ngomo.
“An Efficient Approach for the Generation of Allen Relations”. In: ECAI 2016 -
22nd European Conference on Artificial Intelligence, 29 August-2 September 2016,
The Hague, The Netherlands - Including Prestigious Applications of Artificial Intel-
ligence (PAIS 2016), ed. by Gal A. Kaminka et al. Vol. 285. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2016, pp. 948–956. isbn: 978-1-61499-
671-2. doi: 10.3233/978-1-61499-672-9-948.

[66] Aristides Gionis, Piotr Indyk, and RajeevMotwani. “Similarity Search in High Di-
mensions via Hashing”. In: VLDB’99, Proceedings of 25th International Conference
on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, ed. by
Malcolm P. Atkinson et al. Morgan Kaufmann, 1999, pp. 518–529. isbn: 1-55860-
615-7. uRl: http://www.vldb.org/conf/1999/P49.pdf.

[67] Joseph E. Gonzalez, Yucheng Low,Haijie Gu, Danny Bickson, andCarlos Guestrin.
“PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”. In:
10th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2012, Hollywood, CA, USA, October 8-10, 2012, ed. by Chandu Thekkath et al.
USENIX Association, 2012, pp. 17–30. isbn: 978-1-931971-96-6. uRl: https:
//www.usenix.org/conference/osdi12/technical-ses
sions/presentation/gonzalez.

[68] William D. Gropp, Ewing L. Lusk, and Anthony Skjellum. Using MPI: portable
parallel programming with the message-passing interface, 2nd Edition. Scientific
and engineering computation series. MIT Press, 1999. isbn: 026257134X. uRl:
http://www.worldcat.org/oclc/41548279.

[69] Paul Groth and Luc Moreau. PROV-Overview. W3C Note. W3C, Apr. 2013. uRl:
https://www.w3.org/TR/prov-overview/.

[70] Tom Gruber. “Ontology”. In: Encyclopedia of Database Systems, Second Edition,
ed. by Ling Liu et al. Springer, 2018, pp. 2574–2576. isbn: 978-1-4614-8266-6. doi:
10.1007/978-1-4614-8265-9_1318.

[71] Anja Gruenheid, Xin Luna Dong, and Divesh Srivastava. “Incremental Record
Linkage”. In: PVLDB 7.9 (2014), pp. 697–708. doi: 10.14778/2732939.
2732943.

157

https://doi.org/10.1186/s41044-016-0020-2
https://doi.org/10.1186/s41044-016-0020-2
https://doi.org/10.3233/978-1-61499-672-9-948
http://www.vldb.org/conf/1999/P49.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
http://www.worldcat.org/oclc/41548279
https://www.w3.org/TR/prov-overview/
https://doi.org/10.1007/978-1-4614-8265-9_1318
https://doi.org/10.14778/2732939.2732943
https://doi.org/10.14778/2732939.2732943

BIBLIOGRAPHY

[72] Toni Grütze, Christoph Böhm, and Felix Naumann. “Holistic and Scalable Ontol-
ogy Alignment for Linked Open Data”. In: WWW2012 Workshop on Linked Data
on the Web, Lyon, France, 16 April, 2012, ed. by Christian Bizer et al. Vol. 937.
CEUR Workshop Proceedings. CEUR-WS.org, 2012. uRl: http://ceur-ws.
org/Vol-937/ldow2012-paper-08.pdf.

[73] Kun Guo,Wenzhong Guo, Yuzhong Chen, Qirong Qiu, and Qishan Zhang. “Com-
munity discovery by propagating local and global information based on theMapRe-
duce model”. In: Inf. Sci. 323 (2015), pp. 73–93. doi: 10.1016/j.ins.2015.
06.032.

[74] Peter Haase, Tobias Mathäß, and Michael Ziller. “An evaluation of approaches to
federated query processing over linked data”. In: Proceedings the 6th International
Conference on Semantic Systems, I-SEMANTICS 2010, Graz, Austria, September 1-
3, 2010, ed. by Adrian Paschke et al. ACM International Conference Proceed-
ing Series. ACM, 2010. isbn: 978-1-4503-0014-8. doi: 10.1145/1839707.
1839713.

[75] Olaf Hartig and Bryan Thompson. “Foundations of an Alternative Approach to
Reification in RDF”. In: CoRR abs/1406.3399 (2014). arXiv: 1406.3399.

[76] Michael Hartung, Anika Groß, and Erhard Rahm. “Composition Methods for
Link Discovery”. In: Datenbanksysteme für Business, Technologie und Web (BTW),
15. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS),
11.-15.3.2013 inMagdeburg, Germany. Proceedings, ed. by VolkerMarkl et al. Vol. 214.
LNI. GI, 2013, pp. 261–277. isbn: 978-3-88579-608-4. uRl: https://dl.gi.
de/20.500.12116/17325.

[77] Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and Hyun Chul Lee. “Frame-
work for Evaluating Clustering Algorithms in Duplicate Detection”. In: PVLDB
2.1 (2009), pp. 1282–1293. doi: 10.14778/1687627.1687771.

[78] Oktie Hassanzadeh et al. “Discovering Linkage Points overWebData”. In: PVLDB
6.6 (2013), pp. 444–456. doi: 10.14778/2536336.2536345.

[79] Jim Hendler and Theresa A. Pardo. A Primer on Machine Readability for Online
Documents and Data. 2012. uRl: https://perma.cc/B9N6-X3GL.

[80] Daniel Hernández, Aidan Hogan, and Markus Krötzsch. “Reifying RDF: What
WorksWellWithWikidata?” In: Proceedings of the 11th InternationalWorkshop on
Scalable Semantic Web Knowledge Base Systems co-located with 14th International
Semantic Web Conference (ISWC 2015), Bethlehem, PA, USA, October 11, 2015. Ed.
by Thorsten Liebig et al. Vol. 1457. CEUR Workshop Proceedings. CEUR-WS.org,

158

http://ceur-ws.org/Vol-937/ldow2012-paper-08.pdf
http://ceur-ws.org/Vol-937/ldow2012-paper-08.pdf
https://doi.org/10.1016/j.ins.2015.06.032
https://doi.org/10.1016/j.ins.2015.06.032
https://doi.org/10.1145/1839707.1839713
https://doi.org/10.1145/1839707.1839713
https://arxiv.org/abs/1406.3399
https://dl.gi.de/20.500.12116/17325
https://dl.gi.de/20.500.12116/17325
https://doi.org/10.14778/1687627.1687771
https://doi.org/10.14778/2536336.2536345
https://perma.cc/B9N6-X3GL

BIBLIOGRAPHY

2015, pp. 32–47. uRl: http://ceur-ws.org/Vol-1457/SSWS2015_
paper3.pdf.

[81] Mauricio A. Hernández and Salvatore J. Stolfo. “The Merge/Purge Problem for
Large Databases”. In: Proceedings of the 1995 ACM SIGMOD International Confer-
ence on Management of Data, San Jose, California, USA, May 22-25, 1995. Ed. by
Michael J. Carey et al. ACM Press, 1995, pp. 127–138. doi: 10.1145/223784.
223807.

[82] K. Hildebrandt, F. Panse, N. Wilcke, and N. Ritter. “Large-Scale Data Pollution
with Apache Spark”. In: IEEE Transactions on Big Data (2018), pp. 1–1. issn: 2332-
7790. doi: 10.1109/TBDATA.2016.2637378.

