9 research outputs found

    RML: Runtime Monitoring Language

    Get PDF
    Runtime verification is a relatively new software verification technique that aims to prove the correctness of a specific run of a program, rather than statically verify the code. The program is instrumented in order to collect all the relevant information, and the resulting trace of events is inspected by a monitor that verifies its compliance with respect to a specification of the expected properties of the system under scrutiny. Many languages exist that can be used to formally express the expected behavior of a system, with different design choices and degrees of expressivity. This thesis presents RML, a specification language designed for runtime verification, with the goal of being completely modular and independent from the instrumentation and the kind of system being monitored. RML is highly expressive, and allows one to express complex, parametric, non-context-free properties concisely. RML is compiled down to TC, a lower level calculus, which is fully formalized with a deterministic, rewriting-based semantics. In order to evaluate the approach, an open source implementation has been developed, and several examples with Node.js programs have been tested. Benchmarks show the ability of the monitors automatically generated from RML specifications to effectively and efficiently verify complex properties

    Robustness in Metric Spaces over Continuous Quantales and the Hausdorff-Smyth Monad

    Full text link
    Generalized metric spaces are obtained by weakening the requirements (e.g., symmetry) on the distance function and by allowing it to take values in structures (e.g., quantales) that are more general than the set of non-negative real numbers. Quantale-valued metric spaces have gained prominence due to their use in quantitative reasoning on programs/systems, and for defining various notions of behavioral metrics. We investigate imprecision and robustness in the framework of quantale-valued metric spaces, when the quantale is continuous. In particular, we study the relation between the robust topology, which captures robustness of analyses, and the Hausdorff-Smyth hemi-metric. To this end, we define a preorder-enriched monad PS\mathsf{P}_S, called the Hausdorff-Smyth monad, and when QQ is a continuous quantale and XX is a QQ-metric space, we relate the topology induced by the metric on PS(X)\mathsf{P}_S(X) with the robust topology on the powerset P(X)\mathsf{P}(X) defined in terms of the metric on XX.Comment: 19 pages, 1 figur

    On Multi-Language Semantics: Semantic Models, Equational Logic, and Abstract Interpretation of Multi-Language Code

    Get PDF
    Modern software development rarely takes place within a single programming language. Often, programmers appeal to cross-language interoperability. Benefits are two-fold: exploitation of novel features of one language within another, and cross-language code reuse. For instance, HTML, CSS, and JavaScript yield a form of interoperability, working in conjunction to render webpages. Some object oriented languages have interoperability via a virtual machine host (.NET CLI compliant languages in the Common Language Runtime, and JVM compliant languages in the Java Virtual Machine). A high-level language can interact with a lower level one (Apple's Swift and Objective-C). Whilst this approach enables developers to benefit from the strengths of each base language, it comes at the price of a lack of clarity of formal properties of the new multi-language, mainly semantic specifications. Developing such properties is a key focus of this thesis. Indeed, while there has been some research exploring the interoperability mechanisms, there is little development of theoretical foundations. In this thesis, we broaden the boundary functions-based approach à la Matthews and Findler to propose an algebraic framework that provides systematic and more general ways to define multi-languages, regardless of the inherent nature of the underlying languages. The aim of this strand of research is to overcome the lack of a formal model in which to design the combination of languages. Main contributions are an initial algebra semantics and a categorical semantics for multi-languages. We then give ways in which interoperability can be reasoned about using equations over the blended language. Formally, multi-language equational logic is defined, within which one may deduce valid equations starting from a collection of axioms that postulate properties of the combined language. Thus, we have the notion of a multi-language theory and part of the thesis is devoted to exploring the properties of these theories. This is accomplished by way of both universal algebra and category theory, giving us a very general and flexible semantics, and hence a wide collection of models. Classifying categories are constructed, and hence equational theories furnish each categorical model with an internal language. From this we establish soundness and completeness of the multi-language equational logic. As regards static analysis, the heterogeneity of the multi-language context opens up new and unexplored scenarios. In this thesis, we provide a general theory for the combination of abstract interpretations of existing languages in order to gain an abstract semantics of multi-language programs. As a part of this general theory, we show that formal properties of interest of multi-language abstractions (e.g., soundness and completeness) boil down to the features of the interoperability mechanism that binds the underlying languages together. We extend many of the standard concepts of abstract interpretation to the framework of multi-languages. Finally, a minor contribution of the thesis concerns language specification formalisms. We prove that longstanding syntactical transformations between context-free grammars and algebraic signatures give rise to adjoint equivalences that preserve the abstract syntax of the generated terms. Thus, we have methods to move from context-free languages to the algebraic signature formalisms employed in the thesis

