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Abstract

Concurrency as a phenomenon is observed in most of the current computer science
trends. However the inherent complexity of analyzing the behavior of such a sys-
tem is incremented due to the many different models of concurrency, the variety
of applications and architectures, as well as the wide spectrum of specification lan-
guages and demanded correctness criteria. For the scope of this thesis we focus on
state based models of concurrent computation, and on modal logics as specification
languages. First we study syntactically the process algebras that describe several
different concurrent behaviors, by analyzing their equational theories. Here, we
use well-established techniques from the equational logic of processes to older and
newer setups, and then transition to the use of more general and novel methods
for the syntactical analysis of models of concurrent programs and specification lan-
guages. Our main contributions are several positive and negative axiomatizability
results over various process algebraic languages and equivalences, along with some
complexity results over the satisfiability of multi-agent modal logic with recursion,
as a specification language.
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Setningarfræðilegar aðferðir við neikvæðar niðurstöður í
algebrum vinnslu og mótalógík

Elli Anastasiadi

October 17, 2022

Útdráttur

Samhliða sem fyrirbæri sést í flestum núverandi tölvunarfræði stefnur. Hins vegar
er eðlislægt flókið að greina hegðun slíks kerfis- tem er aukið vegna margra mis-
munandi gerða samhliða, fjölbreytileikans af forritum og arkitektúr, svo og breitt
svið forskrifta mælikvarða og kröfðust réttmætisviðmiða. Fyrir umfang þessarar
ritgerðar leggjum við áherslu á ástandsbundin líkön af samhliða útreikningum og á
formlegum rökfræði sem forskrift tungumálum. Fyrst skoðum við setningafræðilega
ferlialgebrurnar sem lýsa nokkrum mismunandi samhliða hegðun, með því að greina
jöfnukenningar þeirra. Hér notum við rótgróin tækni mynda jöfnunarrökfræði ferla
til eldri og nýrri uppsetningar, og síðan umskipti yfir í notkun almennari og nýrra
aðferða fyrir setningafræðileg greining á líkönum samhliða forrita og forskriftar-
tungumála. Helstu framlög okkar eru nokkrar jákvæðar og neikvæðar niðurstöður
um axiomatizability yfir ýmis ferli algebrumál og jafngildi, ásamt nokkrum sam-
Sveigjanleiki leiðir af því að fullnægjanleiki fjölþátta formrökfræði með endurkomu,
sem a forskrift tungumál.
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On the Shoulders of Giants
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Chapter 1

Introduction

Developing computing systems that do reliably and efficiently what they were de-
signed to achieve has consistently been one of the key challenges in computer sci-
ence.

A leading approach for checking whether a computing system offers its intended
behavior is formal verification [184, 185, 145], which uses mathematical tools to
eradicate human error. Formal verification has been used not only for sequential
programs but also substantially to provide guarantees for systems with concurrent
components. However, applying formal verification techniques in the concurrent
setup is becoming increasingly complex as a result of the variety of systems and
implementations that utilize non-linear models of computation. At the same time,
system correctness is now more relevant than ever because of the energy cost of
large-scale computing systems, their omnipresence, and the extremely high financial
and personal stakes depending on them. The above reasons demand that software
is of high quality, very trustworthy, correct, and robust. Unfortunately, concurrent
computation is inherently more complex than its linear counterpart. Thus, it has
been a long-standing tradition to understand the mathematical nature of such
computations and verify their behaviors through formalization and rigorous proofs.

Over the years, many varied approaches have been aiming to achieve the afore-
mentioned goals, with formal proofs being a common denominator among all. We
will briefly discuss a non-exhaustive list of attributes that characterize these ap-
proaches, in order to introduce our fields of research. This characterization will help
in understanding our contributions and is also useful when designing new methods,
combinations of existing approaches, or identifying unexplored areas of research.
We limit ourselves to mention the following factors that affect formal verification
procedures:

• Whether one has access to sufficient information about the system, e.g., in
the form of a faithful model.
Conversely, one might have to perform their analysis by assuming the system
is a black box. This attribute is, for example, what separates the approaches
of model checking ([74]) and runtime verification ([47]), as we will see later
on.
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4 CHAPTER 1. INTRODUCTION

• Whether one aims to build a “correct-by-design” system — something we call
the synthesis problem ([88, 109]) — versus studying an already existing one.

In the first case, one starts from a specification and aims to construct a
model for it if one exists. The decidability and complexity of this question
will become very relevant later on when we study modal logics ([59]).

• Whether one aims to create new specification languages that capture different
aspects of computation (such as execution time, space requirements, and
agent knowledge).

Conversely, much research takes place over a fixed specification language,
where the analysis aims to study systems against fixed properties expressed
in it.

• Whether one uses the same language to describe the systems and their spec-
ifications versus using different ones.

The first option (referred to as the one-language approach) is the field we
will study for most of this thesis. The second option is often called the two-
language approach.

The above characteristics give rise to scientific disciplines, that not only have
many flavors within themselves but also produce a plethora of sub-practices when
combined. All the contributions we will describe later will be a combination of
some of the aforementioned characteristics. We will give a more detailed and tech-
nical overview of all fields relevant to any of our contributions in the Preliminaries
(Chapter 2). However, before doing so, we discuss one common prevalent attribute
in our work, namely, the syntactical style of analysis.

In all works included in this PhD thesis, we focus on using syntactical descrip-
tions of the objects we analyze. Therefore, we first describe our objects through
some formal syntax and then perform our analysis and processing of those defined
objects. Thus, for the reader, when conceptualizing an object, it is best to assume
a syntactical construct, such as a written piece of code, instead of focusing on its
computational meaning. Of course, semantics, that is, the computational meaning
assigned to the objects we study, does play some role in our work, for example,
when establishing which expressions are “correct” or which transformations are al-
lowed. However, this merely informs our procedures, but their nature remains
syntactic.

Our first category of contributions in the syntactic analysis of properties of com-
putation is in the field of process algebras ([101]), and specifically, in the equational
study of their objects. A key concept underlying this field is that the description
of systems, and their intended behavior is given in the same formal language. This
reduces the question of whether a system “matches” its specification to whether
the two can be seen as equivalent under some appropriate notion of equality or
approximation relation. This immediately turns formal verification questions into
questions about the validity of equations or inequalities. Additionally, it means
that by using the mathematical theory underlying the provability of equations,
one can potentially identify all objects that satisfy a specification by exploring all
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available valid proofs. Finally, it can allow us to decide whether the above tasks
are impossible under certain assumptions.

Chapters 3 and 4 present our results over the equational theories of two distinct
process algebras. In Chapter 3, we study a process algebraic language that describes
systems whose behavior considers priority-based execution of the available actions.
Here we answer questions regarding the provability and decidability of whether two
systems behave the same under some suitable notion of equivalence. We also discuss
the complexity of answering this question. Chapter 4 applies those techniques in
the study of the algebraic theory of monitors, namely over a syntax that describes
objects aimed to be used for runtime verification (a purpose that affects the validity
of equations between monitors).

However, as one sees from those two contributions, this type of analysis can
become lengthy and has the disadvantage of being very case-specific. What we
mean by “case-specific” is that by tweaking the syntactic constructs one uses or
which equations are valid in each case, the whole argument about the provability
of equations must be repeated from the beginning. Moreover, even if one has
already heavily invested in solving a problem, they will not necessarily have any
insight regarding the answer of the same questions over an almost indistinguishable
setup (such as the variations we study in these chapters). One would hope that
then it is not necessary to study too many variations, but this, unfortunately, is
not the case, as formal methods constantly have to catch up with the variety of
emerging applications.

Thus, it becomes apparent that, even though isolated results are helpful, they
still require dedication, creativity, and expertise, and we need to develop more
general approaches when possible. Examples of this trend can be found in com-
putability theory, where establishing the undecidability of several computational
problems on a case-by-case basis was replaced by Rice’s theorem ([186]), and the
search for fixed-parameter tractability gave rise to Courcelle’s theorem ([79, 90]).
This necessity, along with the thirst for knowledge itself, leads our research from
the case-by-case analysis to a spectrum of results we describe as lifting results.
There, we use established results to identify the core similarities and difficulties
between applications (variations) to create new results and extend the validity of
existing ones. As one can see, even by the decrease in the length of individual
proofs in Chapters 5 and 6 of this thesis, these methods are typically more general
and succinct, when they can be applied.

Chapter 5 focuses on the differences between two kinds of equivalences: strong
and weak. Strong equivalences (mostly strong bisimulation [152] in process alge-
bras) require that processes can “match” each other’s behavior, including internal
steps, in order to be considered equivalent. Conversely, weak equivalences abstract
away from the internal computation of a system and only focus on its interactions
with the environment. Here we prove some general properties of equational proofs
and use them to generalize a known result from the study of strong behavioral
equivalences to that of weak ones.

Having transferred this result into a new setting motivates us further to employ
similar techniques elsewhere. Therefore, in Chapter 6, we emphasize even more on
lifting results. Here we study several process languages, each with different power
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to model systems, and focus on finding a common structure between them. This
is done by utilizing a known but not very widespread lifting technique [12], which
revolves around the notion of a reduction mapping. A reduction mapping is meant
to be a projection of objects between languages, which, as long as it satisfies specific
properties, ensures that results on the equational questions we have been studying
are preserved between target and source language. Thus, after constructing such
mappings between several theories and a given target one, we manage to extend
a specific equational result over all the languages we consider. This technique
both provides us with these results and also helps us avoid performing the more
traditional analysis demonstrated in Chapters 3 and 4 for each theory.

Finally, we continue our study of syntactical analysis techniques in the setting
of modal logics. Modal logic is also closely associated with the formal verification of
sequential and concurrent programs. Here, we focus on multi-agent modal logics for
two reasons. First, they present the most similarities to concurrent computation,
and second, their expressive power captures some of our target research beyond
the scope of this thesis. The objects studied here become logical formulas, used
as specifications in the two-language approach of formal methods. In this context,
checking whether the system satisfies a specification is no longer a matter of equality
checking. It is instead tackled through model checking and algorithms for answering
provability, satisfiability, and validity of formulas written in some logic.

Chapter 7, focuses on the satisfiability problem, which asks whether a given
formula has any model. This problem can be associated with the synthesis problem
in computer science, as the construction of a model could also be turned into an
implementation of a “good” system. Therefore, it is essential to be able to compute
a model — and hopefully not too inefficiently. One way to tackle this complexity
question could be to demonstrate an algorithm and prove through its semantics
that it is correct.

However, there are already existing complexity results about logics similar to
the ones we wanted to analyze. Thus, our method here focused on identifying
syntactical ways to relate our new logics with these existing ones. We managed to
do so by defining and using syntactical manipulations between modal logic formulas
that preserved our aimed complexity results. Here, again, we avoid more traditional
approaches that would prove those complexity results individually. We instead
substitute the sheer volume of those proofs with shorter ones that identify and
exploit similarities between setups. Our technique here is original, and even though
still a rough version of what we believe it could become, it manages to provide us
with a variety of valuable results.

Summarizing, this dissertation offers several original contributions to the study
of syntactic approaches in the field of formal verification of systems correctness. We
provide answers to questions regarding the equational logic of processes, and the
complexity of modal logics with recursion. Almost all of our results are negative in
nature and demonstrate the impossibility to perform efficiently, or even to perform
at all, several tasks over the mentioned fields. During our efforts we switch from
case-by-case analysis to more general approaches that aim to generalize results via
identifying structural similarities between setups. This leads us to produce results
in a more succinct manner, and eventually to design lifting techniques ourselves.
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1.1 Our Results
The contributions we will present in this thesis produced the following results in
the fields discussed above:

• Bergstra and Klop’s basic process algebra (BPA) enriched with an operator
allowing the priority-based execution of available actions does not afford a
finite axiomatization modulo order insensitive bisimilarity (Chapter 3).

The results reported in this chapter describe the work contained in [17, 19].

• Monitors, produced with a specific recursion-free algebraic syntax with no
variables over a finite set of actions, afford finite axiomatizations, both mod-
ulo verdict equivalence and its asymptotic version. However, the landscape
of the axiomatizability results is more varied in the setting of open terms
— that is, terms that may include variables. In the presence of more than
one, but finitely many, actions, we prove that no finite axiomatization exists,
and we provide an infinite one that we prove complete. We then perform an
exhaustive study for the remaining cases for terms over one action or an infi-
nite set of actions, modulo both equivalences, and show that over a singleton
action set, we can acquire completeness with finitely many axioms. In the
case of infinitely many actions, our axiomatic basis for closed terms extended
by only one axiom is also complete for open terms (Chapter 4).

The results reported in this chapter describe the work contained in [28].

• We extend a celebrated negative result by Moller [157] over open terms in
CCS modulo bisimilarity to the weak setting modulo rooted weak and rooted
branching bisimilarity (Chapter 5).

This result was presented in the invited paper [23], as an original contribution.

• We further study Moller’s negative result and prove it applies to several
new settings over languages obtained as extensions of BCCSP, which is a
basic process algebra for the description of finite synchronization trees. The
technique we employ here is based on creating mappings from different process
algebraic languages onto Moller’s CCS. Our main contribution is identifying
the core similarities between behaviors of the used operators in each variation
and, by exploiting those, defining the mappings mentioned above. Our first
lifting of Moller’s result is BCCSP extended with the merge operator |A from
CSP, where A denotes a subset of the actions available in the system. We
consider the cases where the resulting process algebras contain exactly one
such operator for a fixed A or when they contain all such operators, one for
each A. In the first case, we show that BCCSP extended with those operators
does not afford a finite ground-complete axiomatization when A ⊂ Act.
When A = Act, instead, we provide a finite ground-complete axiomatization
for bisimilarity. Moreover, in the second case, we show that without the
presence of τ actions, our proof technique through mappings could not be
applied to prove the non-existence of a finite ground-complete axiomatization.
Finally, we create two new mappings and use them to prove two negative
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results, one for the restriction- and recursion-free, and one for the relabeling-
and recursion-free fragments of CCS (Chapter 6).
Part of the work reported in this chapter describes the contents of [29].
The final result regarding the non-finite axiomatizability of restriction- and
recursion-free CCS is an original contribution of this thesis.

• Finally, in Chapter 7, we define the multi-agent modal µ-calculus over frames
that satisfy the modal axioms corresponding to reflexive, symmetric, serial,
transitive, and euclidean models. We then study the complexity of the cor-
responding satisfiability problems. We manage to produce tight lower and
upper bounds for several sub-logics employing many such axioms and at least
some hardness results for other ones. We also provide sound and complete
tableaux for these logics and use them to prove the decidability of the satis-
fiability problem in cases not addressed in the literature. However, perhaps
the most significant contribution of this final study was our novel method-
ology, which advocates for a more uniform tackling of complexity questions
over modal logics.
The work reported in this chapter describes the contents of [27].

Aside from the results described in Chapters 3-7, the work done in the course
of this PhD program produced the results described in [26], and [21]. We chose
not to include these two works in this thesis, as their content, even though relevant
to the field of formal methods, did not directly fall in line with the theme of
this dissertation. However, the work reported in them did motivate the author to
explore new fields.

1.2 The Role of Negative Results in Formal Meth-
ods

As one can notice, most of the results presented in this thesis can be seen as
hardness results. This means that each one proves, in some sense, that a particular
task is impossible, very complicated, very slow, or something in between. It is
possible to think that such results do not contribute much to the grand scheme of
recent advances in formal verification, where faster, safer, more agile software is
constantly produced, and impossibility does not “match” with the general, arguably
optimistic, attitude.

However, hardness results contribute a great deal to the foundations of several
fields, and surprisingly enough, formal hardness guarantees find themselves prac-
tical applications from time to time [179, 106, 102]. When presenting our results,
we will discuss their importance on an individual level, while for now, we will limit
ourselves to a more general overview of the importance of negative results in the
field of formal methods. We begin by setting the stage with a quote from Christos
Papadimitriou from [164, page 16]. In his words:

..negative results are the only possible self-contained theoretical results.

. . . A related point is that successful exploratory theoretical research is
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bound to produce predominantly negative results. After all, delimita-
tion (discovering that “that’s all there is!”) is the ultimate success in
exploration. Identifying the limitations of a model is valuable informa-
tion for further model-building, and for crystallizing the subject.

To elaborate, first of all, negative results are useful because they are results.
What we mean by this is that in a field like theoretical computer science, where
conjectures of solutions without actual proofs are not uncommon (see, for example,
exponential time hypothesis — ETH — and strong ETH [131, 69]), a hardness
result can be a breakthrough. Before such a conjecture is resolved scientists tend
to explore many possible versions of reality, in hopes both for useful results, but
also of potential contradictions that would resolve the original claim. For example,
this search when trying to resolve the famous P versus NP problem has created a
plethora of sub-fields which utilize different assumptions, such as access to random
bits, a bounded instance space, fault tolerance and others [102]. Thus, a hardness
result can end this natural branching of explorations (see, for example, the large
amount of research exploring the potential, but not yet provably fruitful, use of
randomness when trying to tackle NP-hard problems [132]) and help focus the
research efforts on the “correct” version of reality, where potential theorems would
find the most practical application.

Secondly, a hardness result implies the existence of a proof. In the field of
formal methods, new proofs and proof techniques are essential not because of the
result they prove necessarily, but also because they show us why something is hard,
and how to go around it. For example, in the field of process algebra, non-finite
axiomatizability results have justified the introduction of auxiliary operators —
like Bergstra and Klop’s left and communication merge [55, 159, 11]. Moreover,
a proof itself has the possibility to be applied elsewhere. For example, an old
proof technique used to produce a (possibly expected) result may not be as big a
contribution as a new proof technique developed to answer (possibly negatively) a
long-standing question. With such a new proof, which say constructs a counter-
example for a given theorem, we could also potentially construct a useful witness
solution to some other problem.

Finally, a negative (or hardness) result can have applications itself in other
fields. For instance, complexity results have been applied for a long time to pro-
vide safety guarantees for cryptography protocols, where it is vital that the task an
attacker must perform in order to break an encryption has no easy solution. Even
more so, lately, with newer developments in blockchains, specific proven hard tasks
are associated with the so-called “proof of work” of an agent, which guarantees
fairness in resource distribution. Moreover, through fine-grained complexity, more
and more hardness results are finding application to fields such as cryptography
and cryptocurrencies (see, for example, [42], for a recent application), as the fine-
grained analysis of problem complexity allows for tractable problems also to be
used to provide proof-of-work guarantees. Besides the above, arguably well-known,
applications, one can also see the large wave of research that was triggered from
the result of Daskalakis and Papadimitriou, regarding the hardness of the Nash
equilibrium problem [84]. That hardness result led to applications both within
computer science, but also in other fields such as economics, and social and behav-
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ioral sciences [165].

1.3 Historical Notes
Hoare [128] and his axiomatic view of computer programming changed the way
we view computation. With the purpose of verifying a program’s behavior, logical
formulas of the form P{S}Q were introduced, with the meaning that if a pre-
condition P holds before the execution of program S then Q will hold when S
terminates. This type of theory supports the pre-existing idea of a program be-
ing an input-output mechanism, and also enables its further decomposition into
smaller programs (commands), that are executed in series, such that the outcomes
of one affect the next ones. Such modeling of a sequential execution is ideal for
verification as the mathematical objects involved are clear and well-defined, down
to the most basic program commands. Through breaking a program execution
into sub-executions we were first able to start viewing a computation as a series of
states with transitions between them, rather than merely an input-output mech-
anism, an approach that was later referred to as labeled transition system (LTS)
based reasoning. A first attempt to extend this LTS based reasoning to concurrent
programs came from Ashcroft [34], who also introduced the concept of invariance
throughout the execution of a program. Soon after, a first version of parallel com-
position came into play in the seminal work by Owicki and Gries [162] towards
generalizing Hoare’s method to concurrent programs.

The above attempts all were in the realm of describing programs formally,
but they lacked in formalizing the ideas of what a “correct” program is. Another
significant advance in the world of concurrent program verification came with the
adaptation of Prior’s Temporal Logic [173, 119, 172] to a specification language by
Pnueli [169] in 1977. Temporal logic was not a new concept at the time, and it
goes back even to the time of Aristotle, who studied modal logic (the predecessor
of temporal logic) in his quest for reasoning about necessary and possible truths.
However, it was only with a new wave of research starting with Kripke in the late
1950s, who assigned formal semantics to modal logic statements, that modal logic
left the realm of philosophy of mathematics and started being treated as a concrete
mathematical tool. Kripke’s semantics belonged to a wave of research that began
replacing the total truth value of sentences with one that was associating them
instead to worlds [127]. As a result, the semantics described by Kripke for temporal
logic corresponds to a state-based program execution model and is therefore ideal
for studying properties of program behaviors. Intuitively, a formula associated with
a state of the program’s execution is an assertion about its future behavior.

Temporal logic gave us some very important capabilities. The first was that we
could specify the abstract properties one would require of programs, without having
to do so though a specific program formalism. Moreover, temporal logics allow one
to specify and reason about properties of non-terminating systems. Most reactive
systems, that is, systems that compute by maintaining and ongoing interaction
with their environment, are best viewed as having “infinite” lifespan. However,
the original version of temporal logic was not expressive enough and therefore was
extended with various temporal operators such as until and next [135]. These
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operators were satisfactory to express important properties such as “It is always
the case that a sent action is followed by a receive action”, and “The program never
encounters a deadlock”. [92, 115].

After Pnueli, temporal logic became a natural and flexible choice for writing
program specifications. This approach was called axiomatic specifications, as the
method was to write down a set of formulas (called axioms) that should hold
for an execution. However, one also needed a methodology for proving that a
property is valid during a specific execution. The axiomatic approach seemed
to lack strength in this sector. An attempt to bridge this gap came with the
introduction of operational specifications by Lam and Shankar [144] in the 80s.
In this approach, an abstract program is given as a specification of what another,
specific, program should do. Such specifications were closer to the programs for
which they were specified, and stricter in the sense that a program had to behave
exactly like the specification and not just satisfy it — something that assisted in
the design of verification mechanisms.

However, for both these specification frameworks to truly develop there was
need for abstract program description languages, that would be able to fully define
programs, and yet with enough abstraction to make them clear also as specifi-
cations. In the field of formal verification of concurrent systems objects with this
functionality had already been emerging, starting with Hoare’s Communicating Se-
quential Processes (CSP) [129] in 1978, which was followed by the proposal of the
Calculus of Communicating Systems (CCS) [153] by Milner in 1980. These were
the first algebraic approaches to event-based description of concurrent systems and
their specifications, which tried to replace state-based reasoning with new proof
techniques. Most importantly, in the methodology supported by CCS and CSP,
systems and specifications were stated in the same language, enabling the viewing
of correctness proofs as equivalence or preorder checking. This marked the start of
a new era in the world of formal verification as it provided the toolbox of algebraic
methodology and equational logic in program verification.

Today CCS and CSP are two leading modeling languages for concurrent sys-
tems. In addition, many variations of these have been introduced, the most im-
portant ones being BCCSP, ACP, BPA, the Meije Calculus and the π-Calculus,
among others [55, 57, 53, 126, 35, 155], with the purpose of capturing behavioral
aspects of different systems. These modeling languages are based on a finite set
of carefully chosen operators that can be used to create new terms and revolve
around the idea of parallel composition, which corresponds to two programs ex-
ecuting “concurrently”. Since all of these languages have an algebraic structure
and a formal semantics, they encourage the compositional model-based correctness
analysis of concurrent systems, and automated verification tools [146, 76, 114] have
been developed based on their theory.

A principal methodology in this research field is the search for equational axiom-
atizations modulo a notion of equivalence over some process description language.
The significance of this method is witnessed by the literature on this subject over
the last forty years. (See, for instance, [7, 36, 37, 55, 68, 197, 124, 126, 130, 154, 152]
for early references as well as survey and accounts, and the papers [25, 20, 108, 136]
for examples of the rich body of recent contributions to this field.) This research
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avenue has its intellectual roots in the time-honored study of the existence of fi-
nite (conditional) equational proof systems for equality of regular expressions, as
presented in, for instance [78, 140, 141, 177, 182].

There are manifold reasons for studying equational axiomatizations of equiv-
alences over processes. For example, the existence of a finite, or at least finitely
specified, equational axiomatization for some notion of process equivalence is often
considered one of the yardsticks to assess its mathematical tractability. Addition-
ally, equational axiomatizations provide a purely syntactic description of the chosen
notion of equivalence over processes and characterize the essence of a process se-
mantics by means of a few revealing axioms. These syntactic descriptions can
be used to compare a variety of semantics in a model-independent way (as done,
for instance, in [197]). Moreover, such axiomatizations pave the way for using
theorem-proving techniques to establish that two process descriptions express the
same behavior modulo the chosen notion of behavioral equivalence [80, 112, 149]
and play an essential role in the partial evaluation of programs [123].

At the same time, computer scientists were also exploring formal verification in
the setting where a system and its specification languages need not be equivalent,
but the system is just one of the possibly inequivalent implementations of the
specification. There, the system will contain more implementation details than the
specification and therefore it would not be possible to view it as equivalent to the
specification directly. In the single-language approach, this more relaxed view of
system correctness is supported by the use of preorders as yardsticks for correctness
- see for instance the failures, and testing preorders [70, 61, 85] and the taxonomic
treatment given by van Glabbeek in [193, 194]

Another refinement technique, which had been introduced in the sequential
setup even from the time of Dijkstra [89], revolved around rewriting the abstract
program through a series of sound transformations to end with a final concrete
implementation. The validity of said transformations would be defined through
studying the computational meaning assigned to atoms of abstract syntax. In
other cases actual software was created that was able to study the models of ac-
tual systems and verify them against a given specification, usually given in some
temporal logic logic. These methods, which were pioneered by Clarke, Emerson,
Queille, and Sifakis [73, 92, 93, 174], initiated the field of model checking, which
is now considered one of the most fundamental approaches in formal verification,
and, as the name suggests, is heavily dependent in the existence of a model.

However, due to the possibility of not having access to such a model of a system
(for example the case of proprietary software), computer scientists also had to
develop methods for formal verification that did not require this knowledge. A
relatively newer method in the formal study of programs is the field of runtime
verification (RV) [14, 48, 103]. RV is based on studying an execution (either online
as it occurs or offline in the form of logs) rather than analyzing a system model and
is also an instance of the “two-language” approach, as the specification is usually
given as some temporal property, while the analyzed object in this case is an
execution trace.

The name runtime verification was first introduced in a workshop, as a comple-
mentary technique to model checking in 2001, but it quickly evolved into a field of
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its own. RV’s actual origins were earlier than that, with work done in the spectrum
of space exploration in the NASA labs, where a formal specification was verified
over the logs of single executions of Java programs [122]. Since those times, the
field has bloomed, and now RV is an established formal verification technique with
various extensions and applications. Most recent directions in this field include
attempts to handle parallel program executions [188, 31, 64, 97] by utilizing more
complex representations of trace events, more complex specification logics, and
adapting old techniques from the literature on the formal verification of concurrent
systems.
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Chapter 2

Preliminaries

This chapter gives a short overview of techniques and background notions necessary
to present our results. The subjects on which we focus in this thesis are equational
logic, process algebra, runtime verification, and modal logic. In the first three, the
models we ultimately study are labeled transition systems, while when discussing
modal logic, we transition to the model of Kripke structures which are also used in
formal methods, but their theory is less bound to computer science. Moreover, in
this overview, we also move from the process to the monitoring verification setup
and we use this move to highlight the modifications on proof techniques, semantics
and equivalences that are relevant in each case.

We have selected the following organization to deliver the necessary background
for the above-mentioned subjects. First, we present equational logic as a general
subject without introducing specific constructs for forming terms and, subsequently,
equations. We also do not select models for the terms or a semantic interpretation
of equality. Then we introduce labeled transition systems — a semantic model that
underlies the algebraic languages we present and study later — and bisimilarity as
a notion of equivalence. Having established these two, we move to process algebra
and explain its basic theory, some core examples, and the mechanism that connects
process algebras to LTSs, i.e., structural operational semantics. We then present
a baseline framework, methods, and research questions that occur through the
interplay of process algebra and equational logic when the terms of equational logic
are formed through some algebraic syntax. Before moving on, we also introduce
the basic notions of runtime verification and specifically focus on the branch of
their theory called regular monitors. Regular monitors make up the branch of RV
that demonstrates the most similarities with process algebra, something that will
enable us, later on, to use the techniques of equational logic in the context of RV.
Finally, we present the field of modal logic, which is relatively stand-alone, and its
semantics are not operational in nature.

15



16 CHAPTER 2. PRELIMINARIES

(Ref) t = t (Sym)
t = u

u = t
(Tran)

t = u u = v

t = v

(Subs)
t = u

σ(t) = σ(u)
(Cl)

ti = t′i, i = 1, 2, . . . n

f(t1, . . . tn) = f(t′1, . . . , t
′
n)

Table 2.1: The inference rules of equational logic, for an n-ary f ∈ F .

2.1 Equational Logic
Equations are expressions of the form t = u, where t and u are terms built from a
collection of operator symbols and variables that range over the domain of interest.
Many mathematical structures and especially algebras can be described by sets of
equations called axioms that are valid based on the interpretations given to the
operator symbols in the theory’s models. In order to acquire such axioms one
uses the interpretation of algebraic operators in a model, and then identifies equal
models, which in turn establish the validity of the quality predicate (=) between
terms.

For example, in the theory of regular expressions, the · operator is not com-
mutative, while over the theory of integers it is, which means that the equation
x · y = y · x is valid over the integers. This equation, would not necessarily hold
over any kind of binary operation f over the integers (such as exponentiation,
e.g., f(1, 2) = 12 6= 21 = f(2, 1)). Both the model and the interpretation of the
operations are important when determining the validity of equations.

Formally equational logic is a fragment of first order logic which contains vari-
ables, constants, and operator symbols, but no connectives and no quantifiers
(apart form i1mplicit universal quantification over the values of variables). The
only predicate used is that of equality (=). Formulas are built from the equal-
ity predicate connecting first-order terms, i.e. well-formed expressions constructed
from a set F of function symbols, called a signature, and the set V of variables.
The set of these terms is denoted T (F ,V). Variables occurring in a term may
be instantiated by substitutions, defined as mappings σ from variables to terms.
Note here that an equation can be created by associating any two first order terms
via the equality predicate, but as discussed earlier, one usually is concerned with
equations that are valid over the models assigned to terms.

Just like in many logics, at this point we can rightfully wonder what is the
advantage of formally describing equations between terms in this way, if our only
way of determining whether these equations are “correct” is to semantically verify
this claim for every equation. Fortunately, this is indeed not the only aspect of this
approach.

In the practice of equational logic, one states sets of equations called axioms,
such as for example, the law of commutativity we described earlier, that describe
specific terms in T (F ,V), whose interpretations in some models are considered
equivalent. A set of such axioms is called an axiom system, denoted E , and the set
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of all equations provable from it via the rules of equational logic, seen in Table 2.1,
is called its equational theory, denoted Th(E). After having stated such an axiom
system E , one would hope that they have captured the essence of what constitutes
any two models equal. The goal is thus, for a given a modelM (that is, a structure
over which terms in T (F ,V) can be interpreted), to find a E that Th(E) is exactly
the set of all equations that are valid in M .

That is, these axioms now can be used as premises into any equational proof
and create more equations by utilizing the inference rules of equational logic of
Table 2.1, where f is any operation from the signature F , of arity n, and σ is any
substitution. We write E ` t = u iff the equation t = u is provable from those
in E using the rules of equational logic. For example, if one has established that
1 + 2 = 3, over the integers, then by applying rule Sym we can acquire 3 = 2 + 1.

These derived equations are exactly the ones we concern ourselves with, and
are the ones we request our models to satisfy, beyond the initial stated axioms in
E . Specifically, Birkhoff’s 1935 theorem [58], also referred to as completeness for
equational logic, relates provability and validity of equations, that is,

E ` t = u iff (t = u) is valid in all models of E .

The above allows us to discover equal models, through the use of the inference
rules of equational logic, over a few revealing axioms. Moreover, this theorem
guarantees that if we manage to truly identify the axioms that exactly are valid in
a specific model of a specific E , then, in that model, equivalent terms will always be
provably equal (a property particularly alluring for the practice of the one language
approach in formal verification as we will see shortly).

2.2 Labeled Transition Systems and Notions of Equiv-
alence

From the previous discussion, it becomes apparent that, in order to define (and
prove the validity of) equations, one needs to study their semantic models, and a
semantic notion of equivalence. We now fix and present one such semantic model,
which remains relevant throughout our work, namely labeled transition systems
(LTSs).

Here we chose to present the most general version of LTSs, which also allows
for predicates being assigned to the states of a model [4].

Definition 2.1 (Labeled Transition System). A labeled transition system is a
quadruple (P,Act,−→,Pred), where:

• P is a set of states, ranged over by s;

• Act is a set of actions or labels, ranged over by a, b;

• −→ ⊆ P × Act × P is a ( labeled) transition relation. We use the more
intuitive notation s

a−→ s′, instead of (s, a, s′) ∈→, and s 6→ if there are no
a, s′ for which s a−→ s′;



18 CHAPTER 2. PRELIMINARIES

p1

p2 p3

p4

a
a

b

a

b

p1

p2

p3

a

b

a

Figure 2.1: Two trace equivalent, but not bisimilar processes.

• P ⊆ P, for every P ∈ Pred. We write sP (and s¬P respectively) if state s
satisfies ( resp. does not satisfy) predicate P.

The relations s a−→ s′ are called transitions.

Later on, in our contributions, when a set of predicates is not specified we mean
the set of predicates is empty. From now on, in all our work on process algebraic
languages, the models are always LTSs. Over these models we will study which
states exhibit “equivalent behaviors”. Moreover, the LTSs associated with a process
algebraic term are also rooted, in the sense that there will be a specific root node
that is associated with the term, and the remaining nodes are associated with its
possible executions.

There are several ways to implement this concept of behavioral equality; for
example one could request that equal LTSs must be able to exhibit the same traces1.
The above equality is called trace equality. It is also a common request that LTSs
that are considered “equal” have the same depth2. However, as was pointed out by
Milner in his early work on CCS, there are many LTSs that demonstrate the exact
same traces, but would not behave the same in the way we can observe them.

An example of this phenomenon is given in Figure 2.1, where the two LTS can
exhibit the same traces, but only one of them can reach a state after reading an
a, where it can no longer observe any more a’s. This could mean that when inter-
acting with a user that wants to perform two a actions in sequence, the first LTS
could deadlock after the first a, while the second one would not. When studying
concurrent systems this type of issue is very prevalent as we are mostly interested
in the way systems behave when put in a certain environment. Therefore other
notions of equivalence were introduced, in order to capture these intuitions [193].

1A trace is a series of actions obtained by starting at a root node and following valid state
transitions on an LTS.

2The depth of a process p, denoted depth (p) is the length of a longest trace its LTS can
demonstrate (and is infinite if no longest trace exists).
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In the case of process algebra, and in most of the work in this thesis, the
most wide-spread notion of equivalence is that of bisimilarity [166, 152] which is
a formalization of the intuition that two LTSs are equal when they behave the
same while interacting with any environment. This notion will allow us later on to
study which process terms correspond to equal LTSs and to define the equations
between such terms to use as axioms. In this thesis we use the classic definition
of bisimilarity [152, Chapter 4, Definition 1], where we also consider predicates
assigned to the LTS’s states [4].

Definition 2.2 (Strong bisimulation). A binary relation R over the set of states
of an LTS is a bisimulation iff whenever s1Rs2:

• for each action a, and state s′1, if s1
a−→ s′1 , then there is a transition s2

a−→ s′2

such that s′1Rs′2, and

• for each action a, and state s′2, if s2
a−→ s′2 , then there is a transition s1

a−→ s′1

such that s′1Rs′2, and

• s1P iff s2P, for each predicate P.

Two states s1 and s2 in an LTS are bisimilar, notation s1 ∼ s2, if they are related
by a bisimulation R.

It is well known that ∼ is an equivalence relation over P, and it is the largest
bisimulation relation [152, Chapter 4, Proposition 2].

Remark 1. Bisimilarity preserves the depth of LTSs, i.e., whenever s1 ∼ s2, then
depth (s1) = depth (s2).

As one can see from the above definition, all actions that a state can perform
must be matched by an identical action from any state bisimilar to it, regardless
of whether those actions are “observable” to the environment. However, in many
applications, some of the actions that systems perform are either not observable
externally or are not relevant for establishing some correctness property. Such
actions on an LTS are given the name τ . This setting gave rise to the equally
important notion of of equivalence, namely weak bisimilarity. To define it, we
utilize a more “relaxed” version of a transition, namely (we use α to range over
Act ∪ τ):

Definition 2.3 (Notation). For each action α ∈ Act ∪ {τ}, we write s α
=⇒ s′, if

• α = τ and s( τ−→)
∗
s′, or

• α 6= τ and there are processes s1, s
′
1, such that s( τ−→)

∗
s1, s1

α−→ s′1, and
s′1(

τ−→)
∗
s′.

The adaptation of bisimilarity to a weaker version that “ignores” the τ actions
is given in the following definition, where we assume no predicates over the states
of an LTS (as we will not study any such combination in our contributions):
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Definition 2.4 (Weak bisimilarity). A binary relation R over the set of states of
an LTS is a weak bisimulation iff whenever s1Rs2 and α is an action (including
τ):

• if s1
α−−→ s′1 , then there is a transition s2

α
==⇒ s′2 such that s′1Rs′2, and

• if s2
α−−→ s′2 , then there is a transition s1

α
==⇒ s′1 such that s′1Rs′2.

Two states s1 and s2 in an LTS are weakly bisimilar, notation s1 ≈ s2, if they are
related by a weak bisimulation R.

Similarly to strong bisimilarity, it is well known that ≈ is an equivalence relation
over P, and it is the largest weak bisimulation relation [152].

This definition concludes our introduction of the necessary notions one needs in
order to apply equational reasoning to LTSs. We now proceed to present process
algebras, which will be the languages in which we describe terms, and show how
those are turned into LTSs and instantiate all of the above notions.

2.3 Process Algebra
The introduction of concurrency into computer science and the necessity of mod-
eling the systems that implement it led to the development of a variety of mod-
eling languages, sharing some important characteristics and generally referred to
as process algebras. The main idea behind process algebra is to describe the com-
munications, interactions and synchronizations between independent agents, such
as programs or processes, as terms built from a collection of operators that can be
used to construct new system descriptions from already built ones. The abstract
model of a Turing machine and all of the equivalent models of computation, al-
though ideal for describing sequential computation gave little insight as to how to
capture these concepts of parallel systems. (We note, in passing, that there have
been some interesting proposals of variants of Turing machines that try to model
reactive computation [39, 107]. However the established methods are algebraic in
nature).

The most famous process algebras are, arguably, Milner’s Calculus of Com-
municating Systems (CCS) [153], Milner, Parrow, and Walker’s π-Calculus [156],
Hoare’s Communicating Sequential Processes (CSP) [129] and Begstra and Klop’s
Algebra of Communicating Processes (ACP) [55]. The syntax of each process al-
gebra builds on a set of actions, which represent atomic computational tasks a
concurrent process can perform, either locally or as communications with other
systems. In most cases one has also access to a set of variables. Then there is a set
of operators that define the way that existing terms (denoted by p, q) of the syntax
can be composed. The most common operators are:

• a.p of arity 1, where a is one of the atomic actions, called action prefixing.
Action prefixing corresponds to the idea that the system can perform action
a and then behave like the following term p.
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(r1)
a
a−→
√√ (r2)

p
a−→
√√

p · q a−→ q
(r3)

p
a−→ p′

p · q a−→ p′ · q

(r4)

p
a−→
√√

p+ q
a−→
√√ (r5)

q
a−→
√√

p+ q
a−→
√√ (r6)

p
a−→ p′

p+ q
a−→ p′

(r7)

q
a−→ q′

p+ q
a−→ q′

Table 2.2: SOS rules for BPA with the termination predicate.

• p + q of arity 2, called alternative composition or non-deterministic
choice. This operator corresponds to the idea that the system can behave
like either one of p and q during its execution, with the choice happening
non-deterministically upon performance of the first computation step of one
of its arguments.

• p · q of arity 2, called sequential composition. Sequential composition is
an extension of action prefixing. Intuitively, p · q stands for a process that
behaves like p and, if and when p terminates, it continues by behaving like q.

• p‖q of arity 2, called parallel composition. Intuitively, p‖q describes a pro-
cess that can interleave the computational steps of its arguments arbitrarily.
Moreover, the processes p and q can interact by suitably synchronizing their
individual computational steps when those are, in some sense, “compatible”.

By way of example, we present below the syntax and operational semantics of
BPA and CCS. Both of these process algebras will be used later on when we present
our contributions.

The syntax and semantics of BPA The collection of process terms t in BPA
[55] is generated by the following grammar:

t ::= a | t · t | t+ t | x

with a ranging over a set of actions Act, t ranging over process terms, and x
ranging over a set of variables V. We let P denote the set of BPA processes and
let p, q, . . . range over it. The semantics of BPA is given by a labeled transition
system (Definition 2.1, with only available predicate the one of termination a−→

√√
),

meaning that processes are interpreted as edge-labeled directed graphs. The SOS
rules for BPA (given in Table 2.2) yield transitions of the form p

a−→ p′ that express
that term p can evolve into term p′ by the execution of action a and predicates
p
a−→
√√

to express that term p can terminate successfully by executing action a.

The syntax and semantics of CCS In Milner’s CCS the formal syntax is given
over a set of action names Act (also referred to as channels when interpreted as
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α.P
α−−→ P

P
α−−→ P ′

P +Q
α−−→ P ′

Q
α−−→ Q′

P +Q
α−−→ Q′

P
α−−→ P ′

P‖Q α−−→ P ′‖Q

Q
α−−→ Q′

P‖Q α−−→ P‖Q′
P

a−−→ P ′ Q
a−−→ Q′

P‖Q τ−−→ P ′‖Q′

(α, α 6= b)

P
α−−→ P ′

P \ b α−−→ P ′ \ b

P
α−−→ P ′

P [f ]
f(α)−−−→ P ′[f ]

(A
def
= P )

P
α−−→ P ′

A
α−−→ P ′

Table 2.3: SOS rules for CCS (α ∈ Act, a ∈ L).

the way the system interacts with the environment). We use the notation a for
output on a channel a, while the symmetric input action (called a co-action) is
assigned the notation a. The union of the sets of actions and co-actions is referred
to as L and it is the set of labels that describe the observable actions of the process.
The set L extended with the silent action τ , is denoted Actτ . I.e., in this setup,
Actτ = L ∪ τ , and will be ranged over by α, while a will range over L. We also
use a set of process constants that are used as placeholders for processes that have
already been defined. We use A to refer to such a process constant. Given a set
of action names Act, the set of CCS processes is defined by the following BNF
grammar:

P := 0 | A | α.P | P +Q | P‖Q | P [f ] | P \ a .

The nil process 0 here stands for a process that is completely inactive; it cannot
perform any actions or interact with another process. The constant construct A is
relative to a definition A def

= P , where we assume P to be a process already defined
in CCS syntax. Thus, the operation assigns the identifier A to the process P .
Here, we highlight that P can contain other mentions of A which enables recursive
definitions.

The terms α.P1, P1 +P2, P1‖P2 have the standard meanings mentioned above.
The expression P1[b/a] stands for the process P1 with all actions named a renamed
as b (allowed for any action except the silent action τ , and with all complement
actions a renamed to b) and the expression P1 \ a stands for the process P1 where
it can no longer perform a, a actions. As semantic model for the algebraic process
description languages that we will study, we consider the classic LTSs, [137], where
in this case, we utilize no predicates (as is also the case with most of our contri-
butions later). The rules that define the LTS giving the operational semantics of
CCS expressions are listed in Table 2.3.

Based on bisimulation (∼), over CCS, we can state the equation x | y ≈ y | x ,
where one can verify easily that indeed the two sides are bisimilar. Such equations
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are called valid over CCS modulo bisimulation, and are the kind of of equations we
will use later on when developing our equational theories.

An important notion to mention here, regarding equivalences between process
algebraic terms is that of a congruence. A congruence is an equivalence R, such that
process descriptions that are related by R can be used interchangeably as parts of a
larger process description without affecting its overall behavior. This is extremely
essential in the equational logic of processes as it substantiates the intuition that
within equational proofs we can perform equational steps of the form substitution
of equals by equals.

As process algebras support the single-language approach to formal verification,
behavioral equivalences are crucial since they enable the verification to be done
through equivalence checking. The amalgamation of the fields of equational logic
and process algebras has given rise to the following questions,among others:

• Is a collection of axioms complete?

This means that we are interested in verifying whether all the equations that
hold modulo the chosen notion of behavioral congruence can be derived from
the set of axioms using the rules of equational logic.

• Does the process algebra modulo the chosen behavioral congruence afford a
finite equational axiomatization?

This means that we are interested in verifying whether there is a finite col-
lection of axioms for the algebra that is sound and complete.

Unfortunately, of the two notions or equivalence we presented earlier, weak
bisimulation is not a congruence over the algebras we consider. This means that
when carrying out equational proofs one cannot use compositionality (or induction)
on equational proofs. For example, it is easy to check that τ.a.nil ≈ a.nil, On
the other hand, τ.a.nil + b 6≈ a.nil + b. For this reason, later on when we try to
answer these questions modulo weak equivalences we will study a variation of weak
bisimilarity, which is indeed a congruence.

2.4 Runtime Verification
Possibly the most crucial difference that separates runtime verification from other
methods is the lack of (a model of) the system. Namely, in this approach, the sys-
tem acts as a black-box, and we can only observe and analyze its execution(usually
with a computational entity called a monitor). Thus what so far has been a set
of actions (an alphabet) used to express system behavior, now switches to the role
of a set of observable events which occur over time, and form a trace (as defined
earlier).

Figure 2.23 demonstrates a well-established view of the field of runtime verifi-
cation.

Of course, the fact that we do not have access to a model of the system-under-
scrutiny will definitely limit the amount of information we can infer about it by

3Image taken from [103], with authors permission.
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Figure 2.2: The framework of runtime verification

looking only at its traces. Even if we had all traces that can be produced by a
system, it seems like this information is in a sense “weaker” than having access to
a model. What we mean is that given an LTS model of a process algebraic term,
one can infer all of its possible executions (traces). However, the converse does not
hold. For example looking at the traces that the processes in Figure 2.1 can exhibit
does not allow us to distinguish between them. Thus we are in need to tackle the
verification of systems, when we only have access to the traces they produce.

Ideally, in order to be able to use all of the already established formal verification
methods, we should be able to extract an accurate LTS model for a process though
observing and analyzing its traces offline. Such an achievement would be extremely
useful, which is why there is substantial research taking place to manage to tackle
the task of model learning [178, 191]).

However, the bulk of the work in this field does not assume any extraction of
such a model, and instead accepts that indeed we will lack the ability to verify
all relevant properties over a system. Moreover, there is another particularity in
this field, which stems from the specification of properties. Specifically, one has to
address whether specifications are aimed for the system or for the trace, i.e., if a
given property must hold on the observed trace or on any possible trace the system
can produce. For example, a property such as:

The system never produces an error.

now has to be interpreted over a trace, and not over a system. In this case if
an error is observed along a trace then indeed we can infer that the system itself
violates the property. However if we do not observe an error, we cannot necessarily
generalize a successful conclusion over a trace to over a system. Indeed, another
execution of the same system could potentially fail. To make things worse, in the
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case of a possibly infinite execution, we might never reach a point where we can
infer such a success for the trace itself. Such details regarding how we interpret
systems and their executions play a crucial role when one has to define formally
the semantics of properties over traces, and when studying which properties can
and cannot be verified at runtime (a study referred to as monitorability).

As one can understand from the above discussion, we cannot provide the same
correctness guarantees when we have and when we do not have the model of a
system. In the second case we have less information. Moreover, since the analysis
takes place during the execution, we have significantly stricter restrictions on the
computational cost of the analysis. This second drawback is not always present
in every implementation (for example the analysis of a program log can happen
offline), but it is very important in the general case and unfortunately cannot be
completely mitigated with studying a system before it is deployed. The reason is
that when not in possession of complete knowledge of the system, or some global
guarantees, there will always be room for a current execution to behave differently
from what has been established about the system so far.

Therefore, if we do possess some kind of mechanism that provides guarantees for
traces, it can always be useful to launch it along the current execution of a program.
This means that often, systems and their monitors have to share the available
computational resources. However, modern software is expected also to be very
efficient. Thus, since the system and the runtime verification algorithm (monitor)
must be executed on the same resources, it is widely requested that monitors be
lightweight. Lightweight is a term referring to complexity, and corresponds to
the cost of execution per system event. This is because systems and their monitors
cannot be associated to classical complexity notions since they are usually expected
to run for an unbounded amount of time. Thus, a monitor is expected to perform
a very low amount of processing per system event (ideally constant [175], or even
exactly one computational step).

For a new monitoring setup to be considered successful, it must not only provide
correctness guarantees, but also to impose a very low computational cost on the
system it will be launched with. It is left up to the designer to provide guarantees
for both these features. Moreover this design must be model-independent, as the
monitoring algorithm must be correct no matter the system it will be launched with
(since the system is a black-box). This led to the wide popularity of the method for
producing monitoring algorithms called synthesis. The synthesis is a procedure (or
a function) of building a monitoring algorithm based on purely and automatically
analyzing the specification. By stating a synthesis algorithm and formally proving
it correct one can manage to have correct and efficient monitors, without having
to prove those properties independently.

Runtime verification has observed a large growth in research done in many of
these topics, and has produced a wide variety of successful monitoring paradigms,
specification languages and tools. In our approach we will focus on a specific part
of this research that is the most relevant to our contribution, namely regular mon-
itors which are algebraic in nature and thus allow us to use equational reasoning
techniques to study them. We now give a general overview of the field of reg-
ular monitors, for the sake of completeness, while later on, when presenting our
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Syntax:

m,n ∈ REMon ::= v ∈ Verd | a.m | m+ n | rec x.m | x
v ∈ Verd ::= end | yes | no

Dynamics:

mAct
a.m

a−→ m
mRec

rec x.m
τ−→ m[rec x.m/x]

mSelL
m

α−−→ m′

m+ n
α−−→ m′

mSelR
n

α−−→ n′

m+ n
α−−→ n′

mVer
v

α−−→ v

Instrumentation:

iMon
p

a−→ p′ m
a−→ m′

m / p
a−→ m′ / p′

iTer
p

a−→ p′ m 6 a−→ m 6 τ−→
m / p

a−→ end / p′

iAsyP
p

τ−→ p′

m / p
τ−→ m / p′

iAsyM
m

τ−→ m′

m / p
τ−→ m′ / p

Table 2.4: Monitors, dynamics, and instrumentation.

contributions we focus on a sub-language of the ones presented here.

2.4.1 Regular Monitors
Regular monitors are programs that are defined through a process-algebraic syntax.
They were originally introduced by Aceto et al. [104], and in their most expressive
form they are stated via syntax in Table 2.4, where a ∈ Act, α ∈ Act ∪ {τ}, and
x ∈ V. The terms end , yes and no are called verdicts and are what the monitor
can produce as a result from analyzing a trace.

Since these monitor programs are described in an algebraic syntax, they can be
equipped with structural operational semantics. However, such monitors are meant
to be executed along a program. Thus, even though they correspond themselves
to automata-like entities as can be seen through the dynamics given in Table 2.4,
their computational advance is also described when instrumented with a process p
(an operation denoted as m/ p), and the advancement of this joint computation is
given via the instrumentation rules given in Table 2.4.

The verdicts that these monitors can produce for a given execution are irrevo-
cable, and they inform us about whether the given trace is accepted or rejected
by a monitor. If monitors are used to check for program properties, ideally those
verdicts should tell us whether the observed trace is, or is not, in the semantics
of a given formula. Here we will not provide a logic and its semantics over traces
(although there is a lot of work done in this direction [201, 103, 51]) because it is
not relevant to our work that we will present later.

In our approach we define notions of equivalence between monitors, and study
their equational theory. In this setup we focus more on trace based notions of equiv-
alence among monitors, as it seems more relevant whether two monitors “agree”
on their analysis of a system execution, rather than whether they behave the same
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way as “computing systems”.

2.5 Modal Logic
Modal logic has been one of the most popular formalisms used for the specification
of properties for sequential and concurrent systems. Depending on the interpre-
tation, it can be used to express not only the evolution of a system over time —
which is the most relevant case for this work — but also, among others, knowledge,
beliefs, and obligations of agents [94, 33].

2.5.1 Syntax
Plain modal logic (ML) formulas are constructed via the following BNF grammar:

Definition 2.5 (Single-agent modal logic).

ϕ,ψ ∈ML :: = p | ¬p | > | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ♦ϕ | �ϕ ,

where p is a propositional variable from a set of propositional variables Prop. Note
that the notation p in the past chapters has been used to describe processes, while
here it stands for propositional variables. We chose to not adapt this notation to
keep it in line with the existing work in both fields.

From these operations we can also express negation ¬, and logical implication
→ in the usual way. The monadic connectives ♦ and � (referred to as diamond and
box respectively) are called modalities and are dual, in the sense that ♦ϕ ≡ ¬�¬ϕ,
and they are what really distinguishes modal logic from other formalisms.

When viewed in a multi-agent setup, where we express formulas over a finite
set of agents, which we will denote as Act, these modalities become finite sets of
modalities, indexed by the name of the relevant agent. The set Act can be either
finite or infinite, but so far, in formal methods it is more common to assume a finite
Act. The modalities ♦ and � now become agent specific, and are denoted 〈a〉 and
[a], while the remaining syntax remains the same. The duality property mentioned
above now holds only between modalities corresponding to the same agent.

2.5.2 Semantics
For the purposes of this thesis we present here the Kripke semantics of modal logic,
which is the most widely used one [60], and the one we will use later on.