[83] Stanley Hillner and Axel-Cyrille Ngonga Ngomo. “Parallelizing LIMES for large-
scale link discovery”. In: Proceedings the 7th International Conference on Semantic
Systems, I-SEMANTICS 2011, Graz, Austria, September 7-9, 2011, ed. by Chiara Ghi-
dini et al. ACM International Conference Proceeding Series. ACM, 2011, pp. 9–16.
isbn: 978-1-4503-0621-8. doi: 10.1145/2063518.2063520.

[84] I. G. Husein, S. Akbar, B. Sitohang, and F. N. Azizah. “Review of ontology match-
ing with background knowledge”. In: 2016 International Conference on Data and
Software Engineering (ICoDSE). IEEE. Oct. 2016, pp. 1–6. doi: 10.1109/ICOD
SE.2016.7936159.

[85] Renato Iannella. Semantic Web Architectures. Tech. rep. Semantic Identity, Aug.
2014.

[86] Robert Isele and Christian Bizer. “Active learning of expressive linkage rules us-
ing genetic programming”. In: J. Web Sem. 23 (2013), pp. 2–15. doi: 10.1016/
j.websem.2013.06.001.

[87] Robert Isele and Christian Bizer. “Learning Expressive Linkage Rules using Ge-
netic Programming”. In: PVLDB 5.11 (2012), pp. 1638–1649. doi: 10.14778/
2350229.2350276.

[88] Robert Isele, Anja Jentzsch, andChristian Bizer. “EfficientMultidimensional Block-
ing for Link Discovery without losing Recall”. In: Proceedings of the 14th Interna-
tionalWorkshop on theWeb and Databases 2011,WebDB 2011, Athens, Greece, June
12, 2011, ed. by Amélie Marian et al. 2011.

159

http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
https://doi.org/10.1145/223784.223807
https://doi.org/10.1145/223784.223807
https://doi.org/10.1109/TBDATA.2016.2637378
https://doi.org/10.1145/2063518.2063520
https://doi.org/10.1109/ICODSE.2016.7936159
https://doi.org/10.1109/ICODSE.2016.7936159
https://doi.org/10.1016/j.websem.2013.06.001
https://doi.org/10.1016/j.websem.2013.06.001
https://doi.org/10.14778/2350229.2350276
https://doi.org/10.14778/2350229.2350276

BIBLIOGRAPHY

[89] Robert Isele, Anja Jentzsch, and Christian Bizer. “Silk Server - Adding missing
Links while consuming Linked Data”. In: Proceedings of the First International
Workshop on Consuming Linked Data, Shanghai, China, November 8, 2010, ed. by
Olaf Hartig et al. Vol. 665. CEUR Workshop Proceedings. CEUR-WS.org, 2010.
uRl: http://ceur-ws.org/Vol-665/IseleEtAl_COLD2010.
pdf.

[90] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. “LogMap: Logic-Based and
Scalable Ontology Matching”. In: The Semantic Web - ISWC 2011 - 10th Interna-
tional Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings,
Part I, ed. by Lora Aroyo et al. Vol. 7031. Lecture Notes in Computer Science.
Springer, 2011, pp. 273–288. isbn: 978-3-642-25072-9. doi: 10.1007/978-3-
642-25073-6_18.

[91] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Valerie Cross. “LogMap fam-
ily participation in the OAEI 2017”. In: Proceedings of the 12th International Work-
shop on Ontology Matching co-located with the 16th International Semantic Web
Conference (ISWC 2017), Vienna, Austria, October 21, 2017. Ed. by Pavel Shvaiko
et al. Vol. 2032. CEUR Workshop Proceedings. CEUR-WS.org, 2017, pp. 153–157.
uRl: http://ceur-ws.org/Vol-2032/oaei17_paper7.pdf.

[92] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Valerie V. Cross. “LogMap
family participation in the OAEI 2016”. In: Proceedings of the 11th International
Workshop on Ontology Matching co-located with the 15th International Semantic
Web Conference (ISWC 2016), Kobe, Japan, October 18, 2016. Ed. by Pavel Shvaiko
et al. Vol. 1766. CEUR Workshop Proceedings. CEUR-WS.org, 2016, pp. 185–189.
uRl: http://ceur-ws.org/Vol-1766/oaei16_paper9.pdf.

[93] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Ian Horrocks. “LogMap and
LogMapLt results for OAEI 2013”. In: Proceedings of the 8th International Work-
shop on Ontology Matching co-located with the 12th International Semantic Web
Conference (ISWC 2013), Sydney, Australia, October 21, 2013. Ed. by Pavel Shvaiko
et al. Vol. 1111. CEUR Workshop Proceedings. CEUR-WS.org, 2013, pp. 131–138.
uRl: http://ceur-ws.org/Vol-1111/oaei13_paper5.pdf.

[94] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Alessandro Solimando, and Va-
lerie V. Cross. “LogMap family results for OAEI 2015”. In: Proceedings of the
10th International Workshop on Ontology Matching collocated with the 14th In-
ternational Semantic Web Conference (ISWC 2015), Bethlehem, PA, USA, October
12, 2015. Ed. by Pavel Shvaiko et al. Vol. 1545. CEUR Workshop Proceedings.

160

http://ceur-ws.org/Vol-665/IseleEtAl_COLD2010.pdf
http://ceur-ws.org/Vol-665/IseleEtAl_COLD2010.pdf
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1007/978-3-642-25073-6_18
http://ceur-ws.org/Vol-2032/oaei17_paper7.pdf
http://ceur-ws.org/Vol-1766/oaei16_paper9.pdf
http://ceur-ws.org/Vol-1111/oaei13_paper5.pdf

BIBLIOGRAPHY

CEUR-WS.org, 2015, pp. 171–175. uRl: http://ceur-ws.org/Vol-
1545/oaei15_paper10.pdf.

[95] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian Horrocks.
“Large-scale Interactive Ontology Matching: Algorithms and Implementation”.
In: ECAI 2012 - 20th European Conference on Artificial Intelligence. Including Pres-
tigious Applications of Artificial Intelligence (PAIS-2012) System Demonstrations
Track, Montpellier, France, August 27-31 , 2012, ed. by Luc De Raedt et al. Vol. 242.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2012, pp. 444–449.
isbn: 978-1-61499-097-0. doi: 10.3233/978-1-61499-098-7-444.

[96] Ernesto Jiménez-Ruiz et al. “Introducing the HOBBIT platform into the ontol-
ogy alignment evaluation campaign”. In: Proceedings of the 13th International
Workshop on Ontology Matching co-located with the 17th International Seman-
tic Web Conference, OM@ISWC 2018, Monterey, CA, USA, October 8, 2018. Ed.
by Pavel Shvaiko et al. Vol. 2288. CEUR Workshop Proceedings. CEUR-WS.org,
2018, pp. 49–60. uRl: http://ceur-ws.org/Vol-2288/om2018_
LTpaper5.pdf.

[97] Martin Junghanns, Max Kießling, Niklas Teichmann, Kevin Gómez, André Pe-
termann, and Erhard Rahm. “Declarative and distributed graph analytics with
GRADOOP”. In: PVLDB 11.12 (2018), pp. 2006–2009. doi:10.14778/3229863.
3236246.

[98] Marc Kaepke and Olaf Zukunft. “A Comparative Evaluation of Big Data Frame-
works for Graph Processing”. In: 4th International Conference on Big Data Inno-
vations and Applications, Innovate-Data 2018, Barcelona, Spain, August 6-8, 2018.
IEEE, 2018, pp. 30–37. isbn: 978-1-5386-7793-3. doi: 10.1109/Innovate-
Data.2018.00012.