    Recursive Solution of Initial Value Problems with Temporal Discretization

    Full text link
    We construct a continuous domain for temporal discretization of differential equations. By using this domain, and the domain of Lipschitz maps, we formulate a generalization of the Euler operator, which exhibits second-order convergence. We prove computability of the operator within the framework of effectively given domains. The operator only requires the vector field of the differential equation to be Lipschitz continuous, in contrast to the related operators in the literature which require the vector field to be at least continuously differentiable. Within the same framework, we also analyze temporal discretization and computability of another variant of the Euler operator formulated according to Runge-Kutta theory. We prove that, compared with this variant, the second-order operator that we formulate directly, not only imposes weaker assumptions on the vector field, but also exhibits superior convergence rate. We implement the first-order, second-order, and Runge-Kutta Euler operators using arbitrary-precision interval arithmetic, and report on some experiments. The experiments confirm our theoretical results. In particular, we observe the superior convergence rate of our second-order operator compared with the Runge-Kutta Euler and the common (first-order) Euler operators.Comment: 50 pages, 6 figure

    Syntactic approaches to negative results in process algebras and modal logics

    Get PDF
    Concurrency as a phenomenon is observed in most of the current computer science trends. However the inherent complexity of analyzing the behavior of such a system is incremented due to the many different models of concurrency, the variety of applications and architectures, as well as the wide spectrum of specification languages and demanded correctness criteria. For the scope of this thesis we focus on state based models of concurrent computation, and on modal logics as specification languages. First we study syntactically the process algebras that describe several different concurrent behaviors, by analyzing their equational theories. Here, we use well-established techniques from the equational logic of processes to older and newer setups, and then transition to the use of more general and novel methods for the syntactical analysis of models of concurrent programs and specification languages. Our main contributions are several positive and negative axiomatizability results over various process algebraic languages and equivalences, along with some complexity results over the satisfiability of multi-agent modal logic with recursion, as a specification language.Samhliða sem fyrirbæri sést í flestum núverandi tölvunarfræði stefnur. Hins vegar er eðlislægt flókið að greina hegðun slíks kerfis- tem er aukið vegna margra mismunandi gerða samhliða, fjölbreytileikans af forritum og arkitektúr, svo og breitt svið forskrifta mælikvarða og kröfðust réttmætisviðmiða. Fyrir umfang þessarar ritgerðar leggjum við áherslu á ástandsbundin líkön af samhliða útreikningum og á formlegum rökfræði sem forskrift tungumálum. Fyrst skoðum við setningafræðilega ferlialgebrurnar sem lýsa nokkrum mismunandi samhliða hegðun, með því að greina jöfnukenningar þeirra. Hér notum við rótgróin tækni mynda jöfnunarrökfræði ferla til eldri og nýrri uppsetningar, og síðan umskipti yfir í notkun almennari og nýrra aðferða fyrir setningafræðileg greining á líkönum samhliða forrita og forskriftartungumála. Helstu framlög okkar eru nokkrar jákvæðar og neikvæðar niðurstöður um axiomatizability yfir ýmis ferli algebrumál og jafngildi, ásamt nokkrum samSveigjanleiki leiðir af því að fullnægjanleiki fjölþátta formrökfræði með endurkomu, sem a forskrift tungumál.RANNIS: `Open Problems in the Equational Logic of Processes’ (OPEL) (grant No 196050-051) Reykjavik University research fund: `Runtime and Equational Verification of Concurrent Programs' (ReVoCoP) (grant No 222021

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore