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ABSTRACT

Runtime verification is a relatively new software verification technique
that aims to prove the correctness of a specific run of a program, rather
than statically verify the code. The program is instrumented in order
to collect all the relevant information, and the resulting trace of events
is inspected by a monitor that verifies its compliance with respect to a
specification of the expected properties of the system under scrutiny.
Many languages exist that can be used to formally express the expected
behavior of a system, with different design choices and degrees of
expressivity.

This thesis presents RML, a specification language designed for run-
time verification, with the goal of being completely modular and inde-
pendent from the instrumentation and the kind of system being mon-
itored. RML is highly expressive, and allows one to express complex,
parametric, non-context-free properties concisely. RML is compiled
down to TC, a lower level calculus, which is fully formalized with a
deterministic, rewriting-based semantics.

In order to evaluate the approach, an open source implementation
has been developed, and several examples with Node.js programs have
been tested. Benchmarks show the ability of the monitors automatically
generated from RML specifications to effectively and efficiently verify
complex properties.
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1
INTRODUCT ION

Ensuring software correctness is one of the crucial high-level goals of
programming language theory and theoretical computer science. The
task is of the uttermost importance, as software is ubiquitous in our
life. This includes low-level electronical devices, smartphones, personal
computers and even safety-critical cyber-physical system. The cost of
software bugs, depending on the system, can range from negligible
to catastrophic, making this research area not only interesting from a
purely theoretical perspective, but also very relevant in practice.

Decades of software research on the topic produced a great number
of approaches, some more widespread than others in industry, with
different specific goals and strengths. The list includes, but is not limited
to, static analysis, model checking, type systems, theorem proving, and
testing. Different levels of confidence in the software under scrutiny
being correct can be achieved, though generally greatest assurance
comes with less automatic and more complex tools. Finding a good
trade-off between usability and confidence is the final goal for general-
purpose techniques.

Runtime verification (Leucker and Schallhart, 2009) is a relatively new
approach to software verification, originated from model checking. In
static verification, desired properties can quickly become untractable (or
even undecidable) because of state explosion, as tools have to consider
all possible execution paths by reasoning on the source code. Runtime
verification aims to solve a simpler problem, that is, verify correctness
(with respect to a given specification) of one execution of the program.

Clearly the trade-off is different and constraints are more relaxed: one
needs to repeat the verification procedure for every run of the system,
and only then errors can be raised. Because of this, runtime verification
is well suited to be employed as a complementary technique to other,
more standard ones, to be used when it actually is the best tool for the
job.

While theoretically simpler, runtime verification introduces a whole
new set of problems to be solved. First, an interface to the execution of
the program needs to be established, so that software runs are observed
and data about them can be collected and analyzed. Then, the verifica-
tion procedure must be efficient enough to be practically usable on each
run. Real-time verification can also be an option, running the analysis
alongside of the program: here efficiency is critical, as it is the com-
munication between the two parts. This approach is sometimes called
online runtime verification, as opposed to offline, where the analysis is
done after the program terminated.
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Figure 1.1: Runtime verification modular architecture.

The software layer that lies between the program and the verification
procedure is commonly known as instrumentation, while the component
actually verifying the behavior of the system is the monitor. There are
many ways to instrument a program, divided in two main categories:
static instrumentation changes the source code by adding instructions
that collect metadata about the execution (possibly without affecting
the program semantics); dynamic instrumentation instead run as a part
of the interpreter or virtual machine executing the program.

Some challenges, on the other hand, are inherited from static ver-
ification. The choice of the language used to describe the expected
property of the system is of paramount importance, as its expressivity
determines what can and what cannot be verified with the system. In
this regard, two main approaches exist: either use the programming
language of the program under scrutiny to write the verification proce-
dure, thus mixing the two levels, or use a dedicated domain specific
language (DSL).

This thesis introduces Runtime Monitoring Language (RML), a DSL
explicitly devised for runtime verification purposes. RML has been
inspired by previous work on trace expressions (Ancona, Ferrando, and
Mascardi, 2016, 2017), another, simpler, runtime verification formalism.
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The driving concept behind the design of RML is modularity. The
architecture of a modular runtime verification system is depicted in
Figure 1.1. An instrumented program runs and the relevant events
observed are collected and sent to the monitor. The monitor can also
reply to the instrumentation giving a feedback on the execution so far.
When enough events have been observed to decide whether the desired
property holds for the system under test, a verdict is emitted. Finally, it
is very desirable that the monitor is automatically generated from the
specification, otherwise the amount of work required quickly becomes
unbearable.

The philosophy of RML is based on the assumption that these three
components are independent and can be completely decoupled, for
greater flexibility. This allows RML to be as system-independent as
possible, and thus applicable to a wide range of systems, including
heterogeneous ones. Clearly an instrumentation system needs to be
developed for every programming language/platform that we want
to monitor, though this (admittedly not simple) task only needs to be
done once.

To give the reader a concrete idea, the following is a simple example
of an RML specification for the correct behavior of a file API:
open(fd) matches { funcName: 'open', result: fd };

rw(fd) matches { funcName: 'read' | 'write', args: [fd, ...] };

close(fd) matches { funcName: 'close', args: [fd, ...] };

Main = empty \/ { let fd; open(fd) Use };

Use = (rw(fd) Use) \/ close(fd);

RML specifications are divided in two parts. First, the kinds of events
that we are interested to monitor are defined: these are called event types.
Then, the real specification builds on top of such abstraction to define
the correct behavior at a higher level.

The definition and semantics of RML relies on a core calculus called
Trace Calculus (TC). Part of the contribution of this work is the full
formalization of TC, including an implementable deterministic rewriting
semantics.

Another contribution of the work presented in this thesis is the de-
velopment of a usable prototype for RML, which includes a compiler
translating RML specifications to Prolog, and a Prolog monitor that ver-
ifies events against such specifications. Furthermore, as a proof of con-
cept regarding the idea of a modular architecture, an instrumentation
has been implemented for Node.js, a JavaScript runtime environment,
which has been used to run tests and benchmarks. All the developed
source code is open source and hosted on GitHub repositories, and can
be found together with introductory material on the RML website1.

Outline. The thesis is organized as follows.

1 https://rmlatdibris.github.io/

https://rmlatdibris.github.io/
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Chapter 2 presents TC, formalized its syntax and semantics, formal
properties and results.

Chapter 3 introduces RML, and defines its semantics by a translation
to the lower level calculus TC.

Chapter 4 shows howRML can be used in practice andwhat common
verification patterns arose in our experience with it, as well as all the
different features that can be combined together to express complex
properties.

Chapter 5 provides the implementation details of RML, from its
compiler to the monitor encoding the formal semantics.

Chapter 6 assesses the performance of RML with a series of bench-
mark examples.

Chapter 7 contains an overview of the runtime verification state of
the art, showing some of the most common approaches to the task.

Finally, Chapter 8 contains final remarks and discusses future direc-
tions of work in this research line.



2
TRACE CALCULUS

This chapter introduces the trace calculus TC, the low level calculus un-
derlying RML, to which the latter is compiled. The formalism originated
from another, simpler one, namely trace expressions (Ancona, Ferrando,
and Mascardi, 2016), still explicitly devised for runtime verification but
lacking many of the key features described in this chapter (the most
important of which are generics, conditionals, computation capabilities,
formalization of event types, and determinism).

The main characteristics of TC are:

events The semantics is based on a general notion of event that does
not depend on any particular kind of system.

event types The basic building block of a specification is an event
type, that is, a set of events conveniently represented by a pattern.

expressivity Supported operators are prefix, concatenation, union,
intersection and shuffle; furthermore, recursion is supported as
well.

parametricity Specifications depending on values that will be dis-
covered at runtime are supported.

generics Part of specifications can be made reusable by abstraction
over some of their variables, to be instantiated in a different con-
text; these variables can also be used for basic computations with
conditional operators.

regular terms Recursion is natively supported by allowing specifi-
cation terms to be regular (Courcelle, 1983): the specification is
given through a finite set of syntactic equations.

operational semantics The implementation of the formalism is based
on a rewriting system, and the resulting rewriting semantics can
be directly implemented.

infinite traces The semantics is not limited to finite sequences of
events: some specifications allow non-termination.

The rest of this chapter goes through all the concepts above, providing
a full formalization and motivating examples.

5



6 trace calculus

2.1 events

Events are observations of the execution of the program under moni-
toring. They can be, for instance, function and method calls, variable
accesses, file system operations, network communications, and virtu-
ally any observable behavior of a system.

The formalismof choice for RMLevents is inspired by JSON(JavaScript
Object Notation)1, as it allows encoding primitive data types, lists and
structured objects based on property-key pairs. Field keys are simply
identifiers, however, differently from JSON, they are not strings and
need not be quoted, as that would make the event syntax more com-
plex and harder to read with no real benefits. Literals include numbers,
strings and boolean values; there is no counterpart to the JSON null
element.

Events and other syntactic entities will be defined using the conve-
nient and standard Backus-Naur form (BNF). For the sake of readabil-
ity, we will sometimes abuse BNF notation to describe a syntax where
the order of elements is not relevant; if so, it will be explicitly stated.

Definition 1. (Event) Given a set of field keys 𝒦, numeric literals 𝒩
and string literals 𝒮, the set of event expressions ℰ is inductively defined
by the following grammar:

ℰ ∶∶= 𝒪
| l
| 𝒩 (number)
| 𝒮 (string)
| 𝔹 (boolean)

𝒪 ∶∶= {𝒦∶ ℰ,… ,𝒦∶ ℰ} (event object)
l ∶∶= [ℰ,… , ℰ] (event list)

The set of event objects (or simply events) is denoted as 𝒪. The order of
key-value pairs inside events is not relevant.

The choice of a formalism that allows arbitrarily long, nested, struc-
tured data is essential to give the instrumentation component enough
flexibility to encode all necessary information in events, as it will be
shown in the examples.

A possibly infinite sequence of events is an event trace, or simply a
trace. Such sequences effectively encode program executions w.r.t. the
kind of observations made by the instrumentation layer. In other words,
if the instrumentation is able to capture all relevant information, the
trace is all we need to analyze a run of a program.

Definition 2. (Trace) Given a set of event objects𝒪, a trace 𝑡 is a possibly
infinite sequence of event objects. The set of all finite (infinite) traces

1 https://www.json.org/

https://www.json.org/
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over is denoted as 𝒪∗ (𝒪𝜔). The set of all traces over 𝒪 is 𝒪∞ (𝒪∞ =
𝒪∗ ∪𝒪𝜔). The empty trace is denoted as 𝜖.

Infinite traces may seem useless at first, and indeed not all formalisms
take them into account. In practice, only finite traces will be produced
and verified by a monitor. However, infinite traces are needed to pre-
cisely describe the semantics of non-terminating programs, such as web
servers, where termination is always considered an error as these sys-
tems are supposed to run indefinitely. Specifications of such systems
can only accept infinite traces, and without them, their semantics would
be empty. In such cases, real monitors working incrementally (online
verification) will get a finite sequence and check whether it is a valid
finite prefix of those infinite traces.

Example 1. (Function call events) Monitoring function calls is a com-
mon instrumentation technique in runtime verification, as it can be
used, for instance, to ensure correct usage of APIs. In this setting, a sen-
sible event set could be {funcName∶ 𝑠, args∶ 𝑙} where serialized events
include basic metadata about the invocation, namely the name of the
invoked function and its arguments. Meta-variables 𝑠 and l range over
string literals and event lists, according to Definition 1.

In this context, the monitoring af program operating on a file would
produce, for instance, a trace 𝑡 = o1o2o3o4, with the following events:

o1 = {funcName∶ ‶𝑜𝑝𝑒𝑛″, args∶ [‶𝑗𝑜ℎ𝑛.𝑡𝑥𝑡″,‶ 𝑟″]}
o2 = {funcName∶ ‶𝑤𝑟𝑖𝑡𝑒″, args∶ [‶ℎ𝑒𝑙𝑙𝑜″]}
o3 = {funcName∶ ‶𝑤𝑟𝑖𝑡𝑒″, args∶ [‶𝑤𝑜𝑟𝑙𝑑″]}
o4 = {funcName∶ ‶𝑐𝑙𝑜𝑠𝑒″, args∶ []}

A more advanced instrumentation could provide many more meta-
data, for instance returned objects, thrown exceptions, target object of
method calls in object-oriented programming, etc.

As it happens in the example above, the set of events 𝒪 is often
infinite.

The sets 𝒦, 𝒩, 𝒮 and 𝒪 will be left implicit when they are not impor-
tant.

2.1.1 Circularity

Note that the event language described above cannot encode circular
objects. We chose not to support them for the following reasons:

• Events as described in this section are a subset of the commonly
understood and supported JSON standard, while circular objects
are not, and only unofficial extensions exist.

• Serialization and deserialization of event objects is fast thanks to
the existing highly optimized JSON libraries; on the other hand,
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dealing with circularity requires ad hoc algorithms and some
bookkeeping, slowing down the whole verification procedure.

• Though circular objects are common in some languages (e.g.,
JavaScript) in our experience the circularity itself is usually not
interesting from the specification point of view.

• Circularity can be handled by unfolding the self-referencing object
and truncating its depth, a step that is actually done for any object
in our instrumentation implementation to avoid serialization of
huge object graphs (though this aspect of the instrumentation
can be fine-tuned according to the specification needs).

