272 research outputs found

    Towards generalizable neuro-symbolic reasoners

    Get PDF
    Doctor of PhilosophyDepartment of Computer ScienceMajor Professor Not ListedSymbolic knowledge representation and reasoning and deep learning are fundamentally different approaches to artificial intelligence with complementary capabilities. The former are transparent and data-efficient, but they are sensitive to noise and cannot be applied to non-symbolic domains where the data is ambiguous. The latter can learn complex tasks from examples, are robust to noise, but are black boxes; require large amounts of --not necessarily easily obtained-- data, and are slow to learn and prone to adversarial examples. Either paradigm excels at certain types of problems where the other paradigm performs poorly. In order to develop stronger AI systems, integrated neuro-symbolic systems that combine artificial neural networks and symbolic reasoning are being sought. In this context, one of the fundamental open problems is how to perform logic-based deductive reasoning over knowledge bases by means of trainable artificial neural networks. Over the course of this dissertation, we provide a brief summary of our recent efforts to bridge the neural and symbolic divide in the context of deep deductive reasoners. More specifically, We designed a novel way of conducting neuro-symbolic through pointing to the input elements. More importantly we showed that the proposed approach is generalizable across new domain and vocabulary demonstrating symbol-invariant zero-shot reasoning capability. Furthermore, We have demonstrated that a deep learning architecture based on memory networks and pre-embedding normalization is capable of learning how to perform deductive reason over previously unseen RDF KGs with high accuracy. We are applying these models on Resource Description Framework (RDF), first-order logic, and the description logic EL+ respectively. Throughout this dissertation we will discuss strengths and limitations of these models particularly in term of accuracy, scalability, transferability, and generalizabiliy. Based on our experimental results, pointer networks perform remarkably well across multiple reasoning tasks while outperforming the previously reported state of the art by a significant margin. We observe that the Pointer Networks preserve their performance even when challenged with knowledge graphs of the domain/vocabulary it has never encountered before. To our knowledge, this work is the first attempt to reveal the impressive power of pointer networks for conducting deductive reasoning. Similarly, we show that memory networks can be trained to perform deductive RDFS reasoning with high precision and recall. The trained memory network's capabilities in fact transfer to previously unseen knowledge bases. Finally will talk about possible modifications to enhance desirable capabilities. Altogether, these research topics, resulted in a methodology for symbol-invariant neuro-symbolic reasoning

    Logic-based Technologies for Intelligent Systems: State of the Art and Perspectives

    Get PDF
    Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future

    Rule Learning over Knowledge Graphs: A Review

    Get PDF
    Compared to black-box neural networks, logic rules express explicit knowledge, can provide human-understandable explanations for reasoning processes, and have found their wide application in knowledge graphs and other downstream tasks. As extracting rules manually from large knowledge graphs is labour-intensive and often infeasible, automated rule learning has recently attracted significant interest, and a number of approaches to rule learning for knowledge graphs have been proposed. This survey aims to provide a review of approaches and a classification of state-of-the-art systems for learning first-order logic rules over knowledge graphs. A comparative analysis of various approaches to rule learning is conducted based on rule language biases, underlying methods, and evaluation metrics. The approaches we consider include inductive logic programming (ILP)-based, statistical path generalisation, and neuro-symbolic methods. Moreover, we highlight important and promising application scenarios of rule learning, such as rule-based knowledge graph completion, fact checking, and applications in other research areas