Intuitively Kripke models are sets of wordls W , connected by edges through
an accessibility relation R, and on each world certain propositional formulas hold.
Logical formulas that do not contain modalities are evaluated “locally” in each
world, through the propositional variables that are valid on the given world, and
their evaluation does not use at all the existence of other worlds, or whether they
are accessible or not from the current one. However, when evaluating the semantics
of formulas containing modalities, the accessibility relation comes into play. Specif-
ically, the formula �ϕ is assigned the meaning that “ϕ holds in all accessible worlds
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M, w 6|= ⊥ ,

M, w |= > ,

M, w |= p , iff w ∈ V (p),

M, w |= ¬p , iff w 6∈ V (p),

M, w |= ϕ ∧ ψ , iff bothM, w |= ϕ andM, w |= ψ

M, w |= ϕ ∨ ψ , iffM, w |= ϕ orM, w |= ψ

M, w |= ♦ϕ , iffM, w′ |= ϕ, for at least one w′, such that (w,w′) ∈ R
M, w |= �ϕ , iffM, w′ |= ϕ, for all w′ such that (w,w′) ∈ R

Figure 2.3: The semantics of modal logic

” (including the possibility for no accessible worlds), while ♦ϕ corresponds to “ϕ
holds in at least one accessible world”. This is how in modal logic one manages
to state formulas that make the whole model and its structure relevant for their
evaluation, rather than only studying one world.

In formal methods, we associate modal logic formulas to the states of a program
model, giving a formal meaning to the general properties we want to verify about
the program, or its executions. In this view, boxes and diamonds express that
something is certain (it will be true in all possible next states of this system),
or possible (it can be true in some next state). By nesting connectives we can
then “reach” further into the possible continuations of a programs, and by using
recursion operators (something we will only see later on in our contributions), we
manage to state even more complex properties ,such as never, until, eventually,
and always, that are very relevant in formal verification.

Definition 2.6. A Kripke model M is a triple (W,R, V ), where R ⊆ W ×W ,
and V : Prop→ 2W is a valuation of propositional variables, such that for every
p, V (p) ⊆W .

Formally, the truth (|=) of modal logic formulas is evaluated in a world w of a
modelM, through the rules given in Figure 2.3.

A formula ϕ ∈ ML is called satisfiable, if there exists a model M such that
M, w |= ϕ holds in some world w of M. It is called valid, if it is satisfied in all
worlds of all models (the equivalent of a tautology), and it is called valid for model
M, if it is satisfied in all worlds ofM.

The notions of satisfiability and validity for formulas of a given logic have had a
central role in the field of logic in computer science, where they have been associated
to a variety of problems such as the model-checking and the synthesis problems.
We will see a variety of such results, both existing and new, later on, in Chapter 7.
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2.5.3 Connections to Process Algebra
Modal logic, even though it has long been established as useful to formal verifica-
tion, is not the logic that is seen as the most proximate to process algebras. That
is Hennessy-Milner Logic (HML) [125], introduced in 1980 to express properties of
labeled transition systems, which are the core semantic models of process algebras.

The syntax of HML is very similar to that of modal logic, in the sense that it
also employs box and diamond modalities to semantically refer to an accessibility
relation. The main difference here is that HML is a multi- modal logic, and its
modalities are parameterized by some action a (i.e. 〈a〉), and therefore they di-
rectly relate to the labels of the edges connecting the nodes in an LTS model, very
similarly to multi-agent modal logic. In the case of multi-agent modal logic the la-
bels are interpreted as agents while in HML the labels correspond to computational
actions. This distinction does give different flavors to the different approaches with
each one, but the rest of their structure remains essentially the same. This rela-
tively straightforward syntactic and semantic correspondence enables the transfer
of results between the two fields.

Possibly the most prominent result from the study of HML is its connection to
bisimilarity, which is expressed by the following theorem:

Theorem 2.1 (Hennessy-Milner Theorem, from [125]). Let s, s′ be states in an
image-finite4 LTS L, with L = (Proc,Act, { a−→| a ∈ Act}). Then s ∼ s′, iff P and
Q satisfy the exact same formulas in HML.

Theorem 2.1 is an example of a modal characterization theorem, such as the one
for simple modal logic [59, Theorems 2.20, 2.24]. In the case of HML and multi-
agent modal logic, such results are expected to hold either for both of for none of
the two logics, due to their structural similarities. Specifically, even though we will
not present the full syntax and semantics of Hennessy-Milner logic it suffices to
mention that its syntax is almost identical to the one of multi-agent modal logic.
Thus, results like the above, or the ones we will present later, are carried over
between them, by simply translating them in the relevant syntax.

Later on, in Chapter 7 we study the full µ-Calculus, which is an extension of
modal logic through the use of recursive operators. Its semantics are given over
Kripke structures, just as before, and thus, all results we prove are transferable to
an equivalent setting over a relevant extension of HML with recursion operators.
However, in this study we focused on certain details of the µ-calculus that are
associated to its epistemic interpretation, and have not traditionally been directly
associated to the temporal meaning of recursive HML. Lately though combinations
of the two interpretations have found application, for example in systems that
contain both computational and epistemic aspects [43].

4An image-finite LTS L is one for which the set {t | s a−→ t} is finite, for each action a and
each state s.
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Chapter 3

Axiomatizability of BPAΘ

3.1 Introduction
A fundamental feature that has been implemented within the process algebra
framework is the possibility to express that some actions have priority over others
(we refer the interested reader to [77] for an overview of the proposals). This allows
for modelling, for example, that an interrupt or shutdown action may be needed
when a system deadlocks or starts exhibiting erroneous behavior, and, likewise,
that a scheduler needs to assign a different level of urgency to actions based on its
scheduling policy. Here we consider the approach taken in [40], where a priority
operator Θ is introduced. This operator is based on an irreflexive partial order,
called the priority order, over the actions that are available to the process, and
only allows an action to be performed if no other action with a higher priority is
possible at the given moment.

In the literature we can find a variety of results on the equational theory of the
priority operator Θ in different settings, as we review below. With this chapter, we
give our contribution to these studies by discussing the equational axiomatization
for a process algebra having both Θ and the sequential composition operator of
BPA [55], modulo a notion of bisimulation equivalence, called order-insensitive
bisimilarity [13], that holds irrespectively of the chosen priority order over actions.

3.1.1 On the Axiomatizability of Priority
Earlier studies on the axiomatizability of the priority operator were carried out
with respect to a chosen, arbitrary, priority order. In the seminal papers [40, 54]
it was shown that, provided that the set of actions is finite, the priority operator
admits a finite, ground-complete equational axiomatization. (A set of axioms is
called ground-complete if every sound equation between process terms without
variables can be derived from those axioms using the rules of equational logic.)
For an infinite set of actions, it was proved in [8] that the operator Θ admits no
finite equational axiomatization over the process algebra BCCSPΘ, which consists
of basic operators from CCS [152] and CSP [129], enriched with Θ. Furthermore, a
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specific priority order was exhibited for which no finite equational ground-complete
axiomatization exists.

Later, in [13], the first study of an equational axiomatization of an equivalence
that is irrespective of the chosen priority order was provided. More precisely, it
considers the notion of order-insensitive bisimilarity, denoted by↔∗, over processes
in BCCSPΘ: two processes are↔∗-equivalent if they are bisimilar under every pri-
ority order. Now, one may expect that if we consider order-insensitive bisimilarity
then there are no sound equations of interest that involve the priority operator.
However, as shown in [13], this is not the case. If the set of actions contains at
least two distinct elements, then there is no finite, ground-complete equational ax-
iomatization modulo order-insensitive bisimilarity. To prove their negative result,
the authors of [13] showed that no finite set of equations valid modulo ↔∗ can
prove all of the equations in the following infinite family

an.(b+ c) +an.b+an.c ≈ an.(b+ c) +an.b+an.c+an.Θ(b+ c) (n ≥ 0) . (E)

However, they also remarked that if we replace BCCSP’s action prefixing with
BPA’s sequential composition operator, then all the equations in (E) could be
replaced by the following valid equation

x · (b+ c) + x · b+ x · c ≈ x · (b+ c) + x · b+ x · c+ x ·Θ(b+ c) .

This observation left the following open problem:

Is order-insensitive bisimilarity finitely axiomatisable over the process al-
gebra BPAΘ, namely BPA enriched with the priority operator? (P)

In this chapter, we provide a negative answer to this question.

3.1.2 Our Contribution
Our main result consists in proving that, provided there are at least two distinct
actions, the priority operator admits no finite, ground-complete equational axiom-
atization modulo order-insensitive bisimilarity over the process algebra BPAΘ.

The first issue we need to overcome is that, differently from classical bisimula-
tions, order-insensitive bisimilarity is not coinductive: the derivatives of two order-
insensitive bisimilar processes cannot be, in general, paired-up in order-insensitive
bisimilarity equivalence classes. Hence, we will first of all identify a class of pro-
cesses on which order-insensitive bisimilarity always behaves coinductively (Propo-
sition 3.3).

Then, to prove our negative result we use proof-theoretic techniques that have
their roots in Moller’s classic results to the effect that bisimilarity is not finitely
based over CCS (see, e.g., [6, 157, 158, 160]). Roughly speaking, we will identify
a special property of processes, called the (n,Θ)-dependency property, associated
with each finite set E of sound axioms and a natural number n. Informally, a
process satisfies (n,Θ)-dependency if by performing a trace of length n it reaches
a process whose behavior depends on the considered priority order, and is thus
determined by the priority operator. Moreover, we require that, at each step,
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the process has the possibility of terminating. The idea is that, when n is large
enough, whenever an equation p ≈ q is derivable from E, then either both terms p
and q satisfy (n,Θ)-dependency, or none of them does. The negative result is then
obtained by exhibiting an infinite family of valid equations {en | n ≥ 0} in which
the (n,Θ)-dependency property is not preserved, that is, for each n ≥ 0, only one
side of en satisfies (n,Θ)-dependency. Due to the choice of the special property,
this means that the equations in the family cannot all be derived from a finite
set of valid axioms and therefore no finite, sound axiom system can be complete
(Theorem 3.1). We remark that the requirement on the possibility of termination
after each step will ensure that the processes on both sides of the equations en
cannot be written as a sequential composition, thus preventing the replacement of
the infinite family with a finite number of equations that occurred in the case of
the equations in (E).

In the axiom system ACPΘ the axioms for the priority operator made use of an
auxiliary operator, called the unless operator. It is then natural to wonder whether
by adding also the unless operator to the syntax of BPAΘ it would be possible to
obtain a finitely based axiomatization of order-insensitive bisimilarity. We show
that also in this case the answer is negative (Theorem 3.4).

Finally we study the complexity of the order-insensitive bisimilarity checking.
As two processes are order-insensitive bisimilar if and only if they are bisimilar un-
der all possible priority orders, the simplest algorithm for order-insensitive bisimi-
larity would consists in checking all of them. Our main contribution to this problem
is not in the cost of a bisimilarity check, which can be done in O(mt logms), where
mt is the number of transitions and ms the number of states [163], but it consists
in showing that we actually need to do the check for all possible priority orders.
In fact, we prove that for each priority order there exists at least a pair of pro-
cesses that are bisimilar with respect to all priority orders with the sole exception
of the chosen one (Theorem 3.6). Following [138], there are 2k

2/4+3k/4+O(log k) par-
tial orders over a set of k actions. Hence, we show that the problem of deciding
whether two processes are order-insensitive bisimilar is in coNP and can be solved
in time 2k

2/4+3k/4+O(log k) ·O(n2), where n is the sum of the sizes of the two processes
(Theorem 3.5).

3.1.3 Outline of the Chapter
We start by reviewing background notions in Section 3.2. Section 3.3 gives an in-
formal presentation of our proof strategy, whose technical development is provided
in Sections 3.4–3.7. In detail: Section 3.4 comes with technical results necessary to
reason on the semantics of open process terms. In Section 3.5 we provide the prop-
erties necessary to ensure that order-insensitive bisimilarity behaves coinductively.
In Section 3.6 we present the (n,Θ)-dependency property of processes necessary to
prove our negative result. Our main result is in Section 3.7 where we prove that the
order-insensitive bisimilarity is not finitely based over BPA with the priority oper-
ator. In Section 3.8 we briefly argue that the negative result would still hold even if
we enrich the syntax of BPAΘ with the auxiliary operator unless. Then, we devote
Section 3.9 to discussing the complexity of order-insensitive bisimilarity checking.
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Finally, we draw some conclusions and discuss future work in Section 3.10.

3.1.4 What’s New
A preliminary version of this work appeared as [16]. Besides providing the full
proofs of our results and new examples, we have enriched our previous contribution
as follows:

a. We discuss the general reasoning behind the proof of our main result (Theo-
rem 3.1) and present our proof strategy at an informal level, thus providing
a guide for the reader through the technical development of our result (Sec-
tion 3.3).

b. We discuss the possibility of using auxiliary operators to axiomatize the pri-
ority operator Θ and thus regaining a finite ground-complete axiomatization
over the enriched language BPAΘ, modulo bisimilarity. We argue that due
to some features of order-insensitive bisimilarity, this is not the case (Sec-
tion 3.8).

c. We discuss the complexity of order-insensitive bisimilarity check and we show
that it is indeed necessary to always check for bisimilarity with respect to all
priority orders (Section 3.9).

3.2 Background
In this section we review some preliminary notions on operational semantics and
equational logic. Since our work naturally builds on [13, 9] we will use the notation
from those papers as much as possible.

3.2.1 BPAΘ: Syntax and Semantics
The syntax of process terms in BPAΘ, namely BPA [55] enriched with the priority
operator [40], is generated by the following grammar

t ::= a | x | t · t | t+ t | Θ(t) ,

with a ranging over a set of actions Act, x ranging over a countably infinite set
of variables V and t ranging over process terms. We write var(t) for the set of
variables occurring in t. A process term is closed if no variable occurs in it. We
shall, sometimes, refer to closed process terms simply as processes. We let P denote
the set of BPAΘ processes and let p, q, . . . range over it.

We use the Structural Operational Semantics (SOS) framework [168] to equip
processes with a semantics. A literal, or open transition, is an expression of the
form t

a−→ t′ for some process terms t, t′ and action a ∈ Act. It is closed if both
t, t′ are closed process terms.

The inference rules for sequential composition ·, alternative nondeterministic
choice + and priority Θ are reported in Table 3.1. We remark that the semantics
of Θ is based on a strict irreflexive partial order > on Act, called the priority order,
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(r1)
a

a−→>

√√ (r2)
p

a−→>

√√

p · q a−→> q
(r3)

p
a−→> p

′

p · q a−→> p
′ · q

(r4)
p

a−→>

√√

p+ q
a−→>

√√ (r5)
q

a−→>

√√

p+ q
a−→>

√√ (r6)
p

a−→> p
′

p+ q
a−→> p

′ (r7)
q

a−→> q
′

p+ q
a−→> q

′

(r8)
p

a−→>

√√
∀ b > a . p

b−→>6
Θ(p)

a−→>

√√ (r9)
p

a−→> p
′ ∀ b > a . p

b−→>6
Θ(p)

a−→> Θ(p′)

Table 3.1: Operational semantics of processes in BPAΘ.

which justifies the parametrization of the derived transition relation with respect
to >. For simplicity, given a, b ∈ Act, we write a > b for (a, b) ∈ >. To deal with
sequential composition in the absence of deadlock and empty process (see, e.g.,
[202, 55]), we introduce the termination predicate −→>

√√
⊆ P × Act. Intuitively,

t
a−→>

√√
means that t can terminate successfully in one step by performing action

a.
A substitution σ is a mapping from variables to process terms. It extends to

process terms, literals and rules in the usual way and it is closed if it maps every
variable to a process. We denote by σ[x 7→ u] the substitution that maps each
occurrence of the variable x into the process term u and behaves like σ over all
other variables.

In [4] it was shown that we can define a stratification [63, 110] on the set of
BPAΘ rules by counting the number of occurrences of the priority operator in
the left-hand side of a transition. Hence, the inference rules in Table 3.1 induce
a unique supported model [196, 4] corresponding to the Act-labeled transition
system (P,Act,−→>,−→>

√√
) whose transition relation −→> (respectively, predicate

−→>

√√
) contains exactly the closed literals (respectively, predicates) that can be

derived by structural induction over processes using the rules in Table 3.1.
As usual, we write p a−→> p′ for (p, a, p′) ∈ −→>, p −→> p′ if p a−→> p′ for

some a ∈ Act, and p
a−→>6 if there is no p′ such that p a−→> p′. For k ∈ N,

we write p −→k
> p′ if there are p0, . . . , pk such that p = p0 −→> · · · −→> pk = p′.

Furthermore, for a sequence of actions s = a1 . . . an, we write p s−→> p
′ to mean

that p a1−−→> p1
a2−−→> · · · pn−1

an−−→> p
′ for some processes p1, . . . , pn−1.

We associate two classic notions with each process: its depth and its norm. As
usual, they express, respectively, the length of a longest and a shortest sequence
of transitions that are enabled for the process. Since in our setting the length
of sequences of enabled transitions depends on the considered priority order, we
define the depth and the norm of a process with respect to the empty order. The
reason for this choice is twofold. Firstly, we notice that the depth defined with
respect to the empty order is an upper bound for the depths defined with respect
to any other priority order. Since for our purposes we will need to consider upper
bounds for the depth of processes, and not the exact value of their depths, it is



38 CHAPTER 3. AXIOMATIZABILITY OF BPAΘ

reasonable to consider directly the greatest of the depths. Notice that the norm
defined with respect to the empty order is, dually, a lower bound for the norms
defined with respect to the other priority orders. Secondly, this choice allows us
to give alternative formulations of both notions by induction on the structure of
processes.

Definition 3.1 (Depth and norm). The depth of a process is defined inductively
on its structure by

• depth (a) = 1;

• depth (p1 · p2) = depth (p1) + depth (p2);

• depth (p1 + p2) = max{depth (p1) ,depth (p2)};

• depth (Θ(p)) = depth (p).

Similarly, the norm of process is defined inductively on its structure by

• norm (a) = 1;

• norm (p1 · p2) = norm (p1) + norm (p2);

• norm (p1 + p2) = min{norm (p1) ,norm (p2)};

• norm (Θ(p)) = norm (p).

Both notions can be extended to process terms by adding, respectively, the value of
the depth and norm of a variable which are defined as depth (x) = 1 and norm (x) =
1.

We remark that although variables cannot perform any transition, as one can
easily see from the inference rules in Table 3.1, their depth, and norm, are set to
1, since the minimal closed instance of a variable with respect to these measures is
as a constant in Act.

For p ∈ P, the set of initial actions of p with respect to > is defined as

init>(p) = {a | p a−→> p
′, p′ ∈ P} ∪ {a | p a−→>

√√
}.

We extend this notion to sequences of transitions as initk>(p) =
⋃
p−→k

>p
′ init>(p′)

and initω>(p) =
⋃
k∈N initk>(p) be, respectively, the set of actions that are enabled

with respect to > at depth k and at some depth. We say that action a is maximal
with respect to > if there is no b ∈ Act such that b > a. We can restrict this
notion to the set of actions that are enabled for a process. Given a process p, we
say that an action a ∈ initω>(p) is maximal in p, or locally maximal, with respect
to > if there is no b ∈ initω>(p) such that b > a. If initω>(p) = {a} then a is locally
maximal with respect to >.
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3.2.2 Order-Insensitive Bisimulation
With the priority operator, the set of transitions that are enabled for each process
depends on the considered priority order on Act. Therefore, any bisimulation re-
lation over BPAΘ processes will also depend on the priority order. In [13], along all
such bisimulations, the authors introduced the notion of order-insensitive bisimi-
larity,↔∗, formally defined as the intersection over all priority orders of the related
bisimulation relations. Since↔∗ disregards the particular order that is considered,
it can be used to study general properties of processes and thus develop a general
equational theory for BPAΘ.

Definition 3.2 (Order-insensitive bisimulation, [13]). Let > be any priority order.
A binary symmetric relation R ⊆ P × P is a bisimulation with respect to > if
whenever pR q then

• for all p a−→> p
′ there is q a−→> q

′ such that p′R q′, and

• for all p a−→>

√√
also q a−→>

√√
holds.

We say that p, q are bisimilar with respect to >, denoted by p↔> q, if pR q holds
for some bisimulation R with respect to >.

We say that p, q are order-insensitive bisimilar, denoted by p↔∗ q, if p↔> q
holds for all priority orders.

For a given priority order >, the bisimulation equivalence ↔> behaves like a
classic bisimulation and therefore the following lemma, from [13], holds.

Lemma 3.1 ([13, Proposition 9]). Consider processes p, q, assume p↔>q for some
priority order > over Act, and let k ∈ N. Then:

1. For every process p′ such that p −→k
> p
′, there is a process q′ such that q −→k

> q
′

and p′↔> q
′.

2. initk>(p) = initk>(q) so, in particular, init1
>(p) = init1

>(q).

It is not hard to prove that, since the inference rules in Table 3.1 respect the
GSOS format [62], ↔> and ↔∗ are congruences over BPAΘ processes. However,
as discussed in [13], ↔∗ does not inherit the coinductive nature of bisimilarity, as
we show in the following example.

Example 1. Consider the processes p = a·b+a·c+a·(b+c) and q = p+a·Θ(b+c).
Notice that

• if b > c then a ·Θ(b+ c)↔> a · b,

• if c > b then a ·Θ(b+ c)↔> a · c, and

• if b, c are incomparable with respect to > then a ·Θ(b+ c)↔> a · (b+ c).

Therefore, we have that p↔∗ q. However, q a−→> Θ(b + c) for each order >, but
there is no p′ such that p a−→> p

′ and p′↔∗ Θ(b+ c).

For sake of notation, henceforth, whenever > is the empty order, we simply
omit the subscript, i.e., −→∅,↔∅ and init∅(·) become, respectively, −→,↔ and init(·).
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(e1)
t ≈ t

(e2)
t ≈ u
u ≈ t

(e3)
t ≈ u u ≈ v

t ≈ v
(e4)

t ≈ u
σ(t) ≈ σ(u)

(e5)
t1 ≈ u1 t2 ≈ u2

t1 · t2 ≈ u1 · u2
(e6)

t1 ≈ u1 t2 ≈ u2

t1 + t2 ≈ u1 + u2
(e7)

t ≈ u
Θ(t) ≈ Θ(u)

Table 3.2: Rules of equational logic over BPAΘ.

3.2.3 Equational Logic, in the Context of BPAΘ

An axiom system E is a collection of process equations t ≈ u over the language
BPAΘ, such as those presented in Table 3.3. An equation t ≈ u is derivable from
an axiom system E, notation E ` t ≈ u, if there is an equational proof for it from
E, namely if it can be inferred from the axioms in E using the rules of equational
logic, which are reflexivity, symmetry, transitivity, substitution and closure under
BPAΘ contexts, and are reported in Table 3.2.

Let E be a sound set of axioms. Rules (e1)-(e4) are common for all process
languages and they ensure that E is closed with respect to reflexivity, symmetry,
transitivity and substitution, respectively. Rules (e5)-(e7) are tailored for BPAΘ

and they ensure the closure of E under BPAΘ contexts. They are therefore referred
to as the congruence rules. Briefly, rule (e5) is the rule for sequential composition
and it states that whenever E ` t1 ≈ u1 and E ` t2 ≈ u2, then we can infer
E ` t1 · u1 ≈ t2 · u2. Rule (e6) deals with the nondeterministic choice operator
in a similar way and rule (e7) ensures that the priority operator preserves the
equivalence of terms.

As elsewhere in the literature, we assume, without loss of generality, that for
each axiom in E also the symmetric counterpart is in E, so that the symmetry rule
is not necessary in the proofs, and that substitution rules are always applied first
in equational proofs, which means that the substitution rule t ≈ u

σ(t) ≈ σ(u)
may only

be used for axioms t ≈ u in E. If this is the case, then σ(t) ≈ σ(u) is called a
substitution instance of the axiom.

The process equation t ≈ u is said to be sound with respect to↔∗ if σ(t)↔∗σ(u)
for all closed substitutions σ. For simplicity, if t ≈ u is sound, then we write
t↔∗ u. An axiom system is sound modulo ↔∗ if and only if all of its equations
are sound modulo ↔∗. Conversely, we say that E is ground-complete modulo ↔∗
if p↔∗ q implies E ` p ≈ q for all processes p, q. We say that ↔∗ is finitely based,
if there is a finite axiom system E such that E ` t ≈ u if and only if t ↔∗ u.
Finally, notice that the notion of depth can be extended to equations by letting
depth (t ≈ u) = max{depth (t) ,depth (u)}.

3.3 Towards a Negative Result
As disclosed in the Introduction, our order of business for the remainder of this
chapter will be to prove the following theorem:
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C1 x+ y ≈ y + x S1 (x · y) · z ≈ x · (y · z)
C2 (x+ y) + z ≈ x+ (y + z) S2 (x+ y) · z ≈ (x · z) + (y · z)
C3 x+ x ≈ x

P1 Θ(Θ(x) + y) ≈ Θ(x+ y)
P2 Θ(x) + Θ(y) ≈ Θ(x) + Θ(y) + Θ(x+ y)
P3 Θ(x · y) ≈ Θ(x) ·Θ(y)
P4 Θ(x · y + x · z + w) ≈ Θ(x · y + w) + Θ(x · z + w)
P5 Θ(a) ≈ a

Table 3.3: Some axioms of BPAΘ.

Theorem 3.1. If the set of actions Act contains at least two distinct actions,
then the language BPAΘ modulo order-insensitive bisimilarity is not finitely based.

Due to the heavy amount of technical results that are needed to fulfill this
purpose, we decided to dedicate this section to an informal description of our proof
strategy. Hopefully, this will improve the readability of our chapter and work as
a guide for the reader in their journey through the technical development of our
results.

3.3.1 The Idea
Our method stems from [157, 158, 160], in which Moller discussed the axiomatiaz-
ability of the parallel composition operator and proved that (a fragment of) CCS
modulo bisimilarity is not finitely based. The key idea is to identify a special prop-
erty of BPAΘ terms, say P(n) for n ≥ 0, that, when n is large enough, is preserved
by provability under finite axiom systems. Roughly, this means that if E is a finite
set of axioms that are sound modulo order-insensitive bisimilarity, the equation
p ≈ q is provable from E, and n is greater than the depth of the equations in E,
then either both p and q satisfy P(n), or none of them does. Then we introduce
a family of infinitely many equations {en | n ≥ 0} that are all sound modulo ↔∗,
but are such that only one side of en satisfies P(n), for each n ≥ 0. This implies
that the family of equations cannot be derived from any finite axiom system that
is sound modulo ↔∗ and, hence, at least infinitely many of those equations must
be included in the axiomatization, which is therefore not finitely based.

3.3.2 The Choice of P(n)

The property P(n) will involve the priority operator. We shall say, in a very informal
way, that P(n) will be satisfied by a process p if it reaches, through a sequence of n
steps, a process, say p′, whose behavior is determined by Θ. Intuitively, this means
that p′ behaves differently under different priority orders. For instance, p′ could
be of the form Θ(Θ(Θ(a) + b · p′′)) for some a 6= b and process p′′. Then p′ affords
an a-transition and no b-transition if a > b, whereas p′ affords a b-transition and
no a-transition if b > a. It is important that Act contains at least two actions, so
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that we can have different priority orders (possibly) triggering different behaviors
of Θ-terms. Moreover, p′ must have (a nesting of) Θ as head operator and a
nondeterministic choice between (at least) two processes having distinct sets of
initial actions must occur within the scope of such (nesting of) Θ.

Borrowing the terminology from [13], we will call Θ-dependent the process terms
whose initial behavior depends on the priority order. The choice of involving Θ-
dependent terms in P(n) is strongly related to the fact that we are considering
order-insensitive bisimilarity. In fact, as we need to take into account the behavior
of processes with respect to all priority orders, then no axiom can be used to
eliminate the head occurrence of Θ from Θ-dependent terms. These terms and
their properties will be presented in Section 3.6.

There is, however, another feature of order-insensitive bisimilarity that we will
need to take into account to properly define the property P(n). As previously
outlined, differently from classic notions of bisimulations, ↔∗ does not have, in
general, a coinductive construction. Hence, to simplify the reasoning in the proofs,
we need to define P(n) in such a way that only those processes on which↔∗ can be
defined coinductively could satisfy it. To this end we introduce, in Section 3.5, the
notion of uniform determinacy as a sufficient condition to ensure the coinductive
behavior of ↔∗.

The special property P(n) is then defined, in Section 3.6, as the property of
uniform (n,Θ)-dependency of processes, which combines the ideas of determinacy
and Θ-dependency of processes and, in addition, will require that all the processes
in the sequence of n steps leading to the Θ-dependent term have norm 1. This is
to guarantee that no axiom for sequential composition can be used to rewrite such
a sequence.

3.3.3 The Choice of n
The choice of n large enough will play a fundamental role in proving that whenever
p satisfies P(n) then so does q, especially in the case in which p ≈ q is derived by an
application of the substitution rule of equational logic (rule (e4) in Table 3.2). In
this case, we have p = σ(t) and q = σ(u) for some closed substitution σ and BPAΘ

terms t, u such that t ≈ u ∈ E. Then, if n is large enough, which translates into n
being greater than the depth of the equations in E (and thus of the depth of all the
terms occurring in such equations), we can prove that the fact that p satisfies P(n)
is due to the behavior of the closed instance of some variable x occurring in t. We
can also prove that for t ≈ u to be sound modulo↔∗, whenever a variable x occurs
in t then it must also occur in u. Actually, we are going to prove the stronger result
that if such an occurrence of x in t is within the scope a priority operator, then
so is the occurrence of x in u. Hence, we can infer that σ(x) will trigger in σ(u)
the same behavior that it induced in σ(t), and thus that also q = σ(u) will satisfy
P(n).

To obtain all the results mentioned in this subsection it will be fundamental to
study the decomposition of the behavior of closed instances of terms with respect
to the behavior of the closed instances of variables occurring in them. Section 3.4
is devoted to such an analysis.
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3.3.4 The Family of Equations
Consider the processes {Pn}n∈N, defined as follows

Pn = An(a) +An(b) +An(a+ b) (n ≥ 0)

where A0(p) = p

and An+1(p) = a ·An(p) + a (n ≥ 0) .

Intuitively, the process Pn must at the top level decide whether it will end up in a,
b, or a+ b after n steps. After making this choice, it can take up to n a-transitions,
and at each step it can choose whether to terminate or to continue. The possibility
of termination at each step is crucial, since it means that the process cannot be
written just with sequential composition modulo bisimilarity.

As we will formally prove in Section 3.7, the following family of infinitely many
sound equations shows that order-insensitive bisimilarity is not finitely based over
BPAΘ

en : Pn +An(Θ(a+ b)) ≈ Pn (n ≥ 0) . (3.1)

Informally, each equation en is sound, because, according to which priority order
is considered, Θ(a+ b) will be bisimilar to a, b or a+ b, and thus the two sides of
en are order-insensitive bisimilar. However, process An(Θ(a+ b)) can be proved to
be uniformly (n,Θ)-dependent, whereas Pn is not. We will argue that this implies
that not all the equations in the family {en}n∈N can be derived from a finite set of
valid axioms, thus proving Theorem 3.1.

3.4 Relation Between Open and Closed Operational
Behavior

Our purpose in the remainder of this chapter is to verify whether the axiomatiza-
tion for order-insensitive bisimilarity is finitely based over BPAΘ. To address this
question it is fundamental to establish a correspondence between the behavior of
open terms and the semantics of their closed instances, with a special focus on the
role of variables. In this section, we provide the notions and theoretical results
necessary to establish the desired behavioral correspondence.

3.4.1 From Open to Closed Transitions. . .
Assume a term t, a closed substitution σ, a process p, an action a and a priority
order >. We aim at investigating how to derive a transition of the form σ(t)

a−→> p,
as well as a predicate σ(t)

a−→>

√√
, from the behavior of t and of σ(x) for each

variable x occurring in t. In particular we are interested in relating the initial
behavior of σ(t) with the behavior of closed instances of variables occurring in it.

The simplest case is a direct application of the operational semantics in Ta-
ble 3.1: if action a is maximal with respect to >, then σ(t)

a−→> p can be inferred
directly from t

a−→> t′, for some term t′ with σ(t′) = p. In fact, the maximal-
ity of a guarantees that the execution of the a-transition cannot be prevented by
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any occurrence of the priority operator. A similar reasoning holds for transition
predicates.

Lemma 3.2. Let t, t′ be process terms, let a be an action with maximal priority
with respect to >. Then for all substitutions σ it holds that:

1. If t a−→>

√√
then σ(t)

a−→>

√√
.

2. If t a−→> t
′ then σ(t)

a−→> σ(t′).

Next we deal with variables. It may be the case, for instance, that the term t
is of the form t = x ·u for some term u. Clearly, the behavior of σ(t), and thus the
derivation of σ(t)

a−→> p, will depend on the behavior of σ(x). However, the set of
initial actions of σ(t) does not depend, in general, solely on those of σ(x), but also
on the structure of the process into which x is mapped, and on the occurrence of
x in t. For instance, for t = x · u we can distinguish two main situations:

(I) Suppose σ(x) = a, so that σ(x)
a−→>

√√
. This would give σ(t)

a−→> p for
p = σ(u), namely p is a closed instance of a subterm of t. Therefore, the
transition for σ(t) could be expressed in terms of a closed instance of an open
transition for t, as t −→> u. However, notice that the action that is performed
cannot be obtained from the term t as it depends solely on the substitution
applied to x. Hence, we will need a formal way to express that the label of
the transition depends on x.

(II) Suppose σ(x) = a · b, so that σ(x)
a−→> b. Clearly, σ(t) will have to mimic

such behavior, and thus σ(t)
a−→> p with p = b · σ(u). Notice that process

p subsumes what’s left of the behavior of σ(x). Then the transition for σ(t)
cannot be inferred from a closed substitution instance of an open transition
of the form t

a−→> t′, since the structure of t′ cannot be known until the
substitution σ(x) has occurred. Hence, we will need a formal way to express
that to reach a subterm of t we need to follow a sequence of transitions
performed by x.

For a formal development of the analysis in the above-mentioned cases, we ex-
ploit the method proposed in [9] and provide an auxiliary operational semantics
tailored for expressing the behavior of process terms resulting from that of closed
substitution instances for their variables.

Firstly we introduce the notion of configuration over BPAΘ terms, which stems
from [9]. Configurations are terms defined over a set of variables Vd = {xd | x ∈ V},
disjoint from V, and BPAΘ terms. We use the variable xd to express that the closed
instance of x has started its execution, but has not terminated yet.

Definition 3.3 (BPAΘ configuration). The collection of BPAΘ configurations is
given by:

c ::= t |xd | c · t |Θ(c),

where t is a BPAΘ term and xd ∈ Vd.
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(a1)
x

xs−−→> xd
(a2)

x
x−→>

√√

(a3)
t
xs−−→> c

t · u xs−−→> c · u
(a4)

t
x−→> t

′

t · u x−→> t
′ · u

(a5)
t
x−→>

√√

t · u x−→> u

(a6)
t
xs−−→> c

t+ u
xs−−→> c

(a7)
t
x−→> t

′

t+ u
x−→> t

′ (a8)
t
x−→>

√√

t+ u
x−→>

√√

(a9)
t
xs−−→> c

Θ(t)
xs−−→> Θ(c)

(a10)
t
x−→> t

′

Θ(t)
x−→> Θ(t′)

(a11)
t
x−→>

√√

Θ(t)
x−→>

√√

Table 3.4: Inference rules for the auxiliary transition relations. The symmetric
versions of rules a6–a8 have been omitted.

Notice that the grammar above guarantees that each configuration contains at
most one occurrence of a variable in Vd, say xd, and if such occurrence is in the
scope of sequential composition, then xd must occur as the first symbol in the
composition.

Define the set of variable labels Vs = {xs | x ∈ V}, disjoint from V, and assume
any priority order >. We then introduce two auxiliary relations xs−−→>,

x−→>, and
the auxiliary predicate x−→>

√√
, whose operational semantics is given in Table 3.4.

These allow us to express how the initial behavior of a term can be derived from
that of the variables occurring in it. Informally, the labels allow us to identify
the variable that induces a particular transition. Transitions of the form t

x−→> t
′

and predicates t x−→>

√√
allow us to deal with the case described in item ((I))

above. Conversely, transitions t xs−−→> c are used for the case in item ((II)). The
configuration c stores the yet-to-terminate behavior of σ(x). As an example, for
the terms in item ((II)) we would have c = xd · u, and, since σ(x)

a−→> b, we would
let σ[xd 7→ b](c) = b · σ(u).

The following lemma formalizes the intuitions above. To avoid conflicts with
any possible occurrence of the priority operator, we focus only on transitions labeled
with actions that are (locally) maximal with respect to the chosen priority operator
>. This type of transition will be sufficient for our purposes in the rest of the
chapter.

Lemma 3.3. Let t be a process term, x a variable, σ a substitution and a ∈ Act
be maximal with respect to >. Then:

1. If t x−→>

√√
and σ(x)

a−→>

√√
, then σ(t)

a−→>

√√
.

2. If t x−→> t
′ and σ(x)

a−→>

√√
, then σ(t)

a−→> σ(t′).

3. If t xs−−→> c and σ(x)
a−→> p for some process p, then σ(t)

a−→> σ[xd 7→ p](c).

Proof. 1. We proceed by induction over the derivation of the predicate t x−→>

√√
.
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• Base case: t = x and t x−→>

√√
is derived by rule (a2) in Table 3.4. Hence

σ(t)
a−→>

√√
directly follows by σ(x)

a−→>

√√
.

• Inductive step: t = t1 + t2 and t x−→>

√√
is derived by either rule (a8) in

Table 3.4, and thus by t1
x−→>

√√
, or its symmetric version on t2. Assume,

without loss of generality, that rule (a8) in Table 3.4 was applied. Then
by induction t1

x−→>

√√
and σ(x)

a−→>

√√
imply σ(t1)

a−→>

√√
. Hence,

the premise of rule (r4) in Table 3.1 is satisfied and we can infer that
σ(t)

a−→>

√√
.

• Inductive step: t = Θ(u) and t
x−→>

√√
is derived by rule (a11) in Ta-

ble 3.4, and thus we have that u x−→>

√√
. By induction u

x−→>

√√
and

σ(x)
a−→>

√√
imply σ(u)

a−→>

√√
. Since, per assumption, action a has

maximal priority with respect to >, the premises of rule (r8) in Ta-
ble 3.1 are satisfied and we can infer that σ(t)

a−→>

√√
.

2. We proceed by induction over the derivation of the auxiliary transition t x−→>

t′.

• Base case: t = t1 · t2 and t x−→> t
′ is derived by rule (a5) in Table 3.4,

namely t1
x−→>

√√
and t′ = t2. By Lemma 3.3.1 we have that t1

x−→>

√√

and σ(x)
a−→>

√√
imply that σ(t1)

a−→>

√√
. Hence, the premise of rule

(r2) in Table 3.1 is satisfied and we can infer that σ(t)
a−→> σ(t2).

• Inductive step: t = t1 ·t2 and t x−→> t
′ is derived by rule (a4) in Table 3.4,

namely t1
x−→> t

′
1 and t′ = t′1 · t2. By induction we have that t1

x−→> t
′
1

and σ(x)
a−→>

√√
imply that σ(t1)

a−→> σ(t′1). Hence, the premise of rule
(r3) in Table 3.1 is satisfied and we can infer that σ(t)

a−→> σ(t′1 · t2).

• Inductive step: t = t1 + t2 and t x−→> t
′ is derived either by rule (a7) in

Table 3.4, namely t1
x−→> t

′
1 and t′ = t′1, or by its symmetric version for

t2. Assume, without loss of generality, that rule (a7) was applied. By
induction we have that t1

x−→> t
′
1 and σ(x)

a−→>

√√
imply that σ(t1)

a−→>

σ(t′1). Hence, the premise of rule (r6) in Table 3.1 is satisfied and we
can infer that σ(t)

a−→> σ(t′1).

• Inductive step: t = Θ(u) and t
x−→> t′ is derived by rule (a10) in Ta-

ble 3.4, namely t1
x−→> t

′
1 and t′ = Θ(t′1). By induction we have that

t1
x−→> t

′
1 and σ(x)

a−→>

√√
imply that σ(t1)

a−→> σ(t′1). Since by the hy-
pothesis action a has maximal priority with respect to >, the premise of
rule (r9) in Table 3.1 is satisfied and we can infer that σ(t)

a−→> σ(Θ(t′1)).

3. We proceed by induction over the derivation of the auxiliary transition t xs−−→>

c.

• Base case: t = x and t
xs−−→> c is derived by rule (a1) in Table 3.4,

namely c = xd. Hence the proof follows directly by σ(x)
a−→> p.
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• Inductive step: t = t1·t2 and t xs−−→> c is derived by rule (a3) in Table 3.4,
namely t1

xs−−→> c
′ and c = c′ · t2. By induction we have that t1

xs−−→> c
′

and σ(x)
a−→> p imply σ(t1)

a−→> p′ for p′ = σ[xd 7→ p](c′). Hence,
by rule (r3) in Table 3.1 we can infer that σ(t)

a−→> p′ · σ(t2), with
p′ · σ(t2) = σ[xd 7→ p](c′ · t2).

• Inductive step: t = t1 + t2 and t xs−−→> c is derived either by rule (a6) in
Table 3.4, namely t1

xs−−→> c, or by its symmetric version for t2. Assume,
without loss of generality, that (a6) was applied. By induction we have
that t1

xs−−→> c and σ(x)
a−→> p imply σ(t1)

a−→> σ[xd 7→ p](c). Hence,
by rule (r6) in Table 3.1 we can infer that σ(t)

a−→> σ[xd 7→ p](c).

• Inductive step: t = Θ(u) and t
xs−−→> Θ(c) is derived by rule (a9) in

Table 3.4, namely u
xs−−→> c. By induction we have that u xs−−→> c

and σ(x)
a−→> p imply σ(u)

a−→> σ[xd 7→ p](c). Since by the hypothesis
action a has maximal priority with respect to >, by rule (r9) in Table 3.1
we can infer that σ(t)

a−→> σ[xd 7→ p](Θ(c)).

We will sometimes need to extend the third case of Lemma 3.3 to sequences of
transitions. To this end, we provide first an auxiliary technical lemma, that will
simplify our reasoning.

Lemma 3.4. Let a ∈ Act be maximal with respect to >, and let σ be a closed
substitution. Consider a configuration c, and processes p, p′ such that p a−→> p

′. If
c contains an occurrence of xd, then σ[xd 7→ p](c)

a−→> σ[xd 7→ p′](c).

Proof. We proceed by structural induction on c.

• Base case c = t: since c does not contain an occurrence of xd, the lemma is
vacuously true.

• Base case c = xd: clearly, σ[xd 7→ p](c) = p
a−→> p

′ = σ[xd 7→ p′](c).

• Inductive step c = c′ · t: by induction over c′ we obtain σ[xd 7→ p](c′)
a−→>

σ[xd 7→ p′](c′). An application of rule (r3) in Table 3.1 therefore gives

σ[xd 7→ p](c) = σ[xd 7→ p](c′) · σ(t)
a−→> σ[xd 7→ p′](c′) · σ(t) = σ[xd 7→ p′](c).

• Inductive step c = Θ(c′): by induction over c′ we have σ[xd 7→ p](c′)
a−→>

σ[xd 7→ p′](c′). Since moreover a is maximal with respect to >, by applying
rule (r9) in Table 3.1 we obtain

σ[xd 7→ p](c) = σ[xd 7→ p](Θ(c′))
a−→> σ[xd 7→ p′](Θ(c′)) = σ[xd 7→ p′](c).

We can now show that the decomposition of the semantics can be extended to
sequences of transitions, and we can thus apply inductive arguments to them.

Lemma 3.5. Let σ be a closed substitution. If t xs−−→> c and σ(x) −→n
> p is such

that all actions taken along the transitions from σ(x) to p are maximal with respect
to >, then σ(t) −→n

> σ[xd 7→ p](c).
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Proof. First of all, we notice that since t xs−−→> c, then c must contain an occurrence
of xd.

We proceed by induction over the derivation of the auxiliary transition t xs−−→> c,
and for each case, we prove the statement by proceeding by induction over n.
However, in each case, the base case of n = 1 is given by Lemma 3.3.3 and it is
therefore omitted. Furthermore, we remark that σ(x) −→n

> p can be equivalently
rewritten as σ(x) −→n−1

> p′ −→> p for some process p′.

• Base case: t = x and t xs−−→> c is derived by applying rule (a1) in Table 3.4,
so that c = xd. By the induction hypothesis over n− 1 we get

σ(t) = σ(x) −→n−1
> σ[xd 7→ p′](xd) = p′.

Since, moreover, p′ −→> p = σ[xd 7→ p](c) we conclude that σ(t) −→n
> σ[xd 7→

p](c).

• Inductive step: t = t1 · t2 and t
xs−−→> c is derived by applying rule (a3) in

Table 3.4, so that t1
xs−−→> c

′, and c = c′ · t2. By induction over the derivation
of t1

xs−−→> c
′ and n − 1, we get σ(t1) −→n−1

> σ[xd 7→ p′](c′), which, by rule
(r3) in Table 3.1, gives

σ(t) = σ(t1) · σ(t2) −→n−1
> σ[xd 7→ p′](c′) · σ(t2) = σ[xd 7→ p′](c).

Since p′ −→> p, Lemma 3.4 gives σ[xd 7→ p′](c) −→> σ[xd 7→ p](c). We can
therefore conclude that σ(t) −→n

> σ[xd 7→ p](c).

• Inductive step: t = t1 + t2 and t xs−−→> c is derived by applying rule (a6) in
Table 3.4, so that t1

xs−−→> c. By induction over the derivation of t1
xs−−→> c

and n− 1, we get σ(t1) −→n−1
> σ[xd 7→ p′](c). Then, by applying rule (r6) in

Table 3.1 and Lemma 3.4 we obtain

σ(t) −→n−1
> σ[xd 7→ p′](c) −→> σ[xd 7→ p](c).

A similar argument, using rule (r7), in place of rule (r6), allows us to prove
the symmetric case of the auxiliary transition triggered by t2.

• Inductive step: t = Θ(t′) and t
xs−−→> c is derived by applying rule (a9) in

Table 3.4, so that t′ xs−−→> c
′ and c = Θ(c′). By induction over the derivation

of t′ xs−−→> c
′ and n − 1, we infer that σ(t′) −→n−1

> σ[xd 7→ p′](c′). Hence, by
applying rule (r9) in Table 3.1 and Lemma 3.4, we get

σ(t) −→n−1
> σ[xd 7→ p′](Θ(c′)) = σ[xd 7→ p′](c) −→> σ[xd 7→ p](c).

3.4.2 . . . and Back Again
So far we have provided a way to derive the initial behavior of a term from the open
transitions available for it, especially when determined by variables. Our aim is
now to obtain a converse result: knowing that σ(t)

a−→> p, we want to characterize
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its possible sources in the behavior of t and of the closed instances of the variables
occurring in t.

Firstly, we remark that in Section 3.4.1 we have considered open process terms
and thus no occurrence of a priority operator, due to substitutions of variables
possibly occurring in them, could have been foreseen. Therefore, to avoid conflicts,
we have limited our attention to actions that were (locally) maximal with respect
to the considered priority order. However, we now start from the closed process
term σ(t) and therefore we can properly relate the behavior of the closed instances
of variables to their potential occurrence in the scope of a priority operator. To
this end, we introduce the relation of initial enabledness between a variable x and
a term t with respect to a natural number l ∈ N, notation x /l t. Informally, x /l t
holds if x occurs in the scope of l-nested applications of the priority operator in t
and the initial behavior of σ(t) is possibly determined by σ(x), for all substitutions
σ. Initial enabledness extends relation /l from [13], that was defined on BCCSPΘ

terms, to BPAΘ terms.

Definition 3.4 (Initial enabledness, /l). The relations /l, for l ∈ N, between vari-
ables and terms are defined as the least relations satisfying the following constraints:

1. x /0 x;

2. if x /l t then x /l t+ u and x /l u+ t;

3. if x /l t then x /l t · t′;

4. if x /l t then x /l+1 Θ(t).

If x /l t, for some l ∈ N, we say that x is initially enabled in t. We say that x is
initially disabled in t, otherwise.

Example 2. Consider the terms t1 = x · Θ(u1), for some term u1 such that
x 6∈ var(u1), and t2 = Θ(Θ(Θ(t1 + u2) · y)) · u3, for some variable y 6= x and terms
u2, u3, such that x 6∈ var(u2), var(u3). Then we have that x /0 t1, x /0 t1 + u2 and
x /3 t2, so that x is initially enabled in t1, t1 + u2 and t2.

Conversely, variable y is initially disabled in t2 as it occurs as second argu-
ment of a sequential composition operator. Notice that this implies that no action
performed by any closed substitution instance of y can trigger a transition of the
corresponding closed instance of t2.

As stated by the following lemma, there is a close relation between x being
initially enabled in t and the auxiliary transition t

xs−−→> c. We write t = t1 � t2
to mean that either t = t1 or t = t1 · t2, i.e., t1 may possibly be sequentially
followed by t2. We extend this notation to nested occurrences of possible sequential
compositions � by t

⊙n
i=1 ti = (. . . (t� t1)� . . . )� tn. Then, for a process term t

and l ∈ N we define the set of terms Θl
�(t) inductively as follows:

Θ0
�(t) =

{
u | u = t

n⊙
i=1

ti for some n ∈ N and terms t1, . . . , tn

}

Θl+1
� (t) =

{
u | u = Θ(u′ � t′)

n⊙
i=1

ti for some u′ ∈ Θl
�(t), n ∈ N and t′, t1, . . . , tn

}
.
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In what follows, we write t −→> Θl
�(t′) to denote that t −→> u for some u ∈ Θl

�(t′).
Substitutions and transitions are lifted to Θl

�(t) in a similar fashion.

Lemma 3.6. Let x be a variable, t a term and l ∈ N. Then, x /l t if and only if
t
xs−−→> Θl

�(xd).

Proof. We prove the two implications separately. We recall that xd ∈ Θ0
�(xd).

Moreover, we notice that if t = a, then there is no variable x such that either x/l t,
or transition t xs−−→> Θl

�(xd), can be inferred for any l ∈ N.
( =⇒ ) We proceed by structural induction on t in x /l t.

• Base case t = x. In this case we have x /0 x and hence an application of rule
(a1) in Table 3.4 gives t xs−−→> xd ∈ Θ0

�(xd).

• Inductive step t = t1 + t2. In this case x /l t may be due either to x /l t1 or
to x /l t2. If x /l t1, then by induction over t1 we get t1

xs−−→> Θl
�(xd), so rule

(a6) in Table 3.4 gives t xs−−→> Θl
�(xd). If x /l t2, we get the same by result

by the symmetric version of rule (a6).

• Inductive step t = t1 ·t2. Then it must be the case that x/l t1, so by induction
over t1 we get t1

xs−−→> Θl
�(xd). As u · t2 ∈ Θl

�(xd) for all u ∈ Θl
�(xd), an

application of rule (a3) in Table 3.4 then gives t xs−−→> Θl
�(xd), which is still

of the correct form.

• Inductive step t = Θ(t′). In this case x/lt is due to x/l−1t
′. By induction over

t′ we get t′ xs−−→> Θl−1
� (xd). Hence, since Θ(u) ∈ Θl

�(xd) for all u ∈ Θl−1
� (xd),

by applying rule (a9) in Table 3.4 we obtain t xs−−→> Θl
�(xd).

( ⇐= ) The proof is by induction on the derivation of the auxiliary transition
t
xs−−→> Θl

�(xd).

• Base case: t = x and t xs−−→> xd ∈ Θ0
�(xd) is derived by applying rule (a1) in

Table 3.4. We can immediately infer that l = 0 and x /0 t.

• Inductive step: t = t1 · t2 and t xs−−→> Θl
�(xd) is derived by applying rule (a3)

in Table 3.4, so that t1
xs−−→> Θl

�(xd). By induction over the derivation of
the auxiliary transition from t1, we get x /l t1, which implies x /l t1 · t2 = t.

• Inductive step: t = t1 +t2 and t xs−−→> Θl
�(xd) is derived by applying rule (a6)

in Table 3.4, so that t1
xs−−→> Θl

�(xd). Induction over the derivation of the
auxiliary transition from t1 then gives x /l t1, which implies x /l t1 + t2 = t.
The same argument holds for the symmetric version of rule (a6).

• Inductive step: t = Θ(t′) and t xs−−→> Θl
�(xd) is derived by applying rule (a9)

in Table 3.4, so that t′ xs−−→> Θl−1
� (xd). By induction over the derivation of the

auxiliary transition from t′, we get x /l−1 t
′, which implies x /l Θ(t′) = t.

The notation Θl
�(xd) abstracts away from a tail of nested (possible) sequential

compositions. This choice is merely for simplification purposes and does not impact
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the technical development of our results. In fact, the behavior of the terms in the
tail and their closed instances will never play a role in the results, as only the
contribution of closed instances of xd to the behavior of terms in Θl

�(xd) will be
of interest. We remark also that Θ0

�(xd) denotes a configuration containing an
occurrence of xd which is not in the scope of a priority operator.

Example 3. Consider the terms t1, t2 in Example 2 and assume a priority order
>. Since x xs−−→> xd, by rule (a3) in Table 3.4 we get t1

xs−−→> xd ·Θ(u1) which, by
rule (a6) in Table 3.4, gives t1 +u2

xs−−→> xd ·Θ(u1). Hence, by three applications of
rule (a9) and as many of rule (a3), we infer that t2

xs−−→> Θ(Θ(Θ(xd ·Θ(u1))·y))·u3.
Notice that the right-hand side of the transition from t2 is of the form Θ3

�(xd) and
that the trailing Θ(u1), y, u3 played no role in the derivation of such a transition.

We are now ready to derive the behavior of the term t and that of the closed
instances of the variables occurring in t, from the transitions enabled for σ(t).

Proposition 3.1. Let t be a process term, σ a closed substitution, a an action and
p a process. Then:

1. If σ(t)
a−→>

√√
then

(a) either t a−→>

√√
;

(b) or there is a variable x such that t x−→>

√√
and σ(x)

a−→>

√√
.

2. If σ(t)
a−→> p then one of the following applies:

(a) there is a process term t′ such that t a−→> t
′ and σ(t′) = p;

(b) there are a process term t′ and a variable x such that t x−→> t
′, σ(x)

a−→>√√
and σ(t′) = p;

(c) there are a variable x, a natural number l ∈ N, and a process q such that
t
xs−−→> Θl

�(xd), σ(x)
a−→> q and p ∈ Θl

�(q).

Proof. 1. We proceed by induction over the derivation of σ(t)
a−→>

√√
.

• Base case: the last rule applied in the derivation of σ(t)
a−→>

√√
is (r1) in

Table 3.1. This means that either t = a, or t = x with σ(x) = a. In the
former case it follows that t a−→>

√√
by rule (r1) in Table 3.1 and in the

latter it follows that t x−→>

√√
by rule (a2) in Table 3.4 and σ(x)

a−→>

√√
.

• Inductive step t = t1 + t2 and σ(t)
a−→>

√√
is derived either by rule (r4)

in Table 3.1, and thus by σ(t1)
a−→>

√√
, or by rule (r5) in Table 3.1,

and thus by σ(t2)
a−→>

√√
. Assume, without loss of generality, that rule

(r4) was applied. By induction over σ(t1)
a−→>

√√
we can distinguish two

cases:
– t1

a−→>

√√
. Then by rule (r4) in Table 3.1 we derive that t a−→>

√√
.

– There is a variable x such that t1
x−→>

√√
and σ(x)

a−→>

√√
. Hence, by

applying rule (a8) in Table 3.4 we derive that, for the same variable
x, t x−→>

√√
.
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• Inductive step: t = Θ(u) and σ(t)
a−→>

√√
is derived by rule (r8) in

Table 3.1. This implies that σ(u)
a−→>

√√
and σ(u)

b−→>6 for all b > a.
By induction over σ(u)

a−→>

√√
we can distinguish two cases:

– u
a−→>

√√
. Since moreover from σ(u)

b−→>6 for all b > a we can infer
that u b−→>6 for all such b, the premises of rule (r8) in Table 3.1 are
satisfied and we can derive that t a−→>

√√
.

– There is a variable x such that u x−→>

√√
and σ(x)

a−→>

√√
. By

applying rule (a11) in Table 3.4 we derive that, for the same variable,
t
x−→>

√√
.

2. We proceed by induction over the derivation of σ(t)
a−→> p. Hence, we as-

sume that the property in Proposition 3.1.2 has been proven for all proper
subderivations of the derivation of σ(t)

a−→> p. We proceed by a case analysis
over the structure of t to prove that the desired property holds for σ(t)

a−→> p
as well. Notice that the case t = a is vacuous, since there is no closed term p
such that a a−→> p.

• Case: t = x. Then case (2c) is satisfied directly by rule (a1) in Table 3.4.
• Case: t = t1 · t2. We can distinguish two cases:

– σ(t)
a−→> p is derived by rule (r2) in Table 3.1, namely by σ(t1)

a−→>√√
and p = σ(t2). From σ(t1)

a−→>

√√
and Proposition 3.1.1 we get

that either t1
a−→>

√√
or there is a variable x such that t1

x−→>

√√
and

σ(x)
a−→>

√√
. In the former case we can apply rule (r2) in Table 3.1

and obtain t a−→> t2 with σ(t2) = p, thus case (2a) is satisfied. In the
latter case we can apply rule (a5) in Table 3.4 and obtain t x−→> t2
which together with σ(t2) = p and σ(x)

a−→>

√√
satisfies case (2b).

– σ(t)
a−→> p is derived by rule (r3) in Table 3.1, namely by σ(t1)

a−→>

p1 with p1 = q · σ(t2). By induction over σ(t1)
a−→> p1 we can

distinguish three cases:
∗ Case (2a) applies so that there is a process term t′1 such that
t1

a−→> t
′
1 and σ(t′1) = p1. Then, by rule (r3) in Table 3.1 we

infer that t a−→> t
′
1 · t2 with σ(t′1) · σ(t2) = p, and thus case (2a)

is also satisfied by t.
∗ Case (2b) applies so that there are a process term t′1 and a

variable x such that t1
x−→> t′1, σ(x)

a−→>

√√
and σ(t′1) = p1.

Then, by rule (a4) in Table 3.4 we infer that t x−→> t
′
1 · t2 with

σ(x)
a−→>

√√
and σ(t′1) · σ(t2) = p, and thus case (2b) is also

satisfied by t.
∗ Case (2c) applies so that there are a variable x, a natural l ∈ N

and a process s such that t1
xs−−→> Θl

�(xd), σ(x)
a−→> q and

p1 ∈ Θl
�(q). Notice that, since in the construction of Θl

�(xd)
we allow the nesting of trailing sequential components to be of
arbitrary depth, we can infer that for all u ∈ Θl

�(xd) the term
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u · t2 is also in Θl
�(xd). Then, by rule (a3) in Table 3.4 we infer

that t xs−−→> Θl
�(xd). Hence case (2c) is also satisfied by t with

respect to Θl
�(xd), the variable x, the natural l ∈ N and the

process q for which p ∈ Θl
�(q).

• Case: t = t1 + t2 and σ(t)
a−→> p is derived either from σ(t1)

a−→>

p orσ(t2)
a−→> p, namely by applying either rule (r6) or rule (r7) in

Table 3.1. Since induction applies to such a move taken by σ(ti) and in
all the rules for nondeterministic choice in Tables 3.1 and 3.4 the moves
of ti are mimicked exactly by t, we can infer that each of the three cases
of Proposition 3.1.2 holds for t whenever it holds for ti.

• Case: t = Θ(u) and σ(t)
a−→> p is derived by applying rule (r9) in

Table 3.1. This implies that σ(u)
a−→> p1, with Θ(p1) = p, and σ(u)

b−→>6
for all b > a. By induction over σ(u)

a−→> p1 we can distinguish three
cases:

– Case (2a) applies so that there is a process term u′ such that u a−→>

u′ and σ(u′) = p1. Moreover, we remark that from σ(u)
b−→>6 for

all b > a, it follows that u b−→>6 for all b > a. Then, by rule (r9)
in Table 3.1 we infer that t a−→> Θ(u′) with σ(Θ(u′)) = p, and thus
case (2a) is also satisfied by t.

– Case (2b) applies so that there are a process term u′ and a variable
x such that u x−→> u

′, σ(x)
a−→>

√√
and σ(u′) = p1. Then, by rule

(a10) in Table 3.4 we infer that t x−→> Θ(u′) with σ(x)
a−→>

√√
and

σ(Θ(u′)) = p, and thus case (2b) is also satisfied by t.
– Case (2c) applies so that there are a variable x, a natural l ∈ N

and a process q such that u xs−−→> Θl
�(xd), σ(x)

a−→> q and p1 ∈
Θl
�(q). Now we notice that for each u ∈ Θl

�(xd) it holds that
Θ(u) ∈ Θl+1

� (xd). Then, by rule (a9) in Table 3.4 we infer that
t
xs−−→> Θl+1

� (xd). Hence case (2c) is also satisfied by t with respect
to the variable x, the natural l + 1 and the process q for which
p ∈ Θl+1

� (q).

Assume a process term t and suppose that depth (t) = k for some k ∈ N. We
recall that the notion of depth as we have defined it in Definition 3.1 is with respect
to the empty priority order. Clearly, given any closed substitution σ we will have
that depth (σ(t)) = n for some n ≥ k. In particular, whenever n is strictly greater
than k we can infer that at least one variable occurring in t has been mapped into
a process defined using the sequential composition operator. Hence, we need to
extend Proposition 3.1 to sequences of transitions of arbitrary length.

To this end, we introduce the following notation: let w ∈ (Act∪V)∗ be a string
w = α1 . . . αh in which each αi can be either an action or a variable. Then, given
a substitution σ, we write t s1...sh−−−−−→>,w t

′ if there are process terms t0, . . . , th such
that t = t0, t′ = th, and, for all i ∈ {1, . . . , h},

• si ∈ Act∗;
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• if αi ∈ V, then σ(αi)
si−−→>

√√
and ti−1

si−−→> ti;

• if αi ∈ Act, then si = αi and ti−1
αi−−→> ti.

Finally, we write |s1 . . . sh| for the length of s1 . . . sh.

Example 4. Consider the term t = a · b · x · u, for some term u, and the strings
w1 = ab and w2 = abx. Clearly, as string w1 only considers the execution of a
particular sequence of actions, we can write t ab−−→>,w1

x · u since t a−→> b · x · u
b−→>

x · u. Conversely, string w2 requires concatenating the first two steps of t with
the behavior of the variable x. Assume, for instance, a closed substitution σ with
σ(x) = a · a · b, namely σ(x)

aab−−−→>

√√
. Then, for the chosen substitution, we can

unfold the behavior of x in that of t, and write t abaab−−−−→>,w2
u.

We also notice that by Lemma 3.4, if p a−→> p
′ for some action a having (lo-

cally) maximal priority with respect to >, then σ[xd 7→ p](Θl
�(xd))

a−→> σ[xd 7→
p′](Θl

�(xd)). In this case, we abuse notation slightly and write directly Θl
�(p)

a−→>

Θl
�(p′).

Proposition 3.2. Let t be a process term, σ a closed substitution, n ∈ N and p a
process. If σ(t) −→n

> p then:

1. there exist a process term t′, a string w ∈ (Act ∪ V)∗ and s1 . . . sh ∈ Act∗

such that t s1...sh−−−−−→>,w t
′, σ(t′) = p, and |s1 . . . sh| = n;

2. or t s1...sh−−−−−→>,w t
′ for some w ∈ (Act∪V)∗ and s1 . . . sh such that |s1 . . . sh| =

k < n, and there are a variable x, a natural number l ∈ N and a process q,
such that t′ xs−−→> Θl

�(xd), σ(x) −→n−k
> q and p ∈ Θl

�(q).

Proof. We proceed by induction over n.

• Base case n = 1. This directly follows by Proposition 3.1.2.

• Inductive step n > 1. σ(t) −→n
> p is equivalent to writing σ(t) −→> p1 −→n−1

> p,
for some process p1. We can assume without loss of generality that σ(t)

a−→>

p1. According to Proposition 3.1.2, from σ(t)
a−→> p1 we can distinguish three

cases:

1. there is a process term t1 such that t a−→> t1 and σ(t1) = p1. Then by
induction over p1 −→n−1

> p we can distinguish two subcases:

– there is w1 ∈ (Act∪V)∗ with t1
s1...sh−−−−−→>,w1

t′ such that |s1 . . . sh| =
n − 1 and σ(t′) = p. Then, the proof can be concluded by notic-
ing that for the sequence w = aw1 we get t as1...sh−−−−−→>,w t′ with
|as1 . . . sh| = n and σ(t′) = p.

– there are w1 ∈ (Act ∪ V)∗, a variable y, a natural l ∈ N and a
process q, such that t1

s1...sh−−−−−→>,w1
t′ with |s1 . . . sh| = k < n − 1,

t′
ys−−→> Θl

�(yd), σ(y) −→n−1−k
> q and p ∈ Θl

�(q). Then, the proof
can be concluded by noticing that for the sequence w = aw1 we get
t

as1...sh−−−−−→>,w t
′ with |as1 . . . sh| = k + 1 < n and y, l, q behave as

before.
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2. there are a process term t1 and a variable x such that t x−→> t1, σ(x)
a−→>√√

and σ(t1) = p1. Then by induction over p1 −→n−1
> p we can distinguish

two subcases:

– there is w1 ∈ (Act ∪ V)∗ with t1
s1...sh−−−−−→> t

′ such that |s1 . . . sh| =
n − 1 and σ(t′) = p. Then, the proof can be concluded by notic-
ing that for the sequence w = xw1 we get t as1...sh−−−−−→>,w t′ with
|as1 . . . sh| = n, as |a| = 1, and σ(t′) = p.

– there are w1 ∈ (Act ∪ V)∗, a variable y, a natural l ∈ N and a
process q, such that t1

s1...sh−−−−−→>,w1
t′ with |s1 . . . sh| = k < n − 1,

t′
ys−−→> Θl

�(yd), σ(y) −→n−1−k
> q and p ∈ Θl

�(q). Then, the proof
can be concluded by noticing that, since σ(x)

a−→>

√√
gives |a| = 1,

for the sequence w = xw1 we get t as1...sh−−−−−→>,w t
′ with |as1 . . . sh| =

k + 1 < n and c, x, q behave as before.

3. there are a variable x, a natural l ∈ N and a process p′ such that t xs−−→>

Θl
�(xd), σ(x)

a−→> p′ and p1 ∈ Θl
�(p′). Recall that, per assumption,

p1 −→n−1
> p. Since, p1 ∈ Θl

�(p′), we have that either all, or part of, the
transitions in the sequence p1 −→n−1

> p are executed within the scope
of a priority operator (unless l = 0, but then this case would be an
instance of Proposition 3.2.1). Therefore, we are guaranteed that the
actions labelling the transitions that are performed in the scope of Θ
are all locally maximal with respect to >. Therefore, Lemma 3.5 allows
us to distinguish two cases:

– σ(x) −→h
> q for some h ≥ n. In this case the proposition follows by

taking the empty string for w and the process q′ such that σ(x) −→n
>

q′ and p ∈ Θl
�(q′).

– σ(x) −→k
> q −→>

√√
for some k < n. Notice that this implies that there

is some string sx with |sx| = k of actions that have been performed
by σ(x). Due to the structure of Θl

�(xd) we can infer that there are
a natural m ∈ N and a process term

t1 = Θ(· · ·Θ︸ ︷︷ ︸
m times

(t′′ � um+1)� um) . . . )� u1

such that σ(t) −→k
> σ(t1) = p1. Since then p1 −→n−k

> p, by induction
we can distinguish two subcases:

∗ there is some w1 ∈ (Act ∪ V)∗ with t1
s1...sh−−−−−→>,w1

t′ such
that |s1 . . . sh| = n − k and σ(t′) = p. Then, the proof can
be concluded by noticing that for the sequence w = xw1 we
get t sxs1...sh−−−−−−→>,w t′ with |sxs1 . . . sh| = n, as |sx| = k, and
σ(t′) = p.

∗ there are w1 ∈ (Act∪V)∗, a variable y, a process q′, andm′ ∈ N,
such that t1

s1...sh−−−−−→>,w1
t′ with |s1 . . . sh| = j < n − k, t′ ys−−→>

Θm′

� (yd), σ(y) −→n−k−j
> q′ and p ∈ Θm′

� (q′). Then, the proof
can be concluded by noticing that, as |sx| = k, for the sequence
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w = xw1 we get t sxs1...sh−−−−−−→>,w t
′ with |sxs1 . . . sh| = k + j < n

and y,m′, q′ as above.

The following result allows us to establish whether the behavior of two bisimilar
process terms is determined by the same variable. Moreover, it guarantees that such
a variable is initially enabled in one term if and only if it is initially enabled in the
other one.

Theorem 3.2. Assume that Act contains at least two actions, a and b. Let x be
a variable. Consider two process terms t and u such that initω(t) ⊆ {a} and t↔∗u.
Whenever there is t′ such that t −→k t′, for some k ∈ N, and x/l t′, for some l ∈ N,
then there is u′ such that u −→k u′ and x /m u′ for some m ∈ N. Moreover, l = 0 if
and only if m = 0.

Proof. Let n ∈ N be larger than the depths of t and u, and assume the priority
order > = {(b, a)} over Act. We define the family of closed substitutions {σi}i∈N
inductively as follows:

σ0(y) =

{
a+ b if y = x

a otherwise.

σi(y) =

{
a · (σi−1(y) + a) if y = x

a otherwise.

Let σ = σn. Suppose that t −→k t′, for some k ∈ N. As initω(t) ⊆ {a} we can
infer that there are process terms t0, . . . , tk such that t = t0

a−→ . . .
a−→ tk = t′ (if

init(t) = ∅ then k = 0 and t = t′). Moreover, as in all such terms ti there is no
occurrence of b, a is maximal with respect to > on them, and thus by Lemma 3.2
and an easy induction over k, we obtain that σ(t0)

a−→
k
σ(tk) = σ(t′) (σ(t) = σ(t′)

if init(t) = ∅). Suppose now that x /l t′, for some l ∈ N. By Lemma 3.6, x /l t′

implies that t′ xs−−→> Θl
�(xd). By the choice of σ we have that σ(x)

a−→
n

> a + b.
Therefore, by Lemma 3.5 we obtain that σ(t′)

a−→
n

> p for some p ∈ Θl
�(a+ b). By

combining the two sequences of transitions, we get σ(t)
a−→
k+n

> p. By the hypothesis
we have t↔∗ u, which in particular implies t↔> u and thus σ(t)↔> σ(u). As ↔>

is a bisimulation, we can infer that σ(u)
a−→
k+n

> p′ for some process p′ with p↔> p
′.

As n is larger than the depth of u, by Proposition 3.2 there exists a process term
u′, a string w with strings s1, . . . , sh ∈ {a}∗, a variable y, a natural number m
and a process q such that u s1...sh−−−−−→>,w u

′, |s1 . . . sh| = j < n, u′ xs−−→> Θm
� (yd),

σ(y) −→k+n−j
> q and p′ ∈ Θm

� (q). Therefore:

1. by k + n− j > 0;

2. by the choice of > (which gives that the only possible transition enabled for
Θl
�(a+ b) is a b-labeled move);

3. by the choice of σ;

4. by p↔> p
′ with p ∈ Θl

�(a+ b), p′ ∈ Θm
� (q);
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we can conclude that y = x, j = k and q = a+ b. Moreover, from item (4) and the
choice of >, we obtain that l = 0 iff m = 0.

3.5 Making Order-Insensitive Bisimilarity Coinduc-
tive: Uniform Determinacy

As outlined in Section 3.2, ↔∗ cannot be defined coinductively, contrary to other
bisimulation relations. However, in this section we identify a class of processes for
which the coinductive reasoning on ↔∗ can be at least partially recovered, and
which will be useful later on.

Definition 3.5 (Uniform determinacy). Let p be a process. We say that p is
uniformly determinate if |init(p)| = 1, and for all processes p1 and p2 such that
p −→ p1 and p −→ p2, we have norm (p1) = norm (p2) = 1 and p1↔∗ p2. Then, for
each k ∈ N, we say that p is uniformly k-determinate if

• |init(p)| = 1,

• whenever p −→h q for some h ≤ k then |init(q)| = 1, and

• whenever p −→k p′ then p′ is uniformly determinate.

We remark that uniform determinacy and uniform k-determinacy are defined
in terms of the empty priority order.

Summarizing, a process is uniformly k-determinate if whenever it takes k steps,
it ends up in a process that only has one available action, and in which all immediate
successors have norm 1 and are order-insensitive bisimilar.

Example 5. Consider processes

p1 = a · b+ a p2 = a · p1 + a p = a · p2

q = a · b+ a · a .

First of all, we notice that both p1 and p2 have norm 1, due to the branches with
the action constant a. Moreover, they are both uniformly determinate. In fact, p1

can perform only one transition to process b, which has norm 1 and it is clearly
order-insensitive bisimilar to itself. Similarly, the only available transition for p2

is p2
a−→ p1, which, as previously noticed, has norm 1. We remark that the a action

constants in p1 and p2 do not trigger any transition for the two processes, but they
cause the predicates p1

a−→
√√

and p2
a−→
√√

to hold.
As process p can perform only one a-move to p2, we can directly infer that p

is uniformly determinate. Notice that process p does not have norm 1, but such a
constraint has to be satisfied only by its derivatives. Moreover, from our observa-
tions on p1 and p2, we obtain that p is also uniformly 1-determinate and uniformly
2-determinate.

Consider now process q. We have that q is not uniformly determinate since
q

a−→ b and q a−→ a are both derivable and, clearly, b 6↔∗ a. However, q is uniformly
1-determinate, since both b and a are trivially uniformly determinate.



58 CHAPTER 3. AXIOMATIZABILITY OF BPAΘ

The notion of uniform k-determinacy is preserved by order-insensitive bisimi-
larity.

Lemma 3.7. If p↔∗ q and p is uniformly k-determinate for all 1 ≤ k < depth (p),
then so is q.

Proof. The proof proceeds by induction on k. Notice that p↔∗ q implies p↔ q.

• Base case: k = 1. Assume, towards a contradiction, that q is not uniformly
1-determinate. This means that either |init(q)| > 1 or there exist q1 and q2

such that q −→ q1 and q −→ q2 but q1 6↔? q2, or norm (q1) 6= 1, or norm (q2) 6= 1.

If |init(q)| > 1, then there are a, b ∈ Act with a 6= b such that q a−→ qa and
q

b−→ qb for some processes qa and qb. Since p↔ q, there must exist pa and
pb such that p a−→ pa and p b−→ pb, but this contradicts |init(p)| = 1.

If q1 6↔∗ q2, then q1 6↔> q2 for some priority order >. Since we already know
that |init(q)| = 1, q −→ q1 and q −→ q2 implies q −→> q1 and q −→> q2. Hence
there exist processes p1 and p2 such that p −→> p1 and p −→> p2 with p1↔> q1

and p2 ↔> q2. However, since p is uniformly 1-determinate, we know that
p1↔> p2, so q1↔> q2, which is a contradiction.

If norm (q1) 6= 1, then we know from p↔ q and q −→ q1 that p −→ p1 for some
process p1 with p1↔ q1. But this implies norm (q1) = norm (p1) = 1, which
is a contradiction. The argument for norm (q2) 6= 1 is similar.

• Inductive step: k > 1. Assume that q is uniformly k′-determinate for all k′ <
k. We now prove that q is also uniformly k-determinate. Assume towards
a contradiction that q is not k-determinate. Then there must exist some q′
such that q −→k q′ and either |init(q′)| > 1 or there are q1 and q2 such that
q′ −→ q1 and q′ −→ q2, but either q1 6↔∗ q2, norm (q1) 6= 1, or norm (q2) 6= 1.

The cases of |init(q′)| > 1, norm (q1) 6= 1, and norm (q2) 6= 1 are essentially
the same as for the base case, except that one first gets a process p′ such that
p −→k p′, and then reasons as before on p′.

We now consider the case of q1 6↔∗ q2. This implies that q1 6↔> q2 for some
priority order >. Since p↔∗ q, we also get p↔> q, and since q is uniformly
k′-determinate for every k′ < k, q −→k q′ implies q −→k

> q
′. (Recall that all

the processes reached in the sequence of k′-steps can perform only transitions
with the same label). Therefore there exists a process p′ such that p −→k

> p
′

and p′↔> q
′. Since we already know that |init(q′)| = 1, q′ −→ q1 and q′ −→ q2

implies q′ −→> q1 and q′ −→> q2. Hence there exist p1 and p2 such that p′ −→> p1

and p′ −→> p2 as well as p1↔> q1 and p2↔> q2. However, since p is uniformly
k-determinate, we know that p1↔> p2, so we get q1↔> q2, which contradicts
our assumption.

The next proposition shows that if p and q are order-insensitive bisimilar as
well as uniformly k-determinate for all k less than some n, then every sequence
of n transitions that p can do can be matched by q such that p and q end up in
processes that are again order-insensitive bisimilar.
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Proposition 3.3. Let p and q be two processes such that p↔∗ q and there is an
n ∈ N such that p and q are uniformly k-determinate for all k < n. Suppose that
p −→n p′ for some p′. Then there is a process q′ such that q −→n q′ and p′↔∗ q′.

Proof. We recall that in [13] a process p is said to be determinate if |init(p) | ≤ 1
([13] considers the language BCCSP which includes the idle process that cannot
perform any action), and for all processes p1, p2 such that p −→ p1 and p −→ p2 it
holds that p1↔∗ p2. Then p is said to be determinate at depth k if all processes p′
such that p −→k p′ are determinate. Since our notion of uniformly k-determinacy
implies that of determinacy at depth k in [13], the proof of this proposition directly
follows from Lemma 18 of [13].

3.6 The Property: Uniform (n,Θ)-Dependency
In this section we formalize the uniform (n,Θ)-dependency property, on which our
negative result is built. As previously outlined, this is based on the notion of
Θ-dependent process from [13].

Definition 3.6 (Θ-dependent process, [13]). A process p is Θ-dependent if there
exist priority orders >1 and >2 such that init>1

(p) 6= init>2
(p).

Intuitively, a process is Θ-dependent if its possible behavior depends on the
choice of priority order. For example, Θ(a + b) is Θ-dependent, since we can find
a priority order that only allows it to make an a-transition, and another priority
order that only allows it to make a b-transition. On the other hand, Θ(a) is not
Θ-dependent, since no matter what priority order we choose, it can only do a
a-transition.

Moreover, we will make use of the following technical result from [13].

Lemma 3.8 ([13, Lemma 14]). If p↔∗ q and p is Θ-dependent, then so is q.

Uniform (n,Θ)-dependency is an extension of Θ-dependency from [13], in that
it requires first that it is possible to take a sequence of n transitions and end up in
a process that is Θ-dependent, and furthermore it requires that at each step along
the way, the process has a norm of 1.

Definition 3.7. A process p is uniformly (n,Θ)-dependent if there are processes
p1, . . . , pn such that p = p0 → p1 → · · · → pn, the process pn is Θ-dependent, and
for all 0 ≤ k < n we have norm (pk) = 1.

The following proposition tells us that (n,Θ)-dependency is preserved by closed
instantiations of sound equations whose depth is smaller than n and that satisfy
some determinacy constraints.

Proposition 3.4. Let σ be a closed substitution and let t and u be process terms
such that t↔∗ u and initω(t) = {a}. Assume a natural number n ∈ N such that
n > max{depth (t) ,depth (u)} and σ(t) is uniformly k-determinate for all 1 ≤ k ≤
n− 1. If σ(t) is uniformly (n,Θ)-dependent, then so is σ(u).
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Proof. We start by noticing that t↔∗u implies σ(t)↔∗σ(u) and thus, by Lemma3.7,
we infer that σ(u) is uniformly k-determinate for all 1 ≤ k ≤ n − 1. Next, since
σ(t) is uniformly (n,Θ)-dependent, by Definition 3.5 there are processes p0, . . . , pn
such that σ(t) = p0 −→ . . . −→ pn, norm (pi) = 1 for all i = 0, . . . , n − 1, and pn is
Θ-dependent. Since, moreover, we have depth (t) < n, by Proposition 3.2 there are
a process term t′ and a string w such that t s1...sh−−−−−→w t

′ with |s1 . . . sh| = j and there
are a variable x, an l ∈ N and a process q such that t′ xs−−→ Θl

�(xd), σ(x) −→n−j q,
and pn ∈ Θl

�(q). In particular, notice that by the uniform k-determinacy of σ(t),
for all k = 1, . . . , n − 1, we obtain that |init(σ(t′)) | = 1. As this set of initials is
constructed with respect to the empty priority order we can also infer the following:

• |init(σ(x)) | = 1,

• |init(qi) | = 1 for all qi, with i = 1, . . . , n − j − 1, such that σ(x) −→ q1 −→
. . . −→ qn−j−1 −→ q, and

• any action performed in the sequence σ(x) −→ n−jq is locally maximal with
respect to the empty priority order.

Notice that, by Lemma 3.6, t′ xs−−→ Θl
�(xd) is the same as x /l t′. Since, moreover,

pn is Θ-dependent, it must be the case that |Act| > 1. We can then apply
Theorem 3.2, thus obtaining that there are a process term u′ and an m ∈ N
such that u −→j u′ and x /m u′. Using again Lemma 3.6, x /m u′ is the same as
u′

xs−−→ Θm
� (xd). As above, the uniform k-determinacy of σ(u), for all k = 1, . . . , n−

1, guarantees that |init(σ(u′)) | = 1 and thus that σ(x) can perform its (locally
maximal) action. Thus, from σ(x)

a−→
n−j

q and u′
xs−−→ Θm

� (xd), Lemma 3.5

implies σ(u′)
a−→
n−j

Θm
� (q). Hence we can infer that there are processes q0, . . . , qn

such that σ(u) = q0 −→ . . . −→ qn with qn ∈ Θm
� (q). According to Theorem 3.2, we

can distinguish two cases:

• Case l > 0. Then we can infer thatm > 0, and thus qn is clearly Θ-dependent.

• Case l = 0. Then we have that pn = q and from pn being Θ-dependent we
can infer that q is Θ-dependent. As l = 0 implies m = 0, we get that qn = q
and thus qn is Θ-dependent because q is.

To conclude, we need to show that norm (qi) = 1 for each i = 0, . . . , n−1. First
of all we notice that, since σ(t)↔∗ σ(u) and norm (σ(t)) = 1, then norm (σ(u)) =
norm (q0) = 1. Moreover, since σ(u) is uniformly k-determinate for all 1 ≤ k < n,
we get that norm (qi) = 1 for all i = 1, . . . , n − 1 is guaranteed by Definition 3.5.
We can therefore conclude that σ(u) is uniformly (n,Θ)-dependent.

3.7 The Negative Result Over BPAΘ

This section is devoted to our main result, namely that order-insensitive bisimilarity
has no finite ground-complete axiomatization in the setting of BPAΘ.

In Equation (3.1) in Section 3.3, we presented a family of infinitely many sound
equations which cannot be derived from any finite axiom system which is sound
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modulo order-insensitive bisimilarity, which we now proceed to recall. We make
use of the following processes, which are defined for each n ∈ N as

Pn = An(a) +An(b) +An(a+ b),

where A0(p) = p and An(p) = a ·An−1(p) + a. Process Pn must decide at the top
level whether after n steps it will end up in a, b, or a+ b. After this choice, it can
take up to n a-transitions, and at each step it can choose whether to terminate or
to continue. We stress that the possibility of termination at each step is crucial, as
it implies that An(·) cannot be written just with sequential composition modulo
bisimilarity.

The family of equations that we consider is then

en : Pn +An(Θ(a+ b)) ≈ Pn (n ≥ 0) .

We remark that the processes on the left-hand side of each equation en are uni-
formly (n,Θ)-dependent, whereas those on the right-hand side do not enjoy this
property. In detail, for all n ∈ N, by construction there is no occurrence of Θ
in Pn nor in its derivatives, so that Pn cannot have any Θ-dependent successor.
On the other hand, we have Pn + An(Θ(a + b))

a−→ An−1(Θ(a + b))
a−→ . . .

a−→
A0(Θ(a + b)) = Θ(a + b) with Θ(a + b) a Θ-dependent process and, by construc-
tion, for each i = 1, . . . , n the process Ai(Θ(a+ b)) has norm 1.

To proceed to the proof of Theorem 3.1 we need to show, in the first place, that
all the equations in the family {en}n∈N are sound. To this end we introduce the
final ingredient that we need for our main result, namely the notion of summand
of a process.

Definition 3.8 (Summand, [13]). We say that p is a summand of q, denoted by
p v∗ q, if there exists a process r such that p+ r↔∗ q.

Proposition 3.5. For every n ∈ N, the equation Pn+An(Θ(a+b)) ≈ Pn is sound.

Proof. It is enough to prove that An(Θ(a+ b)) v∗ Pn for all n ∈ N. So, let n ∈ N
and > be an arbitrary priority order. Then:

• If a > b, then An(Θ(a+ b))↔> An(a).

• If b > a, then An(Θ(a+ b))↔> An(b).

• If a and b are unordered in >, then An(Θ(a+ b))↔> An(a+ b).

Hence, we can conclude that An(Θ(a+ b))+Pn↔> Pn for all priority orders > and
naturals n ∈ N, which implies An(Θ(a+ b)) v∗ Pn for all n ∈ N

Interestingly, any process p such that p v∗ Pn must be of a specific form
that inherits many of the features of Pn. In particular, such a process must be
k-determinate for all k less than n.

Lemma 3.9. Let p be a process and assume p v∗ Pn for some n ∈ N. Then p is
uniformly k-determinate for all 1 ≤ k < n.
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Proof. We first prove that initk(p) = {a} for 0 ≤ k < n. We recall that since we are
considering BPAΘ with constants, and without the empty process and deadlock,
for all closed process terms p it holds that init>(p) 6= ∅ for all priority orders >. As
p v∗ Pn, which means that p+ r↔∗ Pn for some r, we have that p+ r↔ Pn. By
Lemma 3.1, we infer initk(p+ r) = initk(Pn) = {a}. Since, moreover, initk(p) ⊆
initk(p+ r), we get initk(p) = {a}.

We now proceed by contradiction. Let 1 ≤ k < n be the least number such
that p is not uniformly k-determinate. Then there exist processes p′, p1, and p2

such that p −→k p′, p′ −→ p1, and p′ −→ p2, and p1 6↔∗ p2, or norm (p1) 6= 1, or
norm (p2) 6= 1.

If norm (p1) 6= 1, then p −→k p′ and p′ −→ p1, so there exists P ′n and P ′′n such
that Pn −→k P ′n and P ′n −→ P ′′n with p1↔P ′′n . But then norm (p1) = norm (P ′′n ) = 1,
which is a contradiction. A similar argument holds when norm (p2) 6= 1.

If p1 6↔∗ p2, then p1 6↔> p2 for some specific priority order >. Notice that since
|initi(p) | = {a} for all 0 ≤ i < n, we get that p −→k p′, p′ −→ p1, and p′ −→ p2

implies p −→k
> p′, p′ −→> p1, and p′ −→> p2. Since p + r↔> Pn for some r, there

exist P ′n, P ′′n , and P ′′′n such that Pn −→k
> P ′n, P ′n −→> P ′′n , and P ′n −→> P ′′′n with

p1↔>P
′′
n and p2↔>P

′′
n . Since norm (p1) = 1 = norm (p2), we also get norm (P ′′n ) =

1 = norm (P ′′′n ). However, we see from the definition of Pn that P ′n has a unique
successor with norm 1. Hence it follows that P ′′n = P ′′′n , so p1↔> P

′′
n = P ′′′n ↔> p2,

which contradicts p1 6↔> p2.

We are now ready to present our main theorem, which states that for n large
enough, if p and q are summands of Pn that can be proved equivalent from a finite
set of sound equations, and p is uniformly (n,Θ)-dependent, then q must also be
uniformly (n,Θ)-dependent.

Theorem 3.3. Assume that Act contains at least two distinct actions. Let E be
a set of sound process equations of depth less than n, and let p and q be closed
processes such that p, q v∗ Pn and E ` p ≈ q. If p is uniformly (n,Θ)-dependent,
then q is also uniformly (n,Θ)-dependent.

Proof. As briefly discussed in Section 3.2, without loss of generality, we can disre-
gard the symmetry rule in our inductive proof below by assuming that u ≈ t ∈ E
whenever t ≈ u ∈ E. Furthermore, we can assume that all applications of the
substitution rule in derivations have a process equation from E as premise. This
means that we only need to consider a new rule stating that all substitution in-
stances of process equations in E are derivable, rather than considering the axiom
rule — which states that all process equations in E are derivable —, and the sub-
stitution rule — which states that if a process equation is derivable, then so are all
its substitution instances — separately.

We will now present the inductive argument over the number of steps in a proof
of an equation p ≈ q from E. We proceed by a case analysis on the last rule applied
to obtain E ` p ≈ q.

Case 1: reflexivity and transitivity. In these cases, the proof follows im-
mediately or by the induction hypothesis in a straightforward manner.
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Case 2: variable substitution. Assume that E ` p ≈ q is the result of
a closed substitution instance of a process equation t ≈ u ∈ E, namely there
exists a substitution σ such that σ(t) = p and σ(u) = q. Since t ≈ u ∈ E, we
have that depth (t) ,depth (u) < n. Moreover, from p, q v∗ Pn it follows that
initω(p) = initω(q) = {a} and that, by Lemma 3.9, p and q are uniformly k-
determinate for all k ∈ {1, . . . n − 1}. Hence by Proposition 3.4, we can conclude
that if p is uniformly (n,Θ)-dependent, then so is q.

Case 3: congruence rule. We can distinguish three cases:

• The last rule applied in E ` p ≈ q is the congruence rule for the nondetermin-
istic choice +. Then there exist closed process terms p1, p2, q1 and q2 such
that p = p1 + p2, q = q1 + q2, E ` p1 ≈ q1 and E ` p2 ≈ q2 by shorter proofs.
Since p is uniformly (n,Θ)-dependent, there must exist a process p′ such that
p −→n p′, where p′ is Θ-dependent and every process along the transitions
from p to p′ has norm 1.

We can distinguish four possible subcases, regarding how this property is
derived:

1. p1 is uniformly (n,Θ)-dependent.
2. p2 is uniformly (n,Θ)-dependent.
3. norm (p2) = 1, norm (p1) 6= 1, and there are processes p1

1, . . . , p
n
1 such

that p1 −→ p1
1 −→ . . . −→ pn1 = p′ and pn1 is Θ-dependent.

4. norm (p1) = 1, norm (p2) 6= 1, and there are processes p1
2, . . . , p

n
2 such

that p2 −→ p1
2 −→ . . . −→ pn2 = p′ and pn2 is Θ-dependent.

In cases (1) and (2) we can immediately apply the induction hypothesis ob-
taining, respectively, that either q1 or q2 is uniformly (n,Θ)-dependent, and
thus that q is uniformly (n,Θ)-dependent as well.

The cases (3) and (4) require more attention. We detail only the proof for
case (3), since the one for case (4) is symmetric. Firstly, we notice that since
p, q v∗ Pn then by Lemma 3.9 both p and q are uniformly k-determinate for
all k ∈ {1, . . . , n−1}. This implies that p1 is uniformly k-determinate for the
same values of k. Moreover, as E ` p1 ≈ q1 gives p1↔∗ q1 and depth (p1) = n,
by Lemma 3.7 we obtain that also q1 is uniformly k-determinate for k ∈
{1, . . . , n− 1}. Then, by Proposition 3.3 we can infer that there is a process
qn1 such that q1 −→n qn1 and qn1 ↔∗ pn1 , which, by Lemma 3.8, implies that
qn1 is Θ-dependent. Furthermore, uniform k-determinacy ensures that all the
processes q1

1 , . . . , q
n−1
1 in the sequence q1 −→ q1

1 −→ . . . −→ qn−1
1 −→ qn1 have

norm 1. Finally, we notice that since norm (p2) = 1 and E ` p2 ≈ q2 implies
p2↔∗ q2, we can infer that norm (q2) = 1. By combining the properties of q1

and q2, we can conclude that q = q1 + q2 is uniformly (n,Θ)-dependent.

• The last rule applied in E ` p ≈ q is the congruence rule for the sequential
composition. This means that p = p1 · p2, q = q1 · q2, E ` p1 ≈ q1 and
E ` p2 ≈ q2 by shorter proofs. This case is vacuous, as norm (p) ≥ 2 and
therefore p cannot be uniformly (n,Θ)-dependent.
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x
a−→>

√√
∀ b > a y

b−→>6
xC y

a−→>

√√
x

a−→> x
′ ∀ b > a y

b−→>6
xC y

a−→> x
′

U1 aC b ≈ a if not b > a U4 (x · y)C z ≈ (xC z) · y
U2 xC (y · z) ≈ xC y U5 (x+ y)C z ≈ xC z + y C z
U3 xC (y + z) ≈ (xC y)C z PU Θ(x+ y) ≈ Θ(x)C y + Θ(y)C x

Table 3.5: Operational semantics and some axioms of the unless operator.

• The last rule applied in E ` p ≈ q is the congruence rule for the priority
operator Θ. Then there exist p′ and q′ such that p = Θ(p′), q = Θ(q′), and
E ` p′ ≈ q′ by a shorter proof. Since p is uniformly (n,Θ)-dependent, there
exists a sequence of processes p = Θ(p′) −→ Θ(p1) −→ · · · −→ Θ(pn−1) −→ Θ(pn)
such that norm (Θ(p1)) = . . . norm (Θ(pn−1)) = 1 and Θ(pn) is Θ-dependent.
Note that, since Θ(pn) is Θ-dependent, |init(pn) | ≥ 2. Moreover, from the
operational rules for Θ, p′ −→ p1 −→ · · · −→ pn−1 −→ pn and from the definition
of norm, norm (p1) = · · · = norm (pn) = 1. From E ` p′ ≈ q′, we derive that
p′ ↔∗ q′. Hence, p′ ↔ q′ holds and therefore we get a sequence q′ −→ q1 −→
· · · −→ qn such that pn↔ qn, which implies that |init(qn) | ≥ 2. Thus, we infer
q = Θ(q′) −→ Θ(q1) −→ · · · −→ Θ(qn) and, since |init(qn) | ≥ 2, Θ(qn) is Θ-
dependent. It remains to show that norm (Θ(q′)) = norm (Θ(qi)) = 1 for each
i ∈ {1, . . . , n− 1}. As q v∗ Pn, by Lemma 3.9 we gather that q is uniformly
k-determinate for all 1 ≤ k < n, from which it follows that norm (Θ(qi)) = 1
for all i ∈ {1, . . . , n − 1}. Since, moreover, p↔∗ q and norm (p) = 1, we get
norm (q) = 1 and we conclude that q is (n,Θ)-dependent.

As the left-hand side of the equations in (3.1) is uniformly (n,Θ)-dependent
while the right-hand side is not, from Theorem 3.3 we can directly infer that for
each n, the nth instance of the family of equations in (3.1) cannot be proved using
the finite collection of all sound equations whose depth is smaller than n.

We can therefore conclude that Theorem 3.1 (presented in Section 3.3) holds.

3.8 On the Use of Auxiliary Operators
In its first appearance, in [40], the priority operator was defined in terms of the
simpler binary operator unless, denoted by C. Informally, C allows us to capture
the priority order among actions, as aCb behaves like a unless b has higher priority
than a. In Table 3.5 we report the SOS rules defining the behavior of the unless
operator, together with some valid axioms for it. In particular, axiom (PU) allows
us to rewrite the behavior of the priority operator in terms of that of unless.



3.8. ON THE USE OF AUXILIARY OPERATORS 65

Example 6. Consider process p = a · (b C c + c C b). If b > c, then only the
summand b C c of (b C c + c C b) can make a transition, thus giving p↔> a · b.
Similarly, if c > b then p↔> a · c. In case b and c are incomparable with respect to
>, then bC c+ cC b↔> b+ c, so that p↔> a · (b+ c).

Consider now processes q1 = a C (b · c) and q2 = (a · b) C c. The unless
operator compares only the initial actions of its arguments (cf. axioms (U2) and
(U4) in Table 3.5). Hence in q1 the priority order between a and c plays no role in
determining whether q1 will perform the a-move or not. At the same time, if c has
higher priority than a, in q2 also the execution of b is prevented disregarding the
ordering of b and c.

One can prove, in a similar fashion to [40], that, provided the set of actions is
finite, for a chosen priority order >, the bisimulation equivalence↔> affords a finite
axiomatization over BPAΘ,C, namely BPA enriched with both Θ and C. Hence a
natural question that arises is whether we can regain a finite axiomatization over
BPAΘ,C also for order-insensitive bisimilarity. We devote this section to proving
that a negative answer applies and thus that the following theorem holds:

Theorem 3.4. If the set of actions Act contains at least two distinct actions, then
the language BPAΘ,C modulo order-insensitive bisimilarity is not finitely based.

Since the technical development of the negative result for BPAΘ (Theorem 3.1)
would apply in major part unchanged in the proof of Theorem 3.4, we actually
present only an informal discussion of this result.

Consider the family of equations in (3.1), that we used to prove the negative
result for the priority operator. One can prove, by using axioms (PU) in Table 3.5
and (P5) in Table 3.3 together with congruence closure, that

An(Θ(a+ b)) ≈ An(aC b+ bC a)

and thus that the family of equations

e′n : Pn +An(aC b+ bC a) ≈ Pn (n ≥ 0) (3.2)

is sound modulo order-insensitive bisimilarity. However, precisely because we are
considering the order-insensitive relation, one can notice that it is not possible
to eliminate the occurrences of the unless operator from the left-hand side of the
equations in (3.2). In fact, as no priority order over actions has been chosen, it is
not possible to establish the relation between actions a and b (that we recall are
assumed to be distinct) and thus whether C will allow for their execution or not.
More formally, we notice that the axiom (U1) in Table 3.5 is not sound modulo
order-insensitive bisimilarity (with the only exception of the trivial case in which
the actions in the two sides of C coincide). Therefore, the same reasoning applied
to prove Theorem 3.3, and thus Theorem 3.1, can be adapted in a straightfor-
ward manner to obtain a proof for Theorem 3.4. Intuitively, we simply need to
substitute the notions of Θ-dependency and uniform (n,Θ)-dependency with the
corresponding notions for the unless operator.
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3.9 Complexity of Order-Insensitive Bisimilarity Check-
ing

In this section we investigate some algorithms, and their complexity, for checking
order-insensitive bisimilarity of (loop-free) finite labeled transition systems. It is
known that bisimilarity over such systems is poly-complete [41], and, moreover,
using the Paige-Tarjan algorithm [163] each ↔> can be checked in O(mt logms),
where mt is the number of transitions, and ms is the number of states. A naive
algorithm for ↔∗ would then check ↔> for all the possible partial orders > over
Act. Assuming that |Act| = k > 0, there are 2k

2/4+3k/4+O(log k) possible partial
orders (see [138] for the result on the number of posets over sets with k elements).
Clearly, from these results we can obtain an upper bound on the complexity of↔∗.

Theorem 3.5. The problem of deciding whether two processes are order-insensitive
bisimilar is in coNP and can be solved in time 2k

2/4+3k/4+O(log k) ·O(n2) where k is
the number of actions and n is the sum of the sizes of the two processes.

Proof. Let |p| denote the size of process p. We first argue that the complexity
of the naive algorithm for checking whether two closed BPAΘ terms p and q are
related by order-insensitive bisimilarity is

2
k2/4+3k/4+O(log k) ·O(n2) ,

where n = |p|+ |q| is the sum of the sizes of the two processes. To this end, observe
that, for each irreflexive partial order > over Act, the algorithm checks whether
p↔>q holds, which can be done by verifying that the loop-free LTSs with transition
relation −→> associated with p and q are bisimilar. The latter check can be done
in O(mt logms) using the Paige-Tarjan algorithm. It is not hard to verify that the
number ms of states and the number mt of transitions in the LTS associated with
a closed BPAΘ term are linear in the size of the term. Moreover such an LTS can
be constructed in time O(|p|2) from a term p and a priority order >. So checking
whether p and q are related by ↔> can be done in time O(n2 + n log n) = O(n2),
where n is the sum of the sizes of p and q. It follows that the naive algorithm has
complexity 2k

2/4+3k/4+O(log k) ·O(n2).
We now argue that order-insensitive bisimilarity checking is in coNP. Given two

terms p and q that are not order-insensitive bisimilar, one can nondeterministically
guess an irreflexive partial order > that separates them, generate the loop-free
LTSs with transition relation −→> associated with p and q (which can be done in
quadratic time), and then verify the correctness of this guess with the Paige-Tarjan
algorithm that checks for bisimilarity of the LTSs. Guessing an irreflexive partial
over k elements can be done by:

• Guessing an irreflexive relation in time O(k2);

• Computing its transitive closure in cubic time;

• Checking whether the resulting relation is acyclic in time that is linear in the
size of the resulting directed graph.
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The coNP bound follows from the above mentioned observations.

Remark 2. If Act is a singleton, the complexity bounds in Theorem 3.5 can
be sharpened. Indeed, in that case, ↔∗ coincides with bisimilarity and checking
whether two loop-free LTSs over a singleton action set are bisimilar is poly-complete
[41].

The main contributor to the complexity of the above-mentioned naive algorithm
however is the number of bisimilarity checks that has to be performed. Indeed,
when verifying the order-insensitive bisimilarity of two BPAΘ terms, the only upper
bound we can impose on the number of actions appearing in the terms is linear in
the size of the terms in the worst case. Therefore the number of possible partial
orders that have to be considered is exponential in size of the input terms. It might
be possible to improve on the number of the partial orders to consider if we could
exclude a priori the checking of some significant number of partial orders. For
instance, one could hope that p↔>0

q does not need to be checked if p↔>1
q for

some >1 that extends >0. We dedicate the remainder of this section to showing
that this is impossible in general.

Assume that Act is finite and |Act| = k > 0. Let >0 be an irreflexive partial
order over Act. Our goal is to construct two BPAΘ terms p and q with the
following properties:

(a) p 6↔>0
q, and

(b) p↔> q for each irreflexive partial order > 6= >0.

We introduce next some constructions and notation that will be useful in what
follows.

First of all, for each non-empty S ⊆ Act, we define the term v(S) thus:

v(S) =

{
a if S = {a} for some a ∈ Act∑
a∈S a.v(S \ {a}) otherwise.

Intuitively, v(S) describes a nondeterministic process that can perform all permu-
tations of the actions in S.

Given an irreflexive partial order > over Act, we let p> denote a closed BPAΘ

term such that p> contains no occurrences of Θ and

p>↔> Θ(v(Act)). (3.3)

Example 7. Assume that Act = {a, b} and let >0 = ∅. There are only two other
irreflexive partial orders over {a, b}, namely >1 = {(a, b)} and >2 = {(b, a)}. Now
consider the term

v = v({a, b}) = ab+ ba .

It is easy to see that

• Θ(v)↔>0
v,

• Θ(v)↔>1
ab = p>1 , and



68 CHAPTER 3. AXIOMATIZABILITY OF BPAΘ

• Θ(v)↔>2
ba = p>2

.

Consider now processes p = a.p>1
+ a.p>2

and q = p + a.Θ(a.b + b.a). From the
above, it follows immediately that p↔>1

q and p↔>2
q. However, we have that

p 6↔>0
q. Indeed, Θ(v)↔>0

v and thus q can do an a action and become a.b + b.a
while p cannot match that transition.

As highlighted by the above example, the traces of the term Θ(v(Act)) with
respect to −→> are all the linearizations of the partial order >. A classic result
in order theory states that a partial order is uniquely determined by its linear
extension [189]. This is the key to the following lemma.

Lemma 3.10. Two closed process terms p>1 and p>2 defined as in Equation (3.3)
above have the same traces if and only if >1=>2.

Using the above lemma, we can now prove that:

Theorem 3.6. Assume that Act is finite and contains at least two distinct actions.
Let >0 be an irreflexive partial order over Act. Then there exist closed BPAΘ

terms p and q such that, for each irreflexive partial order > over Act, p↔> q if
and only if > 6= >0.

Proof. We need to exhibit two closed BPAΘ terms satisfying the above-mentioned
properties ((a)) and ((b)) with respect to the chosen partial order >0. To this end,
we choose an action a ∈ Act and define:

p =
∑

>∈PO(Act), > 6=>0

a.p> and q = p+ aΘ(v(Act)) (3.4)

where PO(Act) denotes the set of all irreflexive partial orders on Act.

• p and q satisfy property ((b)).

We need to show that p↔> q for each >∈ PO(Act) such that > 6=>0. This
follows by construction. In fact, for each > 6=>0, both processes contain a
summand bisimilar to the closed term a.p> and moreover a.Θ(v(Act))↔>

a.p>.

• p and q satisfy property ((a)).

We need to show that p 6↔>0
q. To see this, observe that q a−→>0

Θ(v(Act))↔>0

p>0 . On the other hand, if p a−→>0
p′ then p′ = p>↔> Θ(v(Act)) for some

partial order > 6=>0. By Lemma 3.10, p> does not have the same traces as
p>0

, and thus p>0
6↔>0

p>. This means that p cannot match the transition
q

a−→>0
Θ(v(Act)) up to ↔>0

and thus p 6↔>0
q.

3.10 Conclusions
In this chapter we have studied the finite axiomatizability of the equational theory
of order-insensitive bisimilarity over the language BPA enriched with the priority
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operator Θ. As previous similar work suggested, also in this setting, the collection
of sound, closed equations is not finitely based in the presence of at least two
actions, despite the fact that the sequential composition operator allows one to
write more complex axioms than action prefixing. We proved this negative result
using an infinite family of closed equations suggested in [13] and showing that no
set of sound equations of bounded depth can derive them all.

Finding an infinite (ground-)complete axiomatization of order-insensitive bisim-
ilarity is a natural avenue for future research. It would also be interesting to see
whether we can obtain a lower bound on the complexity of order-insensitive bisim-
ilarity checking. Above we discussed various upper bounds for its complexity that
all suggest some type of computational hardness and since we have that the prob-
lem is in coNP it would be a natural follow-up to prove coNP-hardness. At the
time of writing, this hardness result is not obvious to us.
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Chapter 4

Axiomatizing recursion free,
regular monitors

4.1 Introduction
In this chapter, we study the equational theory of the monitors studied by Aceto
et al. in, for instance, [14, 15, 104]. Monitors are a key tool in the field of runtime
verification (see [47, 96, 120, 121, 147, 170, 187, 190] and the references therein
for an overview of this active research area), where they are used to check for
system properties by analyzing execution traces generated by processes and are
often expressed using some automata-based formalism. The notion of monitorable
property has been defined in a seminal paper by Pnueli and Zaks [170]. Intuitively,
a property of finite and infinite system executions is s-monitorable, for some finite
trace of observable events s, if there is an extension of s after which a monitor
will be able to determine conclusively whether the observed system execution sat-
isfies or violates the property. This means that verdicts issued by monitors are
irrevocable. In that work by Pnueli and Zaks, a property is described by the set of
finite and infinite executions that satisfy it. However, in the theory and practice
of runtime verification, one often specifies properties finitely using formalisms such
as automata or (variations on) temporal logics and studies what specifications in
the chosen formalism are ‘monitorable’ and with what correctness guarantees—see,
for instance, [45, 50, 176]. Since monitors are part of the trusted computing base,
the automated, correct-by-design monitor synthesis from the formal specification
of properties has been thoroughly studied in the literature and is often accompa-
nied by the experimental evaluation of the overhead induced by monitoring—see,
for example, the study of various approaches to the automated monitor synthesis
for systemC specifications given in [190] and the framework for benchmarking of
runtime verification tools presented in [24].

In [14, 15, 104], Aceto et al. specified monitors using a variation on the regular
fragment of Milner’s CCS [153] and studied two trace-based notions of equivalence
over monitors, namely verdict and ω-verdict equivalence. Intuitively, two monitor
descriptions are verdict equivalent when they accept and reject the same finite

71
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execution traces of the systems they observe. The notion of ω-verdict equivalence
is the ‘asymptotic version’ of verdict equivalence, in that it is solely concerned with
the infinite traces that are accepted and rejected by monitors. In their work, Aceto
et. al. focus on determining the ‘monitorable’ fragment of Hennessy-Milner Logic
with recursion [14, 104] and provide monitor-synthesis algorithms for properties
that can be expressed in that fragment. The key (and non-negotiable) property
that the monitor synthesized from a formula ϕ in the monitorable fragment of that
logic should satisfy is soundness, which means that a verdict issued by the monitor
as it examines a system execution determines whether that execution satisfies ϕ or
not correctly. Naturally, sound monitors cannot produce contradictory verdicts for
a given trace.

Our contribution When monitors are described by expressions in some monitor-
specification language, such as the one employed by Aceto et al. in op. cit., it is
natural to ask oneself whether one can (finitely) axiomatize notions of monitor
equivalence over (fragments of) that language. This study is devoted to addressing
that question in the simplest non-trivial setting. In particular, in order to stay
within the realm of classic equational logic over total algebras, we consider a lan-
guage that allows one to specify unsound monitors. However, all the results we
present in the chapter specialize to sub-languages consisting of (sound) monitors
that can only issue either positive or negative verdicts.