2.2 event types

In order to be as general as possible, instrumentation components are
expected to provide all required information regarding the observed
run of the program. This way the developer can write a broad range of
properties to be enforced. Single specifications, however, rarely need
all of these metadata and benefit from a more abstract way to reason
about events. Event types are designed to solve this issue and fill the gap
between what the instrumentation observes and what the specification
(and thus the monitor) needs. They are based on syntactic event patterns,
a convenient syntax to define (and reason on) sets of related events
with a common structure.

Our notion of event types resembles so-called symbolic events (Falcone,
Havelund, and Reger, 2013). However, that notion of symbolic events is
only based on an event name and a list of variables, while RML patterns
and event types declaration are much more general and flexible, as it
will be shown in the rest of this Section.

Considering again Example 1, for instance, it would be nice to rea-
son about all file operations, both read and write, regardless of the
arguments, as they are all I/O operations on the same file. This can be
achieved with the event type rw declared as follows:

rw matches {funcName∶ ‶𝑟𝑒𝑎𝑑″ | ‶𝑤𝑟𝑖𝑡𝑒″}

(the operator | is meant to be read as “or”).
The other crucial aspect of event types is that they can contain variables.

During the verification procedure, such variables will be bound to
the correct values from the observed event matching the pattern, and
the specification will be able to use this variable, effectively supporting
parametric specifications, that is, specifications depending on values that
will only be known at runtime.

In Example 1, one could be interested in capturing the name of opened
file and bound to a variable, in order to check whether that particular
file is later closed. Event type open(𝑛) below does exactly that:

open(𝑛) matches {funcName∶ ‶𝑜𝑝𝑒𝑛″, args∶ [𝑛,… ]}
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The rest of this section precisely defines how event types are declared,
what does it mean for an event to match an event type, and finally how
they can be used.

2.2.1 Event patterns

Definition 3. (Event pattern) Given a set of events 𝒪 over field keys
𝒦, and a set of variables 𝒳, the sets of event patterns 𝒫 is inductively
defined according to the following context-free grammar:

𝒫 ∶∶= op
| lp
| _ (wildcard pattern)
| 𝒫 | 𝒫 (choice pattern)
| 𝒳 (variable)
| ℰ (event expression literal)

op ∶∶= {𝒦∶𝒫,… ,𝒦∶𝒫} (object pattern)
lp ∶∶= [𝒫,… ,𝒫] (list pattern)

| [𝒫,… ,𝒫,more] (flexible list pattern)

The order of key-value pairs in object patterns is not relevant.

The structure of patterns closely resemble the shape of events, thus
objects, list and primitive values are included.

Object patterns are “open”: they are meant to be understood as en-
coding the required set of fields an event object must have, though
more are allowed. List patterns can either encode the exact number of
elements (list pattern) or just the first 𝑛 elements, possibly followed by
others (flexible list pattern).

The wildcard pattern _ can match anything inside an event. Finally,
the operator that actually describe the choice amongmultiple structures
is |, and it can appear in any point for maximum flexibility.

Example 2. (Function call event pattern) Event patterns can be used
to abstract over a (possibly infinite) set of events. For instance, the
following event pattern matches any call to function foo with exactly
one argument (to be bound to a variable) returning a non-empty list
(which is ignored):

{funcName∶ ‶foo″, args∶ [𝑥], result∶ [_,more]}

2.2.2 Event substitutions

In order to define if and how patterns match events, a notion of substi-
tution is needed. Wewill take the approach of considering substitutions
as partial function on variables only containing relevant mapping, as
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opposed to total maps behaving like the identity on irrelevant variables.
Both the definitions are often used in the literature.

Definition 4. (Event substitution) Given a set of event patterns 𝒫 and
variables 𝒳, an event substitution is a partial map 𝜎∶ 𝒳 ⇀ 𝒫. The set of
all such substitutions is denoted as Σ.

In order to refine patterns at runtime when variables are instantiated
thanks to the observed events, we need to apply substitution to patterns.
The definition of such application is entirely standard and is given
inductively over the structure of patterns.

Definition 5. (Event substitution application) Given a set of event
patterns 𝒫 over event expressions ℰ and variables 𝒳, the application
(Σ × 𝒫 → 𝒫) of a substitution 𝜎 to a pattern 𝑝 ∈ 𝒫 is denoted as 𝜎𝑝
and is inductively defined by the following equations:

𝜎{k1∶ 𝑝1,… , kn∶ 𝑝𝑛} = {k1∶ 𝜎𝑝1,… , kn∶ 𝜎𝑝𝑛}
𝜎[𝑝1,… , 𝑝𝑛] = [𝜎𝑝1,… , 𝜎𝑝𝑛]

𝜎[𝑝1,… , 𝑝𝑛,more] = [𝜎𝑝1,… , 𝜎𝑝𝑛,more]
𝜎_ = _

𝜎(𝑝1 | 𝑝2) = (𝜎𝑝1) | (𝜎𝑝2)
𝜎𝑥 = 𝜎(𝑥) (𝑥 ∈ dom(𝜎))
𝜎𝑥 = 𝑥 (𝑥 ∉ dom(𝜎))
𝜎e = e (e ∈ ℰ)

The domain of an event substitution 𝜎, i. e., the set of variables over
which it is defined, is denoted as dom(𝜎). The functional restriction of
a substitution 𝜎 on a set 𝑆 is denoted as 𝜎 � 𝑆. We will use the notation
𝜎1∪⋯∪𝜎𝑛 to denote a substitution 𝜎 such that dom(𝜎) = dom(𝜎1)∪⋯∪
dom(𝜎𝑛) and 𝜎 � dom(𝜎1) = 𝜎1 ∧⋯∧𝜎 � dom(𝜎𝑛) = 𝜎𝑛. In other words,
substitution can only be merged when they agree on the mapping of
all their common variables. 𝜎\{𝑥1,… , 𝑥𝑛} denotes the restriction of 𝜎
that does not map the given variables, i. e., 𝜎 � (dom(𝜎) \ {𝑥1,… , 𝑥𝑛}).
Finally, ∅ denotes the empty substitution.

Example 3. (Function call event substitution) Previous Example 2
showed an example of a pattern 𝑝 for events encoding function calls
with one argument, represented by variable 𝑥. Assuming the following
event o is observed:

{funcName∶ ‶foo″, args∶ [7], result∶ [1, 45]}

Then 𝜎𝑝 = o, with 𝜎 = {𝑥 ↦ 7}.

2.2.3 Event pattern matching

Having defined events, patterns and substitutions, we can precisely
define the matching of events (coming from observations made on the
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PM-obj
𝑝1 ∶ e1 ⇝ 𝜎1 ⋯ 𝑝𝑛 ∶ e𝑛 ⇝ 𝜎𝑛

{k1∶ 𝑝1,… , kn∶ 𝑝𝑛} ∶ {k1∶ e1,… , kn+k∶ e𝑛+𝑘} ⇝ 𝜎
𝜎 = 𝜎1 ∪⋯∪ 𝜎𝑛

PM-list
𝑝1 ∶ e1 ⇝ 𝜎1 ⋯ 𝑝𝑛 ∶ e𝑛 ⇝ 𝜎𝑛

[𝑝1,… , 𝑝𝑛] ∶ [e1,… , e𝑛] ⇝ 𝜎
𝜎 = 𝜎1 ∪⋯∪ 𝜎𝑛

PM-list-more
[𝑝1,… , 𝑝𝑛] ∶ [e1,… , e𝑛] ⇝ 𝜎

[𝑝1,… , 𝑝𝑛,more] ∶ [e1,… , e𝑛+𝑘] ⇝ 𝜎

PM-wildcard
_ ∶ e ⇝ ∅

PM-var
𝑥 ∶ e ⇝ {𝑥 ↦ e}

PM-left
𝑝1 ∶ e ⇝ 𝜎

𝑝1 | 𝑝2 ∶ e ⇝ 𝜎
PM-right

𝑝1 �∶ e 𝑝2 ∶ e ⇝ 𝜎
𝑝1 | 𝑝2 ∶ e ⇝ 𝜎

PM-exp
e ∶ e ⇝ ∅

Figure 2.1: Inference system inductively defining the judgments 𝑝 ∶ e ⇝ 𝜎 and
𝑝 �∶ e.
Part 1: rules defining successful pattern matching.

system under scrutiny) against user-defined event patterns; the result
will be either a substitution or a failure.

Definition 6. (Event pattern matching) An event pattern 𝑝 is said to
match an event expression e with substitution𝜎when the judgement 𝑝∶e ⇝ 𝜎
holds. 𝑝 is said not to match e when the judgement 𝑝 �∶ e holds. Both the
judgements are inductively defined by the inductive interpretation of
the inference system in Figure 2.1.

Successful pattern matching. 𝑝 ∶ e ⇝ 𝜎 is inductively defined on the
structure of patterns.

Rule PM-obj allows event objects to have more fields beyond the ones
required by the pattern, though all of the substitutions produced by matching
single key-value pairs must be merge-able for the rule to be applicable.

Rule PM-list works on lists in a similar way, except the exact number of
elements is expected, while the more flexible pattern with final more (rule
PM-list-more) simply discards unnecessary elements.

The wildcard _ matches any event expression (rule PM-wildcard), just
like variables, though when the latter is encountered a substitution for that
variable is produced (rule PM-var).

The choice pattern 𝑝1 |𝑝2 matches the event either when the left pattern does
(rule PM-left) or when the left pattern does not match but the right one does
(rule PM-right); this keeps the pattern matching procedure deterministic.

Finally, an event expression can only match itself (rule PM-exp), as neither
variables nor patterns are present.
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PMF-obj
[𝑝1,… , 𝑝𝑛] �∶ [e1,… , e𝑛]

{k1∶ 𝑝1,… , kn∶ 𝑝𝑛} �∶ {k1∶ e1,… , kn+k∶ e𝑛+𝑘}

PMF-obj-other
{k1∶ 𝑝1,… , kn∶ 𝑝𝑛} �∶ e

e ≠ {k1∶ e1,… , kn+k∶ e𝑛+𝑘}

PMF-list-merge
𝑝1 ∶ e1 ⇝ 𝜎1 ⋯ 𝑝𝑛 ∶ e𝑛 ⇝ 𝜎𝑛

[𝑝1,… , 𝑝𝑛] �∶ [e1,… , e𝑛]
∄𝜎.𝜎 = 𝜎1 ∪⋯∪ 𝜎𝑛

PMF-list-elem
𝑝𝑖 �∶ e𝑖

[𝑝1,… , 𝑝𝑛] �∶ [e1,… , e𝑛]
𝑖 ≤ 𝑛

PMF-list-other
[𝑝1,… , 𝑝𝑛] �∶ e

e ≠ [e1,… , e𝑛]

PMF-more
[𝑝1,… , 𝑝𝑛] �∶ [e1,… , e𝑛]

[𝑝1,… , 𝑝𝑛,more] �∶ [e1,… , e𝑛+𝑘]

PMF-more-other
[𝑝1,… , 𝑝𝑛,more] �∶ 𝑒

𝑒 ≠ [e1,… , e𝑛+𝑘]

PMF-choice
𝑝1 �∶ e 𝑝2 �∶ e

𝑝1 | 𝑝2 �∶ e
PMF-exp

e �∶ e′ e ≠ e′

Figure 2.1: Inference system inductively defining the judgments 𝑝 ∶ e ⇝ 𝜎 and
𝑝 �∶ e.
Part 2: rules defining failed pattern matching.
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Failed pattern matching. 𝑝 �∶e is also defined closely following the structure of
event patterns, though some patterns and event expressions can fail to match
in more than one way.

List patterns can fail for different reasons: one of the patterns does notmatch
the corresponding expression (rule PMF-list-elem); all the patterns match
but the resulting substitutions cannot be merged (rule PMF-list-merge); the
expression is not a list of the correct length, or not a list at all (rule PMF-list-
other).

The same holds for objects (rules PMF-obj and PMF-obj-other), and we
reuse pattern matching on lists by discarding unneeded key-value pairs.

Flexible list patterns can fail because of the inner patterns not matching
event elements (rule PMF-more) or because the event expression is not a list
with enough elements, or not a list in the first place.

Finally, choice patterns do not match events when both the sub-patterns do
not (rule PMF-choice), and event expressions do not match other expressions
different from themselves (rule PMF-exp).

Note that, even if the two set of rules in Figure 2.1 are kept separated for
the sake of clarity, formally they are part of the same inference system. This
is necessary since the two judgements are mutually recursive and cannot be
truly defined separately.

Example 4. (Function call event pattern matching) With the given rules for
event patternmatchingwe can now formalize the generation of the substitution
informally given in Example 3.

𝑝 = {funcName∶ ‶foo″, args∶ [𝑥], result∶ [_,more]}
o = {funcName∶ ‶foo″, args∶ [7], result∶ [1, 45]}

PM-obj
PM-exp ‶foo″ ∶ ‶foo″ ⇝ ∅

PM-list
PM-var

𝑥 ∶ 7 ⇝ {𝑥 ↦ 7}
[𝑥] ∶ [7] ⇝ {𝑥 ↦ 7}

PM-list-more
PM-wildcard

_ ∶ 1 ⇝ ∅
[_,more] ∶ [1, 45] ⇝ ∅

𝑝 ∶ o ⇝ {𝑥 ↦ 7}

2.2.4 Event type declaration

We now describe the main abstraction mechanism over events used in RML.
Event types are a crucial mechanism in RML for many reasons:

• Set of events: an event type can conveniently represent an arbitrary set of
events at once, even an infinite one.