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öffentlichen Sektors werden immer größere Datenmengen verfügbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlässlich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren Zusammenhänge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfügbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese können als eine Erweiterung von CNNs von regelmäßigen Gittern auf allgemeine (unregelmäßige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten über Entitäten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden, so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollständig, d. h. es fehlen Fakten. Die manuelle Überprüfung und Erweiterung der Graphen wird aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstützt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der Wissensgraphenvervollständigung lässt sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen Entitäten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame Entitäten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknüpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der Vervollständigung von Wissensgraphen vor. Für das Entity Alignment zeigen wir, wie die Anzahl der benötigten Paare reduziert werden kann, während die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erörtern auch die Leistungsfähigkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. Für die Link Prediction demonstrieren wir, wie die Vorhersage für unbekannte Entitäten zur Trainingszeit verbessert werden kann, indem zusätzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfügbar sind. Gestützt auf Ergebnisse einer groß angelegten experimentellen Studie präsentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugänglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich schlagen wir eine neuartige Metrik für die Bewertung von Ranking-Ergebnissen vor, wie sie für beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in Fällen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen für beide Aufgaben vorkommen

    Explainable methods for knowledge graph refinement and exploration via symbolic reasoning

    Get PDF
    Knowledge Graphs (KGs) have applications in many domains such as Finance, Manufacturing, and Healthcare. While recent efforts have created large KGs, their content is far from complete and sometimes includes invalid statements. Therefore, it is crucial to refine the constructed KGs to enhance their coverage and accuracy via KG completion and KG validation. It is also vital to provide human-comprehensible explanations for such refinements, so that humans have trust in the KG quality. Enabling KG exploration, by search and browsing, is also essential for users to understand the KG value and limitations towards down-stream applications. However, the large size of KGs makes KG exploration very challenging. While the type taxonomy of KGs is a useful asset along these lines, it remains insufficient for deep exploration. In this dissertation we tackle the aforementioned challenges of KG refinement and KG exploration by combining logical reasoning over the KG with other techniques such as KG embedding models and text mining. Through such combination, we introduce methods that provide human-understandable output. Concretely, we introduce methods to tackle KG incompleteness by learning exception-aware rules over the existing KG. Learned rules are then used in inferring missing links in the KG accurately. Furthermore, we propose a framework for constructing human-comprehensible explanations for candidate facts from both KG and text. Extracted explanations are used to insure the validity of KG facts. Finally, to facilitate KG exploration, we introduce a method that combines