[99] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. “High-Level Programming
Abstractions for Distributed Graph Processing”. In: IEEE Trans. Knowl. Data Eng.
30.2 (2018), pp. 305–324. doi: 10.1109/TKDE.2017.2762294.

[100] Jan-ChristophKalo, SilviuHomoceanu, Jewgeni Rose, andWolf-Tilo Balke. “Avoid-
ing ChineseWhispers: Controlling End-to-End JoinQuality in Linked OpenData
Stores”. In: Proceedings of the ACM Web Science Conference, WebSci 2015, Oxford,
United Kingdom, June 28 - July 1, 2015, ed. by David De Roure et al. ACM, 2015,
5:1–5:10. isbn: 978-1-4503-3672-7. doi: 10.1145/2786451.2786466.

161

http://ceur-ws.org/Vol-1545/oaei15_paper10.pdf
http://ceur-ws.org/Vol-1545/oaei15_paper10.pdf
https://doi.org/10.3233/978-1-61499-098-7-444
http://ceur-ws.org/Vol-2288/om2018_LTpaper5.pdf
http://ceur-ws.org/Vol-2288/om2018_LTpaper5.pdf
https://doi.org/10.14778/3229863.3236246
https://doi.org/10.14778/3229863.3236246
https://doi.org/10.1109/Innovate-Data.2018.00012
https://doi.org/10.1109/Innovate-Data.2018.00012
https://doi.org/10.1109/TKDE.2017.2762294
https://doi.org/10.1145/2786451.2786466

BIBLIOGRAPHY

[101] Ali Khalili and Sören Auer. “User interfaces for semantic authoring of textual
content: A systematic literature review”. In: J. Web Semant. 22 (2013), pp. 1–18.
doi: 10.1016/j.websem.2013.08.004.

[102] Michael Kifer and Harold Boley. RIF Overview (Second Edition). W3C Recom-
mendation. W3C, Feb. 2013. uRl: https://www.w3.org/TR/rif-
overview/.

[103] Toralf Kirsten, Anika Groß, Michael Hartung, and Erhard Rahm. “GOMMA: a
component-based infrastructure for managing and analyzing life science ontolo-
gies and their evolution”. In: J. Biomedical Semantics 2 (2011), p. 6. doi: 10.
1186/2041-1480-2-6.

[104] Jannis Koch, Christian L. Staudt, Maximilian Vogel, and Henning Meyerhenke.
“An empirical comparison of Big Graph frameworks in the context of network
analysis”. In: Social Netw. Analys. Mining 6.1 (2016), 84:1–84:20. doi: 10.1007/
s13278-016-0394-1.

[105] Lars Kolb, Andreas Thor, and Erhard Rahm. “Dedoop: Efficient Deduplication
withHadoop”. In: PVLDB 5.12 (2012), pp. 1878–1881. doi:10.14778/2367502.
2367527.

[106] Lars Kolb, Andreas Thor, and Erhard Rahm. “Load Balancing for MapReduce-
based Entity Resolution”. In: IEEE 28th International Conference on Data Engi-
neering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012,
ed. by Anastasios Kementsietsidis et al. IEEE Computer Society, 2012, pp. 618–
629. isbn: 978-0-7695-4747-3. doi: 10.1109/ICDE.2012.22.

[107] Lars Kolb, Andreas Thor, and Erhard Rahm. “Multi-pass sorted neighborhood
blocking with MapReduce”. In: Computer Science - R&D 27.1 (2012), pp. 45–63.
doi: 10.1007/s00450-011-0177-x.

[108] Lars Kolb, AndreasThor, and Erhard Rahm. “Parallel Sorted Neighborhood Block-
ing with MapReduce”. In: Datenbanksysteme für Business, Technologie und Web
(BTW), 14. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssys-
teme” (DBIS), 2.-4.3.2011 in Kaiserslautern, Germany, ed. by Theo Härder et al.
Vol. 180. LNI. GI, 2011, pp. 45–64. isbn: 978-3-88579-274-1. uRl: https://dl.
gi.de/20.500.12116/19619.

[109] Hanna Köpcke and Erhard Rahm. “Frameworks for entity matching: A compari-
son”. In: Data Knowl. Eng. 69.2 (2010), pp. 197–210. doi: 10.1016/j.datak.
2009.10.003.

162

https://doi.org/10.1016/j.websem.2013.08.004
https://www.w3.org/TR/rif-overview/
https://www.w3.org/TR/rif-overview/
https://doi.org/10.1186/2041-1480-2-6
https://doi.org/10.1186/2041-1480-2-6
https://doi.org/10.1007/s13278-016-0394-1
https://doi.org/10.1007/s13278-016-0394-1
https://doi.org/10.14778/2367502.2367527
https://doi.org/10.14778/2367502.2367527
https://doi.org/10.1109/ICDE.2012.22
https://doi.org/10.1007/s00450-011-0177-x
https://dl.gi.de/20.500.12116/19619
https://dl.gi.de/20.500.12116/19619
https://doi.org/10.1016/j.datak.2009.10.003
https://doi.org/10.1016/j.datak.2009.10.003

BIBLIOGRAPHY

[110] Hanna Köpcke, AndreasThor, and Erhard Rahm. “Evaluation of entity resolution
approaches on real-world match problems”. In: PVLDB 3.1 (2010), pp. 484–493.
doi: 10.14778/1920841.1920904.

[111] Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. “The SIDER database
of drugs and side effects”. In: Nucleic Acids Research 44.Database-Issue (2016),
pp. 1075–1079. doi: 10.1093/nar/gkv1075.

[112] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki
Moon. “Parallel data processing with MapReduce: a survey”. In: SIGMOD Record
40.4 (2011), pp. 11–20. doi: 10.1145/2094114.2094118.

[113] Jens Lehmann et al. “Distributed Semantic Analytics Using the SANSA Stack”.
In: The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference,
Vienna, Austria, October 21-25, 2017, Proceedings, Part II, ed. by Claudia d’Amato
et al. Vol. 10588. Lecture Notes in Computer Science. Springer, 2017, pp. 147–155.
isbn: 978-3-319-68203-7. doi: 10.1007/978-3-319-68204-4_15.

[114] Maurizio Lenzerini. “Data Integration: A Theoretical Perspective”. In: Proceed-
ings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 3-5, Madison, Wisconsin, USA, ed. by Lucian Popa et
al. ACM, 2002, pp. 233–246. isbn: 1-58113-507-6. doi: 10.1145/543613.
543644.

[115] Ulf Leser and Felix Naumann. Informationsintegration - Architekturen und Meth-
oden zur Integration verteilter und heterogener Datenquellen. dpunkt.verlag, 2007.
uRl: https://www.dpunkt.de/openbooks/informationsint
egration.pdf.

[116] Jinfeng Li et al. “A comparison of general-purpose distributed systems for data
processing”. In: 2016 IEEE International Conference on Big Data, BigData 2016,
Washington DC, USA, December 5-8, 2016, ed. by James Joshi et al. IEEE Computer
Society, 2016, pp. 378–383. isbn: 978-1-4673-9005-7. doi:10.1109/BigData.
2016.7840626.

[117] Vanessa López, Christina Unger, Philipp Cimiano, and Enrico Motta. “Evaluating
question answering over linked data”. In: J. Web Semant. 21 (2013), pp. 3–13. doi:
10.1016/j.websem.2013.05.006.

[118] Zongmin Ma, Miriam A. M. Capretz, and Li Yan. “Storing massive Resource De-
scription Framework (RDF) data: a survey”. In:Knowledge Eng. Review 31.4 (2016),
pp. 391–413. doi: 10.1017/S0269888916000217.

163

https://doi.org/10.14778/1920841.1920904
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1145/2094114.2094118
https://doi.org/10.1007/978-3-319-68204-4_15
https://doi.org/10.1145/543613.543644
https://doi.org/10.1145/543613.543644
https://www.dpunkt.de/openbooks/informationsintegration.pdf
https://www.dpunkt.de/openbooks/informationsintegration.pdf
https://doi.org/10.1109/BigData.2016.7840626
https://doi.org/10.1109/BigData.2016.7840626
https://doi.org/10.1016/j.websem.2013.05.006
https://doi.org/10.1017/S0269888916000217

BIBLIOGRAPHY

[119] Grzegorz Malewicz et al. “Pregel: a system for large-scale graph processing”. In:
Proceedings of the ACM SIGMOD International Conference onManagement of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, ed. by Ahmed K. Elma-
garmid et al. ACM, 2010, pp. 135–146. isbn: 978-1-4503-0032-2. doi: 10.1145/
1807167.1807184.

[120] Nicolas Marie and Fabien L. Gandon. “Survey of Linked Data Based Exploration
Systems”. In: Proceedings of the 3rd International Workshop on Intelligent Explo-
ration of Semantic Data (IESD 2014) co-located with the 13th International Seman-
tic Web Conference (ISWC 2014), Riva del Garda, Italy, October 20, 2014. Ed. by
DhavalkumarThakker et al. Vol. 1279. CEURWorkshop Proceedings. CEUR-WS.org,
2014. uRl: http://ceur-ws.org/Vol-1279/iesd14_8.pdf.

[121] AlanMeehan, Dimitris Kontokostas, Markus Freudenberg, Rob Brennan, and De-
clan O’Sullivan. “Validating Interlinks Between Linked Data Datasets with the
SUMMR Methodology”. In: On the Move to Meaningful Internet Systems: OTM
2016 Conferences - Confederated International Conferences: CoopIS, C&TC, and
ODBASE 2016, Rhodes, Greece, October 24-28, 2016, Proceedings, ed. by Christophe
Debruyne et al. Vol. 10033. Lecture Notes in Computer Science. 2016, pp. 654–
672. isbn: 978-3-319-48471-6. doi: 10.1007/978-3-319-48472-3_39.

[122] Imen Megdiche, Olivier Teste, and Cássia Trojahn dos Santos. “An Extensible
Linear Approach for Holistic Ontology Matching”. In: The Semantic Web - ISWC
2016 - 15th International Semantic Web Conference, Kobe, Japan, October 17-21,
2016, Proceedings, Part I, ed. by Paul T. Groth et al. Vol. 9981. Lecture Notes in
Computer Science. 2016, pp. 393–410. isbn: 978-3-319-46522-7. doi: 10.1007/
978-3-319-46523-4_24.

[123] Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer. “Sieve: linked data
quality assessment and fusion”. In: Proceedings of the 2012 Joint EDBT/ICDTWork-
shops, Berlin, Germany, March 30, 2012, ed. by Divesh Srivastava et al. ACM, 2012,
pp. 116–123. isbn: 978-1-4503-1143-4. doi: 10.1145/2320765.2320803.

[124] Demetrio GomesMestre, Carlos Eduardo Santos Pires, Dimas C. Nascimento, An-
dreza Raquel Monteiro de Queiroz, Veruska Borges Santos, and Tiago Brasileiro
Araújo. “An efficient spark-based adaptive windowing for entity matching”. In:
Journal of Systems and Software 128 (2017), pp. 1–10. doi: 10.1016/j.jss.
2017.03.003.

[125] Seunghyeon Moon, Jae-Gil Lee, Minseo Kang, Minsoo Choy, and Jin-Woo Lee.
“Parallel community detection on large graphs with MapReduce and GraphChi”.

164

https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
http://ceur-ws.org/Vol-1279/iesd14_8.pdf
https://doi.org/10.1007/978-3-319-48472-3_39
https://doi.org/10.1007/978-3-319-46523-4_24
https://doi.org/10.1007/978-3-319-46523-4_24
https://doi.org/10.1145/2320765.2320803
https://doi.org/10.1016/j.jss.2017.03.003
https://doi.org/10.1016/j.jss.2017.03.003

BIBLIOGRAPHY

In: Data Knowl. Eng. 104 (2016), pp. 17–31. doi: 10.1016/j.datak.2015.
05.001.

[126] Luc Moreau and Paul T. Groth. Provenance: An Introduction to PROV. Synthe-
sis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool
Publishers, 2013. isbn: 9781627052214. doi: 10.2200/S00528ED1V01Y
201308WBE007.

[127] Michalis Mountantonakis and Yannis Tzitzikas. “High Performance Methods for
Linked Open Data Connectivity Analytics”. In: Information 9.6 (2018), p. 134. doi:
10.3390/info9060134.

[128] James Munkres. “Algorithms for the assignment and transportation problems”.
In: Journal of the society for industrial and applied mathematics 5.1 (1957), pp. 32–
38.

[129] MarkusNentwig, AnikaGroß,MaximilianMöller, and Erhard Rahm. “Distributed
Holistic Clustering on LinkedData”. In:CoRR abs/1708.09299 (2017). arXiv:1708.
09299.

[130] MarkusNentwig, AnikaGroß,MaximilianMöller, and Erhard Rahm. “Distributed
Holistic Clustering on Linked Data”. In: On the Move to Meaningful Internet Sys-
tems. OTM2017 Conferences - Confederated International Conferences: CoopIS, C&TC,
and ODBASE 2017, Rhodes, Greece, October 23-27, 2017, Proceedings, Part II, ed. by
Hervé Panetto et al. Vol. 10574. Lecture Notes in Computer Science. Springer,
2017, pp. 371–382. isbn: 978-3-319-69458-0. doi: 10.1007/978-3-319-
69459-7_25.

[131] Markus Nentwig, Anika Groß, and Erhard Rahm. “Holistic Entity Clustering for
Linked Data”. In: IEEE International Conference on Data Mining Workshops, ICDM
Workshops 2016, December 12-15, 2016, Barcelona, Spain. Ed. by Carlotta Domeni-
coni et al. IEEE Computer Society, 2016, pp. 194–201. doi: 10.1109/ICDMW.
2016.0035.

[132] Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and Erhard
Rahm. “A survey of current Link Discovery frameworks”. In: Semantic Web 8.3
(2017), pp. 419–436. doi: 10.3233/SW-150210.

[133] Markus Nentwig and Erhard Rahm. “Incremental Clustering on Linked Data”. In:
2018 IEEE International Conference on Data Mining Workshops, ICDM Workshops,
Singapore, Singapore, November 17-20, 2018, ed. by Hanghang Tong et al. IEEE,
2018, pp. 531–538. isbn: 978-1-5386-9288-2. doi: 10.1109/ICDMW.2018.
00084.

