
University of Verona
Department of Computer Science

Doctoral Thesis

On Multi-Language Semantics
Semantic Models, Equational Logic, and Abstract Interpretation of

Multi-Language Code

Samuele Buro

A thesis submitted in partial fulfillment for the degree of
Doctor of Philosophy

Verona, 19th September 2021

On Multi-Language Semantics

On Multi-Language Semantics
Semantic Models, Equational Logic, and Abstract Interpretation of
Multi-Language Code

Samuele Buro

University of Verona
Department of Computer Science
Strada le Grazie 15
37134 Verona, Italy

On Multi-Language Semantics: Semantic Models, Equational Logic, and Abstract Inter-
pretation of Multi-Language Code, Samuele Buro, September 2021

Doctoral Advisor: Isabella Mastroeni (University of Verona)

Doctoral Thesis Referees: Roberto Bruni (University of Pisa), Peter Müller (ETH Zürich)

Doctoral Advisory Committee: Maria Paola Bonacina (University of Verona), Isabella Mastroeni
(University of Verona), Massimo Merro (University of Verona)

I, Samuele Buro, declare that this thesis titled, “On Multi-Language Semantics: Semantic
Models, Equational Logic, and Abstract Interpretation of Multi-Language Code” and the work
presented in it are my own. I confirm that: • This work was done wholly or mainly while
in candidature for a research degree at this University. • Where any part of this thesis has
previously been submitted for a degree or any other qualification at this University or any
other institution, this has been clearly stated. • Where I have consulted the published work of
others, this is always clearly attributed. • Where I have quoted from the work of others, the
source is always given. With the exception of such quotations, this thesis is entirely my own
work. • I have acknowledged all main sources of help. • Where the thesis is based on work
done by myself jointly with others, I have made clear exactly what was done by others and
what I have contributed myself.

Verona, 19th September 2021

To my late father, to whom I promised to complete this thesis before he left this world.

To my mother and sisters.

To Margherita.

Acknowledgments

This thesis is the result of three years of research activity carried out during my PhD
at the University of Verona, with a period of about three months spent as a visiting
student at the University of Leicester.

I would like to express my sincere gratitude to my advisor Prof. Isabella Mastroeni
for encouraging me to begin the doctoral studies, for the continuous support of my
PhD research, and for her guidance throughout this project. I also wish to thank her
for providing me the opportunity to work on such an intriguing research topic.

I am deeply indebt to Prof. Roy L. Crole for introducing me in the field of categor-
ical logic. I will always remember the long time we spent in his office by sketching
diagrams and semantics on the whiteboard, the fruitful discussions that we had on
various mathematical topics, and his impressive knowledge in theoretical aspects
of computer science. Part of the work presented in this thesis would not have been
possible without his expertise on the subject.

Finally, I would like to thank the reviewers, Roberto Bruni and Peter Müller, for
their careful reading and thoughtful comments that helped to improve the thesis.
They both provided valuable research ideas for ongoing and future works, along with
interesting related works that have been included in the current bibliography.

vii

Abstract

Modern software development rarely takes place within a single programming lan-
guage. Often, programmers appeal to cross-language interoperability. Benefits are
two-fold: exploitation of novel features of one language within another, and cross-
language code reuse. For instance, HTML, CSS, and JavaScript yield a form of interop-
erability, working in conjunction to render webpages. Some object oriented languages
have interoperability via a virtual machine host (.NET CLI compliant languages in
the Common Language Runtime, and JVM compliant languages in the Java Virtual
Machine). A high-level language can interact with a lower level one (Apple’s Swift
and Objective-C).

Whilst this approach enables developers to benefit from the strengths of each
base language, it comes at the price of a lack of clarity of formal properties of the
new multi-language, mainly semantic specifications. Developing such properties is a
key focus of this thesis. Indeed, while there has been some research exploring the
interoperability mechanisms, there is little development of theoretical foundations.

In this thesis, we broaden the boundary functions-based approach à la Matthews
and Findler to propose an algebraic framework that provides systematic and more
general ways to define multi-languages, regardless of the inherent nature of the
underlying languages. The aim of this strand of research is to overcome the lack of a
formal model in which to design the combination of languages. Main contributions
are an initial algebra semantics and a categorical semantics for multi-languages.

We then give ways in which interoperability can be reasoned about using equa-
tions over the blended language. Formally, multi-language equational logic is defined,
within which one may deduce valid equations starting from a collection of axioms
that postulate properties of the combined language. Thus, we have the notion of a
multi-language theory and part of the thesis is devoted to exploring the properties of
these theories. This is accomplished by way of both universal algebra and category
theory, giving us a very general and flexible semantics, and hence a wide collection of
models. Classifying categories are constructed, and hence equational theories furnish
each categorical model with an internal language. From this we establish soundness
and completeness of the multi-language equational logic.

As regards static analysis, the heterogeneity of the multi-language context opens
up new and unexplored scenarios. In this thesis, we provide a general theory for
the combination of abstract interpretations of existing languages in order to gain an
abstract semantics of multi-language programs. As a part of this general theory, we
show that formal properties of interest of multi-language abstractions (e.g., soundness
and completeness) boil down to the features of the interoperability mechanism that
binds the underlying languages together. We extend many of the standard concepts
of abstract interpretation to the framework of multi-languages.

ix

x

Finally, a minor contribution of the thesis concerns language specification formal-
isms. We prove that longstanding syntactical transformations between context-free
grammars and algebraic signatures give rise to adjoint equivalences that preserve
the abstract syntax of the generated terms. Thus, we have methods to move from
context-free languages to the algebraic signature formalisms employed in the thesis.

Publications

[BCM20a] Samuele Buro, Roy L. Crole, and Isabella Mastroeni. Equational logic
and categorical semantics for multi-languages. In Patricia Johann, editor,
Proceedings of the 36th Conference on the Mathematical Foundations of
Programming Semantics, MFPS 2020, Online, October 1, 2020, volume 352
of Electronic Notes in Theoretical Computer Science, pages 79–103. Elsevier,
2020.

[BCM20b] Samuele Buro, Roy L. Crole, and Isabella Mastroeni. Equational logic and
set-theoretic models for multi-languages. In Gennaro Cordasco, Luisa
Gargano, and Adele A. Rescigno, editors, Proceedings of the 21st Italian
Conference on Theoretical Computer Science, Ischia, Italy, September 14-
16, 2020, volume 2756 of CEUR Workshop Proceedings, pages 236–249.
CEUR-WS.org, 2020.

[BCM20c] Samuele Buro, Roy L. Crole, and Isabella Mastroeni. On multi-language
abstraction — Towards a static analysis of multi-language programs. In
David Pichardie and Mihaela Sighireanu, editors, Static Analysis - 27th
International Symposium, SAS 2020, Virtual Event, November 18-20, 2020,
Proceedings, volume 12389 of Lecture Notes in Computer Science, pages
310–332. Springer, 2020.

[BM19a] Samuele Buro and Isabella Mastroeni. On the multi-language construction.
In Luís Caires, editor, Programming Languages and Systems - 28th European
Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, volume 11423 of Lecture Notes in
Computer Science, pages 293–321. Springer, 2019.

[BM19b] Samuele Buro and Isabella Mastroeni. On the semantic equivalence of
language syntax formalisms. In Alessandra Cherubini, Nicoletta Sabadini,
and Simone Tini, editors, Proceedings of the 20th Italian Conference on
Theoretical Computer Science, ICTCS 2019, Como, Italy, September 9-11, 2019,
volume 2504 of CEUR Workshop Proceedings, pages 34–51. CEUR-WS.org,
2019.

[BM20] Samuele Buro and Isabella Mastroeni. On the semantic equivalence of
language syntax formalisms. Theoretical Computer Science, 840:234–248,
2020.

xi

Contents

Abstract ix

Publications xi

Contents xiii

1 Introduction 1
1.1 An Informal Summary . 1
1.2 The Lack of a Multi-Language Framework 2
1.3 The Problem of Static Analysis on Multi-Language Code 3
1.4 Structure and Contributions . 4

2 Basic Mathematical Notions 7
2.1 Preliminary Notions . 7
2.2 Orderings and Fixpoints . 8
2.3 Elements of Abstract Interpretation 9
2.4 Basic Category Theory . 11

3 Order-Sorted Algebras 17
3.1 Sorted Sets and Functions . 17
3.2 Order-Sorted Signatures . 18
3.3 Order-Sorted Algebras . 21
3.4 Algebraic Semantics . 22
3.5 Free Algebra Construction . 29
3.6 Basic Algebraic Constructions . 31
3.7 Order-Sorted Equations . 38
3.8 Order-Sorted Deduction . 41
3.9 Initiality and Freeness Results . 46

4 Algebraic Multi-Language Constructions 49
4.1 Multi-Language Signatures and Algebras 51
4.2 Terms of a Multi-Language . 54
4.3 Multi-Language Algebraic Semantics 56
4.4 Refining the Multi-Language Construction 58
4.5 Subsort Polymorphic Boundary Functions 59
4.6 Semantic-Only Boundary Functions 63
4.7 Combining Untyped and Simply-Typed Lambda-Calculi 71

5 Multi-Language Equational Logic 75

xiii

xiv Contents

5.1 Multi-Language Free Algebra . 76
5.2 Subalgebras, Kernels, and Congruences in a Multi-Language Context 79
5.3 Quotienting of Multi-Language Algebras 82
5.4 Equational Logic for Multi-Language Theories 84
5.5 Soundness, Completeness, and Freeness Results 86

6 Categorical Logic for Multi-Languages 93
6.1 Order-Sorted Equational Logic . 93
6.2 Multi-Language Equational Logic . 104
6.3 Further Multi-Language Constructions 114
6.4 The Lambda-Imp Multi-Language . 115

7 Abstract Semantics of Multi-Language Programs 123
7.1 Algebraic Perspective on Collecting Semantics 124
7.2 Fixpoint Calculation of Collecting Semantics 129
7.3 Basic Notions of Algebraic Abstract Semantics 131
7.4 The Multi-Language Abstraction . 134

8 Semantic Equivalence of Language Syntax Formalisms 143
8.1 Old and New Results . 144
8.2 Formalisms for Language Syntax Specification 144
8.3 Context-Free Algebras . 145
8.4 Many-Sorted and Order-Sorted Signatures 149
8.5 Equivalence between MS Signatures and CF Grammars 152
8.6 Adjointness between MS Signatures and OS Signatures 156
8.7 Semantic Equivalence . 159
8.8 Some Remarks . 161

9 Conclusions 163
9.1 Related Works . 164
9.2 Future Works . 165

Bibliography 169

Index 179

CHAPTER 1
Introduction

Interoperability between languages
has been a problem since the second

programming language was invented.

— David Chisnall

There is currently a myriad of programming languages, many of which have
extensive library support. With programs becoming larger and increasingly com-
plex, interoperability mechanisms streamline program development by enabling the
interplay between pieces of code written in different languages. Examples are em-
bedded interpreters [Ram06], consisting of a runtime engine implemented in the host
language (such as Jython [JBW+10] that lets Java interoperate with Python), or the
foreign function interface system that allows one language to call routines written in
another (e.g., the Java Native Interface [Lia99] enables Java code to call C++ functions).
On one hand these mechanisms are essential tools, but on the other hand they hamper
our understanding of the resulting programs. Indeed, multi-language programs do
not obey any of the semantics of the base languages but a (non-trivial) combination
of them. As a consequence, any method of formal reasoning (such as static program
analysis or verification) is neutralised by the lack of a semantic specification.

1.1 An Informal Summary

Language interoperability is the ability of two or more programming languages to
interact as a unique, integrated system. A multi-language is a programming language
arising from a combination of two or more programming languages. But how can
we formally combine programming languages? What is the meaning (semantics) of
multi-language programs? We illustrate the problem in simple terms using some
analogies with spoken language. Consider the following scenario based on natural
languages rather than programming languages. English and Spanish are human
languages usually spoken by people with a different cultural heritage. Geographical
areas in which these cultures have met and mixed, have seen the birth of a new dialect
referred to as Spanglish, in which new lexical and grammatical rules result from
the blending of these languages. For instance, in the sentence “Keep tranquilo and

1

2 Introduction

habla Spanglish”, English words “calm” and “speak” have been substituted by their
Spanish counterparts. The semantics of the whole sentence is given by translating
the meaning of the mixed foreign words in a compositional way. When we look
at programming languages, the scenario is similar: Multi-language programs are
obtained by mixing code fragments. However, if translating words between two
natural languages is relatively easy, converting the meaning of code fragments in one
programming language to another is not, mainly due to the substantial differences
between the features that each language provides (e.g., a high-level language that
interoperates with a low-level one). Now, although arising from a combination of
languages, the real gain made by Spanglish is that we can use it as a single language
in itself. But it is much more difficult to construct a single useful programming
language from others. Most existing techniques allow two languages to communicate,
to exchange data, but without providing a clear view of a single new, fully-fledged
programming language (cf. Spanglish). This clear single view would be much more
useful to programmers, who would then have a complete understanding of this single
combined language.

We would like to create a system in which starting from two (or more) program-
ming languages specified according to some given design principles, we obtain a
single combination of these languages with its own syntax and semantics and satisfy-
ing the same design principles: a multi-language. Why could this be useful? Here is
one example. Static analysers are tools that provide analyses of program behaviour
at compile time. They usually rely on mathematical frameworks such as abstract
interpretation or data-flow equations. But it is very difficult to apply this technique to
situations where two separate languages only interoperate, that is, communicate and
exchange data. What would be far more useful and robust is to work with a (single)
multi-language. The same goes for static or dynamic analysers, interpreters, compilers
and so on, and these are all fundamental tools used everyday by computer scientists
and engineers. We believe there will be considerable interest in multi-languages
since practitioners find it useful to be able to blend key features from different lan-
guages. However, as noted, building multi-languages is not easy. There has been
some practical work in recent years, but there is no theory of multi-languages.

1.2 The Lack of a Multi-Language Framework

The notion of multi-language is employed naively in several works in literature [PA14,
AB11, TM07, FF08, Gra08, PPDA17, OSZ12, MF09] to indicate a combination of two
programming languages into a new one, with its own syntax and semantics. The most
recurring way to design a multi-language is to exploit a mechanism able to regulate
both control flow and value conversion between the underlying languages [MF09],
thus providing cross-language interoperability [Chi13]. We show below some of the
most common ones.

Embedded Interpreters A very popular method to execute external code within a
programming language is the use of embedded interpreters [Ben05, Ram11, Ram06].
Roughly, an embedded interpreter is an interpreter for the external language written
in the host language. For instance, Nashorn [Orab] is a JavaScript interpreter written
in Java released with Java 8, Jython [JBW+10] is a Java implementation of Python,
and the Lua programming language [IdFF96] has been conceived to be an embedded
language rather than a stand-alone one. Below is reported a simple multi-language

1.3. The Problem of Static Analysis on Multi-Language Code 3

Hello World based on Nashorn, in order to give a taste of this cross-language
interoperability mechanism:

ScriptEngine e = new ScriptEngineManager().getEngineByName("nashorn");
engine.eval("print('Hello World!');");

In the first line the Nashorn interpreter is retrieved. Then, JavaScript code is passed
as a string and executed by the interpreter in the second line. ♢

Foreign Function Interfaces One of the first mechanism developed to achieve
cross-language interoperation are the foreign function interfaces [FF08]. They provide
methods that allows one language to call functions written in another language. For
instance, the Java Native Interface (JNI) is a programming interface enabling Java to
call native methods (such as, written in C/C++ and assembly). The following code
snippet is an example:

private native void helloWorld(); // Java

JNIEXPORT void JNICALL Java_HelloJNI_helloWorld(JNIEnv *env, jobject thisObj) {
printf("Hello World!\n");
return;

} // C or C++

The first part of the code is the (Java) declaration of a native method which is then
implemented in C or C++ in the second part. The JNI acts as a bridge between the
function calls in Java and the function implementation in C/C++. ♢

Boundary Functions Theoretical works follow the more formal approach of bound-
ary functions (or, for short, boundaries) in the style of Matthews and Findler’s multi-
language semantics [MF09]. Simply put, boundaries are syntactical constructs that
act as a gate between single-languages, and when a value needs to flow to the other
language, they perform a conversion so that it complies to the other language se-
mantic specifications. In [MF09], the authors use boundary functions to design a
multi-language obtained by mixing ML and Scheme. ♢

Regardless of the chosen mechanism, the full construction is usually carried out
manually by language designers, which define the multi-language by reusing the
formal specifications of the base languages [PPDA17, PA14, AB11, MF09]. Inevitably,
therefore, all these resulting multi-languages notably differ one from another.

These different ways to achieve a cross-language interoperation are all attributable
to the lack of a formal description of multi-languages which does not provide neither
a method for language designers to conceive new multi-languages nor any guarantee
on the correctness of the resulting constructions.

1.3 The Problem of Static Analysis on Multi-Language Code

Despite the wide range of frameworks for interoperability, there is a lack of techniques
for combining static analyses of different languages. Static analysis consists of a
range of well-established and widely used techniques for automatically extracting
dynamic (i.e., runtime) behaviours statically (i.e., without executing the code). When
it comes to multi-languages, two new challenges need to be tackled. Firstly, single-
language analysers are not conceived for inspecting external code, and secondly the

4 Introduction

combination of analyses is not straightforward, since the interoperability mechanism
that blends the underlying languages adds a new semantic layer. For instance, consider
the following Java code snippet analysed with SonarQube Scanner [CP13]:1

String hello = null;
String helloWorld = hello.concat(" World!"); // NullPointerException: hello is null

The analyser raises a warning of a null pointer exception at the second line. Instead,
if we run the analyser on the next semantically equivalent but multi-language code
the runtime exception goes unnoticed.

String hello = (String) js.eval("null"); // Evaluate "null" in JS and convert it back
String helloWorld = hello.concat(" World!"); // NullPointerException: hello is null

The method eval evaluates the JavaScript code null via the Nashorn engine (see
previous section) and returns the equivalent Java value null. This trivial example un-
derlines how easy it is to deceive an analysis when writing multi-language programs.

Of course, nothing prevents us from redesigning the abstract semantics of the
multi-language from scratch and to implement the corresponding analyser. However,
besides the obvious time-consuming task, we will end up without any theoretical
properties of the abstraction (e.g., soundness or completeness). In fact, what we would
like to achieve is a framework that takes advantage, as far as possible, of the already
existing abstractions of the underlying languages and at the same time provides
theoretical results.

1.4 Structure and Contributions

We begin by introducing background notions. In Chapter 2, we provide preliminary
definitions of the most recurring mathematical concepts on which the thesis is based.
In particular, we introduce the reader to basic category theory, abstract interpretation,
and fixpoint theory. Then, in Chapter 3, we present the framework of order-sorted
algebra in detail along with order-sorted equational logic. Although Chapter 2 may be
skipped at a first reading, we recommend the reader to have a closer look to Chapter 3,
since order-sorted algebras will be pervasive throughout the thesis.

Contributions start from Chapter 4 and following. In Chapter 4 we define three
different multi-language constructions, each of which refines the previous one. Rather
than working with two fixed languages, we shall base the multi-language framework
on order-sorted algebra specifications, in a way that we abstract the process of
combining languages from the concrete definition of languages themselves. Main
theorems of this chapter concern the initiality of the multi-language term model,
which ensure a unique semantic function (that is, a homomorphism) providing multi-
language terms with a meaning. Then, in Chapter 5, we lift order-sorted equational
logic to the just defined multi-language world. We will prove that the resulting
deduction system is sound and complete with respect to the algebraic semantics
defined in the previous chapter.

In Chapter 6 we replay the results of Chapter 4 and 5, but in a categorical set-
ting. We give a simplified categorical semantics along with categorical type-theory
correspondence and classifying category, and also give an explicit connection to free set-
algebra semantics. The main contribution is a deductive system for multi-languages

1A commercial static code analyser for Java (version 3.2.0.1227 for Linux 64 bit).

1.4. Structure and Contributions 5

with a sound and complete categorical semantics. We also show that combining
languages is a closed operation.

We start to investigate abstract semantics of multi-language programs in Chapter 7.
The main contribution is a general technique for abstracting multi-language semantics
given the interoperation of the underlying languages and of their abstract semantics.
We study standard notion of abstract interpretation in the context of the algebraic
framework of order-sorted algebras, and we then define the notion of multi-language
collecting semantics.

Finally, in Chapter 8, we provide the categorical description of several syntax
transformation methods across different formalisms. In particular, we prove that some
longstanding syntactical transformations between context-free grammars and many-
sorted signatures and between many-sorted signatures and order-sorted signatures
give rise to adjoint functors and/or adjoint equivalences that preserve the abstract
syntax of the generated terms. The conclusion is twofold: Every categorical property
and construction can be shifted between these frameworks, and all these formalisms
are essentially the same from a semantic perspective.

CHAPTER 2
Basic Mathematical Notions

Chapter reference(s): [ML13, BW95, Pie91]

In this chapter, we introduce the notation and the basics of the mathematics used
throughout the thesis. The reader may want to skim through it and return to it when
needed. In particular, we provide basic definitions and theorems on fixpoints, abstract
interpretation, and category theory.

Structure We begin by providing some preliminary notions. Then, we introduce
the basics of order theory and fixpoints theorems. We continue with some elements of
abstract interpretation, and finally we present basic notions of category accompanied
by simple examples.

2.1 Preliminary Notions

Definition 2.1 (Indexed Family of Sets). Let I and A be sets. An indexed family of
sets is a function f : I→ ℘(A). We call A the underlying set and I the index set. The

Indexed family of sets
elements i ∈ I are referred to as indices, and we define Ai = f(i) ⊆ A the component
of A indexed by i. We abuse notation and always write (Ai | i ∈ I) to denote the
indexed family of sets f : I→ ℘(A), tacitly assuming that the underlying set is exactly
the union of all components, that is A =

⋃︁
i∈IAi. ♢

We usually define an indexed family simply by delivering its components, leaving
both I and A implicit. For instance, we might write A0 = {0, 2, 4, . . .} and A1 =
{1, 3, 5, . . .} for the indexed family (Ai | i ∈ I) with I = {0, 1} andA = N. From now
on, we refer to an indexed family of sets (Ai | i ∈ I) as A, even though A already
denotes the underlying set of such a family. In practice, this will cause no confusion:
The underlying set of an indexed family will always be kept implicit. In the rare cases
(if any) where we need to refer to both the indexed family and its underlying set, the
latter will be denoted by

⋃︁
A.

Definition 2.2 (Kleene Closure). Let A be a set (typically referred to as an alphabet).
The Kleene closure A∗ of A is defined as

Kleene closure

7

8 Basic Mathematical Notions

A∗ =
⋃︂
n∈N

An where

{︄
A0 = {ε}

An+1 = {wa | w ∈ An and a ∈ A }

where the empty string ε is always assumed not to be part of the alphabet, that is
ε /∈ A. Moreover, we denote by A+ = A∗ \ {ε} the set of non-empty strings. In the
following, we will use juxtaposition of strings for their concatenation, with ε the unit
element. ♢

2.2 Orderings and Fixpoints

A partially ordered set (poset) (A,⩽) is a set A equipped with a binary relation
Poset

⩽ ⊆ A×A such that ⩽ is reflexive, that is x ⩽ x for each x ∈ A, antisymmetric, that
is x ⩽ y and y ⩽ x imply x = y for each pair of elements x, y ∈ A, and transitive,
that is x ⩽ y and y ⩽ z imply x ⩽ z for each x, y, z ∈ A. We shall write x < y
meaning that x ⩽ y and x ̸= y, and x ⩾ y for y ⩽ x. A total order is a poset (A,⩽)

Total order
with all the elements comparable, that is x ⩽ y or y ⩽ x for each x, y ∈ A.

We say that an element x ∈ A is maximal (minimal) if there is no element
Maximal, Minimal

y ∈ A different from x such that y ⩾ x (y ⩽ x). Moreover, x ∈ A is the maximum
(minimum) element if for each y ∈ A holds that x ⩾ y. We will usually denote

Maximum, Minimum
maximum and minimum elements of a poset by ⊤ and ⊥, respectively. Given a poset
(A,⩽) and B ⊆ A, we call x ∈ A an upper bound of B if y ⩽ x for each y ∈ B. Let

Upper bound
U be the set of upper bounds of B. The least upper bound (lub) of B is the minimum

Least upper bound element of U, if it exists. Vice versa, a lower bound of B is an element x ∈ A such
Lower bound that x ⩽ y for each y ∈ B. Let L be the set of lower bounds of B. The greatest lower

bound (glb) of B is the maximum element of L, if it exists.
Greatest lower bound

Notation 2.1. We usually denote by ∨B and ∧B the lub and the glb of a subset B of
a poset (A,⩽). In general, we try to be consistent between the lub/glb notation and
the partial ordering. For instance, if the partial ordering is denoted by ⊑, we will use
⊔ and ⊓ to denote the lub and the glb operator, if the ordering is denoted by ≼, we
will use ⋎ and ⋏, and so on. ♢

An increasing chain B in a poset (A,⩽) is subset of A with a minimum element
Increasing chain

and total with respect to the ordering ⩽ onA. A subset B of a poset (A,⩽) is directed
Directed set if B ̸= ∅ and for each x, y ∈ B there is an element z ∈ A such that z ⩾ x, y (that

is, the set {x, y} has at least an upper bound in A). Note that an increasing chain is
obviously directed.

A directed complete partial order (dcpo) is a poset such that each of its directed
Dcpo,ω-cpo,⊥-cpo

subsets has lub. A ω-complete partial order (ω-cpo) is a poset such that each of its
increasing chains has lub. A ⊥-cpo (or, pointed cpo) is anω-cpo with a minimum. A
lattice is a poset in which every two elements has both lub and glb. A complete lattice

Lattice
Complete lattice is a poset in which every subset has both lub and glb.

Let (A,⩽) be a poset. A function f : A→ A is monotone if for each x, y ∈ A such
Monotone function

that x ⩽ y implies f(x) ⩽ f(y); and continuous if it preserves all directed lub, that
Continuous function

is, for every directed subset B ⊆ A with lub in A, holds that ∨f(B) = f(∨B), where
f(B) = { f(x) | x ∈ B }.

Let f : A→ A be a function on a poset (A,⩽). A fixpoint of f is an element x ∈ A
Fixpoint

such that f(x) = x. The least fixpoint lfp f of f is the smallest fixpoint of f. Note that
Least fixpoint

if lfp f exists, then it is unique.

2.3. Elements of Abstract Interpretation 9

Theorem 2.1 (Knaster-Tarski Theorem). Let (A,⩽) be a complete lattice and f : A→
A a monotone function on A. Then, the set of fixpoints of f is a complete lattice.

Corollary 2.1. Let (A,⩽) be a complete lattice and f : A→ A a monotone function
on A. Then, lfp f = ∧{ x ∈ A | f(x) ⩽ x }.

Knaster-Tarski theorem ensures the existence of a least fixpoint of a monotone
function over a poset. However, it does not provide a constructive method for com-
puting such a fixpoint. The following theorem gives an iterative approach to calculate
the least fixpoint of a continuous function on a dcpo with a bottom element.

Theorem 2.2 (Kleene’s Theorem). Let (A,⩽) be a dcpo with a bottom element ⊥ and
f : A→ A a continuous function on A. Then,

lfp f =
⋁︂
n∈N

fn(⊥)

where fn+1 =
n+1⏟ ⏞⏞ ⏟

f ◦ · · · ◦ f and f0 is the identity on A.

We shall sometimes write lfp⩽
⊥ f instead of lfp f to highlight the ordering and the

minimum element we are working with.

2.3 Elements of Abstract Interpretation

We introduce the basics of abstract interpretation, namely concretisation and abstrac-
tion functions, Galois connections, soundness of the abstraction, and best abstraction.
We mainly follow [Min17, RY20].

Definition 2.3 (Concretisation Function). Let (C,⩽) and (A,⊑) be two posets. A
concretisation function γ : (A,⊑)→ (C,⩽) is a monotone function that maps each

Concretisation Function
abstract element a ∈ A to a concrete object γ(a) ∈ C. ♢

Example 2.1. Let (℘(N),⊆) and (℘(B),⊆) be the posets encoding concrete and
abstract worlds, where B = {0, 1} is a boolean representation of the parity property
of natural numbers. Then, γ : (℘(B),⊆)→ (℘(N),⊆) is defined by

∅ ↦→ ∅
{0} ↦→ {n ∈ N | n is even }

{1} ↦→ {n ∈ N | n is odd }

B ↦→ N ♢

We say that an abstract element a ∈ A is a sound abstraction of a concrete element
Soundness

c ∈ C if and only if c ⩽ γ(a).
Galois connections provide a stronger relation between the concrete and abstract

worlds by means of both a concretisation and an abstraction function.

Definition 2.4 (Galois Connection). Let (C,⩽) and (A,⊑) be two posets. A Galois
connection is given by a pair of (monotone) functions γ : (A,⊑) → (C,⩽) and

Galois connection
α : (C,⩽)→ (A,⊑) such that for each a ∈ A and c ∈ C

c ⩽ γ(a) ⇐⇒ α(c) ⊑ a

and it is denoted by (C,⩽) −−−→←−−−α
γ

(A,⊑). ♢

10 Basic Mathematical Notions

Example 2.2. Let 2N and 2N + 1 be the sets of even and odd natural numbers,
respectively. Consider the previous example and let α : (℘(N),⊆) → (℘(B),⊆) be
defined as

α(X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if X = ∅
{0} if X ⊆ 2N
{1} if X ⊆ 2N+ 1

B otherwise

Then, (℘(N),⊆) −−−→←−−−α
γ

(℘(B),⊆) form a Galois connection. The proof is by cases on
the element in ℘(B). For instance, if we pick the element {0}, then X ⊆ γ({0}) implies
that X ⊆ 2N, and therefore either X = ∅ and α(X) = ∅ ⊆ {0} or X is a non-emtpy
set of even numbers and α(X) = {0} ⊆ {0}. The proof in the opposite direction is
similar, as well as the other cases. ♢

Galois connections may be alternative characterised by the following proposition:

Proposition 2.1. (C,⩽) −−−→←−−−α
γ

(A,⊑) is a Galois connection if and only if

1. α and γ are monotone functions;

2. γ ◦ α is extensive, that is c ⩽ γ(α(c)) for each concrete element c ∈ C; and

3. α ◦ γ is reductive, that is α(γ(a)) ⊑ a for each abstract element a ∈ A.

The next theorem establishes some useful properties of Galois connections that
we will extensively use in proofs involving (α, γ):

Theorem 2.3 (Properties of Galois Connections). Let (C,⩽) −−−→←−−−α
γ

(A,⊑) be a Galois
connection. Then,

1. γ ◦ α ◦ γ = γ and α ◦ γ ◦ α = α;

2. α ◦ γ and γ ◦ α are idempotent;

3. α maps concrete elements to their most precise sound approximation, that is

α(c) = ⊓{a ∈ A | c ⩽ γ(a) }

for each c ∈ C;

4. vice versa, γ maps abstract properties to their best concretisation in C, that is

γ(a) = ∨{ c ∈ C | α(c) ⊑ a }

for each a ∈ A;

5. α preserves least upper bounds, that is

α(∨X) = ⊔{α(x) ∈ A | x ∈ X }

for each X ⊆ C and whenever ∨X exists; and

6. γ preserves greatest lower bounds, that is

γ(⊓Y) = ∧{γ(y) ∈ C | y ∈ Y }

for each Y ⊆ A and whenever ⊓Y exists.

By the third property, we say that α(c) is the best abstraction of the concrete
Best abstraction

element c ∈ C, that is the smallest abstract element soundly approximating c.

2.4. Basic Category Theory 11

2.4 Basic Category Theory

We introduce the basics of category theory. The reader may want to consult a book
for a more thorough presentation of these concepts (e.g., [BW95]). The exposition of
the material in this chapter follows the presentation in [Pie91].

Definition 2.5 (Category). A category C is given by
Category

• a collection of objects, usually denoted with letters X, Y, Z, . . .;
Object

• a collection of morphisms (or, arrows) between the objects, denoted by f : X→ Y
Morphism, Arrow

or X f−−→ Y, where X and Y are referred to as the source and target of the
Source, Target

morphism f, respectively. We will denote the collection of morphisms between
two objects X and Y in the category C by C(X, Y);

• a way of composing consecutive morphisms, that is an operator

◦ : C(Y, Z)× C(X, Y)→ C(X,Z)

assigning to each pair of morphisms Y
g−−→ Z and X f−−→ Y a composite

morphism X
g◦f−−−−→ Z, for each triple of objects X, Y, and Z (we will always use

infix notation for ◦). The composition operator of the category C must satisfy

the following associative law: Given any morphismsW f−−→ X, X
g−−→ Y, and

Y
h−−→ Z, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f

• an identity morphism X
idX−−−→ X for each object X satisfying the following

Identity
identity laws: Given any morphism X

f−−→ Y, then

idY ◦ f = f and f ◦ idX = f ♢

Example 2.3. We give some examples of both categories of structures and structures
as categories:

1. The category of sets Set has sets as objects and functions as morphisms. The
composition of morphisms is given by ordinary set-theoretic composition
(which is associative), and for each set X, the identity morphism idX is the
identity function on X.

2. A single set itself can be regarded as a category, where objects are the elements
of the sets and without any arrows except identities.

3. The category of partial orders Poset is given by taking posets as objects and
monotone functions as morphisms. The composition of morphisms is set-
theoretic composition of functions and identity morphisms are identity func-
tions (trivially monotone). Note that this is well-defined, since the composition
of monotone functions is monotone.

4. A single poset (P,⩽) can be regarded as a category:

• objects are elements x ∈ P;

12 Basic Mathematical Notions

• there is a morphism (x, y) between two objects x and y just in case that
x ⩽ y;

• the identity on x is (x, x); and

• (y, z) ◦ (x, y) = (x, z).

One can check that the categorical laws are satisfied. ♢

We shall shortly define different categorical notions (such as monomorphisms,
initial objects, product, and many others). The following definition provides a simple
tool to obtain a dual notion of these concepts.

Definition 2.6 (Dual Category). Let C be a category. The dual category Cop is defined
Dual category

as follows:

• the objects of Cop are the objects of C;

• X fop

−−−→ Y is a morphism in Cop if and only if Y f−−→ X is a morphism in C;

• the identity morphism on an object X in Cop is idX = idop
X ; and

• the composition of two morphisms X fop

−−−→ Y and Y
gop

−−−→ Z in Cop is defined
as

gop ◦Cop fop = (f ◦C g)
op

where ◦Cop and ◦C are the composition operators in Cop and C, respectively. ♢

For instance, as we shall see in Sections 2.4.1 and 2.4.2, epimorphisms can be
defined as monomorphisms in the dual category, terminal objects of a category C are
initial objects in Cop. In general, the dual of a categorical definition can be thought as
the same definition except that morphisms are “turned around”. Category theorists
often use the prefix co to refer to such dual constructions (e.g., product and coproduct).

Before introducing some basic categorical concepts, we define the notion of
subcategory and diagram.

Definition 2.7 (Subcategory). Let C be a category. D is a subcategory of C if
Subcategory

• each object in D is also an object in C;

• each morphism in D is also a morphism in C, that is D(X, Y) ⊆ C(X, Y) for
each pair of objects X and Y in D; and

• identities and composition in D match those of C. ♢

Example 2.4. The category FSet of finite sets is a subcategory of Set. In particular, we
say that it is a full subcategory, since FSet(X, Y) = Set(X, Y) for each pair of finite sets

Full subcategory
X and Y. On the other hand, if we define the category Pfn of sets where morphisms
are partial functions, then Set is a subcategory of Pfn. Since the objects of these two
categories are the same, we say that Set is a luff subcategory of Pfn. ♢

Luff subcategory

Informally, a diagram in a category C is a collection of objects connected by some
Diagram

2.4. Basic Category Theory 13

morphisms of C. For instance, the following

∅ N

Z

!N

!Z
ι

is a diagram in Set, where !A denotes the empty function from the empty set to any
set A, and ι is the inclusion map. We say that a diagram commutes if for every pair of
vertices X and Y, the composition of the morphisms along every path from X to Y is
the same. For instance, the previous diagram commutes since ι ◦ !N = !Z. We will use
dashed morphism in diagram to assert that such a morphism exists whenever the rest
of the diagram has been correctly filled (e.g., see Definition 2.13). We will provide a
more formal definition of diagram after introducing functors.

2.4.1 Some Classes of Morphisms

We describe some classes of morphisms that are commonly found in the various
categories.

Definition 2.8 (Monomorphism). A morphism X
m−−−→ Y in a category C is a

monomorphism (or, monic, mono) if for any pair of morphisms g, h : W → X we have
Monomorphism

that
m ◦ g = m ◦ h =⇒ g = h ♢

Example 2.5. Monomorphisms in Set are injective functions, and vice versa. ♢

Definition 2.9 (Epimorphism). A morphism X
e−−→ Y in a category C is an epi-

morphism (or, epic, epi) if for any pair of morphisms g, h : Y → Z we have that
Epimorphism

g ◦ e = h ◦ e =⇒ g = h ♢

Example 2.6. Epimorphisms in Set are surjective functions, and vice versa. ♢

Definition 2.10 (Isomorphims). A morphism X
f−−→ Y in a category C is an iso-

morphism if there is an inverse morphism Y
g−−→ X such that

Isomorphims

Inverse
g ◦ f = idX and f ◦ g = idY

Since the inverse of a morphism is unique, we will denote g as f−1. ♢

Two objects are said to be isomorphic provided that there is an isomorphism
between them.

2.4.2 Universal Constructions

Universal constructions describe objects and arrows that satisfy a certain property.
Here we mention some of the most common universal constructions that are found
later on in the thesis.

14 Basic Mathematical Notions

Definition 2.11 (Initial Object). An object 0 in a category C is initial if for every
Initial object

object X of C there is a unique morphism, usually denoted by !X, from 0 to X, that is

0
!X−−−→ X. ♢

The dual definition of an initial object is a terminal object.

Definition 2.12 (Terminal Object). An object 1 in a category C is terminal if for
Terminal object

every object X of C there is a unique morphism, usually denoted by !X, from X to 1,
that is X !X−−−→ 1. ♢

Note that we use the same notation both for terminal and initial object. The
context, and in particular the source and the target of !X, will make the notation
unambiguous.

Example 2.7. The initial object in Set is the empty set, and the terminal object is
the singleton set. Note that the initial object is unique, whereas there are infinite
singleton sets. However, it is easy to prove that both initial and terminal objects (and,
in general, every object determined by a universal construction) are unique up to a
unique isomorphism. ♢

Example 2.8. The initial object in the category given by a poset (P,⩽) is the min-
imum element; vice versa, the terminal object is the maximum. Of course, in general,
they may not exist. ♢

Definition 2.13 (Product). Let C be a category. The product of two objects X and Y
Product

is an object X× Y along with two morphisms (called projections) X× Y π1−−−→ X and
Projection

X× Y π2−−−→ Y such that for any object Z and morphisms Z f−−→ X and Z
g−−→ Y

there is a unique morphism (called mediating morphism) Z
⟨f,g⟩−−−−−→ X× Y making

Mediating morphism
the following diagram commute:

Z

X X× Y Y

f g⟨f,g⟩

π1 π2

♢

Example 2.9. The (categorical) product of two objects X and Y in Set is the ordinary
Cartesian product. In the category arising from a poset, the product of two elements
is their greatest lower bound. ♢

Definition 2.14 (Coproduct). Let C be a category. The coproduct of two objects X
Coproduct

and Y is an object X⊕ Y along with two morphisms (called injections) X ι1−−−→ X⊕ Y
Injections

and Y ι2−−−→ X⊕Y such that for any object Z and morphisms X f−−→ Z and Y
g−−→ Z

there is a unique morphism X⊕Y [f,g]−−−−→ Zmaking the following diagram commute:

X X⊕ Y Y

Z

f

ι1

[f,g]
g

ι2

2.4. Basic Category Theory 15

♢

Example 2.10. The coproduct in Set coincides with the disjoint union. In the category
arising from a poset, the coproduct of two elements is their least upper bound. ♢

2.4.3 Functors, Natural Transformations, and Adjoints

A functor is a mapping between categories such that preserves the inner structure of
the source category into the target category.

Definition 2.15 (Functor). Let C and D be two categories. A functor F : C → D is a
Functor

map taking each object X in C to an object FX in D and each morphism X f−−→ Y in C
to a morphism FX

Ff−−−→ FY in D, such that identities and composition are preserved,
that is

• F idX = idFX for each object X in C; and

• F(g ◦ f) = Fg ◦ Ff for each pair of composable morphisms in C. ♢

Example 2.11. The powerset operator which takes a set A to its powerset ℘(A)
and each function f : A→ B to its direct image map ℘(f) : ℘(A)→ ℘(B) defined by
X ⊆ A ↦→ { f(x) | x ∈ X } is an (endo)-functor ℘ : Set → Set. ♢

Endofunctor

We can now give a more formal definition of diagrams: A diagram X of shape
J in a category C is a functor X : J → C. The category J is mostly irrelevant and
serves the purpose of defining the shape of the diagram X. Usually, J will be a finite
category.

A natural transformation is a mapping between functors which preserves the
composition of morphisms.

Definition 2.16 (Natural Transformation). Let F,G : C → D be two functors. A
natural transformation η : F⇒ G maps every object X in C to a morphism ηX : FX→ Natural transformation
GX in D such that the following diagram commutes for each arrow X f−−→ Y in C:

FX FY

GX GY

Ff

ηX ηY

Gf

♢

Example 2.12. Let ℘ : Set → Set be the powerset functor and idSet : Set → Set the
identity functor on Set, i.e., the functor that maps each object and arrow to itself.

Identity functor
There is a natural transformation η : idSet ⇒ ℘ defined by taking each component
ηA : A→ ℘(A) the function ηA(a) = {a} for each set A. ♢

A natural transformation η is said to be a natural isomorphism if each component
Natural isomorphism

ηX is an isomorphism.

16 Basic Mathematical Notions

Definition 2.17 (Adjunction). An adjunction between two categories C and D is
Adjunction

given by a pair of functors F : C → D and G : D → C and a natural transformation

η : idC ⇒ G ◦ F such that for each object X in C and for each morphism X
f−−→ GY

there is a unique morphism FX
f∗−−−→ Y such that the following diagram commutes:

X GFX

GY

ηX

f
Gf∗

Then, F is said to be the left adjoint of G, and vice versa G is the right adjoint of F.
Left and right adjoint

Moreover, the natural transformation η is called the unit of the adjunction (F,G). ♢
Unit

For each adjunction (F,G) with a unit η, there is another natural transformation
ϵ : F ◦G⇒ idD , called the counit of the adjunction such that satisfy the dual property

Counit
of the unit, that is for each morphism FX

g−−→ Y in D there is a unique morphism
X

g∗−−−→ GY such that the following diagram commutes

FGY Y

FX

ϵY

Fg∗ g

We sometimes write (F,G, ϵ, η) for an adjunction (F,G) with unit η and counit ϵ.

Example 2.13. Let (P,⩽) and (Q,⊑) be two posets and F : (P,⩽) → (Q,⊑) and
G : (Q,⊑)→ (P,⩽) two functors between them when regarded as categories. Then,
F is the left adjoint of G if and only if (F,G) is a Galois connection. ♢

Definition 2.18 (Adjoint Equivalence). An adjoint (F,G, ϵ, η) is an adjoint equival-
ence if both η and ϵ are natural isomorphisms. ♢

Adjoint equivalence

It is possible to prove that an adjoint equivalence is actually an equivalence of
categories according to the following definition:

Definition 2.19 (Equivalence of Categories). Let C and D be two categories. They
are equivalent provided that there are two functors F : C → D and G : D → C and

Equivalence of categories
two natural isomorphisms η : idC ⇒ G ◦ F and ϵ : F ◦G⇒ idD . ♢

CHAPTER 3
Order-Sorted Algebras

Chapter reference(s): [GTWW77, GM92]

Order-sorted algebras [GM92] provide a mathematical tool for modeling formal sys-
tems as algebraic structures. The main concepts on which they rely are the notion
of sort, to ensure a correct terms construction, and the notion of subsort, to provide
several forms of polymorphism.

Order-sorted algebras generalise many-sorted algebras [Hig63]. The core new
feature of order-sorted specifications is the addition of a partial ordering between sorts
(the so-called subsort relation), enabling the definition of languages with polymorphic
operators. Many-sorted algebras are themselves based on universal algebra [Bir35] to
which they add sorts for avoiding meaningless terms.

In this chapter, we introduce the theory of order-sorted algebras. All the defin-
itions, propositions, and theorems that follow were originally stated in [GM92].
Although the chapter does not provide new contributions, the way these concepts
are presented, along with the examples and proofs, is rather new (unless otherwise
stated) and designed to fit the material in subsequent chapters.

Structure The structure of the chapter is as follows: We begin by providing the
basic notions of sorted sets and functions. Next we define the syntax of an order-
sorted signature, that is the collection of sorts and operators from which well-formed
ground terms are built. We then introduce algebras to provide signatures with a
meaning. Algebras define interpretation sets and functions for each sort and operator
in the signature, respectively. We prove that, under reasonable conditions, each
algebra induces a unique semantic function (namely, a homomorphism). We proceed
by defining the notion of free algebra over a set of variables, which leads to term with
variables. Finally, we introduce equational logic in order to derive theorems from a
given theory, that is a signature equipped with a set of axioms. We show that the
process of deduction is both sound and complete.

3.1 Sorted Sets and Functions

Let S be a set whose members are understood as sorts. An S-sorted set A is a family
Sorted set

17

18 Order-Sorted Algebras

of sets indexed by S, and therefore denoted by

A = (As | s ∈ S)

We implicitly extend ordinary set-theoretic operators and predicates to S-sorted
sets in a componentwise fashion. For instance, if A and B are two S-sorted sets, we
write A ⊆ B if As ⊆ Bs for each s ∈ S, we define the cartesian product A × B by
taking each indexed component (A× B)s = As × Bs, etc. Moreover, we write

⋃︁
A

to denote the underlying set of the family A, that is
⋃︁
A = {a ∈ As | s ∈ S }.

Functions between sorted sets can be regarded as traditional functions that pre-
serve the sort of elements. Formally, given two S-sorted sets A and B, an S-sorted
function h : A → B is an S-sorted set h ⊆ A × B such that hs : As → Bs is a

Sorted function
set-theoretic function for each s ∈ S. If f : A→ B and g : B→ C are two S-sorted
functions, their composition

g ◦ f = { (g ◦ f)s | s ∈ S }

is a well-defined S-sorted function from A to C, where (g ◦ f)s = gs ◦ fs.
We adopt some notational conventions that will come in handy when sequences

of sorts are involved. Let A be an S-sorted set and w = s1 . . . sn ∈ S+ a non-empty
sequence of sorts. We set Aw = As1 × · · · × Asn the cartesian product of the
components indexed by w. If f : A → B is an S-sorted function and ai ∈ Asi for
i = 1, . . . , n, then fw : Aw → Bw is defined by

fw(a1, . . . , an) = (fs1(a1), . . . , fsn(an))

Finally, if the set of sorts S is equipped with a binary relation R, we often consider
the extension of R — and denoted by the same symbol — to sequences of the same
length in S∗. That is,

s1 . . . sn R s
′
1 . . . s

′
n ⇐⇒ (∀i = 1, . . . , n) si R s ′i

(and of course ε R ε). It is trivial to see that if R is a partial order over S, then so is its
extension to S∗.

3.2 Order-Sorted Signatures

An order-sorted signature defines the symbols of the language (that is, the syntax). It
specifies the sorts, the operators, and the subsort relation between sorts.

Definition 3.1 (Order-Sorted Signature). An order-sorted signature Sg is specified by
Order-sorted signature

(i) a poset (S,⩽) of sorts;

(ii) a set of function symbols f : s1, . . . , sn → s each with arity n ⩾ 1 and (w, s) ∈
Function symbol

S+ × S the rank of f, where w = s1 . . . sn;

(iii) a set of constants k : s, each of a unique rank s (just a single sort); and
Constant

(iv) a monotonicity requirement that whenever f : w1 → s and f : w2 → r with
w1 ⩽ w2, then s ⩽ r (see Figure 3.1).

By an operator σ : w→ swe mean either a function symbol f : s1, . . . , sn → s (when
Operator

w = s1 . . . sn ∈ S+) or a constant k : s (when w = ε). ♢

3.2. Order-Sorted Signatures 19

w1 s

w2 r

f

⩽ ⩽

f

Figure 3.1: The graphical representation of the monotonicity requirement enforced
by the order-sorted signature definition.

We shall see that one can think of sorts as syntactic categories, of subsort as
inclusion, and of operators as building blocks of terms generated by the signature Sg.

Remark 3.1. The monotonicity constraint (3.1:iv), along with the forthcoming notion
of regularity of an order-sorted signature (Definition 3.5), will ensure the existence of
a unique least sort for each Sg-term. ♢

It sometimes turns out to be useful to consider all the operators in a given signature
Sg as a single (S∗ × S)-sorted set Σ = (Σw,s | w ∈ S∗ and s ∈ S), where each
component is defined by{︄

Σε,s = {k | k : s in Sg }
Σw,s = { f | f : w→ s in Sg } with w ∈ S+

Thus an order-sorted signature Sg can be also regarded as a triple (S,⩽, Σ).
Polymorphic function symbols can now be formally defined as those whose appear

Polymorphism
in more than one component of Σ. Furthermore, we can distinguish at least between
two kinds of polymorphism: Let f : w1 → s1 and f : w2 → s2 be two distinct function
symbols with the same name in Sg. We say they are

• ad-hoc polymorphic, if w1 and w2 are not related by ⩽; and
Ad-hoc polymorphism

• subsort polymorphic, if w1 ⩽ w2 or vice versa.
Subsort polymorphism

Remark 3.2. Note that we have explictly ruled out polymorphic constants in the
signature by requiring their rank to be unique (condition (3.1:iii)). Alternative but
equivalent presentations (e.g., [GM92]) drop such a uniqueness constraint and extend
the monotonicity requirement (condition (3.1:iv)) to also apply to constants. ♢

Example 3.1. We set up a simple order-sorted signature Sg(Num) in order to specify
elementary algebraic operations on natural and integer numbers (inspired from the
Maude library [CDE+19, Sections 7.2 and 7.4]). Let S(Num) = {zero, nznat, nat, int}
be the set of sorts of Sg(Num), where nat and int represent the sort of natural and
integer numbers, while zero and nznat partition the set of naturals between zero and
non-zero numbers, respectively. The subsort ordering on S(Num) is given by the
Hasse diagram on the left, whereas the operators are listed on the right:

int

nat

zero nznat

0 : zero zero

s : nat → nznat (natural) successor

p : nznat → nat (natural) predecessor

−: nznat → int unary minus

+: nat, nat → nat natural numbers addition

+: int, int → int integer numbers addition

20 Order-Sorted Algebras

−
(Const) (k : s in Sg)

k : s

t : s
(Subsort) (s ⩽ r in Sg)

t : r

(∀1 ⩽ i ⩽ n) ti : si
(Fun) (f : s1, . . . , sn → s in Sg)

f(t1, . . . , tn) : s

Figure 3.2: Well-formed ground terms generated by an order-sorted signature Sg.

The symbol + is subsort polymorphic in Sg(Num) since (nat, nat) ⩽ (int, int).
However, we should pay attention when considering polymorphic symbols without
explictly mentioning their rank: Suppose we slightly change Sg(Num) to the new
signature Sg(Num + Bool), where the set of sorts is S(Num + Bool) = S(Num) ∪
{bool} and the operators are those of Sg(Num) with the addition of the exclusive
disjunction operator +: bool, bool → bool. Now, the symbols +: nat, nat → nat
and +: int, int → int are still subsort polymorphic but +: nat, nat → nat and
+: bool, bool → bool are ad-hoc polymorphic. ♢

Example 3.2. In this example, we build the signature Sg(λ) to model the syntax of
the untyped lambda-calculus. The set of sorts S(λ) = {exp} contains only the sort for
expressions (that is, λ-terms), and the operators of Sg(λ) are

x : exp variable (for each x ∈ Var)

λx : exp→ exp abstraction over x (for each x ∈ Var)

◦ : exp, exp→ exp application

where Var is a countably infinite set of variables. ♢

3.2.1 Ground Terms

Given a signature Sg, we can build terms formed by the operators specified in it. In
particular, well-formed (ground) terms generated by a signature Sg are defined by the

(Ground) Term
inference rules depicted in Figure 3.2. A judgement of the form t : s means that t is a
well-formed term of sort s built out of Sg. Rule (Const) states that each constant k : s
is itself a term of sort s. They are the basic blocks of ground terms. Then, inductively,
if we have valid terms t1 : s1, . . . , tn : sn each of which of sort si, we can build
compound terms f(t1, . . . , tn) : s by Rule (Fun), provided that f : s1, . . . , sn → s is a
function symbol in Sg. Finally, if s is a subsort of r and t : s, then t has also sort r by
Rule (Subsort).

Example 3.3. Consider the signature Sg(Num) of Example 3.1. Instances of terms
generated by Sg(Num) are

0 : zero s(s(s(0))) : int s(0) : nznat + (s(0),−(s(0))) : int . . .

Note that the constant 0 : zero cannot be polymorphic (see Remark 3.2) but the term
0 has any sort except nznat. ♢

Notation 3.1. Hereafter, when we refer to a signature Sg, we will leave implicit that
(S,⩽) is its poset of sorts. Moreover, we take it for granted that all the operators
mentioned in the course of the exposition belong to Sg (or, equivalently, to the set of
operators Σ associated to Sg), unless otherwise stated. ♢

3.3. Order-Sorted Algebras 21

3.3 Order-Sorted Algebras

Algebras are mathematical structures which give signatures an interpretation. They
model sorts as sets (in which terms are provided with a meaning) and operators as
functions between them.

Definition 3.2 (Order-Sorted Algebra). An order-sorted Sg-algebra A over a signature
Order-sorted algbera

Sg is specified by

(i) an interpretation set JsKA for each sort s and a set JwKA = Js1KA ×· · ·×JsnKA Interpretation set
for each w = s1 . . . sn ∈ S+;

(ii) an interpretation function Jf : w → sKA : JwKA → JsKA for each f : w → s
Interpretation function

and an element JkKA ∈ JsKA for each constant k : s;

and by two monotonicity conditions requiring that

(iv) if s ⩽ r, then JsKA ⊆ JrKA ; and

(v) if f appears with more than one rank f : w1 → s and f : w2 → r in Sg with
w1 ⩽ w2 (that is, f is subsort polymorphic), then, for each x ∈ Jw1KA ,

Jf : w1 → sKA (x) = Jf : w2 → rKA (x) ♢

We often refer to the carrier set of an Sg-algebra A , meaning the S-sorted family
Carrier set

of interpretation sets A = (As | s ∈ S), where As = JsKA .

Notation 3.2. Please note that we use the letter A to denote the carrier set of the
algebra A , B that of B, C that of C , etc. ♢

Example 3.4. Consider the signature in Example 3.1. We can define an Sg(Num)-
algebra A with interpretation sets JintKA = Z, JnatKA = N, JzeroKA = {0}, and
JnznatKA = N \ {0}, and interpretation functions

J0KA = 0

Js : nat → nznatKA (n) = n+ 1

Jp : nznat → natKA (m) = m− 1

J−: nznat → intKA (m) = −m

J+: nat, nat → natKA (n1, n2) = n1 + n2

J+: int, int → intKA (z1, z2) = z1 + z2

where n,n1, n2 ∈ N,m ∈ N \ {0}, and z, z1, z2 ∈ Z. ♢

The conditions (3.2:iv) and (3.2:v) that an Sg-algebra A has to meet formalise the
intuitive requirements for the semantics of polymorphism:

• If s is a subsort of r in Sg, then by Rule (Subsort) every term of sort s has also
sort r. Therefore, if we aim to give meaning to terms of sort s in JsKA , then it
is natural to require that JsKA ⊆ JrKA .

• If f : w1 → s and f : w2 → r with w1 ⩽ w2 in Sg, then Jw1KA ⊆ Jw2KA
by condition (3.2:iv). Therefore, we want to ensure the meaning of f to be
consistent on the smaller interpretation set Jw1KA .

22 Order-Sorted Algebras

Among all the algebras interpreting a signature Sg, the term construction il-
lustrated in Section 3.2.1 gives rise to the so-called term algebra. Intuitively, the
interpretation provided by the term algebra is the syntactical one:

Definition 3.3 (Order-Sorted Term Algebra). Let Sg be an order-sorted signature.
The order-sorted term algebra TSg over Sg is defined as follows:

Order-sorted term algebra

(i) JsKTSg = { t | t : s } for each sort s;

(ii) JkKTSg = k for each constant k : s; and

(iii) for each function symbol f : s1, . . . , sn → s, the corresponding interpretation
function is

Jf : w→ sKTSg : Js1KTSg × · · · × JsnKTSg → JsKTSg

(t1, . . . , tn) ↦→ f(t1, . . . , tn)

where w = s1 . . . sn. ♢

The previous definition states that a term t is a member of JsKTSg if and only if t
has sort s. Following Notation 3.2, we denote the carrier set of TSg by

TSg = ((TSg)s | s ∈ S)

Moreover, “term semantics” of operators in Sg is the (prefix) syntactic application of
the operator names.

Proposition 3.1. TSg is a proper order-sorted Sg-algebra.

3.4 Algebraic Semantics

The fundamental reason for defining an Sg-algebra A is to gain a semantic function
Semantic function

J−KA able to assign a meaning JtKA ∈ JsKA to each term t of sort s. Since t
is inductively built up from constants and function symbols of the signature Sg
(according to the rules in Figure 3.2), we would like its meaning to be computed by
recursively applying the interpretation functions provided by A to each operator
forming t. Such a property is known as compositionality, and it is summed up by the
next quotation from [SS71]:

The semantical definition is “syntax-directed” in that it follows the same
order of clauses and transforms each language construct into the intended
operations on the meanings of the parts. Scott and Strachey

It is therefore natural to regard J−KA as an S-sorted function from the carrier set
of TSg to that of A . The compositionality nature of the semantic function is obtained
by requiring J−KA to behave like a homomorphism with respect to the interpretation
functions:

Definition 3.4 (Order-Sorted Homomorphism). Let Sg be an order-sorted signature.
An order-sorted Sg-homomorphism h : A → B between two Sg-algebras A and B is

Order-sorted homomorphism
an S-sorted function h : A→ B between their carrier sets satisfying the following:

(i) hs(JkKA) = JkKB for each k : s and hs ◦ Jf : w→ sKA = Jf : w→ sKB ◦ hw
(see Figure 3.3) for each f : w→ s; and

3.4. Algebraic Semantics 23

JwKA JsKA

JwKB JsKB

Jf : w→sKA

hw hs

Jf : w→sKB

Figure 3.3: The commutativity diagram enforced by the order-sorted homomorphism
definition.

(ii) if s ⩽ r, then hs(x) = hr(x) for each x ∈ JsKA . ♢

Before commenting on the previous definition, it is worth noting that Sg-algebras
and homomorphisms form a category:

Proposition 3.2. Let Sg be an order-sorted signature. The class of all Sg-algebras and
the class of all Sg-homomorphisms form a category Alg(Sg).

Category of algebras over Sg

The first requirements (3.4:i) yields exactly the compositionality of the semantic
function: Let h : TSg → A be an Sg-homomorphism out of the term algebra (that
is, h provides terms with a meaning). Consider now an arbitrary compound term
t = f(t1, . . . , tn), with f : w→ s and w = s1 . . . sn in Sg. The meaning of t given
by h is compositional, in the following sense:

hs(f(t1, . . . , tn))

= hs(Jf : w→ sKTSg (t1, . . . , tn)) by cond. (3.3:iii)

= Jf : w→ sKA (hs1(t1), . . . , hsn(tn)) by (3.4:i)

(3.1)

that reads as “the meaning of f(t1, . . . , tn) is the meaning of f applied to the meaning
of the constituents t1, . . . , tn”.

Unfortunately, Equation 3.1 carries an issue (). Due to polymorphism, the
function symbol f may have multiple ranks, therefore, in general, we cannot simply
pick one as we erroneously did. However, if f(t1, . . . , tn) and each subterm t1, . . . , tn
have a least sort, then condition (3.2:v) ensures the existence of a unique interpretation
of f(t1, . . . , tn) under h regardless of the chosen rank (w, s). In the following section,
we restrict the family of signatures in order to get such a least sort for each well-formed
term, which in turn ensures the uniqueness of the semantic function 3.1.

3.4.1 Initial Algebra Semantics

Regularity of order-sorted signature is a property which rules out some inherently
ambiguous signatures. The next example helps to clarify.

Example 3.5. Consider the following (non-regular) order-sorted signature Sg(�).
Let the poset of sorts S(�) be given by the Hasse diagram on the left and the operators
listed on the right:

b d

e

a c

k : a a constant of sort a

l : c a constant of sort c

f : a, d → e a polymorphic function symbol

f : b, c → e

24 Order-Sorted Algebras

Suppose that A is an Sg(�)-algebra and consider the term f(k, l). There are multiple
ways to compute its semantics in a compositional way:

Jf(k, l)KA =

{︄
Jf : a, d → eKA (JkKA , JlKA)

Jf : b, c → eKA (JkKA , JlKA)

Unfortunately, since these symbols are not subsort polymorphic (hence (3.2:v) does
not apply), there is no guarantee for these interpretations to be the same. Such an
issue can be linked to the absence of a least rank for the operator f when applied to a
pair of terms with sort a and c, respectively. ♢

Definition 3.5 (Regularity). An order-sorted signature Sg is regular if for each
Regularity

function symbol f : w→ s and for each lower bound w0 ⩽ w the set

{ (w ′, s ′) ∈ S+ × S | f : w ′ → s ′ ∧w0 ⩽ w
′ }

has a minimum (the ordering we are considering on S+ × S is the product order),
called the least rank of f with respect to w0. ♢

Least rank

Note that if f : w → s has least rank (w, s) with respect to some lower bound
w0 ⩽ w, then f : w→ s appears in Sg.

The main reason to introduce regularity is the following proposition:

Proposition 3.3. Let Sg be a regular order-sorted signature. Then, for each well-formed
ground term t : s there is a least sort ls(t) such that t : ls(t) and ls(t) ⩽ s.

Proof. The proof is by rule induction on t : s.

1. (Const) Suppose that t : s has been derived by Rule (Const). Therefore t = k
for some constant k : s in Sg. Since the rank of constants is unique, we set
ls(k) = s. Now suppose that k : s ′ is a well-formed ground term. By a second
rule induction on k : s ′, we show that s ⩽ s ′:

a) (Const) If k : s ′ has been derived by (Const), then k : s ′ appears in Sg and,
by uniqueness of rank of constants, we have s = s ′.

b) (Subsort) Suppose that k : s ′ has been derived by Rule (Subsort), that is

k : r (r ⩽ s ′ in Sg)
k : s ′

Then, by induction hypothesis, s ⩽ r and therefore s ⩽ s ′.

2. (Fun) If t : s has been derived by (Fun), then

(∀1 ⩽ i ⩽ n) ti : si
(f : s1, . . . , sn → s in Sg)

f(t1, . . . , tn) : s

where t = f(t1, . . . , tn). By induction hypothesis, there is ls(ti) ⩽ si such
that ti : ls(ti) is a well-formed ground term, for each i = 1, . . . , n. Let w0 =
ls(t1) . . . ls(tn) andw = s1 . . . sn. Then,w0 ⩽ w and, by the regularity of Sg,
f : w→ s has least rank (w, s) with respect to w0, for some (w, s) ∈ S+ × S

3.4. Algebraic Semantics 25

with w = s1 . . . sn and w0 ⩽ w. Therefore, f : s1, . . . , sn → s is in Sg, and
we can derive

t1 : ls(t1)
(Subsort)

t1 : s1
. . .

tn : ls(tn)
(Subsort)

tn : sn
(Fun)

f(t1, . . . , tn) : s

and set ls(f(t1, . . . , tn)) = s. Now suppose that f(t1, . . . , tn) : s ′ is a well-
formed ground term. By a second rule induction on f(t1, . . . , tn) : s ′ we show
that s ⩽ s ′:

a) (Fun) Suppose that f(t1, . . . , tn) : s ′ has been derived by (Fun), that is

(∀1 ⩽ i ⩽ n) ti : s ′i (f : s ′1, . . . , s
′
n → s ′ in Sg)

f(t1, . . . , tn) : s
′

Let w ′ = s ′1 . . . s
′
n. Then, w0 ⩽ w ′ and therefore (w, s) ⩽ (w ′, s ′)

implying that s ⩽ s ′.

b) (Subsort) The proof is analogous to Case 1b.

3. (Subsort) Again, the proof is analogous to Case 1b.

The following theorem ensures that cases such as the one presented in Example 3.5
no longer appear. That is, given any order-sorted algebbra A over a regular signature
Sg, there is exactly one single way (namely, a homomorphism) to provide Sg-terms
with a meaning induced by A .

Theorem 3.1. Let Sg be a regular signature. Then, TSg is the initial object of Alg(Sg).

Proof. Recall the initial object definition, and let A be an order-sorted algebra over
Sg. (1) We first define an S-sorted function h : TSg → A from the carrier set TSg of
TSg to the carrier set A of A . (2) Then, we prove that h is an Sg-homomorphism
h : TSg → A in the category of algebras Alg(Sg). (3) Finally, we show that for any
other Sg-homomorphism l : TSg → A holds that h = l.

(1) Let t ∈ JrKTSg be an Sg-term of sort r, that is, t : r. We define hr(t) by structural
induction on t:

• t = k for some constant k : ls(k) in Sg. Then, we define

hr(k) = JkKA (3.2)

Note that JkKA ∈ JrKA , because ls(k) ⩽ r and therefore, by condi-
tion (3.2:iv), Jls(k)KA ⊆ JrKA .

• t = f(t1, . . . , tn) for some function symbol f : s1, . . . , sn → s in Sg with
ti : si for i = 1, . . . , n. Letw = s1 . . . sn. Then,w0 = ls(t1) . . . ls(tn) ⩽
w and by regularity there is f : w→ s in Sg with (w, s) the least rank of
f : w→ s with respect to w0. Let w = s1 . . . sn. We recursively define

hr(f(t1, . . . , tn)) = Jf : w→ sKA (hs1(t1), . . . , hsn(tn)) (3.3)

and we prove that it is well-defined. First, we observe that ti : si since
ls(ti) ⩽ si. Second, f(t1, . . . , tn) : r can be derived

26 Order-Sorted Algebras

– either by applying Rule (Fun), and therefore s ⩽ r since the definition
of hr(f(t1, . . . , tn)) does not depend on the choice of the rank (w, s)
of f, or

– by applying Rule (Subsort) for some s ′ ⩽ r and therefore, by induction
hypothesis, s ⩽ s ′ ⩽ r.

In both cases we conclude that JsKA ⊆ JrKA .

(2) We now prove that h is an Sg-homomorphism. We first show that hs(t) =
hr(t) if s ⩽ r for each t ∈ JsKTSg . Suppose that t = k. Then, hs(k) =
JkKA = hr(k). Let now t = f(t1, . . . , tn). Regardless of the choice of the rank
of f (see the previous point), we have that hs(f(t1, . . . , tn)) = Jf : w →
sKA (hs1(t1), . . . , hsn(tn)) = hr(f(t1, . . . , tn)), where (w, s) is the least
rank of f with respect to w0 = ls(t1) . . . ls(tn). We now show the composi-
tionality of h:

• Let k : s be a constant in Sg. Then,

hs(JkKTSg) = hs(k) by cond. (3.3:ii)

= JkKA by Eq. 3.2

• Let f : w → s be a function symbol in Sg with w = s1 . . . sn and
(t1, . . . , tn) ∈ JwKTSg , that is ti : si for each i = 1, . . . , n. Let (w, s)
be the least rank of f with respect to w0 = ls(t1) . . . ls(tn). Then,

hs(Jf : w→ sKTSg (t1, . . . , tn))

= hs(f(t1, . . . , tn)) by cond. (3.3:iii)

= Jf : w→ sKA (hs1(t1), . . . , hsn(tn)) by Eq. 3.3

= Jf : w→ sKA (hw(t1, . . . , tn)) w = s1 . . . sn

= Jf : w→ sKA (hw(t1, . . . , tn)) by (3.4:ii) since w ⩽ w

(3) Finally, we prove the uniqueness of h. Let l : TSg → A be an order-sorted
Sg-homomorphism. We show that hr(t) = lr(t) for each t : r by structural
induction on t:

• Let t = k for some constant k : ls(k) in Sg. Since l is an order-sorted
homomorphism, it satisfies (3.4:i). Then,

lr(k) = JkKA = hr(k)

• Let t = f(t1, . . . , tn) for some function symbol f : s1, . . . , sn → s in Sg
with ti : si for each i = 1, . . . , n. Let w = s1 . . . sn and, by regularity,
f : w→ s admits a least rank (w, s)with respect tow0 = ls(t1) . . . ls(tn),
where w = s1 . . . sn. Following the same argument in (1), we have that

3.4. Algebraic Semantics 27

s ⩽ r. Then,

lr(f(t1, . . . , tn))

= ls(f(t1, . . . , tn)) by (3.4:ii) on l

= ls(Jf : w→ sKTSg (t1, . . . , tn)) by cond. (3.3:iii)

= Jf : w→ sKA (ls1(t1), . . . , lsn(tn)) by (3.4:i) on l

= Jf : w→ sKA (hs1(t1), . . . , hsn(tn)) by ind. hyp.

= hs(Jf : w→ sKTSg (t1, . . . , tn)) by (3.4:i) on h

= hs(f(t1, . . . , tn)) by cond. (3.3:iii)

= hr(f(t1, . . . , tn)) by (3.4:ii) on h

Hence h : TSg → A is the unique Sg-homomorphism from TSg to A .

The previous theorem establishes a one-one correspondence between algebras
over a regular signature Sg and homomorphisms out of TSg . It is therefore natural to
extend the notation J−KA from operators in Sg to ground terms:

Term semantics

JtKA = hls(t)(t) (3.4)

where t is a term built out of Sg, A an order-sorted Sg-algebra, and h : TSg → A the
unique homomorphism.

It is important to emphasise that the initial algebra approach to semantics does
not rely on the “internal” definition of TSg but only on its property of being initial.
This fact is captured by the following proposition:

Proposition 3.4. Let T1 and T2 be two Sg-algebras.

(i) If T1 and T2 are initial in Alg(Sg), then they are isomorphic.

(ii) If T1 is initial and T2 is isomorphic to T1, then T2 is initial.

In particular, (3.4:ii) ensures that if we favour a different but isomorphic term
representation (such as syntax trees, infix terms, labelled graphs, etc.) in place of
that provided by TSg , we can still prove the same theorems and propositions. For
this reasons, it is customary to identify the abstract syntax (in the sense of [McC62a])

Abstract syntax
with the initial algebra, since it is independent of notational variation [GTWW77].

Example 3.6. Recall the signature Sg(λ) of the untyped lambda-calculus shown in
Example 3.2. We now define an Sg(λ)-algebra E (inspired by [GTWW77]) to provide
meaning to λ-terms. Let N⊥ be the set natural numbers with ⊥ adjoined, that is
N⊥ = N ∪ {⊥}. By [Sco76], there is a domain V of values satisfying the isomorphism

V
ψ

←−−−−−−−−−−−−−−→
ϕ

N⊥ ⊕ [V → V]

where [V → V] is the set of continuous functions fromV toV and⊕ the disjoint union
with bottom elements identified (the so-called coalesced sum). Let X ∈ {N⊥, [V → V]}
and κX : X→ N⊥ ⊕ [V → V] the injection from X toN⊥⊕[V → V]. Since an injection
over a non-empty domain always admits a left inverse, we denote by κ−1X : N⊥⊕[V →
V]→ X the left inverse of κX. Then we define a second injection ιX : X→ V into V
by ιX = ψ ◦ κX and the projection πX : V → X onto X by πX = κ−1X ◦ ϕ.

28 Order-Sorted Algebras

Let Env = Var → V be the set of environments. Meanings of λ-terms are continu-
ous functions in [Env → V], and therefore we set JexpKE = [Env → V]. In order to
define interpretation functions of Sg(λ) operators, we will make use of the following
functions:

• the function valx : Env → V provides the value of the variable x ∈ Var in the
environment η ∈ Env, that is valx(η) = η(x);

• assignx : Env × V → Env updates the given environment by assigning a value
v to x:

assignx(η, v) = x
′ ∈ Var ↦→

{︄
v if x ′ = x

η(x ′) otherwise

• the function apply : V2 → V projects the first parameter into the function
space [V → V], then applies the resulting function to the second parameter,
i.e., apply(v1, v2) = π[V→V](v1)(v2); and

• the curry operator curryD1,D2,D3
: [D1 ×D2 → D3]→ [D1 → [D2 → D3]]

defined by curryD1,D2,D3
(f) = x ∈ D1 ↦→

(︁
y ∈ D2 ↦→ f(x, y)

)︁
.

All these functions can be proven to be continuous. Moreover, the composition of con-
tinuous functions is continuous. Finally, given a finite number of continuous functions
ei : Env → V with 1 ⩽ i ⩽ n for some n ∈ N, the tupling ⟨e1, . . . , en⟩ : Env → Vn

of the ei defined on an environment η by (e1(η), . . . , en(η)) is continuous. We can
now provide the interpretation functions of the operators:

JxKE = valx
Jλx : exp→ expKE (e) = ι[V→V] ◦ curry(e ◦ assignx)

J◦ : exp, exp→ expKE (e1, e2) = apply ◦ ⟨e1, e2⟩

where the domain of definition of the curry operator is clear by the context. Now, the
unique Sg(λ)-homomorphism eval : TSg(λ) → E provide λ-terms with a meaning. As
an example of application of eval, let numn be the λ-term corresponding to the n-th
Church numeral defined by1

numn = λf . λx . f (f (· · · f⏞ ⏟⏟ ⏞
n-times

x) · · ·))

and succ = λn . λf . λx . f (n f x) the successor operator. Please note that f, x, and n are
concrete instances of x ∈ Var . We want to check that J◦(succ, num0)KE = Jnum1KE .
According to Equations 3.4 and 3.3, we have

J◦(succ, num0)KE = evalexp(◦(succ, num0))

= J◦ : exp, exp→ expKE (evalexp(succ), evalexp(num0))

= apply ◦ ⟨evalexp(succ), evalexp(num0)⟩
⋆
= η ∈ Env ↦→ (π[V→V](evalexp(succ)(η))(evalexp(num0)(η))

1We use the standard λ-calculus notation instead of the (more cumbersome) prefix one. In order to
make the correspondence between the two notations clear, we assume that the application is left associative
and that the body of an abstraction extends on the right as far as possible.

3.5. Free Algebra Construction 29

where

evalexp(succ) = η ∈ Env ↦→ ι[V→V](n ∈ V ↦→ ι[V→V](f ∈ V ↦→ ι[V→V](x ∈ V ↦→
π[V→V](f)(π[V→V](π[V→V](n)(f))(x)))))

and

evalexp(num0) = η ∈ Env ↦→ ι[V→V](f ∈ V ↦→ ι[V→V](v ↦→ v))

and therefore

J◦(succ, num0)KE
⋆
= η ∈ Env ↦→ (π[V→V](evalexp(succ)(η))(evalexp(num0)(η))

= η ∈ Env ↦→ ι[V→V](f ∈ V ↦→ ι[V→V](x ∈ V ↦→
π[V→V](f)(x)))

= Jnum1KE ♢

3.5 Free Algebra Construction

A free algebra over a signature Sg is the loosest algebra generated starting from a set
X whose elements are understood as variables. The underlying set of a free algebra
over X carries terms with variables in X and its operations are defined as free as
possible [RT91], namely by interpreting all the operators in a purely syntactic way. In
this section, we shall define the free algebra TSg(X) which yields terms with variables,
as opposed to ground terms carried by the term algebra TSg .

Let Sg be an order-sorted signature and X an S-sorted set of variables termed
variable set. In the rest of this chapter, we assume that Xs ∩ Xs′ = ∅ for each

Variable set
s, s ′ ∈ S such that s ̸= s ′ and

⋃︁
S ∩

⋃︁
Σ = ∅ (recall the notation in Section 3.1 and

the definition of Σ). We usually refer to this fact by saying that X is a disjoint set of
variables also disjoint from Sg. Moreover, if A is an algebra, we call assignment any

Assignment
S-sorted function a : X→ A, where A is the carrier set of the algebra A .

Terms over Sg with variables in X are generated by the rules in Figure 3.2 with the
Terms with variables

addition of the following Rule (Var):

−
(Var) (x ∈ Xs)x : s

Therefore, by treating variables in Xs as terms of sort s, we can inductively build
compound terms containing variables by applying the other rules in Figure 3.2.

Example 3.7. Let Sg(Num) be the signature of Example 3.1. Examples of terms over
Sg(Num) with variables in a set X are (assuming n ∈ Xnat and z ∈ Xint)

n : nat n : int s(0) : nznat + (s(n), z) : int . . . ♢

It is easy to see that terms over Sg with variables in X coincide with ground terms
over a new signature Sg(X) which contains variables in X as constants:

Definition 3.6. Let Sg be an order-sorted signature and X an S-sorted set of variables.
Then, the order-sorted signature Sg(X) is defined by taking the same set of sorts S of
Sg with the same subsort ordering ⩽, and

• if f : w→ s in Sg, then f : w→ s in Sg(X);

30 Order-Sorted Algebras

• if k : s in Sg, then k : s in Sg(X); and

• if x is a variable in Xs, then x : s is a constant in Sg(X). ♢

Note that Sg(X) is a proper order-sorted signature by the hypothesis we made on
X (that is, X is a disjoint set of variables disjoint from Sg). Moreover, Sg(X) is regular
if and only if Sg is regular, since we did not add any polymorphic operators.

Remark 3.3. Such an hypothesis is not strictly required. If X is not a disjoint set of
variables disjoint from Sg, we can make it so by considering the new set η(X) defined
by η(X)s = { (Sg, xs) | x ∈ Xs } and then proceed with η(X) instead of X. ♢

Proposition 3.5. t : s is a term over Sg with variables in X if and only if t : s is a
ground term in Sg(X).

We are now interested in making TSg(X) into an Sg-algebra TSg(X), the so-called
free algebra on X.

Definition 3.7 (Order-Sorted Free Algebra). Let Sg be an order-sorted signature
and X an S-sorted set of variables. The order-sorted free Sg-algebra TSg(X) is defined

Order-sorted free algebra
simply by forgetting about variables in Sg(X) and by taking the same definition of
TSg(X), that is

(i) JsKTSg(X) = JsKTSg for each sort s ∈ S;

(ii) JkKTSg(X) = JkKTSg for each k : s; and

(iii) Jf : w→ sKTSg(X) = Jf : w→ sKTSg for each f : w→ s. ♢

Note that the free algebra TSg(X) is defined over the original signature Sg, whereas
the term algebra TSg(X) is defined over Sg(X). Indeed, while TSg(X) carries the vari-
ables as constants of the signature, the free algebra keeps only their term representa-
tion in its carrier set, allowing homomorphisms to freely move their meaning to any
another algebra in the same category. Therefore, we have the following:

Theorem 3.2. Let Sg be a regular order-sorted signature, X an S-sorted set of variables,
and A an order-sorted Sg-algebra. Then, given an assignment a : X→ A (that is, an
S-sorted function from X into the carrier set A of the algebra A), there is a unique
Sg-homomorphism a∗ : TSg(X)→ A extending a, i.e., a∗s(x) = as(x) for each x ∈ Xs.

Proof. We make A into an Sg(X)-algebra A (X) by setting JxKA (X) = as(x) for
each x : s. Therefore, by Theorem 3.1, there is a unique Sg(X)-homomorphism
h : TSg(X) → A (X) in the category Alg(Sg(X)). It is easy to see that h is also a
valid Sg-homormorphism from TSg(X) to A in Alg(Sg) extending a:

hs(x) = hs(JxKTSg(X)
) by Def. 3.3 on TSg(X)

= JxKA (X) by (3.4:i)

= as(x) by def. of JxKA (X)

Now, suppose that l : TSg(X)→ A is an Sg-homormophism extending a. Then,

ls(JxKTSg(X)
) = ls(x) = as(x) = JxKA (X)

and therefore l is also an Sg(X)-homomorphism l : TSg(X) → A (X) and by unique-
ness of h we get l = h. Let a∗ = h and hence the thesis.

3.6. Basic Algebraic Constructions 31

Remark 3.4. When X = ∅, then Theorem 3.2 collapses to Theorem 3.1. ♢

From the previous theorem, it follows the next lemma which will be very useful
for the proofs of the next section.

Lemma 3.1. Let f : A → B be an Sg-homomorphism and a : X→ A an assignment
of the variables in X. Then, (f ◦ a)∗ = f ◦ a∗.

Proof. Both (f ◦a)∗ and f ◦a∗ are Sg-homomorphisms from TSg to B. Moreover, for
each x ∈ Xs (for some sort s ∈ S)

(f ◦ a)∗s(x) = (f ◦ a)s(x) (f ◦ a)∗ extends f ◦ a
= fs(as(x))

= fs(a
∗
s(x)) a∗ extends a

= (f ◦ a∗)s(x)

therefore they both extend the same assignment function f ◦ a : X→ B, hence they
are unique (Theorem 3.2).

3.6 Basic Algebraic Constructions

In this section, we provide familiar results and algebraic constructions in the order-
sorted context, useful for proving important theorems hereafter in the chapter.

Proposition 3.6. Let h : A → B be an Sg-homomorphism. Then, h : A → B is an
isomorphism in Alg(Sg) if and only if h : A→ B is a bijection (where h : A→ B is the
S-sorted function which underlies the homomorphism h).

Proof. The “only if” part is trivial, and we only prove the converse, namely, that the
inverse h−1 : B → A of a bijective homomorphism is still an Sg-homomorphism
h−1 : B → A . Let k : s be a constant in Sg. Then,

h−1s (JkKB) = (h−1 ◦ h)s(JkKA) = JkKA

and the proof for function symbols is similar. It only remains to prove that h−1s (b) =
h−1r (b) whenever s ⩽ r in Sg and b ∈ JsKB. Since hs is a bijection by hypothesis,
there is a unique a ∈ JsKA such that hs(a) = b. Therefore, h−1s (b) = h−1r (b) if and
only if h−1s (hs(a)) = h

−1
r (hs(a)). But since h is a homomorphism, then by (3.4:ii)

hs(a) = hr(a) and thus h−1s (hs(a)) = h
−1
r (hr(a)) is trivially satisfied.

Definition 3.8 (Closed Subset). Let A be an Sg-algebra. A closed subset B of A is
Closed subset

an S-sorted set such that

(i) B ⊆ A, that is Bs ⊆ As with As = JsKA for each sort s ∈ S;

(ii) Jf : w → sKA (b1, . . . , bn) ∈ Bs for each function symbol f : w → s with
w = s1 . . . sn and bi ∈ Bsi for i = 1, . . . , n; and

(iii) JkKA ∈ Bs for each constant k : s. ♢

Definition 3.9 (Subalgebra). Let A be an Sg-algebra. An Sg-algebra B is a subalgebra
Order-sorted subalgebra

of A if

32 Order-Sorted Algebras

(i) JsKB ⊆ JsKA for each s ∈ S (or, equivalently, B ⊆ A);

(ii) Jf : w → sKB(b1, . . . , bn) = Jf : w → sKA (b1, . . . , bn) for each function
symbol f : w→ s with w = s1 . . . sn and bi ∈ JsiKB for i = 1, . . . , n; and

(iii) JkKB = JkKA for each constant k : s. ♢

Note that a subalgebra B always arises from a closed subset B of A , and, vice
versa, a closed subset B can always be made into a subalgebra B of A :

Proposition 3.7. Let A be an order-sorted Sg-algebra. Then,

(i) given an order-sorted Sg-subalgebra B of A , the carrier set B of B is a closed
subset of A ; and

(ii) given a closed subset B of A , it can be made into an Sg-subalgebra B of A .

Proof. We first prove (3.7:i). Condition (3.8:i) follows by (3.9:i), whereas (3.8:ii)
and (3.8:iii) follow by the fact that B is both an order-sorted algebra and a sub-
algebra of A . Vice versa, a closed subset B of A can be made into an Sg-subalgebra
B by defining

JsKB = Bs

for each s ∈ S,

Jf : w→ sKB(b1, . . . , bn) = Jf : w→ sKA (b1, . . . , bn)

for each function symbol f : w → s with w = s1 . . . sn and bi ∈ JsiKB for i =
1, . . . , n, and

JkKB = JkKA

for each constant k : s.

The next results show that each order-sorted Sg-homomorphism from an Sg-
algebra A to an Sg-algebra B gives rise to an Sg-subalgebra of B.

Proposition 3.8. The image of an order-sorted Sg-homomorphism h : A → B is a
closed subset of B.

Proof. We prove that the image of h gives rise to a closed subset of B denoted by
H. We define Hs = hs(JsKA). Then, given a constant k : s, we have that JkKB =
hs(JkKA) by (3.4:i), and therefore hs(JkKA) ∈ Hs. Finally, let f : w→ s be a function
symbol withw = s1 . . . sn and xi ∈ Hsi for i = 1, . . . , n. Then, there area1, . . . , an
such that hsi(ai) = xi, and therefore

Jf : w→ sKB(x1, . . . , xn) = Jf : w→ sKB(hs1(a1), . . . , hsn(an))

= hs(Jf : w→ sKA (a1, . . . , an))

∈ Hs

Corollary 3.1. The image of an order-sorted Sg-homomorphism h : A → B is a
subalgebra of B.

Proof. It immediately follows by Proposition 3.7.

3.6. Basic Algebraic Constructions 33

We denote such a subalgebra by h(A). In the following, we say that any algebra
B is a homomorphic image of an algebra A if there is a homomorphism h : A → B

Homomorphic image
such that B arises from the image of h, that is B = h(A).

A congruence (relation) is an equivalence relation on the carrier set of a given
algebra which is compatible with its structure.

Definition 3.10 (Order-Sorted Congruence). Let A be an Sg-algebra. An order-sorted
Sg-congruence on A is an S-sorted set ≡ = {≡s | s ∈ S } of equivalence relations ≡s Order-sorted congruence
on JsKA such that

(i) given f : w→ s in Sg with w = s1 . . . sn and ai ≡si a ′i with ai, a ′i ∈ JsiKA
for i = 1, . . . , n, then

Jf : w→ sKA (a1, . . . , an) ≡s Jf : w→ sKA (a ′1, . . . , a
′
n)

and

(ii) if s ⩽ r, then ≡s ⊆ ≡r (that is, given a, a ′ ∈ JsKA , then a ≡s a ′ if and only
if a ≡r a ′). ♢

Definition 3.11 (Kernel). Let h : A → B be an Sg-homomorphism. The kernel of
Kernel of a homomorphism

h, denoted by ker(h), is the S-sorted family ≡h of equivalence relations defined by
a (≡h)s a ′ if and only if hs(a) = hs(a ′). ♢

Like subalgebras, congruences naturally arise from homomorphisms, as shown in
the next proposition.

Proposition 3.9. The kernel of an Sg-homomorphism h : A → B is a congruence on
the order-sorted algebra A .

Proof. We need to prove that

Jf : w→ sKA (a1, . . . , an) ≡s Jf : w→ sKA (a ′1, . . . , a
′
n)

given f : w → s in Sg with w = s1 . . . sn and ai ≡si a ′i with ai, a ′i ∈ JsiKA for
i = 1, . . . , n:

Jf : w→ sKA (a1, . . . , an) ≡s Jf : w→ sKA (a ′1, . . . , a
′
n)

⇐⇒ by Def. 3.10

hs(Jf : w→ sKA (a1, . . . , an)) = hs(Jf : w→ sKA (a ′1, . . . , a
′
n))

⇐⇒ by (3.4:i)

Jf : w→ sKA (hs1(a1), . . . , hsn(an)) = Jf : w→ sKA (hs1(a
′
1), . . . , hsn(a

′
n))

and the last equation holds since ai ≡si a ′i for i = 1, . . . , n by hypothesis, and
therefore hsi(ai) = hsi(a

′
i). Finally, condition (3.10:ii) follows by h being a homo-

morphism (see condition (3.4:ii)).

It is worth noting that subalgebras and congruences gives rise to complete lattices.

Lemma 3.2. A class X of subsets of a set X is a complete lattice under the inclusion
ordering if it is closed under arbitrary set-theoretic intersections.

34 Order-Sorted Algebras

Proof. Let Y be a subset of X . Then, by hypothesis,
⋂︁

Y is well-defined, belongs to
X , and is easily seen to be the greatest lower bound of Y . On the other hand, let
Z be the class of all subsets of X such that each Z ∈ Z (i) is also a member of X
(that is, Z ⊆X), and (ii) contains

⋃︁
Y . Then,

⋂︁
Z is well-defined, belongs to X ,

and is an upper bound of Y . Now, suppose that W is an upper bound of Y . Then W
contains

⋃︁
Y and therefore W ∈ Z , hence

⋂︁
Z ⊆ W .

Proposition 3.10. Let Sg be an order-sorted signature and A an Sg-algebra.

(i) The set of order-sorted Sg-subalgebras of A is a complete lattice under the inclusion
ordering; and

(ii) The set of order-sorted Sg-congruences on A is a complete lattice under the
inclusion ordering.

Proof. Both proofs are easy and follow by applying Lemma 3.2 after proving that
arbitrary intersections of subalgebras are subalgebras and arbitrary intersections of
congruences are congruences.

The next definition will introduce a new class of order-sorted signatures for reas-
ons that will be clarified in the next section, when we define order-sorted equations.
Therefore, we state the next definition for what it is, and we demand the proper
motivation to Example 3.11 and Proposition 3.13.

Definition 3.12 (Coherence). A poset (S,⩽) is (upward) filtered if for any two
(Upward) filtered

elements s, s ′ ∈ S there is s ′′ ∈ S such that s ′′ ⩾ s, s ′. Moreover, we say that (S,⩽)
is locally filtered if each of its connected component is filtered. Finally, we define an

Locally filtered
order-sorted signature Sg to be (i) locally filtered if its poset of sorts (S,⩽) is locally
filtered, and (ii) coherent if it is both locally filtered and regular. ♢

Coherence

A quotient algebra is the outcome of partitioning an order-sorted algebra by a
congruence relation.

Definition 3.13 (Quotient Algebra). Let Sg be a locally filtered signature, A an
Sg-algebra, and ≡ a congruence on A . For each connected component C of the poset
of sorts (S,⩽) of the signature Sg, let

AC =
⋃︂
s∈C

JsKA

and, given a, a ′ ∈ AC, we define the equivalence relation

a ≡C a ′ ⇐⇒ ∃s ∈ C such that a ≡s a ′

Moreover, let qC : AC → AC/≡C be the natural projection mapping each a into its
Natural projection

equivalence class [a]. We define the quotient of the algebra A by the congruence ≡,
usually called quotient algebra and denoted by A /≡, by setting

Quotient algebra

(i) JsKA /≡ = qC(JsKA) for each sort s ∈ S with s ∈ C;

(ii) Jf : w → sKA /≡([a1], . . . , [an]) =
[︁
Jf : w → sKA (a1, . . . , an)

]︁
for each

function symbol f : w→ swithw = s1 . . . sn andai ∈ JsiKA for i = 1, . . . , n;
and

3.6. Basic Algebraic Constructions 35

(iii) JkKA /≡ =
[︁
JkKA

]︁
for each constant k : s. ♢

Remark 3.5 (Well-Definedness of Quotient Algebra). We first show that ≡C is an
equivalence relation onAC. Reflexivity and symmetriy are trivial to prove. As regards
the transitivity, suppose that a ≡C a ′ and a ′ ≡C a ′′, with a, a ′, a ′′ ∈ AC. Then,
there are s, s ′ ∈ C such that a ≡s a ′ and a ′ ≡s′ a ′′. Since the signature Sg is locally
filtered, there is a sort s ′′ ∈ C such that s ′′ ⩾ s, s ′, and, since ≡ is a congruence on
A , by condition (3.10:ii) we have that a ≡s′′ a ′ and a ′ ≡s′′ a ′′. Therefore, by the
transitivity of ≡s′′ , we get a ≡s′′ a ′′, hence a ≡C a ′′.

Finally, we show that (3.13:ii) is well-defined, that is the definition of the inter-
pretation function Jf : w → sKA /≡([a1], . . . , [an]) does not depend on the choice
of the representatives a1, . . . , an of their respective equivalence classes. First, we
prove that a ≡s a ′ if and only if a ≡C a ′, where C is the connected component of
s: The “only if” direction holds by construction; Conversely, suppose that a ≡C a ′.
Then, there is s ′ ∈ C such that a ≡s′ a ′. But since Sg is locally filtered, there is
also s ′′ ⩾ s, s ′ such that a ≡s′′ a ′ and therefore a ≡s a ′ (both these facts follow
by (3.10:ii)). Let a ′i ∈ JsiKA /≡ such that a ′i ≡C ai with a ′i ∈ JsiKA for i = 1, . . . , n.
We have to show that

Jf : w→ sKA /≡([a1, . . . , an]) = Jf : w→ sKA /≡([a ′1, . . . , a
′
n])

⇐⇒ by (3.13:ii)[︁
Jf : w→ sKA (a1, . . . , an)

]︁
=

[︁
Jf : w→ sKA (a ′1, . . . , a

′
n)

]︁
⇐⇒ by def. of equivalence classes

Jf : w→ sKA (a1, . . . , an) ≡C Jf : w→ sKA (a ′1, . . . , a
′
n)

⇐⇒ since a ≡s a ′ if and only if a ≡C a ′ (see above)

Jf : w→ sKA (a1, . . . , an) ≡s Jf : w→ sKA (a ′1, . . . , a
′
n)

and this follows by (3.10:i) since a ′i ≡C ai and therefore a ′i ≡si ai. ♢

Given the quotient A /≡ of the Sg-algebra A by the congruence ≡, there is an
obvious Sg-homomorphism q : A → A /≡ defined by

a ∈ JsKA
qs↦−→ [a] ∈ JsKA /≡

We call such a homomorphism q the quotient map with respect to ≡. Moreover, if R
Quotient map

is an S-sorted binary relation on the carrier set A of an Sg-algebra A , we denote by
A /R̆ the Sg-algebra obtained by quotienting A by the smallest congruence on A
containing R, that is

R̆ =
⋂︂{︁

R ′ ∈ Cong(A)
⃓⃓
R ⊆ R ′

}︁
where Cong(A) is the complete lattice of congruences on A (see Proposition 3.10).

Proposition 3.11 (Universal Property of Quotient). Let A be an Sg-algebra with Sg
a locally filtered signature. Given an S-sorted binary relation R on the carrier set A of
A , then the quotient map q : A → A /R̆ satisfies

(i) R ⊆ ker(q); and

36 Order-Sorted Algebras

(ii) given any Sg-homomorphism h : A → B such that R ⊆ ker(h), then there is a
unique Sg-homomorphism v : A /R̆→ B which factorises h through q, that is
v ◦ q = h, or, diagrammatically,

A B

A /R̆

h

q
v

Proof. Since ker(q) = R̆ and R̆ is the smallest congruence relation containing R by
definition, then R ⊆ ker(q). Now, let h : A → B be an Sg-homomorphism such that
R ⊆ ker(h), and recall that JsKA /R̆ = { [a] ∈ AC/R̆C | a ∈ JsKA }, where C is the
connected component of s (see both Definition 3.13 and Remark 3.5). There is only a
unique S-sorted function v : A/R̆→ B between the carrier sets of A /R̆ and B such
that v ◦ q = h defined by vs([a]) = hs(a). Note that v is well-defined: Suppose that
a R̆C a

′ for some a, a ′ ∈ JsKA . Therefore, since a R̆C a ′ if and only if a R̆s a ′, we
have that

vs([a]) = vs([a
′]) ⇐⇒ hs(a) = hs(a

′)

and since a R̆C a ′ and R̆ ⊆ ker(h), then a (≡h)s a ′ and therefore hs(a) = hs(a ′).
We prove that v is also an Sg-homomorphism. Let k : s be a constant in Sg. Then,

vs(JkKA /R̆) = vs
(︁[︁
JkKA

]︁)︁
by (3.13:iii)

= hs(JkKA) by def. of v

= JkKB h is an Sg-hom.

Let f : w → s be a function symbol in Sg with w = s1 . . . sn and ai ∈ JsiKA for
i = 1, . . . , n. Then,

vs
(︁
Jf : w→ sKA /R̆

(︁
[a1], . . . , [an]

)︁)︁
= vs

(︁[︁
Jf : w→ sKA (a1, . . . , an)

]︁)︁
by (3.13:ii)

= hs(Jf : w→ sKA (a1, . . . , an)) by def. of v

= Jf : w→ sKB(hs1(a1), . . . , hsn(an)) h is an Sg-hom.

= Jf : w→ sKB(vs1([a1]), . . . , vsn([an])) by def. of v

Finally, if s ⩽ r in Sg and a ∈ JsKA , then

vs([a]) = hs(a) = hr(a) = vr([a])

and hence the thesis.

Example 3.8. Various presentations of lambda-calculus provide semantics to λ-terms
“up to α-equivalence”, meaning that λ-terms are identified by equivalence classes of
terms which only differ by a renaming of bound variables. In this example, we apply
the universal property of quotient to formalise this practice.

First, recall the signature Sg(λ) of the untyped lambda-calculus (Example 3.2). Let
t be a λ-term, that is t ∈ JexpKTSg(λ)

or, equivalently, t : exp. The free variables FV(t)
Free variables

3.6. Basic Algebraic Constructions 37

of a term t are defined as all the variables appearing in t which are not bound to an
abstraction operator:

FV : JexpKTSg(λ)
→ ℘(Var)

FV(x) = {x}

FV(λx(t)) = FV(t) \ {x}

FV(◦(t1, t2)) = FV(t1) ∪ FV(t2)

Then, we define the substitution of t ′ for free occurrences of x in t, denoted by
Substitution

t[t ′/x], by structural induction on t. Please note that the following definition is not a
function, but merely a total relation. We shall write t[t ′/x] ∝ t ′′ to indicate that t ′′

is one among the many outcomes of the substitution t[t ′/x]:

∝ ⊆
(︁
JexpKTSg(λ)

× JexpKTSg(λ)
× Var

)︁
× JexpKTSg(λ)

x[t/y] ∝

{︄
t if x = y

x otherwise

λx(t)[t
′/y] ∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λx(t) if x = y

λx(u) if x /∈ FV(t ′) where t[t ′/y] ∝ u

λz(u)
with z ̸= x and z /∈ FV(t) ∪ FV(t ′), and
where t[z/x] ∝ u ′ and u ′[t ′/y] ∝ u

◦(t1, t2)[t/x] ∝ ◦(u1, u2) where t1[t/x] ∝ u1 and t2[t/x] ∝ u2

Now, we define α-equivalence as a congruence relation ≡α on TSg(λ) according
α-equivalence

to the following axioms (we write ≡α instead of (≡α)exp since there is just a single
sort in the signature Sg(λ)):

−
(Refα)

t ≡α t
t ≡α u

(Symα)
u ≡α t

t ≡α u u ≡α v
(Transα)

t ≡α v

t ≡α u
(Absα) (x ∈ Var)

λx(t) ≡α λx(u)
t1 ≡α t2 u1 ≡α u2

(Appα)
◦(t1, t2) ≡α ◦(u1, u2)

−
(α) x ∈ Var and y /∈ FV(t)

λx(t) ≡α λy(t[y/x])

It is easy to prove that≡α is an equivalence relation on JexpKTSg(λ)
by Rules (Refα),

(Symα), and (Transα) and a congruence by Rules (Absα) and (Appα). Therefore, we can
quotient TSg(λ) by ≡α and then apply the universal property of quotient to get

TSg(λ) E

TSg(λ)/≡α

eval

q v

where eval : TSg(λ) → E is the unique Sg(λ)-homomorphism defined in Example 3.6.
Note that the commutativity property of the previous diagram ensures that the
semantics of λ-terms is well-defined up to α-equivalence. ♢

38 Order-Sorted Algebras

Theorem 3.3 (First Homomorphism Theorem). Let Sg be a locally filtered order-sorted
signature and h : A → B an Sg-homomorphism. Then, A /ker(h) ∼= h(A).

Proof. Let h ′ : A → h(A) be the corestriction of h. Then, by Proposition 3.11,
there is a unique Sg-homomorphism v : A /ker(h) → h(A) such that v ◦ q = h ′.
Moreover, v is surjective because so is h, and given a, a ′ ∈ JsKA , then

vs([a]) = vs([a
′]) =⇒ hs(a) = hs(a

′) =⇒ a (≡h)s a ′

and therefore [a] = [a ′], hence the injectivity of the homomorphism v. The thesis
now follows by Proposition 3.6.

3.7 Order-Sorted Equations

Equational logic is nothing more than a collection of rules for manipulating equations.
An order-sorted equation is simply an assertion of equality between two terms (with
variables). In particular, the use of terms with variables allows a single equation
to assert a (potentially infinite) class of term equalities. For instance, consider the
signature Sg(Num) in Example 3.1. We might want to assert that the predecessor of
the successor of each natural number is the natural number itself. If n is a variable of
sort nat, we can write the single equation

(∀n : nat) p(s(n)) = n

to state that such an equation holds for each term of sort nat that can be substituted
into the variable n.

In the classical presentation of many-sorted logics [CG06], one requires terms
appearing in an equation to have the same sort. However, in the order-sorted case
we can retain much more flexibility with sorts. Indeed, since subsort relations are
encoded in the term algebra by subset inclusion, we can be more general and allow
equations with terms of “comparable sorts”, that is terms whose least sorts resides in
the same connected component.

Notation 3.3. In the rest of the chapter, we will adopt a lighter notation when
applying homomorphisms to terms: Let Sg be a regular order-sorted signature and
a : TSg → A an Sg-homomorphsim. We will write a(t) instead of als(t)(t) for each
term t built out of Sg. ♢

Definition 3.14 (Order-Sorted Equation). Let Sg be a regular order-sorted signature.
An (unconditional) order-sorted Sg-equation (∀X) t1 = t2 is given by an S-sorted set

Order-sorted equation
of variables X and two terms t1 and t2 in TSg(X) such that their least sorts ls(t1)
and ls(t2) belong to the same connected component of (S,⩽). ♢

For the sake of simplicity, when X is finite we might write

(∀x1 : s1, . . . , xn : sn) t1 = t2

in place of (∀X) t1 = t2, where xi ∈ Xsi for each i = 1, . . . , n. Moreover, if X = ∅
(and therefore t1 and t2 are ground terms), we just write t1 = t2.

Example 3.9. Let Sg(Nat) be the order-sorted signature obtained by restricting the
signature Sg(Num) in Example 3.1 to sorts S(Nat) = {nat, nznat, zero} and operators

3.7. Order-Sorted Equations 39

nat

zero nznat

0 : zero zero

s : nat → nznat successor

+: nat, nat → nat addition

We can axiomatise the behaviour of the addition operator by adding the following
order-sorted equations:

(∀n : nat) +(0, n) = n

(∀n : nat,m : nat) +(s(n),m) = s(+(n,m))

(∀n : nat,m : nat) +(n,m) = +(m,n)

which assert the additive properties of addition over natural numbers. ♢

Definition 3.15 (Order-Sorted Satisfaction). An order-sorted equation (∀X) t1 = t2
over a regular signature Sg is satisfied by an Sg-algebra A if and only if a∗(t1) =
a∗(t2) for each assignment a : X → A, where a∗ : TSg(X) → A is the unique
homomorphism extending a (Theorem 3.2). ♢

Example 3.10. Consider the signature Sg(Nat) in Example 3.9 and let N be the
Sg(Nat)-algebra obtained by restricting the Sg(Num)-algebra A of Example 3.4 only
to operators and sorts of Sg(Nat), that is interpretation sets JnatKA = N, JzeroKA =
{0}, and JnznatKA = N \ {0}, and interpretation functions

J0KN = 0

Js : nat → nznatKN (n) = n+ 1

J+: nat, nat → natKN (n1, n2) = n1 + n2

where n ∈ N. It is easy to see that the algebra N satisfies all the Sg(Nat)-equations
provided in Example 3.9. ♢

Definition 3.16 (Conditional Equation and Satisfaction). Let Sg be a regular order-
sorted signature. An order-sorted conditional Sg-equation (∀X) t = t ′ ⇐ C is given

Order-sorted conditional equation
by an unconditional Sg-equation (∀X) t = t ′ and a finite set C of unconditional
Sg-equations involving only variables in X, that is

C = {(∀X) t1 = t ′1, . . . , (∀X) tn = t ′n}

for some n ∈ N.
An Sg-algebra A satisfies a conditional Sg-equation (∀X) t = t ′ ⇐ C if and

only if for each assignment a : X→ A satisfying each equation in C, it also satisfies
(∀X) t = t ′, that is

(∀1 ⩽ i ⩽ n) a∗(ti) = a∗(t ′i) =⇒ a∗(t) = a∗(t ′)

where C = {(∀X) t1 = t ′1, . . . , (∀X) tn = t ′n}. ♢

Since C is always finite and equations in C involve only variables in X, we usually
denote conditional equations by writing

(∀X) t = t ′ ⇐
(︁
t1 = t2 ∧ · · ·∧ tn = t ′n

)︁

40 Order-Sorted Algebras

or, when ti and t ′i are clear from the context,

(∀X) t = t ′ ⇐
n⋀︂
i=1

ti = t
′
i

Note that conditional equations proper generalises ordinary equations, in the
following sense:

Proposition 3.12. An Sg-equation (∀X) t = t ′ is satisfied by an Sg-algebra A if and
only if A satisfies (∀X) t = t ′ ⇐ ∅.

With all these elements put together, we can provide a suitable justification for
the notion of coherence introduced in Definition 3.12. Consider the following example
taken from [GM92]:

Example 3.11. Let Sg(₡) be the following, non-coherent, order-sorted signature with
poset of sorts S(₡) given by the Hasse diagram on the left and operators on the right:

a c

b

k : a a constant of sort a

j : b a constant of sort b

l : c a constant of sort c

Consider now the equation k = l involving no variables. The term algebra TSg(₡)

surely does not satisfy such an equation. On the other hand, the Sg(₡)-algebra
A given by JaKA = JcKA = {0, 1} and JbKA = {0} and interpretation functions
JkKA = JlKA = 1 and JjKA = 0 does satisfy k = l. Unfortunately, the unique
Sg(₡)-homormophism h : TSg(₡) → A is actually an isomorphism. Therefore, under
the present conditions, the notion of satisfaction is not closed under isomorphism. ♢

The issue with the previous example boils down to the absence of a common
supersort of a and c. Indeed, if we just add a new sort d > a, c to the signature, then
the interpretation domains JdKTSg(₡)

= {k, j, l} and JdKA = {0, 1} preclude h to be
an isomorphism. Note that this is exactly what the definition of coherence enforces,
and allows us to prove the following:

Proposition 3.13. Let Sg be a coherent order-sorted signature, A and B two isomorphic
Sg-algebras, and (∀X) t = t ′ ⇐ C a conditional Sg-equation. Then, A satisfies
(∀X) t = t ′ ⇐ C if and only if B does.

Proof. (=⇒) Suppose that A satisfies (∀X) t = t ′ ⇐
⋀︁n
i=1 ti = t ′i. We want to

prove that for each assignment b : X→ B, then

(∀1 ⩽ i ⩽ n) b∗(ti) = b∗(t ′i) =⇒ b∗(t) = b∗(t ′)

Let f : A → B be the Sg-isomorphism between these algebras. Then, each assignment
b : X → B can be factorised into b = f ◦ a with a : X → A defined by as(x) =
f−1s (bs(x)) for each variable x ∈ Xs. Now, let s ⩾ ls(t), ls(t ′). Then,

b∗s(t) = fs(a
∗
s(t)) by Lem. 3.1

= fs(a
∗
s(t
′)) A satisfies (∀X) t = t ′ ⇐ C

= b∗s(t
′) by Lem. 3.1

hence, by (3.4:ii) (and Remark 3.3), b∗(t) = b∗s(t) = b∗s(t
′) = b∗(t ′). (⇐=) It

follows from the previous case: Isomorphism relation is symmetric.

3.8. Order-Sorted Deduction 41

3.8 Order-Sorted Deduction

We shall now present the rules of equational logic to derive new equations starting
from a signature and a given set of equations. In particular, we employ the following
terminology: If Ax(X) is a set of Sg-equations over the same set of variables X,
henceforth referred to as axioms, we call

Axioms

Th = (Sg,Ax(X))

a theory. Moreover, we say that an Sg-algebra A is a model of a theory Th =
Theory, Model of a theory

(Sg,Ax(X)) if and only if A satisfies each equation in Ax(X). We often abbreviate
this fact by saying that A is a Th-model.

Notation 3.4. From now on, when we refer to a theory Th we shall leave implicit
that Th = (Sg,Ax(X)), unless stated otherwise. ♢

Proposition 3.14. Let Th be an order-sorted theory. The class of all models of Th and
the class of all Sg-homomorphisms between these models form a category Mod(Th).

Category of models over Th

As we shall see, equational logic allows deducing theorems from a theory, that is
Theorem

new equations satisfied by any Th-model. We refer to this property as soundness of
order-sorted deduction. Moreover, we shall prove that such a derivation process is
complete, meaning that any equation satisfied by every model of the theory is also
deducible from Th. In the following, we call any assignment of the form θ : X→ TSg(Y)
a substitution (of terms in TSg(Y) for variables in X).

Substitution
The formal rules of equational logic are given in Figure 3.4. The judgement of

this deductive system are order-sorted unconditional equations (theorems) over the
signature Sg of an order-sorted theory Th:

• Rule (Ax) states that every unconditional axiom in Ax(X) is deducible from Th.

• Rules (Ref), (Sym), and (Trans) are self-explanatory.

• Rule (Cong) says that given any two substitutions θ and ϕ of terms in the free
algebra TSg(Y) for variables in X, if every equation (∀Y) θs(x) = ϕs(x) is
derivable from Th (for each x ∈ Xs of some sort s ∈ S), then the substitution of
variables in t via θ or ϕ produces two derivably equal terms θ∗(t) and ϕ∗(t)
with variables in Y.

• Finally, Rule (Sub) allows deducing unconditional equations from both condi-
tional and unconditional axioms. Let (∀X) t = t ′ ⇐

⋀︁n
i=1 ti = t ′i be a

conditional axiom (if n = 0, then it can be regarded as unconditional) and
θ : X→ TSg(Y) a substitution. If θ equalises each premise of such an equation,
that is (∀Y) θ∗(ti) = θ∗(t ′i) is deducible from Th for each i = 1, . . . , n, then
so is the unconditional equation (∀Y) θ∗(t) = θ∗(t ′).

The reader may notice that the usual rule of generalised substitution is admissible
by a routine rule induction:

Lemma 3.3 (Generalised Substitution). The following rule is admissible:
Generalised Substitution

(∀X) t = t ′
(GSub) θ : X→ TSg(Y)

(∀Y) θ∗(t) = θ∗(t ′)

42 Order-Sorted Algebras

(∀X) t = t ′ ∈ Ax(X)
(Ax)

(∀X) t = t ′
t : s

(Ref)
(∀X) t = t

(∀X) t ′ = t
(Sym)

(∀X) t = t ′

(∀X) t = t ′ (∀X) t ′ = t ′′
(Trans)

(∀X) t = t ′′

θ,ϕ : X→ TSg(Y)

(∀s ∈ S, ∀x ∈ Xs) (∀Y) θs(x) = ϕs(x)
(Cong)

(∀Y) θ∗(t) = ϕ∗(t)

θ : X→ TSg(Y)

(∀X) t = t ′ ⇐
⋀︁n
i=1 ti = t

′
i ∈ Ax(X)

(∀1 ⩽ i ⩽ n) (∀Y) θ∗(ti) = θ∗(t ′i)
(Sub)

(∀Y) θ∗(t) = θ∗(t ′)
Figure 3.4: Theorems deduced from an order-sorted theory Th = (Sg,Ax(X)).

Proof. The proof is by rule induction on the derivation of the premise (∀X) t = t ′:

1. (Ax) Suppose the premise has been derived by

(∀X) t = t ′ ∈ Ax(X)
(Ax)

(∀X) t = t ′

Therefore, we can apply Rule (Sub) to such an unconditional axiom and get

(∀X) t = t ′ ⇐ ∅ ∈ Ax(X)
(Sub) θ : X→ TSg(Y)

(∀Y) θ∗(t) = θ∗(t ′)

2. (Ref) Suppose the premise has been derived by

−
(Ref) t : s

(∀X) t = t
Then, by the following derivation tree we can prove the conclusion:

−
(∀s ∈ S, ∀x ∈ Xs) (Ref) θs(x) : s

(∀Y) θs(x) = θs(x)
(Cong)

(∀Y) θ∗(t) = θ∗(t)

where θ : X→ TSg(Y).

3. (Sym) Suppose the premise has been derived by

(∀X) t ′ = t
(Sym)

(∀X) t = t ′

By induction hypothesis, we have that

(∀X) t ′ = t
(GSub) θ : X→ TSg(Y)

(∀Y) θ∗(t ′) = θ∗(t)
and hence the conclusion by a simple application of Rule (Sym).

3.8. Order-Sorted Deduction 43

4. (Trans) Suppose the premise has been derived by

(∀X) t = t ′ (∀X) t ′ = t ′′
(Trans)

(∀X) t = t ′′

Then, by induction hypothesis,

(∀X) t = t ′
(GSub)

(∀Y) θ∗(t) = θ∗(t ′)
(∀X) t ′ = t ′′

(GSub)
(∀Y) θ∗(t ′) = θ∗(t ′′)

with θ : X→ TSg(Y), and therefore (∀Y) θ∗(t) = θ∗(t ′′) by Rule (Trans).

5. (Cong) Suppose the premise has been derived by

(∀s ∈ S, ∀x ∈ Xs) (∀Y) θs(x) = ϕs(x)
(Cong) θ,ϕ : X→ TSg(Y)

(∀Y) θ∗(t) = ϕ∗(t)

Then, by induction hypothesis, for each s ∈ S and x ∈ Xs we have

(∀Y) θs(x) = ϕs(x)
(GSub) ψ : Y → TSg(Z)

(∀Y) ψ∗(θs(x)) = ψ∗(ϕs(x))

and therefore

(∀s ∈ S, ∀x ∈ Xs) (∀Z) ψ∗(θs(x)) = ψ∗(ϕs(x))
(Cong)

(∀Z) ψ∗(θ∗(t)) = ψ∗(ϕ∗(t))

where ψ∗ ◦ θ,ψ∗ ◦ ϕ : X→ TSg(Z).

6. (Sub) Suppose the premise has been derived by

(∀X) t = t ′ ⇐
⋀︁n
i=1 ti = t

′
i ∈ Ax(X)

(∀1 ⩽ i ⩽ n) (∀Y) θ∗(ti) = θ∗(t ′i)
(Sub) θ : X→ TSg(Y)

(∀Y) θ∗(t) = θ∗(t ′)

Then, by induction hypothesis,

(∀Y) θ∗(ti) = θ∗(t ′i)
(GSub) ψ : Y → TSg(Z)

(∀Z) ψ∗(θ∗(ti)) = ψ∗(θ∗(t ′i))

for each i = 1, . . . , n. Therefore, we can apply Rule (Sub) and get

(∀X) t = t ′ ⇐
⋀︁n
i=1 ti = t

′
i ∈ Ax(X)

(∀1 ⩽ i ⩽ n) (∀Z) ψ∗(θ∗(ti)) = ψ∗(θ∗(t ′i))
(Sub) ψ∗ ◦ θ : X→ TSg(Z)

(∀Z) ψ∗(θ∗(t)) = ψ∗(θ∗(t ′))

hence the conclusion.

We can now prove the soundness of the deduction system, namely that any
unconditional equation derivable from a theory Th is satisfied by all the Th-model.

Theorem 3.4 (Soundness). Let Th = (Sg,Ax(X)) be a theory over the coherent
signature Sg and A an order-sorted Th-model. If (∀Y) t = t ′ is derivable from Th
using rules in Figure 3.4, then A satisfies (∀Y) t = t ′.