KG embeddings with rule mining to compute informative entity clusters with explanations.Wissensgraphen haben viele Anwendungen in verschiedenen Bereichen, beispielsweise im Finanz- und Gesundheitswesen. Wissensgraphen sind jedoch unvollständig und enthalten auch ungültige Daten. Hohe Abdeckung und Korrektheit erfordern neue Methoden zur Wissensgraph-Erweiterung und Wissensgraph-Validierung. Beide Aufgaben zusammen werden als Wissensgraph-Verfeinerung bezeichnet. Ein wichtiger Aspekt dabei ist die Erklärbarkeit und Verständlichkeit von Wissensgraphinhalten für Nutzer. In Anwendungen ist darüber hinaus die nutzerseitige Exploration von Wissensgraphen von besonderer Bedeutung. Suchen und Navigieren im Graph hilft dem Anwender, die Wissensinhalte und ihre Limitationen besser zu verstehen. Aufgrund der riesigen Menge an vorhandenen Entitäten und Fakten ist die Wissensgraphen-Exploration eine Herausforderung. Taxonomische Typsystem helfen dabei, sind jedoch für tiefergehende Exploration nicht ausreichend. Diese Dissertation adressiert die Herausforderungen der Wissensgraph-Verfeinerung und der Wissensgraph-Exploration durch algorithmische Inferenz über dem Wissensgraph. Sie erweitert logisches Schlussfolgern und kombiniert es mit anderen Methoden, insbesondere mit neuronalen Wissensgraph-Einbettungen und mit Text-Mining. Diese neuen Methoden liefern Ausgaben mit Erklärungen für Nutzer. Die Dissertation umfasst folgende Beiträge: Insbesondere leistet die Dissertation folgende Beiträge: • Zur Wissensgraph-Erweiterung präsentieren wir ExRuL, eine Methode zur Revision von Horn-Regeln durch Hinzufügen von Ausnahmebedingungen zum Rumpf der Regeln. Die erweiterten Regeln können neue Fakten inferieren und somit Lücken im Wissensgraphen schließen. Experimente mit großen Wissensgraphen zeigen, dass diese Methode Fehler in abgeleiteten Fakten erheblich reduziert und nutzerfreundliche Erklärungen liefert. • Mit RuLES stellen wir eine Methode zum Lernen von Regeln vor, die auf probabilistischen Repräsentationen für fehlende Fakten basiert. Das Verfahren erweitert iterativ die aus einem Wissensgraphen induzierten Regeln, indem es neuronale Wissensgraph-Einbettungen mit Informationen aus Textkorpora kombiniert. Bei der Regelgenerierung werden neue Metriken für die Regelqualität verwendet. Experimente zeigen, dass RuLES die Qualität der gelernten Regeln und ihrer Vorhersagen erheblich verbessert. • Zur Unterstützung der Wissensgraph-Validierung wird ExFaKT vorgestellt, ein Framework zur Konstruktion von Erklärungen für Faktkandidaten. Die Methode transformiert Kandidaten mit Hilfe von Regeln in eine Menge von Aussagen, die leichter zu finden und zu validieren oder widerlegen sind. Die Ausgabe von ExFaKT ist eine Menge semantischer Evidenzen für Faktkandidaten, die aus Textkorpora und dem Wissensgraph extrahiert werden. Experimente zeigen, dass die Transformationen die Ausbeute und Qualität der entdeckten Erklärungen deutlich verbessert. Die generierten unterstützen Erklärungen unterstütze sowohl die manuelle Wissensgraph- Validierung durch Kuratoren als auch die automatische Validierung. • Zur Unterstützung der Wissensgraph-Exploration wird ExCut vorgestellt, eine Methode zur Erzeugung von informativen Entitäts-Clustern mit Erklärungen unter Verwendung von Wissensgraph-Einbettungen und automatisch induzierten Regeln. Eine Cluster-Erklärung besteht aus einer Kombination von Relationen zwischen den Entitäten, die den Cluster identifizieren. ExCut verbessert gleichzeitig die Cluster- Qualität und die Cluster-Erklärbarkeit durch iteratives Verschränken des Lernens von Einbettungen und Regeln. Experimente zeigen, dass ExCut Cluster von hoher Qualität berechnet und dass die Cluster-Erklärungen für Nutzer informativ sind