• Abstraction: while events are the abstraction level chosen for the instru-
mentation, event types can select the data that is relevant for the specifi-
cation being written, enabling the user to reason at the desired level of
abstraction.

• Data-oriented properties: event types with variables can be used to capture
data from the observed event to be later used in subsequent verification
steps, supporting data-oriented properties.

• Reuse: event types can be defined on top of other event types, bringing
modularity and reusability.
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Definition 7. (Event type) Given a set of event type names Θ and variables
𝒳, an event type is a term 𝜃(𝑥1,… , 𝑥𝑛), with 𝜃 ∈ Θ and 𝑥1,… , 𝑥𝑛 ∈ 𝒳.

Event types can be declared as follows.

Definition 8. (Event type declaration) The set of event type declarations𝒟 over
a set of event type names Θ, event patterns 𝒫 and variables 𝒳 is inductively
defined by the following context-free grammar:

𝒟 ∶∶= Θ(𝒳,… ,𝒳) matches 𝒫 (positive declaration)

| Θ(𝒳,… ,𝒳) not matches 𝒫 (negative declaration)

| Θ(𝒳,… ,𝒳) matches 𝒯1 | ⋯ | 𝒯𝑛 (positive derived decl.)

| Θ(𝒳,… ,𝒳) not matches 𝒯1 | ⋯ | 𝒯𝑛 (negative derived decl.)

(𝑛 > 0)

𝒯 ∶∶= Θ(𝒫,… ,𝒫) (event type pattern)

The set of event type patterns is denoted as 𝒯.

Event type declarations specify one or more patterns: note that these should
be object event patterns, since we expect events to be objects with key-value
pairs (and not, for instance, lists). Patterns with choices (which can be nested
at any level) allow event types to describe objects with different structures. It
is also possible to define event types that do not match a given pattern: this is
especially useful to denote a set of events we are not interested in, to be later
filtered out with RML specific operators.

Derived declarations support modularity in the definition of event types,
reusing other declarations. Note that event type patterns (𝒯) may contain not
only variables but arbitrary patterns: this gives the flexibility to reuse existing
event type declarations while (partially) instantiating some arguments.

Event substitution is lifted to event type patterns in the natural way:

𝜎𝜃(𝑝1,… , 𝑝𝑛) = 𝜃(𝜎𝑝1,… , 𝜎𝑝𝑛)

Example 5. (Data structure event declaration) The following event type dec-
larations are an example for a possible data structure specification:

add(𝑒) matches {funcName∶ ‶add″, args∶ [𝑒]}
remove(𝑒) matches {funcName∶ ‶remove″, args∶ [𝑒]}

size(𝑙) matches {funcName∶ ‶size″, result∶ 𝑙}
isEmpty(𝑏) matches {funcName∶ ‶isEmpty″, result∶ 𝑏}
structural matches add(_) | remove(_)

nonStructural not matches structural

Finally, since declarations already include a notion of negation, we can
define a simple translation from a declaration to its negated version.

Definition 9. (Declaration negation) Given an event type declaration 𝑑 ∈ 𝒟,
its negation 𝑑 ∈ 𝒟 is defined as follows:

𝜃(𝑥1,… , 𝑥𝑛) matches 𝑝 = 𝜃(𝑥1,… , 𝑥𝑛) not matches 𝑝
𝜃(𝑥1,… , 𝑥𝑛) not matches 𝑝 = 𝜃(𝑥1,… , 𝑥𝑛) matches 𝑝

𝜃(𝑥1,… , 𝑥𝑛) matches 𝜏1| ⋯ |𝜏𝑚 = 𝜃(𝑥1,… , 𝑥𝑛) not matches 𝜏1| ⋯ |𝜏𝑚

𝜃(𝑥1,… , 𝑥𝑛) not matches 𝜏1| ⋯ |𝜏𝑚 = 𝜃(𝑥1,… , 𝑥𝑛) matches 𝜏1| ⋯ |𝜏𝑚

𝜃 is assumed to be a fresh, unused event type name.
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Intuitively, the negation of a declaration 𝑑 is meant to describe all the events
that do not match 𝑑. See the next section for its use.

2.3 event type semantics

Finally, we are now able to specify the semantics of event types, the building
blocks of TC. Since a specification contains many event type declarations,
and such declarations may depend on other ones (derived declarations in
Definition 8), we must take all of them into account in order to decide whether
an event type matches an observed event.

Definition 10. (Event type matching) Given a list of event type declarations
Γ ∈ 𝒟∗, an event type pattern 𝜏 ∈ 𝒯 matches an event e ∈ ℰ with substitution
𝜎 ∈ Σ if and only if Γ ⊢ Γ ; 𝜏 ∶ e ⇝ 𝜎 holds. Conversely, 𝜏 does not match e if
and only if Γ ⊢ Γ ; 𝜏 �∶ e. Both the judgements are inductively defined by the
inference system in Figure 2.2.

In order to define event type matching, both a successful and a failed judge-
ment are needed, since event type declarations can either be positive or nega-
tive (Definition 8). This is also the reason why event pattern matching was
previously defined in a similar way (Definition 6). The two predicates need
to be defined simultaneously, as they are mutually recursive and cannot be
stratified. The judgement definitions includes:

• the list Γ of all event type declarations available (left-hand-side of ⊢);

• a list of event type declarations 𝑑1,… , 𝑑𝑛 left to consider (right-hand-
side of ⊢);

• the event type pattern 𝜏 we are actually trying to match against;

• the event expression e that comes from the instrumentation;

• successful matching produces the event substitution 𝜎 resulting from
the underlying pattern matching operation, instantiating event type
parameters.

Successful event type matching

The rule ETM-step allows to “forget” about the first of the declarations under
consideration if it does not make 𝜏 match e as needed, and move to the next
ones. This makes the process deterministic, as we go forward in the list of
declarations only if needed, ensuring the first suitable declaration is used, if
any. Indeed, all the other rules always use the first declaration of the list.

In direct declarations (ETM-direct) the event has tomatch the pattern given
in the declaration (𝑝 ∶ e ⇝ 𝜎 ′), and the parameters from the chosen declaration
needs to be substituted with the arguments, as they could partially instantiate
event type parameters.

Negated direct declarations (ETM-direct-not) are handled in a similar way,
though the pattern matching is expected to fail (𝑝 �∶ e), and no substitution is
produced: a failed matching should not bind any variable. Negated declara-
tions are meant to be used only when all the variables involved, if any, have
been instantiated in previous verification steps.

To preserve determinism also at the level of event type matching, derived
declarations (rule ETM-derived) only move to a certain event type pattern
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ETM-step
Γ ⊢ 𝑑1 ; 𝜏 �∶ e Γ ⊢ 𝑑2,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎

Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎

ETM-direct
Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) ∶ e ⇝ 𝜎 ′

𝑑1 = 𝜃(𝑥1, … , 𝑥𝑚) matches 𝑝

𝜎 = {𝑥1 ↦ 𝑝1, … , 𝑥𝑚 ↦ 𝑝𝑚}

𝜎𝑝 ∶ e ⇝ 𝜎′

ETM-direct-not
Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) ∶ e ⇝ ∅

𝑑1 = 𝜃(𝑥1, … , 𝑥𝑚) not matches 𝑝

𝜎 = {𝑥1 ↦ 𝑝1, … , 𝑥𝑚 ↦ 𝑝𝑚}

𝜎𝑝 �∶ e

ETM-derived

Γ ⊢ Γ ; 𝜎𝜏1 �∶ e
⋮

Γ ⊢ Γ ; 𝜎𝜏𝑗−1 �∶ e
Γ ⊢ Γ ; 𝜎𝜏𝑗 ∶ e ⇝ 𝜎 ′

Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) ∶ e ⇝ 𝜎 ′

𝑑1 = 𝜃(𝑥1, … , 𝑥𝑚) matches 𝜏1| ⋯ |𝜏𝑞

𝜎 = {𝑥1 ↦ 𝑝1, … , 𝑥𝑚 ↦ 𝑝𝑚}

1 ≤ 𝑗 ≤ 𝑞

ETM-derived-not

Γ ⊢ Γ ; 𝜎𝜏1 �∶ e
⋮

Γ ⊢ Γ ; 𝜎𝜏𝑛 �∶ e
Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) ∶ e ⇝ ∅

𝑑1 = 𝜃(𝑥1, … , 𝑥𝑚) not matches 𝜏1| ⋯ |𝜏𝑞

𝜎 = {𝑥1 ↦ 𝑝1, … , 𝑥𝑚 ↦ 𝑝𝑚}

Figure 2.2: Multiple inference system inductively defining the two (mutually
recursive) judgements Γ ⊢ 𝑑1,… , 𝑑𝑛 ;𝜏∶e ⇝ 𝜎 and Γ ⊢ 𝑑1,… , 𝑑𝑛 ;𝜏�∶e
Part 1: rules defining the successful event type matching predicate
Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎.
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ETFM-main
Γ ⊢ ∅ ; 𝜏 �∶ e

ETFM-name-ar
Γ ⊢ 𝑑1,… , 𝑑𝑖−1, 𝑑𝑖+1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e

Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e
𝑑𝑖 = 𝜃′(𝑥1, … , 𝑥𝑛) …

𝜃 ≠ 𝜃′ ∨ 𝑚 ≠ 𝑛

ETFM-direct
Γ ⊢ 𝑑1,… , 𝑑𝑖−1, 𝑑𝑖+1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e

Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e

𝑑𝑖 = 𝜃(𝑥1, … , 𝑥𝑚) matches 𝑝

𝜎 = {𝑥1 ↦ 𝑝1, … , 𝑥𝑚 ↦ 𝑝𝑚}

𝜎𝑝 �∶ e

ETFM-direct-not
Γ ⊢ 𝑑1,… , 𝑑𝑖−1, 𝑑𝑖+1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e

Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e

𝑑𝑖 = 𝜃(𝑥1, … , 𝑥𝑚) not matches 𝑝

𝜎 = {𝑥1 ↦ 𝑝1, … , 𝑥𝑚 ↦ 𝑝𝑚}

𝜎𝑝 ∶ e ⇝ 𝜎′

ETFM-derived

Γ ⊢ Γ ; 𝜎𝜏1 �∶ e
⋮

Γ ⊢ Γ ; 𝜎𝜏𝑞 �∶ e
Γ ⊢ 𝑑1,… , 𝑑𝑖−1, 𝑑𝑖+1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e

Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e
𝑑𝑖 = 𝜃(𝑥1, … , 𝑥𝑚) matches 𝜏1| ⋯ |𝜏𝑞

𝜎 = {𝑥1 ↦ 𝑝1, … , 𝑥𝑚 ↦ 𝑝𝑚}

ETFM-derived-not

Γ ⊢ Γ ; 𝜎𝜏𝑗 ∶ e ⇝ 𝜎 ′

Γ ⊢ 𝑑1,… , 𝑑𝑖−1, 𝑑𝑖+1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e
Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜃(𝑝1,… , 𝑝𝑚) �∶ e

𝑑𝑖 = 𝜃(𝑥1, … , 𝑥𝑚) not matches 𝜏1| ⋯ |𝜏𝑞

𝜎 = {𝑥1 ↦ 𝑝1, … , 𝑥𝑚 ↦ 𝑝𝑚}

1 ≤ 𝑗 ≤ 𝑞

Figure 2.2: Multiple inference system inductively defining the two (mutually
recursive) judgements Γ ⊢ 𝑑1,… , 𝑑𝑛 ;𝜏∶e ⇝ 𝜎 and Γ ⊢ 𝑑1,… , 𝑑𝑛 ;𝜏�∶e
Part 2: rules defining the failed event type matching predicate
Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 �∶ e.
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if all the previous one failed to match the event. It is important to go back to
the whole list of available declarations Γ since the chosen event type could
be defined by any declaration. In negated derived declarations (rule ETM-
derived-not) all the possible event type patterns are expected not to match
the event.

Failed event type matching

In this case, the matching procedure must fail according to all of the decla-
rations, in order to assert that the observed event really does not match the
event type. This, and the fact that no substitution is produced, means that, in
every rule, the declaration to use can be chosen without restrictions, as they
all need to be analyzed (though still one at a time).

The base case ETFM-main is reached when there are no more declarations
left to consider, and we can conclude 𝜏 does not match e according to declara-
tions Γ.

The four rules ETFM-direct, ETFM-direct-not, ETFM-derived, and ETFM-
derived-not are similar to the ones we just described, with success and failure
swapped. Since 𝜏1| ⋯ |𝜏𝑞 is essentially a union, it also behave differently when
negated. The rule for derived declarations ensures none of the available pat-
terns match the event, while the rule for negated derived declarations only
needs to find one pattern that actually matches the event.

All those rules pick one declaration and proves that matching fails, and the
premise ensures that also all the other declarations agree with it.

Double negations can be confusing. When we want to show that a pattern
does not match an event, and we do so by using a negated declaration, we have
to prove that the event actually matches the inner pattern provided by the
declaration.