165

https://doi.org/10.1016/j.datak.2015.05.001
https://doi.org/10.1016/j.datak.2015.05.001
https://doi.org/10.2200/S00528ED1V01Y201308WBE007
https://doi.org/10.2200/S00528ED1V01Y201308WBE007
https://doi.org/10.3390/info9060134
https://arxiv.org/abs/1708.09299
https://arxiv.org/abs/1708.09299
https://doi.org/10.1007/978-3-319-69459-7_25
https://doi.org/10.1007/978-3-319-69459-7_25
https://doi.org/10.1109/ICDMW.2016.0035
https://doi.org/10.1109/ICDMW.2016.0035
https://doi.org/10.3233/SW-150210
https://doi.org/10.1109/ICDMW.2018.00084
https://doi.org/10.1109/ICDMW.2018.00084

BIBLIOGRAPHY

[134] MarkusNentwig, Tommaso Soru, Axel-Cyrille NgongaNgomo, and Erhard Rahm.
“LinkLion: A Link Repository for the Web of Data”. In: The Semantic Web: ESWC
2014 Satellite Events - ESWC 2014 Satellite Events, Anissaras, Crete, Greece, May 25-
29, 2014, Revised Selected Papers, ed. by Valentina Presutti et al. Vol. 8798. Lecture
Notes in Computer Science. Springer, 2014, pp. 439–443. isbn: 978-3-319-11954-0.
doi: 10.1007/978-3-319-11955-7_63.

[135] Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. “AutomatedQuality As-
sessment ofMetadata across OpenData Portals”. In: J. Data and InformationQual-
ity 8.1 (2016), 2:1–2:29. doi: 10.1145/2964909.

[136] Axel-Cyrille Ngonga Ngomo. “HELIOS - Execution Optimization for Link Dis-
covery”. In:The Semantic Web - ISWC 2014 - 13th International Semantic Web Con-
ference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I, ed. by Peter
Mika et al. Vol. 8796. Lecture Notes in Computer Science. Springer, 2014, pp. 17–
32. isbn: 978-3-319-11963-2. doi: 10.1007/978-3-319-11964-9_2.

[137] Axel-Cyrille Ngonga Ngomo. “Link Discovery with Guaranteed Reduction Ratio
in Affine Spaces with Minkowski Measures”. In: The Semantic Web - ISWC 2012
- 11th International Semantic Web Conference, Boston, MA, USA, November 11-15,
2012, Proceedings, Part I, ed. by Philippe Cudré-Mauroux et al. Vol. 7649. Lecture
Notes in Computer Science. Springer, 2012, pp. 378–393. isbn: 978-3-642-35175-4.
doi: 10.1007/978-3-642-35176-1_24.

[138] Axel-Cyrille Ngonga Ngomo. “On Link Discovery using a Hybrid Approach”. In:
J. Data Semantics 1.4 (2012), pp. 203–217. doi: 10.1007/s13740-012-
0012-y.

[139] Axel-Cyrille Ngonga Ngomo and Sören Auer. “LIMES - A Time-Efficient Ap-
proach for Large-Scale Link Discovery on the Web of Data”. In: IJCAI 2011, Pro-
ceedings of the 22nd International Joint Conference onArtificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, ed. by TobyWalsh. IJCAI/AAAI, 2011, pp. 2312–
2317. isbn: 978-1-57735-516-8. doi: 10.5591/978-1-57735-516-8/
IJCAI11-385.

[140] Axel-Cyrille Ngonga Ngomo, Lars Kolb, Norman Heino, Michael Hartung, Sören
Auer, and Erhard Rahm. “When to Reach for the Cloud: Using Parallel Hardware
for Link Discovery”. In: The Semantic Web: Semantics and Big Data, 10th Inter-
national Conference, ESWC 2013, Montpellier, France, May 26-30, 2013. Proceed-
ings, ed. by Philipp Cimiano et al. Vol. 7882. Lecture Notes in Computer Science.

166

https://doi.org/10.1007/978-3-319-11955-7_63
https://doi.org/10.1145/2964909
https://doi.org/10.1007/978-3-319-11964-9_2
https://doi.org/10.1007/978-3-642-35176-1_24
https://doi.org/10.1007/s13740-012-0012-y
https://doi.org/10.1007/s13740-012-0012-y
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385

BIBLIOGRAPHY

Springer, 2013, pp. 275–289. isbn: 978-3-642-38287-1. doi: 10.1007/978-3-
642-38288-8_19.

[141] Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and Konrad Höffner.
“RAVEN - active learning of link specifications”. In: Proceedings of the 6th Interna-
tional Workshop on Ontology Matching, Bonn, Germany, October 24, 2011, ed. by
Pavel Shvaiko et al. Vol. 814. CEUR Workshop Proceedings. CEUR-WS.org, 2011.
uRl: http://ceur-ws.org/Vol-814/om2011_Tpaper3.pdf.

[142] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. “EAGLE: Efficient Active Learn-
ing of Link Specifications Using Genetic Programming”. In: The Semantic Web:
Research and Applications - 9th Extended Semantic Web Conference, ESWC 2012,
Heraklion, Crete, Greece, May 27-31, 2012. Proceedings, ed. by Elena Simperl et al.
Vol. 7295. Lecture Notes in Computer Science. Springer, 2012, pp. 149–163. isbn:
978-3-642-30283-1. doi: 10.1007/978-3-642-30284-8_17.

[143] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. “Unsupervised learning of link
specifications: deterministic vs. non-deterministic”. In: Proceedings of the 8th In-
ternational Workshop on Ontology Matching co-located with the 12th International
Semantic Web Conference (ISWC 2013), Sydney, Australia, October 21, 2013. Ed.
by Pavel Shvaiko et al. Vol. 1111. CEUR Workshop Proceedings. CEUR-WS.org,
2013, pp. 25–36. uRl: http://ceur-ws.org/Vol-1111/om2013_
Tpaper3.pdf.

[144] Axel-Cyrille Ngonga Ngomo, Klaus Lyko, and Victor Christen. “COALA – Corre-
lation-Aware Active Learning of Link Specifications”. In: The Semantic Web: Se-
mantics and Big Data, 10th International Conference, ESWC 2013,Montpellier, France,
May 26-30, 2013. Proceedings, ed. by Philipp Cimiano et al. Vol. 7882. Lecture
Notes in Computer Science. Springer, 2013, pp. 442–456. isbn: 978-3-642-38287-
1. doi: 10.1007/978-3-642-38288-8_30.

[145] Axel-Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, and Klaus Lyko. “Un-
supervised Link Discovery through Knowledge Base Repair”. In: The Semantic
Web: Trends and Challenges - 11th International Conference, ESWC 2014, Anis-
saras, Crete, Greece, May 25-29, 2014. Proceedings, ed. by Valentina Presutti et al.
Vol. 8465. Lecture Notes in Computer Science. Springer, 2014, pp. 380–394. isbn:
978-3-319-07442-9. doi: 10.1007/978-3-319-07443-6_26.

[146] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. “A
Review of Relational Machine Learning for Knowledge Graphs”. In: Proceedings
of the IEEE 104.1 (2016), pp. 11–33. doi: 10.1109/JPROC.2015.2483592.

167

https://doi.org/10.1007/978-3-642-38288-8_19
https://doi.org/10.1007/978-3-642-38288-8_19
http://ceur-ws.org/Vol-814/om2011_Tpaper3.pdf
https://doi.org/10.1007/978-3-642-30284-8_17
http://ceur-ws.org/Vol-1111/om2013_Tpaper3.pdf
http://ceur-ws.org/Vol-1111/om2013_Tpaper3.pdf
https://doi.org/10.1007/978-3-642-38288-8_30
https://doi.org/10.1007/978-3-319-07443-6_26
https://doi.org/10.1109/JPROC.2015.2483592

BIBLIOGRAPHY

[147] Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta. “Unsupervised Learning of
Link Discovery Configuration”. In:The Semantic Web: Research and Applications -
9th Extended Semantic Web Conference, ESWC 2012, Heraklion, Crete, Greece, May
27-31, 2012. Proceedings, ed. by Elena Simperl et al. Vol. 7295. Lecture Notes in
Computer Science. Springer, 2012, pp. 119–133. isbn: 978-3-642-30283-1. doi:10.
1007/978-3-642-30284-8_15.