44 Order-Sorted Algebras

Proof. The proof is by rule induction on (∀Y) t = t ′. Most of the cases are easy to
prove and simply follow by applying the definition of satisfaction. We only prove
the case of Rule (Cong) which requires some calculation: Suppose the equation under
discussion has been derived by

(∀s ∈ S, ∀x ∈ Xs) (∀Y) θs(x) = ϕs(x)
(Cong) θ,ϕ : X→ TSg(Y)

(∀Y) θ∗(t) = ϕ∗(t)

We have to prove that for each assignment a : Y → A (with A the carrier set of the
algebra A)

a∗(θ∗(t)) = a∗(ϕ∗(t))

⇐⇒ (a∗ ◦ θ)∗(t) = (a∗ ◦ ϕ)∗(t) by Lemma 3.1

We shall show that a∗◦θ and a∗◦ϕ are the same assignment. By induction hypothesis,
the equation (∀Y) θs(x) = ϕs(x) is satisfied by A , and therefore (a∗ ◦ θ)s(x) =
(a∗ ◦ ϕ)s(x) for each s ∈ S and x ∈ Xs. Since by Theorem 3.2 there is a unique
Sg-homomorphism extending a∗ ◦θ = a∗ ◦ϕ, then (a∗ ◦θ)∗ = (a∗ ◦ϕ)∗ and hence
a∗(θ∗(t)) = a∗(ϕ∗(t)).

Proving the completeness of the order-sorted equational logic requires more
mathematical tools and lemmas. The method is standard from the early days of
universal algebra [Bir35] and requires the construction of a new algebra in which
elements in the carrier set are equivalence classes of provably equal terms.

We start by defining a congruence relation on terms: Let Th = (Sg,Ax(X)) be an
order-sorted theory, and let t and t ′ be two terms with variables in the free algebra
TSg(Y). We shall write

t ∼s t
′ if and only if (∀Y) t = t ′ is derivable from Th (3.5)

that is t and t ′ are related just in case they are provably equal.

Lemma 3.4. Let Th be an order-sorted theory. Then, the binary relation ∼ is a congruence
on the Sg-algebra TSg(Y).

Proof. The binary relation ∼ is trivially an equivalence relation by Rules (Ref), (Sym),
and (Trans). We now prove condition (3.10:i): Let f : w → s with w = s1 . . . sn
be a function symbol in Sg and ti ∼si t

′
i with ti, t ′i terms of sort si in TSg(Y), for

i = 1, . . . , n. We want to prove that

Jf : w→ sKTSg(Y)(t1, . . . , tn) ∼s Jf : w→ sKTSg(Y)(t
′
1, . . . , t

′
n)

⇐⇒
f(t1, . . . , tn) ∼s f(t

′
1, . . . , t

′
n)

⇐⇒
(∀Y) f(t1, . . . , tn) = f(t ′1, . . . , t ′n) is derivable from Th

Let Z be the set of variables defined by Zsi = {zi} for each si appearing in w and
Zs′ = ∅ for any other sort s ′. We define two substitutions θ,ϕ : Z → TSg(Y) by
sending zi ↦→ ti and zi ↦→ t ′i, respectively. Since ti ∼si t

′
i by hypothesis, then

3.8. Order-Sorted Deduction 45

(∀Y) θsi(zi) = ϕsi(zi) is derivable (by definition of ∼si). Therefore, we can apply
Rule (Cong) to the term f(z1, . . . , zn) in TSg(Z), and we have that

(∀zi ∈
⋃︁
Z) (∀Y) θsi(zi) = ϕsi(zi)

(Cong) θ,ϕ : Z→ TSg(Y)
(∀Y) θ∗(f(z1, . . . , zn)) = ϕ∗(f(z1, . . . , zn))

which yields exactly (∀Y) f(t1, . . . , tn) = f(t ′1, . . . , t
′
n). Finally, condition (3.10:i)

holds because the rules of equational logic do not depend on the sort at which terms
are considered.

This lemma enables the quotienting of the free algebra TSg(Y) by the congruence ∼
which, by construction, has members the equivalence classes of provably equal terms.
For the sake of clarity, we denote such a quotient algebra TSg(Y)/∼ by TTh(Y).

Proposition 3.15. Let Th = (Sg,Ax(X)) be an order-sorted theory and (∀Y) t = t ′
an unconditional Sg-equation. Then,

(i) [t] = [t ′] if and only if (∀Y) t = t ′ is derivable from Th.

(ii) If (∀Y) t = t ′ is satisfied by TTh(Y), then (∀Y) t = t ′ is derivable from Th.

Proof. The first point trivially follows by the definition of ∼. With regard to the second,
consider the assignment qY : Y → TTh(Y) defined by y ↦→ [y]. Since TTh(Y) satisfies
(∀Y) t = t ′, then q∗Y(t) = q∗Y(t

′). However, as discussed before Proposition 3.11,
the quotient map q : TSg(Y)→ TTh(Y) embedding each term t into its equivalence
class [t] is an Sg-homomorphism extending qY , and by uniqueness we conclude that
q∗Y = q. Therefore, q∗Y(t) = q

∗
Y(t
′) implies that [t] = [t ′], and hence (∀Y) t = t ′ is

derivable from Th.

Proposition 3.16. TTh(Y) is a model of the order-sorted theory Th = (Sg,Ax(X)).

Proof. Let (∀X) t = t ′ ⇐
⋀︁n
i=1 ti = t ′i be an axiom in Ax(X) and θ : X → TTh(Y)

an assignment satisfying each premise, that is

(∀1 ⩽ i ⩽ n) θ∗(ti) = θ∗(t ′i)

We have to prove that θ∗(t) = θ∗(t ′). For each x ∈ Xs (for some s ∈ S), let tx be
any arbitrary representative of the equivalence class θs(x), namely θs(x) = [tx],
and consider the new assignment function ϕ : X→ TSg(Y) defined by ϕs(x) = [tx].
Therefore, θs(x) = [ϕs(x)] and thus θ = q ◦ ϕ, where q : TSg(Y)→ TTh(Y) is the
quotient map (and an Sg-homomorphism too). By Lemma 3.1, we have that

θ∗ = (q ◦ ϕ)∗ = q ◦ ϕ∗

and hence θ∗(t) = [ϕ∗(t)] for each term t in TSg(X). Then, θ∗(ti) = θ∗(t ′i) is equi-
valent to [ϕ∗(ti)] = [ϕ∗(t ′i)] and, by Proposition (3.15:i), the equation (∀Y) ϕ∗(ti) =
ϕ∗(t ′i) is derivable from Th, for each i = 1, . . . , n. Thus, by applying the Rule (Sub)
we can derive

(∀X) t = t ′ ⇐
⋀︁n
i=1 ti = t

′
i ∈ Ax(X)

(∀1 ⩽ i ⩽ n) (∀Y) ϕ∗(ti) = ϕ∗(t ′i)
(Sub) ϕ : X→ TSg(Y)

(∀Y) ϕ∗(t) = ϕ∗(t ′)

and again by Proposition (3.15:i) we conclude that [ϕ∗(t)] = [ϕ∗(t ′)] and therefore
θ∗(t) = θ∗(t ′).

46 Order-Sorted Algebras

Theorem 3.5 (Completeness). Let Th = (Sg,Ax(X)) be a theory over the coherent
signature Sg. If (∀Y) t = t ′ is satisfied by any Th-model, then (∀Y) t = t ′ is derivable
from Th using rules in Figure 3.4.

Proof. Suppose that (∀Y) t = t ′ is satisfied by any Th-model, in particular it is
satisfied by TTh(Y) (by Proposition 3.16). Therefore, by Proposition (3.15:ii), (∀Y) t =
t ′ is derivable from Th.

Example 3.12. Consider the following theory which axiomatises βη-reduction of λ-
terms. Let Sg(λ+) be the signature containing Sg(λ) of Example 3.2 with the addition
of the operators needed to handle α-conversion and substitution (detailed below).
The following unconditional equation

(∀m,n : exp) ◦ (λx(m), n) = subx(m,n) (3.6)

axiomatises β-reduction, for each concrete instance of x ∈ Var , where we assume
that subx : exp, exp→ exp is the substitution operator of n for free occurrences of x
inm. Next, the conditional equation

(∀m : exp) λx(◦(m,x)) = m ⇐= not(inx(fv(m))) = true (3.7)

model the η-reduction for each x ∈ Var . In particular, not : bool → bool is assumed
to be the negation operator in the theory of booleans, inx : varset → bool is the
operator returning true if x is contained in the set of variables modeled by the sort
varset, and fv : exp → varset provides the set of free variables in a given λ-term
(the equational axiomatisation of all these new operators is simple but burdensome
in terms of auxiliary definitions and specifications, and therefore omitted in this
example; the reader may want to consult [VM06] to work out every detail). The
theory Th(λ+) = (Sg(λ+),Ax(λ+)) is now obtained by taking Equations 3.6 and 3.7
as axioms over the set of variables containingm,n : exp. ♢

3.9 Initiality and Freeness Results

In previous sections we showed initiality and freeness results for TSg and TSg(X),
respectively, in the category Alg(Sg). Recall that TSg(∅) = TSg (see Remark 3.4).
We now prove analogous results for the quotient algebra TTh(Y) in the category
Mod(Th).

Theorem 3.6. Let Th = (Sg,Ax(X)) be a coherent order-sorted theory, Y an S-sorted
set of variables, and A an order-sorted Th-model. Then, given an assignment a : Y → A
(that is, an S-sorted function from Y into the carrier set A of the algebra A), there is
a unique Sg-homomorphism a• : TTh(Y)→ A extending a, i.e., a•s([y]) = as(y) for
each y ∈ Ys.

Proof. Since A is a Th-model, then it satisfies each equation derivable from Th
(Theorem 3.4). Therefore, the congruence relation ∼ of Lemma 3.4 is contained in the
kernel of the Sg-homomorphism a∗ : TSg(Y)→ A which exists by Theorem 3.2, that
is ∼ ⊆ ker(a∗). Then, by the universal property of quotient (Proposition 3.11), there
is a unique Sg-homomorphism a• : TTh(Y) → A such that the following diagram

3.9. Initiality and Freeness Results 47

commutes:
TSg(Y) A

TTh(Y)

a∗

q
a•

where q send each term t to its equivalence class [t]. Suppose now h : TTh(Y)→ A is
an Sg-homomorphism such that hs([y]) = as(y). Since a = h ◦ [−], by the freeness
of TSg(Y), we have that a∗ = (h ◦ [−])∗ = h ◦ q, hence h = a•.

Corollary 3.2. Let Th be a coherent order-sorted theory. Then, TTh(∅) is the initial
model in Mod(Th).

CHAPTER 4
Algebraic Multi-Language

Constructions

Chapter reference(s): [BM19a]

Multi-languages arise by combining existing languages [PA14, AB11, TM07, FF08,
Gra08, PPDA17, OSZ12, MF09]. For instance, the multi-language in [MF09] allows
programmers to interchange ML expressions and Scheme expressions. Benefits are
code reuse and software interoperability. Unfortunately, they come at the price of
a lack of clarity of (formal) properties of the new multi-language, mainly semantic
specifications. Developing such properties is a key focus of this chapter.

A first step in the formalisation of multi-language semantics has been achieved by
Matthews and Findler. In [MF09], they propose boundary functions as a way to regulate
the flow of values between languages. They show their approach on different variants
of the same multi-language obtained by mixing ML [MTH90] and Scheme [Dyb09],
representing two “syntactically sugared” versions of the simply-typed and untyped
lambda calculi, respectively.

Rather than showing the embedding of two specific languages, we extend their
approach to the much broader class of order-sorted algebras [GM92] with the aim of
providing a framework that works regardless of the inherent nature of the combined
languages.

Structure In this chapter, we propose three different multi-language constructions
according to the semantic properties of boundary functions. The first one models a
general notion of multi-language that do not require any constraints on boundaries.
We argue that when such generality is superfluous, we can achieve a neater approach
where boundary functions do not need to carry the sorts between which they act as
a bridge. Indeed, we show that when the cross-language conversion of a term does
not depend on the sort at which the term is considered (that is, when boundaries are
subsort polymorphic) the framework is able to apply the correct conversion. This last
construction is an improvement of the original notion of boundaries in [MF09]. From
a practical point of view, it allows programmers to avoid to explicitly deal with sorts
when writing code, a non-trivial task that could introduce type cast bugs in real world

49

50 Algebraic Multi-Language Constructions

e ::= n | e + e where n ∈ N

(a) BNF grammar of L(Exp).

s ::= - | a | s + s where a ∈ A

(b) BNF grammar of L(Str).

Figure 4.1: The BNF grammars of the languages L(Exp) and L(Str).

JnK = n
Je + e ′K = JeK+ Je ′K

(a) Formal semantics of L(Exp).

J-K = ε
JaK = a

Js + -K = J- + sK = JsK
Js + - + s ′K = Js + s ′K

Ja0 + . . . + anK = a0 . . . an n > 0

(b) Formal semantics of L(Str).

Figure 4.4: The formal semantics of the languages L(Exp) and L(Str).

languages. Finally, we provide a very specific notion of multi-language where no
extra operator is added to the syntax. This approach is particularly useful to extend a
language in a modular fashion and ensuring the backward compatibility with “old”
programs. For each one of these variants we prove an initiality theorem, which in turn
ensures the uniqueness of the multi-language semantics and thereby legitimating
the proposed framework. Moreover, we show that the framework guarantees a
fundamental closure property on the construction: The resulting multi-language
admits an associated order-sorted representation, namely it falls within the same
formal model of the combined languages. Finally, we model the multi-language
designed in [MF09] in order to show an instantiation of the framework. Please note
that the whole chapter is accompanied by a running example, introduced below. This
example is very simple but effective in showing our key ideas.

Running Example 4.1. Let L(Exp) and L(Str) be two formal languages (see Fig-
ure 4.1). The former is a language to construct simple mathematical expressions:
n ∈ N ranges over natural numbers and e + e inductively generates all the possible
additions (Figure 4.1(a)). The latter is a language to build strings over a finite alphabet
of symbols A = {a, b, . . . , z}: a ∈ A denotes atoms (or, characters) of the language,
whereas s + s concatenates them into strings (Figure 4.1(b)). A term in L(Exp) and
L(Str) is interpreted as an element in the sets N and A∗, accordingly to equations in
Figure 4.2(a) and 4.3(b), respectively.

The syntax of the language L(Exp) can be given by the following order-sorted sig-
nature Sg(Exp): the set of sorts S(Exp) = {exp, nat} carries the sort exp of expressions
and the sort nat of natural numbers; ⩽Exp is the discrete order on S(Exp) joined with
nat ⩽Exp exp, that is natural numbers are expressions; and the operators in Sg(Exp)
are the constants 0, 1, 2, . . . : nat and the function symbol +: exp, exp→ exp.

Similarly, the signature Sg(Str) models the syntax of the language L(Str): the set
S(Str) = {str, chr} provides the sorts of strings and characters; the subsort relation
⩽Str is the discrete order on S(Str) with the addition of the constraint chr ⩽Str

4.1. Multi-Language Signatures and Algebras 51

str (characters are one-symbol strings); and the operator symbols in Sg(Str) are
a, . . . , z : chr , - : str , and +: str, str → str .

Algebraic semantics of L(Exp) and L(Str) are given by the algebras E and S over
the signatures Sg(Exp) and Sg(Str), respectively. We set the interpretation domains
of E to JnatKE = JexpKE = N and those of S to JchrKS = A ⊆ A∗ = JstrKS .
Moreover, we define the interpretation functions of E by

JnKE = n ∀n ∈ N

J+: exp, exp→ expKE (n1, n2) = n1 + n2

and those of S as

J-KS = ε

JaKS = a ∀a ∈ A

J+: str, str → strKS (s1, s2) = s1s2

Since Sg(Exp) and Sg(Str) are regular, the algebras E and S induce unique semantic
functions hExp : TSg(Exp) → E and hStr : TSg(Str) → S , providing semantics to gener-
ated terms. ♢

4.1 Multi-Language Signatures and Algebras

The first step towards a multi-language construction is the specification of which
terms of one language can be employed within another [PPDA17, MF09, OSZ12].
For instance, a multi-language requirement could demand to use ML expressions in
place of Scheme expressions and, possibly, but not necessarily, vice versa (such a
multi-language is designed in [MF09]).

Definition 4.1 (Multi-Language Signature). A multi-language signature is a triple
Multi-language signatureSg = (Sg1, Sg2,⋉) given by

(i) a pair of order-sorted signatures Sg1 and Sg2 with posets of sorts (S1,⩽1) and
(S2,⩽2), respectively;

(ii) a (binary) relation join ⋉ over S1 ∪ S2 such that if s ⋉ s ′, then s ∈ Si and
Join relation

s ′ ∈ Sj with i, j ∈ {1, 2} and i ̸= j. ♢

In the following, we always assume the sets of sorts S1 and S2 of the order-sorted
signatures Sg1 and Sg2 to be disjoint (this hypothesis is non-restrictive: We can
always perform a renaming of the sorts). The join relation ⋉ specifies which syntactic
categories can be blended in order to provide the syntax of the multi-language. More
precisely, Si ∋ s ⋉ s ′ ∈ Sj suggests that we want to use terms of sort s in TSgi

in
place of terms of sort s ′ in TSgj

. Since i is required to be different from j, we will
embed terms built out of a signature into another, different, one.

Notation 4.1. In the rest of the thesis, we shall leave implicit that the usual multi-
language signature Sg is given by the triple (Sg1, Sg2,⋉), unless otherwise stated, and
we let (S1,⩽1) and (S2,⩽2) be the poset of sorts of Sg1 and Sg2, respectively. ♢

The role of an algebra is to provide an interpretation domain for each sort as well
as the meaning of every operator symbol in the signature. When moving towards
the multi-language context, we shall also provide meaning to the interoperability

52 Algebraic Multi-Language Constructions

constraints specified by the join relation ⋉. Consequently, if s⋉ s ′ in the signature
Sg, a multi-language Sg-algebra has to specify how values of sort s may be regarded
as values of sort s ′. These specifications are called boundary functions.

Definition 4.2 (Multi-Language Algebra). Let Sg be a multi-language signature. A
multi-language Sg-algebra A is given by

Multi-language algebra

(i) a pair of order-sorted algebras A1 and A2 over Sg1 and Sg2, respectively; and

(ii) a boundary function Js ⋉ s ′KA : JsKAi
→ Js ′KAj

for each s ⋉ s ′ in Sg, with
Boundary function

s ∈ Si and s ′ ∈ Sj (recall that i, j ∈ {1, 2} and i ̸= j). ♢

An algebra sets out the meaning of a multi-language: The meaning of the under-
lying languages, and how terms of sort s ∈ Si can be interpreted as terms of sort
s ′ ∈ Sj. Put differently, boundary functions regulate the flow of values across A1
and A2 [MF09].

Notation 4.2. If A is a multi-language Sg-algebra, we denote by A1 and A2 the
underlying order-sorted Sg1- and Sg2-algebras. ♢

Running Example 4.2. Suppose we are interested in a multi-language which blends
the signatures Sg(Exp) and Sg(Str) of Running Example 4.1 such that satisfies the
following properties:

• Terms denoting natural numbers can be used in place of characters a ∈ A

according to the function chr : N→ A that maps the natural number n to the
character symbol a(n mod |A|) (we are assuming a total lexicographical order
a(0), a(1), . . . , a(|A|−1) on A);

• Terms denoting strings can be used in place of natural numbersn ∈ N according
to the function ord : A → N, which is the inverse of chr restricted the initial
segment of natural numbers {0, . . . , |A|− 1}.

We can build such a multi-language by providing a join relation ⋉ on S(Exp)∪S(Str)
(that is, the set of sorts of Sg(Exp) and Sg(Str), respectively) and a boundary function
for each interoperability constraint s ⋉ s ′ introduced by ⋉. These specifications
give rise to a multi-language signature Sg(Exp + Str) = (Sg(Exp), Sg(Str),⋉) and
a multi-language Sg(Exp + Str)-algebra M (with underlying order-sorted algebras
M1 = E and M2 = S over Sg(Exp) and Sg(Str), respectively). We define the
interoperability constraints and the boundary functions as follows:

exp ⋉ chr Jexp ⋉ chrKM = chr

nat ⋉ chr Jnat ⋉ chrKM = chr

chr ⋉ nat Jchr ⋉ natKM = ord

str ⋉ nat Jstr ⋉ natKM (a0 . . . an) =

n∑︂
k=0

Jchr ⋉ natKM (ak) · 10n−k ♢

Given two multi-language algebras over the same signature Sg, we can define
morphisms between them preserving their strucutre.

Definition 4.3 (Multi-Language Homomorphism). Let Sg be a multi-language sig-
nature, and let A and B be two Sg-algebras. A multi-language Sg-homomorphism

Multi-language homomorphism
h : A → B is given by

4.1. Multi-Language Signatures and Algebras 53

JsKAi
Js ′KAj

JsKBi
Js ′KBj

Js⋉s′KA

(hi)s (hj)s′

Js⋉s′KB

Figure 4.5: The commutativity diagram enforced by the multi-language homomorph-
ism definition.

(i) a pair of order-sorted homomorphisms h1 : A1 → B1 and h2 : A2 → B2 such
that they commute with boundary functions (Figure 4.5), namely

(ii) if s⋉ s ′ with s ∈ Si and s ′ ∈ Sj, then

(hj)s′ ◦ Js⋉ s ′KA = Js⋉ s ′KB ◦ (hi)s ♢

Here commutativity makes multi-language homomorphisms (and therefore the
subsequent definition of multi-language semantics) compositional with respect to
boundary functions. This will enable us to consider interoperability constraints s⋉ s ′
as fully-fledged operators of the multi-language.

Notation 4.3. In the same spirit of Notation 4.2, if h : A → B is a multi-language
Sg-homomorphism, we shall denote by h1 : A1 → B1 and h2 : A2 → B2 the
underlying order-sorted Sg1- and Sg2-homomorphisms. ♢

The composition of multi-language homomorphisms is defined componentwise:
Let f : A → B and g : B → C be two Sg-homomorphisms. Then, g ◦ f is given by
taking gi ◦ fi : Ai → Ci as the order-sorted Sgi-homomorphism (g ◦ f)i, for i = 1, 2.
Moreover, the identity homomorphism idA over a multi-language Sg-algebra A
is given by picking the identity order-sorted homomorphisms over the underlying
algebras A1 and A2.

Proposition 4.1. Multi-language homomorphisms are closed under composition.

Proof. We prove that the composition g ◦ f of two Sg-homomorphisms f : A → B
and g : B → C commutes with boundary functions (condition (4.3:ii)). Let s ⋉ s ′
and recall that s ∈ Si and s ′ ∈ Sj with i, j ∈ {1, 2} and i ̸= j. Then,(︁

(g ◦ f)j
)︁
s′
◦ Js⋉ s ′KA

=
(︁
(gj)s′ ◦ (fj)s′

)︁
◦ Js⋉ s ′KA

= (gj)s′ ◦
(︁
(fj)s′ ◦ Js⋉ s ′KA

)︁
= (gj)s′ ◦

(︁
Js⋉ s ′KB ◦ (fi)s

)︁
f is an Sg-homomorphism

=
(︁
(gj)s′ ◦ Js⋉ s ′KB

)︁
◦ (fi)s

=
(︁
Js⋉ s ′KC ◦ (gi)s

)︁
◦ (fi)s g is an Sg-homomorphism

= Js⋉ s ′KC ◦
(︁
(g ◦ f)i

)︁
s

54 Algebraic Multi-Language Constructions

−
(mlConst) (k : s in Sgj)

kj : s
t : s

(mlSubsort) (s ⩽j r in Sgj)t : r

(∀1 ⩽ i ⩽ n) ti : si
(mlFun) (f : s1, . . . , sn → s in Sgj)

fj(t1, . . . , tn) : s

t : s
(mlInter) (s⋉ s ′ in Sg)

↪→s,s′(t) : s ′

Figure 4.6: Well-formed ground terms generated by a multi-language signature
Sg = (Sg1, Sg2,⋉).

Hence, as in the many-sorted and order-sorted case [GTWW77, GM92], we im-
mediately have the category of all the multi-language algebras over a multi-language
signature:

Proposition 4.2. Let Sg be a multi-language signature. The class of all Sg-algebras
and the class of all Sg-homomorphisms form a category Alg(Sg).

Category of algebras over Sg

4.2 Terms of a Multi-Language

In this section, we define the notion of multi-language (ground) terms over a multi-
Multi-language (ground) term

language signature Sg. Intuitively, we want multi-language terms to comprise all
those built out of the underlying order-sorted signatures Sg1 and Sg2, as well as those
obtained by the blending the two languages together according to the interoperability
constraints given by the join relation ⋉.

In particular, we aim for a construction where subterms of sort s ′ may have been
replaced by terms of sort s, whenever s⋉s ′ (recall that s and s ′ are syntactic categories
of different languages due to condition (4.1:ii)). Nonetheless, we must be careful not
to add ambiguities during this process: A term t may be generated from both Sg1 and
Sg2. When t is included in the multi-language, we lose the information to track the
original language, thus making the (multi-language) semantics of t ambiguous. The
simplest solution, explored in this section and refined in Section 4.4, to avoid such
issues is to add syntactical notations to make explicit the context of the language in
which we are operating.

Terms built out of a multi-language signature Sg are given by the rules in Fig-
ure 4.6. Except for (mlInter), the other rules are similar to the order-sorted case (cf.
Figure 3.2). However, the reader may notice that both function symbols (Rule (mlFun))
and constants (Rule (mlConst)) carry the information of the source language as a
subscript. For instance, this formalises some ad hoc multi-language specifications
found in literature: [PA14, AB11, PPDA17] exploit distinct colors to disambiguate the
source language of the operators, whereas [MF09] use different font styles for different
languages. Finally, the key aspect of multi-language terms is encoded in Rule (mlInter):
If t is a multi-language term of sort s and s⋉ s ′ (that is, s can interoperate with s ′),
then the new term ↪→s,s′(t) has sort s ′ and can be seen as the embedding of t in a
different language.

Running Example 4.3. Recall the multi-language signature of Running Example 4.2.
Well-formed multi-language terms built out of Sg(Exp + Str) according to rules in

4.2. Terms of a Multi-Language 55

Figure 4.6 are

↪→str,nat(+2(s2, ↪→nat,chr(11))) +1(21, 11) +2(m2, l2) ↪→chr,nat(↪→nat,chr(01))

In order to simplify the notation, we shall use colours in place of numerical subscript
(blue for the first signature, red for the second one). For instance, the previous terms
are re-written as

↪→str,nat(+(s, ↪→nat,chr(1))) +(2, 1) +(m, l) ↪→chr,nat(↪→nat,chr(0)) ♢

4.2.1 Multi-Language Term Algebra

As is the case with order-sorted terms, the construction of multi-language terms
over a signature Sg gives rise to a (multi-language) term algebra TSg . Its definition
goes through the concept of associated signature (recall that Sg = (Sg1, Sg2,⋉) and
(Si,⩽i) is the poset of sorts of Sgi with i = 1, 2):

Definition 4.4 (Associated Signature). The associated signature of a multi-language
Associated signature

signature Sg is the order-sorted signature Sg∗ defined by

(i) S = S1 ∪ S2 as set of sorts, ordered by ⩽ = ⩽1 ∪⩽2;

(ii) ki : s is a constant in Sg∗ if k : s is a constant in Sgi;

(iii) fi : w→ s is a function symbol in Sg∗ if f : w→ s is a function symbol in Sgi;
and

(iv) ↪→s,s′ is a function symbol in Sg∗, usually referred to as conversion operator , if
Conversion operator

s⋉ s ′ in Sg. ♢

Notation 4.4. Whenever we talk about the associated signature Sg∗ of Sg, we leave
implicit that (S,⩽) is the poset of sorts defined as in the previous definition. ♢

It is easy to see that an associated signature is indeed an order-sorted signature,
therefore admitting a term algebra TSg∗ . Although it may seem a suitable definition
of the multi-language term algebra, it does not meet Definition 4.2. Fortunately, we
can base the definition of TSg on the construction of TSg∗ , with the aim of providing
a fully-fledged multi-language term algebra.

Definition 4.5 (Multi-Language Term Algebra). The multi-language term algebra
Multi-language term algebra

TSg over a signature Sg is defined as follows: Let i = 1, 2, then

(i) the order-sorted Sgi-algebra (TSg)i is given by

(a) JsK(TSg)i = JsKTSg∗ for each s ∈ Sgi;

(b) JkK(TSg)i = JkiKTSg∗ for each constant k in Sgi;

(c) Jf : w→ sK(TSg)i = Jfi : w→ sKTSg∗ for each f : w→ s in Sgi; and

(ii) boundary functions are given by Js⋉ s ′KTSg = J↪→s,s′ : s→ s ′KTSg∗ for each
interoperability constraint s⋉ s ′ in Sg. ♢

Please note that (TSg)i differs from the term algebra over Sgi (which is denoted
by TSgi

). Indeed, TSgi
is a subobject of (TSg)i, where the latter also carries multi-

language terms with sorts in Sgi. The following example clarifies the distinction.

56 Algebraic Multi-Language Constructions

Running Example 4.4. Consider again the order-sorted signature Sg(Exp) along
with the multi-language specified by Sg(Exp + Str). For instance, the term +(0, 1)
appears in TSg(Exp) and — in its annotated version +(0, 1) — in (TSg(Exp+Str))1 (due
to this distinction, we refer to TSg(Exp) as a suboject of (TSg(Exp+Str))1 rather than a
subalgebra). Conversely, the “proper” multi-language term ↪→exp,chr(+(0, 1)) only
resides in the algebra (TSg(Exp+Str))1. ♢

4.3 Multi-Language Algebraic Semantics

The last step in order to finalise the framework is to provide multi-language terms
with a meaning. As with the order-sorted case, we need a notion of regularity in
order to prove the initiality of the multi-language term algebra in its category, which
in turn ensures a single eligible (initial algebra) semantics.

Definition 4.6 (Regularity). A multi-language signature Sg is regular if its associated
Multi-language regularity

signature Sg∗ is regular. ♢

Proposition 4.3. A multi-language signature Sg is regular if and only if Sg1 and Sg2
are regular.

Proof. (=⇒) Let Sg be a regular multi-language signature. Therefore, its associated
signature Sg∗ is regular. Let f : w→ s be a function symbol in Sgi (for some i = 1, 2)
and w0 ⩽ w a lower bound of w. We need to prove that the set

A = { (w ′, s ′) ∈ S+i × Si | f : w
′ → s ′ ∧w0 ⩽ w

′ }

admits a minimum. Since f is a function symbol in Sgi, then fi : w→ s is a function
symbol in Sg∗ by condition (4.4:iii). By regularity of Sg∗ it follows that

A∗ = { (w ′, s ′) ∈ S+ × S | fi : w
′ → s ′ ∧w0 ⩽ w

′ }

admits a minimum. Moreover,

(w ′, s ′) ∈ A ⇐⇒ ∃f : w ′ → s ′ in Sgi
⇐⇒ ∃fi : w ′ → s ′ in Sg∗

⇐⇒ (w ′, s ′) ∈ A∗
(4.1)

and therefore A = A∗. Since ⩽i is contained into ⩽, then they share the same
minimum.

(⇐=) Let Sg1 and Sg2 be regular signatures. Let fi : w → s be a function
symbol in Sg∗ and w0 ⩽ w a lower bound of w. Therefore, there is some i = 1, 2
such that f : w→ s is in Sgi. We need to prove that

A∗ = { (w ′, s ′) ∈ S+ × S | fi : w
′ → s ′ ∧w0 ⩽ w

′ }

has a minimum, and the argument is analogous to that of the previous case.

We are now in position to prove that TSg is the initial object in Alg(Sg). Initiality
of TSg is essential to assign a unique mathematical meaning to each term, as in the
order-sorted case: Given a multi-language algebra A , we have to show that there is a
single interpretation of each multi-language term t in A .

4.3. Multi-Language Algebraic Semantics 57

Theorem 4.1. Let Sg be a regular multi-language signature. Then, TSg is the initial
object of Alg(Sg).

Proof. We have to show that for each multi-language Sg-algebra A there is a unique
multi-language homomorphism h : TSg → A . Let A be such an algebra. Consider
the new order-sorted Sg∗-algebra B defined as follows:

• JsKB = JsKAi
if s ∈ Si for some i = 1, 2;

• JkiKB = JkKAi
for each constant ki : s in Sg∗ and for some i = 1, 2;

• Jfi : w→ sKB = Jf : w→ sKAi
for each function symbol f : w→ s in Sgi and

for some i = 1, 2; and

• J↪→s,s′ : s→ s ′KB = Js⋉ s ′KA for each s⋉ s ′ in Sg.

Proving that B is an order-sorted Sg∗-algebra is immediate. Since Sg is regular by
hypothesis, then Sg∗ is regular by Definition 4.6 and therefore TSg∗ is initial in its
category. Thus, there is a unique order-sorted Sg∗-homomorphism f : TSg∗ → B.
Moreover, we can regard f as a multi-language Sg-homomorphism h from TSg to A
by considering hi : (TSg)i → Ai the restriction of f to Si, that is hi = f|Si

. Checking
that hi is an order-sorted Sgi-homomorphism is trivial and omitted, and we only
prove that h satisfies condition (4.3:ii): Suppose that s⋉ s ′ with s ∈ Si and s ′ ∈ Sj
where i, j ∈ {1, 2} and i ̸= j, then

(hj)s′ ◦ Js⋉ s ′KA = (hj)s′ ◦ J↪→s,s′ : s→ s ′KB by def. of J↪→s,s′ : s→ s ′KB

= fs′ ◦ J↪→s,s′ : s→ s ′KB hj = f|Sj

= J↪→s,s′ : s→ s ′KB ◦ fs f is an Sg∗-homomorphism

= J↪→s,s′ : s→ s ′KB ◦ (hi)s hi = f|Si

= Js⋉ s ′KA ◦ (hi)s by def. of J↪→s,s′ : s→ s ′KB

For the uniqueness part, suppose that h ′ : TSg → A is a multi-language homomorph-
ism. Now let g be the S-sorted function g = h ′1 ∪ h ′2, that is

gs =

{︄
(h ′1)s if s ∈ S1
(h ′2)s if s ∈ S2

(this is well-defined, since S1 and S2 are disjoint). It is immediate to see that g is also
an order-sorted Sg∗-homomorphism from TSg∗ to B, and by uniqueness we have
g = f. Hence h ′ = h and the proof is concluded.

We can now provide the semantics of a multi-language Sg-term t induced by an
Multi-language term semanticsSg-algebra A . Let h : TSg → A be the unique multi-language homomorphism, and

let ls(t) in Sgi. Then,
JtKA = (hi)ls(t)(t) (4.2)

is the meaning of t induced by A . Note that the least sort of t is given with respect
to the associated signature Sg∗ (which is well-defined, since S = S1 ∪ S2).

Running Example 4.5. Consider the multi-language Sg(Exp + Str)-algebra M in
Running Example 4.2. The term algebra TSg(Exp+Str) over Sg(Exp + Str) provides all

58 Algebraic Multi-Language Constructions

the multi-language terms, and Theorems 4.1 ensures a unique denotation of each t in
TSg in M . For instance, the term

t = ↪→str,nat(+2(f2,

t2⏟ ⏞⏞ ⏟
+2(o2, ↪→exp,chr(

t4⏟ ⏞⏞ ⏟
+1(101, 51))⏞ ⏟⏟ ⏞
t3

))

⏞ ⏟⏟ ⏞
t1

) (4.3)

which, according to the notation introduced in Example 4.3, can be rewritten as

↪→str,nat(+(f,+(o, ↪→exp,chr(+(10, 5)))))

denotes the natural numbers 765:

Jt4KA = (h1)exp(t4) = J+: exp, exp→ expKA (J10KA , J5KA)

= J+: exp, exp→ expKA (10, 5) = 15

Jt3KA = (h2)chr(t3) = J↪→exp,chrKA (Jt4KA) = J↪→exp,chrKA (15) = o

Jt2KA = (h2)str(t2) = J+: str, str → strKA (JoKA , Jt3KA)

= J+: str, str → strKA (o, o) = oo

Jt1KA = (h2)str(t1) = J+: str, str → strKA (JfKA , Jt2KA)

= J+: str, str → strKA (f, oo) = foo

JtKA = (h1)nat = J↪→str,natKA (Jt1KA) = J↪→str,natKA (foo) = 765 ♢

4.4 Refining the Multi-Language Construction

The multi-language construction presented in Section 4.1 does not set any constraint
on boundary functions, thus giving a great deal of flexibility to language designers. For
instance, they can provide boundary functions that act differently between sorts and
subsorts: According to the running example, it would have been possible to define
Jnat ⋉ chrKM differently from Jexp ⋉ chrKM although nat ⩽Exp exp, in order to
employ distinct conversion specifications based on whether terms are used as natural
numbers (nat) or as expressions (exp). However, when this amount of flexibility is
not needed, we can refine the previous construction by simplifying the definition of
associated signature. In the following sections we examine

• the case where boundary functions satisfy the monotonicity conditions of
order-sorted algebra operators (Section 4.5); and

• the case where boundary functions commutes with the semantics of operator
symbols (Section 4.6).

In the first case, we shall see that we can handle the embedding of terms from one
language to another with a single polymorphic symbol ↪→ rather than a family of
parametrised conversion operators { ↪→s,s′ | s ⋉ s ′ }. This has a major benefit in
avoiding type cast bugs in real world implementations. Indeed, in this new kind of
construction, developers do not have to explicitly write the sorts when moving terms
across languages.

4.5. Subsort Polymorphic Boundary Functions 59

s1 s ′1

s2 s ′2

⋉

⩽i ⩽j

⋉

Figure 4.7: The commutativity diagram enforced by the SP signature definition.

Then, in the second case, we will define a new multi-language construction in
which no extra syntax is added when building multi-language terms. This means
that both conversion operators and operators subscript are not present in this new
formalisation. Despite the requirements for this last construction are more restrictive,
we will see that it turns out particularly useful for modelling the extension of a
language with a new fragment. In this case, boundary functions are likely to be
identity functions which trivially satisfy the constraints imposed by the framework.

Nonetheless, in both cases we prove that the introduced refinements do not
affect the initiality of the term algebra, thereby providing unambiguous semantics to
multi-language terms.

4.5 Subsort Polymorphic Boundary Functions

In the multi-language construction presented in Section 4.1, any interoperability
constraint s ⋉ s ′ turned into an operator ↪→s,s′ in the associated signature (see
condition (4.4:iv)). Here, we show how to handle all this syntactical overhead with
a single polymorphic operator ↪→ whenever interoperability constraints satisfy the
monotonicity condition of order-sorted signatures, that is conditions (3.1:iv).

Definition 4.7 (Subsort Polymorphic Multi-Language Signature). A subsort poly-
morphic (SP) multi-language signature is a multi-language signature Sg satisfying the

Subsort polymorphic (SP)

multi-language signaure
following additional constraint (see Figure 4.7):

(i) s1 ⋉ s ′1, s2 ⋉ s ′2, and s1 ⩽i s2 imply s ′1 ⩽j s
′
2 (i, j ∈ {1, 2} and j ̸= i). ♢

Such a constraint has the following meaning: If we can use terms of sort s1 and
s ′1 in place of terms of sort s2 and s ′2, respectively, and terms of sort s1 have also sort
s2, then the conversion of s1-terms has also to be s ′2-terms. Note that if s⋉ s ′1 and
s⋉ s ′2, then s ′1 = s

′
2.

Furthermore, order-sorted algebras demand consistency on the smaller domain
when interpreting subsort polymorphic operators, which results in the following
condition (4.8:i) on boundary functions:

Definition 4.8 (Subsort Polymorphic Multi-Language Algebra). Let Sg be an SP
multi-language signature. A subsort polymorphic (SP) multi-language Sg-algebra is a

Subsort polymorphic (SP)

multi-language algebra
multi-language Sg-algebra A such that

(i) s1⋉ s ′1, s2⋉ s ′2, and s1 ⩽i s2 imply that Js1⋉ s ′1KA (a) = Js2⋉ s ′2KA (a) for
each a ∈ Js1KA , with i = 1, 2. ♢

The notion of homomorphism in this new context does not change. That is, a
homomorphism between two SP algebras is still an S-sorted function decomposable
in two order-sorted homomorphisms that commutes with boundary functions.

60 Algebraic Multi-Language Constructions

−
(spmlConst) (k : s in Sgj)

kj : s
t : s

(spmlSubsort) (s ⩽j r in Sgj)t : r

(∀1 ⩽ i ⩽ n) ti : si
(spmlFun) (f : s1, . . . , sn → s in Sgj)

fj(t1, . . . , tn) : s

t : s
(spmlInter) (s⋉ s ′ in Sg)

↪→(t) : s ′

Figure 4.8: Well-formed ground terms generated by a subsort polymorphic multi-
language signature Sg = (Sg1, Sg2,⋉).

4.5.1 Subsort Polymorphic Term Algebra and Initial Semantics

Terms built out of a subsort polymorphic signature follow the same rationale as those
defined by the rules in Figure 4.6, with the single exception that conversion operators
do not require any kind of type annotation in their syntax. This shall lead to a single
polymorphic conversion operator. The new rules for term generation are depicted in
Figure 4.8.

Running Example 4.6. The multi-language signature Sg(Exp + Str) is subsort
polymorphic, indeed

• nat ⋉ chr , exp ⋉ chr , nat ⩽1 exp, and chr ⩽2 chr ; and

• chr ⋉ nat, str ⋉ nat, chr ⩽2 str , and nat ⩽2 nat.

Thus, the “equivalent” of multi-language terms shown in Running Example 4.3 are

↪→(+2(s2, ↪→(11))) +1(21, 11) +2(m2, l2) ↪→(↪→(01))

or, according to the previous notation,

↪→(+(s, ↪→(1))) +(2, 1) +(m, l) ↪→(↪→(0)) ♢

The associated signature to an SP multi-language signature merely differs from
Definition 4.4 for carrying a unique polymorphic operator ↪→ instead of a family of
parametrised symbols { ↪→s,s′ | s⋉ s ′ }.

Definition 4.9 (Subsort Polymorphic Associated Signature). The subsort polymorphic
(SP) associated signature to the SP multi-language signature Sg is the order-sorted

Subsort polymorphic (SP)

associated signature
signature Sg◦ defined by

(i) S = S1 ∪ S2 as set of sorts, ordered by ⩽ = ⩽1 ∪⩽2;

(ii) ki : s is a constant in Sg◦ if k : s is a constant in Sgi;

(iii) fi : w→ s is a function symbol in Sg◦ if f : w→ s is a function symbol in Sgi;
and

(iv) a function symbol ↪→ : s→ s ′ (the conversion operator) for each s⋉ s ′. ♢

We now prove the well-definedness nature of the new signature Sg◦. We shall
check the monotonicity of each operator in Sg◦, notably that of the polymorphic
conversion operator ↪→.

4.5. Subsort Polymorphic Boundary Functions 61

Proposition 4.4. Let Sg be an SP multi-language signature. Then, Sg◦ is a proper
order-sorted signature.

Proof. We need to check condition (3.1:iv). Let f : w1 → s and f : w2 → r be function
symbols in Sg◦ with w1 ⩽ w2. There are two cases:

• f = gi for some function symbols g : w1 → s and g : w2 → r in Sgi, for some
i = 1, 2. Since Sgi is an order-sorted signature, then s ⩽i r and therefore s ⩽ r
by (4.9:i).

• f = ↪→ where ↪→ : s1 → s ′1 and ↪→ : s2 → s ′2. Then, s1⋉ s ′1 and s2⋉ s ′2. Since
s1 = w1 ⩽ w2 = s2, by condition (4.7:i) follows that s ′1 = s ⩽ r = s

′
2.

Again, we can show that subsort polymorphic term construction is purely algebraic
by providing a proper term algebra. We will build such an algebra by exploiting the
order-sorted term algebra over the SP associated signature.

Definition 4.10 (Subsort Polymorphic Multi-Language Term Algebra). The subsort
polymorphic (SP) multi-language term algebra T ◦Sg over an SP signature Sg is defined

Subsort polymorphic (SP)

multi-language term algebra
as follows: Let i = 1, 2, then

(i) the order-sorted Sgi-algebra (T ◦Sg)i is given by

(a) JsK(T ◦
Sg)i

= JsKTSg◦ for each s ∈ Sgi;

(b) JkK(T ◦
Sg)i

= JkiKTSg◦ for each constant k in Sgi;

(c) Jf : w→ sK(T ◦
Sg)i

= Jfi : w→ sKTSg◦ for each f : w→ s in Sgi; and

(ii) boundary functions are given by Js ⋉ s ′KT ◦
Sg

= J↪→ : s → s ′KTSg◦ for each
interoperability constraint s⋉ s ′ in Sg. ♢

With the aim of defining an SP multi-language semantics, we need a notion of
regularity for SP signatures. As with ordinary multi-language signatures, SP regularity
shall be based on the associated signature, in an analogous way to Definition 4.6.

Definition 4.11 (Regularity). A subsort polymorphic multi-language signature Sg is
regular if its associated signature Sg◦ is regular. ♢

SP signature regularity

It is easy to prove that an equivalent of Proposition 4.3 still holds for subsort
polymorphic multi-language signatures.

Proposition 4.5. A subsort polymorphic multi-language signature Sg is regular if and
only if Sg1 and Sg2 are regular.

We can now define the category Alg◦(Sg) of SP multi-language algebras over a
given signature Sg, and we shall prove that the SP term algebra T ◦Sg is initial in this
category.

Proposition 4.6. Let Sg be an SP multi-language signature. The class of all SP Sg-
algebras and the class of all Sg-homomorphisms form a category Alg◦(Sg).

Category of SP algebras over Sg

Theorem 4.2. Let Sg be a regular SP multi-language signature. Then, T ◦Sg is the initial
object of Alg◦(Sg).

62 Algebraic Multi-Language Constructions

Proof. We have to show that for each SP multi-language Sg-algebra A there is a
unique multi-language homomorphism h : T ◦Sg → A . Let A be such an algebra.
Consider the new order-sorted Sg◦-algebra B defined as follows:

• JsKB = JsKAi
if s ∈ Si for some i = 1, 2;

• JkiKB = JkKAi
for each constant ki : s in Sg◦ and for some i = 1, 2;

• Jfi : w→ sKB = Jf : w→ sKAi
for each function symbol f : w→ s in Sgi and

for some i = 1, 2; and

• J↪→ : s→ s ′KB = Js⋉ s ′KA for each s⋉ s ′ in Sg.

Proving that B is an order-sorted Sg◦-algebra is easy, and we just prove the mono-
tonicity of the conversion operator (that is, condition (3.2:v)). Let ↪→ : s1 → s ′1 and
↪→ : s2 → s ′2 with s1 ⩽i s2 for some i = 1, 2. Then,

J↪→ : s1 → s ′1KB(x) = Js1 ⋉ s ′1KA (x)

= Js2 ⋉ s ′2KA (x) by cond. (4.8:i)

= J↪→ : s2 → s ′2KB(x)

Since Sg is regular by hypothesis, then Sg◦ is regular by Definition 4.11, and
therefore TSg◦ is initial in its category. Thus, there is a unique order-sorted Sg◦-
homomorphism f : TSg◦ → B. Moreover, we can regard f as a multi-language
Sg-homomorphism h from T ◦Sg to A by considering hi : (T ◦Sg)i → Ai the restriction
of f to Si, that is hi = f|Si

. Checking that hi is an order-sorted Sgi-homomorphism
is trivial and omitted, and we only prove that h satisfies condition (4.3:ii): Suppose
that s⋉ s ′ with s ∈ Si and s ′ ∈ Sj where i, j ∈ {1, 2} and i ̸= j, then

(hj)s′ ◦ Js⋉ s ′KA = (hj)s′ ◦ J↪→ : s→ s ′KB by def. of J↪→ : s→ s ′KB

= fs′ ◦ J↪→ : s→ s ′KB hj = f|Sj

= J↪→ : s→ s ′KB ◦ fs f is an Sg◦-homomorphism

= J↪→ : s→ s ′KB ◦ (hi)s hi = f|Si

= Js⋉ s ′KA ◦ (hi)s by def. of J↪→ : s→ s ′KB

For the uniqueness part, suppose that h ′ : T ◦Sg → A is a multi-language homomorph-
ism. Now let g be the S-sorted function g = h ′1 ∪ h ′2, that is

gs =

{︄
(h ′1)s if s ∈ S1
(h ′2)s if s ∈ S2

(this is well-defined, since S1 and S2 are disjoint). It is immediate to see that g is also
an order-sorted Sg◦-homomorphism from TSg◦ to B, and by uniqueness we have
g = f. Hence h ′ = h and the proof is concluded.

The semantics of a term t induced by an SP multi-language algebra A is defined
in the same way of ordinary multi-language algebras, thanks to the initiality result:

JtKA = (hi)ls(t)(t) (4.4)

where h : T ◦Sg → A is the unique multi-language semantic function with Sg the SP
signature. Moreover, the least sort of t is computed with respect to the associated
signature Sg◦.

4.6. Semantic-Only Boundary Functions 63

Example 4.1. The boundary functions of the example 4.2 are subsort polymorphic:

Jchr ⋉ natKA (a) = ord(a) = Jstr ⋉ natKA (a)

for each character a ∈ A, and

Jnat ⋉ chrKA = Jexp ⋉ chrKA

by definition. Thus, the equivalent of the term t (see Equation 4.3) in the SP term
algebra is

↪→(+2(f2,+2(o2, ↪→(+1(101, 51)))))

or, according to the previous notation,

↪→(+(f,+(o, ↪→(+(10, 5)))))

and denoting the same natural number 765. ♢

4.6 Semantic-Only Boundary Functions

In the previous section, we have shown how to handle the flow of values across
different languages with a single polymorphic operator. Now, we present a new multi-
language construction where neither extra operators are added to the associated
signature, nor single-language operators have to be annotated with subscripts indicat-
ing their original language. Thus, the resulting multi-language syntax comprises only
symbols in the original languages Sg1 and Sg2. Such a construction is achieved by:

• Imposing commutativity conditions on algebras, making homomorphisms trans-
parently inherit the semantics of boundary functions. The framework is there-
fore able to apply the correct value conversion function whenever it is necessary,
without the need of an explicit syntactical operator ↪→.

• Requiring a new form of cross-language polymorphism able to cope with shared
operators among languages. Indeed, the main issue here is that the same
operator might be present in both languages, but with different interpretation
functions. The initiality of term algebras is then preserved by modifying the
notion of signature in a way that every operator admits a least sort.

The variant of the framework presented in this section is particularly useful when
designing the extension of a language in a modular fashion. For instance, if the
signature Sg1 models the syntax of a simple functional language (e.g., see [GTWW77,
p. 77]) without an explicit encoding for string values, and Sg2 is a language for
manipulating strings (similar to the language L(Str) of the running example of this
chapter), we can exploit the construction presented below in order to embed Sg2 into
Sg1 without adding extra syntax.

4.6.1 Semantic-Only Multi-Language Signatures

A shared operator is an operator symbol which appears both in Sg1 and Sg2. For
instance, in regards to the running example, the function symbol + is a shared
operator. Contrary to the previous cases where such ambiguity is removed by adding
subscripts in the associated signature, we introduce a monotonicity requirements
that shall lead to a notion of subsort polymorphism across signatures.

64 Algebraic Multi-Language Constructions

w1 s1

w2 s2

f

⋉ ⋉

f

Figure 4.9: The graphical representation of the monotonicity requirement enforced
by the semantic-only multi-language signature definition.

Definition 4.12 (Semantic-Only Multi-Language Signature). A semantic-only (SO)
multi-language signature is a multi-language signature Sg satisfying the following

Semantic-only (SO)

multi-language signature
additional constraints:

(i) (S,⩽) is a poset, where S = S1 ∪ S2 and ⩽ = ⩽1 ∪⋉ ∪⩽2; and

(ii) f : w1 → s1 in Sgi, f : w2 → s2 in Sgj, and w1 ⋉ w2 imply s1 ⋉ s2, with
i, j ∈ {1, 2} and i ̸= j (see Figure 4.9). ♢

Condition (4.12:i) forces the subsort relation to be directed, avoiding symmetricity
of syntactic categories (which is typical when modeling language extensions), while
condition (4.12:ii) shifts the monotonicity condition of order-sorted signature to
shared operators.

We shall now define a proper notion of associated signature that does not carry
extra symbols, except those in the underlying signatures. The key idea is to treat
the interoperability constraints introduced by the join relation in the same way of
ordinary subsort constraints.

Definition 4.13 (Semantic-Only Associated Signature). The semantic-only (SO) asso-
ciated signature to the SO multi-language signature Sg is the order-sorted signature

Semantic-only (SO)

associated signature
Sg⋄ defined by

(i) S = S1 ∪ S2 as set of sorts, ordered by ⩽ = ⩽1 ∪⋉ ∪⩽2;

(ii) k : s is a constant in Sg⋄ if k : s is a constant in Sgi; and

(iii) f : w → s is a function symbol in Sg⋄ if f : w → s is a function symbol in
Sgi. ♢

Consider now the order-sorted term algebra TSg⋄ . If s ⋉ s ′ in Sg, then s ⩽ s ′

in Sg⋄. Then, by Rule (Subsort), JsKTSg⋄ ⊆ Js ′KTSg⋄ , and therefore we do not need an
explicit operator ↪→ that acts as a bridge between syntactic categories.

Regularity of SO signatures

Consider the ordinary definition of regularity:

Definition 4.14 (Regularity). A semantic-only multi-language signature Sg is regular
SO signature regularity

if its associated signature Sg⋄ is regular. ♢

4.6. Semantic-Only Boundary Functions 65

w̃ s̃ w s

w0

⩽2

f f

(S1,⩽1) (S2,⩽2)

f : w̃ → s̃ in Sg1 f : w→ s in Sg2

(a) The Hasse-like diagrams of regular sig-
natures Sg1 (left) and Sg2 (right).

w̃ s̃ w s

w0
⩽2⋉

f f

(S,⩽) ∀x ∈ S . f : w0 → x is
not in Sg

(b) The Hasse-like diagram of the non-regular sig-
nature Sg = (Sg1, Sg2,⋉).

Figure 4.10: A non-regular multi-language signature comprising two regular order-
sorted signatures.

Unfortunately, multi-language regularity does not follow anymore from the regu-
larity of the underlying languages and vice versa (see Figures 4.10 and 4.11).1 More
formally, Proposition 4.3 does not hold in this new context:

• Suppose S1 = {w̃, s̃}, S2 = {w0,w, s}, ⩽1 and ⩽2 to be the reflexive relations
on S1 and S2, respectively, plus w0 ⩽2 w. Suppose also that f : w̃ → s̃ is a
function symbol in Sg1 and f : w → s a function symbol in Sg2. If the cross-
language interoperability relation ⋉ is defined as w0⋉ w̃ and s⋉ s̃, the resulting
associated signature is no longer regular (Figure 4.10(b)), although Sg1 and Sg2
are regular (Figure 4.10(a)). In particular, it is easy to see that f : w̃ → s̃ and
w0 ⩽ w but the set { (w ′, s ′) | f : w ′ → s ′ ∧ w0 ⩽ w ′ } = {(w̃, s̃), (w, s)} does
not have a least element with respect to w0.

• On the other hand, let S1 = {w̃,w0,w1, s̃}, S2 = {w2, s2}, ⩽1 and ⩽2 be the
reflexive relations on S1 and S2, respectively, plus w0 ⩽1 w̃ and w0 ⩽1 w1, and
f : w̃ → s̃ and f : w1 → s̃ in Sg1. If the join relation ⋉ is defined as w2 ⋉ w̃,w1,
w0⋉w2, and s2⋉ s̃, the resulting associated signature is regular (Figure 4.11(b)),
although Sg1 is not (Figure 4.11(a)): Given f : w̃ → s̃ in Sg and w0 ⩽ w̃, the set
{ (w ′, s ′) | f : w ′ → s ′ in Sg ∧ w0 ⩽ w ′ } = {(w̃, s)̃, (w1, s)̃, (w2, s2)} has least
element (w2, s2) with respect to w0 (Figure 4.11(b)).

A positive result can be obtained by recalling that regularity is easier to check when
(S,⩽) satisfies the descending chain condition (DCC):

Lemma 4.1 (Regularity over DCC poset [GM92]). An order-sorted signature Sg over a
DCC poset (S,⩽) is regular if and only if whenever f : w1 → s1 and f : w2 → s2 in Sg
and there is some w0 ⩽ w1, w2, then there is some w ⩽ w1, w2 such that f : w→ s
and w0 ⩽ w.

At this point, we can relate the DCC of the poset (S,⩽) in the associated signature
of Sg to the DCC of (S1,⩽1) and (S2,⩽2):

1An (horizontal) arrow from a sequence of sortsw to a sort s labelled with a function symbol f is an
alternative shorthand for f : w→ s. A (vertical) single line between two sorts s below s ′ labelled with a
binary relation ⩽ means that s ⩽ s ′ (if the binary relation is the join relation ⋉ the line is doubled). A
dotted rectangle around operators is a graphical representation of the set of ranks (w,s) that must have
a minimum element in order for the signature to be regular.

66 Algebraic Multi-Language Constructions

w̃ s̃ w1 s̃

w0

w2 s2
⩽1 ⩽1

f f f

(S1,⩽1) (S2,⩽2)f : w0 → s̃
is not in Sg

f : w2 → s2 in Sg2

(a) The Hasse-like diagrams of signatures Sg1 (non-regular,
left) and Sg2 (regular, right).

w̃ s̃ w1 s̃

w2 s2

w0

⋉ ⋉⋉ ⋉

⋉

f f

f

(S,⩽)

f : w2 → s2 in Sg2

(b) The Hasse-like diagram of the
regular multi-language signature
Sg = (Sg1, Sg2,⋉).

Figure 4.11: A regular multi-language signature comprising a non-regular order-
sorted signature.

Proposition 4.7. Let Sg⋄ be the associated signature of the SO signature Sg. Then,
(S,⩽) is DCC if and only if (S1,⩽1) and (S2,⩽2) are DCC.

As a result, whenever we know that (S1,⩽1) and (S2,⩽2) are DCC, we can check
the regularity of Sg by employing the Lemma 4.1 without checking whether (S,⩽) is
DCC.