The main results we present in this chapter are complete equational character-
izations of verdict equivalence over both closed (that is, variable-free) and open,
recursion-free regular monitors. More specifically, we first provide an equational
axiomatization of verdict equivalence over closed terms from the language of moni-
tors we study that is finite if so is the set of actions monitors can observe (Theorem
4.2). The landscape of axiomatizability results for verdict equivalence over open
terms turns out to be more varied. This variety is witnessed by the fact that there
are three different axiomatizations, depending on whether the set of actions is in-
finite (Theorem 4.4), finite and containing at least two actions (Theorem 4.5) or
a singleton (Theorem 4.6). Only the axiomatization given in Theorem 4.6 is finite
and we show that this is unavoidable. Indeed, verdict equivalence has no finite
equational basis when the set of actions is finite and of cardinality at least two
(Theorem 4.10).

It turns out that the above-mentioned axiomatizations are also complete for
ω-verdict equivalence if the set of actions that monitors may observe is infinite, as
in that case the two notions of equivalence coincide. On the other hand, if the set of
actions is finite, ω-verdict equivalence is strictly coarser than verdict equivalence.
We also provide a finite, complete axiomatization of ω-verdict equivalence for closed
monitors in the setting of a finite set of actions (Theorem 4.3). Our Theorem 4.8
gives a complete axiomatization of ω-verdict equivalence over open monitors when
the set of actions contains at least two actions. If the set of actions is a singleton,
ω-verdict equivalence has a finite equational basis (Theorem 4.7).

The equational axiomatizations we present in this chapter capture the ‘laws
of monitor programming’ [130] for an admittedly rather inexpressive language.
Indeed, recursion-free regular monitors describe essentially tree-like finite-state au-



4.2. PRELIMINARIES 73

tomata with distinguished accept and reject states at their ‘leaves’ with self-loops
labeled by every action. (See the operational semantics of monitors in Table 1.
Note, however, that those automata may have infinitely many transitions, if the
set of actions monitors can observe is infinite. As shown already by Milner in his
classic books on CCS [153, 152], this feature is useful when modeling system events
that carry data values. See, for instance, the paper [44] for one of the earliest
attempts to incorporate data into runtime verification.) However, as witnessed
by our results and their proofs, the study of the equational theory of monitors
modulo the notions of equivalence we consider is non-trivial even for the minimal
language studied in this chapter. In our, admittedly biased, opinion, it is there-
fore worthwhile to map the territory of axiomatizability results for recursion-free
regular monitors, since results for more expressive languages will have to build
upon those we obtain in this chapter. We remark, in passing, that the non-finite
axiomatizability result in Theorem 4.10 is obtained over a substantially more re-
strictive syntax than classic negative results for the algebra of regular expressions,
which rely on the hardness of expressing the interplay between Kleene star and
concatenation equationally [3, 78, 177].

The contribution of this chapter is entirely theoretical and we make no claims
pertaining to the applicability of our current results in the practice of runtime
verification. However, apart from their intrinsic theoretical interest, (extensions
of) the equational axiomatizations we present might be used in the automatic,
syntax-driven synthesis of monitors from specifications of ‘monitorable properties’,
as presented in [14, 15, 103], to rewrite monitor expressions in an ‘equivalent, but
simpler’ syntactic form, for instance by eliminating ‘redundant’ sub-expressions.
As witnessed by the study of optimized temporal monitors for SystemC presented
in [190], the investigation of monitor optimizations based on equational rewriting or
other techniques requires a substantial experimental research effort and is outside
the scope of this project. We discuss other avenues for future research in Section 4.6.

4.2 Preliminaries
We begin by introducing recursion-free regular monitors (or simply monitors in this
study) and the two notions of verdict equivalence that we study in this chapter.
We refer the interested reader to [14, 104] for background motivation and more
information.

Syntax of monitors Let Act be a set of visible actions, ranged over by a, b.
Following Milner [152], we use τ 6∈ Act to denote an unobservable action. The
symbol α ranges over Act ∪ {τ}. Let V be a countably infinite set of variables,
ranged over by x, y, z. We assume that Act ∪ {τ} and V are disjoint.

We write Actω for the set of infinite sequences over Act. As usual, Act∗

stands for the set of finite sequences over Act. Let A be a set of finite sequences
and B be a set of sequences. We write A ·B for the concatenation of A and B.

The collection MonF of (regular, recursion-free) monitors is the set of terms
generated by the following grammar:
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m,n ::= v | a.m | m+ n | x

v ::= end | yes | no

where a ∈ Act and x ∈ V. The terms end , yes and no are called verdicts.
Intuitively, yes stands for the acceptance verdict, no denotes a rejection verdict and
end is the inconclusive verdict, namely the state a monitor reaches when, based on
the sequence of observations it has processed so far, it realizes that it will not be
able to issue an acceptance or rejection verdict in the future. As will be formalized
by the operational semantics of monitors to follow, verdicts are irrevocable. This
means that once a monitor reaches a verdict, it will stick to it regardless of what
further observations it makes. See, for instance, [14, 47, 104] for a detailed technical
discussion.

Intuitively, a monitor of the form a.m can observe action a and behave like m
thereafter. On the other hand, a monitor of the form m+ n can behave either like
m or like n.

Remark 3. The work on which we build in this chapter considers a setting with
three verdicts, two of which are ‘conclusive.’ There are a number of other ap-
proaches in the field of runtime verification that consider many-valued verdicts.
We refer the interested reader to, for instance, [46, 45, 52, 65, 95] for further
information.

Closed monitors are those that do not contain any occurrences of variables. A
(closed) substitution is a mapping σ from variables to (closed) monitors. We write
σ(m) for the monitor that results when applying the substitution σ to m. Note
that σ(m) is closed, if σ is a closed substitution.

Definition 4.1 (Notation). We use m [+v] for a verdict v to indicate that v is
an optional summand of m, that is, that the term can be either m or m + v. In
addition a monitor will be called v-free for a verdict v, when it does not contain
any occurrences of v.

For a finite index set I = {i1, . . . , ik} and indexed set of monitors {mi}i∈I , we
write

∑
i∈I mi to stand for end if I = ∅ and for mi1 + . . . + mik otherwise. This

notation is justified by the fact that + is associative and commutative, and has end
as a neutral element, in all of the semantics we use in this chapter.

We now associate a notion of syntactic depth with each monitor. Intuitively,
the decision a monitor m takes when reading a string s ∈ Act∗ only depends on
the prefixes of s whose length is at most the syntactic depth of m.

Definition 4.2 (Syntactic Depth). For any closed monitor m ∈ MonF , we
define depth (m) as follows:

• depth (a.m) = 1 + depth (m),

• depth (m1 +m2) = max(depth (m1) ,depth (m2)) and

• depth (v) = 0 for a verdict v.
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a.m
a−→ m

m
α−−→ m′

m+ n
α−−→ m′

n
α−−→ n′

m+ n
α−−→ n′ v

α−−→ v

Table 4.1: Operational semantics of processes in MonF .

Semantics of monitors For each α ∈ Act∪{τ}, we define the transition relation
α−−→⊆ MonF × MonF as the least one that satisfies the rules in Table 4.1.

For example, yes + x
τ−→ yes and a.yes + end

b−→ end , for each a, b ∈ Act.
A useful fact based on the above operational semantics is that if m τ−→ m′, then
m′ = v for some verdict v.

Note that variables have no transitions. They represent under-specification in
monitor behavior. For instance, monitor a.yes+x is one that we know can reach the
verdict yes after having observed an a action. Further information on the behavior
of that monitor can only be gleaned once the variable x has been instantiated via
a (closed) substitution.

For m,m′ in MonF and s = a1 . . . ak in Act∗, k ≥ 0, m
s−→ m′ holds iff there

are m0, , . . . ,mk such that

m = m0
a1−→ m1 · · ·mk−1

ak−→ mk = m′.

Additionally, for s ∈ Act∗, we use m s
=⇒ m′ to mean that:

1. m (
τ−→)∗ m′ if s = ε, where ε stands for the empty string,

2. m ε
=⇒ m1

a−→ m2
ε

=⇒ m′ for some m1,m2 if s = a ∈ Act and

3. m a
=⇒ m1

s′
=⇒ m′ for some m1 if s = a.s′ , for some s′ 6= ε.

If m s
=⇒ m′ for some m′, we call s a trace of m.

Lemma 4.1. For all s ∈ Act∗, m, n ∈ MonF , and verdict v, m+n
s

=⇒ v iff m s
=⇒ v

or n s
=⇒ v.

Proof. We prove both implications separately, by induction on the length of s. The
details are straightforward and are therefore omitted. Here we limit ourselves to
remarking that, in the proof of the implication from right to left, if s = ε and
m = v, say, then v + n

τ−→ v by the rules in Table 4.1.

Remark 4. Note that the implication from right to left in Lemma 4.1 would not
hold in the absence of rule v τ−→ v in Table 4.1.
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Verdict and ω-verdict equivalence Let m be a (closed) monitor. We define:

La(m) = {s ∈ Act∗ | m s
=⇒ yes} and

Lr(m) = {s ∈ Act∗ | m s
=⇒ no}.

Intuitively, La(m) denotes the set of traces that are accepted by m, whereas Lr(m)
stands for the set of traces that m rejects. The sets La(m) and Lr(m) will also be
referred to as the acceptance and rejection set ofm respectively. Note that we allow
for monitors that may both accept and reject the same trace. This is necessary
to maintain our monitors closed under + and to work with classic total algebras
rather than partial ones. Of course, in practice, one is interested in monitors that
are consistent in their verdicts. One way to ensure consistency in monitor verdicts,
which was considered in [104], is to restrict oneself to monitors that use only one of
the conclusive verdicts yes and no. All the results that we present in the remainder
of this chapter apply to such monitors.

Remark 5. One might wonder about the connection between the languages that are
accepted/rejected by recursion-free regular monitors and star-free languages [183].
A simple argument by induction on the structure of monitors shows that every
recursion-free regular monitor denotes a pair of star-free languages, one for its
acceptance set and one for its rejection set. Moreover, this means that recursion-
free regular monitors correspond to properties that can be expressed in LTL [134].
However, there are star-free languages (and therefore LTL properties) that cannot
be described by recursion-free regular monitors. For example, the language (ab)∗ is
star-free (see, for instance, [87, page 267]) but does not correspond to any recursion-
free regular monitor.

The monitors we consider in this chapter output a positive or negative verdict
after a finite number of computational steps, if they do so at all. This means
that the linear-time temporal properties to which their acceptance and rejection set
correspond are both ‘Always Finitely Refutable’ and ‘Always Finitely Satisfiable’ in
the sense of [167], as proven in [14].

Definition 4.3. Let m and n be closed monitors.

• We say that m and n are verdict equivalent, written m ' n, if La(m) =
La(n) and Lr(m) = Lr(n).

• We say that m and n are ω-verdict equivalent, written m 'ω n, if La(m) ·
Actω = La(n) ·Actω and Lr(m) ·Actω = Lr(n) ·Actω.

For open monitors m and n, we say that m ' n if σ(m) ' σ(n), for all closed
substitutions σ. The relation 'ω is extended to open monitors in similar fashion.

Example 8. It is easy to see that m+ end ' m holds for each m ∈MonF . More-
over, since La(end) = ∅ and Lr(end) = ∅, a.end ' end holds for each a ∈ Act.

One can intuitively see that the notion of ω-verdict equivalence refers to a form
of asymptotic behavior. Indeed, monitors m and n are ω-verdict equivalent if, and
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only if, they accept and reject the same infinite traces in the sense of [14]. Next we
provide a lemma that clarifies the relations between the two notions of equivalence
defined above.

Lemma 4.2. The following statements hold:

• ' and 'ω are both congruences.

• '⊆'ω and the inclusion is strict when Act is finite.

• If Act is infinite then '='ω.

Proof. For the first claim, it suffices to prove that ' and 'ω are equivalence rela-
tions and that they are preserved by a._ and +. The proof is standard and is thus
omitted.

For the second claim, the inclusion '⊆'ω is easy to check using the definitions
of the two relations. The fact that the inclusion is strict when the set of actions is
finite follows from the validity of the equivalence yes 'ω

∑
a∈Act

a.yes.

However, that equivalence is not valid modulo verdict equivalence since the first
monitor accepts the empty string ε, but

∑
a∈Act

a.yes cannot.

Finally, suppose that Act is infinite. Assume that m and n are ω-verdict
equivalent and that s is a finite trace accepted by m. We will argue that n also
accepts s. To this end, note that, since Act is infinite, there is some action a
that does not occur in m and n. Since m accepts s, the infinite trace saω is in
La(m) ·Actω. By the assumption that m and n are ω-verdict equivalent, we have
that saω is in La(n) · Actω. As a does not occur in n, it is not hard to see that
n accepts s. Therefore, by symmetry, m and n accept the same traces. The same
argument shows that Lr(m) = Lr(n), and therefore m ' n.

Equational logic An axiom system E over MonF is a collection of equations
m = n expressed in the syntax of MonF . An equation m = n is derivable from an
axiom system E (notation E ` m = n) if it can be proven from the axioms in E
using the rules of equational logic (reflexivity, symmetry, transitivity, substitution
and closure under the MonF contexts). See Table 4.2. In the rest of this work we
shall always implicitly assume, without loss of generality, that equational axiom
systems are closed with respect to symmetry, i.e., that if m = n is an axiom, so is
n = m.

We say that E is sound with respect to ' when m ' n holds whenever E `
m = n. We say that E is complete with respect to ' when E can prove all the valid
equationsm ' n. Similar definitions apply for ω-verdict equivalence. The notion of
completeness, when limited to closed terms, is referred to as ground completeness.
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(Ref) m ≈ m (Sym)
m ≈ n
n ≈ m

(Tran)
m ≈ n n ≈ u

m ≈ u

(Subs)
m ≈ n

σ(m) ≈ σ(n)
(Pref)

m ≈ n
a.m ≈ a.n

(Ch)
m ≈ m′ n ≈ n′

m+ n ≈ m′ + n′

Table 4.2: Equational Laws, over MonF .

4.3 A Ground-Complete Axiomatization of Verdict
and ω-Verdict Equivalence

Our goal in this chapter is to study the equational theory of ' and 'ω over MonF .
Our first main result is to give a ground-complete axiomatization of verdict equiv-
alence over MonF . To this end, consider the axiom system Ev, whose axioms are
listed in Table 4.3.

(A1) x+ y = y + x

(A2) x+ (y + z) = (x+ y) + z

(A3) x+ x = x

(A4) x+ end = x

(Ea) a.end = end (a ∈ Act)

(Ya) yes = yes + a.yes (a ∈ Act)

(Na) no = no + a.no (a ∈ Act)

(Da) a.(x+ y) = a.x+ a.y (a ∈ Act)

Table 4.3: The axioms of Ev
.

Remark 6. Note that Ev is finite, if so is Act.

The subscript v in the naming scheme of the axiom set refers to the kind of
equivalence that it axiomatizes, namely verdict equivalence. It will later be replaced
with ω when we study ω-verdict equivalence and used accordingly from that point
forward.

We provide now the following lemma as an observation on the number of nec-
essary axioms when Act is finite and as an example proof based on these axioms.

Lemma 4.3. When Act is finite, the family of axioms (Ya) can be replaced with

(Y) yes = yes +
∑
a∈Act

a.yes.

Similarly the family of axioms (Na) can be replaced with

(N) no = no +
∑
a∈Act

a.no.
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Proof. It is not hard to see that the equation Y can be proved by using the family of
equations Ya. For the converse we can use axioms A3 and Y to prove any equation
yes = yes + b.yes of the family {Ya | a ∈ Act}. Indeed, Ev proves

yes = yes +
∑
a∈Act

a.yes = yes +
∑
a∈Act

a.yes + b.yes = yes + b.yes.

Theorem 4.1. Ev is sound modulo '. That is, if Ev ` m = n then m ' n, for all
m,n ∈MonF .

Proof. It suffices to prove soundness for each of the axioms separately. The details
of the proof are standard and therefore omitted.

In what follows, we will consider terms up to axioms A1-A4.
A fact that will be proven useful later on is the following: If m a−→ n then

A1 − A4, Ea, Ya, Na ` m = m + a.n. This follows easily by induction on the size
of m and a case analysis on its form and it is thus omitted.

We will now prove that the axiom system Ev is ground complete for verdict
equivalence.

Theorem 4.2. Ev is ground complete for ' over MonF . That is, if m,n are closed
monitors in MonF and m ' n then Ev ` m = n.

As a first step towards proving that Ev is complete over closed terms, we isolate a
notion of normal form for monitors and prove that each closed monitor inMonF can
be proved equal to a normal form using the equations in Ev.

Definition 4.4. (Normal Form) A normal form is a closed term m ∈ MonF of
the form: ∑

a∈A
a.ma [+yes] [+no]

for some finite A ⊆ Act, where each ma is a term in normal form that is different
from end .

Note that, by taking A = ∅ in the definition above, we obtain that end is a
normal form. In fact, it is the normal form with the smallest size.

Lemma 4.4. The only normal form that does not contain occurrences of yes and
no is end .

Proof. We proceed by induction on the size of a normal form m. Our base case is a
verdict v. The only such verdict that does not contain an occurrence of either yes
or no is end , which trivially satisfies the lemma. Assume now that m =

∑
a∈A

a.ma

is a normal form satisfying the statement of the lemma. Since each ma is yes- and
no-free, by inductive hypothesis, ma = end . This is only possible if A = ∅. Thus
m = end .
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Lemma 4.5. (Normalization) Each closed term m ∈MonF is provably equal to
some normal form m′ with depth (m′) ≤ depth (m).

Proof. We prove the claim by induction on the lexicographic ordering ≺ over pairs
(depth (m) , size(m)) of a monitor m, where size(m) denotes the length of m in
symbols. We proceed with a case analysis on the form m may have. Our induction
basis will be a verdict v. If v = end then the monitor is already in normal form.
Otherwise: If m = v for some verdict v = yes or no then it is proved equal to
v+ end (from axiom A4). Indeed this normal form of a non-end verdict has depth
less or equal to that of the initial monitor.

Our induction hypothesis is that, for all monitors m0 ∈ MonF up such that
(depth (m0) , size(m0)) ≺ (depth (m) , size(m)), we have that Ev ` m0 = m′0 with
m′0 in normal form and depth (m′0) ≤ depth (m0).

Assume thatm = a.n then clearly n has depth less than that ofm and therefore
by the inductive hypothesis E ` n ' n′ where n′ is in normal form and of depth
less or equal than n. If n′ = end then Ev ` m = end (using Ea) which is a normal
form of smaller depth. Otherwise a.n′ is also a normal form.

Assume that m = m1 +m2. By applying the induction hypothesis we have that

Ev ` m1 =
∑
a∈A1

a.m1a [+yes][+no] and Ev ` m2 =
∑
a∈A2

a.m2a [+yes][+no].

Therefore by applying axioms from Ev we can rewrite m as:

m =
∑

a∈A1\A2

a.m′1a +
∑

a∈A2\A1

a.m′2a +
∑

b∈A1∩A2

b.(m′1b +m′2b) [+yes][+no].

Where by the statement of the lemma we have:

depth

 ∑
a∈A1\A2

a.m′1a

 ≤ depth (m1) ≤ depth (m)

and similarly:

depth

 ∑
a∈A2\A1

a.m′2a

 ≤ depth (m2) ≤ depth (m) .

It remains to show that the summand
∑

b∈A1∩A2

b.(m′1b +m′2b) is equal to a normal

form and that it has depth less or equal to that of m. However, this is not trivial
to see, since the terms m′1a and m′2b have been rewritten by the normalization
procedure and therefore we cannot guarantee that their summation has size less
of that of m (applying the inductive hypothesis only results in terms of smaller
depth but not size as we saw for instance in the case of normalization of verdicts).
However we have the following:

depth (m′1b +m′2b) = max[depth (m′1b) ,depth (m′2b)]
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< max[depth (m′1) ,depth (m′2)].

The later of the above quantities is guaranteed to be less than or equal to
depth (m) by the inductive hypothesis. Therefore we still have that the monitor
m′1b +m′2b appears earlier in the lexicographic ordering and therefore Ev can prove
it equal to a normal form of smaller depth. We will call this normal form m′b.
We have therefore that that depth (m′b) ≤ depth (m′1b +m′2b). We now have the
necessary result that

Ev ` m = m′ =
∑

a∈A1∪A2

a.ma [+yes][+no],

where each ma is in normal form and of depth strictly less than that of m which
means that depth (m′) ≤ depth (m) and we are done.

Since now we have that each term in MonF is provably equal to a normal form,
we might attempt to prove Theorem 4.2 by arguing that the normal forms of two
verdict equivalent monitors are identical. However, it turns out that this is not
true. Consider, for example, the case were m = yes and n = yes + a.a.a.yes.
These two monitors are clearly verdict equivalent as La(m) = La(n) = Act∗ and
Lr(m) = Lr(n) = ∅. However, even though they are in normal form they are not
syntactically equal. Intuitively, a.a.a.yes in monitor n is redundant, as it can be
absorbed by yes. In what follows, we will show how to reduce the normal form
of a monitor further using equations in Ev in order to eliminate such redundant
sub-terms.

Lemma 4.6. The following statements hold for any monitor in MonF :

1. For each action a, if m is a closed no-free term then Ev ` yes + a.m = yes.

2. For each action a, if m is a closed monitor that contains occurrences of both
yes and no then Ev ` yes +a.m = yes +a.n for some yes-free closed monitor
n.

3. For each action a, if m is a closed yes-free term then Ev ` no + a.m = no.

4. For each action a, if m is a closed monitor that contains occurrences of both
yes and no then Ev ` no + a.m = no + a.n for some no-free closed monitor
n.

Proof. We only prove statements 1 and 2 as the proofs of 3 and 4 are similar. We
will use structural induction on m.

1. If m is a verdict other than no then the claim follows using axioms Ea, Ya
and A4 appropriately. If m = b.m′ where m′ is no-free then Ev derives:

yes +a.m
Ya= yes +a.yes +a.m

Da= yes +a.(yes + b.m′)
I.H.
= yes +a.yes

Ya= yes.

If m is of the form m1 + m2 where m1,m2 are no-free, then it suffices to
apply axiom Da and the induction hypothesis.
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2. Assume that m contains occurrences of both yes and no. We will show that
Ev ` yes + a.m = yes + a.n for some yes-free monitor n.
If m = v for some verdict v then the claim follows vacuously.
If m = b.m′ for some m′ that contains both yes and no then there is some
yes-free n′, such that n = b.n′, and Ev derives :

yes + a.m = yes + a.b.m′
Ya= yes + a.yes + a.b.m′

Da= yes + a.(yes + b.m′)

and for some yes-free n′ s.t. n = b.n′:

I.H
= yes + a.(yes + b.n′)

Da= yes + a.yes + a.b.n′
Ya= yes + a.n.

Finally if m = m1 +m2 then Ev can derive:

yes + a.(m1 +m2)
Da= yes + a.m1 + a.m2.

We now isolate the following cases based on what verdicts the monitors
mi, i ∈ {1, 2} contain. If any mi, i ∈ {1, 2} is both yes- and no-free it must
be equal to end as it is in normal form and therefore Ev ` yes + a.mi = yes.
If mi, i ∈ {1, 2} contains occurrences of both yes and no, then the induction
hypothesis yields that

Ev ` yes + a.mi = yes + a.ni

for some yes-free ni. If mi, i ∈ {1, 2} is yes-free we already have the result
that Ev ` yes + a.mi = yes + a.ni for some yes-free monitor ni (which in this
case coincides with mi). Finally, if some mi is no-free then, by statement 1
in the lemma,

Ev ` yes + a.mi = yes.

Combining these observations, we have that:

Ev ` yes + a.m = yes + a.n1 + a.n2

where both n1 and n2 are yes-free and therefore by axiom Da:

Ev ` yes + a.m = yes + a.n

for some yes-free monitor n.

The above lemma suggests the notion of a reduced normal form.

Definition 4.5. (Reduced normal form) A reduced normal form is a term

m =
∑
a∈A

a.ma [+yes] [+no]

in normal form, where if v ∈ {yes,no} is a summand of m then each ma is v-free
and in reduced normal form.
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Remark 7. Note here that if
∑
a∈A

a.ma + yes + no is in reduced normal form then

A = ∅.

Lemma 4.7. Each monitor in normal form is provably equal to a monitor in
reduced normal form.

Proof. The claim follows from Lemma 4.6, using induction on the depth of the
normal form.

We are now ready to complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Since each monitor is provably equal to a reduced normal
form (Lemma 4.7), and by the soundness of Ev (Theorem 4.1), it suffices to prove
the claim for verdict equivalent reduced normal forms m and n. We proceed by
induction on the sum of the sizes of m and n, and a case analysis on the possible
form m may have.

1. Assume that m = yes + no ' n. Since La(m) = Lr(m) = Act∗, it follows
that n has both yes and no as summands. Since n is in reduced normal form
it must be the case that n = yes + no, and we are done.

2. Assume that m =
∑
a∈A

a.ma + yes ' n, where, for all a ∈ A, ma is yes-

free and in reduced normal form and n =
∑
b∈B

b.nb[+yes][+no], where each

nb is in reduced normal form and is v-free, if v is a summand of n. Since
ε ∈ La(m) \Lr(m), we have that yes is a summand of n and no is not. Thus
n =

∑
b∈B

b.nb + yes, and each nb is yes-free. We claim that:

(C1) A = B and

(C2) for all a ∈ A, ma ' na.

To prove that A = B, we assume that a ∈ A. Since ma is yes-free and
different from end , there is some s ∈ Act∗ such that a.s ∈ Lr(m). As
m ' n, we have that a.s ∈ Lr(n). We conclude that a ∈ B and s ∈ Lr(na).
By symmetry, claim (C1) follows.

We now show that ma ' na for each a ∈ A. Since ma and na are yes-free,
La(ma) = La(na) = ∅. We pick now some arbitrary s ∈ Lr(ma) (Lr(ma) 6= ∅
because ma 6= end). This means that a.s ∈ Lr(m) = Lr(n) and therefore
s ∈ Lr(na). The claim follows by symmetry. By the induction hypothesis,
Ev ` ma = na for each a ∈ A = B. Therefore

m =
∑
a∈A

a.ma + yes =
∑
b∈B

b.nb + yes = n

is provable from Ev and we are done.
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3. We are left with the case where m =
∑
a∈A

a.ma + no ' n and the case

m =
∑
a∈A

a.ma. The proofs for those cases are similar to the one for case

2 and are thus omitted.

4.3.1 Axiomatizing ω-Verdict Equivalence
When Act is infinite, by Lemma 4.2 and Theorem 4.2, Ev gives a ground-complete
axiomatization of ω-verdict equivalence as well. However, when Act is finite, Ev is
not powerful enough to prove all the equalities between closed terms that are valid
with respect to ω-verdict equivalence. The new axioms needed to achieve a ground
complete axiomatization in this setting are:

(Yω) yes =
∑
a∈Act

a.yes (Nω) no =
∑
a∈Act

a.no.

The resulting axiom system is called Eω.

Remark 8. The soundness of the new axioms is trivially shown since

La(yes) ·Actω = Act∗ ·Actω = Act+ ·Actω = La(
∑
a∈Act

a.yes) ·Actω

while Lr(yes) = Lr(
∑
a∈Act

a.yes) = ∅ (and symmetrically for the Nω equation).

Theorem 4.3. Eω is ground complete for 'ω over closed terms when Act is finite.
That is if m,n are closed monitors in MonF and m 'ω n then Eω ` m = n.

Proof. By Lemma 4.7 we may assume that m and n are in reduced normal form.
We will prove the claim by induction on the sizes of m and n for two ω-verdict
equivalent monitors m,n in reduced normal form.

We will proceed by a case analysis of the form m may have and limit ourselves
to presenting the proof for a few selected cases that did not arise in the proof of
Theorem 4.2.

• Assume that m = yes +no 'ω
∑
a∈A

a.na = n. First of all note that A = Act.

Indeed if a ∈ Act \ A then aω ∈ (La(m) · Actω) \ (La(n) · Actω) which
contradicts our assumption that m 'ω n. Moreover, it is not hard to see
that, for each a ∈ Act, La(na) ·Actω = Lr(na) ·Actω = Actω. This means
that, for each a ∈ Act, na 'ω yes + no. By induction, for each a ∈ Act,
we have that Eω ` na = yes + no. Thus, Eω ` n =

∑
a∈Act

a.(yes + no). From

axiom Da, Eω ` n =
∑
a∈Act

a.yes+
∑
a∈Act

a.no which from our two new axioms

Yω, Nω yields Eω ` n = yes + no = m, and we are done.
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• Assume thatm = yes+no 'ω
∑
a∈A

a.na+yes, with each na being yes-free and

different from end . Again, reasoning as in the previous case, we have that
A = Act. Moreover for each a ∈ Act, Lr(na) ·Actω = Actω. Following the
same argument as above only for the no verdict we arrive at the conclusion
that Eω ` n = yes +

∑
a∈Act

a.no = yes + no = m.

• The case m = yes + no 'ω
∑
a∈A

a.na + no is symmetrical to the one above.

• Assume that m = yes +
∑
a∈A

a.ma 'ω
∑
b∈B

b.nb where both m and n are in

reduced normal form. First of all, we follow an argument similar to the first
case analyzed above, to the point where Eω ` n = yes +

∑
b∈B′

b.n′b for some

yes-free monitors n′b. For the proof of this final case we will use the following
facts, whose validity can be easily established:

(S1) B = Act,
(S2) for all b ∈ Act, La(nb) = Actω, and
(S3) for all a ∈ A, Lr(ma) = Lr(na).

So, for each a ∈ A, yes + ma 'ω na. Since both of these monitors have
smaller depth that the original ones, we have that by induction:

Eω ` yes +ma = na, ∀ a ∈ A. (4.1)

For each b ∈ Act \A, we have that yes 'ω nb (because Lωr (nb) = ∅). Again,
we have that, by induction:

Eω ` yes = na, ∀ b ∈ Act \B. (4.2)

So:
Eω ` n =

∑
b∈Act

b.nb =
∑
a∈A

a.na +
∑

b∈Act\A

b.yes

By equations (4.1) and (4.2):

Eω ` n =
∑
a∈A

a.(yes +ma) +
∑

b∈Act\A

b.yes

=
∑
a∈A

a.yes +
∑
a∈A

a.ma +
∑

b∈Act\A

b.yes

=
∑
a∈Act

a.yes +
∑
a∈A

a.ma = yes +
∑
a∈A

a.ma,

using axiom Yω, and we are done.
The above analysis can be applied symmetrically for the cases:
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– m = no +
∑
a∈A

a.ma 'ω
∑
b∈B

b.nb = n and

– m =
∑
a∈A

a.ma 'ω
∑
b∈B

b.nb = n.

This completes the proof.

4.4 Open Terms
Thus far, we have only studied the completeness of equational axiom systems for '
and 'ω over closed terms. However, in our grammar we allow for variables and it is
natural to wonder whether the ground-complete axiomatizations we have presented
in Theorems 4.2 and 4.3 are also complete for verdict equivalence and ω-verdict
equivalence over open terms. Unfortunately, this turns out to be false. Indeed, the
equation

(O1) yes + no = yes + no + x

is valid with respect to ' (as both sides trivially accept and reject all traces), but
cannot be proved using the equations in Eω. This is because all the equations in
that axiom system have the same variables on their left- and right-hand sides. Our
goal in the remainder of this section is to study the equational theory of ' and
'ω over open terms. Subsection 4.4.1 will present our results when Act is infinite
as this case turns out to be more straightforward. We consider the setting of a
finite set of actions in Subsection 4.4.2. In what follows, we use E ′v for the axiom
system that results by adding O1 to Ev. The superscript ′ will be used in the
name of an axiom set to denote that the axiom set is complete for one notion of
equivalence over open terms. The absence of a superscript refers respectively to a
ground complete axiom set.

Towards a completeness theorem, we modify the notion of normal form, to take
variables into account. To that end we define:

Definition 4.6. A term m ∈ MonF is in open normal form if it has the form:

m =
∑
a∈A

a.ma +
∑
i∈I

xi [+yes] [+no]

where {xi | i ∈ I} is a finite set of variables, A is a finite subset of Act and each
ma is an (open) term in open normal form that is different from end .

Lemma 4.8. Each open term m ∈MonF is provably equal to some open normal
form m′ with depth (m′) ≤ depth (m).

The proof of the above result follows the lines of the one for Lemma 4.5 for
closed terms and is thus omitted.

As in the case of closed terms, we now proceed to characterize a class of open
normal forms for open terms whose verdict equivalence can be detected “struc-
turally”. The following example highlights the role that equation (O1) plays in
that characterization.
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Example 9. Consider the following monitor in open normal form:

m = x+ yes + a.b.(no + b.a.x).

Monitor m contains two occurrences of the variable x. However, because of the
interplay between the two verdicts, one of them is redundant and can be removed
thus:

E ′v ` m = x+ yes + a.b.(no + b.a.x)

Ya= x+ yes + a.yes + a.b.(no + b.a.x)

Yb= x+ yes + a.(yes + b.yes) + a.b.(no + b.a.x)

Da= x+ yes + a.(yes + b.yes + b.(no + b.a.x))

Db= x+ yes + a.(yes + b.(yes + no + b.a.x))

O1= x+ yes + a.(yes + b.(yes + no))

Db= x+ yes + a.(yes + b.yes + b.no)

Yb= x+ yes + a.(yes + b.no)

Da= x+ yes + a.yes + a.b.no

Ya= x+ yes + a.b.no.

The above example motivates the following notion of reduced normal form for
open terms.

Definition 4.7. An open reduced normal form is a term

m =
∑
a∈A

a.ma +
∑
i∈I

xi [+yes] [+no]

where if v ∈ {yes,no} is a summand of m then each ma is v-free, different from
end and in open reduced normal form. In addition:

• if both yes and no are summands of m then m is equal to yes + no,

• if yes is a summand of m and m s−→ no +m′, for some s and m′ then m′ is
equal to end ,

• if no is a summand of m and m s−→ yes +m′, for some s and m′ then m′ is
equal to end .

In what follows we will omit the word “open” when referring to the normal form
of a term that contains variables.

Lemma 4.9. For each open monitor m ∈ MonF , its normal form is provably equal
to a reduced normal form.
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Proof. By Lemma 4.8 we may assume that m is in in normal form. The proof is
by induction on the size of m and we isolate the following cases, depending on the
verdicts v ∈ {yes,no} m has as summands:

1. Case m =
∑
a∈A

a.ma +
∑
i∈I

xi. In this case we use the induction hypothesis

on the ma monitors. These are different from end and have smaller size
than m and therefore they are provably equal to a reduced normal form,
i.e E ′v ` ma = m′a where m′a is in reduced normal form. Thus E ′v proves
m =

∑
a∈A

a.m′a +
∑
i∈I

xi, and we are done since
∑
a∈A

a.m′a +
∑
i∈I

xi is in reduced

normal form.
By applying the congruence closure equational law we have that E ′v ` m = m′,
where m′ is in reduced normal form.

2. Case m = yes +
∑
a∈A

a.ma +
∑
i∈I

xi. In this case by the induction hypothesis

each ma is provably equal to a reduced normal form. The extra step here is
that if m s−→ no + m′, for some s and m′ then m′ is equal to end . In such a
scenario we have that:
If s = ε, then the claim follows trivially from O1. Otherwise s = a.s′ for
some action a ∈ Act and m a−→ ma

s′−→ no + m′. We now apply our axioms
as follows:

m = yes +
∑
a∈A

a.ma +
∑
i∈I

xi
Ya= yes +

∑
b∈A\{a}

b.mb + a.yes + a.ma +
∑
i∈I

xi

Da= yes +
∑

b∈A\{a}

b.mb + a.(yes + a.ma) +
∑
i∈I

xi.

This means that since yes +ma has size smaller than m it is provably equal
to a reduced normal form. Additionally, since it contains a yes summand and
ma

s′−→ no +m′, by the induction hypothesis we have that m′ is equal to end
and we are done.

3. Case m = no +
∑
a∈A

a.ma +
∑
i∈I

xi. The proof of this case is symmetrical to

Case 2 and therefore omitted.

4. Case m = yes + no +
∑
a∈A

a.ma +
∑
i∈I

xi. In this case we use the following

simple argument. Starting for axiom O1 we use the substitution σ(x) =∑
a∈A

a.ma +
∑
i∈I

xi and we get:

yes + no = yes + no +
∑
a∈A

a.ma +
∑
i∈I

xi,

and by applying the equational law of transitivity we have that E ′v ` m =
yes + no.
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The normal form defined above for open terms is adjusted over the closed terms
case. This is because now our syntax is allowing for variables and therefore it
is convenient for proofs to take these variables into account in a controlled and
consistent manner. The further reducing that occurred towards defining the open
reduced normal forms was possible due to the existence of the new axiom O1, which
gave us the option to remove variable occurrences. The new axiom O1 is the only
axiom we have currently available that does not contain every variable occurrence
in both of its sides and it is therefore the only rule we have available that can
help us remove variables from equations. In the presence of other axioms with this
property we can further reduce our normal forms, as we will see later on.

In the following subsections, we will study the full equational theory of verdict
and omega-verdict equivalence over open terms.

4.4.1 Infinite Set of Actions
We begin by considering the equational theory of open monitors when the set of
actions is infinite. Apart from its theoretical interest, this scenario has also some
practical relevance. Indeed, as shown already by Milner in [153, 152], infinite sets
of uninterpreted actions are useful when modeling system events that carry data
values. Runtime monitoring of systems with data-dependent behavior has been an
active field of research for over 15 years—see, for instance, the paper [44] for an
early reference.

When the set of actions Act is infinite, it is easy to define a one-to-one mapping
from open to closed terms that will help us prove completeness of the axiom system
E ′v.

Theorem 4.4. (Completeness for open terms modulo ') E ′v is complete for ' over
open monitors in MonF when Act is infinite. That is, for all m,n ∈ MonF , if
m ' n, then E ′v ` m = n.

Proof. Assumem ' n. By Lemma 4.9, we may assume thatm and n are in reduced
normal form.

Let
m =

∑
a∈A

a.ma +
∑
i∈I

xi [+yes] [+no]

and
n =

∑
b∈B

b.nb +
∑
j∈J

yj [+yes] [+no].

We will show that E ′v ` m = n by induction on the sum of the sizes of m and n.
To this end, we will establish a strong structural correspondence between m and
n. Consider a substitution σ defined as follows: σ(x) = ax.(yes + no) where

• for all variables x and y, ax = ay implies x = y, and

• {ax | x ∈ V} is disjoint from the set of actions occurring in m or n.

Note that such a substitution σ exists because Act is infinite. By induction on
the sizes of m and n, we will prove that if σ(m) ' σ(n) then:
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(C1) v is a summand of m iff v is a summand of n, for v ∈ {yes,no},

(C2) {xi | i ∈ I} = {yj | j ∈ J},

(C3) A = B and

(C4) for each a ∈ A, σ(ma) ' σ(na).

In what follows, we first show that E ′v provesm = n assuming claims (C1)-(C4)
and then we prove those claims. To prove that E ′v proves m = n follows from
σ(m) ' σ(n) for reduced normal forms m and n, we proceed by induction on
the sum of the sizes of m and n. By claim C4, we have that σ(ma) ' σ(na)
and, from the induction hypothesis, E ′v ` ma = na. By C1-3 we also have that
E ′v `

∑
i∈I

xi =
∑
j∈J

yj and that
∑
a∈A

a.ma =
∑
b∈B

b.nb, which means that by using the

equational law of closure under summation we also have that E ′v ` m = n.
We present now the proofs of (C1)-(C4).
C1: Assume yes is a summand of m. Then ε ∈ La(σ(m)). Since σ(m) ' σ(n),

we have that ε ∈ La(σ(n)). Note that ε 6∈ La(σ(x)) for each x. Thus yes must be
a summand of n. The case for v = no is similar. By symmetry the claim follows.

C2: Assume that x ∈ {xi | i ∈ I}. By the definition of σ, it follows that σ(m)
both accepts and rejects the trace ax. Since m ' n, we have that σ(n) also accepts
and rejects the trace ax. As n does not contain any occurrence of ax and has at
most one of the verdicts yes and no as a summand, it follows that x ∈ {yj | j ∈ J}.
Therefore, by symmetry, {xi | i ∈ I} = {yj | j ∈ J} and we are done.

C3: Assume, towards a contradiction, that a ∈ A \ B. Then m cannot have
both yes and no as summands, since m is in reduced normal form.

If m has none of the verdicts as a summand, we know that ma is different from
end since m is in reduced normal form. Therefore σ(ma) will either accept or reject
some trace s, which implies that σ(m) will also accept or reject as. However, σ(n)

cannot do the same because a 6∈ B, σ(x) 6 a=⇒ for each x, and neither yes nor no are
summands of n. This contradicts our assumption that m ' n.

Assume now, without loss of generality, that m has only the verdict yes as
summand. Observe thatma is yes-free and different from end , sincem is in reduced
normal form. This means that σ(ma) can reject some trace s and, therefore, that
σ(m) will reject a.s. On the other hand, σ(n) cannot do the same because a 6∈ B,
σ(x) 6 a=⇒ for each x and no is not a summand of n. Again, this contradicts our
assumption that m ' n.

The above analysis yields that A ⊆ B. By symmetry, A = B follows.
C4: Our final claim (and the one with the most involved proof) is that σ(ma) '

σ(na), for each a ∈ A.
If the reduced normal forms of the monitors do not contain any verdict v ∈

{yes,no} as a summand, then the argument is simplified significantly. Therefore,
we limit ourselves to presenting here the most complicated case, where m and n
both contain exactly one verdict v ∈ {yes,no} as a summand. Without loss of
generality, we assume that this verdict is yes, namely that

m = yes +
∑
a∈A

a.ma +
∑
i∈I

xi
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and
n = yes +

∑
b∈B

b.nb +
∑
j∈J

yi.

Since the claims C1-3 have already been proven, we know for m and n that:

m = yes +
∑
a∈A

a.ma +
∑
i∈I

xi and n = yes +
∑
a∈A

a.na +
∑
i∈I

xi .

We remind the reader that our purpose is to prove that σ(ma) ' σ(na), for each
a ∈ A, so that we can apply our induction hypothesis to infer that E ′v ` ma = na.

We first prove that the rejection sets of σ(ma) and σ(na) are equal. To this end,
assume that s ∈ Lr(σ(ma)). It follows that a.s ∈ Lr(σ(m)) = Lr(σ(n)). By the
form of n and from the definition of σ, we conclude that s ∈ Lr(σ(na)). Therefore,
Lr(σ(ma)) ⊆ Lr(σ(na)). By symmetry we have that Lr(σ(ma)) = Lr(σ(na)) and
we are done.

It remains to prove that the acceptance sets of σ(ma) and σ(na) are also iden-
tical. (It is important here to point out that, since both m and n contain a yes
verdict as a summand, the acceptance sets of σ(m) and σ(n) are both equal to
Act∗. However, for our inductive argument to work, we need to be able to prove
that La(σ(ma)) = La(σ(na)).) To that end and towards a contradiction, consider
a shortest trace s that is accepted by monitor σ(ma), but not by σ(na). Conse-
quently, monitor σ(m) accepts the trace a.s.

Since monitors ma and na are yes-free, as a result of m and n being in reduced
normal form, the acceptance of s must be the result of a variable x mapped to
ax.(yes+no) through the substitution σ. Since s is a shortest trace that is accepted
by monitor σ(ma), but not by σ(na), none of its prefixes is accepted by σ(ma) and
therefore the last action that is in s must be the action ax stemming from σ(x).

This means that monitor ma can perform the transition ma
s′
=⇒ m′a, where m′a

contains x as a summand and s = s′.ax. Therefore the monitor σ(ma) can perform
the transitions:

σ(ma)
s′
=⇒ σ(m′a)

ax−→ yes + no
τ−→ yes.

Since s′.ax is accepted by σ(ma), it must also be rejected by it because ax is
an action that can only be observed after the substitution of the variable x in ma.
We have already argued that the rejection sets of σ(ma) and σ(na) are equal and
therefore σ(na) also rejects the trace s′.ax. Since the action ax is a unique action
corresponding to the variable x, there are only two ways in which σ(na) could reject
the trace s′.ax. The first case is that σ(na) can also perform the transitions

σ(na)
s′
=⇒ σ(n′a)

ax−→ yes + no

wfor some n′a. However, this would guarantee that σ(na) accepts s, whereas we
assumed that it does not.

The most complicated case is when σ(na) can reject a prefix s0 of s′. By
the already proven equality of the rejection sets of the two sub-monitors, σ(ma)
would also reject s0. This can only happen if both na and ma rejected that prefix
independently of the substitution σ, since every action preceding ax along the
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trace s′ is not an action corresponding to the mapping of a variable through σ as
explained above. This means that both ma and na can perform the transitions
ma

s0=⇒ no + m′a and na
s0=⇒ no + n′a, for some m′a and n′a. However, since m and

n are in reduced normal form, this implies that m′a and n′a are equal to end . This
leads us to a contradiction, as we assumed that σ(ma) accepts the trace s which
can no longer be the case if ma

s0−→ no + end where s0 is a prefix of s.
Therefore every trace accepted by σ(ma) is also accepted by σ(na). By sym-

metry, we have that the acceptance sets of ma and na are equal.
This means that σ(ma) ' σ(na), which completes the proof of C4 and conse-

quently of the whole theorem.

Corollary 4.4.1. E ′v is complete for 'ω over open monitors in MonF when Act
is infinite. That is, for all m,n ∈ MonF , if m ' n, then E ′v ` m = n.

Proof. The claim follows from Lemma 4.2.

4.4.2 Finite Set of Actions
The study of the equational theory of ' when Act is finite turns out to be more
interesting and complicated. In this setting, we can identify equations whose valid-
ity depends on the cardinality of Act, which is not the case for any of the axioms
we used so far. To see this, consider the equation

(V1) x = x+ a.x,

which is sound when Act = {a} but cannot be derived by the equations in E ′v, as
it is not sound when Act 6= {a}.

As a first step in our study of the equational theory of ' when Act is finite,
we characterize some properties of sound equations.

Lemma 4.10. Let m ' n be a sound equation, where m,n ∈ MonF and m is in
reduced normal form. Assume that

• m
s−→ x+m′, for some s in Act∗, variable x and m′ in MonF , and

• m 6 sp−→ x+msp , for each proper prefix sp of s and msp ∈ MonF .

Then, n s−→ x+ n′ for some n′ in MonF .

Proof. Consider the substitution

σ(y) =

{
yes + no, if y = x

end , if y 6= x.

Since m s−→ x+m′ by one of the assumptions of the lemma, we have that σ(m)

will both accept and reject s. Since m ' n is sound we have that σ(n) must do the
same. If n 6 s−→ x+ n′ for every n′ then it is not hard to see that there are two ways
in which n could accept and reject s:
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1. n s′
=⇒ yes and n s′

=⇒ no where s′ is a prefix of s (including s itself), or

2. n s′−→ x+ n′ where s′ is a prefix of s (so that σ(n) would accept and reject s′

and therefore s).

In the first case, consider the substitution σe that maps all variables to end .
Since n s′

=⇒ yes and n
s′
=⇒ no, we have that σe(n) accepts and rejects s′. From

m ' n, we have that σe(m) also accepts and rejects s′. It is not hard to see that

this means that m s′
=⇒ yes and m s′

=⇒ no However, this is impossible because m is a

reduced normal form and m s−→ x+m′ by the proviso of the lemma.
In the second case, even though both monitors accept and reject s, we also have

that σe(n) also accepts and rejects s′. Again, since the two monitors are verdict
equivalent, we know that σe(m) must do the same. Since m is in reduced normal
form and m 6 sp=⇒ x+m′ for any prefix sp of s (and therefore neither for s′) we have

that σ(m) can only accept and reject s′ by performing the transitions m
s′′1=⇒ yes

and m
s′′2=⇒ no, for s′′1 and s′′2 prefixes of s′. This however is not allowed since it

contradicts the fact that m is in reduced normal form and m
s−→ x + m′. Since

both cases have led to a contradiction, we can infer that there is some n′ such that
n

s
=⇒ x+ n′, which was to be shown.

Corollary 4.4.2. Let m ' n be a sound equation, where m,n ∈ MonF and m is
in reduced normal form. Assume that

• m
s−→ x+m′, for some s in Act∗, variable x and m′ in MonF , and

• n 6 s−→ x+ n′, for any n′ ∈ MonF .

then we have that there exists an sp prefix of s such that

• m
sp−→ x+msp and n

sp−→ x+ nsp for some msp and nsp in MonF , and

• for any prefix s0 of sp we have that m 6 s0=⇒ x+m′ and n 6 s0=⇒ x+n′ for any m′

and n′ in MonF .

Proof. Assume a sound equation m ' n for which we have m s−→ x+m′, for some
s in Act∗, variable x and m′ in MonF . If this is the first occurrence of x along
the trace s in m (i.e. m 6 sp−→ x + msp , for each proper prefix sp of s and msp ∈
MonF ), then by Lemma 4.10, we would have that n must be able to perform the
transitions n s−→ x+ n′, for some n′ in MonF . Since this cannot be the case as the
proviso of the corollary forbids it we have that there must be a prefix sp of s such
that m

sp−→ x+msp .
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Without loss of generality we assume sp to be the shortest such trace, which
means there are no other occurrences of the variable x along the trace sp. We can
therefore see that now for the trace sp, Lemma 4.10 holds and therefore n

sp−→ x+nsp
for some nsp in MonF . Additionally since we assumed sp t be the shortest trace of
the necessary property we already have that m 6 s0=⇒ x+m′ for any m′ in MonF .

It remains to show that the same must hold for n. This can be easily seen to
be the case since if we assumed the opposite where for some prefix s0 of sp we
had n

s0−→ x + n0 for some n0 then by the symmetric analysis and by using the
previous lemma and this corollary we would arrive at a contradiction of sp being
the shortest prefix of s for which m

sp−→ x+msp .

Remark 9. In what follows, when studying open equations, we will refer to occur-
rences of variables such as the one mentioned in the above corollary, where only
one of the monitors involved in the equation can reach a term of the form x+mx

after observing a trace s, as “one-sided” variable occurrences.

Intuitively Lemma 4.10 states that on each sound equation (including axioms)
of which at least one side is in reduced normal form, the first occurrence of each
variable per distinct trace leading to the variable is common for both sides of the
equation.This gives us some handy intuition on what restrictions an equation that
is sound must satisfy.

The following example shows Lemma 4.10 in action.

Example 10. The equation

x+ a.(x+ a.(yes + no) + b.(yes + no)) = x+ a.(a.(yes + no) + b.(yes + no))

is sound over the set of actions Act = {a, b}, but

x+ a.(x+ a.(yes + no) + b.(yes + no)) = a.(x+ a.(yes + no) + b.(yes + no))

is not since the first occurrence of the variable x in the second example happens
after the prefix ε on the left-hand side but after the prefix a on the right. In the
second equation, the earliest occurrence of the variable x (after the prefix ε) is
one-sided.

Also notice here the importance of the sub-term a.
∑
a∈Act

a.(yes + no). We will

see that this type of sub-term is crucial for the soundness of the open equations
with one-sided variable occurrences we encounter later on.

The following notation will be used in what follows to describe a family of sound
equations that generalize the one given in Example 10.

Definition 4.8. (Notation) Let s ∈ Act∗.

1. We use pre(s) to denote the set of prefixes of s (including s).

2. We use si, i ≥ 1, to denote the trace s if i = 1 and ssi−1 otherwise.
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3. We use s.m to stand for a monitor that can perform exactly the actions along
the finite trace s and then become m.

4. We define s≤(m) =
∑

|s′|≤|s|,
s′ 6∈pre(s)

s′.m . The monitor s≤(m) is one that behaves

like m after having observed any trace of length at most |s| that is not a prefix
of s.

5. The term s(m) is defined thus: s≤(m) + s.
∑
a∈Act

a.m .

Intuitively s(yes + no) stands for the monitor that accepts and rejects all
traces that do not cause the acceptance or rejection of the string s. Those
are exactly the traces that are shorter than s but not its prefixes, and also the
ones extending s.

6. With the term s(k)(m), for k ≥ 1, we will mean the summation:

s(m) if k = 1 and
∑

1≤i<k−1

si.s≤(m) + sk−1.s(m) if k ≥ 2.

Intuitively s(k)(yes + no) stands for a monitor that, after observing the fixed
trace s, accepts and rejects everything except the trace sk (and its prefixes).

We now present an example of the usage of the above notation in order to help
the reader understand the equations presented later involving these new notions.

Example 11. For a set of actions Act = {a, b}, the monitor m = yes + no and
a trace s = ab we have that:

• pre(s) = {ε, a, ab}

• s≤(m) = b.(yes + no) + a.a.(yes + no) + b.b.(yes + no) + b.a.(yes + no)

• s(m) = b.(yes + no) + a.a.(yes + no) + b.b.(yes + no) + b.a.(yes + no) +

a.b.
∑
c∈Act

c.(yes + no)

• and for k = 3 we get

s(3)(m) = s.s≤(m) + s2.s(m) =

a.b.(b.(yes + no) + a.a.(yes + no))+

a.b.a.b.(b.(yes + no) + a.a.(yes + no) + b.b.(yes + no)+

b.a.(yes + no) + a.b.
∑
c∈Act

c.(yes + no))
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This notation defined and presented above is very useful once one understands
a very particular form equations among open monitors take when they involve one-
sided variable occurrences. Consider, for instance, the following sound equation
(for a fixed constant k):

x+ ak.x+ ak
3
(yes + no) ' x+ ak

3
(yes + no) .

We will formally prove the soundness of (a more general form of) this equation
later on. We can intuitively see from the examples above that when an equation
contains a one-sided variable occurrence, then the rest of the terms involved in the
equation must have some specific form as well so that the equation will stay sound
under all possible substitutions. This means that certain traces must always be
accepted and rejected by both sides independently of a substitution.

The following lemma formalizes this intuition.