[148] Natalya Fridman Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Pat-
terson, and Jamie Taylor. “Industry-scale knowledge graphs: lessons and chal-
lenges”. In: Commun. ACM 62.8 (2019), pp. 36–43. doi: 10.1145/3331166.

[149] Natalya Fridman Noy et al. “BioPortal: ontologies and integrated data resources
at the click of a mouse”. In: Nucleic Acids Research 37.Web-Server-Issue (2009),
pp. 170–173. doi: 10.1093/nar/gkp440.

[150] Open Knowledge Foundation. Open Definition 2.1. 2017. uRl: https://open
definition.org/od/2.1/en/.

[151] George Papadakis, Georgia Koutrika,Themis Palpanas, andWolfgangNejdl. “Meta-
Blocking: Taking Entity Resolutionto the Next Level”. In: IEEE Trans. Knowl. Data
Eng. 26.8 (2014), pp. 1946–1960. doi: 10.1109/TKDE.2013.54.

[152] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. “Com-
parative Analysis of Approximate Blocking Techniques for Entity Resolution”.
In: PVLDB 9.9 (2016), pp. 684–695. doi: 10.14778/2947618.2947624.

[153] Maria Pershina, Mohamed Yakout, and Kaushik Chakrabarti. “Holistic Entity
Matching Across Knowledge Graphs”. In: 2015 IEEE International Conference on
Big Data, Big Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015.
IEEE, 2015, pp. 1585–1590. isbn: 978-1-4799-9926-2. doi:10.1109/BigData.
2015.7363924.

[154] Bastian Quilitz and Ulf Leser. “Querying Distributed RDF Data Sources with
SPARQL”. In: The Semantic Web: Research and Applications, 5th European Seman-
tic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008,
Proceedings, ed. by Sean Bechhofer et al. Vol. 5021. Lecture Notes in Computer
Science. Springer, 2008, pp. 524–538. isbn: 978-3-540-68233-2. doi: 10.1007/
978-3-540-68234-9_39.

[155] Erhard Rahm. “The Case for Holistic Data Integration”. In: Advances in Databases
and Information Systems - 20th East European Conference, ADBIS 2016, Prague,
Czech Republic, August 28-31, 2016, Proceedings, ed. by Jaroslav Pokorný et al.

168

https://doi.org/10.1007/978-3-642-30284-8_15
https://doi.org/10.1007/978-3-642-30284-8_15
https://doi.org/10.1145/3331166
https://doi.org/10.1093/nar/gkp440
https://opendefinition.org/od/2.1/en/
https://opendefinition.org/od/2.1/en/
https://doi.org/10.1109/TKDE.2013.54
https://doi.org/10.14778/2947618.2947624
https://doi.org/10.1109/BigData.2015.7363924
https://doi.org/10.1109/BigData.2015.7363924
https://doi.org/10.1007/978-3-540-68234-9_39
https://doi.org/10.1007/978-3-540-68234-9_39

BIBLIOGRAPHY

Vol. 9809. Lecture Notes in Computer Science. Springer, 2016, pp. 11–27. isbn:
978-3-319-44038-5. doi: 10.1007/978-3-319-44039-2_2.

[156] Erhard Rahm. “Towards Large-Scale Schema andOntologyMatching”. In: Schema
Matching and Mapping, ed. by Zohra Bellahsene et al. Data-Centric Systems and
Applications. Springer, 2011, pp. 3–27. isbn: 978-3-642-16517-7. doi: 10.1007/
978-3-642-16518-4_1.

[157] Erhard Rahm and Philip A. Bernstein. “A survey of approaches to automatic
schema matching”. In: VLDB J. 10.4 (2001), pp. 334–350. doi: 10.1007/s
007780100057.

[158] Erhard Rahm andHongHai Do. “Data Cleaning: Problems andCurrent Approaches”.
In: IEEE Data Eng. Bull. 23.4 (2000), pp. 3–13. uRl: http://dc-pubs.dbs.
uni-leipzig.de/files/Rahm2000DataCleaningProblemsa
nd.pdf.

[159] Thanyalak Rattanasawad, Marut Buranarach, Kanda Runapongsa Saikaew, and
Thepchai Supnithi. “A Comparative Study of Rule-Based Inference Engines for
the Semantic Web”. In: IEICE Transactions 101-D.1 (2018), pp. 82–89. doi: 10.
1587/transinf.2017SWP0004.

[160] David Reinsel, John Gantz, and John Rydning. Data Age 2025 - The Digitization
of the World From Edge to Core. Tech. rep. IDC, Nov. 2018. uRl: https://www.
seagate.com/files/www- content/our- story/trends/
files/idc-seagate-dataage-whitepaper.pdf.

[161] Christopher Rost, Andreas Thor, and Erhard Rahm. “Temporal Graph Analysis
using Gradoop”. In: Datenbanksysteme für Business, Technologie und Web (BTW
2019), 18. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme”
(DBIS), 4.-8. März 2019, Rostock, Germany, Workshopband, ed. by Holger Meyer et
al. Vol. P-290. LNI. Gesellschaft für Informatik, Bonn, 2019, pp. 109–118. isbn:
978-3-88579-684-8. doi: 10.18420/btw2019-ws-11.

[162] Alieh Saeedi, Markus Nentwig, Eric Peukert, and Erhard Rahm. “Scalable Match-
ing and Clustering of Entities with FAMER”. In: CSIMQ 16 (2018), pp. 61–83. doi:
10.7250/csimq.2018-16.04.

[163] Alieh Saeedi, Eric Peukert, and Erhard Rahm. “Comparative Evaluation of Dis-
tributed Clustering Schemes for Multi-source Entity Resolution”. In: Advances
in Databases and Information Systems - 21st European Conference, ADBIS 2017,
Nicosia, Cyprus, September 24-27, 2017, Proceedings, ed. by Marite Kirikova et al.

169

https://doi.org/10.1007/978-3-319-44039-2_2
https://doi.org/10.1007/978-3-642-16518-4_1
https://doi.org/10.1007/978-3-642-16518-4_1
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
http://dc-pubs.dbs.uni-leipzig.de/files/Rahm2000DataCleaningProblemsand.pdf
http://dc-pubs.dbs.uni-leipzig.de/files/Rahm2000DataCleaningProblemsand.pdf
http://dc-pubs.dbs.uni-leipzig.de/files/Rahm2000DataCleaningProblemsand.pdf
https://doi.org/10.1587/transinf.2017SWP0004
https://doi.org/10.1587/transinf.2017SWP0004
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.18420/btw2019-ws-11
https://doi.org/10.7250/csimq.2018-16.04

BIBLIOGRAPHY

Vol. 10509. Lecture Notes in Computer Science. Springer, 2017, pp. 278–293. isbn:
978-3-319-66916-8. doi: 10.1007/978-3-319-66917-5_19.

[164] Alieh Saeedi, Eric Peukert, and Erhard Rahm. “Using Link Features for Entity
Clustering in Knowledge Graphs”. In:The Semantic Web - 15th International Con-
ference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, ed. by
Aldo Gangemi et al. Vol. 10843. Lecture Notes in Computer Science. Springer,
2018, pp. 576–592. isbn: 978-3-319-93416-7. doi: 10.1007/978-3-319-
93417-4_37.