Example 4.2. Consider the example illustrated in Figure 4.10(a). Both (S1,⩽1) and
(S2,⩽2) satisfy the DCC, and therefore we can apply Lemma 4.1 to prove the non-
regularity of the multi-language signature in Figure 4.10(b). Consider the function
symbols f : w̃ → s̃ and f : w → s and the lower bound w0 ⩽ w̃,w. Note that for
each w0 ⩽ w ′ ⩽ w̃,w there is no f : w ′ → s ′ for any sort s ′. ♢

4.6.2 Semantic-Only Multi-Language Algebras

In the multi-language construction presented in this section, the behaviour of bound-
ary functions is no more bounded to syntactical operators as in the previous sections
(cf. conditions (4.10:ii) and (4.5:ii)), but it is inherited by homomorphisms. A necessary
condition to accomplish this aim is the commutativity of interpretation functions
with boundary functions:

Definition 4.15 (Semantic-Only Multi-Language Algebra). Let Sg be an SO multi-
language signature. A semantic-only (SO) multi-language Sg-algebra is an SP multi-

Semantic-only (SO)

multi-language algebra
language Sg-algebra A such that

(i) f : w1 → s1 in Sgi, f : w2 → s2 in Sgj, and w1 ⋉w2 imply

Js1 ⋉ s2KA ◦ Jf : w1 → s1KAi
= Jf : w2 → s2KAj

◦ Jw1 ⋉w2KA

with i, j ∈ {1, 2} and i ̸= j. ♢

Note that f : w1 → s1 in Sgi, f : w2 → s2 in Sgj, and w1 ⋉w2 imply s1 ⋉ s2 by
condition (4.12:ii).

4.6. Semantic-Only Boundary Functions 67

−
(somlConst) (k : s in Sgj)

k : s

t : s
(somlSubsort) (s ⩽j r in Sgj)t : r

(∀1 ⩽ i ⩽ n) ti : si
(somlFun) (f : s1, . . . , sn → s in Sgj)

f(t1, . . . , tn) : s

t : s
(somlInter) (s⋉ s ′ in Sg)

t : s ′

Figure 4.12: Well-formed ground terms generated by a semantic-only multi-language
signature Sg = (Sg1, Sg2,⋉).

Remark 4.1. Please note that an SO multi-language algebra A is also an SP algebra
by definition. That is, if s1 ⋉ s ′1, s2 ⋉ s ′2, and s1 ⩽i s2 for some i = 1, 2, then
Js1 ⋉ s ′1KA (a) = Js2 ⋉ s ′2KA (a). ♢

The notion of homomorphism between SO multi-language algebras remains
unchanged from Definition 4.3.

4.6.3 Semantic-Only Term Algebra and Initial Semantics

Terms built out of an SO multi-language signature are those resulting from the rules
in Figure 4.12. The reader may notice that constant terms and compound terms
are no longer annotated with subscripts denoting the original language. Moreover,
Rule (somlInter) makes a term t of sort s into a term of sort s ′, whenever s ⋉ s ′.
The term algebra over the current construction is defined similarly to Definition 4.5,
except for boundary functions:

Definition 4.16 (Semantic-Only Multi-Language Term Algebra). The semantic-only
(SO) multi-language term algebra T ⋄Sg over an SO signature Sg is defined as follows:

Semantic-only (SO)

multi-language term algebra
Let i = 1, 2, then

(i) the order-sorted Sgi-algebra (T ⋄Sg)i is given by

(a) JsK(T ⋄
Sg)i

= JsKTSg⋄ for each s ∈ Sgi;

(b) JkK(T ⋄
Sg)i

= JkKTSg⋄ for each constant k in Sgi;

(c) Jf : w→ sK(T ⋄
Sg)i

= Jf : w→ sKTSg⋄ for each f : w→ s in Sgi; and

(ii) boundary functions are given by Js⋉s ′KT ⋄
Sg
= idJsKTSg⋄

for each interoperability
constraint s⋉ s ′ in Sg. ♢

The definition of the boundary function Js⋉ s ′KT ⋄
Sg

as the identity on the carrier
set idJsKTSg⋄

permits us to treat terms of sort s as if they had sort s ′ without converting
them in a different syntactical form. Note that T ⋄Sg trivially satisfies the commutativity
condition (4.15:i), since boundary functions are defined as identities in the term
algebra.

Proposition 4.8. Let Sg be an SO multi-language signature. Then, the SO multi-
language term Sg-algebra is a proper SO multi-language algebra.

68 Algebraic Multi-Language Constructions

Again, we can show that SO Sg-algebras and Sg-homomorphisms between them
form a category denoted by Alg⋄(Sg):

Proposition 4.9. Let Sg be an SO multi-language signature. The class of all SO
Sg-algebras and the class of all Sg-homomorphisms form a category Alg⋄(Sg).

Category of SO algebras over Sg

We can now prove the initiality of T ⋄Sg in its category.

Theorem 4.3. Let Sg be a regular SO multi-language signature. Then, T ⋄Sg is the initial
object of Alg⋄(Sg).

Proof. Let A be an SO multi-language Sg-algebra. Recall that Sg = (Sg1, Sg2,⋉) and
(Si,⩽i) is the poset of sorts of Sgi, with i = 1, 2. Recall also that (T ⋄Sg)i and Ai are
the order-sorted Sgi-algebra underlying T ⋄Sg and A , with carrier sets (T⋄Sg)i and Ai,
respectively. We first construct a pair of Si-sorted function hi : (T⋄Sg)i → Ai for any
given multi-language Sg-algebra A , then we show that hi is a proper order-sorted
Sgi-homomorphism, and finally we prove its uniqueness.

1. (Construction) Let t be an order-sorted term in the carrier set (T⋄Sg)i with sort s,
that is, t ∈ JsK(T ⋄

Sg)i
. We define (hi)s by rule induction on t : s:

a) (Const) If t has been derived by Rule (Const), then there is k : s in Sgi with
s the least sort of t. Thus, we define

(hi)s(k) = JkKAi
(4.5)

b) (Fun) If t has been derived by Rule (Fun), then t = f(t1, . . . , tn) for some
function symbol f : s1, . . . , sn → s in Sgi. We define

(hi)s(f(t1, . . . , tn))

= Jf : s1, . . . , sn → sKAi
((hi)s1(t1), . . . , (hi)sn(tn)) (4.6)

c) (Sub) If t has been derived by Rule (Sub), then there is a sort s ′ such that
s ′ ⩽ s. Thus, we define

(hi)s(t) =

{︄
(hi)s′(t) s ′ ⩽i s

Js ′ ⋉ sKA ((hi)s′(t)) s ′ ⋉ s
(4.7)

Note that by definition of ⩽ in the associated signature (condition (4.13:i)),
if s ′ ⩽ s, then either s ′ ⩽j s for some j = 1, 2 or s ′⋉s. Since t ∈ JsK(T ⋄

Sg)i

by hypothesis, it follows that i = j and then (hi)s is fully defined.

2. (Correctness) We first prove that the Si-sorted function hi : (T⋄Sg)i → Ai is
indeed an Sgi-homomorphism hi : (T ⋄Sg)i → Ai.

a) (Condition (3.4:i)) Let k : s be a constant in Sgi. Then,

(hi)s(JkKT ⋄
Sg)i

) = (hi)s(k)

= JkKAi
by Eq. 4.5

4.6. Semantic-Only Boundary Functions 69

Let f : w→ s be a function symbol in Sgi with w = s1 . . . sn. Then, for
each tuple of ground terms t1 : s1, . . . , tn : sn,(︁

(hi)s ◦ Jf : w→ sK(T ⋄
Sg)i

)︁
(t1, . . . , tn)

= (hi)s(f(t1, . . . , tn))

= Jf : w→ sKAi
((hi)s1(t1), . . . , (hi)sn(tn)) by Eq. 4.6

=
(︁
Jf : w→ sK(T ⋄

Sg)i
◦ (hi)w

)︁
(t1, . . . , tn)

b) (Condition (3.4:ii)) Let s ⩽i r in Sgi. Then, by Equations 4.7 it is immediate
that (hi)s(t) = (hi)r(t) for each term t in JsK(T ⋄

Sg)i
.

In order to complete the correctness part of the proof, we need to check that
h is a multi-language homomorphism by proving condition (4.3:ii). Suppose
s⋉ s ′ with s ∈ Si and s ′ ∈ Sj where i, j ∈ {1, 2} and i ̸= j. Let t in JsK(T ⋄

Sg)i
.

By construction,(︁
(hj)s′ ◦ Js⋉ s ′KT ⋄

Sg)i

)︁
(t) = (hj)s′(t) by cond. (4.16:ii)

= Js⋉ s ′KA ((hi)s(t)) by Eq. 4.7

=
(︁
Js⋉ s ′KA ◦ (hi)s

)︁
(t)

3. (Uniqueness) Suppose that h ′ : T ⋄Sg → A is an Sg-homomorphism. We shall
show that h ′ = h. Let t ∈ JsK(T ⋄

Sg)i
. The proof is an easy rule induction on

t : s to prove that (h ′i)s(t) = (hi)s(t).

Thanks to the initiality of the term algebra, the semantics of a term t is defined as
usual: Let t : s be a term in T ⋄Sg , A an SO multi-language algebra, and h : T ⋄Sg → A
the unique homomorphism defined in the proof of Theorem 4.3. Then,

JtKA = (hi)ls(t)(t) (4.8)

with ls(t) the least sort of t in the associated signature Sg⋄.

Running Example 4.7. Let E and S be the order-sorted algebras over the sig-
natures Sg(Exp) and Sg(Str), respectively, defined in Running Example 4.1. Sup-
pose we are interested in a new multi-language signature Sg over Sg(Exp) and
Sg(Str) and a multi-language Sg-algebra A such that any string expressions t with
sort str in Sg(Str) can denote the natural number len(JtKS), where len gives the
length of the string, when used in place of Sg(Exp) terms. For instance, we require
that J+(10, 5)KA = J+(10, 5)KE = 15 and J+(f, o)KA = J+(f, o)KS = fo, but
J+(+(f, o),+(10, 5))KA = J+(fo, 15)KA = 17.

Since the requirements demand to use string expressions in place of natural
numbers, the join relation ⋉ shall define str ⋉ nat and ensure transitivity, hence

str ⋉ exp chr ⋉ nat chr ⋉ exp

Therefore, the new multi-language signature Sg = (Sg(Exp), Sg(Str),⋉) is trivially
an SO signature.

Furthermore, the signatures Sg(Exp) and Sg(Str) are trivially regular. However,
by blending them, we are generating subsort polymorphism on the function symbol

70 Algebraic Multi-Language Constructions

+, which is used as sum operator in Sg(Exp) and as concatenation operator in Sg(Str),
and therefore we have to check the regularity of the SO multi-language signature Sg.
This amounts to employ Lemma 4.1 (thanks to Proposition 4.7) by setting the lower
bound w0 to chr chr . Now let w1 = exp exp and w2 = str str . Since w0 ⩽ w1, w2,
we need to check the existence (w, s) such that w0 ⩽ w ⩽ w1 and w0 ⩽ w ⩽ w2
with +: w → s and s ⩽ exp, chr . Such a rank (w, s) exists and it is given by
w = str str and s = str . Other cases with different lower bounds are treated in a
similar way. Therefore, Sg is a regular SO signature.

The multi-language Sg-algebra A is now defined by taking E and S as underlying
algebras, and by defining boundary functions Js⋉ s ′KA for each s⋉ s ′:

Jchr ⋉ natKA (a) = Jchr ⋉ expKA (a) = 1

Jstr ⋉ natKA (a1 . . . an) = Jstr ⋉ expKA (a1 . . . an) = len(a1 . . . an) = n

The above definition of boundary functions satisfies both conditions (4.8:i) and (4.15:i),
thus A is a proper SO Sg-algebra.

The initiality theorem (Theorem 4.3) yields the semantic homomorphism from
T ⋄Sg to A . For instance, suppose we want to compute the multi-language semantics
of the term

t = +(+(f, o)⏞ ⏟⏟ ⏞
t1

,

t2⏟ ⏞⏞ ⏟
+(10, 5))

The least sorts of t, t1, and t2 are exp, str , and exp, respectively. The operator + be-
longs to both Sg(Exp), the addition +: exp, exp→ exp, and Sg(Str), the concatenation
+: str, str → str . Its least rank with respect to the lower bound ls(t1) ls(t2) = str exp
is the pair (exp exp, exp). By Equation 4.8 we have

JtKA = (h1)exp(t) = J+: exp, exp→ expKE ((h1)exp(t1), (h1)exp(t2))

Since ls(t1) = str and ls(f) = ls(o) = chr , then the least rank of + in t1 with respect
to the lower bound ls(f) ls(o) = chr chr is precisely (str str, str), thus

(h1)exp(t1) = Jstr ⋉ expKA ((h2)str(t1))

= Jstr ⋉ expKA (J+: str, str → strKS ((h2)str(f), (h2)str(o)))

= Jstr ⋉ expKA (J+: str, str → strKS (f, o))

= Jstr ⋉ expKA (fo)

= 2

Similarly, ls(t2) = exp and ls(10) = ls(5) = nat. Then the least rank of + in t1 with
respect to the lower bound ls(10) ls(5) = nat nat is (exp exp, exp), and therefore we
have

(h1)exp(t2) = J+: exp, exp→ expKE ((h1)exp(10), (h1)exp(5))

= J+: exp, exp→ expKE (10, 5)
= 15

Finally,

JtKA = J+: exp, exp→ expKE ((h1)exp(t1), (h1)exp(t2))

= J+: exp, exp→ expKE (2, 15)
= 17

4.7. Combining Untyped and Simply-Typed Lambda-Calculi 71

as desired. We can notice that without any conversion operator the framework is still
able to apply the correct boundary functions to move values across languages. ♢

4.7 Combining Untyped and Simply-Typed Lambda-Calculi

The first theoretical paper addressing the challenge of multi-language construction
is [MF09]. The authors study the so-called natural embedding, in which they combine
an extended model of the untyped call-by-value lambda-calculus, which is used as a
stand-in for Scheme, and an extended model of the simply-typed lambda-calculus,
which is used as a stand-in for ML. The novelty in their approach is how they succeed
to define boundaries in order to translate values from Scheme to ML. Indeed, the latter
does not admit an equivalent representation for each Scheme function. Their solution
is to “represent a Scheme procedure in ML at type τ1 → τ2 by a new procedure that
takes an argument of type τ1, converts it to a Scheme equivalent, runs the original
Scheme procedure on that value, and then converts the result back to ML at type τ2”.

Our goal here is not to discuss a fully explained presentation of ML and Scheme
languages in the form of order-sorted algebras, but rather to show how we can
model the natural embedding construction in our framework. Doing so, we provide
a formalisation of the untyped and simply-typed lambda-calculi, then we provide
suitable boundary functions able to move values across languages.

In Example 3.6 we have formalised the untyped lambda-calculus in detail. Here,
we do the same with the simply-typed lambda-calculus.

Example 4.3. We begin by defining types. Let nat be the sort of natural numbers.
We inductively define the set of simple types T as the smallest set satisfying

• nat ∈ T, and

• τ1, τ2 ∈ T implies τ1 � τ2 ∈ T.

The order-sorted signature of simply-typed lambda-calculus Sg(λ�) is defined by
taking S(λ�) = T as the set of sorts, equipped with the discrete order.

Recall that Var is a countably infinite set of variables (see Example 3.6). The set of
(typed) variables of simply-typed lambda-calculus is Var� = Var × T with instances
denoted by xτ ∈ Var�. Then, the operators in Sg(λ�) are

n : nat constant (for each n ∈ N)

xτ : τ variable (for each xτ ∈ Var�)

λxτ : τ
′ → (τ � τ ′) abstraction over xτ (for each xτ ∈ Var�)

◦ : (τ � τ ′), τ→ τ ′ application (for each τ, τ ′ ∈ T)

Since the order on the set of sorts S(λ�) is discrete, the signature Sg(λ�) is trivially
order-sorted.

We proceed now to define an order-sorted algebra S providing Sg(λ�)-terms
with a meaning. Let V� be the T-sorted family

V� = (V�τ | τ ∈ T) with

{︄
V�nat = N

V�τ1�τ2 = V�τ1 → V�τ2

72 Algebraic Multi-Language Constructions

of values, and Env� =
{︁
ρ : Var� →

⋃︁
V�

⃓⃓
(∀xτ ∈ Var�)(ρ(xτ) ∈ V�τ)

}︁
the set

of well-typed environments. We define the carrier set of S by taking

JτKS = Env� → V�τ

and we define interpretation functions

JnKS = ρ ↦→ n

JxτKS = ρ ↦→ ρ(xτ)

Jλxτ : τ ′ → (τ � τ ′)KS (m) = ρ ↦→ v ∈ V�τ ↦→ m(ρ[xτ ← [v])
J◦ : (τ � τ ′), τ→ τ ′KS (m1,m2) = ρ ↦→ (m1(ρ))(m2(ρ))

Therefore we have a unique semantic function eval� : TSg(λ�) → S providing
Sg(λ�)-terms with a meaning in S . ♢

Note that the definition of the interpretation sets JτKS is very loose, in the sense
that there are elementsm ∈ JτKS which are not the image of any Sg(λ�)-term. In
the following we will make use of the homomorphic image eval�(TSg(λ�)) given by
eval� (see Proposition 3.8), as formalised in the next example.

Example 4.4. We denote by S̄ the homomorphic image of TSg(λ�) given by eval�,
that is S̄ = eval�(TSg(λ�)). We recall the inner definition of such an algebra. The
interpretation sets JτKS̄ are given by the only elements in JτKS reachable by at least
one λ�-term, that is

JτKS̄ = {m ∈ JτKS | (∃t ∈ JτKTSg(λ�)
)(JtKS = m) }

Then, interpretation functions of S̄ are those of S restricted to the above interpret-
ations sets. The resulting (unique) homomorphism out of the term algebra is denoted
by eval� : TSg(λ�) → S̄ . ♢

Suppose we want to define a multi-language Sg(Sg(λ) + Sg(λ�)) over the order-
sorted signatures Sg(λ) and Sg(λ�) interpreted by algebras E and S̄ , respectively.
The main issues here is that there is no guarantee that type soundness is preserved in
the Sg(Sg(λ) + Sg(λ�))-calculus, since untyped lambda-calculus is Turing-complete,
whereas the simply-typed lambda calculus is not. Therefore, in order to proper handle
the conversion of a value in JexpKE into JτKS̄ we need to extend the carrier sets of
the simply-typed lambda-calculus with a new value ⊥, representing the notion of
stuck state or non-termination.

Example 4.5. Let JτKS̄ ⊥
= JτKS̄ ∪ {⊥}, and let the new interpretation functions

J−KS̄ ⊥
to output⊥ if one of their arguments is⊥ and the result of J−KS̄ otherwise, for

each operator symbol. Thus we have a new semantic function eval�⊥ : TSg(λ�) → S̄ ⊥.
It is trivial to check the commutativity of the following diagram, where i : S̄ → S̄ ⊥
is the set-inclusion:

TSg(λ�) S̄

S̄ ⊥

eval�

eval�⊥
i

4.7. Combining Untyped and Simply-Typed Lambda-Calculi 73

Moreover, we define

V̄
�
⊥ = ((V̄

�
⊥)τ | τ ∈ T) with

{︄
(V̄

�
⊥)nat = JnatKS̄ ⊥

= N⊥ = N ∪ {⊥}
(V̄

�
⊥)τ1�τ2 = Jτ1KS̄ ⊥

→ Jτ2KS̄ ⊥

and Env�⊥ =
{︁
ρ : Var� →

⋃︁
V̄
�
⊥
⃓⃓
(∀xτ ∈ Var�)(ρ(xτ) ∈ (V̄

�
⊥)τ)

}︁
. ♢

We can now blend the two lambda-calculi in the new multi-language signature
Sg(Sg(λ) + Sg(λ�)), and provide meaning to interoperability constraint by defining
a multi-language Sg(Sg(λ) + Sg(λ�))-algebra M .

Example 4.6. We would like to use λ-terms in place of λ�-terms and vice versa.
Therefore, we define the following interoperability constraints:

(∀τ ∈ T)(exp ⋉ τ) and (∀τ ∈ T)(τ⋉ exp)

In order to define the corresponding boundary functions, we need ways to convert
λ�-environments to λ-environment and back. Let

Var
β

←−−−−−−−−−−−−−−→
α

Var�

be any isomorphisms between these sets (it trivially exists, since both Var� = Var×T
and Var are countable). We shall extend such functions α and β to α̇ and β̇ between
environments:

Env Env�⊥

(Var → V) (Var� →
⋃︁
V̄
�
⊥)

α̇

β̇

α̇

β̇

In order to define α̇ and β̇ we introduce the following restriction operator

−|τ1→τ2 : [V → V]→ (V̄
�
⊥)τ1→τ2

which moves continuous functions in [V → V] to functions in (V̄
�
⊥)τ1→τ2 =

(V̄
�
⊥)τ1 → (V̄

�
⊥)τ2 whenever there are suitable translations. The definition is recurs-

ive on the sort τ1 → τ2, and we write function composition as arrow sequence to

74 Algebraic Multi-Language Constructions

highlight corresponding domains and codomains:

f|nat→nat =
(︁
(V̄

�
⊥)nat = N⊥

)︁
V V

ιN⊥ f

(︁
N⊥ = (V̄

�
⊥)nat

)︁πN⊥

f|nat→(τ1→τ2) =
(︂(︁

(V̄
�
⊥)nat = N⊥

)︁
V V

ιN⊥ f

[V → V]
)︂

π[V→V]
⃓⃓⃓
τ1→τ2

f|(τ1→τ2)→nat =
(︁
(V̄

�
⊥)τ1 → (V̄

�
⊥)τ2 ⊆ [V → V]

)︁
V V

ι[V→V] f

(︁
N⊥ = (V̄

�
⊥)nat

)︁πN⊥

f|(τ1→τ2)→(τ3→τ4) =
(︂(︁

(V̄
�
⊥)τ1 → (V̄

�
⊥)τ2 ⊆ [V → V]

)︁
V V

ι[V→V] f

[V → V]
)︂

π[V→V]
⃓⃓⃓
τ3→τ4

Let Var�τ = { xτ | x ∈ Var }. We can now define the transformation of a Sg(λ)-
environment to a Sg(λ�)-environment by letting α̇(η) = xτ ↦→ α̇ητ(x

τ) where
α̇ητ : Var�τ → (V̄

�
⊥)τ is

α̇ηnat = (Var�τ ⊆ Var�) Var V
(︁
N⊥ = (V̄

�
⊥)nat

)︁β η πN⊥

α̇ητ1→τ2 =
(︂
(Var�τ ⊆ Var�) Var V [V → V]

)︂⃓⃓⃓
τ1→τ2

β η π[V→V]

Conversely, we define β̇ : Env�⊥ → Env by

β̇ = ρ ∈ Env�⊥ ↦→ x ∈ Var ↦→ ιX(ρ(α(x)))

for the unique X ∈ {N⊥, [V → V]} such that ρ(α(x)) ∈ X. Note that the definition of
β̇ is simpler than α̇. Indeed, moving values from the simply-typed to the untyped
lambda calculus is far easier, since every Sg(λ�)-value admits a denotation in the
semantic domain of Sg(λ).

Finally, we can define the boundary functions of the multi-language. Suppose we
need to move a Sg(λ)-denotation e at a sort τ in Sg(λ�). Then,

Jexp ⋉ natKM (e) = β̇ ◦ e ◦ πN⊥

Jexp ⋉ τ1 → τ2KM (e) =
(︁
β̇ ◦ e ◦ π[V→V]

)︁⃓⃓
τ1→τ2

that is, in order to move a Sg(λ)-value e into the simply-typed lambda-calculus Sg(λ�)
at a type τ, we first run e on the conversion β̇(ρ) of the environment ρ, then we
convert the resulting value to a valid Sg(λ�)-value (that would be ⊥, in the worst
case scenario).

On the other hand, we define

Jτ⋉ expKM (m) = η ∈ Env ↦→ ιX(m(α̇(η)))

for the unique X ∈ {N⊥, [V → V]} such thatm(α̇(η)) ∈ X. ♢

CHAPTER 5
Multi-Language

Equational Logic

Chapter reference(s): [BCM20b]

In the previous chapter, we introduced multi-language algebras as an extension
of order-sorted algebras for modeling the combination of already existing languages,
the so-called multi-languages. On the other hand, equational logic is the natural
logic in the field of universal algebra since its early days. In this chapter, we address
the problem of equational reasoning in a multi-language context, where equations
are no longer defined between terms of the same (single-) language, but between
multi-language terms generated by different signatures.

In particular, we focus on equational algebras [Tar68, Bir35, GM82, Hig63, GM92].
Inspired by the classic results of [Bir35], we develop in detail a number of analogues
of standard concepts such as algebra congruences and quotients. These are put to use
in a completeness proof for a system of equational reasoning in the multi-language
setting. In general, we try to follow the same path of Sections 3.5 et seq. in a slightly
more compact presentation.

Summarising, the purpose of this section is to provide an equational logic in a
multi-language context. In particular, (i) we define equations between multi-language
terms; then, (ii) we prove the rules of order-sorted equational deduction are still sound
and complete for deriving all unconditional multi-language equations; and (iii) we
show the existence of a free algebra in each class of models over a coherent signature.

Structure We introduce free algebras for a multi-language signature, in order to
gain terms with variables and substitution homomorphisms. Then, we define the
standard concepts of congruences, kernel of a homomorphisms, and subalgebras in
the multi-language context. We proceed by defining the quotienting of a multi-
language algebra by a congruence relation. Finally, we introduce the equational
reasoning for multi-language theories, and in the last section we prove its soundness
and completeness.

75

76 Multi-Language Equational Logic

5.1 Multi-Language Free Algebra

To formally define the terms with variables of our multi-languages we shall make
use of the concept of free algebras. First we review the abstract concept, and then
we show that “multi-language terms built using variables” are a concrete instance
of a free algebra, as is already the case in the order-sorted world (see Section 3.5).
The universal property of a free algebra provides a convenient tool for defining and
working with term substitutions.

Let S be the set of sorts of the multi-language, that is S = S1 ∪ S2 (recall Nota-
tion 4.1). A free algebra is the loosest algebra generated from an S-sorted X (whose
elements are understood as variables). As usual [RT91, Pow85], the free algebra yields
terms with variables (as opposed to ground terms in the term algebra).

Notation 5.1. We first introduce some notation for multi-language homomorph-
isms, in order to simplify the exposition. Let h : A → B be a multi-language
Sg-homomorphisms, with Sg = (Sg1, Sg2,⋉) some multi-language signature. In the
following, we set S = S1 ∪ S2 the union of the sorts of the order-sorted signatures
Sg1 and Sg2. We define the S-sorted function h : A→ B, where A = A1 ∪A2 and
B = B1∪B2 (we recall thatAi and Bi are the carrier sets of the order-sorted algebras
Ai and Bi underlying A and B, respectively), such that for each s ∈ Si

hs : JsKAi
→ JsKBi

a ↦→ (hi)s(a)

Moreover, we write As or JsKA for JsKAi
if s ∈ Si. ♢

Lemma 5.1. The mapping h ↦→ h is well-defined, a bijection, and functorial in that
h ◦ h ′ = h ◦ h ′.

Proof. Immediate from the definitions.

Notation 5.2. Note that we will usually write h for h, thus identifying the two
concepts, and regard h : A → B and h : A→ B as inter-changeable throughout the
chapter. ♢

Definition 5.1 (Free Multi-Language Algebra). Let Sg be a multi-language signature
and X an S-sorted set of variables. A free multi-language Sg-algebra F (X) over X is

Free multi-language algebra
an Sg-algebra F (X) together with an S-sorted function ηX : X→ F(X), with F(X)
the carrier set of F (X), such that the following universal property is satisfied:

(i) for each Sg-algebra A , if a : X→ A is an S-sorted function, then there exists
a unique multi-language Sg-homomorphism a∗ : F (X) → A making the
following diagram commute:

X F(X) F (X)

A A

ηX

a a∗ a∗ (5.1)

♢

5.1. Multi-Language Free Algebra 77

The previous definition does not guarantee the existence of such a free Sg-algebra
over X. However, if it does exist it is unique up to a unique isomorphism. We now
provide a two-step syntactic construction, establishing existence. See, for instance,
[DW09, Definition 1.3.2], [GTWW77, p. 72], and [GM92, p. 14] for a free algebra
construction in the one-sorted, many-sorted, and order-sorted worlds. We now define
a specific instance of F (X), denoted by TSg(X), and constructed out of syntax.

Definition 5.2 ((Canonical) Free Multi-Language Algebra). Let Sg be a signature
and X an S-sorted family of variables (Xs | s ∈ S), each component also disjoint
from the symbols in Sg.

1. By setting (Xi)s = Xs and Xi =
(︁
(Xi)s

⃓⃓
s ∈ Si

)︁
we obtain an Si-sorted

set of variables, for i = 1, 2. We define the new multi-language signature
Sg(X) = (Sg1(X1), Sg2(X2),⋉) over X with the same interoperability relation
⋉ as Sg, along with order-sorted signatures Sgi(Xi) defined with

• the same poset (Si,⩽i) of sorts of Sgi;

• if the function symbol f : w → s is in Sgi, then f : w → s is also in
Sgi(Xi);

• if the constant k : s is in Sgi, then k : s is also in Sgi(Xi); and

• if x ∈ (Xi)s, then x : s is in Sgi(Xi).

Informally, Sgi(Xi) consists of all Sgi operators and, for all s ∈ Si, all variables
of sort si.

2. The (canonical) free multi-language Sg-algebra TSg(X) over X is defined by
(Canonical) Free

multi-language algebra
making direct use of the term Sg(X)-algebra TSg(X). The order-sorted Sgi-
algebras TSg(X)i, for i = 1, 2, are defined by

• JsKTSg(X)i = JsK(TSg(X))i for each s ∈ Si;
• JkKTSg(X)i = JkK(TSg(X))i for each constant k : s in Sgi; and

• Jf : w→ sKTSg(X)i = Jf : w→ sK(TSg(X))i for each f : w→ s in Sgi.

And
Js⋉ s ′KTSg(X) : JsKTSg(X)i → Js ′KTSg(X)j

where i, j ∈ {1, 2} and i ̸= j, is defined by

Js⋉ s ′KTSg(X)
: JsK(TSg(X))i → Js ′K(TSg(X))j ♢

Given X and Sg, a multi-language term with variable t is any element of the set
Multi-language term with variables

(TSg(X))s = JsKTSg(X) = JsKTSg(X)∗

for some sort s ∈ Si, with i = 1, 2. TSg(X)∗ is the “standard” term order-sorted
algebra over the associated signature Sg(X)∗, and we will say that t has sort s.

Proposition 5.1. We prove the previous equation, that is

(TSg(X))s = JsKTSg(X) = JsKTSg(X)∗

78 Multi-Language Equational Logic

Proof.

(TSg(X))s = JsKTSg(X) by Not. 5.2

= JsK(TSg(X))i s ∈ Si, for some i = 1, 2

= JsKTSg(X)∗ by Def. 4.5

We can now show the freeness of TSg(X) in Alg(Sg).

Theorem 5.1. Let Sg be a regular multi-language signature. Then, the Sg-algebra
TSg(X) is free over X in Alg(Sg).

Proof. Take Sg = (Sg1, Sg2,⋉). Let A be an Sg-algebra and a : X→ A an S-sorted
function. We need to define the data in the following diagram in such a way that the
Sg-homomorphism a∗ : TSg(X)→ A is unique and makes the diagram commute.

X TSg(X) TSg(X)

A A

ηX

a a∗ a∗ (5.2)

The S-sorted function ηX : X → TSg(X) has components (ηX)s : Xs → (TSg(X))s
given by set inclusions Xs ⊆ (TSg(X))s. Informally, the definition of a∗ : TSg(X)→
A is straightforward: it is specified by structural recursion, and is defined in the
unique way such that the definition yields a homomorphism. However, we provide
a few more details. We have to give two Sgi-homomorphisms a∗i : TSg(X)i → Ai,
or, by Lemma 5.1, equivalently giving an S-sorted function a∗ : TSg(X) → A with
components a∗s : (TSg(X))s → As), which act as homomorphisms and commute
with the boundary functions. Suppose that s ∈ Si, for some i = 1, 2. Whichever way
you prefer to work, the definitions require that we define Si (or, S) sorted functions
with components

(a∗i)s : JsKTSg(X)i → JsKAi
(or, a∗s : (TSg(X))s → As)

The source set is a set of inductively defined terms; hence a∗ exists and can be defined
by a structural recursion. Once again, the requirement to be an Sg-homomorphism
forces a∗ : TSg(X)→ A to be unique, bar the action on variable terms. However, the
commutivity also forces us to define

(a∗i)s(x ∈ Xs) = a(x)

We provide indicative details for an element of JsKTSg(X)i = JsKTSg(X)∗ (by Propos-
ition 5.1) of just one structural form, built from a function symbol and sub-terms.
Suppose that f : w → s in Sgi, so that fi : w → s in Sg(X). We show by example
some of the details of the recursive definition for the Sgi-homomorphism a∗i . To be a
homomorphism, picking any s ∈ Si, we require

(a∗i)s ◦ Jf : w→ sKTSg(X)i = Jf : w→ sKAi
◦ (a∗i)w

: JwKTSg(X)i → JsKAi

5.2. Subalgebras, Kernels, and Congruences in a Multi-Language Context 79

Note that Jf : w → sKTSg(X)i = Jfi : w → sKTSg(X)∗ . Suppose that w = s1 . . . sn
where each sk ∈ Si. If we pick any

(t1, . . . , tn) ∈ JwKTSg(X)i = Js1KTSg(X)i × · · · × JsnKTSg(X)i

then we recursively define

(a∗i)s(fi(t1, . . . , tn)) = Φ((a∗i)s1(t1), . . . , (a
∗
i)sn(tn))

The only recursive definition which yields a homomorphism is the one where

Φ = Jf : w→ sKAi

(noting Jfi : w→ sKTSg(X)∗ = fi). To ensure commutativity with boundary functions,
and for constants, we also recursively define

(a∗j)s′(↪→s,s′(t)) = Js⋉ s ′KA ((a∗i)s(t))

and
(a∗i)s(ki) = JkKAi

respectively. The four recursive clauses complete the definition of a∗.

Example 5.1. Let TSg(Exp+Str) be the multi-language term algebra over the signature
Sg(Exp + Str) of Example 4.2, and let X be the S-sorted set of variables defined by
Xnat = {n} and Xchr = {c}. Then, the free algebra TSg(Exp+Str)(X) carries the terms in
TSg(Exp+Str) enriched with variables in X. For instance, the multi-language term

t = +(↪→chr,nat(c), n)

is in TSg(Exp+Str)(X) but not in TSg(Exp+Str).
Since the freeness of TSg(Exp+Str)(X), given an assignment function f : X → A,

where A is the carrier set of the algebra M of Example 4.2, there is a unique homo-
morphism f∗ : TSg(Exp+Str)(X)→M able to compute the semantics of each term in
TSg(Exp+Str)(X). For instance, let fnat(n) = 0 and fchr(c) = a. Then,

f∗ls(t)(t) = f
∗
nat(t)

= J+: nat, nat → natKE (f∗nat(↪→chr,nat(c)), f
∗
nat(n))

= J+: nat, nat → natKE (Jchr ⋉ natKM (fchr(c)), fnat(n))

= J+: nat, nat → natKE (1, 0) = 1

Steps of this calculation are based on the (constructive) proof of Theorem 5.1. ♢

5.2 Subalgebras, Kernels, and Congruences in a
Multi-Language Context

The aim of this section is to introduce and extend well-known constructions of
universal algebra to multi-languages. Apart from this being interesting in its own
right, quotient algebras are central to our completeness proof. In particular, we
define the notions of congruence and quotient algebra. In order to better understand
the section, we recall that the same concepts in the order-sorted context have been
presented in Section 3.6.

80 Multi-Language Equational Logic

Proposition 5.2. Let h : A → B be an Sg-homomorphism. Then, h : A → B is an
isomorphism in Alg(Sg) if and only if h : A→ B is a bijection.

Definition 5.3 (Coherence). A multi-language signature Sg is locally filtered (re-
Locally filtered, Coherence

spectively, coherent) if its associated signature Sg∗ is locally filtered (respectively,
coherent). ♢

We shall sometimes need these properties for results to hold: and we will require
coherence for a well-defined notion of equation later in the chapter.

The notion of subalgebra is a generalization of the concept of subset in set theory.

Definition 5.4 (Multi-Language Subalgebra). Let A and B be two multi-language
Sg-algebras. Then, B is a multi-language Sg-subalgebra of A if

Multi-language subalgebra

(i) Bi is an order-sorted Sgi-subalgebra of Ai, for i = 1, 2; and

(ii) s⋉ s ′ implies Js⋉ s ′KA (b) = Js⋉ s ′KB(b) for each b ∈ JsKBi
provided that

s ∈ Si for some i = 1, 2. ♢

The next definition provides a convenient tool to build subalgebras.

Definition 5.5 (Closed Subset). Let A be a multi-language Sg-algebra. An S-sorted
subset B ⊆ A is closed in A if

Closed subset

(i) Bi = (Bs | s ∈ Si) is a closed subset of Ai (see Definition 3.8);

(ii) s⋉ s ′ implies Js⋉ s ′KA (b) ∈ (Bj)s′ for each b ∈ (Bi)s with i, j = 1, 2 and
i ̸= j. ♢

A subalgebra B of A is usually defined starting from a closed subset B ⊆ A. The
interpretation domains of B are exactly the components of B, while the interpretation
and the boundary functions of B are those of A restricted to B.

A very general way that subalgebras arise is from homomorphisms.

Lemma 5.2. Let h : A → B be a multi-language Sg-homomorphism. Then, the image
h(A) of h gives rise to a multi-language Sg-subalgebra of B, and denoted by h(A).

Proof. It is sufficient to show that h(A) is a closed subset in B, and then applying
the construction described above this lemma. We first prove that

h(A)i = (hs(As) | s ∈ Si)

is a closed subset in Bi. Since h(A)i = hi(Ai) and hi : Ai → Bi is an Sgi-
homomorphism, then h(A)i is closed in Bi by Proposition 3.8. We now need to
check condition (5.5:ii), that is, given s⋉ s ′ in Sg, the conversion Js⋉ s ′KB(x) of x
have to reside in (h(A)j)s′ , for each x ∈ (h(A)i)s with i, j = 1, 2 and i ̸= j. From
x ∈ (h(A)i)s, it follows that there is y in JsKAi

such that

Js⋉ s ′KB(x) = Js⋉ s ′KB(hs(y)) = hs′
(︁
Js⋉ s ′KA (y)

)︁
∈ h(A)s′

and hence the thesis.

5.2. Subalgebras, Kernels, and Congruences in a Multi-Language Context 81

This lemma asserts that the category of multi-language algebras is closed under
the taking of homomorphic images. Moreover, it is easy to prove that the corestriction
h ′ : A → h(A) of h to its image h(A) is indeed a homomorphism from A to the
subalgebra of B generated by h, that is h ′ : A → h(A).

A congruence (relation) is an equivalence relation on the carrier sets of a given
algebra which is compatible with its structure. We extend this notion to the multi-
language world.

Definition 5.6 (Multi-Language Congruence). Let A be a multi-language Sg-algebra.
A multi-language Sg-congruence

Multi-language congruence

≡ = (≡s ⊆ JsKAi
× JsKAi

| s ∈ Si for i = 1, 2)

is an S-sorted family of equivalence relations such that

(i) the Si-restriction≡|Si
= (≡s | s ∈ Si) is an Sgi-congruence on Ai for i = 1, 2;

and

(ii) s⋉ s ′ and a ≡s a ′ implies Js⋉ s ′KA (a) ≡s′ Js⋉ s ′KA (a ′) for each a, a ′ ∈
JsKA . ♢

One general way congruences arise is from homomorphisms:

Definition 5.7 (Kernel). Let f : A → B be an Sg-homomorphism. The kernel of f is
Kernel

the S-sorted family of equivalence relations ≡f defined by a(≡f)sa ′ if and only if
fs(a) = fs(a

′). ♢

Proposition 5.3. Let f : A → B be a multi-language Sg-homomorphism. Then, the
kernel of f is a multi-language Sg-congruence.

Proof. Given a homomorphism f : A → B one can check that

(≡f)|Si
= ≡fi

Moreover, fi : Ai → Bi is an order-sorted Sgi-homomorphism for i = 1, 2. Since
the kernel of an order-sorted Sgi-homomorphism is an order-sorted Sgi-congruence
(Proposition 3.9), the condition (5.6:i) is satisfied. As regards condition (5.6:ii), suppose
that s⋉ s ′ and a(≡f)sa ′. Then, fs(a) = fs(a ′) and therefore

Js⋉ s ′KB(fs(a)) = Js⋉ s ′KB(fs(a
′))

Since f is an Sg-homomorphism, it commutes with boundary functions (condi-
tion (4.3:ii)), thus

fs′(Js⋉ s ′KA (a)) = fs′(Js⋉ s ′KA (a ′))

and therefore
Js⋉ s ′KA (a)(≡f)s′Js⋉ s ′KA (a ′)

Let us denote by Cong(A) the set of all congruences on an algebra A . Then, we
have the following proposition:

Proposition 5.4. Let A be a multi-language Sg-algebra. Then, the set of multi-
language congruences on A is a complete lattice under the inclusion ordering, and it is
denoted by Cong(A).

82 Multi-Language Equational Logic

Proof. Let X be a set of congruences on A . It is well-known that the intersection of
arbitrary equivalence relations is still an equivalence relation. Moreover, let

ˆ︁≡ =
⋂︂

X =
⋂︂{︁
≡ ⊆ A×A

⃓⃓
≡ ∈X

}︁
=

{︂⋂︂
≡s ⊆ As×As

⃓⃓⃓
≡ ∈X ∧ s ∈ S

}︂
Then,

ˆ︁≡|Si
=

{︂⋂︂
≡s ⊆ As×As

⃓⃓⃓
≡ ∈X ∧ s ∈ Si

}︂
=

⋂︂{︁
≡|Si

⊆ Ai×Ai
⃓⃓
≡ ∈X

}︁
Since every ≡ ∈X is a multi-language congruence, then every restriction ≡|Si

is
an order-sorted Sgi-congruence by condition (5.6:i). By Proposition 3.10, ˆ︁≡|Si

is an
order-sorted Sgi-congruence, hence ˆ︁≡ satisfies condition (5.6:i). Finally, proving thatˆ︁≡ satisfies condition (5.6:ii) is trivial. Hence, the infimum of X is exactly ˆ︁≡ =

⋂︁
X .

Now, let

≡̌ =
⋂︂{︂

X ∈ Cong(A)
⃓⃓⃓ ⋃︂

X ⊆ X
}︂

Note that ≡̌ is an upper bound of X , and, by the first part of this proof, it is
also a congruence on A . Suppose that ≡̃ is another upper bound of X , namely
≡̃ ∈ Cong(A) and ≡ ⊆ ≡̃ for all ≡ ∈ X . Therefore,

⋃︁
X ⊆ ≡̃ and, by the

definition of ≡̌ , it follows that ≡̌ ⊆ ≡̃ . Hence, the supremum of X is ≡̌ .

5.3 Quotienting of Multi-Language Algebras

The next definition lifts the notion of quotient algebra to multi-languages. Intuitively, a
quotient algebra is the outcome of the partitioning of an algebra through a congruence
relation.

Definition 5.8 (Quotient Multi-Language Algebra). Let A be a multi-language
algebra over a locally filtered multi-language signature Sg. Given an Sg-congruence
≡, the quotient of A induced by ≡ is the Sg-algebra A /≡ defined as follows:

Quotient multi-language algebra

(i) (A /≡)i is the order-sorted quotient Sgi-algebra Ai/(≡|Si
); and

(ii) s⋉ s ′ implies Js⋉ s ′KA /≡([a]) =
[︁
Js⋉ s ′KA (a)

]︁
. ♢

For each quotient algebra A /≡ of the multi-language algebra A , the homo-
morphic quotient map q : A→ A/≡ is defined by q(a) = [a]. Moreover, the kernel

Quotient map
of q is exactly ≡. Following Definition 4.3 and Lemma 5.1 we shall also write q for
the order-sorted homomorphism q : A → A /≡.

In the following, if R is an S-sorted family of binary relations on A, we denote
by A /R the quotient multi-language algebra induced by the smallest congruence
relation ≡R that contains R. Such congruence always exists due to Proposition 5.4
and it is exactly

≡R =
⋂︂{︁
≡ ∈ Cong(A)

⃓⃓
≡ ⊆ R

}︁
Proposition 5.5. Let A be a multi-language algebra over a locally filtered multi-
language signature Sg. If R is an S-sorted family of binary relations on A, then the
quotient map q : A → A /R satisfies the following:

1. R ⊆ ≡q; and

5.3. Quotienting of Multi-Language Algebras 83

2. for each f : A → B such that R ⊆ ≡f there is a unique multi-language Sg-
homomorphism v : A /R→ B such that the following diagram commute:

A B

A /R

f

q
v

(5.3)

Proof. Point (1) follows from ≡q =
⋂︁
{≡ ∈ Cong(A) | ≡ ⊆ R }. As regards point

(2), let f : A → B be a multi-language homomorphism such that R ⊆ ≡f. Then,
fi : Ai → Bi is an order-sorted Sgi-homomorphism for i = 1, 2. Moreover, since
(A /R)i is the order-sorted quotient Sgi-algebra Ai/R|Si

(condition (5.8:i)), then
qi : Ai → Ai/R|Si

is exactly the order-sorted quotient map. Hence, by Proposi-
tion 3.11 there is an order-sorted Sgi-homomorphism vi : Ai/R|Si

→ Bi making the
following parametrised diagram commute:

Ai Bi

Ai/R|Si

fi

qi vi
(5.4)

Let v be the S-sorted function from the carrier of A /R to the carrier of B obtained by
joining v1 and v2. Since the domains of v1 and v2 are disjoint, then v is well-defined
and vi = v|Si

. We now prove that v is a multi-language homomorphism. We have
to check condition (4.3:ii): Let s⋉ s ′. Then, s ∈ Sj and s ′ ∈ Sk with j, k = 1, 2 and
j ̸= k. Thus,(︁

(vk)s′ ◦ Js⋉ s ′KA /R
)︁
([a]) = (vk)s′

(︂[︁
Js⋉ s ′KA (a)

]︁)︂
by cond. (5.8:ii)

= (fj)s′(Js⋉ s ′KA (a)) by Eq. 5.4

= Js⋉ s ′KB((fk)s(a)) by cond. (4.3:ii)

= Js⋉ s ′KB((vj)s([a])) by Eq. 5.4

=
(︁
Js⋉ s ′KB ◦ (vj)s

)︁
([a])

Finally, suppose that w : A /R→ B makes Diagram 5.3 commutes. Then, w|Si
= vi

for i = 1, 2, and hence the uniqueness.

By setting R = ≡f in this proposition, we get a multi-language version of the
first homomorphism theorem which gives an isomorphism between the homomorphic
image induced by f and the quotient algebra induced by ≡f.

Theorem 5.2 (First Isomorphism Theorem). Let Sg be a locally filtered signature. If
f : A → B is an Sg-homomorphism, then A /≡f ∼= f(A).

Proof. Let f ′ : A→ f(A) be the corestriction of f and R = ≡f′ in Proposition 5.5 (note
that f(A) is a multi-language algebra and f ′ a multi-language homomorphism by
Lemma 5.2). Then, there is a unique v : A /≡f′ → B making Diagram 5.3 commutes,
and, by Theorem 5.2, vi is an order-sorted Sgi-isomorphism, for i = 1, 2. Thus, by
Proposition 5.2, v is a multi-language isomorphism and hence the thesis.

84 Multi-Language Equational Logic

5.4 Equational Logic for Multi-Language Theories

We now give an equational logic for multi-language terms. We define equations
between multi-language terms and show that our system is sound and complete for
Sg-algebras. We also show the existence of an initial algebra. Through conversion
operators ↪→, multi-language equations can usefully axiomatize boundary functions.

Definition 5.9 (Multi-Language Equations). Let Sg be a coherent multi-language
signature, X be an S-sorted set of variables, and TSg(X) the free Sg-algebra over X.
An (unconditional) multi-language Sg-equation over X is a judgement of the form

Multi-language equation

(∀X) t = t ′

such that t ∈ JsKTSg(X) and t ′ ∈ Js ′KTSg(X) for some s, s ′ ∈ Si and some i = 1, 2,
where s and s ′ are connected via ⩽i (equivalently, least sorts ls(t) and ls(t ′) falls in
the same connected component of Si). ♢

Note that (∀X) t = t ′ is an Sg-equation. The connectedness of ls(t) and ls(t ′),
and coherence which ensures both terms have a super-sort, is necessary to ensure
that forthcoming definitions of equation satisfaction are well-defined.

Definition 5.10 (Conditional Multi-Language Equations). Let Sg be a coherent multi-
language signature, X be an S-sorted set of variables, and TSg(X) the free Sg-algebra
over X. A multi-language conditional Sg-equation over X is a judgement of the form

Multi-language conditional

equation (∀X) t = t ′ ⇐ C

such that (∀X) t = t ′ is an Sg-equation and C is a finite set of Sg-equations over X.
Whenever we want to be explicit about the equations in C, we rewrite the previous
equation as

(∀X) t = t ′ ⇐
n⋀︂
i=1

ti = t
′
i

where (∀X) ti = t ′i belongs to C for each i = 1, . . . , n. ♢

As is the case for order-sorted equations, any unconditional multi-language equa-
tion (∀X) t = t ′ can be regarded as (∀X) t = t ′ ⇐ ∅. Moreover, we write Ax(X)
for any set of conditional and/or unconditional equations over a set of variables X
and we call Ax(X) a set of Sg-axioms over X.

The next step is to show how new equations can be inductively generated (derived)
from a set of axioms. The rules require the concept of substitution, namely a syntactic
transformation that replaces variables with terms. Let X and Y be two sets of variables.
A variable substitution is an S-sorted function θ : X→ TSg(Y): for each variable x ∈ XsVariable substitution
we supply a term θs(x), of sort s, involving variables from Y. Then, by the freeness of
TSg(X), there is a unique substitution homomorphism θ∗ : TSg(X)→ TSg(Y) induced

Substitution homomorphism
by θ such that θ∗ ◦ ηX = θ: The idea is that for any t ∈ JsKTSg(X), θ

∗ recurses over t
and then finally substitutes θs(x) for each x occuring in t.

Notation 5.3. We shall adopt some further notation, used in the rules. If a : X→ A,
where X is a set of variables, then any x ∈ Xs has the unique sort s and we write a(x)
for as(x). Further, for any S-sorted homomorphism h : TSg(X)→ A , if t ∈ JsKTSg(X)

then of course hs(t) ∈ JsKA . But, since there is a least sort ls(t), also

t ∈ Jls(t)KTSg(X) ⊆ JsKTSg(X)

5.4. Equational Logic for Multi-Language Theories 85

(∀X) t = t ′ ∈ Ax(X)
(mlAx)

(∀X) t = t ′
−

(mlRef)
(∀X) t = t

(∀X) t = t ′
(mlSym)

(∀X) t ′ = t

(∀X) t = t ′ (∀X) t ′ = t ′′
(mlTrans)

(∀X) t = t ′′

θ,ϕ : X→ TSg(Y)

(∀s ∈ S, ∀x ∈ Xs) (∀Y) θs(x) = ϕs(x)
(mlCong)

(∀Y) θ∗(t) = ϕ∗(t)

θ : X→ TSg(Y)

(∀X) t = t ′ ⇐
⋀︁n
i=1 ti = t

′
i ∈ Ax(X)

(∀1 ⩽ i ⩽ n) (∀Y) θ∗(ti) = θ∗(t ′i)
(mlSub)

(∀Y) θ∗(t) = θ∗(t ′)
Figure 5.1: Inference rules for inductively defining equational logic.

and since h is a homomorphism we have

hls(t)(t) = hs(t) ∈ Jls(t)KA ⊆ JsKA

Thus, from now on we write h(t) for hls(t)(t) (that is, h(t) = hs(t) ∈ JsKA) to
reduce subscript notation. ♢

Definition 5.11 (Equations Derived from Axioms). Given a set Ax(X) of axioms
over a set X of variables, the inductive rules of equational logic allow the derivation
of new unconditional equations. Our rules in Figure 5.1 are a modification of those
in [GM92], and they make use of the following notation: t, t ′, and t ′′ are multi-
language terms in TSg(X), with Sg a multi-language signature, and θ,ϕ : X→ TSg(Y)
are two variable substitutions from X to TSg(Y) over a set Y of variables. Thus one
also has Sg-homomorphisms θ∗, ϕ∗ : TSg(X)→ TSg(Y) by freeness. ♢

In the following, if Ax(X) is a set of Sg-axioms, we call Th = (Sg,Ax(X)) a
multi-language theory. If (∀X) t = t ′ is generated from Ax(X), then we say that

Multi-language theory, Theorem
(∀X) t = t ′ is a theorem derivable (or, generated) from Th.

The meaning of the rules of multi-language equational logic is analogous to
the order-sorted case (Section 3.8); despite the form of the rules is the same, terms
appearing in equations are (potentially) built from a combination of both underlying
signatures Sg1 and Sg2, that is they are multi-language terms. Therefore, the main
theorems of this chapter (soundness and completeness) have to be proven with respect
the multi-language definitions of terms, equations, and satisfaction.

The rule (mlCong) intuitively says that replacing equals for equals yields new
equalities, that is, term formation is a congruence. Thus we may build new equations
using the “usual/informal” rules of equational reasoning. One easily proves admissible
rule

(∀X) t = t ′
(mlGSub) θ : X→ TSg(Y)

(∀Y) θ∗(t) = θ∗(t ′)
namely that if (∀X) t = t ′ has been derived from the theory, then (∀Y) θ∗(t) =
θ∗(t ′) is also derivable; but note that the proof requires the following fact: Let

86 Multi-Language Equational Logic

X, Y, and Z be variable sets, the composition of two substitution homomorphisms
θ∗1 : TSg(X)→ TSg(Y) and θ∗2 : TSg(Y)→ TSg(Z) is still a substitution homomorph-
ism, since it is induced by θ∗2 ◦ θ1. To see that

θ∗2 ◦ θ∗1 = (θ∗2 ◦ θ1)∗ (5.5)

note that
(θ∗2 ◦ θ1)∗ ◦ ηX = θ∗2 ◦ θ1 = (θ∗2 ◦ θ∗1) ◦ ηX

Notation 5.4. In the following, whenever we introduce a multi-language theory Th
we leave implicit that Th = (Sg,Ax(X)). ♢

5.5 Soundness, Completeness, and Freeness Results

We now prove the main results of the chapter, namely soundness and completeness
of the deduction and the freeness of the algebra obtained by quotienting the multi-
language free algebra by the usual congruence relation that links provably equal
multi-language terms.

Definition 5.12 (Satisfaction). Let A be a multi-language algebra over a regular
multi-language signature Sg, and X a set of variables. The algebra A satisfies an
unconditional equation

(∀X) t = t ′ ⇐
n⋀︂
i=1

ti = t
′
i

if for each assignment function a : X → A such that a∗ : TSg(X) → A equalizes
each premise (∀X) ti = t ′i, that is,

a∗(ti) = a
∗(t ′i)

then a also equalizes t and t ′, namely

a∗(t) = a∗(t ′)

Also, A satisfies an unconditional Sg-equation (∀X) t = t ′ just in case each assign-
ment function a : X→ A equalizes t and t ′. ♢

Let Ax(X) be a set of conditional and/or unconditional equations. If an Sg-algebra
A satisfies each equation in Ax(X) we say that A is a model of the multi-language

Multi-language model
theory Th = (Sg,Ax(X)). Think of Ax(X) as a set of axioms satisfied (modelled) by
the Sg-algebra A .

One may generalize the above fact about substitution homomorphisms (see Equa-
tion 5.5) to arbitrary assignment functions and Sg-homomorphisms. We do so in the
next lemma, which is used in the proof of soundeness and completeness.

Lemma 5.3. Let A and B be two Sg-algebras over a regular multi-language signature
Sg. If a : X→ A is an assignment function and h : A → B is an Sg-homomorphism,
then

(h ◦ a)∗ = h ◦ a∗ : TSg(X)→ B

Proof. The proof is easy. We have

(h ◦ a∗) ◦ η = h ◦ (a∗ ◦ η) = h ◦ a

and we are done by uniqueness.

5.5. Soundness, Completeness, and Freeness Results 87

Theorem 5.3 (Soundness and Completeness). Let Th be a theory over a coherent
multi-language signature Sg and (∀Y) t = t ′ any equation. Then, (∀Y) t = t ′ is
derivable from the theory just in case, for every Sg-model A of the theory Th, we have
that A satisfies the equation (∀Y) t = t ′.

Proof. (Soundness) The proof of soundness is by rule induction, using the rules in
Figure 5.1. We give only the cases below:

• (mlCong) Suppose an equation has been derived by Rule (mlCong). By induction,
we know that each equation

(∀Y) θs(x) = ϕs(x)

for every s ∈ S and x ∈ Xs is satisfied by the algebra A . Pick any assign-
ment function a : Y → A and any term t in TSg(X). We need to show that
(∀Y) θ∗(t) = ϕ∗(t) is satisfied by A , that is, a∗(θ∗(t)) = a∗(ϕ∗(t)). For any
x ∈ Xs we have that a∗(θs(x)) = a∗(ϕs(x)) which implies that

a∗ ◦ θ = a∗ ◦ ϕ : X→ A

By the freeness of TSg(X) we have

(a∗ ◦ θ)∗ = (a∗ ◦ ϕ)∗ : TSg(X)→ A

and hence a∗ ◦ θ∗ = a∗ ◦ ϕ∗ by Lemma 5.3.

• (mlSub) Suppose an equation has been derived by Rule (mlSub). We have to
prove that a∗(θ∗(t)) = a∗(θ∗(t ′)) for any assignment function a : Y → A.
Now A satisfies

(∀X) t = t ′ ⇐
n⋀︂
i=1

ti = t
′
i

since all axioms are satisfied by Rule (mlAx), which means that for each i =
1, . . . , n

a∗(ti) = a
∗(t ′i) =⇒ a∗(t) = a∗(t ′)

Using the induction hypothesis, we have

(a∗ ◦ θ)∗(ti) = (a∗ ◦ θ)∗(t ′i)

for each i = 1, . . . , n, where a∗ ◦ θ : X → A, and so we deduce that (a∗ ◦
θ)∗(t) = (a∗ ◦ θ)∗(t ′). But (a∗ ◦ θ)∗ = a∗ ◦ θ∗ so we have a∗(θ∗(t)) =
a∗(θ∗(t ′)) as required.

Soundness has been straightforward to prove. In order to prove completeness, we
build a quotient algebra (see [Bir35]) TTh(Y) on TSg(Y) such that given terms t and
t ′ in the same equivalence class, the equation (∀Y) t = t ′ can be derived from Th.
The S-sorted binary relation ∼ is defined on the carrier sets of TSg(Y) as

t ∼s t
′ if and only if (∀Y) t = t ′ is derivable from Th

where t, t ′ ∈ JsKTSg(Y). Trivially ∼ is an equivalence relation and a congruence on
TSg(Y). Hence, we can build the quotient algebra TSg(Y)/∼ denoted by TTh(Y). The
elements of TTh(Y) are exactly equivalence classes of terms, provably equal from Th.
Indeed, it is easy to prove that [t] = [t ′] if and only if (∀Y) t = t ′ is derivable from
the theory. Moreover we have the following proposition

88 Multi-Language Equational Logic

Proposition 5.6. If (∀Y) t = t ′ is satisfied by TTh(Y), then (∀Y) t = t ′ is derivable
from Th.

Proof. Suppose that TTh(Y) satisfies an equation (∀Y) t = t ′. Then we know for
any a : Y → TTh(Y) we have a∗(t) = a∗(t ′) in TTh(Y), that is a∗(t) = a∗(t ′) in
TSg(Y)/∼. Taking a to be the quotient map on variables, that is a(x) = [x], we have

a∗(t) = [t] = [t ′] = a∗(t ′)

by calculating with Definition 3.13. Hence t ∼ t ′ which implies that (∀Y) t = t ′ is
derivable from Th.

The proof of completeness is then immediate by observing that TTh(Y) is a model
of Th itself, for then that TTh(Y) satisfies any conditional axioms (∀X) t = t ′ ⇐ C
follows by the assumption in the theorem. The class of the multi-language Sg-algebras
satisfying a theory Th is denoted by Mod(Th), namely the class of models satisfying
Th. If we take all the Sg-homomorphisms between them, we have that Mod(Th) is a
full subcategory of Alg(Sg). In fact TTh(Y) is free in Mod(Th), where the freeness is
defined along the lines of Definition 5.1.

Theorem 5.4. Let Th be a theory over a coherent signature Sg. Then, the quotient
algebra TTh(Y) is the free algebra over Y in Mod(Th).

Proof. Let A satisfy each axiom and let a : Y → A be an assignment function. We
prove there is a unique multi-language homomorphism a• : TTh(Y)→ A making the
following diagram commute (where qY : Y → TTh(Y) is defined as qY(y) = [ηY(y)],
that is, qY = q ◦ ηY with q the quotient map q : TSg(Y)→ TTh(Y)):

Y TTh(Y) TTh(Y)

A A

qX

a a• a• (5.6)

Let a∗ : TSg(Y)→ A be the unique homomorphism such that a∗◦ηY = a (due to the
freeness of TSg(Y)): Suppose t ∼s t ′ for some t, t ′ ∈ JsKTSg(Y). Then, by definition
of ∼, the equation (∀Y) t = t ′ is derivable from Th, and, by Theorem 5.3, the algebra
A satisfies (∀Y) t = t ′ implying that a∗(t) = a∗(t ′). Hence, t (≡a∗)s t

′, and
therefore ∼ ⊆ ≡a∗ . Let us define a•[t] = a∗(t). This is well-defined since we just
proved that if t ∼ t ′ then a∗(t) = a∗(t ′). Further,

a• ◦ qY(y) = a•([ηY(y)]) = a∗(ηY(y)) = a(y)

Since initiality is a special case of the freeness property and TSg(∅) = TSg , then
TTh(∅) is an initial object in Mod(Th).

Example 5.2. The following example is a variation of Example 4.2. Here, we show an
application of the just developed theory for equational reasoning in a multi-language
context (an example involving programming languages will be shown in Chapter 6 in
the context of categorical logic).

Consider the following order-sorted signatures:

5.5. Soundness, Completeness, and Freeness Results 89

• The order-sorted signature Sg1 defines the symbols of a language for construct-
ing simple mathematical expressions over natural numbers in Peano’s notation:
Let the set of sort S1 = {nat} be a set with a single sort nat denoting the type
of natural numbers (and therefore, the relation ⩽1 must be the reflexive one
on S1). Then, the operators are specified by the symbols

0 : nat zero

s : nat → nat successor

+: nat, nat → nat addition

• Let c ∈ A = {a, b, . . . , z} be the metavariable ranging over a finite set A of
characters. The order-sorted signature Sg2 defines a language to build strings
over a finite alphabet of symbols A. The set of sort S2 = {chr, str} carries the
sort str for strings and the sort c for characters. The subsort relation ⩽2 is the
reflexive relation on S2 plus chr ⩽2 str (i.e., characters are one-symbol strings),
and the operators are

c : chr character (for all c ∈ A)

next : chr → chr next character

+: str, str → str string concatenation

Interpretations of Sg1 and Sg2 are given by the order-sorted algebras A1 and A2,
respectively. Let the interpretation domain of A1 be JnatKA1

= N and those of A2
be JchrKA2

= A ⊆ A∗ = JstrKA2
. Moreover, we define the interpretation functions

as follows (the juxtaposition of two or more strings denotes their concatenation):

J0KA1
= 0

Js : nat → natKA1
(n) = n+ 1

J+: nat, nat → natKA1
(n1, n2) = n1 + n2

JcKA2
= c

Jnext : chr → chrKA2
(c) = c ′

J+: str, str → strKA2
(s1, s2) = s1s2

where c ′ is the character following c in A (we are assuming the standard alphabetical
order on A). Since Sg1 and Sg2 are regular order-sorted signatures, then A1 and A2
induce unique semantic functions h1 : TSg1

→ A1 and h2 : TSg2
→ A2, providing

the (initial algebra) semantics of the languages.
We now provide order-sorted equations for Sg(Exp) and Sg(Str) separately, and

then we axiomatize the behaviour of boundary functions of the multi-language de-
scribed in Example 4.2 by the use of multi-language equations. Finally, we apply the
rules of deduction and the soundness theorem to prove that the multi-language se-
mantics of +(↪→chr,nat(c), n) and s(n) is the same under any assignment (where c and
n are variables of sort chr and nat, respectively). Let Ax(XSg(Exp)) be the set contain-
ing the following order-sorted Sg(Exp)-equations, where XSg(Exp) = {n : nat,m : nat}

90 Multi-Language Equational Logic

is the set of variables:

(∀XSg(Exp)) +(0, n) = n (5.7)

(∀XSg(Exp)) +(n, 0) = n (5.8)

(∀XSg(Exp)) +(s(n),m) = s(+(n,m)) (5.9)

(∀XSg(Exp)) +(n,m) = +(m,n) (5.10)

Similarly, let Ax(XSg(Str)) be the set of axioms containing the following order-
sorted Sg2-equations:

(∀XSg(Str)) next(a) = b (5.11)

(∀XSg(Str)) next(b) = c (5.12)

(∀XSg(Str)) . . . = . . . (5.13)

(∀XSg(Str)) next(z) = a (5.14)

Let us recall the definition of the multi-language signature Sg(Exp + Str) =
(Sg(Exp), Sg(Str),⋉) and the multi-language Sg(Exp + Str)-algebra M (with under-
lying order-sorted algebras A1 and A2 defined above, respectively). We define the
interoperability constraints and the boundary functions as follows:

exp ⋉ chr Jexp ⋉ chrKM = chr

nat ⋉ chr Jnat ⋉ chrKM = chr

chr ⋉ nat Jchr ⋉ natKM = ord

str ⋉ nat Jstr ⋉ natKM (a0 . . . an) =

n∑︂
k=0

Jchr ⋉ natKM (ak) · 10n−k

We can make Ax(X) = Ax(XSg(Exp)) ∪ Ax(XSg(Str)) with X = XSg(Exp) ∪ XSg(Str)
to a set of multi-language Sg-equations simply by annotating the order-sorted equa-
tions. For instance, (∀XSg(Exp)) + (0, n) = n becomes (∀X) +(0, n) = n (in a
real implementation, this process can be automatized). Note that a substantial dif-
ference arises when lifting an order-sorted equation to a multi-language context.
Consider again (∀XSg(Exp)) + (0, n) = n. An order-sorted substitution can trans-
form the variable n : nat to an arbitrary term in JnatKTSg(Exp) , whereas, in the lifted
equation (∀X) +(0, n) = n, a multi-language substitution can assign to n a value in
JnatKTSg(Exp+Str) , which also contains multi-language terms of sort nat.

The behavior of boundary functions can be axiomatized by adding the following
equations to Ax(X) and the new variables s, v : str :

(∀X) ↪→nat,chr(0) = a

(∀X) ↪→nat,str(0) = a

(∀X) ↪→chr,nat(c) = s(0)

(∀X) ↪→str,nat(c) = s(0)

(∀X) ↪→nat,chr(s(n)) = next(↪→nat,chr(n))

(∀X) ↪→nat,str(s(n)) = next(↪→nat,chr(n))

(∀X) ↪→str,nat(+(s, v)) = +(↪→str,nat(s), ↪→str,nat(n))

It is immediate that M satisfies all the equations in AxX.

5.5. Soundness, Completeness, and Freeness Results 91

We now prove a simple property of the multi-language by exploiting the equational
logic. We want to show that the (multi-language) semantics of +(↪→chr,nat(c), n) is
the same of s(n) under any possible assignment of c and n. More formally, given
an arbitrary assignment function a : X→ A, where X contains c and n, we need to
prove that

a∗(+(↪→chr,nat(c), n)) = a
∗(s(n))

Thanks to the soundness theorem, it is sufficient to show that

(∀X) +(↪→chr,nat(c), n) = s(n) (5.15)

In order to prove Derivation 5.15, we actually prove that

+(↪→chr,nat(c), n) = +(s(0), n) (5.16)

and
+(s(0), n) = s(n) (5.17)

then, by Rule (mlTrans) we conclude 5.15.

• 5.16: It follows by applying Rule (mlCong) to the multi-language term +(m,n)
with substitutions θ and θ ′ given by θnat(n) = n = θ ′nat(n), θnat(m) =
↪→chr,nat(c), and θ ′nat(m) = s(0).

• 5.17: It follows by observing that

+(s(0), n) = s(+(0, n))

is derivable by Rule (mlSub) directly from Equation 5.9, and

s(+(0, n)) = s(n)

is derivable by applying Rule (mlCong) to the multi-language term s(n), where
the premise of the rule follows by Equation 5.9. Hence, by transitivity we obtain
Derivation 5.17. ♢

CHAPTER 6
Categorical Logic for

Multi-Languages

Chapter reference(s): [BCM20a]

We lift the basic syntactic theories of order-sorted equational logic, and models of
the theories, to the algebraic multi-language framework. The models in for order-
sorted algebras (see Chapter 3) are built from sets, but we adapt the categorical
approach in [MM96]. The main contribution is a deductive system for multi-languages
with a sound and complete categorical semantics. We also prove some interesting
semantic properties. There is a running example application throughout the chapter,
and an elaborate application in the last section combines an imperative language and
a lambda calculus. Our account of order-sorted equational theories builds on and
refines [MM96], with all our deductive systems presented with uniform and clear
inductive rules. Further, we include explicit type information in equality judgements,
and include axioms that may be conditional equations. We give a simplified categorical
semantics along with categorical type-theory correspondence and classifying category,
and also give an explicit connection to free set-algebra semantics.

Structure We present a transparent rule based deduction system for order-sorted
equational logic with conditional axioms, together with a categorical semantics
which is proved sound and complete. Then, we present a similar set of results for
multi-languages. We follow the same course of exposition of Chapters 4 and 5: We
begin by illustrating categorical version of multi-language signatures, algebras, and
homomorphisms. Then, we define equations, theories, and a deduction system which
shall be proved sound and complete. Finally, we lift the same results for all the multi-
language constructions presented in Chapter 4 and we conclude with an example
involving programming languages.

6.1 Order-Sorted Equational Logic

We review order-sorted equational theories (see for example [GM92, MM96]). Here
we give an improved presentation that is syntactically simpler than in loc cit, and

93

94 Categorical Logic for Multi-Languages

further we extend theories to include conditional equational axioms. We also present
a detailed but stylistically improved summary of the categorical models from [MM96],
along with a simpler construction of the classifying category (up to equivalence). We
then prove a result relating the classifying category to free order-sorted algebras.

6.1.1 Order-Sorted Algebras

A set S is usually regarded as a set of sorts or set of ground types. Often S is partially
ordered by ⩽, and then Sn = S × · · · × S (n-times cartesian product for n ⩾ 1)
inherits the pointwise order, with typical instances written w ⩽ w ′. If w ∈ Sn, we
usually make explicit its components by writing w = s1 . . . sn, sometimes referring
to a sequence of sorts.

We write (As | s ∈ S) for a family indexed by S where each As is sometimes a
set, but more generally an object in a category C. We sometimes refer to the family as
an S-sorted set (resp., an S-sorted object). Such indexed families are simply functors A
in the presheaf category SetS (resp., CS). As such, an S-sorted function (resp., S-sorted
morphism) h : A→ B is simply a morphism (that is, natural transformation) in SetS

(resp., CS) where S is a set or poset.
In this chapter all categories have finite products, and functors preserve them up

to isomorphism. If A, B, and Ai (1 ⩽ i ⩽ n) are objects in a category C, we write
A × B for the binary product of A and B, A1 × · · · × An or

∏︁n
1 Ai for the finite

product of the Ai, and 1 for the terminal object. Mediating morphisms for binary
product are written ⟨f, f ′⟩, and as usual f× f ′ = ⟨f ◦ π, f ′ ◦ π ′⟩ (for suitable f and
f ′ and the usual projections). We adopt the obvious extension of notation for finite
products. If A is an S-sorted object and w = s1 . . . sn, we denote by Aw the product
As1 × · · · ×Asn . Likewise, if f is an S-sorted morphism, then the morphism fw is
defined by fs1 × · · · × fsn . The coproduct object of A and B is written A+ B. We
write l1 . . . ln or l1, . . . , ln for a typical finite list, and we may abbreviate just to l⃗.
In the special case of a list of sorts s1, . . . , sn we usually abbreviate to w.

Key ingredients of order-sorted equational theories are the definitions of signature
and algebra. The former defines the symbols from which the terms of a language
are built, and the latter provides terms with a meaning. This meaning can be both
set-theoretic and category-theoretic [GM92, MM96].

Definition 6.1 (Order-Sorted Signature). An order-sorted signature Sg is specified by
Order-sorted signature

(i) a poset (S,⩽) of sorts;

(ii) a collection of function symbols f : s1, . . . , sn → s each with arity n ⩾ 1 and
Function symbol

(w, s) ∈ S+ × S the rank of f, where w = s1 . . . sn;

(iii) a collection of constants k : s, each of a unique rank s (just a single sort); and
Constant

(iv) a monotonicity requirement that whenever f : w1 → s and f : w2 → r with
w1 ⩽ w2, then s ⩽ r.

By an operator we mean either a function symbol or a constant. ♢

Remark 6.1. Compare the previous definition with Definition 3.1 of (set-theoretic)
order-sorted signatures: Operators can now form a collection rather than a set. ♢

6.1. Order-Sorted Equational Logic 95

Notation 6.1. When we define order-sorted signatures Sg1, Sg2, Sg, Sg ′, etc., we
shall implicitly assume that their posets of sorts are denoted by (S1,⩽1), (S2,⩽2),
(S,⩽), (S ′,⩽ ′), etc., respectively. ♢

A key property of such signatures Sg, related to polymorphism, is regularity. We
will shortly show how to build a set of terms out of Sg, and regularity ensures that
each term has a unique least sort. (All signatures in this chapter are assumed regular).

We recall the definition of regularity, which remains unchanged from Chapter 3.

Definition 6.2 (Regularity). An order-sorted signature Sg is regular if for each
Regularity

function symbol f : w→ s and for each lower bound w0 ⩽ w the set

{ (w ′, s ′) ∈ S+ × S | f : w ′ → s ′ ∧w0 ⩽ w
′ }

has a minimum, called the least rank of f with respect to w0. ♢
Least rank

Raw terms over a signature Sg are defined by the context-free grammar
Raw terms

t ::= x | k | f(t1, . . . , tn)

with x ∈ Var (a countably infinite set of variables), k a constant, and f a function
symbol with arity n.

A context is a finite list of ordered pairs x : s formed by a variable x and a sort s
Context

in Sg. We usually define a context by writing Γ = [x1 : s1, . . . , xn : sn]. We denote
context concatenation of Γ and Γ ′ by Γ, Γ ′.

We work with sorting judgements of the form Γ ⊢ t : s. Those that are generated
by the sorting rules in Figure 6.1 are called proved terms. Note that a term t may have

Proved term
more than one sort s for which Γ ⊢ t : s is a proved term. However there is always a
unique least sort.

Lemma 6.1 (Terms Have A Least Sort). Suppose that Γ is a context and t a raw term
for a given regular signature Sg. If there is any sort s for which Γ ⊢ t : s is a proved
term, then there is a least such sort, ls(t).

Proof. The proof is analogous to the one of Proposition 3.3. One uses rule induction.
The proof is easy, though in the literature a key step is often omitted. By induction,
for the rule (Γ -Fun), one easily uses regularity to obtain a sort, say s̃, such that
Γ ⊢ f(t1, . . . , tn) : s̃. Now s̃ is a candidate for the least sort of f(t1, . . . , tn). Most
authors state that such a sort s̃ is least. This is true, but proving it so requires a
separate (though trivial) rule induction.

We denote by t[u/x] the substitution of the raw term u for the variable x in t, and
Substitution

by t[u⃗/x⃗] the simultaneous substitution of raw terms u⃗ = u1, . . . , un for variables
x⃗ = x1, . . . , xn.

Definition 6.3 (Inclusion Structure and FPI-category). An inclusion structure I in a
Inclusion structure

category C is specified by a subposet (subcategory) I of C such that

• for any two objects A and B of C, the unique morphism A↣ B in I , if any, is
a monic in C;

• for any object A in C, the identity idA is in I (so I is a luff subcategory: it has
the same objects as C);

96 Categorical Logic for Multi-Languages

−
(Γ -Var)

Γ, x : s, Γ ′ ⊢ x : s
−

(Γ -Const) (k : s in Sg)
Γ ⊢ k : s

(∀1 ⩽ i ⩽ n) Γ ⊢ ti : si
(Γ -Fun) (f : s1, . . . , sn → s in Sg)

Γ ⊢ f(t1, . . . , tn) : s

Γ ⊢ t : s
(Γ -Sub) (s ⩽ r in Sg)

Γ ⊢ t : r

Figure 6.1: Proved terms generated by an order-sorted signature Sg.

• if ι1 : A1 ↣ B1 and ι2 : A2 ↣ B2 are morphisms in I , then so to is ι1 ×
ι2 : A1 ×A2 ↣ B1 × B2.

A pair (C, I) is called an FPI-category. ♢

The intuition is that products model lists of sorts, and inclusions model subsort
polymorphism. Thus, an FPI-category can be used as the basis for a definition of an
algebra for a signature, namely

Definition 6.4 (Order-Sorted Algebra). Given an order-sorted signature Sg, an Sg-
algebra A in an FPI-category (C, I) is specified by

Order-sorted algebra

(i) an object JsKA in C for each sort s and object JwKA = Js1KA × · · · × JsnKA
for each w = s1 . . . sn ∈ Sn;

(ii) morphisms Jf : w → sKA : JwKA → JsKA and JkKA : 1 → JsKA for each
f : w→ s and k : s; and

(iii) a morphism Js ⩽ rKA : JsKA ↣ JrKA in I for each s ⩽ r in S, where we set
Js ⩽ sKA = idJsKA

such that if the function symbol f appears with more than one rank f : w1 → s and
f : w2 → r in Sg with s1 . . . sn = w1 ⩽ w2 = r1 . . . rn, then the following diagram
commutes:

Js1KA × · · · × JsnKA JsKA

Jr1KA × · · · × JrnKA JrKA

Jf : w1→sKA

Js1⩽r1KA×···×Jsn⩽rnKA Js⩽rKA

Jf : w2→rKA

♢

Notation 6.2. From now on, we might drop the algebra subscript and the ranks of
function symbols in the semantic brackets whenever they are clear by context. ♢

Definition 6.5 (Order-Sorted Homomorphism). Let Sg be an order-sorted signature
and let A and B be Sg-algebras. An Sg-homomorphism h : A → B is an S-sorted
morphism (hs : JsKA → JsKB | s ∈ S) such that given f : s1, . . . , sn → s, k : s, and
s ⩽ r in Sg the following diagrams commute:

6.1. Order-Sorted Equational Logic 97

(i)

Js1KA × · · · × JsnKA JsKA

Js1KB × · · · × JsnKB JsKB

JfKA

hs1
×···×hsn hs

JfKB

(ii)

1 JsKA

JsKB

JkKA

JkKB
hs

(iii)

JsKA JrKA

JsKB JrKB

Js⩽rKA

hs hr

Js⩽rKB

We define hw = hs1 × · · · × hsn provided that w = s1 . . . sn. ♢

Given an order-sorted signature Sg, the class of all the order-sorted Sg-algebras
and the class of all the order-sorted Sg-homomorphisms form a category denoted by
Alg(C, I)Sg .

If Γ ⊢ t : s is a proved term in a regular signature Sg and Γ = [x1 : s1, . . . , xn : sn],
any Sg-algebra A induces a (unique) morphism from JΓKA = Js1KA × · · · × JsnKA
to JsKA in C according to the inductive definition that appears in Figure 6.2. We
denote such an arrow by JΓ ⊢ t : sKA and we refer to it as the semantics of Γ ⊢ t : s.

Semantics of proved terms
Since terms can be assigned different types in one given context, we should

consider whether the definition in Figure 6.2 is a sensible one. As such, we have the
following lemma, where one sees that semantics of substitutions of terms is given as
usual by morphism composition:

Lemma 6.2 (Well-Defined Semantics). Given a proved term Γ ⊢ t : s and an algebra
A over a regular signature Sg:

• The semantic morphism JΓ ⊢ t : sK is unique; that is, the assignment ξ ↦→ JξK is
a total function.

• The algebra induces a functor (S,⩽) → I between posetal categories, where
s ⩽ s ′ ↦→ Js ⩽ s ′K : JsK ↣ Js ′K, and so as a consequence the semantics can be
factored through the morphism JΓ ⊢ t : ls(t)K, that is to say,

JΓ ⊢ t : sK = Jls(t) ⩽ sK ◦ JΓ ⊢ t : ls(t)K

98 Categorical Logic for Multi-Languages

−

JΓ, x : s, Γ ′ ⊢ x : sK = π : JΓK× JsK× JΓ ′K→ JsK

−
(k : s in Sg)

JΓ ⊢ k : sK = JkK◦! : JΓK→ 1→ JsK

†(f : s1, . . . , sn → s in Sg)
(∀1 ⩽ i ⩽ n) JΓ ⊢ ti : siK = mi : JΓK→ JsiK

†
JΓ ⊢ f(t1, . . . , tn) : sK = JfK ◦ ⟨m1, . . . ,mn⟩ : JΓK→ (

∏︁n
1 JsiK)→ JsK

JΓ ⊢ t : sK = m : JΓK→ JsK
(s ⩽ r in Sg)

JΓ ⊢ t : rK = Js ⩽ rK ◦m : JΓK→ JsK→ JrK

Figure 6.2: Categorical semantics for proved terms.

• Let Γ = [x1 : s1, . . . , xn : sn] be a context. If we have proved terms Γ ⊢ t : s and
Γ ′ ⊢ ui : si where 1 ⩽ i ⩽ n, then Γ ′ ⊢ t[u⃗/x⃗] : s and

JΓ ′ ⊢ t[u⃗/x⃗] : sK = JΓ ⊢ t : sK ◦ ⟨JΓ ′ ⊢ u1 : s1K, . . . , JΓ ′ ⊢ un : snK⟩

Proof. Uniqueness follows by a simple induction over proved terms, as does the
factorisation. However, note that the proof relies on the functoriality: Since I is
posetal, ξ ↦→ JξK must be functorial on compositions s ⩽ s ′ ⩽ s ′′ = s ⩽ s ′′ in the
poset of sorts (S,⩽).

Equations between proved terms are defined only for coherent signatures. To define
coherence, first let ≡ be the symmetric and transitive closure of ⩽. The equivalence
classes induced by ≡ on S are the connected components of (S,⩽); and (S,⩽) is
locally filtered, if for every two sorts s ′ and s ′′ in the same connected component there
is a sort s such that s ′, s ′′ ⩽ s. Then a signature Sg is said to be coherent if and

Coherence
only if it is regular and locally filtered. The intuition is that terms of sort s ′ and s ′′

respectively could potentially be judged equal if they have a “common supersort” s.
That is, coherence is defined analogously to Definition 3.12.

Definition 6.6 (Order-Sorted Equation). Let Sg be a coherent signature. An equation
(in-context) in Sg is denoted by Γ ⊢ t = t ′ : s, where

Equation (in-context)

• there are sorts s ′, s ′′ such that Γ ⊢ t : s ′ and Γ ⊢ t ′ : s ′′ are proved terms in Sg;

• s ′ and s ′′ fall in the same connected component of (S,⩽); and

• s is a common supersort of s ′ and s ′′ (which exists by the coherence condition).

A conditional equation (in-context) in Sg is a list of m + 1 equations-in-context
Conditional equation (in-context)

(wherem ⩾ 1) suggestively denoted by

Γ ⊢ t = t ′ : s ⇐=
m⋀︂
α=1

Γ ⊢ tα = t ′α : sα ♢

6.1. Order-Sorted Equational Logic 99

Definition 6.7 (Satisfaction of Order-Sorted Equations). Let A be an Sg-algebra in
an FPI-category (C, I).

• We say that A satisfies an Sg-equation if

JΓ ⊢ t : sK = JΓ ⊢ t ′ : sK

• We say that A satisfies an Sg-conditional equation if for all morphisms u : U→
JΓK in the category C,

JΓ ⊢ tα : sαK ◦ u = JΓ ⊢ t ′α : sαK ◦ u
=⇒ JΓ ⊢ t : sK ◦ u = JΓ ⊢ t ′ : sK ◦ u

♢

We define an order-sorted theory Th = (Sg,Ax) to be a pair consisting of a
Order-sorted theory

signature Sg and a set of axioms Ax. Each axiom is either an equation or a conditional
equation. The theorems of the theory Th are those equations generated by the rules of
equational logic in Figure 6.3.

Lemma 6.3 (Generalised Substitution). The following rule is admissible by a routine
rule induction

Γ ⊢ t = t ′ : s (∀1 ⩽ i ⩽ n) Γ ′ ⊢ ui : si
(Γ -GSub) (Γ = [x1 : s1, . . . , xn : sn])

Γ ′ ⊢ t[u⃗/x⃗] = t ′[u⃗/x⃗] : s

Let Th = (Sg,Ax) be an order-sorted theory. If an Sg-algebra A satisfies all the
axioms in Ax, we call A a model of Th. The category of models Mod(C, I)Th is the full

Model of a theory, Category of

models
subcategory of Alg(C, I)Sg given by all the models of Th in (C, I).

Lemma 6.4 (Satisfaction is Well-Defined). As a consequence of Lemma 6.2, satisfaction
is well-defined up to subsort-polymorphic equality, as follows: Suppose that we have a
theorem Γ ⊢ t = t ′ : s satisfied in a model A . If Γ ⊢ t = t ′ : s̃ is also a theorem, then it
too is satisfied.

Proof. The existence of least sorts ls(t) and ls(t ′) means that s and s̃ are connected,
and so have a supersort s ′ ⩾ s, s̃. Thus each term has this type s ′, and the result
follows by using factorisation from Lemma 6.2 and the left-cancellation properties of
monomorphisms.

The category FPI
(︁
(C, I), (D, J)

)︁
is defined by having objects functors F : C → D

such that finite products are preserved and F restricts to a functor F|I : I → J (that is
monics are also preserved). Suppose that we have a model A in Mod(C, I)Th. Then
there is a model F∗A in Mod(D, J)Th that is, roughly speaking, defined by “taking
the image of Sg in (C, I) induced by the model A , and applying F”. Equally one may
“apply F to homomorphisms of models” and this process (which is absolutely standard
in categorical type theory/logic; see for example [Cro93, J+02]) leads to a functor

Ap : FPI
(︁
(C, I), (D, J)

)︁
→ Mod(D, J)Th

A classifying category Cl(Th) for a theory Th is an FPI-category such that there is an
Classifying category

equivalence of categories

ApG : FPI
(︁
Cl(Th), (D, J)

)︁
≃ Mod(D, J)Th

100 Categorical Logic for Multi-Languages

Γ ⊢ t = t ′ : s ∈ Ax
(∀1 ⩽ i ⩽ n) Γ ′ ⊢ ui : s ′i

(Γ -AxSub)
Γ ′ ⊢ t[u⃗/x⃗] = t ′[u⃗/x⃗] : s

Γ ⊢ t = t ′ : s ⇐=
⋀︁m
1 Γ ⊢ tα = t ′α : sα ∈ Ax

(∀1 ⩽ i ⩽ n) Γ ′ ⊢ ui : s ′i
(∀1 ⩽ α ⩽ m) Γ ′ ⊢ tα[u⃗/x⃗] = t ′α[u⃗/x⃗] : sα

(Γ -AxCSub)
Γ ′ ⊢ t[u⃗/x⃗] = t ′[u⃗/x⃗] : s

Let Γ = [x1 : s
′
1, . . . , xn : s

′
n] be a context in (Γ -AxSub) and (Γ -AxCSub).

Γ ⊢ t : s
(Γ -Ref)

Γ ⊢ t = t : s
Γ ⊢ t = t ′ : s

(Γ -Sym)
Γ ⊢ t ′ = t : s

Γ ⊢ t = t ′ : s Γ ⊢ t ′ = t ′′ : s
(Γ -Trans)

Γ ⊢ t = t ′′ : s

Γ ⊢ t = t ′ : s
(Γ -Sub) (s ⩽ r)

Γ ⊢ t = t ′ : r

Γ ⊢ t : s (∀1 ⩽ i ⩽ n) Γ ′ ⊢ ui = u ′i : si
(Γ -Cong) (Γ = [x1 : s1, . . . , xn : sn])

Γ ′ ⊢ t[u⃗/x⃗] = t[u ′⃗ /x⃗] : s

Figure 6.3: Theorems generated by an order-sorted theory Th = (Sg,Ax).

where G is a model of the theory Th in Cl(Th). Such a model G will be called generic
model. Thus, models of Th in (D, J) correspond to such structure preserving functors

Generic model
with source Cl(Th).

At an abstract level this notion is standard in categorical type theory/logic. Never-
theless, we feel that our concrete construction is simpler than that found in [MM96],
and regard this as a small contribution. Such existence proofs are notoriously tricky to
get completely correct, and there are notable errors in the literature. We use matching
contexts and permutation invariance [Cro12, Pit16] to replace the usual substitutions
that rename variables, and we think this makes our proofs simpler to state and prove
(and hence less error prone).

Theorem 6.1 (Existence of Classifying Category). There is an FPI-category Cl(Th)
constructed out of the syntax of Th = (Sg,Ax), in which there is a generic model of
Th with the property that equality of morphisms corresponds to derivability of term
equations.

Proof (Construction). The objects are finite lists of sorts, with a typical object s⃗
or s. Given such an object a context Γ matches an object s⃗ = s1 . . . sn if Γ =
[x1 : s1, . . . , xn : sn] for any xi. Now fix arbitrary s⃗ and s ′. Consider the set

{ (Γ, t) | Γ matches s⃗ and Γ ⊢ t : s ′ }

6.1. Order-Sorted Equational Logic 101

We can define an equivalence relation on this set by (Γ, t) ∼ (Γ ′, t ′) just in case
Γ ⊢ t = π t ′ : s ′ where the permutation π on Var swaps the variables in Γ ′ to those
in Γ , preserving matching. Write (Γ | t) for an equivalence class. Then a morphism
s⃗→ s⃗ ′ is a list of equivalence classes (Γ | t1) . . . (Γ | tm) where the terms have types
matching s⃗ ′. We sometimes write (Γ | t⃗) for such a morphism.

This is a category where composition is given in the usual way by substitution of
terms:

(Γ | t⃗ ′) ◦ (Γ | t⃗) = (Γ | t⃗ ′[t⃗/x⃗])

and identities are lists of the form

(Γ | x⃗) = (Γ | x1) . . . (Γ | xn)

Note that one needs to verify in detail that this construction is well-defined; for
composition one appeals to rules (Γ -GSub) and (Γ -Cong).

The terminal object is ε. The binary product of s⃗ and s⃗ ′ is s⃗s⃗ ′, with projections
(Γ, Γ ′ | x⃗) and (Γ, Γ ′ | x⃗ ′), and if we are given morphisms (Γ ′ | t⃗) : r⃗ → s⃗ and
(Γ ′ | t⃗ ′) : r⃗→ s⃗ then the mediating morphism is (Γ | t⃗t⃗ ′).

The objects of the inclusion category are all those of the main category Cl(Th).
Obviously every identity of Cl(Th) is in the inclusion category. More generally there
is a morphism s⃗ → r⃗ just in case the objects are the same length n and moreover
s⃗ ⩽ r⃗ in Sn. When this is so, the (single) morphism is (Γ | x⃗) : s⃗→ r⃗. The fact that
this is a monomorphism in Cl(Th) follows from (Γ -Sub).

Let Γ = [x1 : s1, . . . , xn : sn]. The so-called generic model G is defined by

• objects JsKG = s for each sort s and objects JwKG = w⃗ for each w =
s1 . . . sn ∈ Sn;

• morphisms Jf : w → sKG = (Γ | f(x1, . . . , xn)) : w⃗ → s and Jk : sKG = (ε |

k) : 1→ s; and

• morphisms Js ⩽ rKG = (x : s | x) : s ↣ r in the inclusion category for each
s ⩽ r in S; we set Js ⩽ sKG = ids.

One can then show that JΓ ⊢ t : sKG = (Γ | t).

Theorem 6.2 (Soundness and Completeness). Let Th be a coherent order-sorted theory.
Γ ⊢ t = t ′ : s is a theorem generated by Th if and only if Γ ⊢ t = t ′ : s is satisfied by
every model of Th.

Proof. Soundness follows by rule induction for Figure 6.3. For completeness, suppose
that Γ ⊢ t = t ′ : s is satisfied in any model. Then in particular it is satisfied in the
generic model G in the classifying category Cl(Th). Thus we have JΓ ⊢ t : sKG = JΓ ⊢
t ′ : sKG and so we have (Γ | t) = (Γ | t ′) which holds precisely when Γ ⊢ t = t ′ : s is
a theorem.

We conclude this section with a new result, although it is motivated by analogous
theorems [Pit00]. The proof also makes use of matching contexts and permutations
of variables.

Theorem 6.3 (Relationship to Free Algebras). There is an equivalence between FPI-
categories Cl(Th) and (FreeAlgop, J) where FreeAlg is the category of free order-sorted
algebras over finite sets of variables, and order-sorted homomorphisms. Moreover the
equivalence is given by an FPI-functor Φ : Cl(Th) ≃ (FreeAlgop, J).

102 Categorical Logic for Multi-Languages

Proof. Let Var be a (countable) fixed set of variables {V1, V2, . . .}. We call the context

Γs⃗ = [V1 : s1, . . . , Vn : sn]

the primary context for any sorts s1, . . . , sn. In general, below, the metavariables
Primary context

x, y, z etc., possibly subscripted, range over Var . Thus Γ = [x1 : s1, . . . , xn : sn] is a
typical context as before, and we say that any such context matches s⃗ = s1, . . . , sn.

First we define the objects TTh(Γ) of FreeAlg. Recall the definition of the free
algebra TSg(X) over an S-sorted set X of variables (see Section 3.5). Then, we define

TTh(Γ) = TTh(XΓ) = TSg(XΓ)/∼

where (XΓ)s = { xi | xi : si ∈ Γ and si = s }. In particular, the interpretation sets of
TTh(Γ) are sets of equivalence classes

JsKTTh(Γ) = JsKTSg(XΓ)/∼ where JsKTSg(XΓ) = { t | Γ ⊢ t : s in Sg }

and ∼ is the usual congruence defined in 3.5, that is t ∼s t ′ just in case we can derive
Γ ⊢ t = t ′ : s in Th, and write [t] for a typical equivalence class.

Let Γ and Γ ′ be two context matching s1, . . . , sn and s ′1, . . . , s
′
m, respectively.

The morphisms h : TTh(Γ)→ TTh(Γ
′) must be S-sorted functions

(hs : JsKTTh(Γ) → JsKTTh(Γ ′) | s ∈ S)

These are specified by lists hs = {Γ ′ ⊢ t1, . . . , tn} where ti ∈ JsiKTSg(XΓ ′) and where

hs([t] ∈ JsKTTh(Γ)) = [t[t1, . . . , tm/x1, . . . , xm]] ∈ JsKTSg(XΓ ′)

It is easy to check this is well defined. Note that if

h = {Γ ′ ⊢ t1, . . . , tn} : TTh(Γ)→ TTh(Γ
′)

and
h ′ = {Γ ′′ ⊢ t ′1, . . . , t ′m} : TTh(Γ

′)→ TTh(Γ
′′)

then we have h ◦ h ′ defined by

{Γ ′′ ⊢ t1[t ′1, . . . , t ′m/x1, . . . , xm], . . . , tn[t
′
1, . . . , t

′
m/x1, . . . , xm]}

It is tedious but routine to verify that this gives rise to a category, relying crucially
on the substitution rules for equation derivation.

With a view to showing that (FreeAlgop, J) is an FPI-category, we shall show that
FreeAlg is has finite coproducts, and then define J . Given objects TTh(Γ) and TTh(Γ

′)
with Γ and Γ ′ matching s⃗ = s1, . . . , sn and s⃗ ′ = s ′1, . . . , s

′
m, respectively, then the

binary coproduct object is given by TTh(∆) with ∆ = Γ, Γ ′. The coproduct insertions
are given by {∆ ⊢ v1, . . . , vn} and {∆ ⊢ vn+1, . . . , vn+m}. Given morphisms

{Γ ′′ ⊢ t1, . . . , tn} : TTh(Γ)→ TTh(Γ
′′)

and
{Γ ′′ ⊢ t ′1, . . . , t ′m} : TTh(Γ

′)→ TTh(Γ
′′)

then the mediating morphism is {Γ ′′ ⊢ t1, . . . , tn, t ′1, . . . , t ′m}. Note that TTh(ε) is
the initial object (cfr. Corollary 3.2).

6.1. Order-Sorted Equational Logic 103

Now, let Γs⃗ and Γr⃗ be two context matching s⃗ = s1, . . . , sn and r⃗ = r1, . . . , rn.
Suppose that si ⩽ ri for each 1 ⩽ i ⩽ n. Then there is an epic morphism

i = {Γs⃗ ⊢ x1, . . . , xn} : TTh(Γr⃗)→ TTh(Γs⃗))

It is easy to verify that this is an epimorphism, and hence yields a monomorphism in
FreeAlgop. The luff subcategory J has all of its morphisms the monomorphisms

iop = {Γs⃗ ⊢ x1, . . . , xn} : TTh(Γs⃗)→ TTh(Γr⃗)

This is certainly an inclusion category.
Now we prove the equivalence. We define a functorΦ : Cl(Th)→ (FreeAlgop, J)

as follows. Given a morphism (Γ | t1) . . . (Γ | tm) : s⃗→ r⃗ then Φ sends this to

{Γs⃗ ⊢ π t1, . . . , π tm} : TTh(Γr⃗)→ TTh(Γs⃗)

where permutation π is specified by π : xi ↦→ Vi. We check this is well defined.
Suppose that

(Γ | t1) . . . (Γ | tm) = (Γ ′ | t ′1) . . . (Γ
′ | t ′m).

We need to check that

{Γs⃗ ⊢ π t1, . . . , π tm} = Φ((Γ | t1) . . . (Γ | tm))

= Φ((Γ ′ | t ′1) . . . (Γ | t ′m))

= {Γs⃗ ⊢ π ′ t ′1, . . . , π ′ t ′m}

By definition we have Γ ⊢ tj = ρ t ′j : rj where ρ is specified by ρ : x ′i ↦→ xi. We can
deduce, using substitution rules for equations, that π Γ ⊢ π tj = π(ρ t ′j) : rj and this
is exactly Γs⃗ ⊢ π tj = π ′ t ′j : rj as required, since π ′ = π ◦ ρ. We feel that the use
of permutations, while equivalent to the use of simultaneous variable renamings by
substitution, improves readability and more importantly simplifies calculations by
making use of judgements that are permutation invariant.

• Φ is essentially surjective. For any object s⃗ in Cl(Th) we haveΦ(s⃗) = TTh(Γs⃗).
But one easily shows that for any TTh(Γ) where Γ matches s⃗, we have TTh(Γ) ∼=
TTh(Γs⃗) where the inverse homomorphisms “swap variables” xi and Vi.

• Φ is faithful. Let

Φ((Γ | t1) . . . (Γ | tm)) = Φ((Γ ′ | t ′1) . . . (Γ | t ′m)).

We need to check that Γ ⊢ tj = ρ t ′j : rj. By the assumption we have

{Γs⃗ ⊢ π t1, . . . , π tm} = {Γs⃗ ⊢ π ′ t ′1, . . . , π ′ t ′m}

Hence Γs⃗ ⊢ π tj = π t ′j : rj. Therefore we can deduce that Γ ⊢ tj = (π−1 ◦
π ′) t ′j : rj. We are done since π−1 ◦ π ′ = ρ.

• Φ is full. Let

{Γs⃗ ⊢ t1, . . . , tm} : Φ(r⃗)→ Φ(s⃗)

: TTh(Γr⃗)→ TTh(Γs⃗)

Then (Γs⃗ | t1, . . . , tm) is the appropriate Cl(Th) morphism.

• Φ is an object of FPI
(︁
Cl(Th), (FreeAlgop, J)

)︁
. We need to check thatΦ|I : I → J

where I is the inclusion category of Cl(Th). Let s⃗ ⩽ r⃗. Note that

Φ((Γ | x1) . . . (Γ | xn) : s⃗→ r⃗)

is the monomorphism {Γs⃗ ⊢ x1, . . . , xn} : Γr⃗ → Γs⃗.

104 Categorical Logic for Multi-Languages

0 : nat zero constant

s : nat → nat successor function

+: nat, nat → nat addition operator

(a) Sg1 operators.

c : chr character constant (for each c ∈ A)

next : chr → chr next character function

+: str, str → str string concatenation

(b) Sg2 operators.

Figure 6.6: Operators of order-sorted signatures Sg1 and Sg2.

6.2 Multi-Language Equational Logic

Throughout this section we often refer to a running example, introduced below and
subsequently extended, to illustrate how the theory works in a concrete setting. Note
that this example is the categorical equivalent of the running example in Chapter 5.
See Section 6.4 for the outline of a more complex example, involving programming
languages.

Running Example 6.1. Our example is defined using the following order-sorted
signatures:

• The signature Sg1 defines the symbols of a language for constructing simple
mathematical expressions over natural numbers in Peano’s notation. Let the
poset of sorts (S1,⩽1) of Sg1 be a poset with a single sort nat denoting the
type of natural numbers, and let the operators be those in Figure 6.4(a).

• Let c ∈ A = {a, b, . . . , z} be the metavariable ranging over a finite set A of
characters. The signature Sg2 defines a language to build strings over A. The set
of sorts S2 of Sg2 carries the sort str for strings and the sort chr for characters.
The subsort relation ⩽2 is the reflexive relation on S2 plus chr ⩽2 str (i.e.,
characters are one-symbol strings), and the operator symbols in Sg2 appear in
Figure 6.5(b).

We model Sg1 and Sg2 by the order-sorted algebras A1 and A2 (see Figure 6.9)
in (Set, Incl), the FPI-category of sets with inclusion functions forming the inclusion
structure. The symbol c ′ in the definition of Jnext : chr → chrKA2

denotes the
character that follows c in A (assuming the standard alphabetical order). ♢

6.2.1 Fundamentals of Multi-Languages

The forthcoming definitions and results gradually define and illustrate the theory of
multi-languages, and give relationships between multi-languages and order-sorted
languages. A multi-language signature 6.8 is specified as two order-sorted signatures
(as in the running example) together with an interoperability relation between the two

6.2. Multi-Language Equational Logic 105

Sorts JnatKA1
= N

Operators J0KA1
= ∗ ↦→ 0 : 1→ N

Js : nat → natKA1
= n ↦→ n+ 1 : N→ N

J+: nat, nat → natKA1
= (n1, n2) ↦→ n1 + n2 : N× N→ N

(a) Sg1 semantics.

Sorts JchrKA2
= A

JstrKA2
= A∗

Operators (∀c ∈ A) JcKA2
= ∗ ↦→ c : 1→ A

Jnext : chr → chrKA2
= c ↦→ c ′ : A→ A

J+: str, str → strKA2
= (s1, s2) ↦→ s1s2 : A

∗ × A∗ → A∗

Subsorts Jchr ⩽2 strKA2
= c ↦→ c : A→ A∗

(b) Sg2 semantics.

Figure 6.9: Categorical semantics of Sg1 and Sg2.

signatures. This determines the terms of the multi-language. Note that the relation is
not a universal property of the underlying signatures; and also note a multi-language
signature explicitly provides users with the original two language specifications. In
order to define multi-language signatures we introduce some crucial notation. We
denote by + the disjoint union of two sets: the insertion morphisms that form a
coproduct in the category of sets are injective functions, thus they have left inverses
(and one has a model of disjoint union).

Notation 6.3. In the following, if S1 and S2 are two sets of sorts and s ∈ Si with
i = 1, 2, we write si for the element ιi(s) ∈ S1 + S2 where

ιi(s) = (s, i) ∈ S1 × {1} ∪ S2 × {2} ♢

Remark 6.2. Among the many benefits of a categorical semantics, one retain more
generality than set-theoretic semantics. In this spirit, note that we dropped the
assumption that S1 and S2 are disjoint sets and instead we use disjoint union. ♢

Thus, in the following relationships si ⋉ s ′j we have s ∈ Si and s ′ ∈ Sj. This
is a very useful notation but perhaps requires care on first reading. Moreover, if
w = s1 . . . sn ∈ Sni , then we write wi for (s1)i . . . (sn)i.

Definition 6.8 (Multi-Language Signature). A multi-language signature Sg is given
Multi-language signature

by a triple Sg = (Sg1, Sg2,⋉), that is

(i) a pair of order-sorted signatures Sg1 and Sg2 with posets of sorts (S1,⩽1) and
(S2,⩽2), respectively; and

(ii) a (binary) relation join ⋉ over S1 + S2 such that si ⋉ s ′j with i, j ∈ {1, 2} and
Join relation

i ̸= j. ♢

106 Categorical Logic for Multi-Languages

The idea is that if si ⋉ s ′j, and Γ ⊢ t : s is a proved term in one language, then
t can be used in place of a term t ′ such that Γ ′ ⊢ t ′ : s ′ in the other language: as
in [MF09], “ML code can be used in place of Scheme code”. This is made precise in
due course.

We show in 6.9 and 6.10 that there are nice notions of categories of signatures,
both order-sorted and multi-language.

Definition 6.9 (Category of Order-Sorted Signature). OSSg is the category of order-
sorted signatures with morphisms h : Sg1 → Sg2 given by

Category of order-sorted signatures

(i) a monotone function h : (S1,⩽1) → (S2,⩽2), where we will write h(w) =
h(s1) . . . h(sn) for w = s1 . . . sn ∈ Sn1 ; and

(ii) a mapping h from the operators in Sg1 to those in Sg2 that preserves rank:
Given k : s in Sg1, then h(k) : h(s) in Sg1; and given f : w → s in Sg1, then
h(f) : h(w)→ h(s) in Sg2. ♢

Definition 6.10 (Category of Multi-Language Signature). MLSg is the category of
multi-language signatures in which a morphism

Category of multi-language

signatures h = (h1, h2) : (Sg1, Sg2,⋉)→ (Sg ′1, Sg ′2,⋉
′)

is defined by two morphisms h1 : Sg1 → Sg ′1 and h2 : Sg2 → Sg ′2 in OSSg such that
they preserve the join relation, namely si ⋉ s ′j in (Sg1, Sg2,⋉) implies (hi(s)i ⋉ ′
(hj(s

′))j in (Sg ′1, Sg ′2,⋉ ′). ♢

We shall also see that we can exhibit a functor that maps a multi-language sig-
nature to an order-sorted signature (the associated signature 6.11), blending the two
original signatures into one.

Definition 6.11 (Associated Signature). Let Sg = (Sg1, Sg2,⋉) be a multi-language
signature. The associated signature Sg∗ of Sg is the order-sorted signature defined as

Associated signature
follows:

(i) the poset of sorts is given by (S1 + S2,⩽), where si ⩽ rj if i = j and s ⩽i r;

(ii) if f : w→ s is a function symbol in Sgi for some i = 1, 2, then fi : wi → si is
a function symbol in Sg∗;

(iii) if k : s is a constant in Sgi for some i = 1, 2, then ki : si is a constant in Sg∗;
and

(iv) a conversion operator ↪→si,s′j : si → s ′j for each constraint si ⋉ s ′j. ♢
Conversion operator

The associated signature functor (−)∗ : MLSg → OSSg maps each multi-language
Associated signature functor

signature Sg = (Sg1, Sg2,⋉) to its associated signature Sg∗, and each multi-language
signature morphism h : Sg → Sg ′ to the order-sorted signature morphism h∗ : Sg∗ →
Sg ′∗ given by h∗(si) = (hi(s))i for each s ∈ Si (hence si ∈ S1 + S2) and h∗(fi) =
(hi(f))i for each f ∈ Sgi (hence fi in Sg).

Running Example 6.2. (−)∗ embeds the multi-language signature Sg into OSSg,
providing the order-sorted version Sg∗ of the multi-language. Sg∗ generates Sgi-
terms (see Section 6.2.2) as well as hybrid multi-language terms involving conversion
operators such as

[c : chr2, n : nat1] ⊢ +1(↪→chr2,nat1(c), n) : nat1

6.2. Multi-Language Equational Logic 107

From now on, we use colours in the examples for disambiguating the left and the right
inclusion in place of subscripts 1 and 2 (as we did in previous chapters). Moreover,
we use an infix notation whenever the operators lend themselves well to do so. That
is, the previous term is represented by

[c : chr, n : nat] ⊢ +(↪→chr,nat(c), n) : nat ♢

Such a functor outlines an embedding of multi-language signatures into order-
sorted signatures, enabling us to see a multi-language as an ordinary language. Indeed,
it is easy to see that (−)∗ is both injective on objects and a faithful functor.

Definition 6.12 (Multi-Language Algebra). Let Sg = (Sg1, Sg2,⋉) be a multi-
language signature. An Sg-algebra A in an FPI-category (C, I) is given by

Multi-language algebra

(i) a pair of order-sorted algebras A1 and A2 in (C, I) over Sg1 and Sg2, respect-
ively; and

(ii) a boundary morphism Jsi ⋉ s ′jKA : JsKAi
→ Js ′KAj

in C for each constraint
Boundary morphism

si ⋉ s ′j. ♢

An algebra sets out the meaning of a multi-language: The meaning of the under-
lying languages, and how terms of sort s ∈ Si can be interpreted as terms of sort
s ′ ∈ Sj. Put differently, “boundary morphisms regulate the flow of values across A1
and A2” [MF09].

Definition 6.13 (Multi-Language Homomorphism). Let Sg = (Sg1, Sg2,⋉) be a
multi-language signature, and let A and B be two Sg-algebras. An Sg-homomorphism

Multi-language homomorphism
h : A → B is given by a pair of order-sorted homomorphisms h1 : A1 → B1 and
h2 : A2 → B2 such that they commute with boundary functions, namely, if si ⋉ s ′j,
then the following diagram commutes:

JsKAi
Js ′KAj

JsKBi
Js ′KBj

Jsi⋉s′jKA

(hi)s (hj)s′

Jsi⋉s′jKB

♢

Given a multi-language signature Sg, the class of all Sg-algebras and homomorph-
isms form a category denoted by Alg(C, I)Sg . We have a simple connection between
this category and Alg(C, I)Sg∗ , outlined in Theorem 6.4, after more of the running
example.

Running Example 6.3. Suppose we are interested in a multi-language Sg =
(Sg1, Sg2,⋉) according to the specifications of Running Example 4.2, that is

• terms denoting natural numbers can be used in place of characters according to
the function chr : N→ A that maps the natural number n to the n-th character
symbol modulo |A|; and

• terms denoting strings can be used in place of natural numbers according to
the function len : A∗ → N, namely the length of the string.

108 Categorical Logic for Multi-Languages

In order to get such a multi-language, we provide the join relation ⋉ on S1 + S2
and a boundary morphism Jsi ⋉ s ′jKA : JsKAi

→ Js ′KAj
for each constraint si ⋉ s ′j

introduced by ⋉:

• nat1 ⋉ chr2 and nat1 ⋉ str2 with boundaries

Jnat1 ⋉ chr2KA (n) = Jnat1 ⋉ str2KA (n) = chr(n)

and

• chr2 ⋉ nat1 and str2 ⋉ nat1 with boundaries

Jchr2 ⋉ nat1KA (c) = len(c) = 1

Jstr2 ⋉ nat1KA (s) = len(s) ♢

The next theorem yields a formal correspondence between multi-languages and
order-sorted languages: We can make a multi-language signature Sg into an order-
sorted one by applying the functor (−)∗, and thus blending the underlying languages.
Nevertheless, we do not lose any semantical information if we consider the category
of algebras over Sg and Sg∗.

Theorem 6.4. There is a natural isomorphism between the category of multi-language
algebras over Sg and the category of order-sorted algebras over the associated signature
Sg∗ denoted by

η : MLAlg(C, I)⇒ OSAlg(C, I) ◦ (−)∗

which induces
Alg(C, I)Sg ∼= Alg(C, I)Sg∗

where there are functors MLAlg(C, I) : MLSg → Catop and OSAlg(C, I) : OSSg →
Catop that map signatures to their category of algebras in (C, I).

Proof. The functors are defined on objects by

MLAlg(C, I)(Sg) = Alg(C, I)Sg
OSAlg(C, I)(Sg) = Alg(C, I)Sg

Now, let Sg = (Sg1, Sg2,⋉) and Sg ′ = (Sg ′1, Sg ′2,⋉ ′), and let

h = (h1, h2) : Sg → Sg ′

be a signature morphism between them. We shall define a functor

H : Alg(C, I)Sg ′ → Alg(C, I)Sg

and let MLAlg(C, I)(h) = H. Let A be an Sg ′-algebra in Alg(C, I)Sg ′ . Then, the
multi-language Sg-algebra HA is defined as follows:

• We define its order-sorted components (HA)1 and (HA)2. Let i = 1, 2:

– the interpretation of sorts is given by JsK(HA)i = Jhi(s)KAi
for each

s ∈ Si;
– given the function symbol f : w→ s in Sgi, we let Jf : w→ sK(HA)i =
Jhi(f) : hi(w)→ hi(s)KAi

;

6.2. Multi-Language Equational Logic 109

– the constant symbol k : s in Sgi is interpreted by letting JkK(HA)i =
Jhi(k)KAi

; and

– Js ⩽i rK(HA)i = Jhi(s) ⩽ ′i hi(r)KAi
for each subsort constraint s ⩽i r

in Sgi.

The fact that (HA)i is a proper order-sorted Sgi-algebra is ensured by the
properties of the (multi-language) signature morphism h.

• Boundary morphisms are defined by Jsi ⋉ s ′jKHA = Jhi(s) ⋉ ′ hj(s ′)KA for
each constraint si ⋉ s ′j in Sg.

In order to define the action of H on homomorphisms, suppose that g : A → B is a
multi-language Sg ′-homomorphism in Alg(C, I)Sg ′ . Then, (Hg)i : (HA)i → (HB)i
is defined by the following Si-sorted morphisms:

•
(︁
(Hg)i

)︁
s
= (gi)hi(s), which is well-defined since gi : Ai → Bi is an order-

sorted Sg ′i-homomorphism and Jhi(s)KAi
= JsK(HA)i .

The commutativity of the diagram in Definition 6.13 is given by a tedious but simple
diagram chase:

Jhi(s)KAi
Jhj(s ′)KAj

JsK(HA)i Js ′K(HA)j

JsK(HB)i Js ′K(HB)j

Jhi(s)KBi
Jhj(s ′)KBj

(gi)hi(s)

Jhi(s)⋉′hj(s
′)KA

(gj)hj(s
′)

Jsi⋉s′jKHA

(︂
(Hg)i

)︂
s

(︂
(Hg)j

)︂
s′

Jsi⋉s′jKHB

Jhi(s)⋉′hj(s
′)KB

We next define a functor H : Alg(C, I)Sg2
→ Alg(C, I)Sg1

and set

OSAlg(C, I)(h) = H

where h : Sg1 → Sg2 is an order-sorted signature morphism. This is similar to the
definition ofH above. First pick any (order-sorted) Sg2-algebra A . We need to define
the order-sorted Sg1-algebra HA . We define

• objects Js ∈ S1KHA = Jh(s)KA in C and hence

JwKHA = Jh(s1)KA × · · · × Jh(sn)KA

for w = s1 . . . sn ∈ Sn1 ;

• morphisms

Jf : w→ s ∈ Sg1KHA = Jh(f) : h(w)→ h(s) ∈ Sg2KA : JwKHA → JsKHA

and morphisms Jk ∈ Sg1KHA = Jh(k)KA : 1→ JsKHA ; and

• a morphism Js ⩽1 r ∈ S1KHA = Jh(s) ⩽2 h(r)KA : JsKHA ↣ JrKHA in I .

110 Categorical Logic for Multi-Languages

We omit the verification that semantics of operators commutes with the semantics
of subsorting, although this is essentially immediate since A is an Sg2-algebra.
Now let g : A → B be an order-sorted Sg2-homomorphism. We define the Sg1-
homomorphism H(g) : HA → HB by setting the components to be

(H(g))s∈S1
= gh(s) : Jh(s)KA → Jh(s)KB

Now we define the natural transformation η by specifying the components
ηSg : Alg(C, I)Sg → Alg(C, I)Sg∗ . Pick any Sg-homomorphism h : A → B. First
we define the (order-sorted) Sg∗-algebra ηSgA by setting

• Jsi ∈ S1 + S2KηSgA = JsKAi
in C and JwKηSgA = Js1KAi

× · · · × JsnKAi
for

each w = s1 . . . sn ∈ (S1 + S2)
n;

• morphisms Jfi : wi → siKηSgA = Jf : w→ sKAi
and JkiKηSgA = JkKAi

: 1→
JsKAi

; and

• J↪→si,s′j : si → s ′jKηSgA = Jsi ⋉ s ′jKA : JsKAi
→ Js ′KAj

• Jsi ⩽ rjKηSgA = Js ⩽i rKAi
: JsKAi

↣ JrKAi
in I for each si ⩽ rj in S1 + S2

(recall that i = j).

where the required commutation properties follow immediately since the Ai are
Sgi-algebras. Second we define Sg∗-homomorphism ηSg(h) : ηSgA → ηSgB. Since
by the definition of h there are Sgi-homomorphisms hi : Ai → Bi, we can define

ηSg(h)si∈S1+S2
= (hi)s : JsKAi

→ JsKBi

and ηSg(h)si inherits the required commuting properties from h (commuting with
conversion operators ↪→si,s′j), and from the hi (commuting with the function symbols
fi).

One can see that ηSg is an isomorphism by reversing the construction and by
noting there is a one-one correspondence between the sorts, operators, and subsort
constraints in Sg and those in Sg1 and Sg2. This is straightforward. More difficult is
naturality of η which we show next.

Let
h = (h1, h2) : Sg = (Sg1, Sg2,⋉)→ Sg ′ = (Sg ′1, Sg ′2,⋉

′)

Then we need to show that the diagram below commutes.

Alg(C, I)Sg Alg(C, I)Sg∗

Alg(C, I)Sg ′ Alg(C, I)Sg ′∗

ηSg

H

ηSg ′

H∗

where of courseH∗ = MLAlg(C, I)(h∗). Pick any morphismg : A → B in Alg(C, I)Sg ′ .
First we need to show that ηSg(HA) = H∗(ηSg ′A). Let us check only that these
Sg∗-algebras provide equal meaning to sorts si ∈ S1 + S2 where we have (hi(s))i ∈
S ′1 + S

′
2:

JsiKηSg(HA) = Js ∈ SiK(HA)i

= Jhi(s) ∈ S ′iKAi

= J(hi(s))i ∈ S ′1 + S ′2KηSg ′A

= Jh∗(si)KηSg ′A = JsiKH∗(ηSg ′A)

6.2. Multi-Language Equational Logic 111

Now g furnishes us with Sg ′-homomorphisms gi : Ai → Bi, and we need to show
that

ηSg(Hg) = H
∗(ηSg ′g) : Jhi(s) ∈ S ′iKAi

→ Jhi(s) ∈ S ′iKBi

is an equality of Sg∗-homomorphisms. But this follows from the following calculation
on components of S1 + S2-sorted morphisms

(ηSg(Hg))si = ((Hg)i)s

= (gi)hi(s)

= (ηSg ′g)(hi(s))i

= (ηSg ′g)(h∗(si))

= (H∗(ηSg ′g))si

and the proof is completed.

Running Example 6.4. The multi-language semantics of the term introduced in
Running Example 6.2 is given by the algebra ηSgA which leads to

J[c : chr, n : nat] ⊢ +(↪→chr,nat(c), n) : natKηSgA

= (c, n) ↦→ n+ 1 : A× N→ N

♢

6.2.2 Equational Reasoning in a Multi-Language Context

In this section we define multi-language proved terms, and give them a semantics.
Then we define multi-language equations and semantic satisfaction. From this we
can define theories and models, and hence prove soundness and completeness.

Let Sg = (Sg1, Sg2,⋉) be a multi-language signature. A (multi-language) proved
term Γ ⊢ t : si is a proved term over the associated signature Sg∗. It follows that

Multi-language proved term
if Γ ⊢ t : s is a proved term over Sgi, then Γ ⊢ t : s is a proved term in Sg∗, where
Γ ⊢ t : s = Γ ⊢ t : s and

• s = si for each s ∈ Si; and Γ = [x1 : s1, . . . , xn : sn] for each context Γ =
[x1 : s1, . . . , xn : sn] over Sgi;

• t is recursively defined over the syntax of raw terms generated by Sgi:

– x = x;

– k = ki; and

– f(t1, . . . , ta) = fi(t1, . . . tn)

Due to the injectivity of this construction, we shall refer to it as the inclusion of
an order-sorted term into the multi-language, and we informally say that a multi-
language “contains” the underlying languages. Furthermore, the definition of multi-
language terms also includes hybrid terms that are not the result of the inclusion of
an order-sorted term but which are constructed using the conversion operators in
the associated signature.

Given a multi-language Sg-algebra A , the categorical semantics of a (multi-
language) term Γ ⊢ t : si is the order-sorted semantics of Γ ⊢ t : si induced by

Categorical semantics of

multi-language terms

112 Categorical Logic for Multi-Languages

ηSgA , namely
JΓ ⊢ t : siKA = JΓ ⊢ t : siKηSgA (6.1)

As expected, a multi-language preserves the semantics of the underlying terms:

Proposition 6.1. Let A be a multi-language Sg-algebra over Sg = (Sg1, Sg2,⋉). If
Γ ⊢ t : s is a proved term over Sgi, then

JΓ ⊢ t : sKA = JΓ ⊢ t : sKηSgA = JΓ ⊢ t : sKAi

Regularity and coherence for a multi-language signature Sg = (Sg1, Sg2,⋉) are
defined with respect to its associated signature. That is, Sg is regular (resp., coherent)
if Sg∗ is regular (resp., coherent). It is immediate that Sg is regular (resp., coherent) if
and only if Sg1 and Sg2 are regular (resp., coherent).

Definition 6.14 (Multi-Language Equation and Satisfaction). Let Sg be a coherent
multi-language signature. A (conditional) equation for Sg is an order-sorted (condi-

(Conditional) equation
tional) equation over Sg∗. A multi-language algebra A satisfies any such (conditional)
equation if the (conditional) equation is satisfied by ηSgA . ♢

An immediate consequence of Proposition 6.1 is that every Sgi-equation satisfied
by Ai is also satisfied by the multi-language algebra A (in its inclusion form provided
by the mapping (−)).

A multi-language theory Th = (Sg,Ax) is a pair of a multi-language signature Sg
and a set of (conditional) multi-language equations Ax over Sg, namely the axioms

Multi-language theory, Axioms,

Theorems
of the theory. The theorems of Th are the equations Γ ⊢ t = t ′ : si derivable
from (Sg∗,Ax). A multi-language Sg-algebra that satisfies all the axioms in Ax is
said a model of Th, and MLMod(C, I)Th denotes the full subcategory of models of

Model of a theory
Alg(C, I)Th.

We now introduce the categories of theories in order to define the associated
theory of a multi-language theory.

Notation 6.4. From now on, when we write order-sorted theories Th1, Th2, Th,
Th ′, etc., we assume they are defined as Th1 = (Sg1,Ax1), Th2 = (Sg2,Ax2), Th =
(Sg,Ax), Th ′ = (Sg ′,Ax ′), etc., respectively. ♢

Running Example 6.5. Let Th1 = (Sg1,Ax1) and Th2 = (Sg2,Ax2) be the order-
sorted theories over Sg1 and Sg2 axiomatized by the equations provided in Figure 6.12.
We can generate from Ax1 and Ax2 a set Ax of multi-language equations by applying
(−) to each equation. For instance,

(eq1,1) = [n : nat] ⊢ 0+ n = n : nat

becomes
(eq1,1) = [n : nat] ⊢ 0+n = n : nat

Note that a substantial change occurs when mapping an order-sorted equation to
a multi-language one. Consider again (eq1,1). A substitution in the order-sorted
world can only plug t, where Γ ⊢ t : nat in Sg1, into the variable n : nat. However,
a multi-language substitution can substitute any t ′, where Γ ′ ⊢ t ′ : nat in Sg∗, for
n : nat in the lifted equation (eq1,1), including, crucially, the possibility that t ′ is a
hybrid multi-language term.

6.2. Multi-Language Equational Logic 113

(eq1,1) [n : nat] ⊢ 0+ n = n : nat
(eq1,2) [n : nat,m : nat] ⊢ s(n) +m = s(n+m) : nat
(eq1,3) [n : nat,m : nat] ⊢ n+m = m+ n : nat

(a) Th1 axioms.

(eq2,1) ⊢ next(a) = b : chr
(eq2,...) ⊢ . . . = . . . : chr
(eq2,26) ⊢ next(z) = a : chr

(b) Th2 axioms.

Figure 6.12: Axioms of order-sorted theories Th1 and Th2.

The behaviour of boundary morphisms can be axiomatized by adding the following
equations to Ax:

(EQ1) ⊢ ↪→nat,chr(0) = a : chr
(EQ2) ⊢ ↪→nat,str(0) = a : str
(EQ3) [c : chr] ⊢ ↪→chr,nat(c) = s(0) : nat
(EQ4) [c : chr] ⊢ ↪→str,nat(c) = s(0) : nat
(EQ5) [n : nat] ⊢ ↪→nat,chr(s(n)) = next(↪→nat,chr(n)) : chr
(EQ6) [n : nat] ⊢ ↪→nat,str(s(n)) = next(↪→nat,str(n)) : str
(EQ7) [w : str, v : str] ⊢ ↪→str,nat(w+ v) = ↪→str,nat(s)+ ↪→str,nat(v) : nat

♢

Definition 6.15 (Category of Order-Sorted Theories). Let OSTh be the category
of order-sorted theories whose morphisms h : Th1 → Th2 are signature morphisms

Category of order-sorted theories
h : Sg1 → Sg2 in OSSg that preserve theorems, that is, if Γ ⊢ t = t ′ : si is a theorem
of Th1 with Γ = [x1 : s1, . . . , xn : sn], then Γ ′ ⊢ h(t) = h(t ′) : h(si) is a theorem
of Th2, where Γ ′ = [x1 : h(s1), . . . , xn : h(sn)] and h(t) and h(t ′) are inductively
defined over the syntax according to the action of h on operators. ♢

Definition 6.16 (Category of Multi-Language Theories). The category of multi-
language theories is denoted by MLTh and a theory morphism h : (Sg1,Ax1) → Category of Multi-Language

Theories
(Sg2,Ax2) is a signature morphism h : Sg1 → Sg2 in the category of multi-language
signatures MLSg such that if Γ ⊢ t = t ′ : si is a theorem of (Sg1,Ax1) with Γ =
[x1 : s1, . . . , xn : sn], then Γ ′ ⊢ h∗(t) = h∗(t ′) : h∗(si) is a theorem of (Sg2,Ax2),
where Γ ′ = [x1 : h

∗(s1), . . . , xn : h
∗(sn)]. ♢

Functors MLAlg(C, I) and OSAlg(C, I) can be easily extended to

MLMod(C, I) : MLTh→ Catop

and
OSMod(C, I) : OSTh→ Catop

114 Categorical Logic for Multi-Languages

respectively, such that they associate to each signature its corresponding category of
models. Then, (−)∗ : MLTh → OSTh is defined by Th∗ = (Sg∗,Ax) on objects and
by h∗ on morphisms h : Th1 → Th2.

Proposition 6.2. MLMod(C, I) and OSMod(C, I) ◦ (−)∗ are isomorphic functors. Let
η be the natural isomorphism between them and Th a multi-language theory. Then,
ηTh is the isomorphism between categories MLMod(C, I)Th and Mod(C, I)Th.

Theorem 6.5 (Soundness and Completeness). Let Th be a multi-language theory.
Γ ⊢ t = t ′ : s is a theorem of Th if and only if Γ ⊢ t = t ′ : s is satisfied by every model
of Th.

6.3 Further Multi-Language Constructions

Chapter 4 provides three different multi-language constructions based on boundary
morphism properties (although in that chapter, morphisms are only set-theoretic
functions). In Section 6.2, we studied a categorical equational logic for the simplest
construction. Here we briefly discuss the other two, each a refinement of the first.

The first refinement of multi-language signatures is accomplished by allowing all
conversion operators ↪→si,s′j : si → s ′j in the associated signature to be replaced by
subsort polymorphic operators ↪→ : si → s ′j that do not carry any sort information.
One can check that any associated signature Sg∗ defined in this way remains an
order-sorted signature if and only if the following additional constraint holds for Sg:

si ⋉ s ′j, ri ⋉ r ′j, and si ⩽i ri imply s ′j ⩽j r
′
j (6.2)

Multi-language algebras are then restricted by the following monotonicity require-
ment:

si ⋉ s ′j, ri ⋉ r ′j, and si ⩽i ri imply

Js ′ ⩽j r ′KAj
◦ Jsi ⋉ s ′jKA = Jri ⋉ r ′jKA ◦ Js ′ ⩽j r ′KAj

(6.3)

In this new multi-language construction, we can prove the following version of
Theorem 6.4:

Theorem 6.6. Assume (6.2) and (6.3) for multi-language signatures and algebras,
respectively. There is a natural isomorphism η : MLAlg(C, I) ⇒ OSAlg(C, I) ◦ (−)∗

inducing Alg(C, I)Sg ∼= Alg(C, I)Sg∗ , where there are functors MLAlg(C, I) : MLSg →
Catop and OSAlg(C, I) : OSSg → Catop that map signatures to their category of algebras
in (C, I).

Proof. The proof is almost identical to the proof of Theorem 6.4. That each ηSgA is a
proper order-sorted algebra boils down to the fact that each J↪→ : si → s ′jKηSgA com-
mutes with the desired morphisms in I ; but this commutativity follows immediately
from (6.3).

The second refinement of multi-language signatures aims to achieve a multi-
language construction which consists only of the union of the underlying languages,
that is no conversion operator is added to the associated signature and single-language
operators are not tagged. Such a construction is particularly useful when mode ling
the extension of a language rather than the union of two already existing languages.

The notion of multi-language signature is refined by assuming that

6.4. The Lambda-Imp Multi-Language 115

• (S1 + S2,⋉) is a poset; and

• f : w→ s in Sgi and f : w ′ → s ′ in Sgj with wi ⋉w ′j, then si ⋉ s ′j.

and the associated signature Sg∗ is defined as follows:

• the poset of sorts is given by (S1 + S2,⩽), where si ⩽ rj if i = j and s ⩽i r
or i ̸= j and si ⋉ rj;

• if f : w→ s is a function symbol in Sgi, then f : wi → si is a function symbol
in Sg∗, and similarly for constants.

Multi-language algebras now force boundary morphisms to act as subsort morphisms.
This means that if the function symbol f appears with more than one rank f : w→ s
and f : w ′ → r in Sgi and Sgj, respectively, with (s1)i, . . . , (sn)i = w ⋉ w ′ =
(r1)j, . . . , (rn)j, then the following diagram commutes:

Js1KAi
× · · · × JsnKAi

JsKAi

Jr1KAj
× · · · × JrnKAj

JrKAj

Jf : w1→sKAi

J(s1)i⋉(r1)jKA×···×J(sn)i⋉(rn)jKA Jsi⋉rjKA

Jf : w2→rKAj

Theorem 6.7. Assume these new hypotheses for multi-language signatures and algebras,
respectively. There is a natural isomorphism η : MLAlg(C, I) ⇒ OSAlg(C, I) ◦ (−)∗

inducing Alg(C, I)Sg ∼= Alg(C, I)Sg∗ , where there are functors MLAlg(C, I) : MLSg →
Catop and OSAlg(C, I) : OSSg → Catop.

6.4 The Lambda-Imp Multi-Language

This section is dedicated to showing the construction of a multi-language by blending
a simple functional core with a minimal imperative language. The former is of course
suited to writing programs that are easier to reason about, whereas the latter provides
a more straightforward procedural and low-level approach to software development.

We formalise the simply-typed lambda calculus and a simple imperative language
as two equational theories, and we blend them together in order to provide the gist
of an interoperability between the functional and imperative paradigms. Although
the example we give is very small, it shows how the resulting multi-language can
enrich both paradigms. More complex examples can be built along the lines of the
one presented here. However, the presentation of elaborated theories requires a
non-trivial effort in terms of length and mathematical details. Hence the choice of
providing an example over two simple but fundamental theories.

For instance, suppose the imperative language does not come equipped with a
conditional (C-style) operator

predicate ? exp1 : exp2

that returns the value denoted by exp1 if the predicate holds and exp2 otherwise. In
such a case, a program like y = x ? y + 1 : y - 1 must be encoded through an if
statement. However, for each type τ, we can provide a lambda term cond(b, e1, e2)
that acts as a conditional operator, where b is interpreted as a boolean, and e1 and e2

116 Categorical Logic for Multi-Languages

have the same sort τ. Therefore, we might wish to build a theory in which lambda
expressions can be used as expressions in the imperative language, and vice versa.
In the example below, blue indicates imperative commands/expressions. The red
expression is a lambda expression (containing further imperative expressions, such
as x > 0), but playing the role of the right hand side of an imperative assignment
command.

res := cond(x > 0, true, false)

Summarising, we will now show how we can

• provide a categorical semantics to such multi-language programs; and

• reason about them using multi-language equations.

The reader may wish to skim Sections 6.4.1 and 6.4.2 which are standard formal-
isations of the underlying languages to get a feel for our notation, and then read in
more detail Section 6.4.3 for the multi-language construction itself.

6.4.1 The Simple Imperative Language

The syntax of the simple imperative programming language Imp is given by the
following order-sorted signature Sg(Imp):

Integers i : int ∀i ∈ {. . . , -1, 0, 1, . . .}

Booleans true : bool
false : bool

Null value nil : nil
Binary operators ⊗ : exp, exp→ exp ∀⊗ ∈ BinOp
Unary operators ⋄ : exp→ exp ∀⋄ ∈ UnOp
Variables x : var ∀x ∈ Var
Commands skip : com

if : exp, com, com→ com
comp : com, com→ com

assign : var, exp→ com
while : exp, com→ com

where BinOp = {+, *, <=, ==, and, . . .} is a set of binary operators that are commonly
found in imperative languages, and UnOp = {not, -} contains the logical negation
and unary minus operators. Finally, Var = {x, y, z, . . .} is a countable set of variables.

The collection of sorts in Sg(Imp) is specified by the following poset (depicted as
a Hasse diagram):

exp

val var

bool nilint

com

6.4. The Lambda-Imp Multi-Language 117

Note that the signature Sg(Imp) is not finite due to specifications of integers and
variables. However, it is easy to recover finiteness by providing an inductive definition
of these two sorts (see, for instance, [VM06]).

We provide semantics to Sg(Imp) in the FPI-category (Dcpo, Incl), whose Dcpo ob-
jects are directed-complete partial orders (dcpo) and morphisms are Scott-continuous
functions, and inclusion structure Incl is inclusions on dcpos (sub-dcpos).

• For each sort of Sg(Imp) we assign a dcpo according to the following definitions:

JintK = Z JvalK = Val⊥ = Val ∪ {⊥}
JboolK = B = {tt,ff} where Val = Z ∪ B

JnilK = {⊥} JexpK = Env → Val⊥

JvarK = Var JcomK = (Env⊥
⊔−→ Env⊥,⊑)

where Env = Var → Val⊥ and Env⊥ = Env ∪ {⊥} (we assume that Env⊥ is a
flat poset in which⊥ ⊑ ρ for each ρ ∈ Env⊥). All these dcpos have the discrete
order except for JcomK which is ordered by the information order on continuous
functions between stores, namely

f ⊑ g if ∀ρ ∈ Env⊥ . f(ρ) ⊑ g(ρ)

The least upper bound
⨆︁

of a directed subset S ⊆ JcomK is defined by

(⊔S)ρ = ⊔{ f(ρ) | f ∈ S }

Since S is directed,
⨆︁
S is guaranteed to exist.

• For each subsort constraint s ⩽ r in Sg(Imp), we define a monomorphism
Js ⩽ rK : JsK→ JrK in Incl:

– if r = val and s ∈ {int, bool, nil}, we define Js ⩽ rK to be the inclusion
function;

– Jval ⩽ expK = v ∈ Val⊥ ↦→ (ρ ∈ Env ↦→ v);

– Jvar ⩽ expK = x ∈ Var ↦→ (ρ ∈ Env ↦→ ρ(x)); and

– the remaining monomorphisms are generated by composition or they are
the identity function on their respective domains.

Since Dcpo is a concrete category, proving that Js ⩽ rK is monic amounts to
show it is an injective function in the category of sets (the (faithful) forgetful
functor reflects monomorphisms).

• For each operator f : w → s in Sg(Imp), we choose a morphism JfK : JwK →
JsK in Dcpo. We just provide semantics of commands, and in the following
definitions we assume ρ ̸= ⊥; in the other case, we define JfK(x ∈ JwK) =

118 Categorical Logic for Multi-Languages

⊥ ↦→ ⊥ for all command operators:

JcompK(c1, c2) = ρ ↦→ c2(c1(ρ))

JskipK = ρ ↦→ ρ

JassignK(x, e) = ρ ↦→ ρ[x←[e(ρ)]

JifK(e, c1, c2) = ρ ↦→

⎧⎪⎨⎪⎩
c1(ρ) if e(ρ) = tt

c2(ρ) if e(ρ) = ff

⊥ otherwise

JwhileK(e, c) = lfp Fe,c =
⨆︂
n∈N

Fne,c(ρ ↦→ ⊥)

where Fe,c : (Env⊥ → Env⊥)
⊔−→ (Env⊥ → Env⊥) is defined as

Fe,c(f)(ρ) =

⎧⎪⎨⎪⎩
ρ if e(ρ) = ff

f(c(ρ)) if e(ρ) = tt

⊥ otherwise

In order to provide an equational axiomatization of Imp, we need extra (syntactical)
structures in the signature. For instance, there is no way to express “expressions
if E then C else C’ and C are provably equal if the expression E evaluates to true
in a given store S”, since Sg(Imp) does not yet have the syntactical notion of store.
Therefore, we extend Sg(Imp) by adding the following sorts and operators:

Store operations [] : store
get : store, var → val
put : store, var, val → store

Configurations <> : store, exp→ config
<> : store, com→ config

The axiomatization of the language is given by the equations below (we give
only the axiomatization of commands, see [VM06] for equations involving expres-
sions and store operations). Moreover, note that we use an infix notation instead
of a prefix one (and sometimes we change the name of operators) in order to avoid
a cumbersome exposition. For instance, we write C; C’ in place of comp(C, C’),
or S[X := V] in place of put(S, X, V), etc. (this is possible thanks to the algeb-
raic equivalence between signatures and grammars, as we will show in Chapter 8):

<S, if E then C else C’> = <S, C> if <S, E> = <S, true>

<S, if E then C else C’> = <S, C’> if <S, E> = <S, false>

<S, C; C’> = <S’, C’> if <S, C> = <S’, skip>

<S, X := E> = <S[X := V], skip> if <S, E> = <S, V>

<S, while E do C> = <S, skip> if <S, E> = <S, false>

<S, while E do C> = <S, C; while E do C> if <S, E> = <S, true>

where uppercase constants are variables whose sort is easily deducible from the
signature. Note that the algebra we gave satisfies all these equations provided that we
give meaning to new sorts and operators (such an extension is trivial and omitted).

6.4. The Lambda-Imp Multi-Language 119

6.4.2 The simply-typed lambda calculus

The syntax of the simply-typed lambda calculus is given by the following signature
Sg(λ�), where single letters such as e rather than three such as exp for the imperative
language, denote sorts):

Types τ : t ∀τ ∈ T

Variables x : x ∀x ∈ Var
Abstraction λ : x, t, e → e
Application ◦ : e, e → e
Integer constants i : e ∀i ∈ {. . . , -1, 0, 1, . . .}

Conditional operator cond : e, e, e → e

where T is inductively defined as the smallest set (1) containing int and (2) given
τ, τ ′ ∈ T, then τ � τ ′ ∈ T. We assume a flat ordering between sorts, except for
x ⩽ e, thus enabling the use of variables as expressions. Here too, we can easily
recover the finiteness property of the signature. We provide both a static and dynamic
semantics for Sg(λ�) using sets. (Note that, in the following, we stick to the standard
notation for lambda expressions, writing, for instance, (λx:int.x) 1 in place of
◦(λ(x, int, x), 1).)

Static Semantics

The static semantics assigns a unique type τ ∈ T to each well-defined lambda term,
and ⊥ otherwise. We can model such a semantics as an algebra in the FPI-category
(Set, Incl).

• For each sort in Sg(λ�) we pick a set in Set:

JtK = T JxK = Var JeK = ∆→ T⊥

where ∆ = Var → T⊥ and T⊥ = T ∪ {⊥}.

• The only non-trivial monomorphism to define is

Jx ⩽ eK = x ∈ Var ↦→ (δ ∈ ∆ ↦→ δ(x))

• The static semantics of operators is defined as follows:

JcondK(e1, e2, e3) = δ ↦→

{︄
τ if e1(δ) = nat and e2(δ) = τ = e3(δ)

⊥ otherwise

JλK(x, τ, e) = δ ↦→
(︁
τ � e(δ[x← [τ])

)︁
JτK = τ JxK = x JiK = δ ↦→ int

J◦K(e1, e2) = δ ↦→

{︄
τ ′ if e1(δ) = τ � τ ′ and e2(δ) = τ

⊥ otherwise

Note that for a neater semantics of JiK we could have added a subsort c ⩽ e for
constants and define JiK = int and the monomorphism Jc ⩽ eK(int) = δ ↦→
int.

120 Categorical Logic for Multi-Languages

Dynamic Semantics

The dynamic semantics provides expressions with a meaning. It is defined by an
algebra in (Set, Incl), and in the next section we make explicit the connection with
the static semantics.

• For each sort in Sg(λ�) we pick a set in Set:

JtK = T JxK = Var JeK = H→ L T M⊥

where H = Var → L T M⊥, L T M⊥ = L T M ∪ {⊥}, and

L T M =
⋃︂
τ∈T

L τ M with

{︄
L int M = Z

L τ � τ ′ M = L τ M→ L τ ′ M

• The only non-trivial monomorphism to define is

Jx ⩽ eK = x ∈ Var ↦→ (η ∈ H ↦→ η(x))

• The dynamic semantics of operators is defined as follows:

JτK = τ JxK = x JiK = η ↦→ int(i)

JcondK(e1, e2, e3) = η ↦→

⎧⎪⎨⎪⎩
e2(η) if e1(η) ∈ Z \ {0}

e3(η) if e1(η) = 0

⊥ otherwise

JλK(x, τ, e) = η ↦→

{︄
v ∈ L τ M ↦→ e(η[x← [v]) if e(η[x← [v]) ̸= ⊥
⊥ otherwise

J◦K(e1, e2) = η ↦→

{︄(︁
e1(η)

)︁
(e2(η)) if e2(η) ∈ dom(e1(η))

⊥ otherwise

where int is the obvious bijection between {. . . , -1, 0, 1, . . .} and Z. A similar
argument for achieving a neater dynamic semantics for JiK can be done by
following the observation made in the previous section.

Basic Theorems

Let η ∈ H and δ ∈ ∆. We write δ ⊢ η if for every x ∈ Var we have that η(x) ∈ Lδ(x)M,
where L ⊥ M = {⊥}. Then, for each closed lambda term ⊢ M : e, the following
propositions hold:

Proposition 6.3. If JMKδ = τ and δ ⊢ η, then JMKη ∈ L τ M.

Proposition 6.4. If JMKη = ⊥, then JMKδ = ⊥.

Equational Theory

The simply-typed lambda calculus can be regarded as an equational theory by axio-
matizing the α, β, and η-equivalence rules. For instance, β and η-equivalence rules
are given by the following equations:

(λX : T . M) M’ = M[M’/X]

λX : T . (M X) = M if X is not free in M

6.4. The Lambda-Imp Multi-Language 121

However, in order to fully formalise these rules we need the axiomatization of free
variables and term substitution, which can be found in [VM06].

6.4.3 The Multi-Language Construction

In this section, we build the multi-language Sg(λ�-Imp) that blends Sg(Imp) and
Sg(λ�) together. The first step is to specify which syntactic categories of one language
can be used in the other. Since we would like to use Sg(λ�) expressions in place of
Sg(Imp) expressions and vice versa, we define the join relation by requiring e ⋉ exp
and exp ⋉ e. This allow us to write programs such as the one in the introduction,
namely

res := ↪→e,exp(cond(↪→exp,e(x > 0),↪→exp,e(true),↪→exp,e(false)))

In order for these programs to have meaning, we must exhibit two boundary
functions that specify how lambda expressions flow from Sg(λ�) (in which they have
a meaning) to Sg(Imp) (in which they don’t), and vice versa.

• In the former case, we have to define

Je ⋉ expK : (H→ L T M⊥)→ (Env → Val⊥)

that is, given a lambda expression e, we need to provide (the denotation of)
an expression of the imperative language representing the conversion of e.
The approach we follow here is to “run” e over the conversion ϕ(ρ) of a store
ρ ∈ Env, and to convert the result of e(ϕ(ρ)) ∈ L T M⊥ to a proper value in the
Imp language through a function ψ : L T M⊥ → Val⊥. Diagrammatically, this
can be depicted as

H L T M⊥

Env Val⊥

e

ψ

Je⋉expK(e)

ϕ

The function ψ(v) is the identity on integers (which exist as values in both
languages) and the undefined value ⊥ whenever we want to move the denota-
tion of a function from λ� to Imp. Indeed, in this case there are no suitable
denotations for functions in the imperative language. We set:

ψ(v) =

{︄
v if v ∈ L int M = Z

⊥ otherwise

The conversion of a store ρ ∈ Env to a lambda environment follows a similar
approach:

ϕ(ρ) = x ∈ Var ↦→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ(x) if ρ(x) ∈ Z = L int M
1 if ρ(x) = tt

0 if ρ(x) = ff

⊥ otherwise

122 Categorical Logic for Multi-Languages

Note that ϕ establishes a match between the variable’s name in the imperative
language and in the lambda calculus, thus sharing their values between them.
Consider again the small program provided at the beginning of this section.
The variable x of Imp is used in the lambda calculus in order to perform a
conditional choice.

• In the latter case, we have to provide the conversion of an expression e of the
imperative language Imp to a lambda expression Jexp ⋉ eK(e). The intuition is
along the lines of the previous construction: we start with the conversion of a
lambda environment η to a valid store β(η) in Imp. Then, we let the result of
e(β(η)) flow to L T M⊥ through a function α:

H L T M⊥

Env Val⊥

Jexp⋉eK(e)

β

e

α

The conversion of a value in Val⊥ is defined by keeping integers and ⊥ un-
touched, and by converting tt and ff to 1 and 0, respectively. Such an approach
allows us to employ boolean expressions of Imp (e.g., x > 0) as parameters in
the cond operator in λ�:

α(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v if v ∈ Z

1 if v = tt

0 if v = ff

⊥ otherwise

On the other hand, the conversion of a lambda environment to a store collapses
everything that is not an integer to ⊥, since there are no suitable values for
functions:

β(η) = x ∈ Var ↦→

{︄
η(x) if η(x) ∈ Z

⊥ otherwise

Finally, the equational axiomatization of the behavior of boundary functions
reflects the approach outlined in the definitions of Je ⋉ expK and Jexp ⋉ eK:

↪→e,exp(i) = i = ↪→exp,e(i) ∀i ∈ {. . . , -1, 0, 1, . . .}

↪→e,exp(x) = x = ↪→exp,e(x) ∀x ∈ Var
↪→exp,e(true) = 1

↪→exp,e(false) = 0

One can now compute the multi-language semantics of

Jres := ↪→e,exp(cond(↪→exp,e(x > 0),↪→exp,e(true),↪→exp,e(false)))K =

= ρ ↦→ ρ

⎡⎢⎣x←[
⎧⎪⎨⎪⎩
1 if ρ(x) > 0

0 if ρ(x) ⩽ 0

⊥ otherwise

⎤⎥⎦

CHAPTER 7
Abstract Semantics of

Multi-Language Programs

Chapter reference(s): [BCM20c]

In this chapter, we design a general technique for abstracting multi-language
semantics given the interoperation of the underlying languages and of their abstract
semantics. We exploit abstract interpretation theory [CC77] for retaining independ-
ency from the underlying analyses, and the algebraic framework of multi-languages
(see Chapter 4) for generality of the blended languages.

Abstract interpretation has allowed a disparate collection of (practical) methods
and algorithms proposed along the years for static analysis to evolve into a mature
discipline, founded on a robust theoretical framework. This provides a good en-
vironment for designing static analysis methods within a language, semantics, and
approximation independent way [CC92]. It has broad scope and wide applicability.
Our aim is to retain such broad scope, but to work with multi-language programs:
Instead of fixing two programming languages and combining their respective ana-
lyses, we model abstract interpretation itself, within the algebraic framework of
multi-language semantics. Such an approach allows us to lay down the first steps of a
general technique for designing static analyses of multi-language programs, in a way
that (1) is independent of both underlying languages and analyses and (2) preserves
the design and properties of the single-language abstract semantics.

Structure We begin by giving a general, algebraic, and fixpoint construction of the
collecting semantics, namely the reference semantics for defining and proving the cor-
rectness of approximated properties. Then, we instantiate the abstract interpretation-
based semantics approximation in the algebraic framework, in order to fill the gap
between the algebraic approach to program semantics and static analysis. Finally, we
combine all these concepts, obtaining an algebraic framework for modelling abstract
interpretation of multi-language programs.

123

124 Abstract Semantics of Multi-Language Programs

7.1 Algebraic Perspective on Collecting Semantics

We give a general construction of collecting semantics. First we set up notation. We let
Sg be a regular order-sorted signature and C an Sg-algebra. Theorem 3.1 guarantees
the existence of a homomorphism J−KC : TSg → C providing Sg-terms P, called
programs, with a meaning JPKC (see Equation 3.4).

Program

Remark 7.1. Signatures are of course completely general. Sg might specify a lambda-
calculus with J−KC its denotational semantics, as in Example 3.2, or Sg might specify
the syntax of an imperative language with J−KC its small-step operational semantics
(as in the following example). ♢

Example 7.1. We illustrate a simple imperative language Imp on which we define
various kinds of semantics in order to show the generality of the algebraic framework.
Let Var be a set of variables and Val a set of scalar values with metavariables x and v,
respectively. Variables and values occur in the language as terminal symbols, and for
each production defining the syntax of the language (on the right), we introduce a
corresponding algebraic operator (on the left), or a family of operators when they are
parametric on a subscript:

(v) ⟨exp⟩ ::= v scalar values

(x) ⟨exp⟩ ::= x variables

(bop�) ⟨exp⟩ ::= ⟨exp⟩� ⟨exp⟩ binary operations

(skip) ⟨com⟩ ::= skip do-nothing

(assignx) ⟨com⟩ ::= x = ⟨exp⟩ assignment

(cond) ⟨com⟩ ::= if ⟨exp⟩ then ⟨com⟩ else ⟨com⟩ conditional

(loop) ⟨com⟩ ::= while ⟨exp⟩ do ⟨com⟩ loop statement

(seq) ⟨com⟩ ::= ⟨com⟩; ⟨com⟩ composition

where � is a binary operator such as +, -, *, etc. We abuse notation and assume that
� denotes both a syntactical symbol of the language and a mathematical function
� : Val2 → Val over values. The rank of each algebraic operator can be inferred by
the non-terminals appearing in the production rules; for instance, the operator cond
is sorted as

cond : exp, com, com→ com

In the examples in the following sections, we often use the correspondence between
algebraic and context-free terms. For instance, we may write the algebraic term

cond(bop>(x, 0), skip, assignx(bop-(0, x)))

in the less cumbersome context-free form

if x > 0 then skip else x = 0 - x

We define a small-step operational semantics S describing the program execution
steps. The presentation provided here is purely algebraic, and therefore less intuitive
than the traditional rule-based style. However, the algebraic framework allows to
express many more kinds of semantics in the same formalism (as we will show in the
course of the chapter), thus favouring their comparison.

Expressions. ▷ We treat expressions E as “atomic” terms that are fully evaluable into
a scalar value in a single-step. Let

Sexp = { ⟨E, ρ⟩ | E ∈ JexpKTImp ∧ ρ ∈ Env }

7.1. Algebraic Perspective on Collecting Semantics 125

JexpKS = ℘(Sexp × Val)

JvKS = { ⟨v, ρ⟩_ v | ρ ∈ Env }
JxKS = { ⟨x, ρ⟩_ ρ(x) | ρ ∈ Env }

Jbop�KS (JE1KS , JE2KS) = { ⟨bop�(E1, E2), ρ⟩_ JE1KρS � JE2KρS | ρ ∈ Env }

Figure 7.1: Small-step operational semantics of Imp expressions.

be the set of configurations where E is an expression and ρ an environment in
Env = Var → Val. The small-step semantics of expressions is given in Figure 7.1.
Intuitively, starting from an expression E, we build a set of pairs in ℘(Sexp × Val)
representing the one-step evaluation of E in each environment ρ. More precisely,
⟨E, ρ⟩_ v ∈ JEKS simply means that E is evaluated into v in ρ. We write JEKρS for
denoting such v (unique by construction).

Note that from the small-step semantics JEKS of an expression E, we are able to
recover the term E. Indeed, JEKS ̸= ∅ and if ⟨E1, ρ1⟩ _ v1 and ⟨E2, ρ2⟩ _ v2 are
transitions (that is, pairs) in JEKS , then E1 = E = E2 (this can be shown by a simple
structural induction on E).

There are some missing cases in the definition of the interpretation functions for
the operators in Figure 7.1. For instance, we have defined Jbop�KS on arguments
JE1KS and JE2KS . However, there are semantic elements in ℘(Sexp × Val) that are
not the image of any expressions E (e.g., the empty set ∅). We shall leave implicit
that Jbop�KS (e1, e2) = ∅ whenever there are no E1 or E2 such that e1 = JE1KS
and e2 = JE2KS . ◁

Commands. ▷ Let

Scom = { ⟨C, ρ⟩ | C ∈ JcomKTImp ∪ {⊥} ∧ ρ ∈ Env }

where C is a command (or ⊥, denoting the end of a computation) and ρ an envir-
onment. For each command operator of Imp we define its semantics by specifying
exactly the pairs of configurations which are related by the action of such an operator
(Figure 7.2). We write JCKρS for the unique ⟨C ′, ρ ′⟩ such that ⟨C, ρ⟩_ ⟨C ′, ρ ′⟩ ∈ JCKS
(the previous discussions on recovering an expression E from JEKS and the partial
definition of interpretation functions shall also apply to commands). ◁

We show a small example of the application of the newly defined semantics J−KS .
We adopt the more intuitive notation provided by the context-free grammar for
denoting terms, and we avoid the use of subscripts S . Suppose we want to compute
the small-step semantics of the conditional statement

if x > 0 then skip else x = 0 - x

Then,

Jif x > 0 then skip else x = 0 - xK =
JcondK(Jx > 0K, JskipK, Jx = 0 - xK)

126 Abstract Semantics of Multi-Language Programs

JcomKS = ℘(S2com)

JskipKS = { ⟨skip, ρ⟩_ ⟨⊥, ρ⟩ | ρ ∈ Env }
JassignxKS (JEKS) = { ⟨assignx(E), ρ⟩_ ⟨⊥, ρ[x←[JEK

ρ
S]⟩

| ρ ∈ Env }

JcondKS (JEKS , JC1KS , JC2KS) = { ⟨cond(E, C1, C2), ρ⟩_ ⟨C1, ρ⟩
| ρ ∈ Env ∧ JEKρS ̸= 0 }

∪ { ⟨cond(E, C1, C2), ρ⟩_ ⟨C2, ρ⟩
| ρ ∈ Env ∧ JEKρS = 0 }

JloopKS (JEKS , JCKS) = { ⟨loop(E, C), ρ⟩_ ⟨⊥, ρ⟩
| ρ ∈ Env ∧ JEKρS = 0 }

∪ { ⟨loop(E, C), ρ⟩_ ⟨seq(C, loop(E, C)), ρ⟩
| ρ ∈ Env ∧ JEKρS ̸= 0 }

JseqKS (JC1KS , JC2KS) = { ⟨seq(C1, C2), ρ⟩_ ⟨C2, ρ ′⟩
| ρ ∈ Env ∧ JC1KρS = ⟨⊥, ρ ′⟩ }

∪ { ⟨seq(C1, C2), ρ⟩_ ⟨seq(C ′1, C2), ρ
′⟩

| ρ ∈ Env ∧ JC1KρS = ⟨C ′1, ρ ′⟩ }

Figure 7.2: Small-step operational semantics of Imp commands.

where the semantics of the condition is

Jx > 0K = Jbop>K(JxK, J0K) = { ⟨x > 0, ρ⟩_ 1 | ρ ∈ Env ∧ (ρ(x) > 0) = 1 }
∪ { ⟨x > 0, ρ⟩_ 0 | ρ ∈ Env ∧ (ρ(x) > 0) = 0 }

and therefore,

JcondK (Jx > 0K, JskipK, Jx = 0 - xK) =
= { ⟨if x > 0 then skip else x = 0 - x, ρ⟩_ ⟨skip, ρ⟩

| ρ ∈ Env ∧ (ρ(x) > 0) = 1 }

∪ { ⟨if x > 0 then skip else x = 0 - x, ρ⟩_ ⟨x = 0 - x, ρ⟩
| ρ ∈ Env ∧ (ρ(x) > 0) = 0 }

Note that the same result would have been achieved with a traditional rule-based
style for specifying small-step semantics. ♢

A property of a set is any subset. By semantic properties of programs, we mean
properties of the (components of) the carrier set C of an algebra C . In this section,
we provide a systematic construction of an algebra C ∗ able to compute the strongest
property of programs, that is

Strongest program property
JPKC∗ = {JPKC }

for each program P (Proposition 7.2). The induced semantic function J−KC∗ is usually
called the (standard) collecting semantics [CGR19]. Henceforth, we distinguish the

(Standard) collecting semantics
semantics J−KC from the collecting semantics J−KC∗ by referring to the former as the
standard semantics, and we shall link them algebraically in the category of algebras

Standard semantics
Alg(Sg) via Proposition 7.3. We conclude this section by providing a general fixpoint
calculation of J−KC∗ whenever J−KC is a fixpoint semantics (Theorem 7.2).

7.1. Algebraic Perspective on Collecting Semantics 127

We introduce the product operator × used in the following definition. Let A be a
family of sets indexed by I. The product operator

× :
∏︂
i∈I
℘(Ai)→ ℘

(︂∏︂
i∈I
Ai

)︂
defines the mapping (X1, . . . , Xn) ↦→ X1 × · · · × Xn.

Definition 7.1 (Collecting Semantics). Let C be an Sg-algebra. The collecting se-
mantics C ∗ over C is defined as follows:

(i) the carrier sets are JsKC∗ = ℘JsKC for each sort s; and

(ii) the semantics of the operators is JkKC∗ = {JkKC } for each constant k : s, and

Jf : w→ sKC∗ = ℘Jf : w→ sKC ◦ ×

for each function symbol f : w → s, where for any function θ : A → B the
function ℘(θ) : ℘(A)→ ℘(B) computes the image of θ. ♢

Proposition 7.1. C ∗ is a proper order-sorted Sg-algebra in the category Alg(Sg).

Proof. Let s ⩽ r in Sg and x ∈ JsKC . Then, {−}s(x) = {x} = {−}r(x). Now, let
f : w→ s be a function symbol in Sg and let x ∈ JwKC . Then,

({−}s ◦ Jf : w→ sKC)(x) = {Jf : w→ sKC (x)}

= (℘Jf : w→ sKC ◦ ×)({x})
= (Jf : w→ sKC∗ ◦ {−}w)(x)

Finally, let k : s be a constant in Sg. Then, {−}s ◦ JkKC = {JkKC } = JkKC∗ .

The homomorphism J−KC∗ : TSg → C ∗ induced by C ∗ maps programs to their
most precise semantic property, justifying the name of collecting semantics:

Proposition 7.2. J−KC∗ : TSg → C ∗ computes the strongest program property for
each program P generated from Sg, that is JPKC∗ = {JPKC }.

Proof. By structural induction on P.

Remark 7.2. Other forms of collecting semantics found in literature are abstractions
of the collecting semantics provided here. For instance, [AMS20] defines a collecting
semantics for functional programs interpreted onD⊥ → D⊥ by taking f : D⊥ → D⊥
to ℘(f) on the lifted domain ℘(D⊥)→cjm ℘(D⊥) of complete-join morphisms (cjm).
Such a collecting semantics computes all the possible results of a functional program
with respect to a set of input values, and it can be obtained as an abstraction of the
standard collecting semantics:

α
(︁
S ∈ ℘(D⊥ → D⊥)

)︁
= X ∈ ℘(D⊥) ↦→ { f(x) ∈ D⊥ | x ∈ X∧ f ∈ S }

γ
(︁
F ∈ ℘(D⊥)→cjm ℘(D⊥)

)︁
= { x ∈ D⊥ ↦→ f(x) ∈ D⊥ | f(x) ∈ F({x}) }

(One can check that α(S) is a cjm and (α, γ) form a Galois connection.)
The (forward) reachability semantics is widely used for invariance analyses or, in

general, for discovering state properties of programs [SJ03, BG15, KO11]. For each
program P, it collects the set of states that are reachable by running P from a set
of initial states. It can be shown that it is an abstraction of the standard collecting
semantics over, for instance, a trace semantics (such a construction is formalised in
the following example). ♢

128 Abstract Semantics of Multi-Language Programs

Example 7.2. Prefix trace semantics associates each program P with the set of all
finite traces obtained by iterating an arbitrarily large number of times the small-step
semantics S from ⟨P, ρ⟩, for each environment ρ.

Let S∗com =
⋃︁
n∈N S

n
com be the set of finite sequences of command configurations

(that is, finite traces). A trace τ ∈ Sncom is denoted by ⟨C1, ρ1⟩_ · · ·_ ⟨Cn, ρn⟩. The
prefix trace semantics P is defined by keeping the one-step evaluation semantics for
expressions E (i.e., JEKP = JEKS), and by defining the following fixpoint semantics
for command operators f : w→ s on the domain ⟨JcomKP = ℘(S∗com),⊆,∅,∪⟩:

Jf : w→ sKP(JP1KP , . . . , JPnKP) = lfp⊆∅ Ff(P1,...,Pn)

where Ff(P1,...,Pn) : ℘(S
∗
com)→ ℘(S∗com) is defined as

X ↦→ {ε} ∪ { ⟨f(P1, . . . , Pn), ρ⟩ | ρ ∈ Env }
∪ { τ_ ⟨C, ρ⟩_ ⟨C ′, ρ ′⟩ ∈ S∗com | τ_ ⟨C, ρ⟩ ∈ X∧ ⟨C ′, ρ ′⟩ = JCKρS }

The trace semantics of the constant skip is trivially defined by

JskipKP = {ε} ∪ { ⟨skip, ρ⟩ | ρ ∈ Env } ∪ { ⟨skip, ρ⟩_ ⟨⊥, ρ⟩ | ρ ∈ Env }

The constructive computation of lfp⊆∅ Ff(P1,...,Pn) is guaranteed by the Kleene’s the-
orem (Ff(P1,...,Pn) is continuous on the pointed dcpo ⟨℘(S∗com),⊆,∅,∪⟩).

We show an application of the prefix trace semantics P applied to the same term
P = if x > 0 then skip else x = 0 - x of the previous example:

Jif x > 0 then skip else x = 0 - xK = lfp⊆∅ FP

where the iterates of FP are

F0P = ∅
F1P = {ε} ∪ {⟨if x > 0 then skip else x = 0 - x, ρ⟩}
F2P = { ⟨if x > 0 then skip else x = 0 - x, ρ⟩_ ⟨skip, ρ⟩

| ρ ∈ Env ∧ (ρ(x) > 0) = 1 }

∪ { ⟨if x > 0 then skip else x = 0 - x, ρ⟩_ ⟨x = 0 - x, ρ⟩
| ρ ∈ Env ∧ (ρ(x) > 0) = 0 }

∪ F1P
F3P = { ⟨if x > 0 then skip else x = 0 - x, ρ⟩_ ⟨skip, ρ⟩_ ⟨⊥, ρ⟩

| ρ ∈ Env ∧ (ρ(x) > 0) = 1 }

∪ { ⟨if x > 0 then skip else x = 0 - x, ρ⟩_ ⟨x = 0 - x, ρ⟩_
_ ⟨⊥, ρ[x←[-x]⟩ | ρ ∈ Env ∧ (ρ(x) > 0) = 0 }

∪ F1P
Fδ>3P = F3P

and therefore JPKP is the union of the iterates. ♢

Standard and collecting semantics are related by the property established in Pro-
position 7.2. Moreover, the singleton function {−} : C→ ℘(C) that maps standard se-
mantics JPKC of programs to their strongest property {JPKC } is an Sg-homomorphism
{−} : C → C ∗. From the abstract interpretation perspective, it means that {−} acts as
a complete abstraction, hence with no loss of precision [GR97].

Proposition 7.3. The singleton function {−} : C → ℘(C) defined by c ↦→ {c} is an
Sg-homomorphism {−} : C → C ∗, and therefore {−} ◦ J−KC = J−KC∗ .

Remark 7.3. Readers familiar with category theory may notice that {−} is the unit
of the powerset monad on Alg(Sg). However, we do not pursue this here. ♢

7.2. Fixpoint Calculation of Collecting Semantics 129

7.2 Fixpoint Calculation of Collecting Semantics

We begin by introducing some preliminary notions.

Preliminary Notions. We call J−KC a fixpoint semantics if JPKC = lfp≼
⊥ F for some

Fixpoint semantics
semantic transformer F : C→ C (depending on Sg) on a semantic domain ⟨C,≼,⊥,⋎⟩.
More precisely, we follow [Cou02] and we assume the following:

• The semantic domain ⟨C,≼,⊥,⋎⟩ is a poset (C,≼) with a smallest element ⊥
Semantic domain

and a partially defined least upper bound (lub) operator ⋎.

• The semantic transformer F : C → C is a monotone function such that its
Semantic transformer

transfinite iterates F0 = ⊥, Fδ+1 = F(Fδ) for successor ordinals δ + 1, and
Fλ = ⋎δ<λFδ for limit ordinals λ are well-defined.

Under these assumptions, the fixpoint semantics is exactly

JPKC = lfp≼
⊥ F = F

ϵ

where ϵ is the least ordinal such that F(Fϵ) = Fϵ.

The goal of this section is to provide a fixpoint calculation of the collecting
semantics. We assume the standard semantics JPKC = lfp≼

⊥ F to be a fixpoint semantics
over a generic semantic domain ⟨C,≼,⊥,⋎⟩, and we define a new computational
order ≼∗ on ℘(C) that makes the collecting semantics JPKC∗ the least fixpoint of
F∗ = ℘(F) (see Theorem 7.2).

Remark 7.4. The problem of finding the right partial order ≼∗ on ℘(C) for achieving
such a fixpoint definition of the collecting semantics has been recently addressed
in [CGR19, Sect. 7.2], by considering a preorder on ℘(C) that is partial only along the
iterates. A similar approach has been previously taken in [MP17] and in the thesis
of Pasqua [Pas19]. Here, we show that it can be extended to a fully-fledged partial
order ≼∗ over the whole set ℘(C). ♢

Definition 7.2 (Collecting Semantics Domain). Let ⟨C,≼,⊥,⋎⟩ be a (non-trivial)
semantic domain. The collecting semantics domain ⟨℘(C),≼∗,⊥∗,⋎∗⟩ with respect

Collecting semantics domain
to ⟨C,≼,⊥,⋎⟩ is defined as follows:

• Let X, Y ∈ ℘(C). Then,

X ≼∗ Y iff

⎧⎪⎨⎪⎩
X = {x} and Y = {y} and x ≼ y for some x, y ∈ C (7.1)

X = Y (7.2)

X = {x} and Y ̸= {y} for some x ∈ C and for all y ∈ C (7.3)

♢

Example 7.3. Let C = N and ≼ = ⩽. Then, (℘(N),⩽∗) is

130 Abstract Semantics of Multi-Language Programs

{0}

{1}

{2}

∅ N{0, 1} {0, 2} {1, 2}· · · · · ·

injection of the
original domain

flat ordering on
non-atomic elements

♢

The smallest element of (℘(C),≼∗) is ⊥∗ = {⊥} and the following lemma char-
acterises the lub operator ⋎∗ on chains of atoms (i.e., singletons):

Lemma 7.1. Let D ⊆ ℘(C) be a non-empty set of atoms of the form {x} for some x ∈ C.
Then, ⋎∗D exists if and only if ⋎∪D exists, and when either one exists ⋎∗D = {⋎∪D}.

Proof. (⇐=) Suppose ĉ = ⋎ ∪ D is exists. Then, x ≼ ĉ for each {x} ∈ D, and
therefore {x} ≼∗ {ĉ} by (7.1). Now, let Y ∈ ℘(C) be such that {x} ≼∗ Y for each
{x} ∈ D. If Y = {y}, we conclude ĉ ≼ y and therefore {ĉ} ≼∗ {y} by (7.1). Otherwise,
if Y ̸= {y}, then by (7.3) every atom is smaller than Y, including {ĉ}. Hence, ⋎∗D = {ĉ}.
(=⇒) Suppose ⋎∗D is exists, and let X, Y ∈ ℘(C) be two distinct non-atomic sets
(which exist since C is assumed not to be {⊥}). Note that by (7.3) they both are greater
than every atom {x} ∈ D. Since they are non-comparable according to ≼∗, then ⋎∗D
must be atomic for some ĉ ∈ C, and therefore x ≼ ĉ by (7.1). Now, let y ∈ C be such
that x ≼ y for every {x} ∈ D. Then, {x} ≼∗ {y} and therefore {ĉ} ≼∗ {y} by (7.1).
Hence, we conclude that ĉ ≼ y and ⋎ ∪D = ĉ.

Let us recall that F∗ = ℘(F) = X ∈ ℘(C) ↦→ { F(x) ∈ C | x ∈ X }. F∗ is trivially
monotone, and we shall now prove that its transfinite iterates exist:

Proposition 7.4. For each ordinal δ, (F∗)δ = {Fδ}.

Proof. By transfinite induction:

• Let δ = 0. Then, (F∗)0 = ⊥∗ = {⊥} = {F0}.

• Let δ+ 1 be a successor ordinal. Then,

(F∗)δ+1 = F∗((F∗)δ)
IH
= F∗({Fδ}) = {F(Fδ)} = {Fδ+1}

• Let λ be a limit ordinal. Then, (F∗)λ = ⋎∗δ<λ(F
∗)δ

IH
= ⋎∗δ<λ{F

δ}. Since
({Fδ} | δ < λ) is a set of atoms, by Lemma 7.1 we conclude

(F∗)λ =
j∗
δ<λ

{Fδ} =
{︂j⋃︂

δ<λ
{Fδ}

}︂
=

{︂j
δ<λ

Fδ
}︂
= {Fλ}

7.3. Basic Notions of Algebraic Abstract Semantics 131

By Proposition 7.4, F∗ is a proper semantic transformer over the previously defined
collecting semantics domain. The fixpoint definition of the collecting semantics now
follows from the application of the Kleenian fixpoint transfer theorem in its most
general formulation (that we now recall).

Theorem 7.1 (Kleenian Fixpoint Transfer Theorem [Cou02]). Let (D,⩽,⊥,∨) and
(D♮,⩽♮,⊥♮,∨♮) be two semantic domains and F : D → D and F♮ : D♮ → D♮ two
semantic transformer over them. Let α : D→ D♮ be a function such that

(i) α(⊥) = ⊥♮;

(ii) F♮ ◦ α = α ◦ F; and

(iii) α preserves the lub of the iterates, that is

α(∨δ<λF
δ) = ∨

♮
δ<λα(F

δ)

for each limit ordinal λ.

Then, α(lfp⩽
⊥ F) = lfp⩽♮

⊥♮ F
♮.

The singleton function {−} : C→ ℘(C) introduced in Proposition 7.3 satisfies the
hypotheses for α in Theorem 7.1 for domains ⟨C,≼,⊥,⋎⟩ and ⟨℘(C),≼∗,⊥∗,⋎∗⟩
and transformers F and F∗, respectively. Therefore, given the above,

Theorem 7.2 (Fixpoint Collecting Semantics). The function {−} : C→ ℘(C) satisfies
the hypotheses (i), (ii), and (iii) of Theorem 7.1, hence

JPKC∗ = lfp≼∗

⊥∗ F
∗

Proof. (i) follows from ⊥∗ = {⊥}, (iii) is a consequence of Proposition 7.4, and (ii)
holds by (F∗ ◦ {−})(c) = {F(c)} = ({−} ◦ F)(c) for each c ∈ C. Moreover,

JPKC∗ = {JPKC } by Prop. 7.2

= {lfp≼
⊥ F} by hypothesis on C

= lfp≼∗

⊥∗ F
∗ by Thm. 7.1

and hence the thesis.

7.3 Basic Notions of Algebraic Abstract Semantics

We proceed to characterise abstract interpretations of the standard collecting semantics
in the algebraic setting. There are several frameworks in which to design sound
approximations of program semantics [CC92]. Here, we study both the ideal case
in which a Galois connection (gc) ties the concrete and the abstract domain, and the
more general scenario characterised by the absence of a best approximation function.
Although it is not the most general abstract interpretation framework to work with,
it meets the usual setting in which static analyses are designed [RY20].

We still denote by C the Sg-algebra inducing the standard semantics of the
language. We recall that C is the carrier set of C and ℘(C) the carrier set of the
collecting semantics C ∗. An Sg-algebra A is said to be abstract with respect to C if (1)

Abstract algebra
its carrier setA is a poset (A,⊑) and (2) it is equipped with a monotone concretisation
function γ : (A,⊑)→ (℘(C),⊆) that maps abstract elements to concrete properties.

Concretisation function
We refer to the carrier set A as an abstract domain and we call the induced semantic

Abstract domain
function J−KA the abstract semantics.

Abstract semantics

132 Abstract Semantics of Multi-Language Programs

Definition 7.3 (Soundness). Let A be an abstract Sg-algebra (with carrier set A)
and γ : A→ ℘(C) a monotone concretisation function. The algebra A is sound if its
operators soundly approximate the concrete ones, i.e.,

(i) Jf : w→ sKC∗ ◦ γ ⊆ γ ◦ Jf : w→ sKA for each f : w→ s; and

(ii) JkKC∗ ⊆ γJkKA for each constant k : s. ♢

A straightforward consequence of this definition is that sound algebras induce
sound abstract semantic functions:

Proposition 7.5. If A is sound, then JPKC∗ ⊆ γJPKA for each program P.

Proof. By structural induction on P:

• Let P = k for some k : s in Sg. Then, it follows directly by Definition 7.3.