Lemma 4.11. Assume m ' n, where m,n are in reduced normal form. If m s−→

x + m′ for some m′ but n 6 s−→ x + n′ for any n′, then there exist s′, s′′ such that
s = s′s′′ and, for all sb = ssp where sp 6∈ pre(s′′), either:

• m
sb=⇒ yes, m sb=⇒ no, n sb=⇒ yes and n sb=⇒ no or

• ∃s0,m
′′, n′′ such that m s0−→ x+m′′ and n s0−→ x+ n′′ and s0.sb ∈ pre(s.sb).

Proof. We have an equation m ' n, with m and n in reduced normal form, for
which we assume that: m s−→ x + m′ but n 6 s−→ x + n′ for any n′. Let s be the
shortest trace meeting the proviso of the lemma. It is not hard to see that s 6= ε
because m ' n and m and n are in reduced normal form. This means that indeed
in the monitors m,n all other earlier occurrences of x happen at both sides. By
Corollary 4.4.2 we know that there is a prefix of s called s′ (s = s′.s′′) such that

both m and n can perform the transitions m s′−→ x+m′0 and n s′−→ x+ n′0, and in

addition for every prefix of s′ we have that n 6 s
′

−→ x+n′ and m 6 s
′

−→ x+m′ for every
m′ and n′.

This means that there are no other one-sided occurrences of the variable x
“between” s′ and s′′ (otherwise s would not be the shortest trace). Since m ' n
is sound, we know that under any substitution the resulting monitors are verdict
equivalent.

Consider the set of traces

A = {t | (|t| ≤ |s′′| ∧ t 6∈ pre(s′′)) ∨ t = s′′.t′, t′ ∈ Act+} .

We now associate with this set of traces the class SA of substitutions σ as the
ones that for at least one trace sp ∈ A we have that σ(x)

sp
=⇒ yes or σ(x)

sp
=⇒ no.

Note that the class of substitution SA contains many substitution for each trace sp
and, additionally, since the set A is infinite, SA is infinite as well.
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Fix now a sp and a substitution σ ∈ SA such that σ(x)
sp
=⇒ yes. We have

therefore that σ(m)
s′sp
==⇒ yes, σ(n)

s′sp
==⇒ yes and σ(m)

ssp
==⇒ yes. By the construction

of A, s′sp is not a prefix of ssp and therefore it is not necessary that σ(n)
ssp
==⇒ yes.

However, since m ' n is sound we have that σ(n) must also be able to accept s.sp.
One way this could happen is if both monitors, m and n accept and reject the trace
sb = s.sp where sp ∈ A independently of a substitution, i.e. m sb=⇒ yes, m sb=⇒ no,

n
sb=⇒ yes and n

sb=⇒ no. Note that if one monitor can perform these transitions
independently of a substitution then the other one must do so as well since they
are verdict equivalent. If this is the case then for the traces s′, s′′ with s = s′s′′ an
for all sb = ssp where sp 6∈ pre(s′′) the first bullet of the lemma holds.

If this is not the case however we have that for a trace sp and a substitution
σ ∈ SA such that σ(x)

sp
=⇒ yes the monitor n must somehow accept the trace ssp

and this is not done because n sb=⇒ yes.
We remind to the reader here that s is the shortest we could find that sat-

isfied the proviso of the lemma. Therefore there are no other one-sided variable
occurrences along the trace s.

This means that the only way than n could accept sb is another variable oc-
currence (not one-sided as s is the shortest trace satisfying the proviso of the the
lemma) happening after some other prefix s0 of s. I.e. n s0−→ x+ n1, m

s0−→ x+m1

for some monitors n1 and m1 and trace s0.sp is a prefix of s′.s′′.sp = s.sp. Note
here that by Corollary 4.4.2 we know that s′ is the shortest trace after which the
variable x occurs. Therefore our only options for the trace s0 would be the trace s′
and its extensions which falls in the second case of the lemma as s0.sp is a prefix
of s.sp.

This concludes the case analysis for the shortest s leading to a one-sided variable
occurrence of a variable. We continue with a trace s1 as the immediately longer
than s. For this s1 with |s1| ≥ |s| we can generalize the result as follows:

If s ∈ pre(s1) then the trace s′ we identified with the case analysis s is also a
prefix of s1 (i.e. s1 = s′.s′′1) and the same transitions we proved for the traces sb are
also enough for the result to hold for the trace s1. Assume now that s 6∈ pre(s1).
Then Corollary 4.4.2 still holds and the one-sided variable occurrence after the
trace s1 also does not have any other one-sided variable occurrences between itself
and the prefix guaranteed by the corollary which means we can apply the same
analysis.

Completeness of verdict equivalence

In this section we will present our axiom system for open monitors over a finite
number of actions. We start by providing an axiom set, which we prove to be sound
and complete for verdict equivalence over MonF . In order to do so, we first use
these axioms to further reduce a normal form of a term. Then, by utilizing this
new reduced normal form we use structural induction to prove the completeness of
our axiom set. The axiom set we provide is infinite. It is therefore natural to ask
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whether ' is finitely axiomatizable over MonF . We answer this question negatively
by proving that no complete finite axiom set exists for this algebra. This final part
follows a different type of argument which we will present in Section 4.5.

When studying open equations over a finite set of actions one would hope that
one of the axiom systems presented already would be complete. However, we can
guarantee that the equations provided in E ′v are definitely unable to prove every
sound open equation. To see this consider the equation used in Example 11 (where
k is a constant):

x+ ak.x+ ak
(3)

(yes + no) ' x+ ak
(3)

(yes + no) .

We can clearly see that one of the sides of this equations contains a one-sided
variable occurrence (remember that we are considering terms up to A1−A4). The
only axiom which has a similar behavior is O1. However for axiom O1 to be applied
it must be the case that a variable is occurring simultaneously with a yes and a
no verdict. Since this does not apply for the equation we are examining it is easy
to see that no proof involving only the axioms of E ′v could prove it.

Towards proving this kind of equations and when Act is finite, we consider the
family of axioms

O = {O2s,k | s ∈ Act∗, k ≥ 0}

where

(O2s,k) x+ s.x+ s(k)(yes + no) = x+ s(k)(yes + no) .

We extend our finite axiom set E ′v for open terms to the infinite E ′v ∪ O, which
we will call E ′v,f. The subscript f in the naming scheme states that the action
set for which the axiom system is complete is finite. When the action set is a
singleton, we will replace it with the subscript 1. If the cardinality of the action
set is not important, or if it is infinite, then we use no subscript. Based on the
naming scheme we have defined, the name of the axiom set E ′v,f denotes that we are
studying verdict equivalence (v), over open terms (′) and for a finite set of actions
(f ).

Lemma 4.12. E ′v,f is sound. That is, if E ′v,f ` m = n then m ' n, for all
m,n ∈MonF .

Proof. We have to prove soundness only for the new family of equations O as the
other equations are sound by Theorem 4.1.

First of all, note that σ(x+ s.x+ s(k)(yes + no)) accepts every trace accepted
by σ(x+ s(k)(yes + no)), and rejects every trace rejected by σ(x+ s(k)(yes + no)).
We are therefore left to show that

• if σ(s.x) accepts some trace then so does σ(x+ s(k)(yes + no)), and

• if σ(s.x) rejects some trace then so does σ(x+ s(k)(yes + no)).
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We only detail the proof for the latter claim, as that of the former one is similar.
To this end, assume that σ(s.x) rejects some trace s′. Then s′ = ss′′ for some s′′
that is rejected by σ(s.x). If s′′ is a prefix of sk, then it is not hard to see that
σ(x) rejects s′ too, and thus so does σ(x + s(k)(yes + no)). On the other hand,
if s′′ is not a prefix of sk, then s′ = ss′′ is not a prefix of sk either. Therefore,
σ(s(k)(yes + no)) rejects s′. It follows that σ(x+ s(k)(yes + no)) rejects s′, and we
are done.

We provide here some examples of how to use the above to derive some simpler
and more intuitive sound equations.

Lemma 4.13. The following equations are derivable from O for each s, s1 ∈ Act∗:

1. x+ s.x+ s.s0(yes + no) = x+ s.s0(yes + no), with s0 a prefix of s,

2. yes +x+ s1.s2(no) = yes +x+ s1.s2(no) + s1.x, where s2 is any prefix of s1,

3. no +x+ s1.s2(yes) = no +x+ s1.s2(yes) + s1.x, where s2 is any prefix of s1,

4. x+ s.
∑
a∈Act

a.(no + yes) = x+ s.(x+
∑
a∈Act

a.(no + yes)).

Proof. We first show how to derive the first equation and then we derive the rest
from it. We start by picking the equation O2s,1 i.e.

x+ s.x+ s.s≤(yes + no) + s.s.
∑
a∈Act

a.(yes + no) =

x+ s.s≤(yes + no) + s.s.
∑
a∈Act

a.(yes + no) .

In addition we have the tautology

s.s0.
∑
a∈Act

a.(yes + no) = s.s0.
∑
a∈Act

a.(yes + no) ,

for the specific prefix s0 of s. On the two valid above equations we apply the
congruence rule for + and have:

x+ s.x+ s.s≤(yes + no) + s.s.
∑
a∈Act

a.(yes + no) + s.s0.
∑
a∈Act

a.(yes + no)

= x+ s.s≤(yes + no) + s.s.
∑
a∈Act

a.(yes + no) + s.s0.
∑
a∈Act

a.(yes + no) .

The first simplification that we perform now is by observing that the sum-
mand s.s0.

∑
a∈Act

a.(yes + no) accepts and rejects a prefix of the whole summand

s.s.
∑
a∈Act

a.(yes + no) and therefore we can eliminate the latter from the summa-

tion:
x+ s.x+ s.s≤(yes + no) + s.s0.

∑
a∈Act

a.(yes + no)
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= x+ s.s≤(yes + no) + s.s0.
∑
a∈Act

a.(yes + no) .

In addition the term s.s≤ can be rewritten as s.s0
≤(yes + no) + s.s0.s1(yes + no)

with s = s0.s1. To see this, consider that the traces up to length |s| that do not
cause a rejection of the trace s are the ones that do not cause a rejection of its prefix
s0 and the ones that start with s0 but do not cause the rejection of its continuation
s1. Thus we have:

x+ s.x+ s.s0
≤(yes + no) + s.s0.

∑
a∈Act

a.(yes + no) + s.s0.s1(yes + no)

= x+ s.s0
≤(yes + no) + s.s0.

∑
a∈Act

a.(yes + no) + s.s0.s1(yes + no) .

Now we have again that the summand s.s0.
∑
a∈Act

a.(yes + no) accepts and

rejects a prefix of the whole summand s.s0.s1(yes + no) and therefore we can omit
the latter. This gives us the equation:

x+ s.x+ s.s0
≤(yes + no) + s.s0.

∑
a∈Act

a.(yes + no) =

x+ s.s0
≤(yes + no) + s.s0.

∑
a∈Act

a.(yes + no) ,

which can be rewritten using our notation as

x+ s.x+ s.s0(yes + no) = x+ s.s0(yes + no) ,

giving us the target equation.
Having presented the proof for the first family of equations in detail we give a

short description for the rest. For the equations (2) and (3) it suffices to use the
congruence rule for + with the equations yes = yes and no = no respectively and
then simplify the equations by using the distribution axiom for +. For the latter
equation (4) it is enough to instantiate the prefix s0 in the the family of equations
(1) as the empty string ε. This is, of course, allowed since the empty string is a
prefix of any string.

Now that we have discussed the family of axioms O, we proceed to use them in
defining a notion of reduced normal form that is suitable for monitors over a finite
action set.

Definition 4.9. A finite-action-set reduced normal form is a term

m =
∑
a∈A

a.ma +
∑
i∈I

xi [+yes] [+no]

where each ma is different from end and if v ∈ {yes,no} is a summand of m then
each ma is v-free, and in reduced normal form. If both yes and no are summands
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of m then m is equal to yes + no. In addition for every trace s, if there exists a k
such that for all the traces s0

s(k)(yes + no)
s0−→ yes + no, implies: m s0=⇒ yes and m s0=⇒ no

then m 6 s−→ xi +m′ for all i ∈ I and m′.

In order to use the above form of the monitors in MonF we need to prove
that any term can be rewritten in a reduced normal form using the axioms in E ′v,f.
Before doing so we will prove the following useful lemma, which only uses axioms
form Ev.

Lemma 4.14. For a monitor m ∈ MonF :

• if m s
=⇒ yes then Ev ` m = m+ s.yes and

• if m s
=⇒ no then Ev ` m = m+ s.no.

Proof. We prove both statements by induction on the length of the trace s and
limit ourselves to presenting the proof for the first one.

• If s is the empty trace, then m accepts the empty trace. Therefore it must
contain a yes syntactic summand and we are done.

• Assume now that s = a.s′. Then m a−→ ma
s′−→ yes for some ma. By induction

E ′v,f ` ma = ma + s′.yes.

Now,

E ′v,f ` m = m+ a.ma = m+ a.(ma + s′.yes) = m+ a.ma + a.s′.yes

= m+ a.s′.yes

We will also need a similar result, this time involving syntactic summands that
contain occurrences of variables.

Lemma 4.15. For a monitor m ∈ MonF , where m is in normal form for open
terms, if m s−→ x+ms then Ev ` m = m′ + s.x where m′ 6 s−→ x+m′′ for every m′′.

Proof. We prove the claim by induction on the length of the trace s.

• If s is the empty trace then m
ε−→ x + ms = m. This means that x is

a summand of m. Since m is in normal form, ms does not have x as a
summand and we are done.

• Assume now that s = a.s′. Since m is in normal form and m a.s′−−→ s+m′, we
have that m = m′ + a.ma for some m′ 6 a−→ and ma in formal form such that
ma

s′−→ x + m′. By the induction hypothesis, Ev ` ma = m′a + s′.x where

m′a 6
s′−→ x+m′s′ for every m

′
s′ .
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Therefore we have:

m = m′ + a.ma = m+ a.(m′a + s′.x) = m′ + a.m′a + a.s′.x ,

and sincem′a 6
s′−→ x+m′s′ for everym

′
s′ andm

′ 6 a−→ we have thatm = s.x+mrest

with mrest 6
s−→ x+m′′ for every m′′ and we are done.

Lemma 4.16. Each open monitor m ∈ MonF , is provably equal to a reduced
normal form using E ′v,f.

Proof. From Lemma 4.8 we can start from a monitor m already in open normal
form, as given in Definition 4.6. Therefore we have the following cases:

• m = yes + no.

• m = yes +
∑
a∈A

a.ma +
∑
i∈I

xi, where each ma is yes-free.

• m = no +
∑
a∈A

a.ma +
∑
i∈I

xi, where each ma is no-free.

• m =
∑
a∈A

a.ma +
∑
i∈I

xi.

We begin our analysis from the second case. A similar analysis can be applied to
the third one and the fourth one follows by a simpler version of the same inductive
argument. We have therefore a monitor m = yes +

∑
a∈A

a.ma +
∑
i∈I

xi. The extra

claim for these reduced normal forms is that if for some trace s, and a k0, for all
traces s0,

s(k0)(yes + no)
s0−→ yes + no, implies: m s0=⇒ yes and m s0=⇒ no

then m 6 s−→ xi + mx for all i ∈ I and mx. In order to prove this extra constraint
we assume the premise is true. We will show that we can reduce m to mred with
Efin ` m = mred and mred 6

s−→ xi +mx for every i ∈ I and every mx.

Since m accepts and rejects all the traces that s(k0)(yes + no) accepts and
rejects, we have that m ' m+m′ and that m′ s0−→ yes + no for all of the traces s0

that s(k0)(yes+no)
s0−→ yes+no. We call this set of traces S which is finite since k0

is fixed. Therefore by Lemma 4.14 we have that E ′v,f ` m = m+
∑
s0∈S

s0.(yes +no).

Since the term
∑
s0∈S

s0.(yes + no) is verdict equivalent to s(k0)(yes + no) and both
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terms are closed, we have that by Theorem 4.2, Ev `
∑
s0∈S

s0.(yes+no) = s(k0)(yes+

no). Therefore E ′v,f ` m = m+ s(k0)(yes + no), which means

E ′v,f ` m = yes +
∑
a∈A

a.ma +
∑
i∈I

xi + s(k0)(yes + no).

For the same monitor m we now want to argue that if m s−→ xi for one of the
variables in {xi | i ∈ I} then we can eliminate this occurrence.

Since m is in reduced normal form we have by Lemma 4.15 that m = m′+ s.xi
where m′ 6 s−→ xi. Additionally we have shown that m = m+ s(k0)(yes + no) which
implies m = m′ + s.xi + s(k0)(yes + no) with m′ 6 s−→ xi. Since xi is one of the
variables that appear as summands of m we can successfully apply the axiom
O2s,k0 for each variable and we have the that indeed m reduces to a monitor mred

such that mred 6
s−→ xi +mxi for every i ∈ I and every mxi .

Lemma 4.17. If monitor m ∈ MonF , with |Act| ≥ 2 is in reduced normal form
and contains an x summand and m s−→ x + m′ for some m′ then there is at least
one trace sbad such that for every k,

s(k)(yes + no)
sbad==⇒ yes and s(k)(yes + no)

sbad==⇒ no

but
m 6 sbad==⇒ yes or m 6 sbad==⇒ no.

Proof. We can easily show that for each k there exists an sk such that s(k)(yes +

no)
sk−→ yes + no but m 6 sk=⇒ yes or m 6 sk=⇒ no. This follows since if this were not the

case then for some k0, no such trace sk0 exists. Thus the monitor would contain
a summand m′ ' s(k0)(yes + no) for this k0 and still it would be able to perform
the transition m s−→ x+m′ which contradicts the assumption that m is in reduced
normal form.

We will now show that one trace sbad suffices for all k. To that end, consider
the term s(1)(yes + no). If there is an s1, which is not a prefix of ss and m 6 s1=⇒

yes or m 6 s1=⇒ no then for sbad = s1 we have that for all k, s(k)(yes + no)
sbad==⇒

yes and s(k)(yes + no)
sbad==⇒ no and we are done. If this is not the case and since

the trace s1 is guaranteed to exist (by the previous paragraph) then it must be an
extension of ss. Again if s1 is not prefix of sss then again for sbad = s1 we have
the necessary conclusion.

Otherwise m 6 s1=⇒ yes or m 6 s1=⇒ no for the trace s1 = ssa, where a is the first

action of s. Therefore by the definition of s(k)(yes + no) we have that for all sb
such that s(k)(yes+no)

sb−→ yes+no and k > 1 we have that m 6 sb=⇒ yes or m 6 sb=⇒ no.
This allows us to look for an sbad which will also cover the case k = 1 in larger
terms.
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We then apply the same reasoning for k = 2, . . . up to a certain kb. If at any
point in the process we encounter a trace si which fulfills our premise then we can
stop. We are just left to show that this process will eventually terminate.

This can be shown as follows. Recall that every monitor m has a finite depth
depth (m) (see Def. 4.2). We now take a kb large enough so that skb > depth (m).
If the iterative procedure described above reaches this kb we have that m 6 sbad==⇒ yes

or m 6 sbad==⇒ no for the trace skb+1a where a is the first action of s. However since
the depth of the monitor m is smaller that the length of this trace we also have
that the monitor cannot accept or reject any of its extensions.

Therefore for the extension sbad = skb+1ac where c is not the second action of
s we have that for all k > kb, s(k)(yes + no)

sbad==⇒ yes and s(k)(yes + no)
sbad==⇒ no

while m
not

sbad==⇒ yes or m 6 sbad==⇒ no. Additionally since the iterative procedure we described

above reached this kb we have that for all i ≤ j ≤ kb, it is true that s(k)(yes+no)
sj
=⇒

yes and s(k)(yes + no)
sj
=⇒ no, which concludes the proof.

The two lemmata above play a key role in the completeness proof we will present
now.

We distinguish two cases separately, namely when |Act| ≥ 2 and when Act is
a singleton. This is necessary because equations such as x = x+a.x are only sound
when Act = {a}. For the proof when |Act| ≥ 2 it is necessary to utilize at least
two actions a, b ∈ Act, which is the reason why when only one action is available
new cases arise.

Action set with at least two actions We have already shown the soundness
of the axiom system E ′v,f. We now proceed to show completeness.

For each such completeness theorem we follow a similar general strategy in or-
der to prove that two arbitrary verdict equivalent monitors have identical reduced
normal forms. To that end, we prove that they have identical variables as sum-
mands, that the sets of initial actions that each one can perform are equal and
that after a common action they reach monitors that are also verdict equivalent.
Unfortunately, for a finite set of actions, we were not able to define a substitution
that would cover all the three above-mentioned steps like we did when the set of
actions was infinite. We therefore adopted a proof strategy that focuses on each
part of the proof separately.

Theorem 4.5. E ′v,f is complete for open terms for finite Act with |Act| ≥ 2. That
is, if m ' n then E ′v,f ` m = n.

Proof. By Lemma 4.16 we may assume that m and m are in reduced normal form.
We prove the claim by induction on the sum of the sizes of m and n, and proceed
with a case analysis on the form m may have.

In the case where m contains both a yes and a no summand then both m and
n must be equal to yes + no as they are in reduced normal form.
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Assume now that
m = yes +

∑
a∈A

a.ma +
∑
i∈I

xi ,

where {xi | i ∈ I} is the set of variables occurring as summands of m and each ma

is yes-free and different from end (as a reduced normal form). Since σ(m) accepts
ε for each σ and m ' n, monitor n is bound to have a similar form since it must
contain the verdict yes as a summand (but not a no one). Therefore:

n = yes +
∑
b∈B

b.nb +
∑
j∈J

yj

and we need to show that there is a way to apply our axioms to show that monitor
n is provably equal to m.

We start by proving that {xi | i ∈ I} = {yj | j ∈ J}. By symmetry, it suffices
to show that {xi | i ∈ I} ⊆ {yj | j ∈ J}. To this end, assume x ∈ {xi | i ∈ I}.
Consider the substitution σ mapping x to no and every other variable to end , i.e:

σ(y) =

{
no, if y = x

end , otherwise.

Then, σ(m) rejects the empty trace ε. Since σ(m) ' σ(n), we have that σ(n)
must also reject ε. By the form of n and the definition of σ, this is only possible if
n has x as a summand, and we are done. Therefore the set of variables of m is a
subset of the variables of n.

Next, we prove that the action sets A,B are identical. Assume that a ∈ A.
Since Act contains at least two actions, there is some action b 6= a. Consider the
substitution σ1 defined by σ1(x) = b.no for each x ∈ V. Since a ∈ A and ma is
yes-free and different from end , it is easy to see that there exists an s ∈ Act∗

such that as ∈ Lr(σ1(m)). Since m ' n we have that σ1(m) ' σ1(n) and therefore
σ1(n) must also reject as. By the form of n and the definition of σ, this is only
possible if n a−→ na for some na and therefore a ∈ B. Hence, A ⊆ B and the claim
follows by symmetry.

For the final part of the proof we must show that ma ' na for each a ∈ A,
which is enough to complete the proof, by the induction hypothesis. Towards a
contradiction we will assume that the two monitors ma, na are not verdict equiva-
lent. Therefore there exists a substitution σ0 that separates them, that is without
loss of generality, there is a trace s0 such that s0 ∈ Lr(σ0(ma)), s0 6∈ Lr(σ0(na)) or
there is some s0 ∈ La(σ0(ma)), s0 6∈ La(σ0(na)) .

We will analyze first the case of rejection of the string s0. The substitution σ0

must be a closed one for ma, na i.e. it must map to a closed monitor all variables
in (V ar(ma) ∪ V ar(na)). We will use this substitution to create a new one σbad
that would also separate the original monitors m,n.

The first step towards this is:

σbad(x) =

{
end , if x ∈ V ar(m) \ (V ar(ma) ∪ V ar(na)),

σ0(x), otherwise.
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Now since s0 ∈ Lr(σ0(ma)) and σbad(ma) = σ0(ma) we also know that a.s0 ∈
Lr(σbad(a.ma)). Our aim is to show that a.s0 6∈ Lr(σbad(n)). Following the defini-
tion σbad(na) = σ0(na) and therefore s0 6∈ Lr(σbad(na)).

Hence, the only way for σbad(n) to reject a.s0, like σbad(m) does, is if it was
rejected by the mapping of one the variables contained in the set {xi | i ∈ I}.

It is useful to make here apparent that in order for σbad(n) to reject a.s0, it must
do so completely independently of the summand σbad(a.na), since the latter cannot
reject any of the prefixes of a.s0 as well. Even in the case where s0 starts with a,
and σ0(na) rejects some a.s1.s2. . . . sn−i it would still be impossible for σ0(n0) to
reject a.s0 since the assumption that a.s0 = a.a.s1.s2. . . . sn−1 would automatically
imply that σ0(na) rejects some prefix of s0 which is a contradiction.

σbad(m)

no

s ′′

σbad(ma) σbad(ms + x) no
s′′s′

a

Figure 4.1: Transitions the monitor σbad(m) can perform

By the definition of σbad, the variables that did not appear at all in na or ma

were mapped to end and therefore cannot reject any string. Therefore the only
way for n to reject a.s0 is for one of the variables appearing in V ar(na)∪V ar(ma)
to have been mapped to a closed term that can reject a.s0. (Note that this does
not contradict the fact that σbad(na) does not reject s0). Therefore there is at least
one x0 ∈ V ar(ma) ∪ V ar(na) and x0 ∈ {xi | i ∈ I} such that as0 ∈ Lr(σbad(x0)).

This leads to the case were m,n reject a prefix of as0 because of the mapping
of x0. However this implies that we have the following situation:

m = yes + x0 + a.ma +
∑

b∈A\{a}

b.mb +
∑

i∈I\{0}

xi '

yes + x0 + a.na +
∑

b∈A\{a}

b.nb +
∑

i∈I\{0}

xi = n

and that the monitor ma can perform the transitions: ma
s′−→ m′a + x0 and the

monitor σ0(x0) = σbad(x0) respectively can perform the transitions: σbad(x0)
s′′−→

no , where s′ is a prefix of s0 (i.e. s0 = s′.s′′) and in addition na 6
s′−→ x+ n′ for any

n′. This means respectively that m as′−−→ m′a + x0 and σbad(m′a + x0)
s′′−→ no .

By Lemma 4.17 we have that there exists at least one trace sb such that m 6 sb=⇒

yes or m 6 sb=⇒ no but sb ∈ Lr(as′
(k)

(yes + no)) for all k ≥ 0. Since m contains a

yes summand we have that it must be the case that m 6 sb=⇒ no. We now, further
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modify σbad to map the variable x0 to sb.no and any other variable y 6= x0 to end .
We have then that sb and as′.sb ∈ Lr(σbad(m)). In addition sb ∈ Lr(σbad(n)).
However the traces that are rejected by the term as′

(k)
, by definition, are exactly

the traces such that their rejection does not cause a rejection of the as′ trace. This
means that under the modified substitution σbad, monitor n cannot reject the trace
as′.sb. This deems the monitors m,n not verdict equivalent, which contradicts our
assumption. We conclude then that the rejection set of ma is equal to the rejection
set of na for each a ∈ A.

It remains to show that ma and na also have identical acceptance sets. Towards
a contradiction, assume they do not and take a trace s that under some substitution
σ0 separates them, i.e. s ∈ La(σ0(ma)) and s 6∈ La(σ0(na)). In addition, assume
that s is of minimum length, meaning that no prefix of s (under any substitution)
has the property of separating the acceptance sets of ma and na. This fact in
addition to ma and na being yes-free (as a result of m and n being in reduced
normal form) means that the acceptance of s by ma is the result of a variable x
occurring in ma as ma

s−→ x + m′ for some m′. Since however the assumption is

that s 6∈ La(σ0(na)) we have that na 6
s−→ x + n′ for any n′. We know that this is

exactly the case since if the variable x occurred earlier in ma then by mapping it
to yes we would have a shorter trace being accepted by σ0(ma) but not σ0(na).

We are sure now that monitor σ0(na) cannot perform the transition σ0(na)
s

=⇒
yes, which means that not only it does not arrive at the variable x after reading
the trace s, but also does not arrive to the yes verdict for any of its prefixes (say
s′) as that would imply that it can reach the yes verdict for s as well.

Finally, by n being in reduced normal form, and by ma not arriving at a no
verdict for any of the prefixes s′ of s (as this would mean that if becomes a no and
therefore cannot perform the transitions ma

s−−→ x ) we know that na does not
arrive to the no verdict after reading the trace s or any of its prefixes either.

Given all of the above we can now construct the substitution σbad that would
separate the rejection sets of na,ma which is enough to prove the contradiction as
the case where such a substitution exists and separates the rejection sets of the
two sub-monitors has already been covered. The situation we have at hand is as
follows:

Monitor σ0(ma) can arrive to the verdict yes after reading the trace s while
σ0(na) cannot and also neither na nor ma can produce a no verdict for the trace
s. Therefore if we switch the mapping of x to no in σ′ and the verdicts of all
other variables that where mapped to a no verdict to end we have produced a
substitution that causes s to be rejected by σ′(ma) but not from σ′(na). By utilizing
our previous construction there exists another one that separates the monitors n,m
as well which is a contradiction.

We have concluded then that the La(ma) = La(na) and Lr(ma) = Lr(na)
which means that they are verdict equivalent. Therefore we can apply the inductive
hypothesis and have that E ′v,f ` ma = na. Using now congruence rules we have
that E ′v,f ` m = n. All other possible forms of monitors m,n are sub-cases that the
relative analysis can be applied symmetrically and therefore they are omitted.
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Singleton Action Set We proceed now with the analysis of the completeness
result when Act = {a}.

As we mentioned earlier, when a is the only action, the equation

(V1) x = x+ a.x

is sound, but cannot be proved from the equations in E ′v,f over {a}. Indeed, unlike
V1, all the equations in Ev are sound regardless of the cardinality of the action
set and those in the family O introduce subterms of the form yes + no, which can
never be removed in equational derivations.

Theorem 4.6. The finite axiom system E ′v,1 = E ′v ∪ {V1} is complete for verdict
equivalence over open monitors when Act = {a}. That is, if m ' n then E ′v,1 `
m = n. Hence, verdict equivalence is finitely based when Act = {a}.

Proof. Before we start the main proof we note that the new axiom V1 can prove
the equation x = an.x + x for each n ≥ 0. This is done as follows: if n = 0 then
this is the axiom A3. Assume we can prove that equation for n. Then we can show
it for n+ 1 thus:

x
V1= x+ a.x

I.H.
= x+ a.(an.x+ x)

Da= x+ a.x+ an+1.x
V1= x+ an+1.x .

Note here that this means that E ′v∪{V1} proves all the equations in O over {a},
which means that even though E ′v ∪ {V1} is finite, it can prove the infinite family
E ′v,f over {a}.

Letm ' n. By Lemma 4.16, we can assume thatm and n are in reduced normal
form. We will present the argument only for the case wherem = yes+a.ma+

∑
i∈I

xi,

where each ma is yes-free, as every other case is either trivial or a sub-case of this
one.

By following the reasoning of previous proofs, we have that n = yes [+a.na] +∑
i∈I

xi.

Let us first consider the case that a.na is not a summand of n. (Note that this
is possible, as witnessed by axiom V1.) That is

m = yes + a.ma +
∑
i∈I

xi ' yes +
∑
i∈I

xi = n .

Observe that, for each s ∈ Act∗, we have ma 6
s

=⇒ no. Indeed, ma
s

=⇒ no would
imply thatm and n are not verdict equivalent under the substitution σend(x) = end
for all x. This means that ma is both yes- and no-free. Moreover, note that the
set of variables occurring in ma is included in {xi | i ∈ I}. To see this, assume that
x occurs in ma, but is not contained in {xi | i ∈ I}. Consider the substitution that
maps x to no and all the other variables to end . Again, we have that m rejects
some trace starting with a while n cannot reject any trace, which contradicts our
assumption that m ' n.
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For each monitor m′, we define V(m′) as the set of pairs (s, x) such that m′ s−→
x + m′′ for some m′′. By structural induction on m′ and Lemma 4.15, one can
easily prove that, when m′ is yes- and no-free, Ev proves m′ =

∑
(s,x)∈V(m′)

s.x.

Therefore m = yes + a.
∑

(s,x)∈V(ma)

s.x+
∑
i∈I

xi. Since the only available action

in Act is a and the variables occurring in ma also occur in {xi | i ∈ I}, we have
that by applying the equations we proved earlier by using axiom V1 we can prove
m = yes +

∑
i∈I

xi = n, and we are done.

Assume now that a.na is a summand of n. We proceed to prove that that
ma ' na. In this case we have

ma =
∑

(s,x)∈V(ma)

s.x [+ah.no] and na =
∑

(s,x)∈V(na)

s.x [+ak.no] ,

for some h, k.
By mapping all variables to end we can see that h = k. Additionally, for each

variable s and by using the axiom V1 we can reduce both of the above summations
so that only the shortest s leading to x is kept. By Lemma 4.10, we have that, for
each variable, this s is identical for both sides of the equality m ' n and we are
done.

Completeness of ω-verdict equivalence

This section presents a complete axiomatization for ω-verdict equivalence over
MonF . We have already presented the necessary axioms that capture ω-verdict
equivalence over closed terms, as well as the necessary ones to capture equivalence
of terms that include variables. We will show here that the combination of the two
axiom systems is enough for completeness of ω-verdict equivalence over open terms
and there is no need for extra axioms to be added. First we look at the case for a
singleton action set, i.e. Act = {a}. In this case, the equation

(V1ω) x = a.x

is sound and we therefore we can shrink the axiom system to:

E ′ω,1 = {A1−A4} ∪ {V 1ω} ∪ {O1},

for which we prove:

Theorem 4.7. E ′ω,1 is complete for ω-verdict equivalence for open terms for a finite
Act, with |Act| = 1. That is, if m 'ω n then E ′ω,1 ` m = n.

Proof. The proof of the above follows easily since, by using those equations, every
term can be proved equal to one of the form

∑
i∈I

xi [+yes] [+no], where I is empty if

both yes and no are summands, and two terms of that form are ω-verdict equivalent
iff they are equal modulo A1 − A4. Note that, in this case, there are only four
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congruence classes of terms, namely the ones asymptotically equivalent to subsets of
yes and no, so the quotient algebra is very small and equationally well behaved.

In the case where there the action set contains more than one action but is still
finite we have a more interesting situation. We therefore define:

E ′ω,f = Eω ∪ E ′v,f ,

for which we prove:

Theorem 4.8. E ′ω,f is complete for ω-verdict equivalence over open terms when
Act is finite and |Act| ≥ 2. That is, if m 'ω n then E ′ω,f ` m = n.

The rest of this section is devoted to the proof of the above theorem. We start
by showing a lemma that tells us that if two monitors are ω-verdict equivalent then
they can only disagree on finitely many finite traces.

Lemma 4.18. For two monitors in MonF , we have that m 'ω n if and only if,
for any substitution σ, the set

Sm,n,σ = (La(σ(m)) \ La(σ(n))) ∪ (Lr(σ(m)) \ Lr(σ(n)))

∪ (La(σ(n)) \ La(σ(m))) ∪ (Lr(σ(n)) \ Lr(σ(m)))

is finite.

Proof. We prove both implications separately by establishing their contrapositive
statements. For the implication from left to right, assume that Sm,n,σ is infinite.
It follows that there are some σ and trace s such that s ∈ Sm,n,σ with

|s| > max{depth (σ(m)) ,depth (σ(n))}.

Assume, without loss of generality, that σ(m) accepts s, but σ(n) does not.
Let a ∈ Act. Then saω is in La(σ(m)) · Actω. We claim that saω is not in
La(σ(n)) · Actω. Indeed, σ(n) does not accept any prefix of s, since it does not
accept s itself, and it does not accept sai for any i ≥ 0 because |s| > depth (σ(n)).
For the implication from right to left, assume, without loss of generality, that
there are some substitution sigma and some t ∈ Act{omega such that t is in
La(σ(m)) ·Actω, but not in La(σ(n)) ·Actω. Since t is in La(σ(m)) ·Actω, we
have that there are some s ∈ La(σ(m)) and u in Actω such that t = su. It follows
that ss′ ∈ La(σ(m)) for each finite prefix s′ of u, but none of the ss′ is contained
in La(σ(n)). Therefore, Sm,n,σ is infinite, and we are done.

We are now ready to present the proof of the main theorem of this section
(Theorem 4.8).

Proof. By Lemma 4.16 we may assume without loss of generality that the monitors
m and n are in finite-action-set reduced normal form (Definition 4.9).

We proceed by a case analysis on the formm and nmight have and by induction
on the sum of the sizes of m and n.
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• Assume that m = yes + no 'ω
∑
a∈A

a.na +
∑
j∈J

yj = n. First of all, note that

A = Act. Indeed, assume a 6∈ A. Then, under a substitution that maps
every variable to end , all infinite traces starting with a are neither accepted
nor rejected by n since n cannot take an a transition and it also does not
accept and reject ε. However all infinite traces (including those starting from
a) are both accepted and rejected by m, which is a contradiction as we have
assumed that the two monitors are ω-verdict equivalent.
Moreover, it is not hard to see that na 'ω yes + no holds for each a ∈ Act.
By the induction hypothesis, E ′ω,f proves na = yes + no, for each a ∈ Act.
Therefore,

E ′ω,f ` n =
∑
a∈Act

a.(yes + no) +
∑
j∈J

yj
Da=

∑
a∈Act

a.yes +
∑
a∈Act

a.no +
∑
j∈J

yj

Yω,Nω
= yes + no +

∑
j∈J

yj
O1
= yes + no ,

and we are done.

• Now, we assume that m = yes + no 'ω
∑
a∈A

a.na +
∑
j∈J

yj + yes = n, with

each na being yes- and end -free. As above A = Act. Moreover, for each
a ∈ Act, Lr(na) · Actω = Actω. Following the same argument as above
only for the no verdict we conclude that

E ′ω,f ` n = yes +
∑
a∈Act

a.no +
∑
j∈J

yj = yes + no = m.

• The case m = yes + no 'ω
∑
a∈A

a.na +
∑
j∈J

yj + no = n is symmetrical to the

previous one.

• The final case whose proof we present in detail is when

m = yes +
∑
a∈A

a.ma +
∑
i∈I

xi 'ω
∑
b∈B

b.nb +
∑
j∈J

yj [+yes] [+no] = n ,

where each side is in reduced normal form. To deal with this case, we note,
first of all, that by mimicking the argument in the first case of the proof,
we can prove that E ′ω,f ` n = yes +

∑
b∈B′

b.n′b +
∑
j∈J

yj , where now each n′b is

yes-free. By the same argument as for the verdict equivalence case (Proof of
Theorem 4.5) and by defining the appropriate substitutions σ we can infer
that A = B′ and {xi | i ∈ I} = {yj | j ∈ J}. In other words, we have:

m = yes +
∑
a∈A

a.ma +
∑
i∈I

xi 'ω yes +
∑
a∈A

a.n′a +
∑
i∈I

xi ,
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where m and n are in finite-action-set reduced normal form for open terms.
It remains to show that under every substitution σ we have that σ(ma) 'ω
σ(n′a) so that we can apply our induction hypothesis and complete the proof.

Towards a contradiction assume that this is not the case. Therefore there
exists a substitution σ for which there is at least one infinite trace s such that,
without loss of generality, s ∈ Lr(σ(ma)) · Actω but s 6∈ Lr(σ(n′a)) · Actω

or s ∈ La(σ(ma)) · Actω but s 6∈ La(σ(n′a)) · Actω. We examine first the
case of the rejection sets. Since σ(ma) rejects the infinite trace s, there is
some finite prefix s0 of s that is rejected by σ(ma). Note that σ(ma) will also
reject all the finite prefixes of s that extend s0. On the other hand, σ(n′a)
does not reject any of those because it does not reject s.

As we saw in the proof of Theorem 4.5 this substitution and any such trace
s0 can be modified to a new substitution σ′ such that σ′(m) 6' σ′(n) and
consequently m is not verdict equivalent to n. Specifically from the proof of
Theorem 4.5 we have that:

– Under the substitution σ′, all variables except x are mapped to end .

– ma
s′−→ x+m′a for some m′a and a trace s′ that is a prefix of s0.

– n′a 6
s′−→ x+ n′′a for any n′′a

– The variable x is mapped to sb.no for a trace sb such that m rejects the
trace as′sb, but n does not.

By Lemma 4.18 we have that the only waym can be ω-verdict equivalent to n
is if the number of traces they disagree on, under any substitution (including
σ′), is finite. Since monitor m is ω-verdict equivalent to n, both monitors
must disagree on finitely many extensions of as′sb. This however can be done
only if ma and n′a also disagree on finitely many extensions of s′sb. This is
because we have seen that under σ′, only the variable x can contribute to
the rejections sets of the monitors and it does so by being mapped to sb.no.
However, as sb is not a prefix of as′sb we know that also none of its extensions
are prefixes of as′sb. Therefore the rejection of sb does not cause the rejection
of any of the prefixes and extensions of as′sb. This implies that the infinite
trace s is only rejected by σ′(ma) but not σ′(n′a), which implies that the
monitors ma and n′a still disagree on infinitely many extensions of s0 under
the new substitution σ′ which is a contradiction.

It is now easy to see that for each a ∈ A and for each substitution σ we have
that Lr(a.σ(ma)) · Actω = Lr(a.σ(n′a)) · Actω which implies Lr(σ(ma)) ·
Actω = Lr(σ(n′a)) · Actω. It remains to see that La(σ(ma)) · Actω =
La(σ(n′a)) ·Actω.

To this end, assume, towards a contradiction, that there exist a substitution
σ and an infinite trace s such that s ∈ La(σ(ma)) ·Actω but s 6∈ La(σ(n′a)) ·
Actω. Following the argument for the rejection sets, we can infer that there
is a finite trace s0 accepted by σ(ma) but not by σ(n′a). Again by using the
proof of Theorem 4.5 , we can transform σ into a σ′ that causes a disagreement
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over the rejection of a trace s′0 for σ(ma) and σ(n′a) i.e. s′0 ∈ Lr(σ′(ma)) but
s′0 6∈ Lr(σ′(n′a)). This, in turn, means we can apply the same reasoning as
before for the rejection of a trace to reach a contradiction, namely that m
and n are not ω-verdict equivalent.

We can therefore conclude that σ(ma) 'ω σ(n′a) under any substitution σ and
therefore we can apply our induction hypothesis to obtain E ′ω,f ` ma = n′a.
Using the congruence rules, we have E ′ω,f ` m = n, and we are done.

Table 4.4 summarizes the equational axiom systems we have obtained.

4.5 A Non-Finite-Axiomatizability Result
Observe that the family of axioms O = {O2s,k | s ∈ Act∗, k ≥ 0}, which is included
in E ′v,f, is infinite. Thus it is natural to wonder whether verdict equivalence has a
finite equational axiomatization over MonF . In the remainder of this section, we
will provide a negative answer to that question by showing that no finite subset of
E ′v,f is enough to prove all the equations in O.

Intuitively, the proof of the above claim proceeds as follows. Let E be an
arbitrary finite subset of E ′v,f. First of all, we isolate a property of equations that
is satisfied by all the equations that are provable from E . We then show that there
are equations in the family O that do not have the given property. This means that
those equations are not provable from E and, therefore, that E cannot be complete
for verdict equivalence.

An arbitrary finite axiom set vs. a finite subset of E ′v,f In Section 4.4.2, in
Theorem 4.5, we proved that E ′v,f is complete for open terms over a finite action set
modulo verdict equivalence. Therefore, without loss of generality, we can assume
that any basis would be, in fact, a subset of the equations in E ′v,f. To see this,
consider any sound equation that could be involved in an arbitrary axiom set. Since
E ′v,f is complete this equation is derivable from it. In addition, since every proof is
finite, there is a finite number of axioms of E ′v,f involved in this proof. Therefore,
any finite family of equations is derivable from a finite subset of the equations in
E ′v,f. This means that if another finite family of equations was complete, there
would also be a finite subset of equations from E ′v,f which would also be complete.
From now on, when considering a finite equational basis we will always mean a
subset of the equations in E ′v,f. This reasoning is referred to as a compactness
argument.

We remind our readers that we assume that all axiom systems that we consider
are closed under symmetry. This preserves finiteness and allows us to simplify our
arguments, since the symmetry rule does not need to be used in equational proofs.

Definition 4.10 (Notation). For a finite, non empty set of equations E we denote
as depth (() E) the quantity:

max{depth (m) | m = n ∈ E}.
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(A1) x+ y = y + x

(A2) x+ (y + z) = (x+ y) + z

(A3) x+ x = x

(A4) x+ end = x

(Ea) a.end = end (a ∈ Act)

(Ya) yes = yes + a.yes (a ∈ Act)

(Na) no = no + a.no (a ∈ Act)

(Da) a.(x+ y) = a.x+ a.y (a ∈ Act)

The axioms of Ev, which are ground complete for ' (Theorem 4.2).

(Yω) yes =
∑
a∈Act

a.yes (Nω) no =
∑
a∈Act

a.no

The axiom system Eω = Ev ∪ {Yω, Nω} is ground complete for 'ω when Act is
finite (Theorem 4.3).

(O1) yes + no = yes + no + x

The axiom system E ′v = Ev ∪ {O1} is complete for ' when Act is infinite
(Theorem 4.4).

O = {O2s,k | s ∈ Act∗, k ≥ 0} where

(O2s,k) x+ s.x+ s(k)(yes + no) = x+ s(k)(yes + no)

The axiom system E ′v,f = E ′v ∪ O is complete for ' when Act is finite and
|Act| ≥ 2 (Theorem 4.5).

(V1) a.x+ x = x

The axiom system E ′v,1 = E ′v ∪ {V1} is complete for ' when |Act| = 1
(Theorem 4.6).

(V1ω) x = a.x

The axiom system E ′ω,1 = {A1, . . . , A4, V 1ω, O1} is complete for 'ω when
|Act| = 1 (Theorem 4.7).

The axiom system E ′ω,f = Eω ∪ E ′v,f is complete for 'ω when Act is finite and
|Act| ≥ 2 (Theorem 4.8).

Table 4.4: Our axiom systems.
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The depth of an axiom system turns out to be a very important aspect of it
when proving open equations. We refer the reader to all the axioms we have defined
so far (Figure 4.4) and particularly to the family O. Take an instance of the family
of equations O, namely

x+ ak.x+ ak
3
(yes + no) ' x+ ak

3
(yes + no) ,

for some k. What we will focus on for equations like this one is the fact that every
trace starting with sk followed by any trace of length larger than 3k + 1 (which
is the depth of this equation), is both accepted and rejected by both sides of the
equation for any closed substitution. This fact is exactly the intuition behind the
property that we will use. We now proceed to formulate this property formally:

Lemma 4.19. Let E be a finite subset of E ′v,f and let m = n be an equation in E.
Assume that for some string s:

• m
s−→ m′ + x, for some monitor m′ and variable x and

• n 6 s−→ n′ + x for any n′.

Then, for every trace of the form s.s′ where |s′| ≥ depth (E), we have that ss′ ∈
La(σ(m)) and ss′ ∈ Lr(σ(m)) for every substitution σ.

Proof. It suffices to examine each member of E ′v,f separately.

• Each axiom in Ev does not have any one-sided occurrence of a variable as the
ones stated and therefore the lemma holds vacuously.

• For the axiom O1 we have that both sides accept and reject all traces for
each σ and therefore the claim follows trivially.

• We are left to discuss the family of equations O. Let us select an arbitrary
member of this family, i.e. for some s0 ∈ Act∗ and some k ≥ 0, the equation

x+ s0.x+ s0
(k)(yes + no) = x+ s0

(k)(yes + no) .

We see that the depth of x is 1, the depth of s0.x is |s0|+ 1 and the depth of
the term s0

k(yes + no) is (k + 1)|s0| + 1 (which follows by the definition of
the term sk(m)). We can also see that the term s0

k(yes + no) accepts and
rejects all traces of the form s0s

′, where the length of s′ is strictly bigger than
(k − 1)|s0|, which is enough for the statement to hold.

Now that we have defined the property we were looking for over a finite subset
E of E ′v,f, we proceed to show that the property itself is preserved by equational
proofs from E .

Theorem 4.9. Let E be a finite subset of E ′v,f and let m = n be an equation such
that E ` m = n. Assume that:

• m
s−→ m′ + x for some string s, monitor m′ and variable x and
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• n 6 s−→ n′ + x for any n′.

Then, for every trace of the form s.s′ where |s′| ≥ depth (E), we have that ss′ ∈
La(σ(m)) and ss′ ∈ Lr(σ(m)) for every substitution σ.

Proof. We will use induction over the length of the proof that results in an arbitrary
equation m = n. Our base case is a proof of length one, where the the only
equations we can prove are the axioms themselves and therefore the property holds
by Lemma 4.19.

Assume now we have shown that all proofs of length up to ` preserve the
property. We will show that proofs of length up to ` + 1 do so as well. The final
step of a proof can be performed by applying:

• The congruence rule for +,

• The congruence rule for action prefixing a._,

• A variable substitution (for an open substitution σ), or

• Transitivity.

Note here that, as we mentioned earlier, the axiom system E ′v,f is closed with respect
to symmetry and therefore there is no need to use the symmetry rule in proofs.
We proceed by considering each of the above-mentioned proof steps.

• The congruence rule for + must be applied as so: Assume two equations
m1 = n1 and m2 = n2, two already proven equations for which the statement
of the theorem holds (inductive hypothesis). By applying the congruence
rule for + we have proven the equation m = m1 + m2 = n1 + n2 = n.
Assume that m s−→ m′ + x for some string s, monitor m′ and variable x and
n 6 s−→ n′ + x for any n′. By the operational semantics of MonF we have
that either m1

s−→ m′+x or m2
s−→ m′+x. Without loss of generality assume

m1
s−→ m′+x. Moreover we have that n1 6

s−→ n′1 +x for any n′1 since n 6 s−→ n′+x
for any n′. By inductive hypothesis then for every trace of the form s.s′ where
|s′| ≥ depth (E) we have that s.s′ ∈ La(σ(m1)) and s.s′ ∈ Lr(σ(m1)) for every
substitution σ. This in turn implies that s.s′ ∈ La(σ(m)) and s.s′ ∈ Lr(σ(m))
for every substitution σ and we are done.

• We now consider the case of applying the congruence rule for action prefixing.
Assume a proven equation m0 = n0 on which we apply the axiom prefixing
congruence rule for an action a ∈ Act, that is,m = a.m0 = a.no = n. Assume
now that m s−→ ms +x for some string s, monitor ms and variable x and n 6 s−→
ns+x for any ns. Since m = a.m0, it follows that s = as0 and m0

s0−→ m′0 +x

for some m′0 and n0 6
s0−→ n′0 +x for any n′0. Therefore by inductive hypothesis

we have that all traces of the form s0.s
′ where |s′| ≥ depth (E) are accepted

and rejected by m0 under any substitution. Consequently all traces of the
form as0.s

′ = ss′ are both accepted and rejected by m under any substitution
and we are done.
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• Consider now variable substitution. Note that we will consider open sub-
stitutions, in order to capture the more general case. The case of closed
substitutions is of course trivial as after one of them is applied there are
no variable occurrences left in any equation and therefore the result holds
vacuously. We have now that E ` m′ = n′ for some open monitors m′ and
n′ and that we apply the open substitution σ0 in order to prove the open
equation m = σ0(m′) = σ0(n′) = n. Assume now that σ0(m)

s−→ ms + x

for some string s, monitor ms and variable x and σ0(n) 6 s−→ ns + x for any
ns. We can easily see that every such one-sided occurrence of a variable in
the new equation must have resulted from a one-sided variable occurrence
in m′ = n′. This is because if there were no one-sided variable occurrences
in the old equation, then under no substitution could one have introduced a
variable in only one side without also introducing it on the other side. This
means that there exists some variable y (which could be the same as x) such
that m′ s0−→ m′s0 + y for some string s0 where s0 a prefix of s, monitor m′s0
and variable y and n′ 6 s0−→ n′s0 + y for any n′s0 . The reason why s0 must be
a prefix of s is that an open substitution can only expand the traces that
lead to a variable occurrence in the original term. By applying our inductive
hypothesis on m′ = n′, we have that both m′ and n′ must accept and reject
all traces of the form s0.s

′ where |s′| ≥ depth (E) under any substitution σ.
This, in turn, implies that σ0(m′) = m accepts and rejects traces of the form
ss′ under any closed substitution σ. In fact σ(σ0(m′)) = σ0(σ0(m′)) which
means that m and n reject the traces of the form s0.s as well. Since s0 is a
prefix of s we have that for every extension of s of length at least depth (E)
there exists an extension of s0 of length at least depth (E) that is a prefix of
it. Since all traces s0.s

′ of this length are both accepted and rejected under
any substitution, the same applies for the traces s.s′ and we are done.

• The case of transitivity is also straightforward though the following inductive
argument. We start by E ` m = m′ and E ` m′ = n and we apply the
transitivity rule to prove m = n. Assume that m s−→ ms + x for some trace
s, variable x and monitor ms, while n 6

s−→ ns + x for any ns. We have that
either: m′ s−→ m′s + x for some m′s or m′ 6

s−→ m′s + x. In the first case we have
that the equation m′ = n which has already been proven by E satisfies the
premises of the theorem and therefore by induction hypothesis all traces of
the form s.s′ where |s′| ≥ depth (E) are both accepted and rejected by both
m′ and n. Since n ' m by the soundness of E ′v,f and thus E , we have that
m also accept and rejects all of these traces and we are done. In the second
case and via a similar argument we have the same result.

This concludes the case analysis for our inductive proof and we are done.

As we can see, if we start from any finite subset E of E ′v,f, we are bound to only
prove equations that have the property in the statement of Theorem 4.9. We now
argue that for each E there will always exist sound equations in E ′v,f that do not
satisfy the above property and therefore the axiom set E is not enough to prove
them.
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Lemma 4.20. Let E be a finite subset of E ′v,f. There exists a sound equation
m = n in O such that m s−→ m′ + x for some string s, monitor m′ and variable x
and n 6 s−→ n′ + x for any n′ and there is at least one trace of the form s.s′ where
|s′| ≥ depth (E) and s.s′ 6∈ La(σ(m)) and s.s′ 6∈ La(σ(m)) for the one substitution
σend = end , for every x.

Proof. It suffices to give an example from the members of the family O. Namely
we consider the equation:

x+ an.x+ (an)
3
(yes + no) = x+ (an)

3
(yes + no) ,

where n > depth (E).
We can clearly see that first of all the occurrence of x after the trace an is one-

sided in the left hand side of the equation. However there is a substitution (namely
σ(x) = end) under which the trace a2n+1 is neither accepted nor rejected by the
two monitors even though the length of a(n+1) is strictly larger than depth (E).

Theorem 4.10. There is no finite complete set of axioms for verdict equivalence
over MonF over a finite, non-unary set of actions.

Proof. Let E be a finite subset E ′v,f. Then, by the above lemma, E cannot prove
the sound equation

x+ an.x+ (an)
3
(yes + no) = x+ (an)

3
(yes + no) ,

for n > depth (E) and we are done.

4.6 Conclusions
In this chapter, we have studied the equational theory of recursion-free, regular
monitors from [14, 15, 104] modulo two natural notions of monitor equivalence,
namely verdict and ω-verdict equivalence. We have provided complete axiomati-
zations for those equivalences over closed and open terms. The axiomatizations
over closed terms are finite when so is the set of actions monitors can process.
On the other hand, even when the set of actions is finite, whether those equiva-
lences have finite bases over open terms depends on the cardinality of the action
set. For instance, we have shown that verdict equivalence has no finite equational
axiomatization when the set of actions contains at least two actions.

Since verdict and ω-verdict equivalence are trace-based behavioral equivalences,
our axiomatizations, which are summarized in Table 4.4, share a number of equa-
tions with those for trace and completed trace equivalence over BCCSP [197] and
for equality of regular expressions [78, 140, 182]. However, the presence of the
yes, no and end verdicts yields a number of novelties and technical complications,
which are most evident in the axiomatization results over open terms and in the
negative result we present in Section 4.5. By way of example, we remark here that,
as mentioned in [71], trace and completed trace equivalence are finitely based over
BCCSP when the set of actions is finite, unlike the notions we study in this chapter
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over monitors. Moreover, unlike the one given in this chapter, proofs of non-finite-
axiomatizability results for regular expressions rely on families of equations that
exploit the interplay between Kleene star and concatenation, such as

a∗ = (an)∗(1 + a+ · · ·+ an−1) (n > 0).

See, for instance, [3, 78, 177].
The results presented in this chapter deal with a minimal language for moni-

tors that is mainly of theoretical interest and set the stage for further research. An
interesting and natural avenue for future work is to study the complexity of the
equational theory of verdict and ω-verdict equivalence. Moreover, one could inves-
tigate axiomatizations of those behavioral equivalences over extensions of recursion-
free monitors with the parallel operators considered in [14] and/or with recursion
[104]. As shown in [14](Proposition 3.8), every ‘reactive parallel monitor’ is ver-
dict equivalent to a regular one. This opens the tantalizing possibility that verdict
equivalence affords an elegant equational axiomatization over such monitors. How-
ever, the proof of Proposition 3.8 in [14] relies on a non-trivial automata-theoretic
construction, which would have to be simulated equationally to transform ‘reactive
parallel monitors’ into regular ones. We leave this interesting problem for further
study.
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Chapter 5

The Axiomatizability of Open
CCS Terms Modulo Rooted
Weak Bisimilarity

In the previous chapters we have considered the τ action as an observable move
by a process. We now switch from strong to weak semantics: in this new setting,
a τ -move corresponds to a silent (or hidden, invisible) step in the behavior of a
process. In detail, we are interested in studying an equational characterization of
the parallel composition operator modulo rooted weak bisimilarity. That is because
weak bisimilarity in its original version is not a congruence, and thus our equational
theory cannot be applied to it. We begin with a few important definitions.

5.1 Background
We remind the reader the definition, and associated notation of weak bisimilarity
in Chapter 2. Similarly to those definitions, here Act stands for the set of actions
including τ and it is ranged over by α.

Definition 5.1 (Rooted weak bisimilarity). Let (P,Act,−→) be a LTS. Weak
bisimilarity, denoted by ∼WB, is the largest binary symmetric relation over P such
that whenever p ∼WB q and p α−→ p′, then either

• α = τ and p′ τ=⇒ q, or

• there is a processes q′ such that q α
=⇒ q′ and p′R q′.

Then, rooted weak bisimilarity, denoted by ∼RWB, is the binary symmetric relation
over P such that whenever p ∼RWB q and p α−→ p′, then there is a process q′ such
that q α

=⇒ q′ and p′ ∼WB q
′.

It is well known that rooted weak bisimilarity is an equivalence relation, and that
the root condition is necessary to guarantee the compositionality with respect to
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the nondeterministic choice operator (as well as the left merge), see, e.g., [56, 200],
and thus that ∼RWB is a congruence over CCS.

Moller proved that the use of auxiliary operators is not only sufficient to obtain
a finite equational charasterization of ‖, but it is necessary indeed.

Theorem 5.1 (Moller [157, 158, 160]). Bisimilarity has no finite, complete axiom-
atization over CCS.

To prove this result, in [160], Moller considered the following family of equations
{Mn}n≥1:

(x+ y) ‖
n∑
i=1

zi +

n∑
i=1

(
x ‖ zi + y ‖ zi

)
≈

x ‖
n∑
i=1

zi + y ‖
n∑
i=1

zi +

n∑
i=1

(
(x+ y) ‖ zi

)
(Mn)

and he argued that all these equations should be sound modulo any behavioral
congruence that is reasonable, including bisimilarity. Roughly speaking, for each
n ≥ 1, the terms in the two sides ofMn can match exactly their single step behavior
and, at the same time, the equation does not introduce any causal dependency
between the behavior of the single components of each term. Moller then considered
a particular family of instantiations {In}n≥1 of {Mn}n≥1, consisting only of closed
terms:

(a+ aa) ‖
n∑
i=1

ai +

n∑
i=1

(
a ‖ ai + aa ‖ ai

)
≈

a ‖
n∑
i=1

ai + aa ‖
n∑
i=1

ai +

n∑
i=1

(
(a+ aa) ‖ ai

)
(In)

and he argued that no finite set of equations, that are sound modulo bisimilarity,
can derive In for each n ≥ 1.

To this end, he applied the following proof strategy, which has been later referred
to as the proof-theoretic approach to negative results. Whenever an equation t ≈ u
is provable from an axiom system E, then there is a proof of it, i.e., a sequence of
equations ti ≈ ui, for i = 1, . . . , n, such that t = tn, u = un, and each equation
ti ≈ ui is in turn derivable from E∪{tj ≈ uj | j < i}. The aim in the proof-theoretic
approach is to show that no such sequence exists, so that the considered equation
cannot be derived from E. To this end, we need to identify a specific property of
terms, say Pn for n ≥ 0, that, when n is large enough, is preserved by provability
from finite, sound axiom systems. Roughly, this means that if:

• E is a finite set of axioms that are sound modulo ∼,

• the equation p ≈ q is provable from E, and

• n > size(t) for any term t in the equations in E,
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then either both p and q satisfy Pn, or none of them does. Then, we exhibit an
infinite family of sound equations in which Pn is not preserved, namely it is satisfied
only by one side of each equation.

Using this method, Moller proved that whenever n is larger than the size of
any term occurring in the equations in a finite, sound, axiom system E, then the
instance In cannot be derived from E. (In this case, the property Pn was to have
a summand bisimilar to (a+ aa) ‖

∑n
i=1 a

i.)

5.2 The negative Result in the Weak Setting
In this part we present our original contribution, namely a negative answer to the
following problem:

Can we obtain a finite axiomatization of parallel composition modulo
rooted weak bisimilarity over CCS? (Q3)

Our aim is to prove the following theorem:

Theorem 5.2. Rooted weak bisimilarity has no finite, complete axiomatization
over CCS.

To this end, we exploit the family of equations {Mn}n≥1, from [160], introduced
in Section 5.1. First of all, notice that the equations Mn are all sound modulo
rooted weak bisimilarity, as bisimilarity is included in rooted weak bisimilarity,
i.e. t ∼B u implies t ∼RWB u for all CCS terms t, u. Then, we remark that in
[160] Moller obtained his result over a fragment of the language CCS that have
considered in the paper. In particular, he considered the purely interleaving parallel
composition operator, i.e., parallel composition without communication. Notice
that if we restrict the set of actions one with no actions and co-actions then there
is no difference between full parallel composition and interleaving, since the lack of
actions co-names prevents any form of synchronization between CCS terms. The
CCS terms considered by Moller were indeed built over the set of actions without
co-actions, and so we will from now on use Act to denote the fragment of CCS
considered by Moller in [160].

Informally, the core of our proof consists in showing that any equation over CCS
that is sound modulo ∼RWB and that does not contain any occurrence of the prefixing
operator, is also sound modulo ∼B over CCSAct. Then we show that, since all the
terms occurring in the family {Mn}n≥1 do not contain any occurrence of prefixing,
any proof of an equation Mn from an axiom system sound modulo ∼RWB, uses only
equations over terms that do not contain any occurrence of prefixing. Consequently,
any finite axiom system that is sound modulo ∼RWB over CCS, and can prove all the
equations in the family {Mn}n≥1, would also be sound modulo ∼B over CCSAct.
As this contradicts the negative result obtained by Moller in [160], we can conclude
that rooted weak bisimilarity has no finite, complete axiomatization over CCS.

We devote the remainder of this section to a formalization of the intuitions
given above. We remark that, although we formally discuss only the case of ∼RWB,
our negative result can be extended to any weak congruence ∼ such that: Mn is
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sound modulo ∼ for all n ≥ 1, ∼ coincides with ∼B over CCSAct, and whenever
p ∼ q then any initial τ -step by p is matched by q and vice versa. In particular,
our result holds for the rooted versions of branching bisimilarity, delay bisimilarity
and η-bisimilarity.

Firstly, we introduce the notion of action-free terms, i.e., CCS terms that do
not contain any occurrence of prefixing.

Definition 5.2 (Action-free term). Let t be a CCS term. We say that t is action-
free if t α−→6 for all α ∈ Act.

An equation t ≈ u is action-free if t and u are action-free.

A fundamental property of action-free equations is that their soundness mod-
ulo rooted weak bisimilarity over CCS implies soundness modulo bisimilarity over
CCSAct.

Proposition 5.1. Let t, u be action-free CCS terms. If t ≈ u is sound modulo
∼RWB over CCS, then it is also sound modulo ∼B over CCS Act.

Proof. Assume that t ≈ u is action-free and sound modulo ∼RWB. Let σ be any
closed substitution mapping variables to a CCSAct processes. We remark that
processes in CCSAct do not contain any occurrence of action τ . By the soundness
of t ≈ u, we have that σ(t) ∼RWB σ(u). Since ∼B coincides with ∼RWB over τ -free
processes, we obtain that σ(t) ∼B σ(u). Hence, by the arbitrariness of σ, we can
conclude that σAct(t) ∼B σAct(u) for all closed substitutions σAct over CCSAct,
thus giving that t ∼B u over CCSAct.

We identify a particular substitution, denoted by σnil, that maps each variable
to the null process. Formally, the substitution σnil is defined as σnil(x) = nil, for
all x ∈ V.

Lemma 5.1. Let t be a CCS term.

1. If t is action-free, then σnil(t) ∼B nil.

2. If t is not action-free, then there exists an action α ∈ Act such that σ(t)
α−→,

for any substitution σ.

Proof. In both cases, the proof follows by induction over the structure of the term
t.

We now proceed to show that proofs of action-free equations, from an axiom
system that is sound modulo rooted weak bisimilarity, use only action-free equa-
tions.

Proposition 5.2. Let E be an axiom system sound modulo ∼RWB.

1. If t ≈ u is sound modulo ∼RWB and t is action-free, then also u is action-free.

2. If E ` t ≈ u and t is action-free, then a proof of t ≈ u from E uses only
action-free equations.
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Proof. We start from the first item. As t ≈ u is sound modulo ∼RWB, we get that
σnil(t) ∼RWB σnil(u). Moreover, as t is action-free, by Lemma 5.1.1 we have that
σnil(t) cannot perform any action. Hence, σnil(u) cannot perform any action either
since, by the root condition, any possible initial τ -transition from σnil(u) would
have to be matched by a τ -transition from σnil(t). By Lemma 5.1.2, we can then
conclude that u is action free.

Let us now deal with the second item. First of all, we notice that since t ≈ u
is provable from E, then it is sound modulo ∼RWB. Hence, as t is action-free, we
can apply Proposition 5.2.1 and obtain that u is action-free as well. The proof
then proceeds by induction on the length of the proof of t ≈ u from E, where the
inductive step is carried out by a case analysis on the last rule of equational logic
that is used in the proof. We expand only the case in which the last rule applied
is an instance of the substitution rule. The other cases are standard.

Assume that t = σ(t′) and u = σ(u′) for some substitution σ and CCS terms
t′, u′ such that t′ ≈ u′ ∈ E. Since t and u are both action-free, from Lemma 5.1.2
we can infer that t′ and u′ are action-free as well. In fact, if t′ was not action-free,
we could directly infer that σ(t′)

α−→ for some α ∈ Act, thus giving a contradiction
with t = σ(t′) being action-free. Similarly for u′. Hence t′ ≈ u′ ∈ E is action-free.
Notice now that since t and u are both action-free, we can infer that the substitution
rule used in the last step of the proof of t ≈ u is action-free. Therefore, we can
conclude that the proof of t ≈ u from E uses only action-free equations.

Theorem 5.2 can then be obtained as a direct consequence of the following
result:

Theorem 5.3. Assume that E is a finite axiom system over CCS that is sound
modulo ∼RWB. Then there exists some n ≥ 1 such that E 6` Mn, where Mn is the
n-th member of the family {Mn}n≥1 introduced in Section 5.1.

Proof. Assume, towards a contradiction, that E ` Mn for all n ≥ 1. Since Mn is
an action-free equation for each n ≥ 1, by Proposition 5.2.2 we have that all the
equations that are used in the proof from E ofMn are action-free as well. Moreover,
for each n ≥ 1, Mn can be proved by using finitely many action-free equations, as
E is finite by the proviso of the theorem. By Proposition 5.1 we have that all these
equations are also sound modulo ∼B over CCSAct. Therefore, we can conclude that
the finite axiom set E allows us to prove Mn, for all n ≥ 1, over CCSAct. This
contradicts the negative result obtained by Moller in [157], and we can therefore
conclude that there is at least one n ≥ 1 such that Mn is not provable from E.

5.3 Conclusion
The original contribution presented here, paves the way to the following research
question:

Are there general techniques for lifting negative results from strong to weak
congruences? (FW4)
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An answer to this question will allow us to solve many problems that have been
already solved for strong semantics, but that are still open for weak semantics.

Overall, the question answered is indeed a step towards understanding better
the nature of weak semantics and axiomatizations. However, since this result con-
cerns open equations, it could be the case that closed CCS terms modulo rooted
weak bisimilarity afford a finite equational axiomatization. One can easily verity
that the equations necessary for this hardness result would collapse into a closed
one that can be proven via the expansion laws (which are still infinitely many,
but at the time of studying this setting we had no guarantee yet that in the weak
setting the expansion laws cannot be replaced by finitely many other equations).
It turns out that another weak congruence, namely rooted branching bisimilarity
affords no finite, ground-complete axiomatization over CCS (see [30]). This result
is produced by extending Moller’s technique to account for τ steps in the proofs.
Moreover the infinite family of equations used is provable via the expansion laws,
and thus the negative result is produced without gaining any insight on the kind
of (potentially infinitely many) unknown equations that could be valid in the weak
setting.

It is our hope that discovering such new infinite families of equations would
eventually lead to possessing infinite complete equational bases over open terms.
Such achievement would then enable us to use compactness to extend the non finite
axiomatizability results in the following way: Assume an (infinite) complete set of
axioms, called E , over some weak equivalence, we could infer that if a finite one E ′,
for either open or closed terms existed then it should be provable by a finite subset
of E , as it is complete. Thus, we would not need to prove that arbitrary finite sets
of equations cannot axiomatize our equivalence at hand, but instead, proving it for
subsets of E would suffice. Later on, in our future work, we will present one of our
initial attempts in this direction.



Chapter 6

Non-Finite Axiomatizability
Results via Reductions

6.1 Introduction
Some of Frits Vaandrager’s early seminal contributions were firmly rooted in the
theory and applications of process algebras and their semantics. Having been
brought up in the tradition of Bergstra and Klop’s Algebra of Communicating
Processes (ACP) [36, 55, 56], Frits Vaandrager studied semantic models of alge-
braic process description languages [198, 113], equational axiomatizations of process
equivalences [38] and their application in verification (see, for instance, [199, 192]).
Moreover, together with Aceto and Bloom, in [1] he initiated the study of meth-
ods for generating finite, ground-complete, equational axiomatizations of bisim-
ilarity [152, 166] from operational specifications given in the GSOS format [62].
The techniques proposed in [1] can be used to synthesize auxiliary operators, such
as Bergstra and Klop’s left- and communication-merge operators, that make fi-
nite axiomatizations possible and paved the way to several further studies in the
literature—see, for instance, the developments presented in [11, 100, 111, 151].

The use of auxiliary operators to obtain finite, equational, ground-complete
axiomatizations of bisimilarity, even for very inexpressive process algebras, was
justified by Moller in [157, 160, 158], where he showed that bisimilarity has no fi-
nite axiomatization over minimal fragments of Milner’s Calculus of Communicating
Systems (CCS) [152] and Bergstra and Klop’s ACP. (Henceforth, we will consider
the recursion, relabeling and restriction free fragment of CCS, which, for simplic-
ity, we still denote as CCS.) Moller’s above-mentioned, path-breaking, negative
results have been followed by a wealth of research on non-finitely-based fragments
of process algebras—see, for instance, [2, 5, 6, 9, 19, 20, 22, 25, 72].

Our Contribution

In this work, we celebrated Frits Vaandrager’s early contributions to the study of
algebraic process description languages by answering the two questions that Rob
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van Glabbeek1 asked Luca Aceto after his invited talk at LICS 20212:

Would Moller’s non-finite axiomatizability result for CCS remain true if
we replaced CCS parallel composition with the parallel operators from
Hoare’s Communicating Sequential Processes (CSP) [129]? And what
if we added the restriction operator or the relabeling operator to CCS
instead?

Our first contributions concern the existence of finite, ground-complete axiomati-
zations of bisimilarity over process algebras that extend the language BCCSP [126,
193, 152] with parallel operators from CSP. (BCCSP is a common fragment of
Milner’s CCS and Hoare’s CSP suitable for describing finite process behavior.)

For each set of actions A, the CSP parallel operator |A behaves like interleaving
parallel composition for all actions that are not contained in A, but requires tran-
sitions of its operands that are labeled with some action a ∈ A to synchronise. The
result of such a synchronization is an a-labeled transition of the composite parallel
process, which can itself synchronize further with a-labeled steps from its environ-
ment. Therefore, unlike CCS parallel composition that is based on hand-shaking
communication, the parallel operators from CSP support multi-way synchroniza-
tion and span the whole spectrum from pure interleaving parallel composition (the
operator |∅) to synchronous composition (the operator |Act, where Act is the whole
collection of actions that processes may perform).

We start our investigations by considering the languages BCCSPp
A , which extend

BCCSP with the parallel operator |A for some subset A of the whole set of actions
Act, and BCCSPp

τ , which contains the parallel operator |A for each A ⊆ Act,
and the τ -prefixing operator for a distinguished action τ 6∈ Act. We show that
Moller’s non-finite axiomatizability result for bisimilarity still holds over BCCSPp

A ,
when A is a strict subset of Act, and BCCSPp

τ . On the other hand, bisimilarity
affords a finite, ground-complete axiomatization over BCCSPp

Act.
The proofs of the above-mentioned negative results for BCCSP

p
A , when A is a

strict subset of Act, and BCCSPp
τ employ a reduction-based technique proposed

in [12] for showing new, non-finite axiomatizability results over process algebras
from already-established ones. In our setting, such reductions are translations
from terms in the languages BCCSPp

A (A ⊂ Act) and BCCSPp
τ to those in the

fragment of CCS studied by Moller that

• preserve sound equations and equational provability over the source language,
and

• reflect an infinite family of equations responsible for the non-finite axiomati-
zability of the target language.

No reduction from BCCSPp
Act to CCS satisfying the former property modulo bisim-

ilarity reflects Moller’s family of equations witnessing his negative result over CCS.
Therefore, the reduction technique cannot be applied to BCCSPp

Act. Indeed, we
present a finite, ground-complete axiomatization of bisimilarity over BCCSP

p
Act.

1Rob van Glabbeek was one of Frits Vaandrager’s early collaborators and fellow doctoral
student at CWI.

2See https://www.youtube.com/watch?v=2PxM3f0QWDM for a recording of that talk.

https://www.youtube.com/watch?v=2PxM3f0QWDM
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We also show that, if we consider the language BCCSPp, namely BCCSP with
a parallel operator |A for each A ⊆ Act, then no reduction that is structural, i.e.
that does not introduce new variables and it is defined compositionally over terms,
can reflect Moller’s family of equations. However, we conjecture that bisimilarity
does not admit a finite, ground-complete axiomatization over BCCSPp.

For our final contribution, we consider the languages CCSr and CCS`, namely
CCS enriched with restriction operators of the form ·\R, and CCS enriched with
relabeling operators, of the form ·[f ]. Informally, R ⊆ Act is a set of actions that
are restricted, meaning that the execution of a-labeled transitions (and of their
“complementary actions") is prevented in t\R for all a ∈ R, while f : Act→ Act,
is a mapping of actions to actions, meaning that whenever a is is an action occurring
in t, the action f(a) will be executed in t[f ]. By exploiting the reduction technique
described above, we show that Moller’s negative result can be lifted to CCSr, giving
thus that bisimilarity admits no finite, ground-complete axiomatization over CCS
with restriction.

Our contributions can then be summarized as follows:

1. We consider BCCSPp
A , i.e., BCCSP enriched with one CSP-style parallel com-

position operator |A, with A ⊂ Act, and we show that, over that language,
bisimilarity admits no finite, ground-complete axiomatization (Theorem 6.4).

2. We consider BCCSPp, i.e., BCCSP enriched with all CSP-style parallel com-
position operators |A, and we show that there is no structural reduction from
BCCSPp to CCS that can reflect the family of equations used by Moller to
prove the negative result for bisimilarity over CCS (Theorem 6.5).

3. We consider BCCSPp
τ , i.e, BCCSPp enriched with the τ -prefixing, and we

show that this algebra admits no finite, ground-complete axiomatization mod-
ulo bisimilarity (Theorem 6.6).

4. We consider BCCSPp
Act, i.e., BCCSP enriched with the CSP-style parallel

composition operator |Act, and we present a finite, ground-complete axiom-
atization for it, modulo bisimilarity (Theorem 6.7).

5. We consider CCSr, i.e., CCS with the restriction operator \, and we show
that bisimilarity has no finite, ground-complete axiomatization over it (The-
orem 6.8).

6. We consider CCS`, i.e., CCS with the relabeling operator [f ], and we show
that bisimilarity has no finite, ground-complete axiomatization over it (The-
orem 6.9).

Organization of Contents

In Section 6.2 we review basic notions on process semantics, behavioral equiva-
lences, and equational logic. We also briefly recap Moller’s negative result for
bisimilarity over CCS. In Section 6.3 we give a bird’s-eye view of the reduction
technique from [12]. In Section 6.4, we present the lifting of Moller’s negative re-
sult to BCCSP

p
A (for A ⊂ Act) and BCCSPp, and then we discuss the collapse
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of that result in the case of BCCSPp
Act. In Section 6.5.1, we use the reduction

technique to prove the non-finite axiomatizability result for CCSr. We conclude by
discussing some directions for future work in Section 6.6.

6.2 Preliminaries
In this section we present some background notions on process algebras and equa-
tional logic. To make our contribution self-contained, we also briefly recap Moller’s
work on the nonexistence of finite axiomatizations modulo bisimilarity over the
recursion, relabeling, and restriction free fragment of CCS (henceforth simply re-
ferred to as CCS).

In what follows, we assume that the set of actions Act is finite and non-empty.
We let p, q, . . . range over P, and a, b, . . . over Act. Moreover, as usual, we use
p

a−→ p′ in lieu of (p, a, p′) ∈ −→. For each p ∈ P and a ∈ Act, we write p a−→ if
p

a−→ p′ holds for some p′, and p a−→6 otherwise.

The Language BCCSP

In this part we will consider several algebraic process description languages, each
characterized by the presence of a particular operator, or sets of operators. As all
those languages are extensions of BCCSP [126], consisting of the basic operators
from CCS [152] and CSP [129], in this section we use that language to introduce
some general notions and notations on term algebras that will be useful throughout
the remainder of the chapter.

BCCSP terms are defined by the following grammar:

t ::= nil | x | a.t | t+ t , (BCCSP)

where x is drawn from a countable set of variables V, a is an action from Act, a.(·)
is the prefix operator, defined for each a ∈ Act, and · + · is the nondeterministic
choice operator. We shall use the meta-variables t, u, . . . to range over process
terms. The size of a term t, denoted by size(t), is the number of operator symbols
in t. A term is closed if it does not contain any variables. Closed terms, or
processes, will be denoted by p, q, . . . . In particular, we denote the set of all BCCSP
terms by T(BCCSP), and the set of closed BCCSP terms (or BCCSP processes) by
P(BCCSP). This notation can be directly extended to all the languages that we
will consider. Moreover, we omit trailing nil’s from terms and we use a summation∑k
i=1 ti to denote the term t = t1 + · · ·+ tk, where the empty sum represents nil.

Henceforth, for each action a ∈ Act and natural number m ≥ 0, we let a0 denote
nil and am+1 denote a.(am).

We use the Structural Operational Semantics (SOS) framework [168] to equip
processes with an operational semantics. The SOS rules (also called inference rules,
or deduction rules) for the BCCSP operators given above are reported in Table 6.1.
A (closed) substitution σ is a mapping from process variables to (closed) terms.
Substitutions are extended from variables to terms, transitions, and rules in the
usual way. Note that σ(t) is closed, if so is σ. The inference rules in Table 6.1
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(act)
a.t

a−→ t
(lSum)

t
a−→ t′

t+ u
a−→ t′

(rSum)
u

a−→ u′

t+ u
a−→ u′

Table 6.1: The SOS rules for BCCSP operators (a ∈ Act).

allow us to derive valid transitions between closed BCCSP terms. The operational
semantics for BCCSP is then modeled by the LTS whose processes are the closed
terms in P(BCCSP), and whose labeled transitions are those that are provable
from the SOS rules. The same approach will be applied to all the extensions of
BCCSP that we will consider. The SOS rules of each language will be presented
in the respective sections.

We call an equivalence relation a congruence over a language if it is compo-
sitional with respect to the operators of the language, i.e., the replacement of a
component with an equivalent one does not affect the overall behavior. Formally,
the congruence property for bisimilarity over BCCSP, and its extensions, consists
in verifying whether, given any n-ary operator f ,

f(p1, . . . , pn) ∼ f(q1, . . . , qn) whenever pi ∼ qi for all i = 1, . . . , n.

Since all the operators considered in this chapter are defined by inference rules
in the de Simone format [86], by [195, Theorem 4] we have that bisimilarity is a
congruence over BCCSP and over all the languages that we will study, similarly to
bisimulation over CCS.

Equational Logic in the Context of BCCSP and Extensions

Here, as we study many languages that extend BCCSP, we remind the reader
how one can define the equational laws of equation over languages of a signature
F , as discussed in Chapter 2. Then, a classic question is whether an algebra
modulo the chosen notion of behavioral congruence (in this work, bisimilarity,
as defined in Chapter 2, Definition 2.2, and over several flavors) affords a finite
equational axiomatization. For example, as shown by Hennessy and Milner in [126],
the equations in Table 6.2 are a finite axiomatization of bisimilarity over BCCSP.
We denote by E0 the axiom system consisting of the equations in Table 6.2. Later
on, we will extend this set of axioms to present our positive result for BCCSPp

Act.

Moller’s Result Over CCS

In his thesis [157], Moller gave a celebrated non-finite axiomatizability result in the
field of process algebra, namely:

Theorem 6.1. Bisimilarity admits no finite, ground-complete axiomatization over
CCS.
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(A1) x ≈ x+ x

(A2) x+ y ≈ y + x

(A3) (x+ y) + z ≈ x+ (y + z)

(A4) x+ nil ≈ x

Table 6.2: Finite equational basis for BCCSP modulo bisimilarity.

(lPar)
t
a−→ t′

t ‖ u a−→ t′ ‖ u
(rPar)

u
a−→ u′

t ‖ u a−→ t ‖ u′

Table 6.3: The SOS rules for CCSa interleaving parallel composition.

Specifically, Moller considered the language CCSa with interleaving parallel
composition, defined over Act = {a} by the following syntax:

t ::= nil | x | a.t | t+ t | t ‖ t (CCSa)

where x ∈ V and ‖ denotes the interleaving parallel composition operator.
The SOS rules for CCSa operators are given by the rules in Table 6.1, plus the

rules for the interleaving parallel operator presented in Table 6.3.
In detail, for his result, Moller applied the following proof strategy, later referred

to as the proof-theoretic approach to negative results [7]. He considered the infinite
family of equations Φ with

Φ = {ϕn | n ≥ 0}

ϕn : a ‖ (

n∑
i=1

ai) ≈ a.(

n∑
i=1

ai) + (

n+1∑
i=2

ai) (n ≥ 0)

and he proved that whenever n is larger than the size of any term occurring in the
equations in a finite, sound axiom system E, then equation ϕn cannot be derived
from E.

Hence, Theorem 6.1 specialized to the following result, which will play a fun-
damental role in the technical development of our contributions:

Theorem 6.2 (Moller’s negative result [157, Theorem 5.2.12]). No finite axiom
system that is sound modulo bisimilarity over CCSa can prove the whole family of
equations Φ. Thus no finite, ground-complete axiom system can exist for CCSa
modulo bisimilarity.
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6.3 The Proof Strategy: Reduction Mappings
The non-finite axiomatizability results that we will present in this chapter are all
obtained by means of a proof technique, proposed in [12], that allows for transfer-
ring this kind of negative results across process languages. Even though we only
apply that technique out-of-the-box towards establishing new results, we decided
to give, in this section, an overview of the terminology and results presented in
[12], to improve the readability of our contributions. As our studies are focused on
the axiomatizability of bisimilarity, we consider only this behavioral congruence in
the presentation below.

We consider two processes description languages defined over the same set of
variables: Lneg and Lnew. Lneg is known to be non-finitely axiomatisable modulo
bisimilarity, whereas Lnew is the language for which we want to prove this negative
result. The aim of the proof technique proposed in [12] is to establish whether
it is possible to lift the known result for Lneg to Lnew. This approach is based
on a variation of the classic idea of reduction mappings that, in this setting, are
translations from T(Lnew) to T(Lneg) that preserve soundness and provability.

Given a translation mapping ·̂ : T(Lnew) → T(Lneg) and a collection E of
equations over Lnew terms, we let Ê = {t̂ ≈ û | t ≈ u ∈ E}. The notion of
reduction is then formalized as follows:

Definition 6.1 (Reduction). A mapping ·̂ : T(Lnew) → T(Lneg) is a reduction
from T(Lnew) to T(Lneg), when for all t, u ∈ T(Lnew):

1. t ∼ u =⇒ t̂ ∼ û, i.e., ·̂ preserves sound equations, and

2. E ` t ≈ u =⇒ Ê ` t̂ ≈ û, for each axiom system E over Lnew, i.e, ·̂
preserves provability.

Interestingly, in [12, Theorem 2] it is proved that if a mapping is structural, then
it automatically satisfies Definition6.1.2. Hence, the notion of structural mapping
will be crucial in the development of our results, as it allows for a significant
simplification of the technical proofs.

Definition 6.2 (Structural mapping). A mapping ·̂ : T(Lnew)→ T(Lneg) is struc-
tural if:

• It is the identity function over variables, i.e., x̂ = x for each variable x.

• It does not introduce new variables, i.e., the set of variables occurring in the
term ̂f(x1, . . . , xn) is included in {x1, . . . , xn}, for each operator f in Lnew

and sequence of distinct variables x1, . . . , xn.

• It is defined compositionally for each operator f in Lnew, i.e., ̂f(t1, . . . , tn) =
̂f(x1, . . . , xn)[t̂1/x1, . . . , t̂n/xn], for a sequence of distinct variables x1, . . . , xn

and a sequence of terms t1, . . . , tn. (Here [t̂1/x1, . . . , t̂n/xn] stands for the
substitution mapping each variable xi to t̂i (1 ≤ i ≤ n), and acting like the
identity function on all the other variables.)
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Given a substitution σ : V → T(Lnew), we let σ̂ : V → T(Lneg) denote the
substitution that maps each variable x to σ̂(x).

Proposition 6.1. Assume that ·̂ : T(Lnew) → T(Lneg) is a structural mapping.
Then

• σ̂(t) = σ̂(t̂), for each term t ∈ T(Lnew), and for each substitution σ : V →
T(Lnew).

• A structural mapping satisfies Definition6.1.2.

Assume now that we have an infinite collection E of equations that are sound
modulo bisimilarity, but that are not derivable from any finite, sound axiom system
over Lneg. The idea in [12] is then that if a structural mapping ·̂ is a reduction
from T(Lnew) to T(Lneg) that contains all the equations in E in its range, then
the “malicious” collection of equations that map to those in E cannot be derivable
from any finite, sound axiom system over Lnew. In fact, if those derivations were
possible, then the equational properties of ·̂ would allow us to write derivations
(obtained via the translations of the equational proofs) of the equations in E from
a finite, sound axiom system over Lneg. As this contradicts the established negative
result over Lneg, the non-finite axiomatizability result over Lnew follows.

The intuitions above are formalized in the following definition and theorem.

Definition 6.3 (E-reflection). Let E be an axiom system over Lneg. A reduction
·̂ is E-reflecting, when for each t ≈ u ∈ E, there are terms t′, u′ ∈ T(Lnew) such
that the equation t′ ≈ u′ is sound modulo ∼, t̂′ = t and û′ = u. A reduction is
ground E-reflecting, if the conditions above are satisfied over closed equations.

Theorem 6.3 (The lifting theorem). Assume that there is a set of (closed) equa-
tions E over Lneg that is sound modulo ∼ and that is not derivable from any finite
sound axiom system over Lneg. If there exists a (ground) E-reflecting reduction
from Lnew to Lneg, then there exists no sound and (ground-)complete finite axiom
system for ∼ over Lnew.

We remark that the notion of (ground) E-reflecting reduction requires that
only the equations in E are reflected. This means that to establish the negative
result over Lneg it is enough to identify a particular family of equations that is
reflected, disregarding the effects of the reduction on other sound equations. For
our purposes, it will be enough to consider the family of equations Φ used by
Moller to prove Theorem 6.2. Hence, our target language will always be CCSa,
and we will use the lifting technique presented in this section to prove negative
results for the languages BCCSPp

A (Section 6.4.2), BCCSPp (Section 6.4.3), and
CCSr (Section 6.5.1).

6.4 Results for CSP Parallel Composition
In this section we investigate the existence of finite, ground-complete axiomati-
zations of bisimilarity over the process description languages BCCSPp

A (for all
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A ⊂ Act), BCCSPp
Act, BCCSPp and BCCSPp

τ . In detail, we apply the reduc-
tion technique presented in Section 6.3 to lift Moller’s negative result to BCCSPp

A ,
for each A ⊂ Act, and to BCCSPp

τ (Theorem 6.4 and Theorem 6.6, respectively).
In between, we show that the reduction technique cannot be applied to BCCSPp

(Theorem 6.5). Conversely, we establish a positive result for BCCSPp
Act, providing

a finite, ground-complete axiomatization for bisimilarity over this language (The-
orem 6.7).

6.4.1 The Languages BCCSPp
A , BCCSPp

Act, BCCSPp and BCCSPp
τ

The languages that we consider in this section are obtained by extending BCCSP
with instances of the CSP-like parallel composition operator |A, where A ⊆ Act
is the set of actions that must be performed synchronously by the parallel compo-
nents. For this reason, we shall henceforth refer to A in |A as to the synchronization
set. The operator then behaves like interleaving parallel composition on the com-
plement of A.

In detail, the languages are defined by the following grammar

t ::= nil | x | a.t | t+ t | t |A t ,

with x ∈ V and a ∈ Act, and they differ in the choice of the synchronization set(s)
A ⊆ Act as follows:

BCCSP
p
A The parallel operator |A is defined only over the fixed set A ⊂ Act

(notice that the inclusion is strict).

BCCSP
p
Act The only synchronization set is the entire set of actions Act.

BCCSPp There are no restrictions on the choice of synchronization sets, i.e. the
signature of the language contains the operator |A for all A ⊆ Act.

BCCSPp
τ This is like BCCSPp with the additional property that the prefixing oper-

ator is of the form α.t, with α potentially being a silent action τ for a special
action label τ 6∈ Act, similarly to the definition CCS 2.3 (see Section 6.4.3
for further details).

The SOS rules for the CSP-like parallel composition operator |A are given in
Table 6.4. The operational semantics of each of the above-mentioned languages is
then given by the rules in Table 6.1 and those in Table 6.4, in which A is instantiated
according to the considered language.

Let L ∈ {BCCSPp
A ,BCCSPp

Act,BCCSPp,BCCSPp
τ }. Since in the technical re-

sults to follow we will need to distinguish between transitions over L processes and
transitions over CCSa processes, to avoid possible confusion we will denote the
transition relation over P(L) induced by the rules in Tables 6.1 and 6.4 by −→p.
Similarly, we can properly instantiate the definition of bisimilarity over L processes:

Definition 6.4 (Bisimilarity over BCCSPp
A , BCCSPp

Act, BCCSPp and BCCSPp
τ ).

Let L be any of BCCSPp
A ,BCCSPp

Act,BCCSPp,BCCSPp
τ . Bisimulation relations

over L processes are defined by applying Definition 2.2 to the LTS (P(L),Act,−→p)
induced by the SOS rules in Tables 6.1 and 6.4. We use the symbol ∼p to denote
bisimilarity over L processes.
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(lParA)
t
a−→ t′

t |A u
a−→ t′ |A u

a 6∈ A (rParA)
u

a−→ u′

t |A u
a−→ t |A u′

a 6∈ A

(syncA)
t
a−→ t′, u

a−→ u′

t |A u
a−→ t′ |A u′

a ∈ A

Table 6.4: SOS rules for the parallel operator |A, A ⊆ Act.

It is worth noticing that, as briefly outlined above, when the parallel components
t, u in t |A u contain only actions that are not in A, then the semantics of |A
coincides with the semantics of CCS interleaving parallel composition. On the other
hand, when t and u contain only actions in A, then |A behaves like “synchronous”
parallel composition. The following example highlights these observations.

Example 12. Let A ⊆ Act and b ∈ A. It is not difficult to see that

b |A
n∑
i=1

bi ∼p b (n ≥ 1)

and therefore

b |A
n∑
i=1

bi ∼p b |A
m∑
j=1

bj (n,m ≥ 1).

In particular, we have that the axiom

b.x |A (b.y + z) ≈ (b.x |A b.y) + (b.x |A z) if b ∈ A

is sound modulo ∼p over the languages considered in this section.
Conversely, if we pick an action a 6∈ A, then we have

a |A
n∑
i=1

ai ∼p a.

n∑
i=1

ai +

n∑
j=1

aj+1 (n ≥ 0)

and thus

a |A
n∑
i=1

ai 6∼p a |A
m∑
j=1

aj (n 6= m).

Notice that, for a 6∈ A, if we let

ϕnA : a |A
n∑
i=1

ai ≈ a.
n∑
i=1

ai +

n∑
j=1

aj+1 (n ≥ 0), (6.1)

then the family of equations ΦA = {ϕnA | n ∈ N} can be thought of as the
counterpart in BCCSPp

A of the family Φ used by Moller to prove Theorem 6.2.
As we will see, this correspondence will be instrumental in applying the reduction
technique to those languages.



6.4. RESULTS FOR CSP PARALLEL COMPOSITION 137

6.4.2 The Negative Result for BCCSPp
A

We start our investigations with BCCSPp
A , for a given set A ⊂ Act. In particular,

by applying the proof methodology discussed in Section 6.3, we prove that:

Theorem 6.4. BCCSP
p
A does not have a finite, ground-complete axiomatization

modulo bisimilarity.

Our first step consists in defining a mapping allowing us to rewrite BCCSPp
A

terms into CCSa terms. As the target language is built over a specific action, it
is natural to have a definition of our mapping that is parametric in that action.
Hence, choose an action a ∈ Act\A. Notice that the requirement that the inclusion
A ⊂ Act be strict guarantees that such an action a exists.

Definition 6.5 (The mapping pAa ). The mapping pAa : T(BCCSPp
A)→ T(CCSa) is

defined inductively over the structure of terms as follows:

pAa (nil) = nil pAa (x) = x pAa (t+ u) = pAa (t) + pAa (u)

pAa (b.t) =

{
a.pAa (t) if b = a,

nil otherwise.
pAa (t |A u) = pAa (t) ‖ pAa (u).

By Definition 6.5, for each t ∈ T(BCCSPp
A), the only action occurring in pAa (t)

is a.
In order to lift the negative result in Theorem 6.2 to BCCSP

p
A , we need to prove

that the proposed mapping pAa is a ground Φ-reflecting reduction. Let us first focus
on showing that pAa is a reduction, i.e., we need to show that it satisfies the two
constraints in Definition 6.1.

Remark 10. For simplicity, we shall sometimes extend the mapping notation from
terms to equations. For instance, if e : t ≈ u is an equation over BCCSP

p
A terms,

we shall write pAa (e) to denote the equation over CCSa terms pAa (t) ≈ pAa (u).

The following lemma is immediate from Definition 6.5.

Lemma 6.1. The mapping pAa is structural.

Hence, in light of Proposition 6.1, the mapping pAa satisfies Definition 6.1.2.
Our order of business will now be to show that pAa preserves sound equations.

Lemma 6.2. For all p ∈ P(BCCSP
p
A) and q ∈ P(CCSa), if pAa (p)

a−→ q, then there
exists a BCCSPp

A process p′ such that p a−→p p
′ and pAa (p′) = q.

Proof. We proceed by structural induction over p.

• Case p = nil. This is vacuous, since pAa (p) has no outgoing transition.

• Case p = b.p0. By Definition 6.5 and the assumption that pAa (p)
a−→ q, we

have that b = a 6∈ A and pAa (p0) = q. As p a−→p p0, the claim follows.
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• Case p = p1 |A p2. By Definition 6.5, we have that pAa (p) = pAa (p1) ‖ pAa (p2).
Moreover, by the proviso of the lemma, pAa (p1) ‖ pAa (p2)

a−→ q, for some
CCSa process q. This follows by an application of either rule (lPar) or rule
(rPar) from Table 6.3. We can assume, without loss of generality, that rule
(lPar) was applied. (The case of an application of rule (rPar) follows from
a similar reasoning.) Hence pAa (p1)

a−→ q′ for some CCSa process q′ such
that q′ ‖ pAa (p2) = q. By the induction hypothesis, we obtain that p1

a−→p p
′
1

for some p′1 ∈ P(BCCSPp
A) such that pAa (p′1) = q′. Hence, as p1

a−→p p′1
and a 6∈ A, we can apply rule (lParA) from Table 6.4 and obtain that p =

p1 |A p2
a−→p p

′
1 |A p2. Since pAa (p′1 |A p2) = pAa (p′1)‖pAa (p2) = q′ ‖pAa (p2) = q,

the claim follows.

• Case p = p1 + p2. This case is similar to the case of parallel composition
discussed above. The only difference is that rules (lSum) and (rSum) from
Table 6.1 are applied in place of rules (lParA) and (rParA), respectively.

Lemma 6.3. For all p, p′ ∈ P(BCCSP
p
A), if p a−→p p

′ then pAa (p)
a−→ pAa (p′).

Proof. We proceed by induction on the size of the proof for the transition p a−→p p
′.

We distinguish three cases, according to the last inference rule from Tables 6.1
and 6.4 that is applied in the proof. (Notice that the analysis of symmetric rules is
omitted.) We remark that since a 6∈ A, rule (syncA) cannot be applied as the last
rule in the proof for p a−→p p

′.

• Rule (act). In this case, we have that p = a.p′ and p a−→p p
′. By Definition 6.5,

we have that pAa (a.p′) = a.pAa (p′), and, thus, we can apply rule (act) and
obtain that pAa (p) = pAa (a.p′) = a.pAa (p′)

a−→ pAa (p′). Hence the claim follows
in this case.

• Rule (lSum). In this case, we have that p = p0 + p1, p0
a−→p p

′, and pAa (p) =

pAa (p0) + pAa (p1). By the inductive hypothesis we get that pAa (p0)
a−→ pAa (p′).

By applying now rule (lSum), we conclude that pAa (p) = pAa (p0) + pAa (p1)
a−→

pAa (p′).

• Rule (lParA). In this case, as a 6∈ A, we have that p = p0 |A p1, p0
a−→p p

′
0

for some p′0 ∈ P(BCCSPp
A), and p′ = p′0 |A p1. By induction, we obtain that

pAa (p0)
a−→ pAa (p′0). Hence, by applying rule (lPar) from Table 6.3 to pAa (p),

we get that pAa (p) = pAa (p0) ‖ pAa (p1)
a−→ pAa (p′0) ‖ pAa (p1) = pAa (p′0 |A p1) =

pAa (p′).

We can now proceed to prove that pAa satisfies Definition 6.1.1 as well. Moreover,
we show that it is also ground Φ-reflecting.

Proposition 6.2. The mapping pAa satisfies the following properties:

1. For all t, u ∈ T(BCCSPp
A), if t ∼p u then pAa (t) ∼ pAa (u).

2. The mapping pAa is ground Φ-reflecting.
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Proof. We prove the two items separately.

1. First, observe that for every (closed) term t in CCSa there is a (closed) term
tp,Aa in BCCSPp

A such that pAa (tp,Aa ) = t. The term tp,Aa is defined as follows:

nilp,Aa = nil xp,Aa = x (a.t)p,Aa = a.tp,Aa

(t+ u)p,Aa = tp,Aa + up,Aa (t ‖ u)p,Aa = tp,Aa |A up,Aa .

Given a CCSa substitution σ, we define σp,Aa to be the BCCSPp
A substitution

given by σp,Aa (x) = (σ(x))p,Aa . By Proposition 6.1 and since the mapping pAa
is structural (Lemma 6.1), we have that

pAa (σp,Aa (t)) = pAa (σp,Aa )(pAa (t)) = σ(pAa (t)),

for all t ∈ T(BCCSPp
A).

To prove the claim, it is then enough to show that the following relation

R = {(σ(pAa (t)), σ(pAa (u))) | t ∼p u and σ : V → P(CCSa)}

is a bisimulation relation over CCSa processes.

Notice, first of all, that since ∼p is symmetric, then so is R . Assume
now that σ(pAa (t))Rσ(pAa (u)), where t, u ∈ T(BCCSPp

A) and σ is a closed
CCSa substitution. By the definition of R , we have that t ∼p u. As-
sume now that σ(pAa (t))

a−→ q for some q ∈ P(CCSa). By the observa-
tion above, this means that pAa (σp,Aa (t))

a−→ q. By Lemma 6.2, we get that
σ
p,A
a (t)

a−→p p
′ for some p′ ∈ P(BCCSP

p
A) such that pAa (p′) = q. As t ∼p u

implies that σp,Aa (t) ∼p σp,Aa (u), we have that σp,Aa (u)
a−→p p′′, for some

p′′ ∈ P(BCCSPp
A) such that p′ ∼p p

′′. Additionally, by Lemma 6.3 we have
that σ(pAa (u)) = pAa (σp,Aa (u))

a−→ pAa (p′′). We can then conclude by noticing
that, since p′ ∼p p

′′, by definition of R it holds that q = pAa (p′)R pAa (p′′),
i.e., R is a bisimulation relation over CCSa processes.

2. In order to show that pAa is ground Φ-reflecting, it is enough to argue that
the family ΦA consisting of the closed equations ϕnA defined in Equation 6.1
is mapped exactly onto Φ. Since a 6∈ A we have that pAa simply replaces
all the occurrences of |A in each equation ϕnA with ‖. Hence, we have that
pAa (ϕnA) = ϕn, for each n ≥ 0.

From Lemma 6.1 and Proposition 6.2, we can infer that pAa is a well-defined
reduction as in Definition 6.1, and it is also ground Φ-reflecting. Theorem 6.4 then
follows by Theorem 6.2 and Theorem 6.3.

6.4.3 The Case of BCCSPp and the Negative Result for BCCSPp
τ

Given the negative result over BCCSPp
A , it is natural to wonder what happens when

we extend that language to BCCSPp, namely BCCSP enriched with an operator
|A , for each A ⊆ Act.
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One might expect that bisimilarity does not have a finite, ground-complete
axiomatization over BCCSPp and indeed we conjecture that such a results holds.
However, the reduction method cannot be applied to prove such a claim.

Specifically, consider the language BCCSPp over Act = {a}. We can prove the
following result:

Theorem 6.5. There is no structural reduction from BCCSPp to CCSa that is
ground Φ-reflecting.

Proof. To simplify notation, let us use |a in place of |{a}.
Assume that ·̂ is a structural reduction from BCCSPp to CCSa. Our aim is to

prove that ·̂ is not ground Φ-reflecting.
To this end, we start by recalling that, since ·̂ is structural (Definition 6.2),

then:

ât = âx[t̂/x], for each t ∈ T(BCCSPp) (6.2)

t̂1 � t2 = x̂1 � x2[t̂1/x1, t̂2/x2], for each t1, t2 ∈ T(BCCSPp) (6.3)
and binary operator � ∈ {+, |∅, |a}.

Moreover, as ·̂ preserves sound equations (Definition 6.1), we have that:

̂ax |a nil ∼ n̂il ∼ ̂nil |a ax; (6.4)

̂an |a an ∼ ân, for all n ≥ 0; (6.5)

̂nil + nil ∼ n̂il; (6.6)

̂nil |∅ nil ∼ n̂il. (6.7)

Assume now that
x̂1|ax2 = t (6.8)

for some t ∈ T(CCSa) with var(()t) ⊆ {x1, x2} (as ·̂ is structural).
We can distinguish two cases, according to whether t is a closed term or not.

In both cases, we shall show that ·̂ is not ground Φ-reflecting.

• Case 1: t is a closed CCSa term. In this case, for each n ≥ 0, we have
that

t ∼ ân ∼ nil. (6.9)

Indeed,

ân ∼ ̂an |a an (by 6.5)

∼ t[ân/x1, ân/x2] (by 6.3 and 6.8)

∼ t[n̂il/x1, n̂il/x2] (since t is closed)

∼ n̂il (by 6.3 and 6.5 with n = 0).

We now claim that
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Claim 1: For each p ∈ P(BCCSPp), it holds that p̂ ∼ n̂il.

Before proving Claim 1 above, we observe that by using it we can immediately
show that the mapping ·̂ is not ground Φ-reflecting. Indeed, since

a ‖ a 6∼ a ‖ (a+ a2),

by Claim 1 there cannot be two processes p, q ∈ P(BCCSPp) such that p̂ =
a ‖ a and q̂ = a ‖ (a+ a2). Let us now prove Claim 1.

Proof of Claim 1: We proceed by induction on the structure of process p.
– The case p = nil is trivial.
– Case p = aq. We have

p̂ = âx[q̂/x] (by 6.2)

∼ âx[n̂il/x] (by induction and ∼ is a congruence)

∼ ânil (by 6.2)

∼ ˆnil (by 6.9).

– Case p = p1 � p2 for some binary operator � ∈ {+, |∅, |a}. In this
case,

p̂ = x̂1 � x2[p̂1/x1, p̂2/x2] (by 6.3)

∼ x̂1 � x2[n̂il/x1, n̂il/x2] (by induction and ∼ is a congruence)

∼ ̂nil� nil (by 6.3)

∼ n̂il (by 6.5–6.7 according to �).

This concludes the proof of Claim 1.

The proof of Case 1 is now complete.

• Case 2: t is an open CCSa term. Assume, without loss of generality,
that t contains at least an occurrence of x1. (The cases of x2 ∈ var(()t)
and x1, x2 ∈ var(()t) can be treated in a similar fashion and are therefore
omitted.) Firstly, we observe that for each p ∈ P(BCCSPp)

n̂il ∼ ̂ap |a nil (by 6.4)

= t[âp/x1, n̂il/x2] (by 6.3 and 6.8).

Moreover, we recall that for every u ∈ CCSa and y ∈ V, it holds that whenever
y ∈ var(()u) then depth(σ(y)) ≤ depth(σ(u)) for every closed substitution σ.
Hence, since t ∈ T(CCSa) and x1 ∈ var(()t), we have that

depth(âp) ≤ depth( ̂ap |a nil) = depth(n̂il). (6.10)

We claim that
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Claim 2: For each n ≥ 0 and processes p1, . . . , pn ∈ P(BCCSPp), it holds
that depth(

∑̂n
i=1 api) ≤ depth(n̂il).

Proof of Claim 2: We proceed by induction on n ≥ 0.
– The case n = 0 is trivial.
– For the inductive step, we have that:

depth(

n̂+1∑
i=1

api)

= depth(
̂n∑

i=1

api + apn+1)

= depth(x̂1 + x2[

n̂∑
i=1

api/x1, âpn+1/x2]) (by 6.3)

≤ depth(x̂1 + x2[n̂il/x1, n̂il/x2]) (by induction and 6.10)

= depth( ̂nil + nil) (by 6.3)

= depth(n̂il) (by 6.6 and Remark 1).

This concludes the proof of Claim 2.

Claim 3: For each p ∈ P(BCCSPp) it holds that depth(p̂) ≤ (̂nil).

Proof of Claim 3: First of all, we notice that each BCCSPp process can
be rewritten into head normal form up to bisimilarity. This means that,
given any p ∈ P(BCCSPp), we have that p ∼

∑n
i=1 api for some n ≥ 0

and p1, . . . , pn ∈ P(BCCSPp).
Since ·̂ preserves sound equations, we have

p̂ ∼
n̂∑
i=1

api.

Hence, by Claim 2 above, it follows that

depth(p̂) = depth(

n̂∑
i=1

api) ≤ depth(n̂il). (6.11)

This concludes the proof of Claim 3.

We can now proceed to show that ·̂ is not ground Φ-reflecting. Let k =
depth(n̂il). We have that equation ϕk ∈ Φ is of the form:

a ‖ (

k∑
i=1

ai) ≈ a.(
k∑
i=1

ai) +

k+1∑
i=2

ai.
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In particular, the depth of a ‖ (
∑k
i=1 a

i) is k+ 1. Therefore, by 6.11, there is
no p ∈ P(BCCSPp) such that p̂ = a ‖ (

∑k
i=1 a

i).

The proof of Case 2 is now concluded.

This completes the proof of the Theorem 6.5.

Although we proved Theorem 6.5 in the simplified setting of Act = {a}, it is
not difficult to see that the proof can be extended to the general case {a} ⊂ Act
in a straightforward manner.

Since the reduction method cannot be applied, one might show the non-existence
of a finite, ground-complete axiomatization of bisimilarity over BCCSPp by adapt-
ing the strategy employed by Moller in his proof of Theorem 6.2. However, since
that proof would require several pages of technical results, we leave it as an avenue
for future research, and we deal with the presence of all the operators |A in a
simplified setting.

The basic idea behind the reduction defined for BCCSPp
A is that we can always

identify an action a ∈ Act\A such that the parallel operator |A always allows for
interleaving of a-moves of its arguments. Clearly, if we add an operator |A for each
A ⊆ Act to the language, it is no longer possible to identify such an action. There
is, however, a special action that is not used to build syntactically CSP terms,
but it is however necessary to express their semantics: the silent action τ 6∈ Act.
CSP terms are defined over Act, which means that the language does not offer a
τ -prefixing operator; however, in order to properly define the operational semantics
of the internal choice operator, the set of action labels in the LTS is Act∪{τ}. In
particular, as explained in [67], the operational semantics of the parallel operators
always allow for the interleaving of τ -moves of their arguments.

Hence, we now consider BCCSPp
τ , i.e., the extension of BCCSPp that includes

the τ -prefixing operator, and we prove the following result:

Theorem 6.6. BCCSPp
τ does not afford a finite, ground-complete axiomatization

modulo bisimilarity .

To this end, we apply the same proof technique that we used in Section 6.4.2 for
BCCSPp

A . The reduction mapping for BCCSPp
τ is almost identical to the mapping

pAa defined for BCCSPp
A , the only difference being that now we consider the language

CCSτ as target language, i.e., CCSa with a = τ .

Remark 11. Theorem 6.2 remains true over CCSτ . In fact, as we are considering
strong bisimilarity, there is no difference between τ and any other observable action
a ∈ Act. Specifically, if we let Φτ be the family of equations in Φ in which each
occurrence of a is replaced by τ , then we can repeat Moller’s arguments in a step-by-
step fashion to obtain that no finite axiom system, that is sound modulo bisimilarity,
can prove the whole family of equations Φτ .

Definition 6.6 (The mapping pa). The mapping pa : T(BCCSPp
τ ) → T(CCSτ ) is

defined inductively over the structure of BCCSPp
τ terms as follows:

pa(nil) = nil pa(x) = x pa(t+ u) = pa(t) + pa(u)
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pa(α.t) =

{
τ.pa(t) if α = τ,

nil otherwise;
pa(t |A u) = pa(t) ‖ pa(u).

Intuitively, we use the mapping pa to eliminate any action b 6= τ from terms,
so that a process pa(p |A q) can perform a transition pa(p |A q)

τ−→ p′, for some
CCSa process p′, if and only if b = τ . (Recall that, by construction τ 6∈ A for each
A ⊆ Act.)

First, we note that this mapping is a structural mapping.

Lemma 6.4. The mapping pa is structural.

We will now state and prove the results over BCCSPp
τ , that correspond to

Lemma 6.2 and Lemma 6.3 over BCCSPp
A .

Lemma 6.5. For all p ∈ P(BCCSPp
τ ) and q ∈ P(CCSτ ), if pa(p)

τ−→ q, then there
exists a BCCSPp

τ process p′, such that p τ−→p p
′ and pa(p′) = q.

Proof. The proof is by structural induction over p. We omit it since it is similar to
that of Lemma 6.2.

Lemma 6.6. For all p, p′ ∈ P(BCCSPp
τ ), if p τ−→p p

′ then pa(p)
τ−→ pa(p′).

Proof. The proof proceeds by induction over the size of the proof for p τ−→p p
′. It

is analogous to the proof of Lemma 6.3, and it is therefore omitted.

The following result, which extends Proposition 6.2 to BCCSPp
τ , allows us to

prove that pa is a well-defined reduction mapping that is also ground Φτ -reflecting.

Proposition 6.3. The following properties hold for the mapping pa:

1. For all t, u ∈ T(BCCSPp
τ ), if t ∼p u, then pa(t) ∼ pa(u).

2. The mapping pa is ground Φτ -reflecting.

Proof. 1. We start by observing that for every (closed) term t in CCSτ there is
a (closed) term tpτ in BCCSPp

τ such that pa(tpτ ) = t. The term tpτ is defined
as follows:

nilpτ = nil xpτ = x (τ.t)pτ = τ.tpτ

(t+ u)pτ = tpτ + upτ (t ‖ u)pτ = tpτ |∅ upτ .

Then, given a CCSτ substitution σ, we define the BCCSPp
τ substitution σpτ

by σpτ (x) = (σ(x))pτ . By Lemma 6.4 and Proposition 6.1, we have that
pa(σpτ (t)) = pa(σpτ )(pa(t)) = σ(pa(t)) for all t ∈ T(BCCSPp

τ ).
The proof of this statement then proceeds as that of the corresponding state-
ment in Proposition 6.2, and it is therefore omitted.

2. Consider the family of equations Φτ,∅ = {ϕnτ,∅ | n ∈ N}, where the closed
equations ϕnτ,∅ are defined as in Equation 6.1, using the set ∅ as synchro-
nization set, and replacing each occurrence of a with τ . It is straightforward
to prove that pa(ϕnτ,∅) = ϕτ,n for each n ∈ N. Hence, pa is ground Φτ -
reflecting.
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(P1) x |Act y ≈ y |Act x

(P2) (x+ y) |Act z ≈ (x |Act z) + (y |Act z)

(P3) (x |Act nil) ≈ nil

(P4) (a.x |Act a.y) ≈ a.(x |Act y), for each a ∈ Act

(P5) (a.x |Act b.y) ≈ nil, for b 6= a, and a, b ∈ Act.

Table 6.5: Additional axioms for BCCSPp
Act.

Theorem 6.6 is then obtained as a direct consequence of Lemma 6.4, Proposi-
tion 6.3, Theorem 6.3, and Theorem 6.2.

6.4.4 The Case of BCCSPp
Act

We now argue that the requirement that the inclusion A ⊂ Act be strict, used
in Section 6.4.2, is indeed necessary for Theorem 6.4 to hold. We also notice that
a similar requirement is not explicitly expressed for the validity of Theorem 6.6,
proved in Section 6.4.3, because having |A defined for all A ⊆ Act automatically
guaranteed the existence of at least one synchronization set A such that a 6∈ A
for some action a ∈ Act, namely the synchronization set A = ∅. Moreover, as
discussed in Example 12, given a synchronization set A, the requirement a 6∈ A
is crucial to guarantee the soundness modulo bisimilarity of equation ϕnA, for any
n ∈ N (see Equation 6.1).

In this section, we handle the border case of the language BCCSPp
Act, which

includes only the parallel operator |Act, and we show that for this special case
a positive result holds: we provide a finite, ground-complete axiomatization of
bisimilarity over this language. Let us consider the axiom system Ep = E0 ∪
{P1,P2,P3,P4,P5}, where E0 consists of the axioms in Table 6.2, and axioms P1–
P5 are reported in Table 6.5. Notice that the axiom schemata P4 and P5 generate
only finitely many axioms. More precisely, P4 generates |Act| axioms, and P5
generates |Act| × (|Act| − 1) axioms. We will now prove the following result:

Theorem 6.7. Ep is a finite, ground-complete axiomatization of BCCSPp
Act modulo

bisimilarity.

The idea behind the proof of Theorem 6.7 is that the axioms in Table 6.5 allow us
to eliminate all occurrences of the parallel operator |Act from BCCSPp

Act processes.
Hence, every BCCSP

p
Act process can be proven equal to a BCCSP process using Ep

. The ground-completeness of Ep then follows from that of E0 proven in [126]. To
that end, we first show:

Lemma 6.7. For all closed BCCSP terms p and q, there exists a closed BCCSP
term r such that Ep ` p |Act q ≈ r .

Proof. The proof is by induction on size(p |Act q). First of all we notice that,
given any closed BCCSP term p, we can assume, without loss of generality, that
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p =
∑
i∈I aipi for some finite index set I, actions ai ∈ Act, and closed BCCSP

terms pi, for i ∈ I. In fact, in case p is not already in this shape, then by applying
axioms A2 and A4 in Table 6.2 we can remove superfluous occurrences of nil
summands. In particular, we remark that this transformation does not increase the
number of operator symbols occurring in p. Thus we proceed under the assumption
that

p =
∑
i∈I

ai.pi and q =
∑
j∈J

bi.qj .

We proceed by a case analysis on the cardinality of the sets of indexes I and J .

• If either I = ∅ or J = ∅, then p = nil or q = nil. In light of P1, without
loss of generality, we can assume that q = nil and we have that p |Act q =
p |Act nil. Thus by applying axiom P3, we get Ep ` p |Act q ≈ nil and we
are done.

• If both I and J are singletons, then we have that p = a.p′ and q = b.q′, for
some a, b ∈ Act and BCCSP processes p′ and q′.

If a = b, then we use axiom P4 to get Ep ` a.p′ |Act a.q
′ ≈ a.(p′ |Act q

′).
Since the size of p′ |Act q

′ is smaller than that of p |Act q, by the induction
hypothesis, there exists a BCCSP process r′ such that Ep ` p′ |Act q

′ ≈ r′.
Thus we have Ep ` a.p′ |Act a.q

′ ≈ a.r′, which is a BCCSP process.

In the case that a 6= b, then we can use axiom P5, to infer Ep ` a.p′ |Act b.q
′ ≈

nil and we are done.

• We can now assume, without loss of generality, that |I| > 1 and |J | ≥ 1.
This means that we can express p as the summation of two summands of
smaller size that are different from nil, i.e. p = p1 + p2, for some BCCSP
processes p1 and p2. Then, we use axiom P2 to get Ep ` (p1 + p2) |Act q ≈
(p1 |Act q)+(p2 |Act q). Since both p1 |Act q and p2 |Act q have size less than
that of p |Act q, by the induction hypothesis, we have that there exist BCCSP
processes r′ and r′′ such that Ep ` p1 |Act q ≈ r′ and Ep ` p2 |Act q ≈ r′′.
We thus have that Ep ` p |Act q ≈ r′ + r′′, which is a BCCSP process, and
we are done.

The above lemma is the key step in the elimination of |Act from closed terms.
Namely:

Proposition 6.4. For every closed BCCSPp
Act process p there exists a closed

BCCSP process q such that Ep ` p ≈ q.

Proof. The proof is straightforward by structural induction on p and using Lemma
6.7 in the case that p is of the form p1 |Act p2, for some BCCSP

p
Act processes

p1, p2.

The ground-completeness of Ep over BCCSPp
Act follows from Proposition 6.4

and the ground-completeness of E0 over BCCSP [126].
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6.5 Axiomatizability Results for CCS Full Merge
In this section we apply the reduction technique described in Section 6.3 to show
that bisimilarity does not have a finite, ground-complete equational axiomatiza-
tion over the BCCSP extended with the full merge operator from CCS and either
restriction or relabeling.

To this end, as already done in Subsections 6.4.2 and 6.4.3, we exploit the
reduction technique from [12] and Moller’s non-finite axiomatizability result from
CCSa (Theorem 6.2). In detail:

• We select a particular action a ∈ Act.

• We consider the language CCSa and the instantiation of the equations ϕn in
the family Φ over processes defined using only that action.

• We provide translation mappings from CCSr to CCSa, and CCS` to CCSa,
denoted by ra, and `a respectively, whose definition will be parametric in the
chosen action a. The first mapping will allow us to eliminate all CCSr terms in
which the execution of a is restricted, while ensuring the possibility to perform
any a-transition that is unrestricted. The second works by abstracting away
of all action names and replacing them with a, while also completely ignoring
all relabelings, since now specific action names are indistinguishable.

It will be then enough to show that the mappings ra and `a are structural, that
they preserves the soundness of equations from CCSr to CCSa (CCS` to CCSa
respectively), and that they are ground Φ-reflecting, to obtain the validity of the
lifting of the negative result in Theorem 6.2 to CCSr and CCS`.

In this section we will use a slightly augmented notation from the previous ones.
The reason is that for the technical contributions of this section it was imperative
for clarity to distinguish between the set of labels (of observable actions) and sets
of actions that include internal steps.

In detail, we assume a finite set of action names Act, and we let Act denote
the set of action co-names, i.e., Act = {a | a ∈ Act}. As usual, we postulate that
a = a and a 6= a for all a ∈ Act. Then, we let Actτ = Act ∪Act ∪ {τ}, where
τ 6∈ Act ∪Act. Henceforth, we let α, β, . . . range over actions in Actτ , µ, ν, . . .
range over actions in Act ∪Act, and a, b, . . . range over actions in Act.

Following [152], the action symbol τ will result from the synchronized occur-
rence of the complementary actions a and a, as described by the inference rules in
Table 6.7.

The semantics of the full operator | , which is included in both languages we
study in this section are given in Table 6.6.

6.5.1 The Case of Restriction
We denote by CCSr the recursion and relabeling free fragment of CCS with the
full merge operator (denoted by | ) generated by the following grammar:

t ::= nil | x | α.t | t+ t | t | t | t\R (CCSr)
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(r1)
t
α−→ t′

t | u α−→ t′ | u
(r2)

u
α−→ u′

t | u α−→ t | u′
(r3)

t
µ−→ t′ u

µ−→ u′

t | u τ−→ t′ | u′

Table 6.6: The SOS rules for | operator (α ∈ Actτ , µ ∈ Act ∪Act).

(r4)
t
µ−→ t′

t\L µ−→ t′\R
µ, µ 6∈ R (r5)

t
τ−→ t′

t\L τ−→ t′\R

Table 6.7: The SOS rules for the \ operator (α ∈ Actτ , µ ∈ Act ∪Act).

where x ∈ V, α ∈ Actτ and R ⊆ Act ∪Act.
We recall that the restriction operator t\R prevents t (and its derivatives) from

performing any α-transition, for all α ∈ R.
The operational semantics of CCSr is obtained by adding the inference rules for

the restriction operator given in Table 6.7 to the rules for BCCSP operators given
in Table 6.1 and the full merge operator given in Table 6.6. In the technical results
that follow, we will need to distinguish between transitions over CCSr processes,
and transitions over CCSa processes. Hence, to avoid possible confusion, we adopt
the same strategy we used in Section 6.4, and use special symbols to distinguish
them: we denote the transition relation induced by the rules in Tables 6.1 and 6.7
by −→r, and bisimilarity over P(CCSr) by ∼r.

Definition 6.7 (Bisimulation over CCSr). Bisimulation relations over CCSr pro-
cesses are defined by applying Definition 2.2 to the LTS (P(CCSr),Actτ ,−→r) in-
duced by the SOS rules in Table 6.7. We use the symbol ∼r to denote bisimilarity
over CCSr processes.

Our main goal here is to prove the following theorem:

Theorem 6.8. Bisimilarity has no finite, ground-complete equational axiomatiza-
tion over CCSr.

We begin by providing the mapping. Choose an action a from the action set
Act. Then we define a mapping ra : T(CCSr) → T(CCSa) allowing us to rewrite
any CCSr term into a CCSa term.

Definition 6.8 (The mapping ra). The mapping ra : T(CCSr) → T(CCSa) is
defined inductively as follows:

ra(nil) = nil ra(t+ u) = ra(t) + ra(u)

ra(x) = x ra(t | u) = ra(t) ‖ ra(u)

ra(α.t) =

{
a.ra(t) if α = a

nil otherwise
ra(t\R) =

{
ra(t) if a, a 6∈ R
nil otherwise.
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Notice that a is the only action that may possibly occur in ra(t), for each
t ∈ T(CCSr).

We now proceed to show that the mapping ra is a well-defined reduction, accord-
ing to Definition 6.1. As a first step, we notice that ra is structural by definition.

Lemma 6.8. The mapping ra is structural.

We now proceed to prove two technical lemmas, that will be useful to prove
that ra is a reduction.

Lemma 6.9. For all p ∈ P(CCSr), and q ∈ P(CCSa), if ra(p)
a−→ q, then there

exists some p′ ∈ P(CCSr) such that p a−→r p
′ and ra(p′) = q.

Proof. The proof proceeds by structural induction over the P(CCSr) process p.
As for prefixing, nondeterministic choice, and parallel composition the proof is
analogous to that of the corresponding steps in Lemma 6.2, we limit ourselves to
present only the inductive step related to the restriction operator.

Let p = p1\R. We can distinguish two cases, according to whether a ∈ R or
a ∈ R, or not (see Definition 6.8):

• Assume that a ∈ R or a ∈ R. Then ra(p) = nil, and this case becomes
vacuous as ra(p)

a−→6 .

• Assume now that a, a 6∈ R. Then ra(p) = ra(p1) and ra(p1)
a−→ q. By

induction over p1, there is some p′1 ∈ P(CCSr) such that p1
a−→r p

′
1 and

ra(p′1) = q. Since a, a 6∈ R, by an application of rule (r4) from Table 6.7 we
obtain that p a−→r p

′
1\R. Finally, by Definition 6.8, since a, a 6∈ R it follows

that ra(p′1\R) = ra(p′1) = q as required.

Lemma 6.10. For all p, p′ ∈ P(CCSr), if p a−→r p
′, then ra(p)

a−→ ra(p′).

Proof. The proof proceeds by induction over the size of the proof for the transition
p

a−→r p
′. Also in this case, given the similarities with the proofs of the correspond-

ing cases in Lemma 6.3, we limit ourselves to analyse only the case in which the
last inference rule from Table 6.7 that is applied in the proof for p a−→r p

′ is rule
(r4), i.e., the rule for restriction. (In particular, we remark that since a 6= τ , rules
(r3) and (r5) cannot be applied as the last rules in the proof for p a−→r p

′.)
Let (r4) be the last rule applied in the proof. In this case, p = p1\R, p1

a−→r p
′
1,

and p′ = p′1\R. In particular, the application of rule (r4) guarantees that a, a 6∈ R,
so that ra(p) = ra(p1), by Definition 6.8. By induction we obtain that ra(p1)

a−→
ra(p′1). Clearly, this directly gives ra(p)

a−→ ra(p′1). Since, moreover, a, a 6∈ R, by
Definition 6.8 we also get that ra(p′) = ra(p′1\R) = ra(p′1). We can then conclude
that ra(p)

a−→ ra(p′).

We now have all the ingredients necessary to prove that the mapping ra is a
well-defined ground Φ-reflecting reduction.

Proposition 6.5. The mapping ra satisfies the following properties:

1. For each t, u ∈ T(CCSr), t ∼r u implies ra(t) ∼ ra(u).
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2. The mapping ra is ground Φ-reflecting.

Proof. We prove the two statements separately.

1. First of all, for each t ∈ T(CCSa) we define tra ∈ T(CCSr) as follows:

nilra = nil xra = a (a.t)ra = a.tra

(t+ u)ra = tra + ura (t ‖ u)ra = tra | ura.

It is then immediate to check that for each t ∈ T(CCSa) we have that
ra(tra) = t. Then, given any CCSa substitution σ, we define σra as the CCSr

substitution such that σra(x) = (σ(x))ra. The claim then follows by applying
the same reasoning used in the proof of Proposition 6.2.

2. Consider the family of equations Φr defined as follows:

ϕnr : a |
n∑
i=1

ai ≈ a.
n∑
i=1

ai +

n∑
j=1

aj+1 (n ≥ 0)

Φr = {ϕnr | n ≥ 0}.

It is straightforward to prove that ra(ϕnr ) = ϕn for each n ∈ N, and thus that
ra is ground Φ-reflecting.

Theorem 6.8 is then a immediate consequence of Lemma 6.8, Proposition 6.5,
Theorem 6.3, and Theorem 6.2.

6.5.2 The Case of Relabeling
We denote by CCS` the recursion and restriction free fragment of CCS with the
full merge operator | generated by the following grammar:

t ::= nil | x | α.t | t+ t | t | t | t[f ] (CCS`)

where x ∈ V, α ∈ Actτ and is a relabeling function f : Actτ → Actτ such that
f(τ) = τ , and f(a) = f(a) for each action a ∈ Act.

Intuitively, t[f ] behaves like t, but each α transition that t (or any of its deriva-
tives) can perform is transformed into an f(α) transition.

The operational semantics of CCS` is obtained by adding the inference rules for
the relabeling operator given in Table 6.8 to the rules for BCCSP operators given
in Table 6.1 and those for the full merge operator from Table 6.6.

In the technical results that follow, we will need to distinguish between tran-
sitions over CCS` processes, and transitions over CCSa processes. As done in the
previous sections, we use special symbols to distinguish them: we denote the transi-
tion relation induced by the rules in Tables 6.1 6.6, and 6.8 by −→`, and bisimilarity
over P(CCS`) by ∼`.

Definition 6.9 (Bisimulation over CCS`). Bisimulation relations over CCS` pro-
cesses are defined by applying Definition 2.2 to the LTS (P(CCS`),Actτ ,−→`) in-
duced by the SOS rules of CCS`. We use the symbol ∼` to denote bisimilarity over
CCS` processes.
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(r6)
t
α−→ t′

t[f ]
f(α)−−−→ t′[f ]

Table 6.8: The SOS rules for the [f ] operator (with f a symmetric relation in
Act×Act ∪ {τ, τ}).

Our main goal here is to prove the following theorem:

Theorem 6.9. Bisimilarity has no finite, ground-complete equational axiomatiza-
tion over CCS`.

Again, we will prove the above result using the reduction technique. We begin
by providing the reduction mapping. Choose an action a from the action set Act.
Then we define a mapping `a : T(CCS`) → T(CCSa) allowing us to rewrite any
CCS` term into a CCSa term.

Definition 6.10 (The mapping `a). The mapping `a : T(CCS`) → T(CCSa) is
defined inductively as follows:

`a(nil) = nil `a(t+ u) = `a(t) + `a(u)

`a(x) = x `a(t | u) = `a(t) ‖ `a(u)

`a(α.t) = a.`a(t) `a(t[f ]) = `a(t)

Notice that a is the only action that may possibly occur in `a(t), for each
t ∈ T(CCS`).

We now proceed to show that the mapping `a is a well-defined reduction, accord-
ing to Definition 6.1. As a first step, we notice that `a is structural by definition.

Lemma 6.11. The mapping `a is structural.

We now proceed to prove two technical lemmas that will be useful to prove that
`a is a reduction.

Lemma 6.12. For all p ∈ P(CCS`), and q ∈ P(CCSa), if `a(p)
a−→ q, then there

exists some p′ ∈ P(CCS`) and b ∈ Actτ such that p b−→` p
′ and `a(p′) = q.

Proof. The proof proceeds by structural induction over the P(CCS`) process p. As
for nondeterministic choice and parallel composition the proof is analogous to that
of the corresponding steps in Lemma 6.2, we limit ourselves to present only the
cases for the action prefixing and relabeling operators.

Let p = α.p′. By Definition 6.10 we have that `a(p) = a.`a(p′), and by assump-
tion, `a(p)

a−→ q.
It follows that `a(p′) = q. Since p α−→` p

′, we are done.
Let p = p1[f ]. By Definition 6.10, we have that `a(p[f ]) = `a(p1), and by

assumption `a(p1[f ]) = `a(p1)
a−→ q. By induction over p1, there are some p′1 ∈
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P(CCS`) and b ∈ Actτ such that p1
b−→` p

′
1 and `a(p′1) = q. By an application of

rule (r6) from Table 6.8 we obtain that p
f(b)−−−→` p

′
1[f ], and `a(p′1[f ]) = q, and the

claim follows.

Lemma 6.13. For all p, p′ ∈ P(CCS`), if p α−→` p
′, then `a(p)

a−→ `a(p′).

Proof. The proof proceeds by induction over the size of the proof for the transition
p

a−→` p
′. Also in this case, given the similarities with the proofs of the correspond-

ing cases in Lemma 6.3, we limit ourselves to analyse only the case in which the
last inference rule from Table 6.8 that is applied in the proof for p α−→` p

′ is rule
(r6), i.e., the rule for relabeling. Let (r6) be the last rule applied in the proof. In

this case, p = p1[f ], and there exists α′ such that f(α′) = α, and p1
α′

−−→` p
′
1, and

p′ = p′1[f ]. By induction we obtain that `a(p1)
a−→ `a(p′1). Clearly, by Definition

6.10 this directly gives `a(p)
a−→ `a(p′), and we are done.

We now have all the ingredients necessary to prove that the mapping `a is a
well-defined ground Φ-reflecting reduction.

Proposition 6.6. The mapping `a satisfies the following properties:

1. For each t, u ∈ T(CCS`), t ∼` u implies `a(t) ∼ `a(u).

2. The mapping `a is ground Φ-reflecting.

Proof. We prove the two statements separately.

1. We omit the proof of the first statement since it follows the lines of those for
previous statements (6.2), using Lemmas 6.12 and 6.13.

2. Consider the family of equations Φ` defined as follows:

ϕ`n : a |
n∑
i=1

ai ≈ a.
n∑
i=1

ai +

n∑
j=1

aj+1 (n ≥ 0)

Φ` = {ϕ`n | n ≥ 0}.

Notice that the equations in Φ` are sound modulo bisimilarity. It is straight-
forward to prove that `a(ϕn` ) = ϕn for each n ∈ N, and thus that `a is ground
Φ-reflecting.

Theorem 6.9 is then a immediate consequence of Lemma 6.11, Proposition 6.6,
Theorem 6.3, and Theorem 6.2.

6.6 Concluding Remarks
In this chapter, we have exploited the reduction technique from [12], for the lifting
of negative results across process algebras, to prove the non-finite axiomatizability
of various extensions of BCCSP modulo bisimilarity. In detail, we have proved that
bisimilarity does not admit a finite, ground-complete axiomatization
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• over BCCSPp
A , i.e., BCCSP enriched with a CSP-like parallel operator |A,

with A ⊂ Act,

• over BCCSPp, i.e., BCCSP enriched with CSP-like parallel operators with
any possible synchronization set,

• over CCSr, i.e., the recursion and relabeling free fragment of CCS and

• over CCS`, i.e., the recursion and restriction free fragment of CCS.

Interestingly, among all these negative results, we found a positive one: if we con-
sider only the CSP-like parallel operator |Act, forcing all the actions in the parallel
components to be synchronized, then a finite, ground-complete axiomatization of
bisimilarity over BCCSPp

Act exists.
As a natural step for future work, we plan to investigate how far the lifting

technique of [12] can be pushed. In particular, we are interested in studying whether
(some variations of) it can be used to lift known results for strong behavioral
equivalences to their weak counterparts or to potentially extend results over weak
behavioral congruences (such as Theorem 10 presented in [22]) to new settings.

Another possible direction for future work, would be to focus on full recursion
free CCS. As a first step, we conjecture that a specific combination of our results
over CCS restriction, and CCS relabeling, can be stated in order to acquire the
relative result for recursion-free CCS with restriction, and relabeling.

Specifically, we have that since we now have the non finite axiomatizability
result over CCS with restriction, we could use that as a target language. Then
(to the best of our current knowledge), the same mapping defined for CCS with
relabeling extended over CCS with restriction and relabeling, where the treatment
of the restriction operator is just prepositional to the mapping, i.e.:

t̂\R = t̂ \R ,

would yield a structural mapping from the source to the target language, wich
would preserve the soundness of the family of equations 3.1, and thus extending
the negative result to CCS with restriction and relabeling. We note here that
the combination of the two mappings would not work if not applied in this order
(i.e. from the complete language to the one with relabeling) under the current
mappings. This is because the mapping defined for the case of restriction is in a
way too strict, and forces a lot of terms to collapse to nil, something that in the
presence of relabeling would unfortunately not work, as seemingly non necessary
actions could have been defined as mapped to necessary via an appropriate f
relabeling function.

Furthermore, Aceto, Ingólfsdóttir, Luttik and van Tilburg gave an equational
axiomatization of bisimilarity over recursion-free CCS with interleaving parallel
composition and the left-merge operator in [10]. That result crucially depends on
the fact that restriction and relabeling distribute over interleaving parallel compo-
sition. On the other hand, neither restriction nor relabeling distribute over parallel
composition in the presence of synchronization. Obtaining a complete axiomati-
zation of full recursion free CCS modulo bisimilarity, with restriction, relabeling
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and parallel composition that allows for synchronization is a natural, and very
challenging, avenue for future research.



Chapter 7

Complexity Through
Translations For Modal Logic
with Recursion

7.1 Introduction
We introduce a family of multi-modal logics with fixed-point operators that are
interpreted on restricted classes of Kripke models. One can consider these log-
ics as extensions of the usual multi-agent logics of knowledge and belief [94] by
adding recursion to their syntax or of the µ-calculus [139] by interpreting formu-
las on different classes of frames and thus giving an epistemic interpretation to
the modalities. We define translations between these logics, and we demonstrate
how one can rely on these translations to prove finite-model theorems, complexity
bounds, and tableau termination for each logic in the family.

Modal logic comes in several variations [60]. Some of these, such as multi-modal
logics of knowledge and belief [94], are of particular interest to Epistemology and
other application areas. Semantically, the classical modal logics used in epistemic
(but also other) contexts result from imposing certain restrictions on their models.
On the other hand, the modal µ-calculus [139] can be seen as an extension of the
smallest normal modal logic K with greatest and least fixed-point operators, νX
and µX respectively. We explore the situation where one allows both recursion
(i.e. fixed-point) operators in a multi-modal language and imposes restrictions on
the semantic models.

We are interested in the complexity of satisfiability for the resulting logics.
Satisfiability for the µ-calculus is known to be EXP-complete [139], while for the
modal logics between K and S5 the problem is PSPACE-complete or NP-complete,
depending on whether they have Negative Introspection [143, 117]. In the multi-
modal case, satisfiability for those modal logics becomes PSPACE-complete, and is
EXP-complete with the addition of a common knowledge operator [116].

There is plenty of relevant work on the µ-calculus on restricted frames, mainly in

155
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its single-agent form. Alberucci and Facchini examine the alternation hierarchy of
the µ-calculus over reflexive, symmetric, and transitive frames in [32]. D’Agostino
and Lenzi have studied the µ-calculus on different classes of frames in great detail.
In [91], they reduce the µ-calculus over finite transitive frames to first-order logic.
In [81], they prove that S5µ-satisfiability is NP-complete, and that the two-agent
version of S5µ does not have the finite model property. In [82], they consider finite
symmetric frames, and they prove that Bµ-satisfiability is in 2EXP, and EXP-hard.
They also examine planar frames in [83], where they show that the alternation
hierarchy of the µ-calculus over planar frames is infinite.

Our primary method of proving complexity results is through translations to
and from the multi-modal µ-calculus. We show that we can use surprisingly sim-
ple translations from modal logics without recursion to the base modal logic Kn,
reproving the PSPACE upper bound for these logics (Theorem 7.6 and Corollary
7.6.1). These translations and our constructions to prove their correctness do not
generally transfer to the corresponding logics with recursion. We present transla-
tions from specific logics to the µ-calculus and back, and we discuss the remaining
open cases. We discover, through the properties of our translations, that several
behaviors induced on the transitions do not affect the complexity of the satisfi-
ability problem. As a result, we prove that all logics with axioms among D, T ,
and 4, and the least-fixed-point fragments of logics that also have B, have their
satisfiability in EXP, and a matching lower bound for the logics with axioms from
D,T,B (Corollaries 7.11.1 and 7.11.2).

Finally, we present tableaux for the discussed logics, based on the ones by Kozen
for the µ-calculus [139], and by Fitting and Massacci for modal logic [99, 150]. We
give tableau-termination conditions for every logic with a finite model property
(Theorem 7.13).

The addition of recursive operators to ML increases expressiveness. An im-
portant example is that of common knowledge or common belief, which can be
expressed with a greatest fixed-point thus: νX.(ϕ ∧

∧
α[α]X). But the combina-

tion of epistemic logics and fixed-points can potentially express more interesting
epistemic concepts. For instance, the formula µX.

∨
α([α]ϕ∨ [α]X), in the context

of a belief interpretation, can be thought to claim that there is a rumour of ϕ. It
would be interesting to see what other meaningful sentences of epistemic interest
one can express using recursion. Furthermore, the family of logics we consider
allows each agent to behave according to a different logic. This flexibility allows
one to mix different interpretations of modalities, such as a temporal interpreta-
tion for one agent and an epistemic interpretation for another. Such logics can
even resemble hyper-logics [75] if a set of agents represents different streams, and
combinations of epistemic and temporal or hyper-logics have recently been used to
express safety and privacy properties of systems [66].

The chapter is organized as follows. Section 7.2 gives the necessary background
and an overview of current results. Section 7.3 defines a class of translations that
provide us with several upper and lower bounds, and identifies conditions under
which they can be composed. In Section 7.4 we finally give tableaux for our multi-
modal logics with recursion. We conclude in Section 7.5 with a set of open questions
and directions.
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7.2 Definitions and Background
This section introduces the logics that we study and the necessary background on
the complexity of ML and the µ-calculus.

7.2.1 The Multi-Modal Logics with Recursion
We start by defining the syntax of the logics.

Definition 7.1. We consider formulas constructed from the following grammar:

ϕ,ψ ∈ L :: = p | ¬p | tt | ff | X | ϕ ∧ ψ | ϕ ∨ ψ
| 〈α〉ϕ | [α]ϕ | µX.ϕ | νX.ϕ,

where X comes from a countable set of logical (or fixed-point) variables, LVar, α
from a finite set of agents, Act, and p from a finite set of propositional variables,
PVar. When Act = {α}, �ϕ stands for [α]ϕ, and ♦ϕ for 〈α〉ϕ. We also write
[A]ϕ to mean

∧
α∈A

[α]ϕ and 〈A〉ϕ for
∨
α∈A
〈α〉ϕ.

A formula is closed when every occurrence of a variable X is in the scope of
recursive operator νX or µX. Henceforth we consider only closed formulas, unless
we specify otherwise.

Moreover, for recursion-free closed formulas we associate the notion of modal
depth, which is the nesting depth of the modal operators1. The modal depth of ϕ
is defined inductively as:

• md(p) = md(¬p) = md(tt) = md(ff) = 0, where p ∈ PVar,

• md(ϕ ∨ ψ) = md(ϕ ∧ ψ) = max(md(ϕ),md(ψ)), and

• md([a]ϕ) = md(〈a〉ϕ) = 1 +md(ϕ), where a ∈ Act.

We assume that in formulas, each recursion variable X appears in a unique fixed-
point formula fx(X), which is either of the form µX.ϕ or νX.ϕ. If fx(X) is a least-
fixed-point (resp. greatest-fixed-point) formula, then X is called a least-fixed-point
(resp. greatest-fixed-point) variable. We can define a partial order on fixed-point
variables, such that X ≤ Y iff fx(X) is a subformula of fx(Y ), and X < Y when
X ≤ Y and X 6= Y . If X is ≤-minimal among the free variables of ϕ, then we
define the closure of ϕ to be cl(ϕ) = cl(ϕ[fx(X)/X]), where ϕ[ψ/X] is the usual
substitution operation, and if ϕ is closed, then cl(ϕ) = ϕ.

We define sub(ϕ) as the set of subformulas of ϕ, and |ϕ| = |sub(ϕ)| is bounded
by the length of ϕ as a string of symbols. Negation, ¬ϕ, and implication, ϕ→ ψ,
can be defined in the usual way. Then, we define sub(ϕ) = sub(ϕ)∪ {¬ψ ∈ L | ψ ∈
sub(ϕ)}.

1The modal depth of recursive formulas can be either zero, or infinite. However, this is not
relevant for the spectrum of this work.
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Jtt, ρK = P, Jff, ρK = ∅, Jp, ρK = {s | p ∈ V (s)}, J¬p, ρK = P\Jp, ρK,
J[α]ϕ, ρK =

{
s
∣∣ ∀t. sRαt implies t ∈ Jϕ, ρK

}
, Jϕ1∧ϕ2, ρK = Jϕ1, ρK ∩ Jϕ2, ρK,

J〈α〉ϕ, ρK =
{
s
∣∣ ∃t. sRαt and t ∈ Jϕ, ρK

}
, Jϕ1∨ϕ2, ρK = Jϕ1, ρK ∪ Jϕ2, ρK,

JµX.ϕ, ρK =
⋂{

S
∣∣ S ⊇ Jϕ, ρ[X 7→ S]K

}
, JX, ρK = ρ(X),

JνX.ϕ, ρK =
⋃{

S
∣∣ S ⊆ Jϕ, ρ[X 7→ S]K

}
.

Table 7.1: Semantics of modal formulas on a model M = (W,R, V ). We omit M
from the notation.

Semantics We interpret formulas on the states of a Kripke model. A Kripke
model, or simply model, is a quadruple M = (P, R, V ) where P is a nonempty set
of states, R ⊆ P×Act×P is a transition relation, and V : P→ 2PVar determines
on which states a propositional variable is true. (P, R) is called a frame. We
usually write (u, v) ∈ α−→ or u α−→ v instead of (u, α, v) ∈ R, or uRv, when Act is a
singleton {α}.

Formulas are evaluated in the context of an environment ρ : LVar → 2P,
which gives values to the logical variables. For an environment ρ, variable X,
and set S ⊆ P, we write ρ[X 7→ S] for the environment that maps X to S and
all Y 6= X to ρ(Y ). The semantics for our formulas is given through a function
J−KM, defined in Table 7.1. The semantics of ¬ϕ are constructed as usual, where
J¬X, ρKM = P\ρ(X).

We sometimes use M, s |=ρ ϕ for s ∈ Jϕ, ρKM, and as the environment has no
effect on the semantics of a closed formula ϕ, we often drop it from the notation
and write M, s |= ϕ or s ∈ JϕKM. If M, s |= ϕ, we say that ϕ is true, or satisfied,
in s. When the particular model does not matter, or is clear from the context, we
may omit it.

Depending on how we further restrict our syntax and the model, we can describe
several logics. Without further restrictions, the resulting logic is the µ-calculus
[139]. The max-fragment (resp. min-fragment) of the µ-calculus is the fragment
that only allows the νX (resp. the µX) recursive operator. If |Act| = k and we
allow no recursive operators (or recursion variables), then we have the basic modal
logic Kk (or K, if k = 1), and further restrictions on the frames can result in a wide
variety of modal logics (see [59]). We give names to the following frame conditions,
or frame constraints, for the case where Act = {α}. These conditions correspond
to the usual axioms for normal modal logics — see [60, 59, 94], which we will revisit
in Section 7.3.

D: R is serial: ∀s.∃t.sRt;

T : R is reflexive: ∀s.sRs;

B: R is symmetric: ∀s, t.(sRt⇒ tRs);

4: R is transitive: ∀s, t, r, if sRt and tRr
then sRr;

5: R is euclidean: ∀s, t, r. if sRt and
sRr, then tRr.
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We consider modal logics that are interpreted over models that satisfy a combi-
nation of these constraints for each agent. D, which we call Consistency, is a special
case of T , called Factivity. Constraint 4 is Positive Introspection and 5 is called
Negative Introspection.2 Given a logic L and constraint c, L+ c is the logic that is
interpreted over all models with frames that satisfy all the constraints of L and c.
The name of a single-agent logic is a combination of the constraints that apply to
its frames, including K, if the constraints are among 4 and 5. Therefore, logic D is
K+D, T is K+T , B is K+B, K4 = K+4, D4 = K+D+4 = D+4, and so on.
We use the special names S4 for T4 and S5 for T45. We define a (multi-agent)
logic L on Act as a map from agents to single-agent logics. L is interpreted on
Kripke models of the form (P, R, V ), where for every α ∈ Act, (P,

α−→) is a frame
for L(α).

For a logic L, Lµ is the logic that results from L after we allow recursive
operators in the syntax — in case they were not allowed in L. Furthermore, if for
every α ∈ Act, L(α) is the same single-agent logic L, we write L as Lk, where
|Act| = k. Therefore, the µ-calculus is Kµ

k .
From now on, unless we explicitly say otherwise, by a logic, we mean one of

the logics we have defined above. We call a formula satisfiable for a logic L, if it is
satisfied in some state of a model for L.

Example 13. For a formula ϕ, we define Inv(ϕ) = νX.(ϕ ∧ [Act]X). Inv(ϕ)
asserts that ϕ is true in all reachable states, or, alternatively, it can be read as
an assertion that ϕ is common knowledge. We dually define Eve(ϕ) = µX.(ϕ ∨
〈Act〉X), which asserts that ϕ is true in some reachable state.

7.2.2 Known Results
For logic L, the satisfiability problem for L, or L-satisfiability is the problem that
asks, given a formula ϕ, if ϕ is satisfiable. Similarly, the model checking problem
for L asks if ϕ is true at a given state of a given finite model.

Ladner [143] established the classical result of PSPACE-completeness for the sat-
isfiability of K, T, D, K4, D4, and S4 and NP-completeness for the satisfiability
of S5. Halpern and Rêgo later characterized the NP–PSPACE gap for one-action
logics by the presence or absence of Negative Introspection [117], resulting in The-
orem 7.1. Later, Rybakov and Shkatov [180] proved the PSPACE-completeness of
B and TB. For formulas with fixed-point operators, D’Agostino and Lenzi in [81]
show that satisfiability for single-agent logics with constraint 5 is also NP-complete.

Theorem 7.1 ([143, 117, 180]). If L ∈ {K,T,D,B,TB,K4,D4,S4}, then L-
satisfiability is PSPACE-complete; and L+5-satisfiability and (L+5)µ-satisfiability
is NP-complete.

Theorem 7.2 ([116]). If k > 1 and L has a combination of constraints from
D,T, 4, 5 and no recursive operators, then Lk-satisfiability is PSPACE-complete.

2These are names for properties or axioms of a logic. When we refer to these conditions as
conditions of a frame or model, we may refer to them with the name of the corresponding relation
condition: seriality, reflexivity, symmetry, transitivity, and euclidicity.
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Remark 12. We note that Halpern and Moses in [116] only prove these bounds
for the cases of Kk,Tk,S4k,KD45k, and S5k; and D’Agostino and Lenzi in [81]
only prove the NP-completeness of satisfiability for S5µ. However, it is not hard
to see that their respective methods also work for the rest of the logics of Theorems
7.1 and 7.2. �

Theorem 7.3 ([139]). The satisfiability problem for the µ-calculus is EXP-complete.

Theorem 7.4 ([93]). The model checking problem for the µ-calculus is in NP ∩
coNP.3

Finally we have the following initial known results about the complexity of
satisfiability, when we have recursive operators. Theorems 7.5 and 7.1 have already
been observed in [18].

Theorem 7.5. The satisfiability problem for the min- and max-fragments of the
µ-calculus is EXP-complete, even when |Act| = 1.

Proof sketch. It is known that satisfiability for the min- and max-fragments of the
µ-calculus (on one or more action) is EXP-complete. It is in EXP due to The-
orem 7.3, and these fragments suffice [171] to describe the PDL formula that is
constructed by the reduction used in [98] to prove EXP-hardness for PDL. There-
fore, that reduction can be adjusted to prove that satisfiability for the min- and
max-fragments of the µ-calculus is EXP-complete.

It is not hard to express in logics with both frame constraints and recursion
operators that formula ϕ is common knowledge, with formula νX.ϕ ∧ [Act]X.
Since validity for Lk with common knowledge (and without recursive operators)
and k > 1 is EXP-complete [116]4, Lµk is EXP-hard.

Proposition 7.1. Satisfiability for Lµk , where k > 1, is EXP-hard.

7.3 Complexity Through Translations
In this section, we examine L-satisfiability. We use formula translations to reduce
the satisfiability of one logic to the satisfiability of another. We investigate the
properties of these translations and how they compose with each other, and we
achieve complexity bounds for several logics.

In the context of this chapter, a formula translation from logic L1 to logic L2

is a mapping f on formulas such that each formula ϕ is L1 -satisfiable if and only
if f(ϕ) is L2 -satisfiable. We only consider translations that can be computed in
polynomial time, and therefore, our translations are polynomial-time reductions,
transfering complexity bounds between logics.

According to Theorem 7.3, Kµ
k -satisfiability is EXP-complete, and therefore for

each logic L, we aim to connect Kµ
k and L via a sequence of translations in either

direction, to prove complexity bounds for L-satisfiability.
3In fact, the problem is known to be in UP ∩ coUP [133].
4Similarly to Remark 12, [116] does not explicitly cover all these cases, but the techniques can

be adjusted.
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Figure 7.1: The frame property hierarchy

7.3.1 Translating Towards Kk

We begin by presenting translations from logics with more to logics with fewer
frame conditions. To this end, we study how taking the closure of a frame under
one condition affects any other frame conditions.

Composing Frame Conditions

We now discuss how the conditions for frames affect each other. For example, to
construct a transitive frame, one can take the transitive closure of a possibly non-
transitive frame. The resulting frame will satisfy condition 4. As we see, taking
the closure of a frame under condition x may affect whether that frame maintains
condition y, depending on x and y. In the following we observe that one can apply
the frame closures in certain orders that preserve the properties one aquires with
each application.

Let F = (W,R) be a frame, α ∈ A ⊆ Act, and x a frame restriction among
T,B, 4, 5. Then, Rα

x
is the closure of Rα under x, R

x,A
is defined by R

x,A

β = Rβ
x
,

if β ∈ A, and R
x,A

β = Rβ , otherwise. Then, F
x,A

= (W,R
x,A

). We make the
following observation.

Lemma 7.1. Let x be a frame restriction among D,T,B, 4, 5, and y a frame
restriction among T,B, 4, 5, such that (x, y) 6= (4, B), (5, T ), (5, B). Then, for every
frame F that satisfies x, F

y
also satisfies x.

According to Lemma 7.1, frame conditions are preserved as seen in Figure 7.1.
In Figure 7.1, an arrow from x to y indicates that property x is preserved though
the closure of a frame under y. Dotted red arrows indicate one-way arrows. For
convenience, we define F

D
= (W,R

D
), where R

D
= R∪{(a, a) ∈W 2 |6 ∃ (a, b) ∈ R}.

Remark 13. We note that, in general, not all frame conditions are preserved
through all closures under another condition. For example, the accessibility relation
{(a, b), (b, b)} is euclidean, but its reflexive closure {(a, b), (b, b), (a, a)} is not.

There is at least one linear ordering of the frame conditions D,T,B, 4, 5, such
that all preceding conditions are preserved by closures under the following condi-
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tions. We call such an order a closure-preserving order. We use the linear order
D,T,B, 4, 5 in the rest of the chapter.

Modal Logics

We start with translations that map logics without recursive operators to log-
ics with fewer constraints. As mentioned in Subsection 7.2.2, all of the logics
L ∈ {K,T,D,K4,D4,S4} and L + 5 with one agent have known completeness
results, and the complexity of modal logic is well-studied for multi-agent modal log-
ics as well. The missing cases are very few and concern the combination of frame
conditions (other than 5) as well as the multi-agent case. However we take this
opportunity to present an intuitive introduction to our general translation method.
In fact, the translations that we use for logics without recursion are surprisingly
straightforward. Each frame condition that we introduced in Section 7.2 is associ-
ated with an axiom for modal logic, such that whenever a model has the condition,
every substitution instance of the axiom is satisfied in all worlds of the model (see
[60, 59, 94]). We give for each frame condition x and agent α, the axiom axxα:

axDα : 〈α〉tt

axTα : [α]p→ p

axBα : 〈α〉[α]p→ p

ax4
α: [α]p→ [α][α]p

ax5
α: 〈α〉[α]p→ [α]p

For each formula ϕ and d ≥ 0, let Invd(ϕ) =
∧
i≤d[Act]iϕ. Our first transla-

tions are straightforwardly defined from the above axioms.

Translation 1 (One-step Translation). Let A ⊆ Act and let x be one of the frame
conditions. For every formula ϕ, let d = md(ϕ) if x 6= 4, and d = md(ϕ)|ϕ|, if
x = 4. We define:

FxA(ϕ) = ϕ ∧ Invd

( ∧
ψ∈sub(ϕ)
α∈A

axxα[ψ/p]

)
.

Theorem 7.6. Let A ⊆ Act, x be one of the frame conditions, and let L1,L2 be
logics without recursion operators, such that L1(α) = L2(α) + x when α ∈ A, and
L2(α) otherwise, and L2(α) only includes frame conditions that precede x in the
fixed order of frame conditions. Then, ϕ is L1-satisfiable if and only if FxA(ϕ) is
L2-satisfiable.

Proof. Assume first that M, w |= ϕ, where M is an L1-model. For every subfor-
mula ψ of ϕ and α ∈ A, axxα[cl(ψ)/p] is an instantiation of the axiom axxα, and
therefore it holds at all states of M that ar reachable from w. Thus, M, w |=

Invd

( ∧
ψ∈sub(ϕ)
α∈A

axxα[ψ/p]

)
, which yields that M, w |= FxA(ϕ).

For the other direction, assume that M, w |= FxA(ϕ) for some L2-model M =
(W,R, V ) and state w. We assume that for every α, β ∈ Act, if α 6= β, then
Rα ∩ Rβ = ∅. For each k ≥ 0, we define Wk ⊆ W ∗ × N in the following way:
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W0 := {(w, 0)}; and Wk+1 = Wk ∪ {(pba, k + 1) | ∃(pb, k) ∈ Wk, α ∈ Act. bRαa}.
Let W∞ =

⋃∞
k=0Wk. Let for each α ∈ Act, Ruα = {((p, k), (pv, k + 1)) ∈ W∞ ×

W∞ | k ≥ 0} and V u(pv, k) = V (v) for all k ≥ 0. Then, Mu = (W∞, R
u, V u) is

a bisimilar unfolding of M, and therefore for every formula ψ and (pv, k) ∈ Wk,
Mu, v |= ψ if and only if M, v |= ψ. Then, it is not hard to see that for every
formula ψ and (v, k) ∈ Wk, Mu, (v, k) |= ψ if and only if Mc, (v, k) |= ψ, where
Mc = (W∞, R

c, V u), where Rc is the closure of Ru under the conditions of L2.
Let d = md(ϕ) if x 6= 4, and d = md(ϕ)|ϕ|, if x = 4.

We first handle the case for x ∈ {D,T}. Let M′ = (W ′, R′, V ′), where W ′ =
Wd, R′ is the (resp. D-closure of) the restriction of Rc on W ′ (resp. if L2 has
constraint D), and V ′ is the restriction of V u on W ′. We observe that M′ remains
a L2-model: removing states only affects condition D, and the D-closure does not
affect the other conditions. Furthermore, one can see that, by induction on ψ, for
every formula ψ with md(ψ) ≤ d, and every v ∈ Wd−md(ψ), M, v |= ψ if and only
if M′, v |= ψ: propositional cases are straightforward, and modal cases ensure that
md(ψ) > 0, and therefore v ∈ Wd−1, thus the accessible states from v remain the
same in M and in M′. Specifically, M′, w |= ϕ.

Let Mx = (W ′, R′
x
, V ′). It remains to prove that for every subformula ψ of

ϕ, and every v ∈ Wd−md(ψ), M′, v |= ψ if and only if Mx, v |= ψ. We continue by
induction on the structure of ψ. The propositional and diamond cases are straight-
forward, since they are preserved by the introduction of pairs in the accessibility
relation. We now consider the case of ψ = [α]ψ′. We observe that md(ψ) > 0, and
therefore v ∈ Wd−1. Specifically, if md(ψ) = e, then v ∈ Wd−e. If α /∈ A, then
the accessible states from v remain the same in M′ and in Mx, and we are done.
Therefore, we assume that α ∈ A. If there is some vR′α

x
u, but not vR′αu, then we

take cases for x:

x = D We observe that md(〈α〉tt) = 1, and therefore M′, v |= 〈α〉tt, since we
observe above that v ∈ Wd−1. This contradicts our assumtion that vR′α

x
u

but not vR′αu, due to definition of R′α
D
.

x = T We observe that md([α]ψ′ → ψ′) = md([α]ψ′) = e, and therefore M′, v |=
[α]ψ′ → ψ′, yielding that M′, v |= ψ′, and, by the inductive hypothesis,
Mx, v |= ψ′. By the definition of the T -closure, v = u, and therefore Mx, u |=
ψ′.

We now consider the case for x = B. We construct model Mx similarly,
and we then prove that for every subformula ψ of ϕ, and every (v, d −md(ψ)) ∈
Wd−md(ψ), M′, (v, d−md(ψ)) |= ψ if and only if Mx, v |= ψ.

We examine the case for ψ = [α]ψ′, where a ∈ A. If (v, d−e)R′α
x
(u, k), but not

vR′αu, then we see that k = d − e − 1, and uR′αv. Then, M′, u |= 〈α〉[α]ψ′ → ψ′,
and therefore M′, u |= 〈α〉[α]ψ′ and we are done by the inductive hypothesis.

We now consider the case for x = 4. For each (v, k) ∈W∞ and α ∈ Act, let
bα(v, k) = {[α]ψ ∈ sub(ϕ) | Mu, (v, k) |= [α]ψ}, and dα(v, k) = {〈α〉ψ ∈ sub(ϕ) |
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Mu, (v, k) |= 〈α〉ψ}. Observe that for all (v, k)Rα(v′, k + 1), where α ∈ A and
k ≤ d, bα(v, k) ⊆ bα(v′, k + 1) and dα(v′, k + 1) ⊆ dα(v, k). We call a state
(pv, k + 1) α-stable, when (p, k)Ruα(pv, k + 1), and bα(p, k) = bα(pv, k + 1) and
dα(p, k) = dα(pv, k + 1) for some α ∈ A, and write (p, k) .α (pv, k + 1). Observe
that, by the Pigeonhole Principle, for α ∈ A, in any sequence (p, k)Rα(pv1, k +
1)Rα · · ·Rα(pv1 · · · vl, k + l), where l ≥ |ϕ|, there must be an α-stable state.

Let for each α /∈ A, R4
α = Ruα, and for each α ∈ A,

R4
α = {(a, b) ∈ Ru | a is not α-stable} ∪ {(a, b) | ∃c .α a. cRuαb}.

Observe that if a .α bRuαc, then c is not reachable from (w, 0) by R4.
Let M4 = (W ′, R4, V ′) and M′ = (W ′, R′, V ′), where

W ′ = {v ∈Wd | v is reachable from (w, 0) by R4},

R′ is the closure of the restriction of R4 on W ′ under the L2 constraints, and V ′
is the restriction of V u on W ′. M′ is now a L2-model. We prove, by induction
on ψ, that for every formula ψ ∈ sub(ϕ) and every v = (p, k) ∈ W ′, where k ≤
d −md(ψ)|ϕ|, Mu, v |= ψ if and only if M4, v |= ψ if and only if M′, v |= ψ. The
propositional cases are straightforward for both biimplications.

The modal cases ψ = 〈α〉ψ′ or ψ = [α]ψ′ ensure that md(ψ) > 0, and therefore
v ∈ Wd−1, and there is some (v, u) ∈ R4

α. We first prove that Mu, v |= ψ if and
only if M4, v |= ψ. If α /∈ A or v is not α-stable, then this case follows from the
observation that the accessible states from v in Mu and in M4 are the same. If
α ∈ A and v′ / v, then v′ is not α-stable, because otherwise v /∈ W ′, as it would
not be reachable from (w, 0) by R4 in Mu. From v′ / v, we get that Mu, v′ |= ψ;
by the inductive hypothesis, for every state uR4

αv
′, Mu, u |= ψ′ implies M4, u |= ψ′,

and since v′ has the same accessible states in Mu and in M4, Mu, v′ |= ψ. This
completes the induction, and we conclude that Mu, v |= ψ if and only if M4, v |= ψ.

To prove the second biimplication, note that we have that for every formula ψ ∈
sub(ϕ) and every v = (pu, k) ∈W ′, where k ≤ d−md(ψ)|ϕ|, ((pu, k), (puu′, k′)) ∈
R4
α. Furthermore, for every ((pu, k), (puu′, k′)) ∈ R4

α, we have that (u, u′) ∈ Rα.
We then see that, since M is an L2-model, for every ((pu, k), (puu′, k′)) ∈ R4

α, it
must be the case that (u, u′) ∈ Rα. We can then conclude that M4, v |= ψ if and
only if M′, v |= ψ. Specifically, M′, w |= ϕ.

Let Mx = (W ′, R′
x,A

, V ′). It is straightforward now to prove that for every
subformula ψ of ϕ, and every v ∈ Wd−md(ψ), M′, v |= ψ if and only if Mx, v |= ψ,
and the proof is complete.

We now consider the case for x = 5. We construct modelMx similarly, and we
then prove that for every subformula ψ of ϕ, and every (v, d−md(ψ)) ∈Wd−md(ψ),
M′, (v, d−md(ψ)) |= ψ if and only if Mx, v |= ψ.

We examine the case for ψ = [α]ψ′, where α ∈ A. Let vR′α
x
u, but not vR′αu.

It suffices to prove that Mu, u |= ψ′. From our assumption that vR′α
x
u, but not

vR′αu, the euclidean closure condition, and the tree-structure of Mu, we can see
that there are some a, b, c ∈ W ′, such that aR′αb, c, and v is R′α-reachable from
b, and u is R′α-reachable from c. Observe that for every ψ ∈ sub(ϕ), α ∈ A and
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p, q �(¬p ∨ ¬q)

p,¬q

¬p, q

Figure 7.2: An example where the use of the alternative axiom for symetricity
would wield a non-valid translation.

v1, v2 ∈ Wd, v1R
c
αv2, Mc, v1 |= 〈α〉ψ implies Mc, v2 |= 〈α〉ψ, and Mc, v2 |= [α]ψ

implies Mc, v1 |= [α]ψ.
Assume that Mu, u 6|= ψ′, to reach a contradiction. We can see that there is

some u′ that is R′α-reachable from a and u′Ruu, such that Mu, u′ |= 〈α〉¬ψ′; in
other words, Mu, u′ 6|= [α]ψ′, and by the definition of ax5

α, it must be the case
that Mu, u′ 6|= 〈α〉[α]ψ′. Therefore, Mu, u′ |= [α]¬ψ, and by the definition of ax5

α,
it must be the case that Mu, a |= [α]¬ψ, or, equivallently, Mu, a |= [α]〈α〉¬ψ′.
In turn, this yields that Mu, b |= 〈α〉¬ψ′, and therefore Mu, v |= ¬ψ, which is a
contradiction.

Remark 14. As one can see we we used the contra-positive version of the axioms
for symmetric and euclidean conditions on a frame. It turns out that the original
axioms p→ �♦p for symmetricity (♦p→ �♦p for euclidean) and would work with
the translation we defined. To see this consider the case of a translation defined
based on this version of the axiom. A non-symetric frame satisfying the translation
could satisfy some formula of the form �ψ′ in a world s, but not satisfy ψ′ in all
the worlds predecessors (because at this point s’s predecessors are not necessarily
connected to it). The traslation would still be valid though, because �♦ψ′ could be
valid in s though it’s successors. Thus there would not be a way to add symmetric
edges to this model without losing the validity of �ψ′ in s. See figure 7.2 for such
an example

Corollary 7.6.1. The satisfiability problem for every logic without fixed-point op-
erators is in PSPACE.

Modal Logics with Recursion

In the remainder of this section we will modify our translations and proof technique,
in order to lift our results to logics with fixed-point operators. It is not clear whether
the translations of Subsection 7.3.1 can be extended straightforwardly in the case of



166 CHAPTER 7. COMPLEXITY OF MODAL LOGICS WITH RECURSION

logics with recursion, by using unbounded invariance Inv, instead of the bounded
Invd.

Example 14. Let ϕf = µX.�X, which requires all paths in the model to be finite,
and thus it is not satisfiable in reflexive frames. In Subsection 7.3.1, to translate
formulas from reflexive models, we did not need to add the negations of subformulas
as conjuncts. In this case, such a translation would give

ϕt := ϕf ∧ Inv((�ϕf → ϕf ) ∧ (��ϕf → �ϕf )).

Indeed, on reflexive frames, the formulas �ϕf → ϕf and ��ϕf → �ϕf are valid,
and therefore ϕt is equivalent to ϕf , which is K-satisfiable. This was not an issue
in Subsection 7.3.1, as the finiteness of the paths in a model cannot be expressed
without recursion.

One would then naturally wonder whether conjoining over sub(ϕf ) in the trans-
lation would make a difference. The answer is affirmative, as the tranlation

ϕf ∧ Inv

( ∧
ψ∈sub(ϕf )

�ψ → ψ

)

would then yield a formula that is not satisfiable. However, our constructions would
not work to prove that such a translation preserves satisfiability. For example,
consider µX.�(p → (r ∧ (q → X))), whose translation is satisfied on a pointed
model that satisfies at the same time p and q. We invite the reader to verify the
details.

The only case where the approach that we used for the logics without recursion
can be applied is for the case of seriality (condition D), as Inv(〈α〉tt) directly
ensures the seriality of a model.

Translation 2.
FD

µ

A (ϕ) = ϕ ∧ Inv
( ∧
α∈A
〈α〉tt

)
.

Theorem 7.7. Let A ⊆ Act and |Act| = k, and let L be a logic, such that
L(α) = D when α ∈ A, and K otherwise. Then, ϕ is L-satisfiable if and only if
FD

µ

A (ϕ) is Kµ
k -satisfiable.

For the cases of reflexivity and transitivity, our simple translations substitute
the modal subformulas of a formula to implicitly enforce the corresponding condi-
tion.

Translation 3. The operation FT
µ

A (−) is defined to be such that

• FT
µ

A ([α]ϕ) = [α]FT
µ

A (ϕ) ∧ FT
µ

A (ϕ);

• FT
µ

A (〈α〉ϕ) = 〈α〉FTµA (ϕ) ∨ FT
µ

A (ϕ);

• and it commutes with all other operations.
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Theorem 7.8. Let ∅ 6= A ⊆ Act, and let L1,L2 be logics, such that L1(α) =
L2(α) + T when α ∈ A, and L2(α) otherwise, and L2(α) at most includes frame
condition D. Then, ϕ is L1-satisfiable if and only if FT

µ

A (ϕ) is L2-satisfiable.

Proof. First we assume that M, w |= ϕ, where M = (W,R, V ) is an L1-model and
w ∈ W . We can easily verify, by induction on every subformula ψ of ϕ on every
environment ρ and state s of W , that M, s |=ρ ψ if and only if M, s |=ρ FT

µ

A (ψ).
We then conclude that M, w |= FT

µ

A (ϕ), and thus the translated formula remains
satisfiable.

For the converse direction, we assume an L2-model M = (W,R, V ) and w ∈W ,
such that M, w |= FT

µ

A (ϕ). We construct an L1-model that satisfies ϕ: let Mp =
(W,Rp, V p), where for each α ∈ A, Rpα = Rα ∪ {(u, u) | u ∈ W}, the reflexive
closure of Rα, and for each α /∈ A, Rpα = Rα. It now suffices to prove that for every
v ∈W , environment ρ, and ψ ∈ sub(ϕ), M, v |=ρ F

Tµ

A (ψ) if and only if Mp, v |=ρ ψ.
We proceed by induction on ψ. The cases of propositional and recursion variables
and boolean connectives are straightforward. The cases of fixed-points are also not
hard by using the inductive hypothesis. Finally, the modal cases use the form of
the translation to show that boxes are preserved in the reflexive closure, and that
no diamonds are introduced.

Translation 4. The operation F4µ

A (−) is defined to be such that

• F4µ

A ([α]ψ) = Inv([α](F4µ

A (ψ)),

• F4µ

A (〈α〉ψ) = Eve(〈α〉(F4µ

A (ψ)),

• F4µ

A (−) commutes with all other operations.

Theorem 7.9. Let ∅ 6= A ⊆ Act, and let L1,L2 be logics, such that L1(α) =
L2(α) + 4 when α ∈ A, and L2(α) otherwise, and L2(α) at most includes frame
conditions D,T,B. Then, ϕ is L1-satisfiable if and only if F4µ

A (ϕ) is L2-satisfiable.

Proof. If F4µ

A (ϕ) is satisfied in a modelM = (W,R, V ), letM ′ = (W,R+, V ), where
R+
α is the transitive closure of Rα, if α ∈ A, and R+

α = Rα, otherwise. It is now
not hard to use induction on ψ to show that for every (possibly open) subformula
ψ of ϕ, for every environment ρ,

q
F4µ

A (ψ), ρ
y
M

= Jψ, ρKM′ . The other direction is
more straightforward.

In order to produce a similar translation for symmetric frames, we needed to
use a more intricate type of construction. Moreover, we only prove the correctness
of the following translation for formulas without least-fixed-point operators.

Translation 5. The operation FBµ

A (−) is defined as

FBµ

A (ϕ) = ϕ ∧ Inv
(
[α]〈α〉p ∧

∧
ψ∈sub(ϕ)

(ψ → [α][α](p→ ψ))
)
,

where p is a new propositional variable, not occurring in ϕ.
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s

t1 t2

sp

Figure 7.3: The new model, based on a world s inM, with two neighbors t1, t2.

Theorem 7.10. Let ∅ 6= A ⊆ Act, and let L1,L2 be logics, such that L1(α) =
L2(α) + B when α ∈ A, and L2(α) otherwise, and L2(α) at most includes frame
conditions D,T . Then, a formula ϕ that has no µX operators is L1-satisfiable if
and only if FBµ

A (ϕ) is L2-satisfiable.

Proof. First we assume that the µ-free formula ϕ is satisfied in M, w, where M =
(W,R, V ) is an L1-model and w ∈W . We assume that p /∈ V (u) for every u ∈W .
We construct an L2-model that satisfies FB

µ

A (ϕ). Let Mp = (Wu ∪Wp, R
p, V p) and

Mu = (Wu ∪Wu, R
u, V u), where:

• Mu is the unfolding ofM.

• Wp = {up | u ∈Wu} is a set of distinct copies of states from Wu;

• For each u ∈Wu, V p(u) = V (u) and V p(up) = V (u) ∪ {p}.

• Rpα = Ruα ∪ {(s, tp), (tp, s) | (s, t) ∈ Ruα}, if α ∈ A, and Rpα = Ruα otherwise.

This construction is demonstrated Figure 7.3.
It is easy to see that we have Inv(�♦p) in all worlds s of Mp. Namely, for

each original world in the unfolding, we have that if there existed any arrow from
it, now there is a new world sp at distance 2 from s, where p holds. Moreover,
sinceMu is an unfolding, all other worlds tp in Wp are at distance strictly larger
or smaller than 2 from s since they have been only connected to either s itself or
to worlds that are not neighbors of s. Since the world sp has identical neighbors
and propositional variables as s we have that they are bissimilar and thus they
satisfy the same formulae. For all worlds w ∈ Wp, we have that they can reach
themselves in 2 steps, and for all other worlds they can reach in 2 steps (remember
that Mu is an unfolding and thus each world has exactly one incoming edge), p
does not hold. Thus we can also see that the whole translation of ϕ is satisfied in
M′. Furthermore, it is not hard to see that if we take the reflexive closure of Rpα
for each α such that L2(α) has condition T , then each state in the resulting model
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would be bisimilar to itself in Mp; and that the respective serial closure would not
affect the model.

For the converse, we assume an L2(α) model M = (W,R, V ) and w ∈ W ,
such that M, w |= FB

µ

A (ϕ), and we construct an L1-model M′ that satisfies ϕ. Let
M′ = (W,R′, V ), where R′α is the symmetric closure of Rα, if α ∈ A, and R′α = Rα
otherwise. Let ρ be an environment such that for every Y , ρ(Y ) = Jcl(Y )K. We
prove that for every state v ∈ W and ψ ∈ sub(ϕ), M, v |=ρ FB

µ

A (ψ) implies that
M′, v |=ρ ψ. First, notice that for every α ∈ A and vRαv1Rαv2, M, v |=ρ ψ iff
M, v2 |=ρ F

Bµ

A (ψ). We now proceed by induction on ψ.

• Propositional cases, the case of logical variables, and the case of ψ = [α]ψ′,
where α /∈ A, are straightforward.

• For the case of ψ = 〈α〉ψ′, notice that introducing pairs in the accessibility
relation preserves diamonds.

• For the case of ψ = [α]ψ′, where α ∈ A, let (v, v′) ∈ R′α. It suffices to prove
that M′, v′ |= ψ′. If (v, v′) ∈ Rα, then we are done. If not, then v′Rαv,
and therefore there is some (v, vp) ∈ Rα, such that M, vp |= p. Therefore,
M, vp |=ρ ψ

′, yielding M, v′ |=ρ ψ
′.

• For the case of ψ = νY.ψ′, notice that Jψ′, ρ[Y 7→ Jcl(Y )KM]KM′ = Jψ′, ρKM′ =
Jψ′, ρKM, by the inductive hypothesis. Therefore, Jψ′, ρKM ⊆ Jψ′, ρKM′ , which
is what we wanted to prove.

Remark 15. A translation for euclidean frames and for the full syntax on sym-
metric frames would need different approaches. D’Agostino and Lenzi show in [81]
that S5µ2 does not have a finite model property, and their result can be easily ex-
tended to any logic L with fixed-point operators, where there are at least two distinct
agents α, β, such that L(α) and L(β) have constraint B or 5. Therefore, as our
constructions for the translations to Kµ

k guarantee the finite model property to the
corresponding logics, they do not apply to multimodal logics with B or 5.

7.3.2 Embedding Kµ
n

In this subsection, we present translations from logics with fewer frame conditions
to ones with more conditions. This will allow us to prove EXP-completeness in the
following subsection. Let p, q be distinguished propositional variables that do not
appear in our formulas. We let ~p range over p, ¬p, p ∧ q, p ∧ ¬q, and ¬p ∧ q.

Definition 7.2 (function next). next(p∧ q) = p∧¬q, next(p∧¬q) = ¬p∧ q, and
next(¬p ∧ q) = p ∧ q; and next(p) = ¬p and next(¬p) = p.

We use a uniform translation from Kµ
k to any logic with a combination of

conditions D,T,B.

Translation 6. The operation FKµ

A (−) on formulas is defined such that:

• FKµ

A (〈α〉ψ) =
∧
~p(~p→ 〈α〉(next(~p) ∧ FKµ

A (ψ))), if α ∈ A;
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• FKµ

A ([α]ψ) =
∧
~p(~p→ [α](next(~p)→ FKµ

A (ψ))), if α ∈ A;

• FKµ

A (−) commutes with all other operations.

We note that there are simpler translations for the cases of logics with only D
ot T as a constraint, but the FKµ

A (−) is uniform for all the logics that we consider
in this subsection.

Theorem 7.11. Let ∅ 6= A ⊆ Act, |Act| = k, and let L be such that L(α) includes
only frame conditions from D,T,B when α ∈ A, and L(α) = K otherwise. Then,
ϕ is Kµ

k -satisfiable if and only if FKµ

A (ϕ) is L-satisfiable.

Proof. For the “only if” direction, let M = (W,R, V ) be an unfolded model and
w ∈ W is its root, such that M, w |= ϕ. Variables p and q do not appear in ϕ, so
we can assume that M, w |= p and q, and that for each vRαv′, if α ∈ A, then for
each ~p, M, v |= ~p implies that M, v′ |= next(~p). Let M′ = (W,R′, V ), where R is
the appropriate closure of R under the conditions of L. We observe that for every
α ∈ A, Rα = R′α ∩

⋃
~p J~pK× Jnext(~p)K. We prove that for any environment ρ, any

ψ ∈ sub(ϕ), and any v ∈ W , M, v |=ρ ψ iff M′, v |=ρ FKµ

A (ψ). The proof proceeds
by induction on ψ. We fix a v ∈W and a ~p, such that M, v |= ~p.

• The propositional cases and the case of ψ = X are immediate.

• So are the cases of ψ = 〈α〉ψ′ and ψ = [α]ψ′, where α /∈ A.

• For the case of ψ = νX.ψ′ or ψ = µX.ψ′, note that due to the inductive
hypothesis, for any S ⊆ W , Jψ′, ρ[X 7→ S]KM =

q
FKµ

A (ψ′), ρ[X 7→ S]
y
M′ , and

therefore Jψ, ρKM =
q
FKµ

A (ψ), ρ
y
M′ .

• For the case of ψ = 〈α〉ψ′, where α ∈ A, M, v |=ρ ψ iff M, v |=ρ 〈α〉ψ′ iff there
is some (v, v′) ∈ Rα, M, v′ |=ρ ψ

′ iff there is some (v, v′) ∈ R′α, where M, v′ |=
next(~p), M, v′ |=ρ ψ

′, iff there is some (v, v′) ∈ R′α, M, v′ |= next(~p) ∧ ψ′ iff

M, v′ |= FKµ

A (〈α〉ψ′) =
∧
~p

(~p→ 〈α〉(next(~p) ∧ FKµ

A (ψ′))).

• For the case of ψ = [α]ψ′, where α ∈ A, M, v |=ρ ψ iff M, v |=ρ [α]ψ′ iff
for every (v, v′) ∈ Rα, M, v′ |=ρ ψ

′ iff for every (v, v′) ∈ R′α, where M, v′ |=
next(~p), M, v′ |=ρ ψ

′, iff for every (v, v′) ∈ R′α, M, v′ |= next(~p)→ ψ′ iff

M, v′ |= FKµ

A ([α]ψ′) =
∧
~p

(~p→ [α](next(~p)→ FKµ

A (ψ′))),

which completes the proof by induction.

For the “if” direction, let M = (W,R, V ) be an L-model and w ∈ W , such that
M, w |= FKµ

A (ϕ). Let M′ = (W,R′, V ), where for every α ∈ A, R′α = Rα ∩
⋃
~p J~pK×

Jnext(~p)K, and for every α /∈ A, R′α = Rα. We can prove that for any environment
ρ, any ψ ∈ sub(ϕ), and any v ∈ W , M, v |=ρ FKµ

A (ψ) iff M′, v |=ρ ψ. The proof
proceeds by induction on ψ and is very similar to the “only if” direction.



7.4. TABLEAUX FOR LµK 171

7.3.3 Complexity Results
We observe that our translations all result in formulas of size at most linear with
respect to the original. The exceptions are Translations 1 and 5, which have a
quadratic cost.

Corollary 7.11.1. If L only has frame conditions D,T , then its satisfiability prob-
lem is EXP-complete; if L only has frame conditions D,T, 4, then its satisfiability
problem is in EXP.

Proof. Immediately from Theorems 7.7, 7.8, 7.9, and 7.11.

Corollary 7.11.2. If L only has frame conditions D,T,B, then

1. L-satisfiability is EXP-hard; and

2. the restriction of L-satisfiability on formulas without µX operators is EXP-
complete.

Proof. Immediately from Theorems 7.7, 7.8, 7.10, and 7.11.

7.4 Tableaux for Lµk
We give a sound and complete tableau system for logic L. Furthermore, if L has
a finite model property, then we give terminating conditions for its tableau. The
system that we give in this section is based on Kozen’s tableaux for the µ-calculus
[139] and the tableaux of Fitting [99] and Massacci [150] for ML. We can use
Kozen’s finite model theorem [139] to help us ensure the termination of the tableau
for some of these logics.

Theorem 7.12 ([139]). There is a computable κ : N → N, such that every Kµ
k -

satisfiable formula ϕ is satisfied in a model with at most κ(|ϕ|) states.5

Corollary 7.12.1. If L only has frame conditions D,T, 4, then there is a com-
putable κ : N → N, such that every L-satisfiable formula ϕ is satisfied in a model
with at most κ(|ϕ|) states.

Proof. Immediately, from Theorems 7.12, 7.7, 7.8, and 7.9, and Lemma 7.1.

Remark 16. We note that not all modal logics with recursion have a finite model
property — see Remark 15.

Intuitively, a tableau attempts to build a model that satisfies the given formula.
When it needs to consider two possible cases, it branches, and thus it may generate
several branches. Each branch that satisfies certain consistency conditions, which
we define below, represents a corresponding model.

5The tableau in [139] yields an upper bound of 22
O(n3)

for κ0(n), but that bound is not useful
to obtain a “good” decision procedure. The purpose of this section is not to establish any good
upper bound for satisfiability testing, which is done in Section 7.3.
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σ πX.ϕ
(fix)σ ϕ

σ X (X)
σ fx(X)

σ ϕ ∨ ψ
(or)

σ ϕ | σ ψ

σ ϕ ∧ ψ
(and)σ ϕ

σ ψ

σ [α]ϕ
(B)

σ.α〈ψ〉 ϕ
σ 〈α〉ϕ

(D)
σ.α〈ϕ〉 ϕ

σ [α]ϕ
(d)

σ.α〈ϕ〉 ϕ
σ [α]ϕ

(4)
σ.α〈ψ〉 [α]ϕ

where, for rules (B) and (4), σ.α〈ψ〉 has already appeared in the branch; and for
(D), σ is not α-flat.

σ.α〈ψ〉 [α]ϕ
(B5)

σ [α]ϕ

σ.α〈ψ〉 〈α〉ϕ
(D5)

σ.α〈ψ〉.α〈ϕ〉 ϕ
σ.α〈ψ〉 [α]ϕ

(b)σ ϕ
σ [α]ϕ

(t)σ ϕ

σ.α〈ψ〉 [α]ϕ
(B55)

σ.α〈ψ′〉 [α]ϕ

σ.α〈ψ〉.α〈ψ′〉 〈α〉ϕ
(D55)

σ.α〈ψ〉.α〈ϕ〉 ϕ
σ.α〈ψ〉 [α]ϕ

(b4)
σ [α]ϕ

where, for rule (B55), σ.α〈ψ′〉 has already appeared in the branch; for rule (D5),
σ is not α-flat, and σ 〈α〉ϕ does not appear in the branch; for rule (D55), σ 〈α〉ϕ

does not appear in the branch.

Table 7.2: The tableau rules for L = Lµn.

Our tableaux use prefixed formulas, that is, formulas of the form σ ϕ, where
σ ∈ (Act × L)∗ and ϕ ∈ L; σ is the prefix of ϕ in that case, and we say that
ϕ is prefixed by σ. We note that we separate the elements of σ with a dot. We
say that the prefix σ is α-flat when α has axiom 5 and σ = σ′.α〈ψ〉 for some ψ.
Each prefix possibly represents a state in a corresponding model, and a prefixed
formula σ ϕ declares that ϕ is satisfied in the state represented by σ. As we will see
below, the prefixes from (Act×L)∗ allow us to keep track of the diamond formula
that generates a prefix through the tableau rules. For agents with condition 5, this
allows us to restrict the generation of new prefixes and avoid certain redundancies,
due to the similarity of euclidean binary relations to equivalence relations [161, 117].

The tableau rules that we use appear in Table 7.2. These include fixed-point
and propositional rules, as well as rules that deal with modalities. Depending on
the logic that each agent α is based on, a different set of rules applies for α: for
rule (d), L(α) must have condition D; for rule (t), L(α) must have condition T ; for
rule (4), L(α) must have condition 4; for rule (B5), (D5), and (D55), L(α) must
have condition 5; for (b) L(α) must have condition B; and for (b4) L(α) must have
both B and 4. Rule (or) is the only rule that splits the current tableau branch into
two. A tableau branch is propositionally closed when σ ff or both σ p and σ ¬p
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appear in the branch for some prefix σ. For each prefix σ that appears in a fixed
tableau branch, let Φ(σ) be the set of formulas prefixed by σ in that branch. We
use the notation σ ≺ σ′ to mean that σ′ = σ.σ′′ for some σ′′, in which case σ is an
ancestor of σ′.

We define the relation X−→ on prefixed formulas in a tableau branch as χ1
X−→ χ2,

if χ1

χ2
is a tableau rule and χ1 is not of the form σ Y , where X < Y ; then, X−→

+

is

the transitive closure of X−→ and X−→
∗
is its reflexive and transitive closure. We can

also extend this relation to prefixes, so that σ X−→ σ′, if and only if σ ψ X−→ σ′ ψ′, for
some ψ ∈ Φ(σ) and ψ′ ∈ Φ(σ′). If in a branch there is a X−→-sequence where X is a
least fixed-point and appears infinitely often, then the branch is called fixed-point-
closed. A branch is closed when it is either fixed-point-closed or propositionally
closed; if it is not closed, then it is called open.

Now, assume that there is a κ : N → N, such that every L-satisfiable formula
ϕ is satisfied in a model with at most κ(|ϕ|) states. An open tableau branch is
called (resp. locally) maximal when all tableau rules (resp. the tableau rules that
do not produce new prefixes) have been applied. A branch is called sufficient for ϕ
when it is locally maximal and for every σ ψ in the branch, for which a rule can be
applied and has not been applied to σ ψ, |σ| > |Act| ·κ(|ϕ|)|ϕ|2 ·22|ϕ|+1. A tableau
is called maximal when all of its open branches are maximal, and closed when all
of its branches are closed. It is called sufficiently closed for ϕ if it is propositionally
closed, or for some least fixed-point variable X, it has a X−→-path, where X appears
at least κ(|ϕ|) + 1 times. A sufficient branch for ϕ that is not sufficiently closed is
called sufficiently open for ϕ.

A tableau for ϕ starts from ε ϕ and is built using the tableau rules of Table
7.2. A tableau proof for ϕ is a closed tableau for the negation of ϕ.

Theorem 7.13 (Soundness, Completeness, and Termination of Lµk -Tableaux).
From the following, the first two are equivalent for any formula ϕ ∈ L and any
logic L. Furthermore, if there is a κ : N → N, such that every L-satisfiable for-
mula ϕ is satisfied in a model with at most κ(|ϕ|) states, then all the following are
equivallent.

1. ϕ has a maximal L-tableau with an open branch;

2. ϕ is L-satisfiable; and

3. ϕ has an L-tableau with a sufficiently open branch for ϕ.

Here we state and prove certain definitions and lemmata that will be used in
the main proof of this Theorem. For an agent α ∈ Act and a state s in a model
(W,R, V ), let Reachα(s) be the states that are reachable in W by Rα. We also use
R|S for the restriction of a relation R on a set S.

For a logic L, we call a state s in a model M = (W,R, V ) for L flat when for
every α ∈ Act for which L(α) has constraint 5, there is a set of states W0, such
that:

• Reachα(s) = {s} ∪W0;
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• Rα|Reachα(s) = E0 ∪ E1, where
E0 ⊆ {s} ×W0 and
E1 = W 2

0 ; and
• if L(α) has constraint T , or E0 6= ∅ and L(α) has constraint B, then s ∈W0.

Lemma 7.2 ([161, 117]). Every pointed L-model is bisimilar to L-model whose
states are all flat.

We are now ready to proceed with our proof of Theorem 7.13.

Proof. To prove that 1 implies 2, let b be a maximal open branch in the tableau
for ϕ. We construct a Kµ

k -model M = (W,R, V ) for ϕ in the following way.
Let W be the set of prefixes that appear in the branch, and let, for each
α ∈ Act,

R0
α = {σ, σ.α〈ψ〉 ∈W 2} ∪

σ, σ ∈W 2 | L(α) has
reflexive frames, or
serial frames and
∀ψ.σ.α〈ψ〉 /∈W 2

 ;

R1
α is the symmetric closure of R0

α, if L(α) has symmetric frames, and it
is R0

α otherwise; R2
α is the euclidean closure of R1

α, if L(α) has euclidean
frames, and it is R1

α otherwise; and finally, Rα is the transitive closure of
R2
α, if L(α) has transitive frames, and it is R2

α otherwise. By Lemma 7.1, Ra
satisfies all the necessary closure conditions. We also set V (p) = {σ ∈ W |
σ p appears in the branch }.
It is now possible to prove, by straightforward induction, that for every sub-
formula ψ of ϕ, if σ ψ appears in the branch, then for any environment ρ,
such that {σ′ ∈ W | σ ψ X−→

∗
σ′ X} ⊆ ρ(X), σ ∈ Jψ, ρσ,ψK. The only inter-

esting cases are fixed-point formulas, so let ψ = νX.ψ′. Let SX be the set
of prefixes of X in the branch. We can immediately see that if σ X appears
in the branch, then so does σ ψ′, and therefore, by the inductive hypothesis,
SX ⊆ Jψ, ρ[X 7→ SX ]K. From the semantics in Table 7.1, σ ∈ Jψ, ρK.
On the other hand, if ψ = µX.ψ′, then we prove that if σ /∈ S ⊆ W , then
S 6⊇ Jψ′, ρ[X 7→ S]K. Let Ψ = {σ′ χS | σ ψ′ X−→

∗
σ′ χ and σ′ /∈ S}. We know

that σ ψ′ ∈ Ψ, so Ψ 6= ∅. There are no infinite X−→-paths in the branch, so

there is some σ′ ψ′ ∈ Ψ, such that σ′ ψ′ 6 X−→
+

σ′′ ψ′ for any σ′′. Then, we
see that {σ′′ ∈ W | σ′ ψ X−→

∗
σ′′ X} ⊆ S, because if σ′ ψ X−→

∗
σ′′ X, then

σ′ ψ′
X−→
∗
σ′′ ψ′. But then, by the inductive hypothesis, σ′ ∈ Jψ′, ρ[X 7→ S]K,

and therefore S 6⊇ Jψ′, ρ[X 7→ S]K, which was what we wanted to prove.

To prove that 2 implies 3, let M = (W,R, V ) be a L-model and w ∈ W , such
that M, w |= ϕ, and W has at most κ(|ϕ|) states. Let the environment ρ be
such that ρ(X) = Jfx(X), ρKM for every variableX. We say that→⊆ (W×L)2

is a dependency relation on M when it satisfies the following conditions:

• if u |=ρ ψ1 ∧ ψ2, then (u, ψ1 ∧ ψ2)→ (u, ψ1) and (u, ψ1 ∧ ψ2)→ (u, ψ2);
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• if u |=ρ ψ1∨ψ2, then (u, ψ1∨ψ2)→ (u, ψ1) and u |=ρ ψ1 or (u, ψ1∧ψ2)→
(u, ψ2) and u |=ρ ψ2;

• if u |=ρ [α]ψ, then (u, [α]ψ)→ (v, ψ) for all v ∈W , such that uRαv;

• if u |=ρ 〈α〉ψ, then (u, 〈α〉ψ) → (v, ψ) for some v ∈ W , such that
uRαv |= ψ;

• if u |=ρ µX.ψ or u |=ρ νX.ψ, then (u, fx(X))→ (u, ψ); and

• if u |=ρ X, then (u,X)→ (u, fx(X)).

For each variable X and dependency relation →, we also define X−→, such
that (w1, ψ1)

X−→ (w2, ψ2) whenever (w1, ψ1) → (w2, ψ2) and ψ1 6= Y for all
variables Y where fx(Y ) is not a subformula of fx(X). We call a dependency
relation → lfp-finite, if for every least-fixed-point variable X, X appears
finitely many times on every X−→-sequence.

Claim: There is a lfp-finite dependency relation. The claim amounts to the
memoryless determinacy of parity games and it can be proven similarly, as
in [203]. Thus, we fix such a lfp-finite dependency relation.

The tableau starts with ε ϕ and we can keep expanding this branch to a
sufficient one using the tableau rules, such that every prefix is mapped to a
state in W , whenever σ is mapped to u, M, u |=ρ ψ for every ψ ∈ Φ(σ), and
if σ.α〈ψ〉 to v, then uRαv; furthermore, this can be done by following the
lfp-finite dependency relation. This is by straightforward induction on the
application of the tableau rules. A special case are the agents with euclidean
accessibility relations, for which we can use Lemma 7.2. It is not hard to see
that in this way we generate a set of branches that are not propositionally
closed. Furthermore, since the tableau rule applications follow a lfp-finite
dependency relation and W has at most κ(|ϕ|) states, it is not hard to see
that for every least-fixed-point variable X, on every X−→-path, X appears at
most κ(|ϕ|) times.

To prove that 3 implies 1, we assume that there is a sufficient open branch b
in a tableau for ϕ and we demonstrate that ϕ has a maximal tableau with
an open branch — specifically, we construct such an open branch from b.

We call a prefix σ a leaf when there is no σ′ 6= σ in the branch, such that σ ≺
σ′; we call σ productive when a tableau rule on a formula σ ψ in the branch
can produce a new prefix. We call σ ready if it is of the form σ′.α〈ψ1〉.α〈ψ2〉,
or if σ is not α-flat for any α ∈ Act.

For each σ ψ in b and each least-fixed-point variable X, let

c(σ ψ,X) = max{n | there is a X−→ -path that ends in σ ψ,
where X appears n times }.

Since b is not sufficiently closed, always c(σ ψ,X) ≤ κ(|ϕ|). We use the
notation σ ∼ σ′ to mean that σ = σ1.α〈ψ1〉, σ = σ2.α〈ψ2〉 for some σ1, σ2, α,
and Φ(σ) = Φ(σ′); and the notation σ ≡ σ′ to mean that σ ∼ σ′ for every
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least-fixed-point variable X and ψ ∈ Φ(σ), c(σ ψ,X) = c(σ′ ψ,X) and either
both are ready, or both σ and σ′ are not ready and σ + 1 ∼ σ2, where
σ = σ1.α〈ψ〉 and σ′ = σ2.α〈ψ′〉. We then say that σ and σ′ are equivalent.

Every productive leaf σ in the branch has an ancestor e(σ) that has more
that has a distinct, ready, and ≡-equivalent ancestor; let s(σ) be such an
ancestor of e(σ). We further assume that e(σ) is the ≺-minimal ancestor of
σ with these properties. We note that for any two productive leaves σ1 and
σ2, if e(σ1) ≺ σ2, then e(σ1) = e(σ2).

Let b0 be the branch that results by removing from b all prefixed formulas of
the form σ.α〈ψ1〉 ψ2, where e(σ′) ≺ σ for some productive leaf σ′. Observe
that b0 is such that each of its productive leafs has an equivalent ancestor
that is not a leaf. To complete the proof, it suffices to show how to extend
any branch bi, where each of its productive leafs σ has an equivalent proper
ancestor s(σ), to a branch bi+1 that preserves this property, and has an
increased minimum length of its productive leafs. To form bi+1, simply add
to bi all formulas of the form σ.σ′ ψ, where s(σ).σ′ ψ appears in bi.

Finally, observe that the finite model property of L was only used to prove
equivalence with the third statement of the theorem.

Corollary 7.13.1. L-tableaux are sound and complete for L.

Example 15. Let Act = {a, b} and L be a logic, such that L(a) = Kµ and
L(b) = K5µ. Let

ϕ1 = (p ∧ 〈a〉p) ∧ µX.(¬p ∨ [a]X) and ϕ2 = 〈b〉p ∧ µX.([b]¬p ∨ [b])X.

As we see in Figure 7.4, the tableau for ϕ1 produces an open branch, while the
one for ϕ2 has all of its branches closed, the leftmost one due to an infinite X−→-
sequence.

7.5 Conclusions
We studied multi-modal logics with recursion. These logics mix the frame condi-
tions from epistemic modal logic, and the recursion of the µ-calculus. We gave
simple translations among these logics that connect their satisfiability problems.
This allowed us to offer complexity bounds for satisfiability and to prove certain
finite model results. We also presented a sound and complete tableau that has
termination guarantees, conditional on a logic’s finite model property.

Conjectures and Future Work We currently do not posses full translations
for the cases of symmetric and euclidean frames. What is interesting is that we
also do not have a counterexample to prove that the translations that we already
have, as well as other attempts, are not correct. In the case of symmetric frames,
we have managed to prove that our construction works for formulas without least-
fixed-point operators. A translation for euclidean frames and for the full syntax
on symmetric frames is left as future work. We know that we cannot use the same
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ε (p ∧ 〈a〉p) ∧ µX.(¬p ∨ [a]X)

ε µX.(¬p ∨ [a]X)

ε p ∧ 〈a〉p
ε p

ε 〈a〉p
(fix)

ε ¬p ∨ [a]X

ε [a]X
(D)

a〈p〉 p
(B)

a〈p〉 X
(X)

a〈p〉 µX.(¬p ∨ [a]X)
(fix)

a〈p〉 ¬p ∨ [a]X

a〈p〉 [a]X a〈p〉 ¬p
x

ε ¬p
x

ε 〈b〉p ∧ µX.([b]¬p ∨ [b]X)

ε µX.([b]¬p ∨ [b]X)

ε 〈b〉p
(D)

b〈p〉 p
(fix)

ε [b]¬p ∨ [b]X

ε [b]X
(B)

b〈p〉 X
(X)

b〈p〉 µX.([b]¬p ∨ [b]X)
(fix)

b〈p〉 [b]¬p ∨ [b]X

b〈p〉 [b]X
(B5)

ε [b]X
(B)

b〈p〉 X
(X)

...

b〈p〉 [b]¬p
(B5)

ε [b]¬p
(B)

b〈p〉 ¬p
x

ε [b]¬p
(B)

b〈p〉 ¬p
x

Figure 7.4: Tableaux for ϕ1 and ϕ2. The dots represent that the tableau keeps
repeating as from the identical node above. The xmark represents a propositionally
closed branch.

model constructions that preserve the finiteness of the model as in Subection 7.3.1
(see Remark 15).

We do not prove the finite model property on all logics. We note that although
it is known that logics with recursion with at least two agents with either B or 5
do not have this property (see 15, [81]), the situation is unclear if there is only one
such agent.

We further conjecture that it is not possible to prove EXP-completenes for all
the single-agent cases. Specifically, we expect K4µ-satisfiability to be in PSPACE,
similarly to how K5µ-satisfiability is in NP[81]. As such, we do not expect Trans-
lation 6 to be correct for these cases.

The model checking problem for the µ-calculus is an important open problem.
The problem does not depend on the frame restrictions of the particular logic,
though one may wonder whether additional frame restrictions would help solve the
problem more efficiently. We are not aware of a way to use our translations to solve
model checking more efficiently.

As, to the best of our knowledge, most of the logics described in this chapter
have not been explicitly defined before, with notable exceptions such as [91, 81, 32],
they also lack any axiomatizations and completeness theorems. We do expect the
classical methods from [139, 143, 116] and others to work out in these cases as well.
However it would be interesting to see if there are any unexpected situations that
arise.

Given the importance of common knowledge for epistemic logic and the fact that
it has been known that common knowledge can be thought of as a (greatest) fixed-
point already from [118, 49], we consider the logics that we presented to be natural
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extensions of ML. Besides the examples given in Section 7.2, we are interested in
exploring what other natural concepts can be defined with this enlarged language.



Part III

Epilogue

179





Chapter 8

Closing Remarks

8.1 Summary of the Contributions
This thesis, focuses on obtaining negative results in the theory of algebraic process
description languages and modal logics. In particular, we offered several non-
finite-axiomatizability results for process algebras modulo bisimulation- and trace-
based notions of behavioral equivalence (Chapters 3-6), and proved lower and upper
bounds on the complexity for the satisfiability problem for various modal logics
and their extensions with fixed-point operators (Chapter 7). All the results we
presented in the dissertation were proved using techniques rooted in the syntactic
nature of those formalisms for describing reactive systems and their specifications.
Specifically, we discovered the following results:

• BPA enriched with a priority operator does not afford a finite axiomatization
modulo order insensitive bisimilarity (Chapter 3).

• Closed recursion-free regular monitors over a finite set of actions afford finite
axiomatizations, both modulo verdict and ω-verdict equivalence. However,
the landscape of the axiomatizability results is more varied in the setting of
open terms — that is, terms that may include variables. In the presence of
more than one, but finitely many, actions, we prove that no finite axioma-
tization exists, and we provide an infinite one that we prove complete. We
then perform an exhaustive study for the remaining cases for terms over one
action or an infinite set of actions, modulo both equivalences, and show that
over a singleton action set, we can acquire completeness with finitely many
axioms. In the case of infinitely many actions, our axiomatic basis for closed
terms extended by only one axiom is also complete for open terms (Chapter
4).

• We extend Moller’s negative result over open terms in CCS modulo bisimilar-
ity to the weak setting modulo rooted weak, and rooted branching bisimilarity
(Chapter 5).

181
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• We further study Moller’s negative result and prove it applies to several
new settings over languages obtained as extensions of BCCSP through dif-
ferent operators. The technique we employed here is based on creating map-
pings from different process algebraic languages onto Moller’s CCS. Our main
contribution was identifying the core similarities between behaviors of the
used operators and, by exploiting those, defining the mappings as mentioned
above. Our first lifting of Moller’s result was BCCSP extended with the
merge operator |A, for A ⊆ Act, from CSP. We considered the cases where
the resulting process algebras contain exactly one such operator for a fixed
A or when they contain all such operators, one for each A. In the first case,
we show that BCCSP extended with those operators does not afford a finite
ground-complete axiomatization when A ⊂ Act. When A = Act, instead,
we provide a finite ground-axiomatization for bisimilarity. Moreover, in the
second case, we showed that without the presence of τ actions, our proof
technique through mappings could not be applied to prove the non-existence
of a finite ground-complete axiomatization. Finally, we created two new map-
pings and used them to prove two negative results, one for the restriction-
and recursion-free, and one for the relabeling- and recursion-free fragments
of CCS (Chapter 6).

• Finally, in Chapter 7, we defined the multi-agent modal µ-calculus over frames
satisfying modal axioms and studied the complexity of the satisfiability prob-
lem. Our research produced tight lower and upper bounds for several sub-
logics employing many such axioms and at least some hardness results for
other ones. We also provided sound and complete tableaux for these logics
and used them to prove the decidability of the satisfiability problem in cases
that were not addressed in the literature. However, perhaps the most sig-
nificant contribution of this final study was our novel methodology, which
advocates for a more uniform tackling of complexity questions over modal
logics.

Overall, we think that our work demonstrates the benefits of developing and
applying general and “abstract” methodologies that can be used to prove negative
results. It advocates a transition from a case-by-case analysis specific to a given
setting to using proof techniques that can be instantiated to show results in various
settings. This is akin to the transition from showing specific complexity-theoretic
results using ingenuity and problem-specific information to developing so-called
“algorithmic meta-theorems”—see, for instance, the survey article [142].

Such transitions from the individual study of specific problems and their asso-
ciated results to the development of general theories covering classes of those take
place as a scientific field matures and scientists discover commonalities amongst
disparate problems. In the personal journey through the work presented in this
dissertation, the step from problem-specific to general techniques was initially mo-
tivated mainly by intuition at the time of each individual work, but eventually, it
became a more conscious choice. The reason is that the use of more general meth-
ods seemed more “productive”, in the sense that at least the length of the resulting
arguments was decreased, and the answers they provided were easier to generalize
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and reuse.
However, one downside of replacing well-established and streamlined methods

with these generalizations is that we have to count more on intuition and be at more
risk for unexpected mistakes. Namely, we have to be more creative (and lucky) in
our search for similarities between mathematical theories, and it is possible to not
succeed in that, even though similarities exist. Moreover, as the solutions were
based on less established or novel methods, we did not have experience using them
or access to possible earlier examples to help us. This meant that some proof steps
were harder to complete, and often we would not know how to tackle or could
overlook some cases of the proof.

Luckily though, since proofs became shorter, potential difficult stages occurred
fewer times once we had managed to identify the necessary patterns. Moreover,
even though a lengthier proof could have more manageable individual steps, this
does not necessarily decrease the chances of mistakes. That was because at least
for the author, longer proofs tended to increase the chances of mistakes occurring,
regardless of the familiarity with the techniques and the simplicity of the steps.
Another outcome for the author was the empirical realization of this fact, which
led to the subsequent preference for “more general” approaches.

8.2 Future Work
The work presented above is by no means the last stone to be laid for any of the
studied fields. We have already provided specific avenues for future work based on
our contributions included in this thesis, which can be found in the relevant parts
of Chapters 3-7. However, there is one last question we would like to present to
conclude the research presented in this dissertation, which we will describe shortly.

Aside from this final question, we plan to build on this thesis by developing
general techniques that are more applicable than those that are currently at our
disposal. For example, the reduction technique used in Chapter 6 could not be
applied in the setting of BCCSP with all the |A operators from CSP and no τ ac-
tions. Moreover, to date, it has never been successfully employed to prove negative
results for “weak congruences”, whereas Moller’s proof technique has.

We reserve the remainder of this section to present a final avenue of research as
an epilogue to the work presented already. The reason for selecting this question for
this purpose is twofold. First, its theme is very relevant to this thesis. However,
it is not tied enough to any of the specific contributions to be considered part
of their future work. Secondly, our current attempts to answer this question were
heavily affected by the new knowledge and expertise that the included contributions
provided to the author.

8.2.1 Towards an Infinite Axiomatic Basis of CCS Modulo
Bisimilarity

We begin by reminding the reader of the role played by an infinite and complete
axiomatic basis over MonF modulo verdict equivalence, in Section 4.5, towards
acquiring a negative result. There, having this axiomatization enabled the use of
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(A0) x+ nil ≈ x (P0) x ‖ nil ≈ x

(A1) x+ y ≈ y + x (P1) x ‖ y ≈ y ‖ x
(A2) (x+ y) + z ≈ x+ (y + z)

(A3) x+ x ≈ x

Table 8.1: Basic axioms for CCS. E0 = {A0,A1,A2,A3} and E1 = E0 ∪ {P0,P1}.

a proof technique based on compactness ([148, 105]), which simplified and stream-
lined the proof of the non-finite axiomatizability result in Theorem 4.10. This is a
classic proof technique for showing non-finite axiomatizability results ([181]), but
it does require the existence of an infinite equational basis. However, this simplifi-
cation motivated us to see whether similar infinite axiomatizations could be useful
elsewhere. Here we will discuss the possibility for a similar axiomatic basis of CCS
modulo bisimilarity, and explore its possible uses. We note that no such equational
axiomatization is known for CCS without the use of auxiliary operators.

In our work, Moller’s negative axiomatizability result for bisimilarity over CCS
has been heavily used and extended. In Chapter 5 we managed to use some equa-
tions provided by Moller [160] to extend his result to rooted weak bisimilarity and
rooted branching bisimilarity over open CCS terms. Our conjecture is that hav-
ing an infinite complete axiomatization over CCS will enable us to extend more
results over CCS in the weak equivalence setting. Here we present our initial steps
towards producing a similar result for open terms in the recursion, restriction and
relabeling-free fragment of CCS modulo bisimilarity.

Our search began as the attempt to identify all possible variations of Moller’s
Mn equations, used in Chapter 5. Indeed, we managed to produce several more.
In the setting of closed terms, an infinite complete axiomatization has already
been produced. However, since that axiomatization is over closed equations, the
argument of Chapter 4 cannot be applied. This is because in order to apply that
argument one needs a complete axiomatization over open terms.

The first study of the equational characterization of parallel composition was
carried out by Hennessy and Milner, in their seminal paper [125] (preliminary ver-
sion of [126]). There, they provided a ground-complete axiomatization of CCS
modulo bisimilarity. This axiomatization consisted of E0 = {A0,A1,A2,A3} given
in Table 8.1, which is a ground-complete axiomatization of BCCSP modulo bisim-
ilarity (a proof can be found, e.g., in [193]), enriched with the axiom schema EL in
Table 8.2, known as the expansion law.

The expansion law was used to deal with parallel composition: it states that
whenever the initial behavior of the two parallel components is known, then the
initial behavior of their composition can be described explicitly by the term on
the right-hand side of equation EL. Informally, as parallel composition does not
distribute over choice in either of its arguments, modulo bisimilarity, the only way
to describe equationally the initial behavior of a closed term of the form p‖q is first
to express p as

∑
i∈I µipi and q as

∑
j∈J νjqj . One can then apply the expansion
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∑
i∈I

µixi ‖
∑
j∈J

νjyj ≈∑
i∈I

µi(xi ‖
∑
j∈J

νjyj) +
∑
j∈J

νj(
∑
i∈I

µixi ‖ yj) +
∑

i∈I,j∈J
µi=νj

τ(xi ‖ yj)
(EL)

Table 8.2: The expansion law.

law, from left to right, to eliminate all occurrences of parallel composition from
CCS processes, reducing them to BCCSP processes, and then use the ground-
completeness of E0 over BCCSP to conclude that the axiom system extending E0

with all the instances of EL is ground-complete over CCS modulo bisimilarity.

Theorem 8.1 (Hennessy and Milner [125, 126]). The axiom system E0 extended
by all instances of the EL schema, is a ground-complete axiomatization of CCS
modulo bisimilarity.

However, the axiomatization proposed by Hennessy and Milner was not finite.
In fact, the axiom schema EL generates infinitely many axioms, even if the set of
actions over which CCS terms are built is finite. Our aim was to produce a new,
also infinite, family of equations, that are complete over open terms. So far, we
seem to have succeeded on the first part, namely defining infinitely many equations
which we do not know how to prove from the already available ones. However, in
order to describe all the equations we defined in some concise way we needed to
introduce heavy notation. Moreover, describing this whole family we discovered
would only be of use in the case we actually aimed to also prove the completeness
of some relevant axiom set, something we have not achieved yet. Thus we decided
not to present the whole family of equations, as this would force this discussion
to become much harder to read, and in our opinion would disorient the reader.
We will only give one such equation as an example of this new family, and we will
discuss our general methodology for acquiring the remaining ones.

We first remind the reader of Moller’s equations that we used in Chapter 5,
referred to as {Mn}n≥1:(

(x+ y) ‖ (

n∑
i=1

zi)
)

+

n∑
i=1

(
(x ‖ zi) + (y ‖ zi)

)
≈

(x ‖
n∑
i=1

zi) + (y ‖
n∑
i=1

zi) +

n∑
i=1

(
(x+ y) ‖ zi

)
. (Mn)

We recall these equations, because their thorough study is what led us to identify
the other sound equations we will present in what follows. For now, we focus on
one of the smallest instances of Moller’s family:(

(x+ y) ‖ (z + w)
)

+ (x ‖ z) + (y ‖ z) + (x ‖ w) + (y ‖ w) ≈(
x ‖ (z + w)

)
+
(
y ‖ (z + w)

)
+
(
(x+ y) ‖ z

)
+
(
(x+ y) ‖ w

)
. (M2)
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We now try to replicate this structure, but over somewhat more complicated terms,
that is, the parallel composition of three sub-terms, with each one being the al-
ternative composition of two variables. This gave rise to the following equation,
which can be easily verified to be sound:(

(x+ x′) ‖ (y + y′) ‖ (z + z′)
)

+
(
x ‖ y ‖ (z + z′)

)
+
(
x ‖ y′ ‖ (z + z′)

)
+
(
x′ ‖ y ‖ (z + z′)

)
+
(
x′ ‖ y′ ‖ (z + z′)

)
+
(
x ‖ (y + y′) ‖ z

)
+
(
x ‖ (y + y′) ‖ z′

)
+
(
x′ ‖ (y + y′) ‖ z

)
+
(
x′ ‖ (y + y′) ‖ z′

)
+
(
(x+ x′) ‖ y ‖ z

)
+
(
(x+ x′) ‖ y ‖ z′

)
+
(
(x+ x′) ‖ y′ ‖ z

)
+
(
(x+ x′) ‖ y′ ‖ z′

)
≈
(
x ‖ (y + y′) ‖ (z + z′)

)
+
(
x′ ‖ (y + y′) ‖ (z + z′)

)
+
(
(x+ x′) ‖ y ‖ (z + z′)

)
+
(
(x+ x′) ‖ y′ ‖ (z + z′)

)
+
(
(x+ x′) ‖ (y + y)′ ‖ z

)
+
(
(x+ x′) ‖ (y + y)′ ‖ z′

)
+
(
x ‖ y ‖ z

)
+
(
x ‖ y ‖ z′

)
+
(
x ‖ y′ ‖ z

)
+
(
x ‖ y′ ‖ z′

)
+
(
x′ ‖ y ‖ z

)
+
(
x′ ‖ y ‖ z′

)
+
(
x′ ‖ y′ ‖ z

)
+
(
x′ ‖ y′ ‖ z′

)
(Etr)

We emphasize that Etr is essentially the shortest of the equations we acquired,
something that should hopefully justify our choice not to present all of them. More-
over, the complexity of this equation alone seems to highlight the difficulties one
would encounter in the attempt to define an infinite complete axiomatization for
CCS without auxiliary operators. However, we hope that, if such a task is finally
managed, it will enable the definition of more general lifting techniques and help
extend negative results from the strong to the weak setting of equivalences.

A possible roadmap for this would require the acquired equational base over
CCS to be extended to a complete one modulo some new weak equivalence. This
subsequent infinite basis would let us use compactness for proving the non-finite
axiomatizability of such a weak congruence over closed terms in CCS (similarly
to Section 4.5). The only existing such result so far (over closed terms) is that of
[30], which explores the axiomatizability or rooted branching bisimilarity though
Moller’s technique.
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