    A Revision of Procedural Knowledge in the conML Framework

    Get PDF
    Machine learning methods have been used very successfully for quite some time to recognize patterns, model correlations and generate hypotheses. However, the possibilities for weighing and evaluating the resulting models and hypotheses, and the search for alternatives and contradictions are still predominantly reserved for humans. For this purpose, the novel concept of constructivist machine learning (conML) formalizes limitations of model validity and employs constructivist learning theory to enable doubting of new and existing models with the possibility of integrating, discarding, combining, and abstracting knowledge. The present work identifies issues that impede the systems capability to abstract knowledge from generated models for tasks that lie in the domain of procedural knowledge, and proposes and implements identified solutions. To this end, the conML framework has been reimplemented in the Julia programming language and subsequently been extended. Using a synthetic dataset of impedance spectra of modeled epithelia that has previously been analyzed with an existing implementation of conML, existing and new implementations are tested for consistency and proposed algorithmic changes are evaluated with respect to changes in model generation and abstraction ability when exploring unknown data. Recommendations for specific settings and suggestions for further research are derived from the results. In terms of performance, flexibility and extensibility, the new implementation of conML in Julia provides a good starting point for further research and application of the system.:Contents Abstract . . . . . III Zusammenfassung . . . . . IV Danksagung . . . . . V Selbstständigkeitserklärung . . . . . V 1. Introduction 1.1. Research Questions . . . . . 2 2. Related Work 2.1. Hybrid AI Systems . . . . . 5 2.2. Constructivist Machine Learning (conML) . . . . . 6 2.3. Implemented Methods . . . . . 9 2.3.1. Unsupervised Machine Learning . . . . . 9 2.3.2. Supervised Machine Learning . . . . . 11 2.3.3. Supervised Feature Selection . . . . . 13 2.3.4. Unsupervised Feature Selection . . . . . 17 3. Methods and Implementation 3.1. Notable Algorithmic Changes . . . . . 19 3.1.1. Rescaling of Target Values . . . . . 19 3.1.2. ExtendedWinner Selection . . . . . 21 3.2. Package Structure . . . . . 23 3.3. Interfaces and Implementation of Specific Methods . . . . . 29 3.4. Datasets . . . . . 41 4. Results 4.1. Validation Against the conML Prototype . . . . . 43 4.2. Change in Abstraction Capability . . . . . 49 4.2.1. Influence of Target Scaling . . . . . 49 4.2.2. Influence of the Parameter kappa_p . . . . . 55 4.2.3. Influence of the Winner Selection Procedure . . . . . 61 5. Discussion 5.1. Reproduction Results . . . . . 67 5.2. Rescaling of Constructed Targets . . . . . 69 5.3. kappa_p and the Selection of Winner Models . . . . . 71 6. Conclusions 6.1. Contributions of this Work . . . . . 77 6.2. Future Work . . . . . 78 A. Julia Language Reference . . . . . 81 B. Additional Code Listings . . . . . 91 C. Available Parameters . . . . . 99 C.1. Block Processing . . . . . 105 D. Configurations Reference . . . . . 107 D.1. Unsupervised Methods . . . . . 107 D.2. Supervised Methods . . . . . 108 D.3. Feature Selection . . . . . 109 D.4. Winner Selection . . . . . 110 D.5. General Settings . . . . . 110 E. Supplemental Figures . . . . . 113 E.1. Replacing MAPE with RMSE for Z-Transform Target Scaling . . . . . 113 E.2. Combining Target Rescaling, Winner Selection and High kappa_p . . . . . 119 Bibliography . . . . . 123 List of Figures . . . . . 129 List of Listings . . . . . 133 List of Tables . . . . . 135Maschinelle Lernverfahren werden seit geraumer Zeit sehr erfolgreich zum Erkennen von Mustern, Abbilden von Zusammenhängen und Generieren von Hypothesen eingesetzt. Die Möglichkeiten zum Abwägen und Bewerten der entstandenen Modelle und Hypothesen, und die Suche nach Alternativen und Widersprüchen sind jedoch noch überwiegend dem Menschen vorbehalten. Das neuartige Konzept des konstruktivistischen maschinellen Lernens (conML) formalisiert dazu die Grenzen der Gültigkeit von Modellen und ermöglicht mittels konstruktivistischer Lerntheorie ein Zweifeln über neue und bestehende Modelle mit der Möglichkeit zum Integrieren, Verwerfen, Kombinieren und Abstrahieren von Wissen. Die vorliegende Arbeit identifiziert Probleme, die die Abstraktionsfähigkeit des Systems bei Aufgabenstellungen in der Prozeduralen Wissensdomäne einschränken, bietet Lösungsvorschläge und beschreibt deren Umsetzung. Das algorithmische Framework conML ist dazu in der Programmiersprache Julia reimplementiert und anschließend erweitert worden. Anhand eines synthetischen Datensatzes von Impedanzspektren modellierter Epithelien, der bereits mit einem Prototypen des conML Systems analysiert worden ist, werden bestehende und neue Implementierung auf Konsistenz geprüft und die vorgeschlagenen algorithmischen Änderungen im Hinblick auf Veränderungen beim Erzeugen von Modellen und der Abstraktionsfähigkeit bei der Exploration unbekannter Daten untersucht. Aus den Ergebnissen werden Empfehlungen zu konkreten Einstellungen sowie Vorschläge für weitere Untersuchungen abgeleitet. Die neue Implementierung von conML in Julia bietet im Hinblick auf Performanz, Flexibilität und Erweiterbarkeit einen guten Ausgangspunkt für weitere Forschung und Anwendung des Systems.:Contents Abstract . . . . . III Zusammenfassung . . . . . IV Danksagung . . . . . V Selbstständigkeitserklärung . . . . . V 1. Introduction 1.1. Research Questions . . . . . 2 2. Related Work 2.1. Hybrid AI Systems . . . . . 5 2.2. Constructivist Machine Learning (conML) . . . . . 6 2.3. Implemented Methods . . . . . 9 2.3.1. Unsupervised Machine Learning . . . . . 9 2.3.2. Supervised Machine Learning . . . . . 11 2.3.3. Supervised Feature Selection . . . . . 13 2.3.4. Unsupervised Feature Selection . . . . . 17 3. Methods and Implementation 3.1. Notable Algorithmic Changes . . . . . 19 3.1.1. Rescaling of Target Values . . . . . 19 3.1.2. ExtendedWinner Selection . . . . . 21 3.2. Package Structure . . . . . 23 3.3. Interfaces and Implementation of Specific Methods . . . . . 29 3.4. Datasets . . . . . 41 4. Results 4.1. Validation Against the conML Prototype . . . . . 43 4.2. Change in Abstraction Capability . . . . . 49 4.2.1. Influence of Target Scaling . . . . . 49 4.2.2. Influence of the Parameter kappa_p . . . . . 55 4.2.3. Influence of the Winner Selection Procedure . . . . . 61 5. Discussion 5.1. Reproduction Results . . . . . 67 5.2. Rescaling of Constructed Targets . . . . . 69 5.3. kappa_p and the Selection of Winner Models . . . . . 71 6. Conclusions 6.1. Contributions of this Work . . . . . 77 6.2. Future Work . . . . . 78 A. Julia Language Reference . . . . . 81 B. Additional Code Listings . . . . . 91 C. Available Parameters . . . . . 99 C.1. Block Processing . . . . . 105 D. Configurations Reference . . . . . 107 D.1. Unsupervised Methods . . . . . 107 D.2. Supervised Methods . . . . . 108 D.3. Feature Selection . . . . . 109 D.4. Winner Selection . . . . . 110 D.5. General Settings . . . . . 110 E. Supplemental Figures . . . . . 113 E.1. Replacing MAPE with RMSE for Z-Transform Target Scaling . . . . . 113 E.2. Combining Target Rescaling, Winner Selection and High kappa_p . . . . . 119 Bibliography . . . . . 123 List of Figures . . . . . 129 List of Listings . . . . . 133 List of Tables . . . . . 13

    Human-Understandable Explanations of Neural Networks

    Get PDF
    Das 21. Jahrhundert ist durch Datenströme enormen Ausmaßes gekennzeichnet. Dies hat die Popularität von Berechnungsmodellen, die sehr datenintensiv sind, wie z.B. neuronale Netze, drastisch erhöht. Aufgrund ihres großen Erfolges bei der Mustererkennung sind sie zu einem leistungsstarken Werkzeug für Vorhersagen, Klassifizierung und Empfehlungen in der Informatik, Statistik, Wirtschaft und vielen anderen Disziplinen geworden. Trotz dieser verbreiteten Anwendung sind neuronale Netze Blackbox-Modelle, d.h. sie geben keine leicht interpretierbaren Einblicke in die Struktur der approximierten Funktion oder in die Art und Weise, wie die Eingabe in die entsprechende Ausgabe umgewandelt wird. Die jüngste Forschung versucht, diese Blackboxen zu öffnen und ihr Innenleben zu enthüllen. Bisher haben sich die meisten Forschungsarbeiten darauf konzentriert, die Entscheidungen eines neuronalen Netzes auf einer sehr technischen Ebene und für ein Informatikfachpublikum zu erklären. Da neuronale Netze immer häufiger eingesetzt werden, auch von Menschen ohne tiefere Informatikkenntnisse, ist es von entscheidender Bedeutung, Ansätze zu entwickeln, die es ermöglichen, neuronale Netze auch für Nicht-Experten verständlich zu erklären. Das Ziel ist, dass Menschen verstehen können, warum das neuronale Netz bestimmte Entscheidungen getroffen hat, und dass sie das Ergebnis des Modells durchgehend interpretieren können. Diese Arbeit beschreibt ein Rahmenwerk, das es ermöglicht, menschlich verständliche Erklärungen für neuronale Netze zu liefern. Wir charakterisieren menschlich nachvollziehbare Erklärungen durch sieben Eigenschaften, nämlich Transparenz, Überprüfbarkeit, Vertrauen, Effektivität, Überzeugungskraft, Effizienz und Zufriedenheit. In dieser Arbeit stellen wir Erklärungsansätze vor, die diese Eigenschaften erfüllen. Zunächst stellen wir TransPer vor, ein Erklärungsrahmenwerk für neuronale Netze, insbesondere für solche, die in Produktempfehlungssystemen verwendet werden. Wir definieren Erklärungsmaße auf der Grundlage der Relevanz der Eingaben, um die Vorhersagequalität des neuronalen Netzes zu analysieren und KI-Anwendern bei der Verbesserung ihrer neuronalen Netze zu helfen. Dadurch werden Transparenz und Vertrauen geschaffen. In einem Anwendungsfall für ein Empfehlungssystem werden auch die Überzeugungskraft, die den Benutzer zum Kauf eines Produkts veranlasst, und die Zufriedenheit, die das Benutzererlebnis angenehmer macht, berücksichtigt. Zweitens, um die Blackbox des neuronalen Netzes zu öffnen, definieren wir eine neue Metrik für die Erklärungsqualität ObAlEx in der Bildklassifikation. Mit Hilfe von Objekterkennungsansätzen, Erklärungsansätzen und ObAlEx quantifizieren wir den Fokus von faltenden neuronalen Netzwerken auf die tatsächliche Evidenz. Dies bietet den Nutzern eine effektive Erklärung und Vertrauen, dass das Modell seine Klassifizierungsentscheidung tatsächlich auf der Grundlage des richtigen Teils des Eingabebildes getroffen hat. Darüber hinaus ermöglicht es die Überprüfbarkeit, d. h. die Möglichkeit für den Benutzer, dem Erklärungssystem mitzuteilen, dass sich das Modell auf die falschen Teile des Eingabebildes konzentriert hat. Drittens schlagen wir FilTag vor, einen Ansatz zur Erklärung von faltenden neuronalen Netzwerken durch die Kennzeichnung der Filter mit Schlüsselwörtern, die Bildklassen identifizieren. In ihrer Gesamtheit erklären diese Kennzeichnungen die Zweckbestimmung des Filters. Einzelne Bildklassifizierungen können dann intuitiv anhand der Kennzeichnungen der Filter, die das Eingabebild aktiviert, erklärt werden. Diese Erklärungen erhöhen die Überprüfbarkeit und das Vertrauen. Schließlich stellen wir FAIRnets vor, das darauf abzielt, Metadaten von neuronalen Netzen wie Architekturinformationen und Verwendungszweck bereitzustellen. Indem erklärt wird, wie das neuronale Netz aufgebaut ist werden neuronale Netzer transparenter; dadurch dass ein Nutzer schnell entscheiden kann, ob das neuronale Netz für den gewünschten Anwendungsfall relevant ist werden neuronale Netze effizienter. Alle vier Ansätze befassen sich mit der Frage, wie man Erklärungen von neuronalen Netzen für Nicht-Experten bereitstellen kann. Zusammen stellen sie einen wichtigen Schritt in Richtung einer für den Menschen verständlichen KI dar
    corecore