As opposed to successful matching, failure has an additional base case, that
is, the declaration taken into account defines an event type with different name
or arity, thus matching trivially fails (rule ETFM-name-ar).

Example 6. (Matching) Example 1 shows a possible event domain for func-
tion calls, which we now use, augmented with return values. On top of that,
some examples of event type declarations follow (fd is meant to identify a file
descriptor2):

𝑑1 = open(fd) matches {funcName∶ ‶𝑜𝑝𝑒𝑛″, result∶ fd}
𝑑2 = rw(fd) matches {funcName∶ ‶𝑟𝑒𝑎𝑑″ | ‶𝑤𝑟𝑖𝑡𝑒″, args∶ [fd,more]}
𝑑3 = close(fd) matches {funcName∶ ‶𝑐𝑙𝑜𝑠𝑒″, args∶ [fd,more]}
𝑑4 = relevant matches open(_) | rw(_) | close(_)
𝑑5 = ignored not matches relevant

Let us consider the following events:

o1 = {funcName∶ ‶𝑜𝑝𝑒𝑛″, args∶ [‶𝑙𝑜𝑔.𝑡𝑥𝑡″], result∶ 42}
o2 = {funcName∶ ‶𝑟𝑎𝑛𝑑𝑜𝑚″, args∶ [], result∶ [25634]}
o3 = {funcName∶ ‶𝑤𝑟𝑖𝑡𝑒″, args∶ [42, 25634], result∶ true}

Assuming a C-like syntax, the three events above would be generated by the
instrumentation to encode the following function calls:

2 File descriptors are identifiers used in Unix and related operating systems to indicate
files and other I/O resources.
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int fd = open("log.txt");

int n = random();

write(fd, n);

As expected, event type semantics leads to o1 matching open(fd) with substitu-
tion 𝜎 = {fd ↦ 42} (Γ = 𝑑1,… , 𝑑5):

ETM-direct
Γ ⊢ 𝑑1,… , 𝑑5 ; open(fd) ∶ o1 ⇝ 𝜎

𝑝 = {funcName∶ ‶𝑜𝑝𝑒𝑛″, result∶ fd}
𝑝 ∶ o1 ⇝ 𝜎

PM-obj
PM-exp ‶𝑜𝑝𝑒𝑛″ ∶ ‶𝑜𝑝𝑒𝑛″ ⇝ ∅

PM-var
fd ∶ 42 ⇝ 𝜎

𝜎 = {fd ↦ 42}

{funcName∶ ‶𝑜𝑝𝑒𝑛″, result∶ fd} ∶ o1 ⇝ 𝜎
𝜎 = ∅ ∪ 𝜎

As shown above, the semantics is clearly stratified: event type matching deals
with declarations and their dependences, while pattern matching handles the
lower-level term manipulation and generates substitutions. Note that, in rule
PM-obj, only the fields required by the pattern are taken into account, while
args is ignored.

Similarly, o1 also matches the event type relevant (the same holds for o3):

ETM-step
ETMF-name-ar

ETMF-main
Γ ⊢ ∅ ; relevant �∶ o1

Γ ⊢ 𝑑1 ; relevant �∶ o1

𝑑1 = open(fd) …

relevant ≠ open
ETM-step

⋱
ETM-derived

⋮
Γ ⊢ 𝑑4, 𝑑5 ; relevant ∶ o1 ⇝ ∅

⋮
Γ ⊢ 𝑑2,… , 𝑑5 ; relevant ∶ o1 ⇝ ∅

Γ ⊢ 𝑑1,… , 𝑑5 ; relevant ∶ o1 ⇝ ∅

o2 on the other hand only matches the event type ignored.

2.4 tc syntax

This Section is devoted to the syntax of TC, the calculus underlying RML, to
which the latter is compiled to. At this level, an important design decision is
how to support recursion.

2.4.1 Regular terms

Many formalisms support recursion through an explicit fixpoint operator;
these are often called least or greatest fixed point operators, depending on
whether they are meant to be understood according to an inductive or coinduc-
tive interpretation. The modal 𝜇-calculus, for instance, is a fixed-point logic
including both features (Kozen, 1983).

A different approach is based on regular terms (a.k.a. rational or cyclic
terms) (Ancona andCorradi, 2014, 2016; Courcelle, 1983; Frisch, Castagna, and
Benzaken, 2008). Traditionally, syntactic terms are inductive, well-founded
entities that can be seen as finite trees; this is the idea behind abstract syntax
trees used in programming languages semantics. A regular term is a possibly
infinite tree, though the set of its subtrees must be finite. They can be finitely
represented as graphs; term𝜙 depicted in Figure 2.33, for instance, is an infinite
tree with the following subtrees:

3 Prefix operator ‘∶’ and union operator ‘∨’ are part of TC and will be presented in the
rest of this Section; their semantics, however, is not relevant for the example being
discussed, they could be any binary operators.
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1. the whole infinite tree rooted at ‘∨’, encoding the term 𝜙 itself;

2. the tree only containing 𝜖, encoding term 𝜖;

3. the infinite tree rooted at ‘∶’, encoding the term 𝜃 ∶ 𝜙;

4. the tree only containing 𝜃, encoding term 𝜃.

V

ε :

θ

back edge

Figure 2.3: Syntax graph of the unique term 𝜙 such that 𝜙 = 𝜖 ∨ (𝜃 ∶ 𝜙).

In order to have a finite syntactic representation of regular terms, syntactic
equations can be used: this is the approach used in this work. The term 𝜙 from
Figure 2.3, for instance, can be described as “the (unique) term satisfying the
recursive syntactic equation 𝜙 = 𝜖 ∨ (𝜃 ∶ 𝜙)”. Note that this is a coinductive
interpretation of syntactic, recursive equations: the one above does not describe
any finite term 𝜙.

However, we will only use equations as a way to describe regular terms, but
at the abstract level, it is arguably easier to consider them as infinite trees (or
their equivalent graph). A formal treatment of systems of syntactic equations
describing regular terms has been written by Courcelle (1983).

Finally, in order to describe some regular terms, multiple (possiblymutually
recursive) equations are needed. As an example, consider the regular term 𝜙
satisfying the following system of equations:

𝜙 = 𝜙1 ∨ 𝜙2

𝜙1 = 𝜃1 ∶ 𝜙1

𝜙2 = 𝜖 ∨ (𝜃2 ∶ 𝜙2)

Equations can also be mutually recursive. In any case, the system of equations
must be finite, otherwise the term satisfying them would not be regular.

2.4.2 Syntax and operators

We now formalize the syntax of TC and give an intuition about the semantics
of the operators. Some syntactic components have been previously defined in
this Chapter.

First, the class of expressions about observed data that can be used in
specification is presented. This is useful to express data-oriented properties.
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Definition 11. (Data expressions) A data expression 𝜉 ∈ Ξ is an arithmetic
(over a set of numbers 𝒩) and boolean expression inductively defined by the
following context-free grammar:

Ξ ∶∶= Ξ op Ξ op ∈ {+,−, ×,÷} (arithmetic expression)
| Ξ op′ Ξ op′ ∈ {<,≤,=,≥,>} (relational expression)
| Ξ op″ Ξ | ¬Ξ op″ ∈ {∧,∨} (boolean expression)
| 𝒳 (variables)
| 𝒩 (numbers)
| 𝔹 (booleans)

Data expressions are entirely standard arithmetic and boolean expressions.
The supported operators are the ones currently implemented in our prototype,
though it would be easy to add new ones without affecting the rest of the
implementation (and semantics).

The following definition presents the syntax of the calculus.

Definition 12. (TC syntax) A TC term 𝜙 ∈ Φ is a regular term over the opera-
tors described by the following grammar:

Φ ∶∶= 𝜖 (empty)
| 0 (none)
| 1 (all)
| 𝒯 ∶ Φ (prefix)
| Φ ⋅ Φ (concatenation)
| Φ ∨Φ (union)
| Φ ∧Φ (intersection)
| Φ | Φ (shuffle)
| {𝒳;Φ} (parametric term)
| 𝑔⟨Ξ,… ,Ξ⟩ (generic application)
| if Ξ then Φ else Φ (conditional term)

𝑔 ∶∶= ⟨𝒳,… ,𝒳⟩.Φ (generic term)

Though context-free grammars, as the one given above, are usually meant
to define languages inductively, in this case we abuse such notation to give a
concise representation of the language operators, despite terms are allowed to
be regular.

A TC term encodes a low-level specification whose semantics is the set of
traces that are correct with respect to such specification. While the seman-
tics will be fully formalized in the next section, the intuitive meaning of the
operators above is as follows:

empty (𝜖) the empty trace is expected;

none (0) no trace is valid, an error has been encountered;

all (1) any trace is valid, requested property has already been proved to
hold;

prefix (𝜃(𝑝1,… , 𝑝𝑛) ∶ 𝜙) an eventmatching 𝜃(𝑝1,… , 𝑝𝑛) is expected, followed
by a trace according to 𝜙;



22 trace calculus

concatenation (𝜙1 ⋅ 𝜙2) a trace that is valid according to 𝜙1 followed by a
trace according to 𝜙2;

union (𝜙1 ∨ 𝜙2) traces that are valid either with respect to 𝜙1 or to 𝜙2 are
accepted (a deterministic approach to this operator will be formalized
in this Chapter);

intersection (𝜙1 ∧ 𝜙2) in order to be valid, a trace must be correct with
respect to both 𝜙1 and 𝜙2;

shuffle (𝜙1 | 𝜙2) the set of traces resulting from the shuffle of those from
𝜙1 and from 𝜙2 (again, determinism needs to be taken into account);

parametric term ({𝑥; 𝜙}) variable 𝑥 is introduced for use in 𝜙 (and it will
be assigned a value during matching) but its scope is limited by the
delimiters, and the semantics is that of 𝜙;

generic application (𝑔⟨𝜉1,… , 𝜉𝑛⟩) the generic term 𝑔 = ⟨𝑥1,… , 𝑥𝑛⟩.𝜙 is
instantiated with arguments 𝜉1,… , 𝜉𝑛, and the semantics is given by 𝜙
after the appropriate substitution has been applied;

conditional term (if 𝜉 then 𝜙1 else 𝜙2) if 𝜉 evaluates to true then the se-
mantics of the whole expression is that of 𝜙1, while if it evaluates to
false then the semantics is that of 𝜙2;

generic term (⟨𝑥1,… , 𝑥𝑛⟩.𝜙) 𝜙 contains variables 𝑥1,… , 𝑥𝑛 that are meant
to be instantiated by a generic application, then the semantics is that of
𝜙 after the appropriate substitution has been applied.

Example 7. (Stack specification term) The following TC term encodes a pos-
sible specification of a stack (also known as last-in-first-out queue):

𝜙 = 𝜖 ∨ ((push ∶ 𝜙) ⋅ pop ⋅ 𝜙)

This example is meant to show the calculus syntax. More significant examples
will be thoroughly discussed after the semantics will be presented.

2.4.3 Parametric and generic specifications

Two different kinds of parametricity are supported, and they are kept sepa-
rated as they have different meanings. Parametric terms allow one to write
parametric specifications, that is, specifications depending on values that will
only be known at runtime. As an example, consider a protocol specifying
that an arbitrary natural number 𝑛 is expected, followed by exactly 𝑛 events
matched by a given event type 𝜃. Such a simple protocol needs parametricity
support as only after knowing the value of 𝑛 we are able to detect the correct
number of subsequent events.

Generic terms, on the other hand, are parametric with respect to variables
that are meant to be instantiated when that portion of the specification comes
into play. On one hand, generic terms improves modularity: the same (generic)
specification can be used in different contexts by applying different arguments
when it is employed. On the other hand, the combination of generics, condi-
tionals and data expressions allows one to compute values during the verifica-
tion process, greatly enhancing expressivity. This is different from parametric
specifications in the form {𝑥; 𝜙}, where 𝑥 is just a placeholder for a value that
will be soon discovered with the next events observed. Although different,
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the two kinds of parametricity are quite useful when combined together, ex-
pecially when the arguments of a generic specification are known at runtime,
as happens in the simple protocol described above that can be specified by
{𝑥; 𝜃′(𝑥) ∶ 𝑔⟨𝑥⟩}, where 𝑔 is the generic and regular term identified by the equa-
tion 𝑔 = ⟨𝑥′⟩.if 𝑥′ > 0 then 𝜃 ∶ 𝑔⟨𝑥′ − 1⟩ else 𝜖; event type 𝜃′(𝑥) checks that a
natural number 𝑥 is sent, then 𝑔⟨𝑥⟩ requires that exactly 𝑥 events of type 𝜃 are
observed.

Finally, the syntax of TC keeps generic specifications and their applica-
tions separated to ensure that generic terms and applications match, and no
higher-order generic manipulation is allowed, as it would make the verifi-
cation process quite complex and possibly undecidable; as it will be shown
in the examples in Section 4, all the operators above already allow users to
express a set of very expressive properties.

2.5 rewriting semantics

2.5.1 Term substitution

In the following, the previously defined notion of event substitution (Defini-
tion 4) is generalized so that variables can also be mapped to data expressions.
This will be used in the rewriting semantics to map specification variables not
only to observed data, but also to computed data.

Substitution and evaluation for data expressions are inductively defined
following the expression structure in a straightforward way.