• Let P = f(P1, . . . , Pn). By regularity, there are w = s1, . . . , sn and s for
which f : w→ s and such that (w, s) is the small rank with respect to w0 =
ls(P1), . . . , ls(Pn). Since P is well-formed, it follows that Pi : si for each 1 ⩽
i ⩽ n and P : s. Then,

γJf(P1, . . . , Pn)KA = (γ ◦ Jf : w→ sKA)(JP1KA , . . . , JPnKA)

⊇ (Jf : w→ sKC∗ ◦ γ)(JP1KA , . . . , JPnKA)

and since Jf : w→ sKC∗ is monotone, then by induction hypothesis

⊇ Jf : w→ sKC∗(JP1KC∗ , . . . , JPnKC∗)

= Jf(P1, . . . , Pn)KC∗

If (℘(C),⊆) −−−→←−−−α
γ

(A,⊑) is a gc between the concrete and the abstract domain,
we can define the most precise (abstract) Sg-algebra A ⋄ out of the best correct approx-
imation provided by (α, γ).

Definition 7.4 (Most Precise Algebra). Let (℘(C),⊆) −−−→←−−−α
γ

(A,⊑) be a gc between
the concrete and the abstract domain. The most precise algebra A ⋄ approximating C
with respect to (α, γ) is defined as follows:

(i) carrier sets are JsKA ⋄ = As (recall the notation for sorted sets); and

(ii) the semantics of the operators is JkKA ⋄ = αJkKC∗ for each constant k : s,
Jf : w→ sKA ⋄ = α◦Jf : w→ sKC∗◦γ for each function symbol f : w→ s. ♢

The abstract semantics J−KA ⋄ induced by A ⋄ enjoys the soundness property
(the reader may want to check that A ⋄ is a proper Sg-algebra), and it is the most
precise among all the sound algebras, in the following sense:

Proposition 7.6. A ⋄ soundly approximates the concrete semantics. Moreover, A ⋄ is
the most precise abstraction with respect to (α, γ), that is, for any other sound algebra
A , γ ◦ Jf : w→ sKA ⋄ ⊆ γ ◦ Jf : w→ sKA and γJkKA ⋄ ⊆ γJkKA for each operator
in Sg. Therefore, by Proposition 7.5, γJPKA ⋄ ⊆ γJPKA for each program P.

7.3. Basic Notions of Algebraic Abstract Semantics 133

Proof. We first prove that A ⋄ is sound. First condition of Definition 7.3 follows by
extensivity of γ ◦ α and monotonicity of Jf : w→ sKC∗ , and the second one follows
by (α, γ) being a Galois connection. Proving that A ⋄ is the most precise abstraction
with respect to (α, γ) simply means that (1) γ ◦ Jf : w→ sKA ⋄ ⊆ γ ◦ Jf : w→ sKA
and (2) γJkKA ⋄ ⊆ γJkKA for each operator in Sg.

(1) By the soundness of A , Jf : w → sKC∗ ◦ γ ⊆ γ ◦ Jf : w → sKA . Then, since
(α, γ) is a Galois connection, α ◦ Jf : w → sKC∗ ◦ γ ⊑ Jf : w → sKA , that is
Jf : w→ sKA ⋄ ⊑ Jf : w→ sKA . The thesis follows by the monotonicity of γ.

(2) (The proof of γJkKA ⋄ ⊆ γJkKA is similar.)

Note that γJPKA ⋄ ⊆ γJPKA follows by a simple structural induction on P.

In general, abstraction and concretisation functions α and γ are not homomorph-
isms between A and C ∗. However, if they are homomorphisms, then A is backward
and forward complete, respectively (Propositions 7.7 and 7.8).

Definition 7.5 ((Backward) Completeness). Let A be an Sg-algebra and (℘(C),⊆
) −−−→←−−−α

γ
(A,⊑) a gc. The left adjoint α encodes concrete properties in the abstract

domain. The algebra A is complete with respect to

(i) a function symbol f : w→ s if α ◦ Jf : w→ sKC∗ = Jf : w→ sKA ◦ α; and

(ii) a constant k : s if αJkKC∗ = JkKA . ♢

Proposition 7.7. Let α : C ∗ → A be an Sg-homomorphism. Then, A is complete
with respect to each operator in Sg, and therefore αJPKC∗ = JPKA for each program P.

Proof. A simple structural induction on P.

Note that, in general, the existence of a best abstract approximation is not guaran-
teed (e.g., for convex polyhedra [CH78] or the final state automata domain [AM19]).
In such cases, a dual notion of completeness (forward completeness [GRS00]) with
respect to the concretisation function is investigated.

Definition 7.6 (Forward Completeness). Let A be an Sg-algebra and γ : A→ ℘(C)
a monotone concretisation function. The algebra A is forward complete with respect
to

(i) a function symbol f : w→ s if Jf : w→ sKC∗ ◦ γ = γ ◦ Jf : w→ sKA ; and

(ii) a constant k : s if JkKC∗ = γJkKA . ♢

Proposition 7.8. Let γ : A → C ∗ be an Sg-homomorphism. Then, A is forward
complete with respect to each operator in Sg, and therefore JPKC∗ = γJPKA for each
program P.

Proof. By structural induction on P.

134 Abstract Semantics of Multi-Language Programs

(i) ⟨exp1⟩ ::= i integers (i ∈ Z⊥)

(x) ⟨exp1⟩ ::= x variables (x ∈ Var)

(bop�) ⟨exp1⟩ ::= ⟨exp1⟩� ⟨exp1⟩ binary operations

(skip) ⟨com1⟩ ::= skip do-nothing

(assignx) ⟨com1⟩ ::= x = ⟨exp1⟩ assignment

(cond) ⟨com1⟩ ::= if ⟨exp1⟩ then ⟨com1⟩ else ⟨com1⟩ conditional

(loop) ⟨com1⟩ ::= while ⟨exp1⟩ do ⟨com1⟩ loop statement

(seq) ⟨com1⟩ ::= ⟨com1⟩; ⟨com1⟩ composition

Figure 7.3: Syntax of the imperative language While.

7.4 The Multi-Language Abstraction

Our aim in this section is to define abstractions of the multi-language semantics by
relying on the abstractions of the single-languages. The whole section is accompanied
by a running example inspired by a common scenario in the interoperability field: The
language binding, an Application Program Interface (API) that allows one language
to call library functions implemented in another language. Major examples include
openGL library, which is interoperable with Java through the Java OpenGL (JOGL)
wrapper library or from Python via PyOpenGL, and GNU Octave language that have
interoperability with Ruby and Python (e.g., see octave-ruby and oct2py libraries).
Our running example mimics such an interoperability mechanism.

In Section 7.4.1 we set up our example. We present the core of an imperative
language While, and by recalling the multi-language construction of Definition 4.1, we
apply the construction so that While interoperates with a very simple mathematical
language Num (in the spirit of Octave). In Section 7.4.2 we define the combination of
abstract interpretations of different languages, a key contribution of our work. By
example we apply our theory to two different sign abstract semantics (one for each
language), and we show how to derive the sign semantics for the multi-language
NumWhile obtained by blending While and Num.

7.4.1 The Multi-Language Construction: A Running Example

Throughout this section, we let Sg1 and Sg2 be two order-sorted signatures defining
the syntax of two languages, and let i = 1, 2. We denote by Ci the order-sorted
Sgi-algebra inducing the semantics J−KCi

of the language.

Running Example 7.1. Let While be (the syntax of) the imperative programming
language in Figure 7.3, similar to the language introduced in Example 7.1. Variables
x ∈ Var and values i ∈ Z⊥ (where Z⊥ = Z ∪ {⊥}) occur in the language as terminal
symbols, and for each production defining the syntax of While (on the right), we
introduce a corresponding algebraic operator (on the left), or a family of operators
when they are parametric on a subscript. The rank of each algebraic operator can
be inferred by the non-terminals appearing in the production rules; for instance, the
operator cond is sorted as cond : exp1, com1, com1 → com1, where com1 and exp1
denote the sort of commands and expressions of While. The denotational semantics
J−KD1

is provided by the While-algebra D1 in Figure 7.5. As usual, we let Env1 =
Var → Z⊥ be the set of environments of While, and we set Env⊥1 = Env1 ∪ {⊥}.

7.4. The Multi-Language Abstraction 135

Jexp1KD1
= Env1 → Z⊥

JiKD1
= ρ1 ↦→ i

JxKD1
= ρ1 ↦→ ρ1(x)

Jbop�KD1
(e1, e2) = ρ1 ↦→ e1(ρ1)� e2(ρ1)

(a) Denotational semantics of While expressions.

Jcom1KD1
= Env⊥1

⊥−→ Env⊥i

JskipKD1
= ρ ↦→ ρ

JassignxKD1
(e) = ρ

⊥↦−→ ρ[x← [e(ρ)]
JseqKD1

(c1, c2) = ρ ↦→ (c2 ◦ c1)(ρ)

JcondKD1
(e, c1, c2) = ρ

⊥↦−→

{︄
c1(ρ) e(ρ) ̸= 0
c2(ρ) e(ρ) = 0

JloopKD1
(e, c) = lfp⊑

⊥ Fe,c

where Fe,c(f) = ρ
⊥↦−→

{︄
ρ e(ρ) = 0

f(c(ρ)) e(ρ) ̸= 0

(b) Denotational semantics of While commands.

Figure 7.5: Denotational semantics of While.

(q) ⟨exp2⟩ ::= q rationals (q ∈ Q⊥)

(x) ⟨exp2⟩ ::= x variables (x ∈ Var)

(fn) ⟨exp2⟩ ::= fn(⟨exp2⟩1, . . . , ⟨exp2⟩n) n-ary operations

(?) ⟨exp2⟩ ::= ⟨exp2⟩ ? ⟨exp2⟩ : ⟨exp2⟩ ternary operator

(letx) ⟨com2⟩ ::= x = ⟨com2⟩ assignment

(block) ⟨com2⟩ ::= { ⟨com2⟩1; . . . ; ⟨com2⟩n } statements block

Figure 7.6: Syntax of the mathematical language Num.

The carrier sets of commands and expressions are Jcom1KD1
= Env⊥1 → Env⊥1 and

Jexp1KD1
= Env1 → Z⊥. Moreover, we assume that While provides users with very

basic operators, i.e., � ∈ {+, -, <, >, ==, !=}.
We let Num be a mathematical language with more advanced numerical functions,

such as modulo and bitwise operators, rational numbers, trigonometric functions,
etc. Its syntax is depicted in Figure 7.6. We consider variables x ∈ Var and values
q ∈ Q⊥ = Q ∪ {⊥} terminal symbols. We denote by fn mathematical functions
of the language with arity n, such as the modulo binary operator %, the unary sin
function, etc. Denotational semantics J−KD2

induced by the Num-algebra D2, where
Jexp2KD2

= Env2 → Q⊥ and Jcom2KD2
= Env2 → Env2 with Env2 = Var → Q⊥ is

given in Figure 7.7. ♢

Recall (Definition 4.1) that the signature of a multi-language, which we shall

136 Abstract Semantics of Multi-Language Programs

Jexp2KD2
= Env2 → Q⊥

JqKD2
= ρ2 ↦→ q

JxKD2
= ρ2 ↦→ ρ2(x)

JfnKD2
(e1, e2) = ρ2 ↦→ fn(e1(ρ2), e2(ρ2))

J?KD2
(e1, e2, e3) = ρ2 ↦→

⎧⎪⎨⎪⎩
⊥ e1(ρ2) = ⊥
e2(ρ2) e1(ρ2) ̸= 0
e3(ρ2) e1(ρ2) = 0

Figure 7.7: Denotational semantics of Num expressions.

res = 1;
while n > 0 do
if n & 1 then // true iff n is odd
res = res * a;

a = a * a;
n = n >> 1 // division by 2

The multi-language program on the right implements

the exponentiation by squaring [CFA+05] for effi-

ciently computing the powers of an integer number:

It stores in res the n-th power of a. The binary oper-

ator & is the bitwise and operator and >> is the right

shift operation.

Figure 7.8: Multi-language exponentiation by squaring algorithm.

refer to as Sg, is specified by blending the order-sorted signatures Sg1 and Sg2 of
the single-languages through an interoperability relation ⋉ on sorts. In particular, an
interoperability constraint s⋉ s ′ implies that Sgi-terms of sort s can be used in place
of Sgj-terms of sort s ′ (with i, j ∈ {1, 2} and i ̸= j). This determines the terms of the
multi-language Sg = (Sg1, Sg2,⋉).

Running Example 7.2. For instance, Num provides users with more advanced
binary operators and values than those of While. However, the purpose of Num
is limited to define handy mathematical functions (indeed, it is not even Turing-
complete). We can take advantage of such mathematical expressiveness without
sacrificing computational power by allowing the use of Num-expressions (that is,
terms with sort exp2) into While-programs, in place of While-expression of sort exp1.
Therefore, the interoperability relation shall simply specify exp2 ⋉ exp1, and we let
NumWhile to be formally defined as NumWhile = (While,Num,⋉). As a result,
programmers may write programs such as the one in Figure 7.8, where terms in
magenta are Num-expressions used in place of While-expressions (that is, we use
colours as we did in previous chapters rather than applying the conversion operator
↪→exp2,exp1 for clarity reasons). ♢

The multi-language Sg-semantics C is then obtained by pairing the algebras C1
and C2 with boundary functions Js⋉ s ′KC : JsKCi

→ Js ′KCj
that specify how terms

of sort s in Sgi can be interpreted as terms of sort s ′ in Sgj. In other words, boundary
functions regulate the flow of values between the underlying languages [MF09].
For instance, they can act as a bridge between different type representations in the
underlying languages (e.g., to enable the interoperability of Java and JavaScript in
Nashorn [Orab] or the interoperability of Java and Kotlin [Jet]), or deal between
different machine-integers implementation (e.g., the mapping between Java primitive
types and C types in JNI [Oraa]), etc.

7.4. The Multi-Language Abstraction 137

Running Example 7.3. We denote by D the multi-language NumWhile-algebra
defined by coupling D1 and D2 with the boundary function Jexp2 ⋉ exp1KD defined
below (recall Definition 4.2). Note that values of Num-expressions range over the
set of rational numbers Q, whereas While only handles integer values in Z. A
natural choice for the boundary function Jexp2⋉ exp1KD of NumWhile that converts
Num-expressions to While-expressions is to truncate the value of Num-expression
to their nearest integer value. Since expressions only have values with respect to an
environment, we shall specify a conversion from Env2 → Q⊥ to Env1 → Z⊥ (we
use ρ1 and ρ2 as metavariables for Env1 and Env2, respectively):

Jexp2 ⋉ exp1KD(e ∈ Env2 → Q⊥) = ρ1 ∈ Env1 ↦→ ψ(e(ϕ(ρ1))) ∈ Z⊥

where ϕ : Env1 → Env2 is the inclusion function and ψ : Q⊥ → Z⊥ truncates
rational values, i.e., ψ(q) = truncate(q) if q ̸= ⊥ and ψ(⊥) = ⊥. For instance,
the semantics of the Num-expression Jn / 2KD2

= ρ2 ↦→ ρ2(n) / 2 is mapped by
Jexp2⋉ exp1KD to the function ρ1 ↦→ ρ1(n) /Z 2, where /Z is the integer division (we
ignore the case where ρ2(n) = ⊥, as it is clearly trivial). ♢

7.4.2 Combining Abstractions of Different Languages

The first step towards an abstract interpretation theory for multi-languages is to find
a suitable notion of multi-language collecting semantics. A satisfactory definition is
obtained by pairing the collecting semantics C ∗1 and C ∗2 of the underlying languages
with the lifting of boundary functions provided by ℘:

Definition 7.7 (Multi-Language Collecting Semantics). Let C be a multi-language
Sg-algebra over the multi-language signature Sg = (Sg1, Sg2,⋉). The multi-language
collecting semantics C ∗ over C is specified by:

(i) the collecting Sgi-semantics C ∗i over Ci, for i = 1, 2; and

(ii) boundary functions Js⋉ s ′KC∗ = ℘Js⋉ s ′KC for each s⋉ s ′. ♢

We can then lift Proposition 7.2 and 7.3 to the multi-language world in order to
show that C ∗ has the desired properties:

Proposition 7.9. Let C be a multi-language Sg-algebra. The collecting semantics
J−KC∗ induced by C ∗ computes the strongest program property for each multi-language
program P generated by Sg, that is JPKC∗ = {JPKC }. Moreover, the singleton function
{−} : C → C ∗ is a multi-language Sg-homomorphism.

Proof. We first prove that JPKC∗ = {JPKC } by structural induction on P:

• if P = ki for some constant symbol k : s in Sgi, then

JkiKC∗ = JkKC∗
i

Prop. 7.2
= {JkKCi

} = {JkiKC }

138 Abstract Semantics of Multi-Language Programs

• if P = fi(P1, . . . , Pn) for some function symbol f : w→ s in Sgi with arity n,
then

Jfi(P1, . . . , Pn)KC∗ = JfiKC∗(JP1KC∗ , . . . , JPnKC∗)

= JfiKC∗({JP1KC }, . . . , {JPnKC }) by ind. hyp.

= JfKC∗
i
({JP1KC }, . . . , {JPnKC })

= {JfKCi
(JP1KC , . . . , JPnKC)}

= {Jfi(P1, . . . , Pn)KC }

• if P = ↪→s,s′(P’) for some s⋉ s ′ in Sg, then

J↪→s,s′(P’)KC∗ = J↪→s,s′KC∗(JP’KC∗)

= J↪→s,s′KC∗({JP’KC }) by ind. hyp.

= {J↪→s,s′KC (JP’KC)}

= {J↪→s,s′(P’)KC }

Now, the homomorphic nature of {−} : C → C ∗ follows by Proposition 7.3 and
by observing that {−} trivially commutes with boundary functions.

We are now interested in whether we can obtain a fixpoint definition of the
multi-language collecting semantics J−KC∗ induced by C ∗. At a minimum, a fixpoint
definition of the two underlying language semantics is needed, since every single-
language program is also a multi-language one. However, the semantics of the multi-
language does not only depend on these specifications (that is, it is not a universal
property of the underlying semantics) but is determined up to a family of boundary
functions defining the interoperability of Sg1 and Sg2. The next proposition states
that assuming the fixpoint definition of J−KC1

and J−KC2
, the fixpoint calculation of

the multi-language collecting semantics boils down to a constructive specification of
the boundary functions in C .

Theorem 7.3. Let C be a multi-language Sg-algebra whose boundary functions admit
a constructive definition, that is Js⋉s ′KC = lfp Fs⋉s′ for each s⋉s ′ in Sg and for some
Fs⋉s′ : (JsKCi

→ Js ′KCj
) → (JsKCi

→ Js ′KCj
). Then, the multi-language collecting

semantics J−KC∗ induced by C ∗ admits a fixpoint computation if and only if C1 and
C2 does.

Proof. Each operator in Sg admits a fixpoint definition.

The second step is to combine the already existing abstractions of the underlying
languages. Let A1 and A2 be the Sgi-algebras providing the abstract semantics of Sgi,
with i = 1, 2, and γi : Ai → ℘(Di) their concretisation functions, respectively. We
can blend A1 and A2 into the multi-language Sg-algebra A by defining an abstract
semantics of the conversion operators Js⋉ s ′KA , for each s⋉ s ′. We call such an A
an abstract multi-language algebra.

Running Example 7.4. Let ⟨AV,⊑V,⊔V,⊓V,⊥V,⊤V⟩ be the standard sign do-
main (Figure 7.9) and ˜︁γi : AV → ℘(Vali) (where Val1 = Z⊥ and Val2 = Q⊥) the
corresponding concretisation function (Figure 7.10). We let A1 and A2 be the abstract
algebras defining a sign analysis for languages While and Num, respectively (that is,
the computation induced by Ai is carried out using abstract values in AV instead

7.4. The Multi-Language Abstraction 139

⊤V

< 0 = 0 > 0

⊥V

Figure 7.9: Sign abstract domain.

˜︁γ1(⊤V) = Z ˜︁γ2(⊤V) = Q˜︁γ1(< 0) = { v ∈ Z | v < 0 } ˜︁γ2(< 0) = { v ∈ Q | v < 0 }˜︁γ1(> 0) = { v ∈ Z | v > 0 } ˜︁γ2(> 0) = { v ∈ Q | v > 0 }˜︁γ1(= 0) = {0} ˜︁γ2(= 0) = {0}˜︁γ1(⊥V) = {⊥} ˜︁γ2(⊥V) = {⊥}

Figure 7.10: Concretisation functions ˜︁γi : AV → ℘(Vali).

Jexp1KA1
= Env♮ → AV

JiKA1
= ρ♮ ↦→ ˜︁α1({i})

JxKA1
= ρ♮ ↦→ ρ♮(x)

Jbop�KA1
(e♮1, e

♮
2) = ρ♮ ↦→ e♮1(ρ

♮)�♮ e♮2(ρ
♮)

Figure 7.11: Sign semantics of While expressions.

of concrete ones in Vali). The abstract semantics Ai are given in Figures 7.11, 7.12,
and 7.13.

The concretisation of abstract environments Env♮ = Var → AV is defined by
γi (ρ♮ ∈ Env♮) = { ρi ∈ Envi | ∀x ∈ Var . ρi(x) ∈ ˜︁γi(ρ♮(x)) }. The abstract
interpretation of an expression E in While or Num is a function e♮ ∈ JexpiKAi

=
Env♮ → AV that takes abstract environments to abstract values. Similarly, the abstract
interpretation c♮ ∈ JcomiKAi

= Env♮ → Env♮ of a command C is a transformation
of abstract environments. The concretisations of e♮ and c♮ are therefore (sorted)
functions (γi)expi : JexpiKAi

→ JexpiKD∗
i

and (γi)comi
: JcomiKAi

→ JcomiKD∗
i

from
the carrier sets of Ai to those of the collecting semantics D∗i :

(γi)expi(e
♮) = { ei ∈ JexpiKDi

| ∀ρ♮ ∈ Env♮ . ∀ρi ∈ γ i(ρ♮) . ei(ρi) ∈ ˜︁γi(e♮(ρ♮)) }
(γi)comi

(c♮) = { ci ∈ JcomiKDi
| ∀ρ♮ ∈ Env♮ . ∀ρi ∈ γ i(ρ♮) . ci(ρi) ∈ γ i(c♮(ρ♮)) }

♢

The following theorems aim to show that all the properties of interest of the
resulting multi-language abstraction rely entirely on the abstract semantics of the
boundary functions. We recall that when we write s⋉ s ′ we implicitly assume that s
is a sort of Sgi and s ′ one of Sgj for i, j ∈ {1, 2} and i ̸= j.

Theorem 7.4 (Soundness). Let A1 and A2 be sound Sgi-algebras with concretisation
functions γi : Ai → ℘(Ci), for i = 1, 2. If Js⋉ s ′KC∗ ◦ γi ⊆ γj ◦ Js⋉ s ′KA for each
s⋉ s ′, then the multi-language abstract semantics A is sound, that is JPKC∗ ⊆ γJPKA
for each multi-language program P generated by Sg.

140 Abstract Semantics of Multi-Language Programs

Jcom1KA1
= Env♮ → Env♮

JskipKA1
= ρ♮ ↦→ ρ♮

JassignxKA1
(e♮) = ρ♮ ↦→ ρ♮[x← [e♮(ρ♮)] JseqKA1

(c♮1, c
♮
2) = ρ

♮ ↦→ (c♮2 ◦ c
♮
1)(ρ

♮)

JcondKA1
(e♮, c♮1, c

♮
2) = ρ

♮ ↦→

⎧⎪⎪⎨⎪⎪⎩
c♮1(ρ

♮) ⊔ V c♮2(ρ
♮) e♮(ρ♮) = ⊤V

c♮2(ρ
♮) e♮(ρ♮) = (= 0)

c♮1(ρ
♮) e♮(ρ♮) ∈ {(< 0), (> 0)}

⊥ V e♮(ρ♮) = ⊥V

JloopKA1
(e♮, c♮) = lfp

˜︁⊑˜︁⊥ F♮e♮,c♮

F♮
e♮,c♮

(f♮) = ρ♮ ↦→

⎧⎪⎪⎨⎪⎪⎩
ρ♮ ⊔ V f♮(c♮(ρ♮)) e♮(ρ♮) = ⊤V

ρ♮ e♮(ρ♮) = (= 0)

f♮(c♮(ρ♮)) e♮(ρ♮) ∈ {(< 0), (> 0)}

⊥ V e♮(ρ♮) = ⊥V

Figure 7.12: Sign semantics of While commands.

Jexp2KA2
= Env♮ → AV

JqKA2
= ρ♮ ↦→ ˜︁α2({q})

JxKA2
= ρ♮ ↦→ ρ♮(x)

JfnKA2
(e♮1, e

♮
2) = ρ♮ ↦→ f♮n(e

♮
1(ρ

♮), e♮2(ρ
♮))

J?KA2
(e♮1, e

♮
2, e

♮
3) = ρ

♮ ↦→

⎧⎪⎨⎪⎩
⊥V e♮1(ρ

♮) = ⊥V

e♮2(ρ
♮) e♮1(ρ

♮) ∈ {> 0,< 0}

e♮3(ρ
♮) e♮1(ρ

♮) = (= 0)

Figure 7.13: Sign semantics of Num.

Proof. We first prove that for each constant ki : s and function symbol fi : w → s
in Sg we have JkiKC∗ ⊆ γsJkKA and Jfi : w → sKC∗ ⊆ γsJfi : w → sKA . Then,
JPKC∗ ⊆ γJPKA for each multi-language program P generated by Sg follows by a
simple structural induction, in the same style of the proof of Proposition 7.5. Let
γi : ℘(Ci)→ Ai be the concretisation function of Ai,

• JkiKC∗ = JkKC∗
i
⊆ (γi)sJkKAi

= γsJkiKA ; and

•

Jfi : w→ sKC∗ ◦ γw = Jf : w→ sKC∗
i
◦ (γi)w

⊆ (γi)s ◦ Jf : w→ sKAi

= γs ◦ Jfi : w→ sKA

The derived abstraction A of the multi-language semantics preserves the com-
pleteness of single-language operators.

7.4. The Multi-Language Abstraction 141

Step 0 1 2

res (> 0) (> 0) (> 0)
a (> 0) (> 0) (> 0)
n (> 0) ⊤V ⊤V

Figure 7.14: The abstract iterates of the loop in Figure 7.8.

Theorem 7.5 (Completeness). Let A be the multi-language abstract semantics. If the
order-sorted Sgi-algebra Ai is forward (resp., backward) complete with respect to k : s
and f : w→ s in Sgi, then A is forward (resp., backward) complete with respect ki : s
and fi : w→ s in Sg, respectively.

Proof. We only prove the forward completeness of the function symbol fi : w→ s in
Sg, the other cases are similar.

Jfi : w→ sKC∗ ◦ γw = Jf : w→ sKC∗
i
◦ (γi)w

= (γi)s ◦ Jf : w→ sKAi

= γs ◦ Jfi : w→ sKA

where γi : ℘(Ci)→ Ai is the concretisation function of the abstract algebra Ai.

Then, complete boundary functions do not alter the completeness of complete
programs as a corollary:

Corollary 7.1. Let A be the multi-language abstract semantics and Js⋉s ′KA a forward
(resp., backward) complete boundary functions. For each multi-language program P
sorted by s, if P is forward (resp., backward) complete, then so too is the program
↪→s,s′(P).

Equivalent multi-language versions of Propositions 7.7 and 7.8 also apply. The
proof boils down to the fact that multi-language homomorphisms are pair of order-
sorted homomorphisms that also commute with boundary functions.

Running Example 7.5. The multi-language abstract algebra A is obtained by
combining A1 and A2 with an abstraction of the boundary function Jexp2 ⋉ exp1KD
defined in Example 7.3. Since the underlying algebras share the same abstract domain
for expressions, that is Jexp1KA1

= Jexp2KA2
, there is no need to convert abstract

values between two identical domains, therefore we set Jexp2 ⋉ exp1KA = id.
Let us show the computation of the abstract semantics of the multi-language

program in Figure 7.8, starting from the set of initial states in which both a and n are
greater than 0. The abstract precondition before entering the loop is given by the
abstract environment {a ↦→ (> 0), n ↦→ (> 0), res ↦→ (> 0)}, where res is positive
due to the assignment on line 1. The abstract iterates of the loop converge in three
steps, as shown in Figure 7.14. Note that the abstract interpretation of the program
guarantees the result of an, with a, n > 0, to be positive. The imprecision on the
final abstract value of the variable n is due to poor choice of the abstract domain
(which can be easily refined). Since the example trivially satisfies the hypotheses of
Theorem 7.4, the result is sound. ♢

CHAPTER 8
Semantic Equivalence of

Language Syntax Formalisms

Chapter reference(s): [BM19b, BM20]

Several formalisms for language syntax specification exist in literature [Vis97].
Among them, formal grammars [Cho56, Ear83, Knu68] and algebraic signatures [CC81,
Hig63, GM92] have played and still play a pivotal role. The former are widely used to
define syntax of programming languages [Sco09], notably due to compelling results on
context-free parsing techniques [Ear83, Val75, Lee02]. The latter provide an algebraic
approach to syntax specification, and they are ubiquitous in the fields of universal
algebra [CC81], model theory [CK92], and logics in general.

In the field of program analysis, the syntax of programming languages is usu-
ally presented by context-free grammars, whereas the multi-language formalisation
provided in the previous chapters is based on order-sorted specifications. In this
chapter, we bridge this gap by narrowing the focus to three different syntax formal-
isms: context-free grammars (Grm), many-sorted signatures (MSSg), and order-sorted
signatures (OSSg). The aim is to provide mappings between these categories (see
Figure 8.1) able to translate language syntax specifications from one formalism to
another without altering their classes of semantics. Put differently, if Alg(X) de-
notes the class of semantics of an object X (in Grm, MSSg, or OSSg) and ΥX the
conversion of X to another formalism, we shall prove that Alg(X) and Alg(ΥX)
are equivalent, meaning that X and ΥX are essentially the same from a semantic
point of view.

Structure We begin by reviewing some well-known results on the equivalence
of language syntax formalisms, which will be generalised later on in the chapter.
We then present the formalisms under investigation: context-free grammars, many-
sorted signatures, and order-sorted signatures. We define the categories of grammars
and signatures, and we provide transformations between them in terms of adjoint
functors. Finally, we show that these transformations do not alter the semantics of
the transformed objects.

143

144 Semantic Equivalence of Language Syntax Formalisms

Grm MSSg OSSg

∆

V∇

Λ

Figure 8.1: The mappings between the different syntax formalisms investigated in
this chapter.

8.1 Old and New Results

The mathematical links between these different frameworks have already been
partially studied in literature. Goguen et al. [GTWW77] provide a definition of
∆ : Grm→ MSSg that yields an isomorphism between the sets of terms (that is, the
term algebras) over the grammar G and its conversion to many-sorted signature
∆G, and conversely the definition of∇ : MSSg → Grm that makes the term algebras
over the many-sorted signature S and the grammar∇S isomorphic (the proofs are
outlined in detail in [Vis98]).

Other results on the subject are given in [GM92]. The authors provide a definition
of Λ : OSSg → MSSg that gives rise to an equivalence between the categories of
algebras over an order-sorted signature Sg and its many-sorted conversionΛSg. Both
these results of [GTWW77, GM92] are an instance of the aim of this chapter, as we
will prove later.

In the following sections, we unify and broaden such results in a more gen-
eral setting. We model Grm, MSSg, and OSSg as the categories whose objects are
grammars, many-sorted and order-sorted signatures, respectively. Arrows between
objects in the same category are morphisms preserving the abstract syntax of the
language [McC62b]. This is a fundamental point: According to [FPT99],

the essential syntactical structure of programming languages is not that
given by their concrete or surface syntax [. . .]. Rather, the deep structure of
a phrase should reflect its semantic import. Marcelo Fiore et al. (1999)

This viewpoint is also made explicit in [GTWW77, Rus76], where the semantics of a
language is defined by the unique homomorphism from the initial algebra (namely
the abstract syntax — see the discussion following Proposition 3.4) to another algebra
in the same category.

The mappings from one formalism to another are therefore defined in terms of
functors between the respective categories. Since the naturality of such constructions,
the adjoint nature of these functors is then investigated, discussing their semantic
implications over the categories of algebras.

8.2 Formalisms for Language Syntax Specification

In this section, we provide a brief presentation of the three syntax formalisms dis-
cussed in the rest of the article. Their technical aspects are deferred to the next
sections.

The most popular formalism to specify languages are context-free grammars.
They enable language designers to easily handle both abstract and concrete aspects
of the syntax by combining terminal symbols with syntactic constituents of the

8.3. Context-Free Algebras 145

language through production rules. Several definitions of context-free grammars exist
in literature [Vis98, RJ98]. Here, we follow [GTWW77] (or, the so-called algebraic
grammars in [RJ98]) and, for the sake of succintness, we usally refer to them simply
as grammars.

Although grammars are an easy-to-use tool for syntax specification, signatures
provide a more algebraic approach to language definition. The concept of many-sorted
signature arose in [Hig63] in order to lift the theory of (full) abstract algebras in case of
partially defined operations. From the language syntax perspective, signatures allow
the specification of sorted operators, which in turn provide a basis for an algebraic
construction of the language semantics. In the rest of the chapter, we follow the
exposition of [GTWW77] and [BL70] on this subject.

The last formalism considered here are order-sorted signatures [GM92], already
presented in Chapter 3. They are built upon many-sorted signatures to which they
add an explicit treatment of polymorphic operators. Their main aim is to provide a
basis on which to develop an algebraic theory to handle several types of polymorph-
ism, multiple inheritance, left inverses of subsort inclusion (retracts), and complete
equational deduction.

Notation 8.1. In the rest of the chapter, we will make use of the following notations:
If A and B are two sets and f : A→ B is a function, we denote by f∗ : A∗ → B∗ the
unique monoid homomorphism induced by the Kleene closure on the sets A and B
extending the function f. That is,{︄

f∗(ε) = ε

f∗(a1 . . . an) = f(a1) . . . f(an) n > 0

Moreover, if g : A→ B is a function, we still use the symbol g to denote the direct
image map of g (also called the additive lift of g), i.e., the function g : ℘(A)→ ℘(B)
such that g(X) = {g(a) ∈ B | a ∈ X }. ♢

8.3 Context-Free Algebras

A context-free grammar [GTWW77] (or, a CF grammar) is a triple G = (N, T, P),
whereN is the set of non-terminal symbols (or, non-terminals), T is the set of terminal

Context-free grammar,

Non-terminals, Terminals,

Productions

symbols (or, terminals) disjoint fromN, and P ⊆ N× (N∪ T)∗ is the set of production
rules (or, productions). If (A,β) is a production in P, we stick to the standard notation
A→ β (although some authors [Vis98] reverse the order and write β→ A to match
the signature formalism).

If α, γ ∈ (N ∪ T)∗, B ∈ N, and B→ β ∈ P, we define αBγ⇒ αβγ the one-step
reduction relation on the set (N∪T)∗. The language L(G) generated byG is the union
of the N-sorted family LN(G) = { LA(G) | A ∈ N }, that is, L(G) =

⋃︁
LN(G),

where LA(G) = { t ∈ T∗ | A⇒∗ t } and⇒∗ is the reflexive transitive closure of⇒.
The non-terminals projection nt : N ∪ T → N ∪ {ε} on G is defined by

Non-terminals projection

nt(x) =

{︄
x x ∈ N
ε otherwise

Notation 8.2. In the following, we implicitly characterise the function nt according
to the subscript/superscript of G, namely, if G ′, G1, etc. are grammars, we denote by
nt ′, nt1, etc. their non-terminals projections, respectively. ♢

146 Semantic Equivalence of Language Syntax Formalisms

An abstract grammar morphism (henceforth morphism, when this terminology
does not lead to ambiguities) f : G1 → G2 is a map between two grammars G1 =
(N1, T1, P1) and G2 = (N2, T2, P2) that preserves the abstract structure of the
generated strings.

Definition 8.1 (Abstract Grammar Morphism). Let G1 = (N1, T1, P1) and G2 =
(N2, T2, P2) be two context-free grammars. An abstract grammar morphism f : G1 →Abstract grammar morphism
G2 is a pair of functions f0 : N1 → N2 and f1 : P1 → P2 such that

f1(A→ β) = f0(A)→ β ′

where nt∗2(β
′) = (f∗0 ◦ nt∗1)(β) for each production A→ β in P1. ♢

The identity morphism on an object G = (N, T, P) is denoted by idG, with
(idG)0 = idN and (idG)1 = idP . The composition of two grammar morphism
f : G1 → G2 and g : G2 → G3 is obtained by defining (g ◦ f)0 = g0 ◦ f0 and
(g ◦ f)1 = g1 ◦ f1.

Proposition 8.1. The class of all grammars and the class of all abstract grammar
morphisms form the category Grm.

The following subsection makes clear the semantic implications that a grammar
morphism f : G1 → G2 induces on the categories of algebras over G1 and G2. The
insight is that preserving the abstract syntax of G1 into G2 ensures the possibility to
employ G2-algebras in order to provide meaning to G1-terms.

8.3.1 Algebras over a Context-Free Grammar

The algebraic approach applied to context-free languages is introduced in [HR76,
Rus76]. The authors exploit the theory of heterogeneous algebras [BL70] to provide
semantics to context-free grammars (see also [GTWW77]). The algebraic notions that
lead to the category of algebras over a context-free grammar are here summarised.

Remark 8.1. The following concepts are analogous in spirit to those introduced in
Chapter 3. Therefore, we avoid to be didactic in the exposition, and we redirect the
reader to the aforementioned chapter for a thorough presentation of the algebraic
approach. ♢

Definition 8.2 (Context-Free Algebra). A context-free G-algebra A over a CF gram-
Context-free algbera

mar G = (N, T, P) is specified by

(i) an interpretation set JCKA for each non-terminal C ∈ N and a set JWKA =
Interpretation set

JC1KA × · · · × JCnKA for eachW = C1 . . . Cn ∈ N+;

(ii) an element JC → δKA ∈ JCKA for each production rule C → δ such that
nt∗(δ) = ε; and

(iii) an interpretation function JC→ δKA : Jnt∗(δ)KA → JCKA for each production
Interpretation function

C→ δ such that nt∗(δ) ̸= ε. ♢

Notation 8.3. As usual, if A is a G-algebra, we denote by JCKA and AC the same
interpretation (or, carrier) set, for each non-terminal C. ♢

8.3. Context-Free Algebras 147

It is well-known [GTWW77, HR76] that the class of all G-algebras and the class
of all G-homomorphisms form a category, denoted by Alg(G). The initial object in
Alg(G) is the term algebra (or, initial algebra) and it is denoted by TG. Specifically,
the carrier sets (TG)C of TG are inductively defined as the smallest sets such that,
for each C→ δ ∈ P,

• if nt∗(δ) = ε, then C→ δ ∈ (TG)C; and

• if nt∗(δ) = C1 . . . Cn and ti ∈ (TG)Ci
for i = 1, . . . , n, then

C→ δ(t1, . . . , tn) ∈ (TG)C

Then, the interpretation functions are obtained by defining

• JC→ δKTG
= C→ δ, if nt∗(δ) = ε; and

• JC → δKTG
(t1, . . . , tn) = C → δ(t1, . . . , tn), if nt∗(δ) = C1 . . . Cn and

ti ∈ (TG)Ci
for i = 1, . . . , n.

We now show the semantic effects that grammar morphisms induce on the re-
spective categories of algebras. LetG1 = (N1, T1, P1) andG2 = (N2, T2, P2) be two
context-free grammars. Suppose that f : G1 → G2 is a grammar morphism and let
A be a G2-algebra. We can make A into a G1-algebra ξfA by defining

(ξfA)C = Af0(C) for each C ∈ N1, and

JC→ δKξfA = Jf1(C→ δ)KA for each C→ δ ∈ P1

Moreover, if h : A → B is a G2-homomorphism, then (ξfh)C = hf0(C) is G1-
homomorphism from ξfA to ξfB.

Proposition 8.2. The map ξf : Alg(G2)→ Alg(G1) induced by the abstract grammar
morphism f : G1 → G2 is a functor.

This last proposition suggests to investigate the functorial nature of Alg(−).

Proposition 8.3. Alg is a contravariant functor from the category of context-free
grammar Grm to the category of small categories Cat, or, equivalently, Alg : Grm →
Catop is a (covariant) functor.

Proof. Let f : G1 → G2 be a grammar morphism and let Alg(f) = ξf. Then, for each
context-free grammar G = (N, T, P) and for each algebra A in Alg(G) holds that

(Alg(idG)(A))C = (ξidGA)C = AC for each C ∈ N, and

JC→ δKAlg(idG)(A) = JC→ δKξidGA = JC→ δKA for each C→ δ ∈ P

which imply Alg(idG) = idAlg(G). Moreover, given two grammar morphisms f : G1 →
G2 and g : G2 → G3 we have that(︁

Alg(g ◦ f)(A)
)︁
C
= (ξ(g◦f)A)C

= A(g0◦f0)(C)

= (ξgA)f0(C)

=
(︁
(ξf ◦ ξg)(A)

)︁
C

=
(︁
(Alg(f) ◦ Alg(g))(A)

)︁
C

148 Semantic Equivalence of Language Syntax Formalisms

for each C ∈ N, and

JC→ δKAlg(g◦f)(A) = JC→ δKξ(g◦f)A

= J(g1 ◦ f1)(C→ δ)KA
= Jf1(C→ δ)KξgA

= JC→ δK(ξf◦ξg)(A)

= JC→ δK(Alg(f)◦Alg(g))(A)

for each C→ δ ∈ P, and thus Alg(g ◦ f) = Alg(f) ◦ Alg(g).

Since functors preserve isomorphisms, then isomorphic grammars give rise to
isomorphic categories of algebras, implying that f does not lose any (semantic relevant)
information.

Corollary 8.1. If f : G1 → G2 is an abstract grammar isomorphism, then

ξf−1 ◦ ξf = idAlg(G1) and ξf ◦ ξf−1 = idAlg(G2)

Therefore, ξf−1 = ξ−1f and hence Alg(G1) and Alg(G2) are isomorphic.

Example 8.1 (Deriving a Compiler). In this example, we show how a grammar
morphism f : G1 → G2 induces a compiler with respect to anyG2-algebra in Alg(G2).
Consider the following grammar specifications G1 = (N1, T1, P1) (left) and G2 =
(N2, T2, P2) (right) in the Backus-Naur form:

n ::= +(n,n) | 0 | 1 | 2 | · · · p ::= (p+ p) | even | odd

(Here, we have just specified the productions; terminals and non-terminals can be
easily recovered from such specifications assuming no useless symbols in both sets).

Let f : G1 → G2 be the grammar morphism mapping

n
f0↦−→ p

n→ +(n,n)
f1↦−→ p→ (p+ p)

n→ 2x
f1↦−→ p→ even for each x ∈ N

n→ 2x+ 1
f1↦−→ p→ odd for each x ∈ N

Suppose that A is the G2-algebra such that

JpKA = {0, 1}

Jp→ evenKA = 0

Jp→ oddKA = 1

Jp→ (p+ p)KA (x1, x2) = (x1 + x2) mod 2

Let TG1
and TG2

denote the G1- and G2-term algebras, respectively. Since TG2

is initial, there is a unique homomorphism h2A : TG2
→ A , namely, the semantics of

the language generated by G2 induced by the algebra A . Applying the functor ξf to

8.4. Many-Sorted and Order-Sorted Signatures 149

h2A yields the following commutative diagram:

TG2
A

TG1

ξfTG2
ξfA

h2
A

ξf ξf

h1
ξfTG2

h1
ξfA

ξfh
2
A

where h1ξfTG2
and h1ξfA are the unique homomorphisms out of TG1

and into TG2

and A , respectively.
In this case, the commutativity has an interesting meaning: h1ξfTG2

is the compiler
translating G1-terms into the language generated by G2 with respect to the semantic
function h2A induced by the morphism f. Indeed, it is easy to show that for all terms
t ∈ JpKTG2

, holds that (︁
h2A

)︁
p
(t) =

(︁
ξfh

2
A

)︁
n
(t)

and therefore we have the following equality (where ◦ is the set-theoretic composition
operator)

ξfh
2
A ◦ h1ξfTG2

= h2A ◦ h1ξfTG2
= h1ξfA

which is the equation characterising a compiler [FNT91]. For instance, let +(5, 3)
denotes the G1-term formally defined by

n→ +(n,n)(n→ 5, n→ 3)

If we apply the compiler h1ξfTG2
to +(5, 3), we obtain a G2-term for which h2A -

semantics agrees with h1ξfA , that is,

(h1ξfTG2
)n

(︁
+ (5, 3)

)︁
= (odd + odd)

where (odd + odd) denotes the G2-term

p→ (p+ p)(p→ odd, p→ odd)

hence
(h2A)p

(︁
(odd + odd)

)︁
= 0 = (h1ξfA)n

(︁
+ (5, 3)

)︁
♢

8.4 Many-Sorted and Order-Sorted Signatures

We prove the same results developed in the previous section for the classes of algebras
over a many-sorted and order-sorted signature.

Definition 8.3 (Many-Sorted Signature). A many-sorted signature S is an order-
Many-sorted signature

sorted signature (see Definition 3.1) such that

150 Semantic Equivalence of Language Syntax Formalisms

(i) the subsort ordering is the discrete one; and

(ii) does not define (ad-hoc) polymorphic operators. ♢

Therefore, a many-sorted signature [GTWW77] (or, an MS signature) can be re-
garded as a pair S = (S, Σ), where S is a set of sorts and Σ is a disjoint family of sets1

Σw,s such that w ∈ S∗ and s ∈ S defined by{︄
Σε,s = {k | k : s in S }

Σw,s = { f | f : w→ s in S } with w ∈ S+

We write σ ∈ Σw,s or σ : w→ s to denote any arbitrary operator of S, which could
be either a function symbol (hence w ̸= ε) or a constant (hence w = ε). If σ ∈ Σw,s
is an operator symbol, we define functions ar(σ) = w the arity, srt(σ) = s the sort,
rnk(σ) = (w, s) the rank of σ. As in the case of context-free grammars, we suppose
that S ∩

⋃︁
Σ = ∅.

Remark 8.2. In this chapter, we always consider a many-sorted signature S as a pair
(S, Σ). By definition, Σ is a disjoint family of sets, and thus there is no need to label
constants and function symbols with ranks, since they can be recovered from the
operator name. Moreover, it is convenient to consider a constant k : s as a function
symbols k with rank (ε, s). ♢

A many-sorted signature morphism f : S1 → S2 is a map between two many-
sorted signatures S1 = (S1, Σ1) and S2 = (S2, Σ2) that preserves the structure of
S1 in S2, into the following sense:

Definition 8.4 (Many-Sorted Signature Morphism). Let S1 = (S1, Σ1) and S2 =
(S2, Σ2) be two many-sorted signatures. A many-sorted signature morphism f : S1 →Many-sorted signature morphism
S2 is given by a pair of functions f0 : S1 → S2 and f1 :

⋃︁
Σ1 →

⋃︁
Σ2 such that

f1(σ) : f
∗
0(w)→ f0(s) in S2 for each operator σ : w→ s in S1. ♢

The identity arrow on S = (S, Σ) is denoted by idS and is such that (idS)0 and
(idS)1 are the set identity functions on their domains, and the composition of two
morphisms f : S1 → S2 and g : S2 → S3 is obtained by defining (g ◦ f)0 = g0 ◦ f0
and (g ◦ f)1 = g1 ◦ f1, which is trivially a morphism from S1 to S3.

Proposition 8.4. The class of all many-sorted signatures and the class of all many-
sorted signature morphisms form the category MSSg.

Remark 8.3. Order-sorted signatures have already been introduced in Chapter 3.
Following Remark 8.2, we shall regard an order-sorted signature Sg as a triple (S,⩽, Σ),
with operators σ ∈ Σw,s to be either constants or function symbols. ♢

We recall here Definition 6.9 of an order-sorted signature morphism presented
in Chapter 6: An order-sorted signature morphism f : Sg1 → Sg2 between two order-

Order-sorted signature morphism
sorted signatures Sg1 = (S1,⩽1, Σ1) and Sg2 = (S2,⩽2, Σ2), is given by two
components f0 and f1. The former component f0 is a monotone function between S1
and S2 preserving subsort constraints, that is, if s ⩽1 s ′ in the poset (S1,⩽1), then
f0(s) ⩽2 f0(s ′) in (S2,⩽2). The latter component

f1 = { f1w,s : Σ
1
w,s → Σ2f∗0(w),f0(s)

| w ∈ S∗1 ∧ s ∈ S1 }
1Such a condition is not necessary and may be omitted at the cost of complicating the subsequent

exposition. We follow [GTWW77], and we adopt it to simplify the presentation.

8.4. Many-Sorted and Order-Sorted Signatures 151

is a set of functions preserving the rank of operators. Moreover, we also require
the preservation of polymorphism, that is, if σ ∈ Σw1,s1 ∩ Σw2,s2 is a polymorphic
operator in Sg1, then f1w1,s1

(σ) = f1w2,s2
(σ).

The identity morphism idSg over an order-sorted signature Sg is defined by taking
(idSg)0 and each component (idSg)

1
w,s of (idSg)1 the set-theoretic identities on their

domains. The composition g ◦ f of two order-sorted signature morphisms f : Sg1 →
Sg2 and g : Sg2 → Sg3 is obtained by defining (g ◦ f)0 = g0 ◦ f0 and (g ◦ f)1w,s =
g1f∗0(w),f0(s)

◦ f1w,s.

Proposition 8.5. The class of all order-sorted signatures and the class of all order-sorted
signature morphisms form the category OSSg.

8.4.1 Algebras over a Signature

We now have all the elements to show the semantic effects induced by a many-sorted
signature morphism f : S1 → S2, where S1 = (S1, Σ1) and S2 = (S2, Σ2).

Definition 8.5 (Many-Sorted Algebra and Homomorphism). Let S = (S, Σ) be
a many-sorted signature. A many-sorted algebra (resp., homomorphism) is just an

Many-sorted algebra, Many-sorted

homomorphism
order-sorted algebra (resp., homomorphism) over S regarded as the order-sorted
signature Sg = (S,≡, Σ), with ≡ the discrete order on S. ♢

As in the case of context-free grammars, we can build a mapping from the category
of algebras Alg(S2) to Alg(S1), in order to employ S2-algebras to provide meaning
to S1-terms: Let A be an S2-algebra. We can make A to a S1-algebra ζfA by
defining

(ζfA)s = Af0(s) for each s ∈ S1, and

JσKζfA = Jf1(σ)KA for each σ ∈
⋃︂
Σ1

Then, given a S2-homomorphism h : A → B, we define the S1-homomorphism
ζfh : ζfA → ζfB such that (ζfh)s = hf0(s). The very same construction can be
applied to the order-sorted case, namely, if g : Sg1 → Sg2 is an order-sorted signature
morphism, the map ψg : Alg(Sg2)→ Alg(Sg1) is defined analogously to ζf.

Proposition 8.6. The maps ζf : Alg(S2)→ Alg(S1) and ψg : Alg(Sg2)→ Alg(Sg1)
induced by the signature morphisms f : S1 → S2 and g : Sg1 → Sg2, respectively, are
functors.

Again, we can prove that Alg is a contravariant functor (we use the same name
for the functor Alg both for categories of grammars and signatures):

Proposition 8.7. Alg is a contravariant functor from the category of many-sorted
signatures (order-sorted signatures) MSSg (resp., OSSg) to the category of small categories
Cat, or, equivalently, Alg : MSSg → Catop (resp., Alg : OSSg → Catop) is a (covariant)
functor.

Proof. The proof is analogous to the proof of Theorem 8.3.

This last proposition leads to an equivalent of Corollary 8.1 for signature morph-
isms: Isomorphic signatures give rise to isomorphic categories of algebras, entailing
that signature isomorphisms do not add or remove any semantic relevant information.

152 Semantic Equivalence of Language Syntax Formalisms

Proposition 8.8. If f : S1 → S2 and g : Sg1 → SgS2 are isomorphism, then

ζf−1 ◦ ζf = idAlg(S1) ψg−1 ◦ψg = idAlg(Sg1)

ζf ◦ ζf−1 = idAlg(S2) ψg ◦ψg−1 = idAlg(Sg2)

Therefore, ζf−1 = ζ−1f and ψg−1 = ψ−1
g , and thus ζf and ψg are isomorphisms.

8.5 Equivalence between MS Signatures and CF Grammars

In this section, we generalise the results of [GTWW77] by proving that the conversion
of a grammar into a signature and vice versa can be extended to functors that give rise
to an adjoint equivalence between Grm and MSSg. The major benefit of such a new
development is the preservation of all the categorical properties (such as initiality,
limits, colimits, etc.) from Grm to MSSg, and vice versa. A concrete example is
provided at the end of the section.

The map ∆ : Grm → MSSg makes a grammar G = (N, T, P) into a signature
∆G = (SG, ΣG), where SG = N and ΣGw,s = {A→ β ∈ P | A = s∧ nt∗(β) = w },
and a grammar morphism f : G1 → G2 into the signature morphism ∆f such that
(∆f)0 = f0 and (∆f)1 = f1.

Proposition 8.9. ∆ : Grm→ MSSg is a functor.

Proof. The only non-trivial fact in the proof is checking that ∆f satisfies the signature
morphism condition: Let G1 = (N1, T1, P1) and G2 = (N2, T2, P2) be two context-
free grammars, and let f : G1 → G2 be a grammar morphism. If ∆G1 = (SG1

, ΣG1
)

and ∆G2 = (SG2
, ΣG2

), then given A→ β : nt∗1(β)→ A in ΣG1
holds that

(∆f)1(A→ β) = f1(A→ β) = f0(A)→ β ′

where (f∗0 ◦ nt∗1)(β) = nt∗2(β
′), and therefore

(∆f)1(A→ β) : nt∗2(β
′)→ f0(A)

: (f∗0 ◦ nt∗1)(β)→ f0(A)

: ((∆f)∗0 ◦ nt∗1)(β)→ (∆f)0(A)

Hence ∆f is a proper signature morphism from ∆G1 to ∆G2.

Similarly, we define ∇ : MSSg → Grm that maps objects and arrows between
the specified categories. The conversion of a signature S = (S, Σ) to a grammar
∇S = (NS, TS, PS) is obtained by defining NS = S, TS =

⋃︁
Σ, and PS = { s→

σw | σ ∈ Σw,s }, while a signature morphism f : S1 → S2 is mapped to the grammar
morphism ∇f such that (∇f)0 = f0 and (∇f)1(s→ σw) = f0(s)→ f1(σ)f

∗
0(w).

Note that the construction of PS follows by considering function symbolsσ ∈
⋃︁
Σ

in the signature as terminals in the grammar. For instance, in the context of algebraic
semantics of programming languages (e.g., see [GM96]), the usual loop operator
while : exp com→ com is mapped by∇ to the production rule com→ while exp com.
Of course, other (isomorphic) solutions are possible, such as the mapping of the
previous operator to the new embellished rule com→ while (exp) { com }.

Proposition 8.10. ∇ : MSSg → Grm is a functor.

8.5. Equivalence between MS Signatures and CF Grammars 153

Proof. We show that∇f yields a proper grammar morphism (the remaining part of the
proof is trivial): LetS1 = (S1, Σ1) andS2 = (S2, Σ2) be two many-sorted signatures,
and let f : S1 → S2 be a signature morphism. Also, let ∇S1 = (NS1

, TS1
, PS1

)
and ∇S2 = (NS2

, TS2
, PS2

), and let nt∇1
and nt∇2

denote the non-terminals
projections on ∇S1 and∇S2, respectively. Then,

(∇f)1(s→ σw) = f0(s)→ f1(σ)f
∗
0(w)

for each s→ σw ∈ PS1
. Since the following chain of equalities holds

nt∗∇2
(f1(σ)f

∗
0(w)) = f

∗
0(w) = f

∗
0(nt∗∇1

(σw)) = (f∗0 ◦ nt∗∇1
)(σw)

then ∇f is a grammar morphism from ∇S1 to ∇S2.

As underlined in [Vis98] (and shown in the next example), ∆ and ∇ are not
isomorphisms. Indeed, in general, S ̸= ∆∇S and G ̸= ∇∆G, and thus ∆∇ ̸= idMSSg
and ∇∆ ̸= idGrm. However, as we prove in the next two propositions, there are
natural isomorphisms η and ϵ−1 that transform the identity functors idMSSg and idGrm
to ∆∇ and ∇∆, respectively. It follows that S ∼= ∆∇S and G ∼= ∇∆G (where ∼=
means is isomorphic to).

Example 8.2. Consider the following context-free grammarG (with terminal symbols
underlined) for generating natural numbers in Peano’s notation:

n ::= s n | 0

Its conversion to a signature via ∆ and way back to grammar via ∇ is

n ::= n→ s n n | n→ 0

Even though G and ∇∆G are different, there is a trivial grammar isomorphism
f : G→ ∇∆G. In particular, f is specified by taking f0 = idN, where N = {n} is the
set of the unique non-terminal symbol of G, and f1 that maps

n→ s n f1↦−→ n→ n→ s n n

n→ 0
f1↦−→ n→ n→ 0

One can check that f1 satisfies the grammar morphism condition with respect to f0
(that is, it preserves the non-terminals that appear in the production rules). ♢

Let S = (S, Σ) be a many-sorted signature. We denote by ηS : S→ ∆∇S the
signature morphism defined by (ηS)0 = idS and (ηS)1(σ) = (σ)→ σ ar(σ). Since
in the many-sorted case the arity and the rank are fully determined by the operator
name (Σ is a disjoint family of sets) the previous function is well-defined (recall that
ar(σ) is the arity of the operator σ).

Proposition 8.11. η : idMSSg ⇒ ∆∇ is a natural isomorphism.

Proof. Let S = (S, Σ) be a many-sorted signature and let σ : w → s in S. Then,
(ηS)1(σ) = s→ σw has the same rank of σ. Since (ηS)0 is the identity on the set
of sorts, ηS satisfies the signature morphism condition. Moreover, it is easy to prove
that each component ηS is an isomorphism in MSSg by defining its inverse η−1S as

154 Semantic Equivalence of Language Syntax Formalisms

(η−1S)0 = idS and (η−1S)1(s → σw) = σ. We complete the proof by showing that
the following diagram commutes for each signature morphism f : S→ S ′:

S S ′

∆∇S ∆∇S ′

f

ηS ηS′

∆∇f

The 0-th components of the morphisms in the diagram trivially commute. As re-
gards the 1-th components, the morphisms in the diagram commute if and only if
(ηS′)1(f1(σ)) = (∆∇f)1

(︁
(ηS)1(σ)

)︁
for each σ ∈ Σw,s:

(ηS′)1(f1(σ)) = f0(s)→ f1(σ)f
∗
0(w)

= (∆∇f)1(s→ σw)

= (∆∇f)1
(︁
(ηS)1(σ)

)︁
and hence the thesis.

Similarly, let G = (N, T, P) be a grammar. We denote by ϵG : ∇∆G → G the
grammar morphism defined by (ϵG)0 = idN and (ϵG)1

(︁
A → (A,β) nt∗(β)

)︁
=

A→ β.

Remark 8.4. Note that the productions in P∆G are formed from those in P, i.e.,
P∆G = {A → (A,β) nt∗(β) | A → β ∈ P }. Therefore, when considering a
general production in P∆G derived from A→ β in P, we write A→ (A,β) nt∗(β)
(or, A ::= A→ β nt∗(β) when considering a specific production in some example)
instead of A→ A→ β nt∗(β) to avoid any confusion. ♢

Proposition 8.12. ϵ : ∇∆⇒ idGrm is a natural isomorphism.

Proof. Let G = (N, T, P) be a context-free grammar and let A→ (A,β) nt∗(β) be a
production in P∆G. Recall that

(ϵG)1(A→ (A,β) nt∗(β)) = A→ β and (ϵG)0(A) = A

and therefore
((ϵG)

∗
0 ◦ nt∗∇∆)((A,β) nt∗(β)) = nt∗(β)

where nt∇∆ is the non-terminals mapping on∇∆G. Thus, ϵG is a proper grammar
morphism. Moreover, ϵG is an isomorphism in Grm: Let ϵ−1G denotes its inverse
defined by

(ϵ−1G)0 = idN and (ϵ−1G)1(A→ β) = A→ (A,β) nt∗(β)

Now one can check that ϵG ◦ ϵ−1G = idG and ϵ−1G ◦ ϵG = id∇∆G. In order to prove
the thesis, we show the commutativity of the following diagram for each grammar
morphism f : G→ G ′:

∇∆G ∇∆G ′

G G ′

∇∆f

ϵG ϵG′

f

8.5. Equivalence between MS Signatures and CF Grammars 155

Since ∇∆f = f and (ϵG)0 and (ϵG′)0 are the identity functions, we can conclude
the commutativity of the 0-th components of the diagram. Moreover,

(ϵG′)1
(︁
(∇∆f)1(A→ (A,β) nt∗(β))

)︁
= (ϵG′)1

(︁
f0(A)→ f1(A→ β)(f0 ◦ nt)∗(β)

)︁
for each production rule A → (A,β) nt∗(β) in P∆G. Let G ′ = (N ′, T ′, P ′). Since
f is a grammar morphism and A → β ∈ P, then f0(A) → β ′ ∈ P ′ for some β ′

where (nt ′)∗(β ′) = (f∗0 ◦ nt∗)(β). Therefore, we can continue the previous chain of
equalities:

= (ϵG′)1
(︁
f0(A)→ f1(A→ β)(nt ′)∗(β ′)

)︁
= f0(A)→ β ′

= f1(A→ β)

= f1
(︁
(ϵG)1(A→ (A,β) nt∗(β))

)︁
and the proof is complete.

Example 8.3. Consider the context-free grammar G of the previous example. The
grammar morphism ϵG transforms∇∆G back to G. Indeed,

(ϵG)1(n→ n→ s n n) = n→ s n

and
(ϵG)1(n→ n→ 0) = n→ 0 ♢

The previous results suggest to study if∇ and ∆ form an adjunction between the
categories Grm and MSSg.

Theorem 8.1. ∇ is left adjoint to ∆ and (ϵ, η) are the counit and the unit of the
adjunction (∇, ∆, ϵ, η).

Proof. We need to prove the following triangle equalities:

∆ ∆∇∆

∆

η∆

∆ϵ

∇∆∇ ∇

∇

ϵ∇

∇η

The 0-th components of both diagrams trivially commutes. We only prove the com-
mutativity of the 1-th components.

• For each s→ σw ∈ PS
(ϵ∇S)1

(︁
(∇ηS)1(s→ σw)

)︁
= (ϵ∇S)1

(︁
(ηS)0(s)→ (ηS)1(σ)(ηS)∗0(w)

)︁
= (ϵ∇S)1(s→ (s, σw)w)

= s→ σw

• For each A→ β ∈ ΣGnt∗(β),A

(∆ϵG)1
(︁
(η∆G)1(A→ β)

)︁
= (∆ϵG)1(A→ (A,β) nt∗(β))

= (ϵG)1(A→ (A,β) nt∗(β))

= A→ β

156 Semantic Equivalence of Language Syntax Formalisms

Since ∇ is left adjoint to ∆ (Theorem 8.1) and η and ϵ are natural isomorphisms
(Propositions 8.11 and 8.12), we get the following corollary.

Corollary 8.2. (∇, ∆, ϵ, η) is an adjoint equivalence.

Theorem 8.1 implies that Grm and MSSg are identical except for the fact that each
category may have different numbers of isomorphic copies of the same object. A
consequence of this result is that we can move categorical limits between Grm and
MSSg. The next example provides a definition of coproduct in Grm able to recognise
the union of two context-free languages. As a consequence of Theorem 8.1, we achieve
for free the same construction in MSSg.

Example 8.4 (Coproduct Preservation). Suppose to have the following notion of
categorical coproduct in Grm: Given two context-free grammars G1 = (N1, T1, P1)
and G2 = (N2, T2, P2), the coproduct of G1 and G2 is defined by G1 ⊕G2 = (N1 ⊎
N2, T1 ⊎ T2, P1 ⊎ P2), where ⊎ is the disjoint union of sets. The inclusion morphism
ik : Gk → G1 ⊕G2 for k = 1, 2 are defined by (ik)0 = idNk

and (ik)1 = idPk
.

Given two morphisms f1 : G1 → G and f2 : G2 → G, where G is a context-free
grammar, one can check that the unique morphism f that makes the following diagram
commute

G

G1 G1 ⊕G2 G2

f1

i1

f
f2

i2

is obtained by defining f0(n) = (fj)0(n) with n ∈ Nj and f1(A→ β) = (fj)1(A→
β) with A → β ∈ Pj, for some j = 1, 2. The term algebra over G1 ⊕ G2 carries
terms both in G1 and G2 and recognises the (disjoint) union of the languages over
G1 and G2. Since (∇, ∆, ϵ, η) is an adjoint equivalence, then so is (∆,∇, η−1, ϵ−1).
Therefore, ∆ is left adjoint to ∇ and hence it preserves colimits. Since a coproduct is
a colimit, ∆(G1 ⊕G2) is the coproduct of ∆G1 and ∆G2 in MSSg. ♢

8.6 Adjointness between MS Signatures and OS Signatures

In this section, we show that similar results of those in Section 8.5 hold for many-
sorted and order-sorted signature transformations Λ and V .

The map Λ : OSSg → MSSg converts an order-sorted signature Sg = (S,⩽, Σ)
to the many-sorted signature SSg = (SSg, ΣSg) defined by SSg = S and ΣSg

w,s =
{σw,s | σ ∈ Σw,s } (such a construction is provided in [GM92]). The transforma-
tion of an order-sorted signature morphism f : Sg1 → Sg2 to a many-sorted sig-
nature morphism Λf : ΛSg1 → ΛSg2 is obtained by defining (Λf)0 = f0 and
(Λf)1(σw,s) =

(︁
f1w,s(σ)

)︁
f∗0(w),f0(s)

.

Proposition 8.13. Λ : OSSg → MSSg is a functor.

Similarly, the map V : MSSg → OSSg maps the many-sorted signature S = (S, Σ)
to the order-sorted signature SgS = (SS,⩽S, ΣS), where SS = S, ⩽S is the
reflexive binary relation on S, and ΣS

w,s = Σw,s. Moreover, if f : S1 → S2 is a

8.6. Adjointness between MS Signatures and OS Signatures 157

many-sorted signature morphism, then Vf : VS1 → VS2 defined by (Vf)0 = f0
and (Vf)1w,s = f1|Σw,s

is an order-sorted signature morphism.

Proposition 8.14. V : MSSg → OSSg is a functor.

As before, we can provide natural transformations

φ : idMSSg ⇒ ΛV and ϑ : VΛ⇒ idOSSg

LetS = (S, Σ) be a many-sorted signature. Then, theS-componentφS : S→ ΛVS
of φ is defined by taking (φS)0 = idS and (φS)1(σ) = σar(σ),srt(σ).

Proposition 8.15. φ : idMSSg ⇒ ΛV is a natural isomorphism.

Proof. The component φS at S of φ is trivially an invertible many-sorted signature
morphism for each many-sorted signature S = (S, Σ). Thus, we only prove the
naturality of φ, i.e., that

S S ′

ΛVS ΛVS ′

f

φS φS′

ΛVf

commutes for each many-sorted signature morphism f : S→ S ′. The 0-th compon-
ent of the diagram commutes because (ΛVf)0 = f0 and φS and φS′ are the right
and left identities for f, respectively. As regards the 1-th component of the diagram,
we have that

(ΛVf)1(σw,s) =
(︁
(Vf)1(σ)

)︁
(Vf)∗0(w),(Vf)0(s)

= (f1(σ))f∗0(w),f0(s)

= (φS′)1(f1(σ))

and hence the thesis.

Conversely, if Sg = (S,⩽, Σ) is an order-sorted signature, the Sg-component
ϑSg : VΛSg → Sg of ϑ is obtained by defining (ϑSg)0 = idS and (ϑSg)

1
w,s(σw,s) = σ.

Proposition 8.16. ϑ : VΛ⇒ idOSSg is a natural transformation.

Proof. We prove the naturality of ϑ, i.e., that

VΛSg VΛSg ′

Sg Sg ′

VΛf

ϑSg ϑSg ′

f

158 Semantic Equivalence of Language Syntax Formalisms

commutes for each order-sorted signature morphism f : Sg → Sg ′. The 0-th com-
ponent of the diagram trivially commutes. As regards the 1-th component, we have
that

(ϑSg ′)1f∗0(w),f0(s)

(︁
(VΛf)1w,s(σw,s)

)︁
= (ϑSg ′)1f∗0(w),f0(s)

(︁
(Λf)1(σw,s)

)︁
= (ϑSg ′)1f∗0(w),f0(s)

(︁
f1w,s(σ)f∗0(w),f0(s)

)︁
= f1w,s(σ)

= f1w,s
(︁
(ϑSg)

1
w,s(σw,s)

)︁
and hence the thesis.

Again, Λ and V form an adjunction:

Theorem 8.2. V is left adjoint to Λ and (ϑ,φ) are the counit and the unit of the
adjunction (V,Λ, ϑ,φ).

Proof. We prove the following triangle equalities (0-th component trivially com-
mutes):

Λ ΛVΛ

Λ

φΛ

Λϑ

VΛV V

V

ϑV

Vφ

• For each σ ∈ ΣS
w,s

(ϑVS)1w,s
(︁
(VφS)1w,s(σ)

)︁
= (ϑVS)1w,s

(︁
(φS)1(σ)

)︁
= (ϑVS)1w,s(σw,s)

= σ

• For each σw,s ∈ ΣSg
w,s

(ΛϑSg)1
(︁
(φΛSg)1(σw,s)

)︁
= (ΛϑSg)1((σw,s)w,s)

=
(︁
(ϑSg)

1
w,s(σw,s)

)︁
w,s

= σw,s

The results in this section can be rephrased in terms of free constructions. Indeed,
the order-sorted signature VS is actually a free object on S (together with the
morphism φS : S → ΛVS). In this context, the functor Λ : OSSg → MSSg acts
as a forgetful functor which forgets the ordering between sorts of the signature,
whereas the free functor V : MSSg → OSSg adds the loosest ordering on the set of
sorts of a many-sorted signature (i.e., the smallest reflexive relation). Therefore, it
follows that, given a many-sorted signature S, for each order-sorted signature Sg

8.7. Semantic Equivalence 159

and (many-sorted) morphism f : S→ ΛSg there is a unique (order-sorted) morphism
g : VS→ Sg such that the following diagram commutes:

S ΛVS

ΛSg

φS

f
Λg

Example 8.5. In this example, we denote by ≡X the smallest reflexive relation on
a given set X, that is, ≡X = { (x, x) | x ∈ X }. Let S = (S1, Σ1) be the many-sorted
signature with only two sorts a and b, and two operators k : a and l : b. The free
order-sorted signature on S is VS = (S1,≡S1

, Σ1). Now, let Sg = (S2,⩽2, Σ2) be
the following order-sorted signature

k : a l : b i : c where ⩽2 = {(a, b), (a, c), (b, c)} ∪ ≡S2

The forgetful functor Λ maps Sg to ΛSg = (S2, ˆ︁Σ2), where ˆ︁Σ2w,s = {kε,a, lε,b, iε,c}.
Suppose that f : S→ ΛSg is the many-sorted morphism which its first component
f0 acts as the inclusion function from S1 to S2, and f1(k) = kε,a and f1(l) = lε,b.
The unique morphism g : VS → Sg which makes the previous diagram commute
is the one who mimics the behavior of f, namely g0(s) = s for each s ∈ S1 and
g1w,s(σ) = σ for each σ ∈ Σ1w,s. ♢

8.7 Semantic Equivalence

In this section, we show that the provided syntactical transformations between
context-free grammars and many-sorted signatures (Section 8.5) and between many-
sorted and order-sorted signatures (Section 8.6) give rise to equivalent categories of
algebras over the transformed objects.

More specifically, if Υ ∈ {∆,∇, Λ, V} is a syntactical transformation and X is a
language specification in the domain ofΥ, then we prove that Alg(X) and Alg(ΥX)
are equivalent, namely

X ΥX

Alg(X) Alg(ΥX)

Υ

Alg Alg

∼=

Some of these equivalences are presented as isomorphisms of categories. It is well-
known that an isomorphism of categories is a strong notion of categorical equivalence
where functors compose to the identity.

8.7.1 Context-Free Grammars and Many-Sorted Signatures

As mentioned in the introduction, [GTWW77] proves an equivalence between the
many-sorted term ∆G-algebra T∆G and the initial algebra TG over each grammar G.
We now extend this result to the whole categories of algebras Alg(G) and Alg(´G).

160 Semantic Equivalence of Language Syntax Formalisms

Let A be aG-algebra, and recall that the conversion ofG to many-sorted signature
is denoted by ∆G = (SG, ΣG). Then, we map A to the many-sorted ∆G-algebra
A ↑ such that A↑N = As for each N ∈ SG and JC → δKA ↑ = JC → δKA for each
C → δ ∈

⋃︁
ΣG (operators in ∆G are productions in G). Furthermore, given a G-

homomorphism h : A → B, we define the ∆G-homomorphism h↑ : A ↑ → B↑ such
that h↑N = hN.

Conversely, let A be a ∆G-algebra. Then, we define the inverse construction
that maps A to the G-algebra A ↓ such that A↓N = AN for each non-terminal N
and JC→ δKA ↓ = JC→ δKA for each production C→ δ. Moreover, if h : A → B

is a ∆G-homomorphism, then h↓ : A ↓ → B↓ such that h↓s = hs is a proper G-
homomorphism.

Theorem 8.3. The inverse of (_)↑ is (_)↓, therefore they form an isomorphism of
categories between Alg(G) and Alg(∆G) for each context-free grammar G.

Since an isomorphism of categories is a strict notion of categorical equivalence, it
preserves the initial objects, and thus, by applying (_)↑ and (_)↓ to the initial algebras,
we have the exactly result of [GTWW77], that is, T ↑G = T∆G and T ↓∆G = TG.

In a similar manner, given a many-sorted signature S, we can extend the equival-
ence between the initial algebras TS and T∇S to their whole categories of algebras
Alg(S) and Alg(∇S).

Let A be a many-sorted S-algebra. We denote by ∇S = (NS, TS, PS) the
context-free grammar obtained by converting the signature S. We define the∇S-
algebra ↑A , where ↑As = As for each s ∈ NS and Js → σwK↑A = JσKA for
each s → σw ∈ PS. The conversion of a S-homomorphism h : A → B to a
∇S-homomorphism ↑h : ↑A → ↑B is analogous to the previous case.

On the contrary, if A is a∇S-algebra and h : A → B is a∇S-homomorphism,
we can obtain a many-sortedS-algebra ↓A and anS-homomorphism ↓h : ↓A → ↓B
by simply inverting the previous construction.

Theorem 8.4. The inverse of ↑(_) is ↓(_), therefore they form an isomorphism of
categories between Alg(S) and Alg(∇S) for each many-sorted signature S.

Again, the result of [GTWW77] is a special case of this last theorem by noting
that ↑TS = T∇S and ↓T∇S = TS.

Example 8.6 (Example 8.4 Continued). In the Example 8.4, we have shown how to
preserve categorical constructions between Grm and MSSg. Theorems 8.3 and 8.4
can be applied on the top of Theorem 8.1 to ensure the semantic equivalence of
the achieved constructions. For instance, if the (G1 ⊕G2)-algebra A provides the
semantics of the disjoint union of languages over G1 and G2, then A ↑ provides
the equivalent semantics in the category Alg(∆(G1 ⊕ G2)), as a consequence of
Theorem 8.3. ♢

8.7.2 Many-Sorted and Order-Sorted Signatures

The forgetful functor Λ transforms an order-sorted signature Sg to the many-sorted
signature ΛSg by forgetting the ordering on the sorts. In [GM92], the authors prove
the categorical equivalence between Alg(Sg) and Alg(ΛSg). We now extend such a
result to its left adjoint V .

8.8. Some Remarks 161

Let A be a many-sorted S-algebra and let VS = (SS,⩽S, ΣS). We define
the order-sorted VS-algebra A↑ such that (A↑)s = As for each s ∈ SS and
Jσ : w → sKA↑ = JσKA for each σ ∈ ΣS

w,s. Moreover, if h : A → B is an
S-homomorphism, then h↑ : A↑ → B↑ is the ΛS-homomorphism defined by
(h↑)s = hs. Furthermore, we denote by (_)↓ the inverse functor that maps ΛS-
algebras and ΛS-homomorphism to the category Alg(S).

Theorem 8.5. The inverse of (_)↑ is (_)↓, therefore they form an isomorphism of
categories between Alg(S) and Alg(VS) for each many-sorted signature S.

8.8 Some Remarks

An obvious but important consequence of the underlying categorical model is the
compositional nature of the proved results. Indeed, we can get an adjointness between
the category of grammars Grm and the category of order-sorted signatures OSSg by
simply composing V∆ and∇Λ. The algebraic counterpart of the same observation
allows us to claim that the composition of the functors (_)↓ ◦ (_)↑ gives rise to an
isomorphism between Alg(G) and Alg(V∆G) (and, of course, the dual result holds).

It may be worth to point out what is lost when moving (via Λ) from OSSg to Grm
or MSSg, and why we can still get an equivalence between the categories of algebras.
The functor Λ forgets the ordering between sorts. Therefore, two order-sorted
signatures which only differ on the order relation are collapsed to the same many-
sorted signature when Λ is applied. Moreover, it produces different (sorted) copies
of the same polymorphic operator (e.g., f : w1 → s1 and f : w2 → s2 are mapped
to fw1,s1 : w1 → s1 and fw2,s2 : w2 → s2). Thus, polymorphism is neutralised in
this process. For these reasons, Λ yields an adjointness rather than an equivalence.
However, note that no information has been lost from an algebraic perspective. Indeed
we can set Jfw1,s1K = Jf : w1 → s1K and Jfw2,s2K = Jf : w2 → s2K, obtaining a
semantic equivalence between the categories of algebras.

CHAPTER 9
Conclusions

The thesis addresses the problem of providing a formal semantics to the combination
of programming languages, the so-called multi-languages. We have introduced an
algebraic framework able to model this new paradigm, and we have constructively
shown how to attain a multi-language specification by only stipulate (i) how the
syntactic categories of the base languages have to be combined and (ii) how the
values may flow from one language to the other. We have proved the suitability of
the framework to yield the (algebraic and categorical) semantics of multi-language
terms, while preserving the semantics of single-languages, formalised as order-sorted
specifications. We have also proved that combining languages is a closed operation,
that is, every multi-language admits an equivalent order-sorted representation. In
particular, we have focused our study on the semantic properties of boundary func-
tions in order to provide three different notions of multi-language designed to suit
both general and specific cases.

We have then addressed the problem of equational deduction in a multi-language
context, from both a set-theoretic and categorical perspective. We have lifted the
order-sorted equational logic of [GM92] to the previously defined framework of
multi-languages, and we have proved the soundness and the completeness of the
resulting deduction system. The main benefit of the theoretical development pursued
in the thesis is a solid mathematical foundation for reasoning about equalities in a
multi-language context.

We have applied abstract interpretation theory to the algebraic framework of
multi-languages, providing a general technique for defining the abstract semantics
of the combined language. The taken approach has the advantage of being inde-
pendent both from the underlying languages and analyses, and, at the same time,
guarantees theoretical properties of interest, such as soundness and completeness
of the abstraction. Moreover, we have shown that such properties rely crucially on
the definition of the boundary functions, thus providing guidelines for defining their
abstract semantics.

Finally, we have provided a categorical model of three different syntax formalisms
(context-free grammars, many-sorted signatures, and order-sorted signatures). We
have shown how the extension to functors of already existing syntactical transforma-
tions gives rise to adjoint constructions able to preserve the abstract syntax of the

163

164 Conclusions

generated terms. Then, we have proved that the categories of algebras over the objects
in these formalisms are categorically equivalent up to the provided transformations.

9.1 Related Works

In this section we mention research works directly related to the content of this thesis,
divided according to subtopics covered.

9.1.1 Multi-Language Formalisation and Implementation

Cross-language interoperability is a well-researched area from both theoretical and
practical points of view. The most related work to our approach is undoubtedly [MF09],
which provides operational semantics to a combined language obtained by embedding
a Scheme-like language into an ML-like language. This is achieved by introducing
boundaries, syntactic constructs that model the flow of values from one language
to the other. Ours boundary functions draw heavily from their work. However,
we have decoupled semantics of boundary functions from syntactical conversion
operators. Such an approach allowed us to investigate several variants of multi-
language constructions.

Other theoretical works on multi-languages [Ram11, Ben05, Gra08, WNL+10,
PPDA17] take a similar line and combine typed and untyped languages (Lua and
ML [Ram11], Java and PLT Scheme [Gra08], or Assembly and a typed functional
language [PPDA17]), focusing on typing issues and values exchanging techniques.
Instead of focusing on a specific issue, we have adopted a more general framework
to model languages. This choice abstracts away many low-level details, allowing us
to reason on semantic concerns in more general terms, without having to fix any
particular pair of languages.

A number of works have focused on multi-language runtime mechanisms: [GS01]
provides a type system for a fragment of Microsoft Intermediate Language (IL) used
by the .NET framework, that allows programmers to write components in several
languages (C#, Visual Basic, VBScript, etc.) which are then translated to IL. [GSS+18]
proposes a virtual machine that can execute the composition of dynamically typed
programming languages (Ruby and JavaScript) and statically typed one (C). [BBT15,
BBT13] describes a multi-language runtime mechanism achieved by combining single-
language interpreters of (different versions of) Python and Prolog.

9.1.2 Equational Logic in Universal Algebra

Equational logic is a very wide field that have been studied since the 80s. Here, we
mention only those works that are related to this thesis for extending equational
logic to a new class of algebras, and we redirect the reader to [HO80, Tay79] for
surveys about the general topic. In the field of universal algebra, equational logic
emerges from the works of [Bir35, Tar68]. Ordinary (one-sorted) algebras have been
extended to many-sorted algebras by [Hig63] by adding sorts to the operators in the
signature. The naive extension of equational logic to the many-sorted world fails to
be sound due to the possible simultaneous presence of empty and non-empty carrier
interpretation sets. [GM82] solves this problem by explicitly quantifying the variables
involved into equations, and provide a sound and complete equational deduction
system. Finally, [GM92] extends many-sorted algebras to order-sorted algebras by

9.2. Future Works 165

adding a subsort relation on the set of sorts of the signature, and they also lift the
equational logic to the order-sorted world.

9.1.3 Analysis of Multi-Language Programs

For what concerns the verification of multi-language code, a few works concentrated
on analysis-related aspects in a multi-language scenario. In the Java Native Interface
context, [TM07] proposes a specification language which extends the Java Virtual
Machine Language with primitives that approximate C code that cannot be compiled
into Java. [LT14] introduces Pungi, a system that transforms Python/C interface
code to affine programs with the aim of correctly handling Python’s heap when it
interoperates with C++. Similarly, CPyChecker [Mal] is static checker analysing C
extension modules written for Python. It is able to flag null pointer dereferences and
reference counting bugs. Finally, some researches focus on detecting type errors in
multi-language code [LT09, FF08].

9.1.4 Equivalence of Syntax Formalisms

The work most directly related to ours is [Vis98], where the correspondence between
context-free grammars and algebraic signatures is studied, both in the first-order and
high-order setting. In particular, the author provides a proof (Proposition 2.15) of
the isomorphism between the term algebra over a grammar and over its conversion
to a many-sorted signature, and vice versa. Our work generalises these results
(just for the first-order case, but as well including order-sorted specifications) into
a categorical framework. Syntax formalisms and syntactical transformations are
modeled by categories and functors between them, respectively. Then, the relationship
between such formalisms is given by the nature of these functors (Corollary 8.2 and
Theorem 8.2). Such an abstract perspective allowed us to extend the aforementioned
isomorphisms to the whole category of algebras.

To the best of our knowledge, the first paper presenting the syntactical transform-
ations studied in this work is [GTWW77]. More specifically, the authors provided
the definitions of ∆G and ∇S with the properties described in [Vis98]. A similar
approach is taken in [GM92], where the definition of Λ is given, along with the proof
(Theorem 4.2) that Alg(Sg) is equivalent to Alg(ΛSg).

9.2 Future Works

We have investigated the combination of base languages defined through order-sorted
specifications. Although we have made progress in generalising the multi-language
construction in a way that is not dependent on the combined languages, there is
still great deal to be done. For instance, current type specification is limited. We
plan to replay the categorical methods illustrated in Chapter 6 for more complex
type systems including function types, algebraic and recursive data types, T-types,
and session types [Cro93, CDGP09]. Future research should investigate membership
equational logic [BJM00] as an alternative to order-sorted theories. Specifications in
this logic generalises order-sorted theories by adding membership constraints.

A second line of research will investigate operational semantics for multi-languages.
Rewriting logic seems the most reasonable approach to link the algebraic semantics
presented in this thesis to the operational one [Mes92, Mes20]. In particular, rewriting

166 Conclusions

logic is obtained from equational logic by removing the simmetry rule. Our goal is
to perform multi-language rewriting modulo E by partitioning axioms into a set R
of rewriting rules and a set E of multi-language equations. This research would be
particularly useful in order to move towards an implementation of multi-languages
or automatic tools able to combine the rewriting specifications of the base languages.
Moreover, possible implementations may exploit the K framework [RS10], an ex-
ecutable semantic framework based on rewriting logic. Operational semantics for
multi-languages may also benefit from the modular approach to structural opera-
tional semantics [Mos04]. Indeed, modularity is a crucial property when extending a
language with new constructs, a similar scenario that occurs when two languages are
combined.

We deduce unconditional equations but allow conditional axioms. This approach
has merit from the point of view of practical specifications, and reasoning about
them. That said, one could be rather more expressive if one allows conditional equa-
tions as primary judgements of a deduction system. In such a case, the semantics of
judgements could be given in an internal manner by making use of categories with
equalisers [MR77]. We are currently working on such a system, with a view to giving a
sound and complete semantics. There are interesting questions concerning the appro-
priate category theory, and the answers will have connections to work such as [PV07].
And further, since equational theories give rise to free algebra monads [Plo06], further
studies should investigate the possibility of extending/generalizing the results in this
thesis to the notion of monad [Mog91].

As regards the analysis of multi-language code, future research should consider
the asymmetrical lifting of a single-language analysis to the whole multi-language.
In Chapter 7, we assumed the existence of two algebras, A1 and A2, providing the
abstract semantics of the underlying languages. Then, the abstract semantics of
boundary functions defines the flow of abstract values during the abstract compu-
tations. Even though our framework is general enough to allow such algebras to
be different (e.g., A1 may define a sign semantics whereas A2 provides an interval
analysis), we did not discuss the case in which there exists only one analysis. It may
be fruitful to investigate this asymmetrical situation, for instance in the case where
one of the underlying languages cannot alter the values flowing from the other (see
the lump embedding construction of [MF09]).

Further research on the equivalence of language syntax formalisms concerns
refinements of the syntactical transformations between the formalisms in order to
preserve specific properties of the concrete syntax. Among them, polymorphism
seems the most interesting. Unfortunately, the composition of functors V∆ and ∇Λ
yields non-polymorphic set of operators. Another future work goes in the direction
of providing syntactical transformation from Grm to OSSg that yields only regular
(see [GM92] for regularity definition) order-sorted signatures. Then, studying the
adjoint of such a transformation could provide an interesting notion of regularity in
the category of grammars that may be employed to weaken the standard notion of
ambiguity.

Finally, we plan to instantiate the presented framework in order to model real-
world multi-languages, such as Rust (or its core, e.g.RustBelt [JJKD18], which formal-
ises Rust distinctive features), that can be thought as the combination of Safe Rust
(which ensures memory safety), and Unsafe Rust (which allows programmers to

9.2. Future Works 167

perform unsafe operations), or the integration of Assembly with C code, which has
already been the target of static analysis-related research [Che20, MMS08].

Bibliography

[AB11] Amal Ahmed and Matthias Blume. An equivalence-preserving CPS
translation via multi-language semantics. In Manuel M. T. Chakravarty,
Zhenjiang Hu, and Olivier Danvy, editors, Proceeding of the 16th ACM
SIGPLAN international conference on Functional Programming, ICFP 2011,
Tokyo, Japan, September 19-21, 2011, pages 431–444. ACM, 2011.

[AM19] Vincenzo Arceri and Isabella Mastroeni. Static program analysis for
string manipulation languages. Electronic Proceedings in Theoretical
Computer Science, 299:19–33, 2019.

[AMS20] Gianluca Amato, Maria Chiara Meo, and Francesca Scozzari. On col-
lecting semantics for program analysis. Theor. Comput. Sci., 823:1–25,
2020.

[BBT13] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. Unipycation: A
case study in cross-language tracing. In Proceedings of the 7th ACM
workshop on Virtual machines and intermediate languages, pages 31–40,
2013.

[BBT15] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. Approaches to
interpreter composition. Comput. Lang. Syst. Struct., 44:199–217, 2015.

[BCM20a] Samuele Buro, Roy L. Crole, and Isabella Mastroeni. Equational logic
and categorical semantics for multi-languages. In Patricia Johann, editor,
Proceedings of the Thirty-Sixth Conference on the Mathematical Founda-
tions of Programming Semantics, MFPS 2020, , June 2-6, 2020, volume 0
of Electronic Notes in Theoretical Computer Science, pages 0–0. Elsevier,
2020.

[BCM20b] Samuele Buro, Roy L. Crole, and Isabella Mastroeni. Equational logic and
set-theoretic models for multi-languages. In Gennaro Cordasco, Luisa
Gargano, and Adele A. Rescigno, editors, Proceedings of the 21st Italian
Conference on Theoretical Computer Science, Ischia, Italy, September 14-
16, 2020, volume 2756 of CEUR Workshop Proceedings, pages 236–249.
CEUR-WS.org, 2020.

[BCM20c] Samuele Buro, Roy L. Crole, and Isabella Mastroeni. On multi-language
abstraction — Towards a static analysis of multi-language programs. In
David Pichardie and Mihaela Sighireanu, editors, Static Analysis - 27th
International Symposium, SAS 2020, Virtual Event, November 18-20, 2020,
Proceedings, volume 12389 of Lecture Notes in Computer Science, pages
310–332. Springer, 2020.

169

170 Bibliography

[Ben05] Nick Benton. Embedded interpreters. J. Funct. Program., 15(4):503–542,
2005.

[BG15] Nikolaj Bjørner and Arie Gurfinkel. Property directed polyhedral ab-
straction. In Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen,
editors, Verification, Model Checking, and Abstract Interpretation - 16th
International Conference, VMCAI 2015, Mumbai, India, January 12-14,
2015. Proceedings, volume 8931 of Lecture Notes in Computer Science,
pages 263–281. Springer, 2015.

[Bir35] Garrett Birkhoff. On the structure of abstract algebras. Mathematical
Proceedings of the Cambridge Philosophical Society, 31(4):433–454, 1935.

[BJM00] Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specification
and proof in membership equational logic. Theor. Comput. Sci., 236(1-
2):35–132, 2000.

[BL70] Garrett Birkhoff and John D. Lipson. Heterogeneous algebras. Journal
of Combinatorial Theory, 8(1):115–133, 1970.

[BM19a] Samuele Buro and Isabella Mastroeni. On the multi-language construc-
tion. In Luís Caires, editor, Programming Languages and Systems - 28th
European Symposium on Programming, ESOP 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11423
of Lecture Notes in Computer Science, pages 293–321. Springer, 2019.

[BM19b] Samuele Buro and Isabella Mastroeni. On the semantic equivalence
of language syntax formalisms. In Alessandra Cherubini, Nicoletta
Sabadini, and Simone Tini, editors, Proceedings of the 20th Italian Confer-
ence on Theoretical Computer Science, ICTCS 2019, Como, Italy, September
9-11, 2019, volume 2504 of CEUR Workshop Proceedings, pages 34–51.
CEUR-WS.org, 2019.

[BM20] Samuele Buro and Isabella Mastroeni. On the semantic equivalence of
language syntax formalisms. Theoretical Computer Science, 840:234–248,
2020.

[BW95] Michael Barr and Charles Wells. Category theory for computing science
(2. ed.). Prentice Hall international series in computer science. Prentice
Hall, 1995.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Robert M. Graham, Michael A. Harrison, and
Ravi Sethi, editors, Conference Record of the Fourth ACM Symposium
on Principles of Programming Languages, Los Angeles, California, USA,
January 1977, pages 238–252. ACM, 1977.

[CC81] Paul Moritz Cohn and Paul Moritz Cohn. Universal algebra, volume 159.
Reidel Dordrecht, 1981.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
J. Log. Comput., 2(4):511–547, 1992.

Bibliography 171

[CDE+19] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick
Lincoln, Narciso Martí-Oliet, José Meseguer, Rubén Rubio, and Carolyn
Talcott. Maude manual (version 3.0). SRI International, 2019.

[CDGP09] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino,
and Luca Padovani. Foundations of session types. In António Porto
and Francisco Javier López-Fraguas, editors, Proceedings of the 11th
International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, September 7-9, 2009, Coimbra, Portugal, pages
219–230. ACM, 2009.

[CFA+05] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja
Lange, Kim Nguyen, and Frederik Vercauteren. Handbook of elliptic and
hyperelliptic curve cryptography. CRC press, 2005.

[CG06] Carlos Caleiro and Ricardo Gonçalves. On the algebraization of many-
sorted logics. In José Luiz Fiadeiro and Pierre-Yves Schobbens, editors,
Recent Trends in Algebraic Development Techniques, 18th International
Workshop, WADT 2006, La Roche en Ardenne, Belgium, June 1-3, 2006,
Revised Selected Papers, volume 4409 of Lecture Notes in Computer Science,
pages 21–36. Springer, 2006.

[CGR19] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. A2i:
abstract2 interpretation. Proc. ACM Program. Lang., 3(POPL):42:1–42:31,
2019.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Alfred V. Aho, Stephen N.
Zilles, and Thomas G. Szymanski, editors, Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages, Tucson,
Arizona, USA, January 1978, pages 84–96. ACM Press, 1978.

[Che20] Marc Chevalier. Proving the security of software-intensive embedded
systems by abstract interpretation. Theses, ENS Paris ; PSL University,
November 2020.

[Chi13] David Chisnall. The challenge of cross-language interoperability. Com-
mun. ACM, 56(12):50–56, 2013.

[Cho56] Noam Chomsky. Three models for the description of language. IRE
Trans. Inf. Theory, 2(3):113–124, 1956.

[CK92] Chen C. Chang and H. Jerome Keisler. Model theory, Third Edition,
volume 73 of Studies in logic and the foundations of mathematics. North-
Holland, 1992.

[Cou02] Patrick Cousot. Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation. Theor. Comput. Sci., 277(1-
2):47–103, 2002.

[CP13] G Campbell and Patroklos P Papapetrou. SonarQube in action. Manning
Publications Co., 2013.

172 Bibliography

[Cro93] Roy L. Crole. Categories for Types. Cambridge mathematical textbooks.
Cambridge University Press, 1993.

[Cro12] Roy L. Crole. Alpha equivalence equalities. Theor. Comput. Sci., 433:1–19,
2012.

[DW09] Klaus Denecke and Shelly L. Wismath. Universal Algebra and Coalgebra.
World Scientific, 2009.

[Dyb09] R. Kent Dybvig. The Scheme Programming Language, Fourth Edition.
MIT Press, 2009.

[Ear83] Jay Earley. An efficient context-free parsing algorithm (reprint). Com-
mun. ACM, 26(1):57–61, 1983.

[FF08] Michael Furr and Jeffrey S. Foster. Checking type safety of foreign
function calls. ACM Trans. Program. Lang. Syst., 30(4):18:1–18:63, 2008.

[FNT91] Yoshihiko Futamura, Kenroku Nogi, and Akihiko Takano. Essence of
generalized partial computation. Theor. Comput. Sci., 90(1):61–79, 1991.

[FPT99] Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax
and variable binding. In 14th Annual IEEE Symposium on Logic in Com-
puter Science, Trento, Italy, July 2-5, 1999, pages 193–202. IEEE Computer
Society, 1999.

[GM82] Joseph A. Goguen and José Meseguer. Completeness of many-sorted
equational logic. ACM SIGPLAN Notices, 17(1):9–17, 1982.

[GM92] Joseph A. Goguen and José Meseguer. Order-sorted algebra I: equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theor. Comput. Sci., 105(2):217–273, 1992.

[GM96] Joseph A. Goguen and Grant Malcolm. Algebraic semantics of imperative
programs. Foundations of computing series. MIT Press, 1996.

[GR97] Roberto Giacobazzi and Francesco Ranzato. Completeness in abstract
interpretation: A domain perspective. In Michael Johnson, editor, Algeb-
raic Methodology and Software Technology, 6th International Conference,
AMAST ’97, Sydney, Australia, December 13-17, 1997, Proceedings, volume
1349 of Lecture Notes in Computer Science, pages 231–245. Springer, 1997.

[Gra08] Kathryn E. Gray. Safe cross-language inheritance. In Jan Vitek, editor,
ECOOP 2008 - Object-Oriented Programming, 22nd European Conference,
Paphos, Cyprus, July 7-11, 2008, Proceedings, volume 5142 of Lecture Notes
in Computer Science, pages 52–75. Springer, 2008.

[GRS00] Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. Making
abstract interpretations complete. J. ACM, 47(2):361–416, 2000.

[GS01] Andrew D. Gordon and Don Syme. Typing a multi-language intermediate
code. In Chris Hankin and Dave Schmidt, editors, Conference Record of
POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, London, UK, January 17-19, 2001, pages
248–260. ACM, 2001.

Bibliography 173

[GSS+18] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger,
and Mikel Luján. Cross-language interoperability in a multi-language
runtime. ACM Trans. Program. Lang. Syst., 40(2):8:1–8:43, 2018.

[GTWW77] Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B.
Wright. Initial algebra semantics and continuous algebras. J. ACM,
24(1):68–95, 1977.

[Hig63] Philip J. Higgins. Algebras with a scheme of operators. Mathematische
Nachrichten, 27(1-2):115–132, 1963.

[HO80] Gérard Huet and Derek C Oppen. Equations and rewrite rules: A survey.
Formal Language Theory, pages 349–405, 1980.

[HR76] William S. Hatcher and Teodor Rus. Context-free algebras. Journal of
Cybernetics, 6(1-2):65–77, 1976.

[IdFF96] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Walde-
mar Celes Filho. Lua-an extensible extension language. Softw. Pract.
Exp., 26(6):635–652, 1996.

[J+02] Peter T Johnstone et al. Sketches of an Elephant: A Topos Theory Com-
pendium: Volume 2, volume 2. Oxford University Press, 2002.

[JBW+10] Josh Juneau, Jim Baker, Frank Wierzbicki, Leo Soto, and Victor Ng. The
definitive guide to Jython: Python for the Java platform. Apress, Berkely,
CA, USA, 1st edition, 2010.

[Jet] JetBrains. Calling java code from kotlin. https://kotlinlang.org/
docs/reference/java-interop.html.

[JJKD18] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
Rustbelt: securing the foundations of the rust programming language.
Proc. ACM Program. Lang., 2(POPL):66:1–66:34, 2018.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Math. Syst.
Theory, 2(2):127–145, 1968.

[KO11] Jonathan Kochems and C.-H. Luke Ong. Improved functional flow and
reachability analyses using indexed linear tree grammars. In Manfred
Schmidt-Schauß, editor, Proceedings of the 22nd International Conference
on Rewriting Techniques and Applications, RTA 2011, May 30 - June 1, 2011,
Novi Sad, Serbia, volume 10 of LIPIcs, pages 187–202. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2011.

[Lee02] Lillian Lee. Fast context-free grammar parsing requires fast boolean
matrix multiplication. J. ACM, 49(1):1–15, 2002.

[Lia99] Sheng Liang. Java Native Interface: Programmer’s guide and reference.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1999.

[LT09] Siliang Li and Gang Tan. Finding bugs in exceptional situations of jni
programs. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 442–452, 2009.

https://kotlinlang.org/docs/reference/java-interop.html
https://kotlinlang.org/docs/reference/java-interop.html

174 Bibliography

[LT14] Siliang Li and Gang Tan. Finding reference-counting errors in python/c
programs with affine analysis. In Richard E. Jones, editor, ECOOP 2014
- Object-Oriented Programming - 28th European Conference, Uppsala,
Sweden, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture
Notes in Computer Science, pages 80–104. Springer, 2014.

[Mal] David Malcolm. Usage example: A static analysis tool for cpython
extension code. https://gcc-python-plugin.readthedocs.io/en/
latest/cpychecker.html.

[McC62a] John McCarthy. Towards a mathematical science of computation. In
Information Processing, Proceedings of the 2nd IFIP Congress 1962, Munich,
Germany, August 27 - September 1, 1962, pages 21–28. North-Holland,
1962.

[McC62b] John McCarthy. Towards a mathematical science of computation. In
Information Processing, Proceedings of the 2nd IFIP Congress 1962, Munich,
Germany, August 27 - September 1, 1962, pages 21–28. North-Holland,
1962.

[Mes92] José Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theor. Comput. Sci., 96(1):73–155, 1992.

[Mes20] José Meseguer. Generalized rewrite theories, coherence completion, and
symbolic methods. J. Log. Algebraic Methods Program., 110, 2020.

[MF09] Jacob Matthews and Robert Bruce Findler. Operational semantics for
multi-language programs. ACM Trans. Program. Lang. Syst., 31(3):12:1–
12:44, 2009.

[Min17] Antoine Miné. Tutorial on static inference of numeric invariants by ab-
stract interpretation. Foundations and Trends in Programming Languages,
4(3-4):120–372, 2017.

[ML13] Saunders Mac Lane. Categories for the working mathematician, volume 5.
Springer Science & Business Media, 2013.

[MM96] Narciso Martí-Oliet and José Meseguer. Inclusions and subtypes I: first-
order case. J. Log. Comput., 6(3):409–438, 1996.

[MMS08] Stefan Maus, Michal Moskal, and Wolfram Schulte. Vx86: x86 assembler
simulated in C powered by automated theorem proving. In José Me-
seguer and Grigore Rosu, editors, Algebraic Methodology and Software
Technology, 12th International Conference, AMAST 2008, Urbana, IL, USA,
July 28-31, 2008, Proceedings, volume 5140 of Lecture Notes in Computer
Science, pages 284–298. Springer, 2008.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and
computation, 93(1):55–92, 1991.

[Mos04] Peter D. Mosses. Modular structural operational semantics. J. Log.
Algebraic Methods Program., 60-61:195–228, 2004.

https://gcc-python-plugin.readthedocs.io/en/latest/cpychecker.html
https://gcc-python-plugin.readthedocs.io/en/latest/cpychecker.html

Bibliography 175

[MP17] Isabella Mastroeni and Michele Pasqua. Hyperhierarchy of semantics
- A formal framework for hyperproperties verification. In Francesco
Ranzato, editor, Static Analysis - 24th International Symposium, SAS 2017,
New York, NY, USA, August 30 - September 1, 2017, Proceedings, volume
10422 of Lecture Notes in Computer Science, pages 232–252. Springer,
2017.

[MR77] M. Makkai and G.E. Reyes. First Order Categorical Logic. Lecture Notes
in Mathematics. Springer Verlag, 1977.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. Definition of standard ML.
MIT Press, 1990.

[Oraa] Oracle. Jni types and data structures. https://docs.oracle.com/
javase/7/docs/technotes/guides/jni/spec/types.html.

[Orab] Oracle. Nashorn user’s guide. https://docs.oracle.com/en/java/
javase/14/nashorn/introduction.html.

[OSZ12] Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. Dependent
interoperability. In Koen Claessen and Nikhil Swamy, editors, Proceed-
ings of the sixth workshop on Programming Languages meets Program
Verification, PLPV 2012, Philadelphia, PA, USA, January 24, 2012, pages
3–14. ACM, 2012.

[PA14] James T. Perconti and Amal Ahmed. Verifying an open compiler us-
ing multi-language semantics. In Zhong Shao, editor, Programming
Languages and Systems - 23rd European Symposium on Programming,
ESOP 2014, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, volume 8410 of Lecture Notes in Computer Science, pages
128–148. Springer, 2014.

[Pas19] Michele Pasqua. Hyper Static Analysis of Programs – An Abstract
Interpretation-Based Framework for Hyperproperties Verification. PhD
thesis, University of Verona, 2019.

[Pie91] Benjamin C. Pierce. Basic category theory for computer scientists. Found-
ations of computing. MIT Press, 1991.

[Pit00] A. M. Pitts. Categorical logic. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Volume
5. Algebraic and Logical Structures, chapter 2, pages 39–128. Oxford
University Press, 2000.

[Pit16] Andrew M. Pitts. Nominal techniques. ACM SIGLOG News, 3(1):57–72,
2016.

[Plo06] Gordon Plotkin. Some varieties of equational logic. In Algebra, Meaning,
and Computation, pages 150–156. Springer, 2006.

[Pow85] Wayne B. Powell. Ordered Algebraic Structures, volume 99. CRC Press,
1985.

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
https://docs.oracle.com/en/java/javase/14/nashorn/introduction.html
https://docs.oracle.com/en/java/javase/14/nashorn/introduction.html

176 Bibliography

[PPDA17] Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed.
Funtal: reasonably mixing a functional language with assembly. In
Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 495–509. ACM,
2017.

[PV07] E. Palmgren and S.J. Vickers. Partial Horn logic and cartesian categorie.
Annals of Pure and Applied Logic, 145(3):314 – 353, 2007.

[Ram06] Norman Ramsey. ML module mania: A type-safe, separately compiled,
extensible interpreter. Electron. Notes Theor. Comput. Sci., 148(2):181–209,
2006.

[Ram11] Norman Ramsey. Embedding an interpreted language using higher-order
functions and types. J. Funct. Program., 21(6):585–615, 2011.

[RJ98] Teodor Rus and James S. Jones. Phrase parsers from multi-axiom gram-
mars. Theor. Comput. Sci., 199(1-2):199–229, 1998.

[RS10] Grigore Rosu and Traian-Florin Serbanuta. An overview of the K se-
mantic framework. J. Log. Algebraic Methods Program., 79(6):397–434,
2010.

[RT91] Jan Reiterman and Vera Trnkovà. Free structures. In Horst Herrlich and
Hans-Eberhard Porst, editors, Category Theory at Work, Research and
Exposition in Mathematics, pages 277–288. Heldermann Verlag, 1991.

[Rus76] Teodor Rus. Context-free algebra: A mathematical device for com-
piler specifications. In Antoni W. Mazurkiewicz, editor, Mathematical
Foundations of Computer Science 1976, 5th Symposium, Gdansk, Poland,
September 6-10, 1976, Proceedings, volume 45 of Lecture Notes in Computer
Science, pages 488–494. Springer, 1976.

[RY20] Xavier Rival and Kwangkeun Yi. Introduction to Static Analysis: An
Abstract Interpretation Perspective. Mit Press, 2020.

[Sco76] Dana S. Scott. Data types as lattices. SIAM J. Comput., 5(3):522–587,
1976.

[Sco09] Michael L. Scott. Programming Language Pragmatics (3. ed.). Academic
Press, 2009.

[SJ03] Fausto Spoto and Thomas P. Jensen. Class analyses as abstract interpreta-
tions of trace semantics. ACM Trans. Program. Lang. Syst., 25(5):578–630,
2003.

[SS71] Dana S. Scott and Christopher Strachey. Toward a mathematical se-
mantics for computer languages, volume 1. Oxford University Computing
Laboratory, Programming Research Group Oxford, 1971.

[Tar68] Alfred Tarski. Equational logic and equational theories of algebras. In
Studies in Logic and the Foundations of Mathematics, volume 50, pages
275–288. Elsevier, 1968.

Bibliography 177

[Tay79] Walter Taylor. Equational logic. Houston Journal of Mathematics, 47(2),
1979.

[TM07] Gang Tan and Greg Morrisett. Ilea: inter-language analysis across
java and c. In Richard P. Gabriel, David F. Bacon, Cristina Videira
Lopes, and Guy L. Steele Jr., editors, Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada, pages 39–56. ACM, 2007.

[Val75] Leslie G. Valiant. General context-free recognition in less than cubic
time. J. Comput. Syst. Sci., 10(2):308–315, 1975.

[Vis97] Eelco Visser. Syntax definition for language prototyping. Ponsen &
Looijen, 1997.

[Vis98] Eelco Visser. Polymorphic syntax definition. Theor. Comput. Sci., 199(1-
2):57–86, 1998.

[VM06] Alberto Verdejo and Narciso Martí-Oliet. Executable structural oper-
ational semantics in maude. J. Log. Algebraic Methods Program., 67(1-
2):226–293, 2006.

[WNL+10] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan
Östlund, and Jan Vitek. Integrating typed and untyped code in a script-
ing language. In Manuel V. Hermenegildo and Jens Palsberg, editors,
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain, January 17-23,
2010, pages 377–388. ACM, 2010.

Index

Symbols
S-sorted function, 18, 94
S-sorted morphism, 94
S-sorted object, 94
S-sorted set, 17, 94
α-equivalence, 37
Sg-algebra, 107
Sg-homomorphism, 107
⊥-cpo, 8
Sg-algebra, 96
Sg-homomorphism, 96
ω-complete partial order (ω-cpo), 8
(canonical) free multi-language

Sg-algebra, 77
(endo)-, 15
(ground) terms, 20
(multi-language) proved term, 111
(standard) collecting semantics, 126
(unconditional) multi-language

Sg-equation, 84
(unconditional) order-sorted

Sg-equation, 38
(upward) filtered, 34

A
abstract, 131, 138
abstract domain, 131
abstract grammar morphism, 146
abstract semantics, 131
abstract syntax, 27
ad-hoc polymorphic, 19
adjoint equivalence, 16
adjunction, 16
alphabet, 7
arity, 18, 94
arrows, 11
assignment, 29
associated signature, 55, 106
associated signature functor, 106

axioms, 41, 112

B
best abstraction, 10
boundary function, 52
boundary morphism, 107

C
carrier set, 21
category, 11
category of models, 99
category of multi-language

signatures, 106
category of multi-language theories,

113
category of order-sorted signatures,

106
category of order-sorted theories, 113
classifying category, 99
closed, 80
closed subset, 31
coherent, 34, 80, 98, 112
collecting semantics, 127
collecting semantics domain, 129
commutes, 13
complete, 133
complete lattice, 8
component, 7
concretisation function, 9, 131
conditional equation (in-context), 98
connected components, 98
constants, 18, 94
context, 95
context-free G-algebra, 146
context-free grammar, 145
continuous, 8
conversion operator, 55, 106
coproduct, 14
counit, 16

179

180 Bibliography

D
diagram, 12
directed, 8
directed complete partial order (dcpo),

8
disjoint union, 105
dual category, 12

E
empty string, 8
epi, 13
epic, 13
epimorphism, 13
equation, 112
equation (in-context), 98
equivalent, 16
extensive, 10

F
family indexed by, 94
fixpoint, 8
fixpoint semantics, 129
forward complete, 133
FPI-category, 96
free multi-language Sg-algebra F (X),

76
free variables, 36
full subcategory, 12
function symbols, 18, 94
functor, 15

G
Galois connection, 9
generic, 100
generic model, 100, 101
greatest lower bound (glb), 8

H
homomorphic image, 33
homomorphism, 151

I
idempotent, 10
identity functor, 15
identity morphism, 11
inclusion structure, 95
increasing chain, 8
index set, 7
indexed family of sets, 7
indices, 7
initial, 14

injections, 14
interpretation function, 21, 146
interpretation set, 21, 146
inverse, 13
isomorphism, 13

J
join, 51, 105

K
kernel, 33, 81
Kleene closure, 7

L
lattice, 8
least fixpoint, 8
least rank, 24, 95
least upper bound (lub), 8
left adjoint, 16
locally filtered, 34, 80, 98
lower bound, 8
luff subcategory, 12

M
many-sorted algebra, 151
many-sorted signature, 149
many-sorted signature morphism, 150
matches, 100
maximal (minimal), 8
maximum (minimum), 8
mediating morphism, 14
model, 41, 86, 99, 112
monic, 13
mono, 13
monomorphism, 13
monotone, 8
monotonicity requirement, 18, 94
morphisms, 11
most precise algebra, 132
multi-language Sg-algebra, 52
multi-language Sg-congruence, 81
multi-language Sg-homomorphism,

52
multi-language Sg-subalgebra, 80
multi-language (ground) terms, 54
multi-language collecting semantics,

137
multi-language conditional

Sg-equation, 84
multi-language signature, 51, 105

Bibliography 181

multi-language term algebra, 55
multi-language term with variable, 77
multi-language theory, 85, 112

N
natural isomorphism, 15
natural projection, 34
natural transformation, 15
non-terminal symbols, 145
non-terminals projection, 145

O
objects, 11
operator, 18, 94
order-sorted Sg-algebra, 21
order-sorted Sg-congruence, 33
order-sorted Sg-homomorphism, 22
order-sorted conditional Sg-equation,

39
order-sorted free Sg-algebra, 30
order-sorted signature, 18, 94
order-sorted signature Sg(X), 29
order-sorted signature morphism, 150
order-sorted term algebra, 22
order-sorted theory, 99

P
partially ordered set (poset), 8
Polymorphic function symbols, 19
primary context, 102
product, 14
production rules, 145
programs, 124
projections, 14
proved terms, 95

Q
quotient, 82
quotient algebra, 34
quotient map, 35, 82

R
rank, 18, 94
Raw terms, 95
reductive, 10
regular, 24, 56, 61, 64, 95, 112
right adjoint, 16

S
satisfied, 39
satisfies, 99, 112

semantic domain, 129
semantic function, 22
semantic transformer, 129
semantic-only (SO) associated

signature, 64
semantic-only (SO) multi-language

Sg-algebra, 66
semantic-only (SO) multi-language

signature, 64
semantic-only (SO) multi-language

term algebra, 67
semantics of Γ ⊢ t : s, 97
semantics of a (multi-language) term

Γ ⊢ t : si, 111
sequence, 94
set of axioms, 99
set of ground types, 94
set of sorts, 94
simultaneous substitution, 95
sorts, 17, 18, 94
sound, 132
sound abstraction, 9
source, 11
standard semantics, 126
strongest property of programs, 126
subalgebra, 31
subcategory, 12
subsort polymorphic, 19
subsort polymorphic (SP) associated

signature, 60
subsort polymorphic (SP)

multi-language Sg-algebra,
59

subsort polymorphic (SP)
multi-language signature,
59

subsort polymorphic (SP)
multi-language term
algebra, 61

substitution, 37, 41, 95
substitution homomorphism, 84

T
target, 11
terminal, 14
terminal symbols, 145
Terms over Sg with variables, 29
theorem, 85
theorems, 41, 99, 112
theory, 41

182 Bibliography

total order, 8

U
underlying set, 7
unit, 16

upper bound, 8

V
variable set, 29
variable substitution, 84

	On Multi-Language Semantics
	Dedication
	Acknowledgments
	Abstract
	Publications
	Contents
	Introduction
	An Informal Summary
	The Lack of a Multi-Language Framework
	The Problem of Static Analysis on Multi-Language Code
	Structure and Contributions

	Basic Mathematical Notions
	Preliminary Notions
	Orderings and Fixpoints
	Elements of Abstract Interpretation
	Basic Category Theory

	Order-Sorted Algebras
	Sorted Sets and Functions
	Order-Sorted Signatures
	Order-Sorted Algebras
	Algebraic Semantics
	Free Algebra Construction
	Basic Algebraic Constructions
	Order-Sorted Equations
	Order-Sorted Deduction
	Initiality and Freeness Results

	Algebraic Multi-Language Constructions
	Multi-Language Signatures and Algebras
	Terms of a Multi-Language
	Multi-Language Algebraic Semantics
	Refining the Multi-Language Construction
	Subsort Polymorphic Boundary Functions
	Semantic-Only Boundary Functions
	Combining Untyped and Simply-Typed Lambda-Calculi

	Multi-Language Equational Logic
	Multi-Language Free Algebra
	Subalgebras, Kernels, and Congruences in a Multi-Language Context
	Quotienting of Multi-Language Algebras
	Equational Logic for Multi-Language Theories
	Soundness, Completeness, and Freeness Results

	Categorical Logic for Multi-Languages
	Order-Sorted Equational Logic
	Multi-Language Equational Logic
	Further Multi-Language Constructions
	The Lambda-Imp Multi-Language

	Abstract Semantics of Multi-Language Programs
	Algebraic Perspective on Collecting Semantics
	Fixpoint Calculation of Collecting Semantics
	Basic Notions of Algebraic Abstract Semantics
	The Multi-Language Abstraction

	Semantic Equivalence of Language Syntax Formalisms
	Old and New Results
	Formalisms for Language Syntax Specification
	Context-Free Algebras
	Many-Sorted and Order-Sorted Signatures
	Equivalence between MS Signatures and CF Grammars
	Adjointness between MS Signatures and OS Signatures
	Semantic Equivalence
	Some Remarks

	Conclusions
	Related Works
	Future Works

	Bibliography
	Index