[165] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. “HiBISCuS: Hypergraph-
Based Source Selection for SPARQL Endpoint Federation”. In: The Semantic Web:
Trends and Challenges - 11th International Conference, ESWC 2014, Anissaras, Crete,
Greece, May 25-29, 2014. Proceedings, ed. by Valentina Presutti et al. Vol. 8465.
Lecture Notes in Computer Science. Springer, 2014, pp. 176–191. isbn: 978-3-319-
07442-9. doi: 10.1007/978-3-319-07443-6_13.

[166] Emanuel Santos, Daniel Faria, Catia Pesquita, and FranciscoM. Couto. “Ontology
Alignment Repair throughModularization and Confidence-Based Heuristics”. In:
PLOS ONE 10.12 (Dec. 2016), pp. 1–19. doi: 10.1371/journal.pone.
0144807.

[167] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. “Adoption of the
Linked Data Best Practices in Different Topical Domains”. In: The Semantic Web
- ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda, Italy,
October 19-23, 2014. Proceedings, Part I, ed. by Peter Mika et al. Vol. 8796. Lecture
Notes in Computer Science. Springer, 2014, pp. 245–260. isbn: 978-3-319-11963-2.
doi: 10.1007/978-3-319-11964-9_16.

[168] Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Sören Auer. “Question
answering on interlinked data”. In: 22nd International World Wide Web Confer-
ence, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, ed. by Daniel Schwabe
et al. International World Wide Web Conferences Steering Committee / ACM,
2013, pp. 1145–1156. isbn: 978-1-4503-2035-1. doi: 10 . 1145 / 2488388 .
2488488.

[169] Mohamed Ahmed Sherif, Kevin Dreßler, Panayiotis Smeros, and Axel-Cyrille
Ngonga Ngomo. “Radon - Rapid Discovery of Topological Relations”. In: Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA. Ed. by Satinder P. Singh et al. AAAI Press,

170

https://doi.org/10.1007/978-3-319-66917-5_19
https://doi.org/10.1007/978-3-319-93417-4_37
https://doi.org/10.1007/978-3-319-93417-4_37
https://doi.org/10.1007/978-3-319-07443-6_13
https://doi.org/10.1371/journal.pone.0144807
https://doi.org/10.1371/journal.pone.0144807
https://doi.org/10.1007/978-3-319-11964-9_16
https://doi.org/10.1145/2488388.2488488
https://doi.org/10.1145/2488388.2488488

BIBLIOGRAPHY

2017, pp. 175–181. uRl: http://aaai.org/ocs/index.php/AAAI/
AAAI17/paper/view/14199.

[170] MohamedAhmed Sherif,MofeedM.Hassan, Tommaso Soru, Axel-Cyrille Ngonga
Ngomo, and Jens Lehmann. “Lion’s Den: feeding the LinkLion”. In: Proceedings
of the 11th International Workshop on Ontology Matching co-located with the 15th
International Semantic Web Conference (ISWC 2016), Kobe, Japan, October 18, 2016.
Ed. by Pavel Shvaiko et al. Vol. 1766. CEURWorkshop Proceedings. CEUR-WS.org,
2016, pp. 235–236. uRl: http://ceur-ws.org/Vol-1766/om2016_
poster5.pdf.

[171] Pavel Shvaiko and Jérôme Euzenat. “Ontology Matching: State of the Art and
Future Challenges”. In: IEEE Trans. Knowl. Data Eng. 25.1 (2013), pp. 158–176.
doi: 10.1109/TKDE.2011.253.

[172] Dilpreet Singh and Chandan K. Reddy. “A survey on platforms for big data ana-
lytics”. In: J. Big Data 2 (2015), p. 8. doi: 10.1186/s40537-014-0008-6.

[173] JohnMiles Smith et al. “Multibase: integrating heterogeneous distributed database
systems”. In: American Federation of Information Processing Societies: 1981 Na-
tional Computer Conference, 4-7 May 1981, Chicago, Illinois, USA. Vol. 50. AFIPS
Conference Proceedings. AFIPS Press, 1981, pp. 487–499. doi:10.1145/1500412.
1500483.

[174] Sunghwan Sohn, Jean-Pierre A. Kocher, Christopher G. Chute, and Guergana K.
Savova. “Drug side effect extraction from clinical narratives of psychiatry and
psychology patients”. In: JAMIA 18.Supplement (2011), pp. 144–149. doi: 10.
1136/amiajnl-2011-000351.

[175] René Speck and Axel-Cyrille Ngonga Ngomo. “Named Entity Recognition using
FOX”. In: Proceedings of the ISWC 2014 Posters & Demonstrations Track a track
within the 13th International Semantic Web Conference, ISWC 2014, Riva del Garda,
Italy, October 21, 2014, ed. by Matthew Horridge et al. Vol. 1272. CEURWorkshop
Proceedings. CEUR-WS.org, 2014, pp. 85–88. uRl: http://ceur-ws.org/
Vol-1272/paper_70.pdf.

[176] Philip Stutz, Abraham Bernstein, and William W. Cohen. “Signal/Collect: Graph
Algorithms for the (Semantic) Web”. In:The Semantic Web - ISWC 2010 - 9th Inter-
national Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11,
2010, Revised Selected Papers, Part I, ed. by Peter F. Patel-Schneider et al. Vol. 6496.
Lecture Notes in Computer Science. Springer, 2010, pp. 764–780. isbn: 978-3-642-
17745-3. doi: 10.1007/978-3-642-17746-0_48.

171

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14199
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14199
http://ceur-ws.org/Vol-1766/om2016_poster5.pdf
http://ceur-ws.org/Vol-1766/om2016_poster5.pdf
https://doi.org/10.1109/TKDE.2011.253
https://doi.org/10.1186/s40537-014-0008-6
https://doi.org/10.1145/1500412.1500483
https://doi.org/10.1145/1500412.1500483
https://doi.org/10.1136/amiajnl-2011-000351
https://doi.org/10.1136/amiajnl-2011-000351
http://ceur-ws.org/Vol-1272/paper_70.pdf
http://ceur-ws.org/Vol-1272/paper_70.pdf
https://doi.org/10.1007/978-3-642-17746-0_48

BIBLIOGRAPHY

[177] Andreas Thalhammer, Steffen Thoma, Andreas Harth, and Rudi Studer. “Entity-
centric Data Fusion on the Web”. In: Proceedings of the 28th ACM Conference on
Hypertext and Social Media, HT 2017, Prague, Czech Republic, July 4-7, 2017, ed.
by Peter Dolog et al. ACM, 2017, pp. 25–34. isbn: 978-1-4503-4708-2. doi: 10.
1145/3078714.3078717.

[178] The W3C SPARQL Working Group. SPARQL 1.1 Overview. W3C Recommenda-
tion. W3C, Mar. 2013. uRl: https://www.w3.org/TR/sparql11-
overview/.

[179] Andreas Thor and Erhard Rahm. “MOMA - A Mapping-based Object Matching
System”. In: CIDR 2007, Third Biennial Conference on Innovative Data Systems Re-
search, Asilomar, CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org,
2007, pp. 247–258. uRl: http://cidrdb.org/cidr2007/papers/
cidr07p27.pdf.

[180] André Valdestilhas, Tommaso Soru, and Axel-Cyrille Ngonga Ngomo. “CEDAL:
time-efficient detection of erroneous links in large-scale link repositories”. In:
Proceedings of the International Conference on Web Intelligence, Leipzig, Germany,
August 23-26, 2017, ed. by Amit P. Sheth et al. ACM, 2017, pp. 106–113. isbn: 978-
1-4503-4951-2. doi: 10.1145/3106426.3106497.