Definition 13. (Data expression substitution) Given a substitution 𝜎 and a
data expression 𝜉, the application of 𝜎 to 𝜉, denoted as 𝜎𝜉, is inductively defined
as follows:

𝜎(¬𝜉) = ¬(𝜎𝜉)
𝜎(𝜉1 op 𝜉2) = (𝜎𝜉1) op (𝜎𝜉2) (op ∈ {+,−, ×,÷,<,≤,=,≥,>})

𝜎𝑥 = 𝜎(𝑥) (𝑥 ∈ dom(𝜎))
𝜎𝑥 = 𝑥 (𝑥 ∉ dom(𝜎))

Definition 14. (Data expression evaluation) Given a data expression 𝜉, the
evaluation of 𝜉, denoted as ev(𝜉), is inductively defined as follows:

ev(¬𝜉) = ev(¬)(ev(𝜉))
ev(𝜉1 op 𝜉2) = ev(op)(ev(𝜉1), ev(𝜉2)) (op ∈ {+,−, ×,÷,<,≤,=,≥,>})

For every unary and binary operation symbol op, ev(op) maps the operation
symbol into the corresponding standard mathematical function.

Substitution on terms, on the other hand, needs to be defined by coinduction:
regular terms are not well-founded objects (we recall they are a particular class
of infinite trees) thus induction cannot be fruitfully used to define functions
on them.
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Definition 15. (Term substitution) The application of substitution 𝜎 to a TC
term 𝜙, denoted as 𝜎𝜙, is the function coinductively defined as follows:

𝜎𝜖 = 𝜖
𝜎 0 = 0
𝜎 1 = 1

𝜎(𝜏 ∶ 𝜙) = (𝜎𝜏) ∶ (𝜎𝜙)
𝜎(𝜙1 ⋅ 𝜙2) = (𝜎𝜙1) ⋅ (𝜎𝜙2)

𝜎(𝜙1 ∨ 𝜙2) = (𝜎𝜙1) ∨ (𝜎𝜙2)
𝜎(𝜙1 ∧ 𝜙2) = (𝜎𝜙1) ∧ (𝜎𝜙2)
𝜎(𝜙1 | 𝜙2) = (𝜎𝜙1) | (𝜎𝜙2)

𝜎{𝑥; 𝜙} = {𝑥; (𝜎\{𝑥})𝜙}
𝜎(𝑔⟨𝜉1,… , 𝜉𝑛⟩) = (𝜎𝑔)⟨𝜎𝜉1,… , 𝜎𝜉𝑛⟩

𝜎(if 𝜉 then 𝜙1 else 𝜙2) = if 𝜎𝜉 then 𝜎𝜙1 else 𝜎𝜙2

𝜎(⟨𝑥1,… , 𝑥𝑛⟩.𝜙) = ⟨𝑥1,… , 𝑥𝑛⟩.(𝜎\{𝑥1,… , 𝑥𝑛}𝜙)
𝜎𝑥 = 𝜎(𝑥) (𝑥 ∈ dom(𝜎))
𝜎𝑥 = 𝑥 (𝑥 ∉ dom(𝜎))

In parametric and generic specifications, the declared variable and parame-
ters are removed from the domain of the substitution before propagating its
application, to ensure the usual scoping rule on nested variable/parameter
declarations: outermost declarations are hidden by innermost ones.

2.5.2 Empty traces

Since the system under test can halt at anytime, it is important to define
whether a specification (or a term it rewrote to) accepts the empty trace, that
is, whether termination is allowed at a specific step, so that the monitor can
emit a sensible verdict.

Definition 16. (𝜖 acceptance) A specification term 𝜙 accepts the empty trace 𝜖
iff the judgement 𝐸(𝜙) holds, according to the inductive interpretation of the
inference system in Figure 2.4.

The base cases are the empty set of traces 𝜖 and the top operator 1, whose
semantics trivially includes the empty trace (rule E-empty and E-1).

A specification consisting of a concatenation, an intersection, or a shuffle
(rule E-bin) only accepts the empty trace if both the operands do so; otherwise,
at least an event is expected, thus the empty trace is not a valid one for the
specification.

For union, on the other hand (rule E-or) it is sufficient that either the left or
the right argument accepts the empty trace, since both encode valid behaviors.

Parametricity (rule E-param) is not relevant in this context, thus the variable
is simply ignored.

In generic applications (rule E-generic), arguments need to be evaluated
and the generic to be applied to check whether the specification accepts the
empty trace. Similarly, in conditional terms (rule E-if-*) the condition is evalu-
ated in order to decide where to look for empty trace acceptance.

Definition 17. (𝜖 non-acceptance) A specification term 𝜙 does not accepts the
empty trace 𝜖 iff the judgement NE(𝜙) holds, according to the inductive inter-
pretation of the inference system in Figure 2.5.
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E-empty
𝐸(𝜖)

E-1
𝐸(1)

E-bin
𝐸(𝜙1) 𝐸(𝜙2)

𝐸(𝜙1 op 𝜙2)
op ∈ {⋅, ∧, |}

E-or
𝐸(𝜙𝑖)

𝐸(𝜙1 ∨ 𝜙2)
𝑖 ∈ {1, 2} E-param

𝐸(𝜙)
𝐸({𝑥; 𝜙})

E-generic
𝐸(𝜎𝜙)

𝐸((⟨𝑥1,… , 𝑥𝑛⟩.𝜙)⟨𝜉1,… , 𝜉𝑛⟩)
𝜎 = {𝑥1 ↦ ev(𝜉1),… , 𝑥𝑛 ↦ ev(𝜉𝑛)}

E-if-true
𝐸(𝜙1)

𝐸(if 𝜉 then 𝜙1 else 𝜙2)
ev(𝜉) = true

E-if-false
𝐸(𝜙2)

𝐸(if 𝜉 then 𝜙1 else 𝜙2)
ev(𝜉) = false

Figure 2.4: Inference system inductively defining 𝐸(𝜙).

NE-0
NE(0)

NE-prefix
NE(𝜏 ∶ 𝜙)

NE-bin
NE(𝜙𝑖)

NE(𝜙1 op 𝜙2)
𝑖 ∈ {1, 2}

op ∈ {⋅, ∧, |}

NE-or
NE(𝜙1) NE(𝜙2)

NE(𝜙1 ∨ 𝜙2)
NE-param

NE(𝜙)
NE({𝑥; 𝜙})

NE-generic
NE(𝜎𝜙)

NE((⟨𝑥1,… , 𝑥𝑛⟩.𝜙)⟨𝜉1,… , 𝜉𝑛⟩)
𝜎 = {𝑥1 ↦ ev(𝜉1),… , 𝑥𝑛 ↦ ev(𝜉𝑛)}

NE-if-true
NE(𝜙1)

NE(if 𝜉 then 𝜙1 else 𝜙2)
ev(𝜉) = true

NE-if-false
NE(𝜙2)

NE(if 𝜉 then 𝜙1 else 𝜙2)
ev(𝜉) = false

Figure 2.5: Inference system inductively defining NE(𝜙).
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The base cases for NE(𝜙) are the empty set of traces 0 (rule NE-0) and the
prefix operator 𝜏 ∶ 𝜙 (rule NE-prefix) which expects an event matched by 𝜏,
hence it cannot accept the empty trace.

Binary operators behave in a specularway to 𝜖-acceptance judgement, which
makes sense since we are essentially asking the opposite question.

The rest of the rules follow the structure of the term in the same way.

2.5.3 Rewriting system

The semantics of TC is given as a rewriting system, where steps are labelled
by observed events. This has two direct advantages: first, the formal semantics
can be used (as it has been done) to drive the implementation; second, it
effectively supports online verification, working on one event at a time.

TC originates from trace expressions (Ancona, Ferrando, and Mascardi,
2016) and parametric trace expressions (Ancona, Ferrando, and Mascardi,
2017), both with a non-deterministic semantics. RML, and the underlying for-
malism TC, not only extends trace expressions with generics and conditionals
(among other things) but also move to a deterministic semantics (Ancona,
Franceschini, Ferrando, et al., 2019). This design choice was driven by our
experience in applying our tool: although it is a bit more involved, the deter-
ministic semantics allows a more efficient implementation, since backtracking
is not needed; furthermore, as shown in Section 4, some specifications can
be expressed more concisely. Our semantics forces a left-to-right evaluation
strategy, and to do so, when formalizing the successful rewriting step, we also
need to formalize a failed rewriting step for the observed event.

Definition 18. (TC rewriting semantics) Given a list of event type declarations
Γ, a TC term 𝜙 and an event object o, 𝜙 rewrites to 𝜙′ w.r.t. o (𝜙 o−→

Γ
𝜙′) according

to the inductive interpretation of the inference system in Figures 2.6 and 2.7.

When the event type declarations Γ is clear from the context or not relevant,
it will be left implicit for the sake of readability.

The main rewriting predicate 𝜙 o−→ 𝜙′ entirely relies on the auxiliary predi-
cate 𝜙 o−→ 𝜙′ ; 𝜎, which additionally computes a substitution. At the top-level,
however, we do not expect free variables (i. e., unbound variables that are not
declared as {𝑥;…}), as specified in rule R-main.

When a prefix is seen (𝜏 ∶ 𝜙) the semantics relies on event type matching
as defined in Definition 10 (rule R-prefix). This is the step where variables
from parametric specifications are instantiated with data included in the event
object.Matching and rewriting are kept strictly separated: this gives our system
a great flexibility towards different kinds of systems and domains, as the
interface to the instrumentation is specified by event type declaration, without
affecting the semantics of the calculus.

Two different things can happen with union (𝜙1 ∨ 𝜙2). If the specification
on the left accepts the event, than that term is chosen and the right one is
forgotten (rule R-or-l): the semantics makes no backtracking on the rewriting
steps. Otherwise, if the left one does not accept the event but the right one does,
then the latter is chosen (rule R-or-r). The premise 𝜙1

o
−/−→ effectively makes

the semantics of union deterministic by enforcing the left-to-right strategy.
Intersection (rule R-and) requires both the specifications to accept the

event, and furthermore the produced substitutions must be mergeable. This
is to avoid that the same variable is bound to two different values in the two
branches.
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R-main
𝜙 o−→

Γ
𝜙′ ; ∅

𝜙 o−→
Γ

𝜙′ R-1
1 o−→

Γ
1 ; ∅

R-prefix
𝜏 ∶ 𝜙 o−→

Γ
𝜙 ; 𝜎

Γ ⊢ Γ ; 𝜏 ∶ o ⇝ 𝜎

R-or-l
𝜙1

o−→
Γ

𝜙′
1 ; 𝜎

𝜙1 ∨ 𝜙2
o−→
Γ

𝜙′
1 ; 𝜎

R-or-r
𝜙1

o
−/−→
Γ

𝜙2
o−→
Γ

𝜙′
2 ; 𝜎

𝜙1 ∨ 𝜙2
o−→
Γ

𝜙′
2 ; 𝜎

R-and
𝜙1

o−→
Γ

𝜙′
1 ; 𝜎1 𝜙2

o−→
Γ

𝜙′
2 ; 𝜎2

𝜙1 ∧ 𝜙2
o−→
Γ

𝜙′
1 ∧ 𝜙′

2 ; 𝜎
𝜎 = 𝜎1 ∪ 𝜎2

R-shuf-l
𝜙1

o−→
Γ

𝜙′
1 ; 𝜎

𝜙1 | 𝜙2
o−→
Γ

𝜙′
1 | 𝜙2 ; 𝜎

R-shuf-r
𝜙1

o
−/−→
Γ

𝜙2
o−→
Γ

𝜙′
2 ; 𝜎

𝜙1 | 𝜙2
o−→
Γ

𝜙1 | 𝜙′
2 ; 𝜎

R-cat-l
𝜙1

o−→
Γ

𝜙′
1 ; 𝜎

𝜙1 ⋅ 𝜙2
o−→
Γ

𝜙′
1 ⋅ 𝜙2 ; 𝜎

R-cat-r
𝜙1

o
−/−→
Γ

𝜙2
o−→
Γ

𝜙′
2 ; 𝜎

𝜙1 ⋅ 𝜙2
o−→
Γ

𝜙′
2 ; 𝜎

𝐸(𝜙1)

R-var-1
𝜙 o−→

Γ
𝜙′ ; 𝜎

{𝑥; 𝜙} o−→
Γ

𝜎 ′𝜙′ ; 𝜎\{𝑥}
𝑥 ∈ dom(𝜎)

𝜎′ = 𝜎 � {𝑥}

R-var-2
𝜙 o−→

Γ
𝜙′ ; 𝜎

{𝑥; 𝜙} o−→
Γ

{𝑥; 𝜙′} ; 𝜎
𝑥 ∉ dom(𝜎)

R-generic
𝜎 ′𝜙 o−→

Γ
𝜙′ ; 𝜎

(⟨𝑥1,… , 𝑥𝑛⟩.𝜙)⟨𝜉1,… , 𝜉𝑛⟩
o−→
Γ

𝜙′ ; 𝜎
𝜎 ′ = {𝑥1 ↦ ev(𝜉1),… , 𝑥𝑛 ↦ ev(𝜉𝑛)}

R-if-true
𝜙1

o−→
Γ

𝜙′
1 ; 𝜎

if 𝜉 then 𝜙1 else 𝜙2
o−→
Γ

𝜙′
1 ; 𝜎

ev(𝜉) = true

R-if-false
𝜙2

o−→
Γ

𝜙′
2 ; 𝜎

if 𝜉 then 𝜙1 else 𝜙2
o−→
Γ

𝜙′
2 ; 𝜎

ev(𝜉) = false

Figure 2.6: Inference system inductively defining TC rewriting 𝜙 o−→
Γ

𝜙′ and its
auxiliary predicates.
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NR-empty
𝜖

o
−/−→
Γ

NR-prefix
𝜏 ∶ 𝜙

o
−/−→
Γ

Γ ⊢ Γ ; 𝜏 �∶ o NR-0
0

o
−/−→
Γ

NR-or
𝜙1

o
−/−→
Γ

𝜙2
o
−/−→
Γ

𝜙1 ∨ 𝜙2
o
−/−→
Γ

NR-and-i
𝜙𝑖

o
−/−→
Γ

𝜙1 ∧ 𝜙2
o
−/−→
Γ

𝑖 ∈ {1, 2}

NR-shuffle
𝜙1

o
−/−→
Γ

𝜙2
o
−/−→
Γ

𝜙1 | 𝜙2
o
−/−→
Γ

NR-var
𝜙

o
−/−→
Γ

{𝑥; 𝜙}
o
−/−→
Γ

NR-and-merge
𝜙1

o−→
Γ

𝜙′
1 ; 𝜎1 𝜙2

o−→
Γ

𝜙′
2 ; 𝜎2

𝜙1 ∧ 𝜙2
o
−/−→
Γ

∄𝜎.𝜎 = 𝜎1 ∪ 𝜎2

NR-cat-l
𝜙1

o
−/−→
Γ

𝜙1 ⋅ 𝜙2
o
−/−→
Γ

NE(𝜙1) NR-cat-r
𝜙1

o
−/−→
Γ

𝜙2
o
−/−→
Γ

𝜙1 ⋅ 𝜙2
o
−/−→
Γ

NR-if-true
𝜙1

o
−/−→
Γ

if 𝜉 then 𝜙1 else 𝜙2
o
−/−→
Γ

ev(𝜉) = true

NR-if-false
𝜙2

o
−/−→
Γ

if 𝜉 then 𝜙1 else 𝜙2
o
−/−→
Γ

ev(𝜉) = false

NR-generic
𝜎𝜙

o
−/−→
Γ

(⟨𝑥1,… , 𝑥𝑛⟩.𝜙)⟨𝜉1,… , 𝜉𝑛⟩
o
−/−→
Γ

𝜎 = {𝑥1 ↦ ev(𝜉1),… , 𝑥𝑛 ↦ ev(𝜉𝑛)}

Figure 2.7: Inference system inductively defining TC rewriting auxiliary pred-
icate 𝜙

o
−/−→
Γ
.
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Shuffle is handled similarly to union (rules R-shuf-l and R-shuf-r), mean-
ing the term on the left is given precedence. However, the shuffle encodes
interleaving, rather than a choice point, thus both the terms must be preserved
by the rewriting steps.

In concatenation, as expected, the left term can be chosen without further
conditions (rule R-cat-l). The right side, however, is slightly trickier (rule R-
cat-r): not only we can use it only if the left cannot be rewritten (with respect
to the given event), but it is also requested that the left term accepts the empty
trace. Intuitively, concatenation 𝜙1 ⋅ 𝜙2 first consumes all the events expected
from 𝜙1, and only after that, a trace satisfying 𝜙2 can be considered valid.
Concatenation allows specifications to ensure an order of expected events.

Parametric specifications in the form {𝑥; 𝜙} are rewritten using rules R-
var-1 and R-var-2. If the rewriting step produces a substitution for 𝑥, then
such variable is instantiated and removed from the computed substitution
(rule R-var-1); note that 𝜎\{𝑥} is produced, rather than the empty set, since
a single rewriting step may instantiate more than one variable. Otherwise, if
the variable is not mapped, the inner term 𝜙 is still rewritten but the variable
scope block is mantained, so that no free, undeclared variables appear in the
specification (rule R-var-2). This is necessary to correctly rewrite specifications
where variables are instantiated some rewriting steps later.

When generic terms and their application are found (as it is forced by
Definition 12), all the parameters are instantiated with the given evaluated
arguments before proceeding with the rewriting (rule R-generic).

The semantics of conditional specifications simply depends on the outcome
of the evaluation of the condition (rules R-if-true and R-if-false). This means
that such condition must not contain free variables at this point, otherwise no
further rewriting steps can be done.

The negated predicate 𝜙
o
−/−→ rules are specular to those described above.

The reflexive and transitive closure of 𝜙 o−→ 𝜙′ results in the trace semantics
of TC specifications.

Definition 19. (TC semantics) The semantics of a TC term 𝜙, with respect to a
list of event type declarations Γ, is the set of traces J𝜙KΓ ∈ ℘(𝒪∞) coinductively
defined as follows:

S-empty
𝜖 ∈ J𝜙KΓ

𝐸(𝜙) S-step
𝑡 ∈ J𝜙′KΓ

o𝑡 ∈ J𝜙KΓ
𝜙 o−→

Γ
𝜙′

Event type declarations Γ will be left implicit when not relevant or clear from
the context.

The formal semantics of a TC term belongs to the powerset of all traces. This
means that it is a possibly infinite set of possibly infinite traces. Here infinite
traces encode the behavior of systems for which non-termination is allowed,
while an infinite set of traces means there are infinitely many valid behaviors
for themonitored system.While the former is only relevant for non-terminating
systems (like a web server or some safety-critical software), an infinitary
semantics is much more common: it arises every time an operation can be
repetead an arbitrary number of times, or when parametric specifications can
be instantiated by an infinite number of values.
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Example 8. (TC rewriting) Let us continue from Example 6 and use the event
types declared there. The correct usage of a file is specified by the TC term 𝜙,
where 𝜙 is the regular term uniquely identified by the following equations:

𝜙 = 𝜖 ∨ {fd; open(fd) ∶ 𝜙′}
𝜙′ = (rw(fd) ∶ 𝜙′) ∨ (close(fd) ∶ 𝜖)

According to 𝜙, either no events are observed (𝜖) or the trace starts with an
event matching open(fd), for a given file descriptor fd that can be only known
at runtime, followed by a trace verifying 𝜙′ (open(fd) ∶ 𝜙′). Specification 𝜙′

admits two behaviors: on the left, a read or write operation is observed for the
file identified by fd, and the verification process recursively returns to 𝜙′; on
the right, the file identified by fd is closed and no more events are observed.

As such, the empty trace belongs to the semantics of 𝜙 (𝜖 ∈ J𝜙K):

S-empty
𝜖 ∈ J𝜖 ∨ {fd; open(fd) ∶ 𝜙′}K

𝐸(𝜖 ∨ {fd; open(fd) ∶ 𝜙′})

E-or
E-empty

𝐸(𝜖)
𝐸(𝜖 ∨ {fd; open(fd) ∶ 𝜙′})

𝑖 = 1

Another, less trivial trace that is correctwith respect to the same specification
is o1o2o3 (Γ = 𝑑1,… , 𝑑5, see Example 6):

o1 = {funcName∶ ‶𝑜𝑝𝑒𝑛″, args∶ [‶𝑙𝑜𝑔.𝑡𝑥𝑡″], result∶ 42}
o2 = {funcName∶ ‶𝑤𝑟𝑖𝑡𝑒″, args∶ [42,‶ 𝐻𝑒𝑙𝑙𝑜, 𝑤𝑜𝑟𝑙𝑑!″]}
o3 = {funcName∶ ‶𝑐𝑙𝑜𝑠𝑒″, args∶ [42], result∶ 42}

S-step
S-step
S-step
S-empty

𝜖 ∈ J𝜙3K
𝐸(𝜙3)

o3 ∈ J𝜙2K
𝜙2

o3−→ 𝜙3

o2o3 ∈ J𝜙1K
𝜙1

o2−→ 𝜙2

o1o2o3 ∈ J𝜖 ∨ {fd; open(fd) ∶ 𝜙′}K
𝜖 ∨ {fd; open(fd) ∶ 𝜙′} o1−→ 𝜙1

R-main

R-or-r

NR-empty
𝜖

o1
−/−→

R-var-1

R-prefix
open(fd) ∶ 𝜙′ o1−→ 𝜙′ ; 𝜎

Γ ⊢ Γ ; open(fd) ∶ o1 ⇝ 𝜎

𝜎 = {fd ↦ 42}

{fd; open(fd) ∶ 𝜙′} o1−→ 𝜎𝜙′ ; ∅

𝜖 ∨ {fd; open(fd) ∶ 𝜙′} o1−→ 𝜎𝜙′ ; ∅

𝜖 ∨ {fd; open(fd) ∶ 𝜙′} o1−→ 𝜎𝜙′

The term 𝜙1 obtained after the first rewriting step is 𝜎𝜙′, that is:

𝜙1 = (rw(42) ∶ 𝜙1) ∨ (close(42) ∶ 𝜖)

The rewriting process then proceeds similarly for the rest of the trace.
It is worth noting that the purely coinductive approach of TC leads to

the infinite trace o1o2o2 ⋯ formally being a valid trace, though it cannot be
observed in practice.

Rewriting-based semantics are quite common in runtime verification: a
considerable amount of formalisms and tools employs process calculi-inspired
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semantics, labeled transition system (of which our semantics can be seen as
an example), and rule-based systems. These techniques are similar in many
aspects, and though not investigated in this work, a comparison with TC
semantics is an interesting future work direction. For relevant work with
respect to this, see Aceto, Achilleos, Francalanza, and Ingólfsdóttir (2017,
2018), Aceto, Achilleos, Francalanza, Ingólfsdóttir, and Lehtinen (2019a,b),
Francalanza (2016), and Francalanza, Aceto, and Ingólfsdóttir (2017).

2.6 algebraic properties

In this section we focus on some fundamental algebraic laws that are exploited
for optimization purposes to make monitoring more efficient; we leave for
future work the full development of the equational theory of TC.

Certain standard algebraic properties (with respect to the intuitive seman-
tics of operators like union or shuffle) does not hold for TC semantics: com-
mutativity, for instance, is violated due to the deterministic left-to-right se-
mantics. Fortunately, there are still several algebraic properties relevant for
optimization purposes that hold: identity and absorbing elements exist for
concatenation, union, intersection, and shuffle.

Identity elements for TC binary operators, together with their associated laws,
are listed below:

J𝜖 ⋅ 𝜙K = J𝜙 ⋅ 𝜖K = J𝜙K
J0∨ 𝜙K = J𝜙 ∨ 0K = J𝜙K
J1∧ 𝜙K = J𝜙 ∧ 1K = J𝜙K
J𝜖 | 𝜙K = J𝜙 | 𝜖K = J𝜙K

Proofs of laws for identity elements

• J𝜖 ⋅ 𝜙K = J𝜙 ⋅ 𝜖K = J𝜙K: by rule E-empty and NR-empty 𝐸(𝜖) and 𝜖
o
−/−→ are

derivable, and by the rewriting rules, 𝜖 o−→ 𝜙′ ; 𝜎 is not derivable for any
o, 𝜙′, 𝜎; therefore from rule E-bin we deduce that 𝐸(𝜖 ⋅ 𝜙) is derivable iff
𝐸(𝜙) is derivable iff 𝐸(𝜙 ⋅ 𝜖) is derivable.
From the facts above, for 𝜖 ⋅ 𝜙 the only applicable rule is R-cat-r and
directly from that rule we deduce that 𝜖 ⋅ 𝜙 o−→ 𝜙′ ; 𝜎 iff 𝜙 o−→ 𝜙′ ; 𝜎, while
for 𝜙 ⋅ 𝜖 the only applicable rule is R-cat-l and directly from that rule
we deduce that 𝜙 ⋅ 𝜖 o−→ 𝜙′ ⋅ 𝜖 ; 𝜎 iff 𝜙 o−→ 𝜙′ ; 𝜎.
Finally, from the facts above, from Def. 19 and rule R-main we have:

– 𝜖 ∈ J𝜖 ⋅ 𝜙K iff 𝜖 ∈ J𝜙K iff 𝜖 ∈ J𝜙 ⋅ 𝜖K;
– o𝑡 ∈ J𝜖 ⋅ 𝜙K iff o𝑡 ∈ J𝜙K;
– o𝑡 ∈ J𝜙 ⋅ 𝜖K iff o𝑡 ∈ J𝜙K by coinduction.

Therefore we can conclude J𝜖 ⋅ 𝜙K = J𝜙 ⋅ 𝜖K = J𝜙K.