[181] Leslie G. Valiant. “A Bridging Model for Parallel Computation”. In: Commun.
ACM 33.8 (1990), pp. 103–111. doi: 10.1145/79173.79181.

[182] Dinusha Vatsalan, Ziad Sehili, Peter Christen, and Erhard Rahm. “Privacy-Preser-
ving Record Linkage for Big Data: Current Approaches and Research Challenges”.
In: Handbook of Big Data Technologies, ed. by Albert Y. Zomaya et al. Springer,
2017, pp. 851–895. isbn: 978-3-319-49339-8. doi: 10.1007/978-3-319-
49340-4_25.

[183] Jorge Veiga, Roberto R. Expósito, Xoán C. Pardo, Guillermo L. Taboada, and Juan
Touriño. “Performance evaluation of big data frameworks for large-scale data an-
alytics”. In: 2016 IEEE International Conference on Big Data, BigData 2016, Wash-
ington DC, USA, December 5-8, 2016, ed. by James Joshi et al. IEEE Computer So-
ciety, 2016, pp. 424–431. isbn: 978-1-4673-9005-7. doi: 10.1109/BigData.
2016.7840633.

[184] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. “Discovering
andMaintaining Links on theWeb of Data”. In:The SemanticWeb - ISWC 2009, 8th
International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October
25-29, 2009. Proceedings, ed. by Abraham Bernstein et al. Vol. 5823. Lecture Notes

172

https://doi.org/10.1145/3078714.3078717
https://doi.org/10.1145/3078714.3078717
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/
http://cidrdb.org/cidr2007/papers/cidr07p27.pdf
http://cidrdb.org/cidr2007/papers/cidr07p27.pdf
https://doi.org/10.1145/3106426.3106497
https://doi.org/10.1145/79173.79181
https://doi.org/10.1007/978-3-319-49340-4_25
https://doi.org/10.1007/978-3-319-49340-4_25
https://doi.org/10.1109/BigData.2016.7840633
https://doi.org/10.1109/BigData.2016.7840633

BIBLIOGRAPHY

in Computer Science. Springer, 2009, pp. 650–665. isbn: 978-3-642-04929-3. doi:
10.1007/978-3-642-04930-9_41.

[185] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. “Silk - A Link
Discovery Framework for the Web of Data”. In: Proceedings of the WWW2009
Workshop on Linked Data on the Web, LDOW 2009, Madrid, Spain, April 20, 2009.
Ed. byChristian Bizer et al. Vol. 538. CEURWorkshop Proceedings. CEUR-WS.org,
2009. uRl: http://ceur-ws.org/Vol-538/ldow2009_paper13.
pdf.

[186] W3C. Linking Open Data Community Project. Aug. 2007. uRl: http://esw.
w3.org/SweoIG/TaskForces/CommunityProjects/Linking
OpenData.

[187] W3C. Semantic Web. uRl: https://www.w3.org/standards/seman
ticweb/.

[188] W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview
(Second Edition). W3C Recommendation.W3C, Dec. 2012. uRl: https://www.
w3.org/TR/owl2-overview/.

[189] W3C Semantic Web Activity. Latest layercake diagram. uRl: https://www.
w3.org/2001/sw/.

[190] Michael J. Welch, Aamod Sane, and Chris Drome. “Fast and accurate incremental
entity resolution relative to an entity knowledge base”. In: 21st ACM International
Conference on Information and Knowledge Management, CIKM’12, Maui, HI, USA,
October 29 - November 02, 2012, ed. by Xue-wen Chen et al. ACM, 2012, pp. 2667–
2670. isbn: 978-1-4503-1156-4. doi: 10.1145/2396761.2398719.

[191] StephanWölger, Katharina Siorpaes, Tobias Bürger, Elena Simperl, StefanThaler,
and Christian Hofer. A Survey On Data Interlinking Methods. Tech. rep. STI Inns-
bruck, Mar. 2011.

[192] Chuan Xiao,WeiWang, Xuemin Lin, and Jeffrey Xu Yu. “Efficient similarity joins
for near duplicate detection”. In: Proceedings of the 17th International Conference
on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008, ed. by Jinpeng
Huai et al. ACM, 2008, pp. 131–140. isbn: 978-1-60558-085-2. doi: 10.1145/
1367497.1367516.

[193] Eric P. Xing et al. “Petuum: A New Platform for Distributed Machine Learning
on Big Data”. In: IEEE Trans. Big Data 1.2 (2015), pp. 49–67. doi: 10.1109/
TBDATA.2015.2472014.

173

https://doi.org/10.1007/978-3-642-04930-9_41
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf
http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/2001/sw/
https://www.w3.org/2001/sw/
https://doi.org/10.1145/2396761.2398719
https://doi.org/10.1145/1367497.1367516
https://doi.org/10.1145/1367497.1367516
https://doi.org/10.1109/TBDATA.2015.2472014
https://doi.org/10.1109/TBDATA.2015.2472014

BIBLIOGRAPHY

[194] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing”. In: Proceedings of the 9th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, ed. by Steven D. Gribble et al. USENIXAssociation, 2012, pp. 15–
28. uRl: https://www.usenix.org/conference/nsdi12/tech
nical-sessions/presentation/zaharia.

[195] Amrapali Zaveri, Anisa Rula, AndreaMaurino, Ricardo Pietrobon, Jens Lehmann,
and Sören Auer. “Quality assessment for Linked Data: A Survey”. In: Semantic
Web 7.1 (2016), pp. 63–93. doi: 10.3233/SW-150175.

[196] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. “A
DistributedGraph Engine forWeb Scale RDFData”. In: PVLDB 6.4 (2013), pp. 265–
276. doi: 10.14778/2535570.2488333.

[197] Paul C. Zikopoulos, Dirk deRoos, Krishnan Parasuraman,ThomasDeutsch, David
Corrigan, and James Giles. Harness the Power of Big Data –The IBM Big Data Plat-
form. McGraw-Hill, 2013.

174

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.3233/SW-150175
https://doi.org/10.14778/2535570.2488333

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	I Foundations
	Introduction
	Motivation
	Scientific Contributions
	Structure of Thesis

	Background
	Semantic Web
	Data Model

	Link Discovery
	Problem Definition
	Requirements
	Generalized Workflow
	Comparison of Frameworks
	Conclusion and Distinction to this Thesis

	II Reuse of Link Discovery Results and Clustering Strategies
	LinkLion: A Link Repository for the Web of Data
	Motivation
	Implementation
	Use Cases
	Conclusion

	Holistic Entity Clustering for Linked Data
	Motivation
	Problem statement
	Holistic clustering based on existing links
	Evaluation
	Related Work
	Conclusion

	Incremental Clustering on Linked Data
	Motivation
	Problem definition
	Incremental Clustering Approach
	Evaluation
	Related Work
	Conclusion

	III Parallelization of Clustering Strategies
	Introduction to Distributed Data Processing
	Background and Basic Concepts
	State of the Art

	Distributed Clustering Strategies
	Motivation
	Problem Statement
	Distributed SplitMerge Clustering
	Distributed Incremental Clustering
	Evaluation
	Related Work
	Conclusion

	Comparative Evaluation of Clustering Methods
	Motivation
	Problem Statement
	Similarity Graph Generation
	Clustering approaches
	Related Work
	Evaluation
	Conclusion

	IV Conclusion and Outlook
	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