• J𝜖 | 𝜙K = J𝜙 | 𝜖K = J𝜙K: similarly as the previous case, we deduce that
𝜖

o
−/−→ is derivable, 𝜖 o−→ 𝜙′ ; 𝜎 is not derivable for any o, 𝜙′, 𝜎, and 𝐸(𝜖 | 𝜙)

is derivable iff 𝐸(𝜙) is derivable iff 𝐸(𝜙 | 𝜖) is derivable.
From the facts above, for 𝜖 | 𝜙 the only applicable rule is R-shuf-r and
directly from that rule we deduce that 𝜖 | 𝜙 o−→ 𝜖 | 𝜙′ ; 𝜎 iff 𝜙 o−→ 𝜙′ ; 𝜎,
while for 𝜙 | 𝜖 the only applicable rule is R-shuf-l and directly from that
rule we deduce that 𝜙 | 𝜖 o−→ 𝜙′ | 𝜖 ; 𝜎 iff 𝜙 o−→ 𝜙′ ; 𝜎.
Finally, from the facts above, from Def. 19 and rule R-main we have:
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– 𝜖 ∈ J𝜖 | 𝜙K iff 𝜖 ∈ J𝜙K iff 𝜖 ∈ J𝜙 | 𝜖K;
– o𝑡 ∈ J𝜖 | 𝜙K iff o𝑡 ∈ J𝜙K iff o𝑡 ∈ J𝜙 | 𝜖K by coinduction.

Therefore we can conclude J𝜖 | 𝜙K = J𝜙 | 𝜖K = J𝜙K.

• J0∨ 𝜙K = J𝜙 ∨ 0K = J𝜙K: by the rules for 𝐸(−) we know that 𝐸(0) is not
derivable, while by rule NR-0 0

o
−/−→ is derivable, and by the rewriting

rules, 0 o−→ 𝜙′ ; 𝜎 is not derivable for any o, 𝜙′, 𝜎; therefore from rule E-or
we deduce that 𝐸(0∨ 𝜙) is derivable iff 𝐸(𝜙) is derivable iff 𝐸(𝜙 ∨ 0) is
derivable.
From the facts above, for 0 ∨ 𝜙 the only applicable rule is R-or-r and
directly from that rule we deduce that 0∨ 𝜙 o−→ 𝜙′ ; 𝜎 iff 𝜙 o−→ 𝜙′ ; 𝜎,
while for 𝜙 ∨ 0 the only applicable rule is R-or-l and directly from that
rule we deduce that 𝜙 ∨ 0 o−→ 𝜙′ ; 𝜎 iff 𝜙 o−→ 𝜙′ ; 𝜎.
Finally, from the facts above, from Def. 19 and rule R-main we have:

– 𝜖 ∈ J0∨ 𝜙K iff 𝜖 ∈ J𝜙K iff 𝜖 ∈ J𝜙 ∨ 0K;
– o𝑡 ∈ J0∨ 𝜙K iff o𝑡 ∈ J𝜙K iff o𝑡 ∈ J𝜙 ∨ 0K.

Therefore we can conclude J0∨ 𝜙K = J𝜙 ∨ 0K = J𝜙K.

• J1∧ 𝜙K = J𝜙 ∧ 1K = J𝜙K: by rules E-1 and R-1 we know that 𝐸(1) and
1 o−→ 1 ; ∅ are derivable for any o; therefore from rule E-bin we deduce
that 𝐸(1∧ 𝜙) is derivable iff 𝐸(𝜙) is derivable iff 𝐸(𝜙 ∧ 1) is derivable.
From the facts above, from rule R-and and from the fact that 𝜎 = ∅∪𝜎 =
𝜎 ∪ ∅ we deduce that 1∧ 𝜙 o−→ 1∧ 𝜙′ ; 𝜎 iff 𝜙 o−→ 𝜙′ ; 𝜎 iff 𝜙 ∧ 1 o−→
𝜙′ ∧ 1 ; 𝜎.
Finally, from the facts above, from Def. 19 and rule R-main we have:

– 𝜖 ∈ J1∧ 𝜙K iff 𝜖 ∈ J𝜙K iff 𝜖 ∈ J𝜙 ∧ 1K;
– o𝑡 ∈ J1∧ 𝜙K iff o𝑡 ∈ J𝜙K iff o𝑡 ∈ J𝜙 ∧ 1K, by coinduction.

Therefore we can conclude J1∧ 𝜙K = J𝜙 ∧ 1K = J𝜙K.

While identity laws work as expected, laws for absorbing elements are less
intuitive because of determinism and infinite traces.

J0 ⋅ 𝜙K = J0K
J1∨ 𝜙K = J1K
J0∧ 𝜙K = J𝜙 ∧ 0K = J0K

Element 0 is left-absorbing for concatenation (see the proof below), but
is not right-absorbing; consider for instance the term 1 ⋅ 0: all infinite traces
belong to the semantics of this specification; indeed, by rules R-cat-l and R-1
we have that 1 ⋅ 0 o−→ 1 ⋅ 0 ; ∅ is derivable for any o, therefore J1 ⋅ 0K = 𝒪𝜔 ≠ J0K.

Analogously, element 1 is left-absorbing for union (see the proof below),
but is not right-absorbing; consider for instance the term (𝜏 ∶ 𝜖) ∨ 1, where 𝜏
is an event type s.t. there exist o and 𝜎 s.t. Γ ⊢ Γ ; 𝜏 ∶ o ⇝ 𝜎 is derivable; then,
from rules R-prefix and R-or-l we have that (𝜏 ∶ 𝜖) ∨ 1 o−→ 𝜖 ; 𝜎 is derivable;
furthermore, since 𝜏 ∶ 𝜖

o
−/−→ is not derivable, rule R-or-r is not applicable, there-

fore the only trace beginning with o which belongs to J(𝜏 ∶ 𝜖) ∨ 1K has length
1, hence J(𝜏 ∶ 𝜖) ∨ 1K ⊂ J1K.

Because the only rule for intersection requires a rewriting step for both
sides, 0 is both left- and right-absorbing for intersection.
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Shuffle does not have any absorbing element. Element 0 does not satisfy the
property, as both 0 | 𝜙 and 𝜙 | 0 accept infinite traces from J𝜙K, if any. Also 1
cannot be such element: both 1 | (𝜏 ∶ 𝜖) and (𝜏 ∶ 𝜖) | 1 do not include the empty
trace.

Proofs of laws for absorbing elements
• J0 ⋅ 𝜙K = J0K: it suffices to prove that J0 ⋅ 𝜙K = ∅. By the rules for 𝐸(_)we

know that 𝐸(0) is not derivable, and by the rewriting rules, 0 o−→ 𝜙′ ; 𝜎 is
not derivable for any o, 𝜙′, 𝜎; therefore 𝐸(0 ⋅ 𝜙) is not derivable because
rule E-bin is not applicable, and there is no 𝜙′, o and 𝜎 s.t. 0 ⋅ 𝜙 o−→ 𝜙′ ; 𝜎
is derivable because rules R-cat-l and R-cat-r are not applicable, hence
J0 ⋅ 𝜙K = ∅.

• J1∨ 𝜙K = J1K: by rules E-1 and R-1 we know that 𝐸(1) and 1 o−→ 1 ; ∅ are
derivable for any o; therefore from rule E-or we deduce that 𝐸(1∨ 𝜙) is
derivable, hence 𝜖 ∈ J1∨ 𝜙K. Furthermore, by rule R-or-l 1∨ 𝜙 o−→ 1 ; ∅
is derivable for any o, therefore we conclude J1∨ 𝜙K = J1K by Def. 19.

• J0∧ 𝜙K = J𝜙 ∧ 0K = J0K: it suffices to prove that J0∧ 𝜙K = ∅ (the proof
for J𝜙 ∧ 0K = ∅ is the same). By the rules for 𝐸(_) we know that 𝐸(0)
is not derivable, and by the rewriting rules, 0 o−→ 𝜙′ ; 𝜎 is not derivable
for any o, 𝜙′, 𝜎; therefore 𝐸(0∧ 𝜙) is not derivable because rule E-bin is
not applicable, and there is no 𝜙′, o and 𝜎 s.t. 0∧ 𝜙 o−→ 𝜙′ ; 𝜎 is derivable
because rules R-and is not applicable, hence J0∧ 𝜙K = ∅.

Some expected properties can be restored if we restrict the semantics to finite
traces. Assuming such restriction to be denoted as J𝜙K∗ = J𝜙K ∩ 𝒪∗, the
following additional laws can be stated, according to the reasoning above
regarding finite and infinite traces:

J0 ⋅ 𝜙K∗ = J𝜙 ⋅ 0K∗ = J0K∗

J0 | 𝜙K∗ = J𝜙 | 0K∗ = J0K∗

For finite traces, laws above hold because, after a finite number of steps,
the semantics will either require 0 to be rewritten or 𝐸(0) to hold, but none of
them is valid. For all laws it is straightforward to prove that no finite trace 𝑡
can belong to the semantics of the terms by induction on the length of 𝑡.

The main reason why identity and absorbing elements are very relevant
to the proposed semantics is the ability to optimize, a possibility that will be
exploited when discussing examples and performances in the next chapters.
Some recursive TC terms can grow in size with rewriting steps, especially
when mixing recursion with operators like intersection and shuffle, which
keep both sides after rewriting. In this cases, the specification would grow
indefinitely, possibly making the monitor run out of memory or become quite
inefficient, regardless of the correctness of the observed system.

The optimizations above allow the implementation to shrink the TC term
during the process whenever possible, sometimes changing a process that is
bound to failure to a sustainable one, reducing the computational complexity
of the verification algorithm. Our implementation indeed exploits such laws;
this topic is further developed in Chapter 6.

2.7 proof of determinism

The rewriting semantics presented for TC in Definition 18 is designed to be
deterministic. Determinism can greatly improve monitoring performance,
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since there is no need to implement back-tracking mechanism or to keep a set
of all the terms the specification can be rewritten to. The problem of monitor
determinization in runtime verification has been extensively studied in the
literature (Aceto, Achilleos, Francalanza, Ingólfsdóttir, and Kjartansson, 2017;
Francalanza, 2016, 2017). In the context of RML, while non-determinism of
the monitored system is allowed (and can be expressed in TC) the monitoring
procedure itself (i. e., the rewriting system) is always deterministic.

This Section is devoted to the proof of such claim. Hence, the goal is to prove
that if 𝜙 o−→ 𝜙′ ; 𝜎 ′ and 𝜙 o−→ 𝜙″ ; 𝜎″, then 𝜙′ = 𝜙″ and 𝜎 ′ = 𝜎″. The semantics
is stratified, and determinism needs to be proven at each level. Furthermore,
we need to prove that judgements with their corresponding negated version
cannot be derived simultaneously.

Lemma 1. If 𝑝 ∶ e ⇝ 𝜎 holds, then 𝑝 �∶ e does not hold.

Proof. The proof goes by induction on the inference rules defining 𝑝 ∶ e ⇝ 𝜎
(Figure 2.1).

• Rule PM-obj: by inductive hypotheses, for all 𝑖 ∈ {1,… , 𝑛}, 𝑝𝑖 �∶ e𝑖 does
not hold, and from the side condition we also know 𝜎 = 𝜎1 ∪⋯ ∪ 𝜎𝑛.
The only possibly applicable rules for 𝑝 �∶ e are PMF-obj-other and PMF-
obj. The first one is not applicable due to the side condition. The second
one relies on the premise [𝑝1,… , 𝑝𝑛] �∶ [e1,… , e𝑛], but that can neither
be proved from rule PMF-list-merge (because we know 𝜎1,… , 𝜎𝑛 are
mergeable into 𝜎) nor from rule PMF-list-elem (by the initial inductive
hypothesis).

• For rule PM-list the same reasoning as above holds.

• The lemma trivially holds forwildcards andvariables (rules PM-wildcard
and PM-var), as no failed pattern matching is defined on them.

• Rules PM-left and PM-right: the inductive hypothesis on the premises
implies that either 𝑝1 �∶ e or 𝑝2 �∶ e cannot hold, therefore 𝑝1 | 𝑝2 �∶ e cannot
be proved (rule PMF-choice).

• The lemma trivially holds for event expressions.

Lemma 2. Successful event pattern matching is deterministic, that is, if 𝑝 ∶ e ⇝ 𝜎
and 𝑝 ∶ e ⇝ 𝜎 ′, then 𝜎 = 𝜎 ′.

Proof. By induction on the inference rules defining 𝑝 ∶ e ⇝ 𝜎 (Figure 2.1).

• Rules PM-obj and PM-list: by inductive hypotheses, all substitutions
𝜎1,… , 𝜎𝑛 are uniquely determined. From the side conditions it comes
that all substitutions agree on the same variables (if any), otherwise
substitution merge would not be defined, therefore 𝜎 is the only func-
tion whose domain dom(𝜎1) ∪ ⋯ ∪ dom(𝜎𝑛) mapping those variables
according to the single substitutions.

• Rules PM-list-more: the lemma holds by straightforward induction, as
the substitution is the same as in the premise.

• Rules PM-wildcard, PM-var, and PM-exp are axioms and there is only
one possible substitution.
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• Rules PM-left and PM-right: by Lemma 1, either 𝑝1 ∶ e ⇝ 𝜎 or 𝑝1 �∶ e hold,
but not both, thus only one of the rules is applicable. In both cases, the
lemma holds by inductive hypothesis.

Lemma 3. If Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 �∶ e holds, then Γ ⊢ 𝑑1,… , 𝑑𝑖−1, 𝑑𝑖+1,… , 𝑑𝑛 ; 𝜏 �∶ e
holds as well.

Proof. Straightforward induction on the rules in Figure 2.2 part 2.

Lemma 4. If Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎″, then Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 �∶ e does not hold.

Proof. By induction on the inference rules defining Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎″.

• Rule ETM-step: by inductive hypothesis Γ ⊢ 𝑑2,… , 𝑑𝑛 ; 𝜏 �∶ e does not
hold, therefore by lemma 3 Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 �∶ e does not hold as well.

• Rule ETM-direct: from the side condition 𝜎𝑝 ∶ e ⇝ 𝜎 ′, then by Lemma 1
𝜎𝑝 �∶ e does not hold, therefore the only usable rule ETFM-direct is not
applicable.

• The same reasoning as above also holds for rule ETM-direct-not.

• Rule ETM-derived: from the inductive hypotheses, Γ ⊢ Γ ; 𝜎𝜏𝑗 �∶ e does
not hold for 1 ≤ 𝑗 ≤ 𝑞, therefore the only usable rule ETFM-derived to
derive Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 �∶ e cannot be applied.

• Rule ETM-derived-not: from the premises, all 𝜎𝜏𝑗 do not match e ac-
cording to any declaration. Hence, it is not possible to apply the only
usable rule to prove Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 �∶ e, namely ETFM-derived-not.

Lemma 5. Event type matching is deterministic, that is, if Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎
and Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎 ′, then 𝜎 = 𝜎 ′.

Proof. Theproof goes by induction on the inference rules defining Γ ⊢ 𝑑1,… , 𝑑𝑛;
𝜏 ∶ e ⇝ 𝜎. The (only) rule applicable depends on the shape of 𝑑1 (see the side
conditions in Figure 2.2).

• Rule ETM-step: from the hypothesis Γ ⊢ 𝑑1 ; 𝜏 �∶ e and lemma 4 we have
that Γ ⊢ 𝑑1 ; 𝜏 ∶ e ⇝ 𝜎″ cannot hold for any substitution 𝜎″, therefore
the only applicable rule for Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎 ′ is ETM-step; we
can then conclude by applying the inductive hypothesis to the other
hypothesis Γ ⊢ 𝑑2,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎.

• Rule ETM-direct: the resulting substitution is computed by the pattern
matching side condition, which is deterministic by Lemma 2.

• Rules ETM-direct-not and ETM-derived-not: the produced substitution
is always ∅.

• Rule ETM-derived: by applying the same rule with the same hypotheses
we can derive Γ ⊢ 𝑑1 ; 𝜏 ∶ e ⇝ 𝜎, hence by Lemma 4 Γ ⊢ 𝑑1 ; 𝜏 �∶ e does
not hold, therefore rule ETM-step is not applicable; this means that the
only applicable rule for Γ ⊢ 𝑑1,… , 𝑑𝑛 ; 𝜏 ∶ e ⇝ 𝜎 ′ is ETM-derived; we can
then conclude by applying the inductive hypothesis to the hypothesis
Γ ⊢ Γ ; 𝜎″𝜏𝑗 ∶ e ⇝ 𝜎.



36 trace calculus

Lemma 6. If 𝐸(𝜙), then NE(𝜙) does not hold.

Proof. By induction on the inference rules defining 𝐸(−) (see Figure 2.4 and
2.5 for 𝐸(−) and NE(−), respectively), and case analysis on the structure of
the term.

• Rules E-empty and E-1: the opposite judgement is not derivable as no
rule consequence matches NE(𝜖) or NE(1).

• Rule E-bin: by inductive hypothesis, neither NE(𝜙1) nor NE(𝜙2) hold,
hence rule NE-bin cannot be applied.

• Rule E-or: NE(𝜙𝑖) does not hold by inductive hypothesis, for some
𝑖 ∈ {1, 2}, thus rule NE-or cannot be applied.

• The lemma holds for the other rules by straightforward induction.

Note that the lemma above does not imply that no 𝜙 exists such that neither
judgements holds. An if-then-else term with an expression that does not
evaluate neither to true nor to false (because of unbound variables, for instance)
is an example of such a TC term.

Lemma 7. If 𝜙 o−→
Γ

𝜙′ ; 𝜎, then 𝜙
o
−/−→
Γ
does not hold.

Proof. By induction on the rules defining 𝜙 o−→
Γ

𝜙′ ; 𝜎 in Figure 2.6 (rules for
the negated judgement are in Figure 2.7).

• Rule R-1: no rule exists to derive 1
o
−/−→.

• Rule R-prefix: by application of Lemma 4 to the side condition Γ ⊢
Γ ; 𝜏 ∶ o ⇝ 𝜎, it comes that Γ ⊢ Γ ; 𝜏 �∶ o. Rule NR-prefix cannot be applied
then.

• Rules R-or-l and R-or-r: by inductive hypothesis, 𝜙𝑖
o
−/−→ for some 𝑖 ∈

{1, 2}. By rule NR-or, 𝜙
o
−/−→ does not hold.

• The same reasoning as above holds for rules R-shuf-l, R-shuf-r, and
R-cat-l, by considering the appropriate rules for 𝜙

o
−/−→.

• Rule R-cat-r: the rules for 𝜙1 ⋅ 𝜙2
o
−/−→ are NR-cat-l and NR-cat-r. The

former requires NE(𝜙1), but from rule R-cat-r we know 𝐸(𝜙1), and by
Lemma 6, NE(𝜙1) cannot hold. The latter requires 𝜙2

o
−/−→ as a premise,

but by inductive hypothesis it does not hold.

• For all the other rules the lemma comes from the inductive hypotheses
and inspection of the applicable rules in Figure 2.7.

Lemma 8. Data expression evaluation is deterministic, that is, if ev(𝜉) = 𝑟 and
ev(𝜉) = 𝑟′, then 𝑟 = 𝑟′.

Proof. The lemma is a direct consequence of Definition 14, which uses deter-
ministic mathematical operators.

Theorem 1. (TC rewriting determinism) If 𝜙 o−→
Γ

𝜙1 ; 𝜎1 and 𝜙 o−→
Γ

𝜙2 ; 𝜎2, then
𝜙1 = 𝜙2 and 𝜎1 = 𝜎2.
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Proof. The proof proceeds by induction on the rules defining 𝜙 o−→
Γ

𝜙1 ; 𝜎1 in
Figure 2.6.

• Rule R-1: 1 can only rewrite in itself with the empty substitution, thus
𝜙1 = 𝜙2 = 1 and 𝜎1 = 𝜎2 = ∅.

• Rule R-prefix: 𝜙 = 𝜏 ∶ 𝜙′. From the rule structure, 𝜙1 = 𝜙2 = 𝜙′, and by
Lemma 5 𝜎1 = 𝜎2.

• Rule R-or-l: 𝜙 = 𝜙′ ∨ 𝜙″. From the premise, 𝜙′ o−→ 𝜙1 ; 𝜎1 and 𝜙′ o−→ 𝜙2 ;
𝜎2, and by Lemma 7, 𝜙 can only be rewritten using R-or-l. By inductive
hypothesis 𝜙1 = 𝜙2 and 𝜎1 = 𝜎2. Similar reasoning holds for rule R-or-
r and for the other binary operator rules.

• Rule R-and: 𝜙 = 𝜙′ ∧ 𝜙″. By inductive hypothesis on the premises and
by definition of substitution merge (Section 2.2.2).

• Rules R-var-1 and R-var-2: from the premise of the rule, 𝜙 = {𝑥; 𝜙′} and
𝜙′ o−→ 𝜙″ ; 𝜎 ′. By inductive hypothesis, 𝜙′ can only rewrite to 𝜙″ with
substitution 𝜎 ′, so also 𝜙 o−→ 𝜙2 ; 𝜎2 comes from the same premise. Since
there is only one substitution possible for the premises of both rules,
and the side conditions 𝑥 ∈ dom(𝜎 ′) and 𝑥 ∉ dom(𝜎 ′) of the two rules
are incompatible, we deduce that the same rule has been applied, and
the conclusion directly follows from the inductive hypothesis.

• Rules R-if-true and R-if-false: by inductive hypothesis and Lemma 8.

• Rule R-generic: since the substitution instantiating generic parameters
is unique and only depends on 𝜙, the claim holds by applying the
inductive hypothesis.
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This Chapter introduces RML, a high-level, system-agnostic specification lan-
guage. RML provides more operators than TC, though the additional ones
can be understood as derived operators from an expressivity point of view.
While the aim of TC is to be a small foundational formalism, RML is meant to
be a user-friendly higher level language.

3.1 syntax

The syntax of RML is made of standard inductive terms, no regular terms are
involved. Since RML has to be implemented directly, it is easier to work with
structures that can be translated to standard abstract syntax trees. Recursion
is encoded through syntactic definition, though this time they are explicitly
represented.

Definition 20. (RML syntax) Given a set of identifiers ℐ and variables 𝒳,
the syntax of an RML specification Spec is defined according to the following
context-free grammar:

Spec ∶∶= 𝒟; ⋯ ; 𝒟; main = Exp; Def ; ⋯ ; Def ; (specification)
Def ∶∶= ℐ⟨𝒳,… ,𝒳⟩ = Exp (definition)
Exp ∶∶= empty (empty)

| all (all)
| none (none)
| 𝒯 (event type)
| ℐ⟨Ξ,… ,Ξ⟩ (recursion)
| Exp Exp (concatenation)
| Exp∧ Exp (intersection)
| Exp∨ Exp (union)
| Exp | Exp (shuffle)
| {𝒳;Exp} (parametric)
| Exp! (prefix closure)
| Exp? (optional)
| Exp+ (repeat)
| Exp∗ (Kleene star)
| 𝒯 ≫ Exp (single filter)
| 𝒯 ≫ Exp ; Exp (double filter)
| if Ξ then Exp else Exp (conditional)

When there is no generic parameter/argument, angular brackets ⟨⟩ can be
omitted altogether, both at definition and use sites. Furthermore, unproductive
definitions of shape id⟨𝑥1,… , 𝑥𝑛⟩ = id′⟨𝜉1,… , 𝜉𝑚⟩ are not allowed.

An RML specification has the following components:

39
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• a list of event type declarations 𝑑1,… , 𝑑𝑛 describing the shape of the
events that are relevant to the specification;

• a definition main = Exp working as the entry point of the verification
procedure;

• a list of more definitions Def 1;⋯ ;Def𝑚; to describe the rest of the spec-
ifications, if more than one definition is needed.

Note that RML generics work at the definition level: rather than making
arbitrary expression generic, only single definitions can have generic parame-
ters, and they are instantiated when a definition refers to another one (or to
itself).

RML provides three constants. Constant empty is only verified by the empty
trace, and says no more events are expected, just like TC 𝜖. Constant all can be
understood as the set of all traces, and it is used to describe a condition where
any behavior is accepted from there on (for instance because the property
being verified already holds). Finally, none is dual to all and signals an error,
regardless of more events being observed or not (this is the case where a
property has been violated).

TC makes a clear distinction between concatenation and prefix, as the latter
is where the event matching happens, and it is the base case of TC semantics
(Definition 18). Such distinction is however more relevant for the development
of a formal semantics, rather than for the final user. In RML there is only one
operator, concatenation, and event type patterns are simply expressions. The
translation to TC will take care of this. RML concatenation is syntactically
represented by juxtaposition.

Exp! encodes prefix closure. It is sometimes useful to specify a set of traces,
and then to accept any possible prefix of any of those traces, rather than ex-
plicitly account for termination at every step. Let us consider, for instance, a
specification of a data structure like a stack or a queue. A stricter specifica-
tion could force the program to empty the data structure before terminating,
while a more relaxed one would only ensure observed operations return the
correct values, letting the program the possibility to terminate at any time.
Following this example, by applying the prefix closure operator to the stricter
specification we would obtain the more relaxed semantics.

Regular expressions are a standard tool in runtime verification, and their
standard operators are often useful and well-understood by developers and
computer scientists. RML supports typical regular expressions operators like
Exp?, Exp+, and Exp∗ (beyond concatenation and union). Their semantics is
the standard one, augmented with infinite traces: Exp+ and Exp∗ allows both
finite and infinite concatenations of traces that are correct with respect to Exp.

When writing specifications in a modular way, it is often the case that
different parts of the specification verify different properties, and they are
then combined with appropriate operators to get the desired global property.
When this happens, not all the events observed by the instrumentation are
relevant for all those parts, and the approach fails to be truly modular and
quickly leads to cumbersome specifications. The filter operators serve this
exact purpose: 𝜏 ≫ Exp ignores all the events not matching 𝜏, and check those
matching it against Exp. The extended version (𝜏 ≫ Exp ; Exp′) verifies also
events not matching 𝜏, but against Exp′, rather than ignoring them.

The other operators have the same syntax and semantics of TC, namely:
intersection, union, shuffle, parametric expressions, and if-then-else.
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3.2 prefix closure

Most of RML operators can be expressed in terms of TC operators in a com-
positional way; unfortunately, the prefix closure described in the previous
section is an exception.

We recall that prefix closure adds the possibility of terminating after every
step, or, in other words, its semantics is the set of all prefixes of all traces in the
original semantics (hence the name). Such an operation will now be defined
on TC terms, and it will be used when formalizing the semantics of RML.

Definition 21. (Prefix closure) Given a TC term 𝜙, its prefix closure pc(𝜙) is
coinductively defined by the following equations:

pc(𝜖) = 𝜖
pc(0) = 𝜖
pc(1) = 1

pc(𝜏 ∶ 𝜙) = 𝜖 ∨ (𝜏 ∶ pc(𝜙))
pc(𝜙1 ⋅ 𝜙2) = pc(𝜙1) ∨ (𝜙1 ⋅ pc(𝜙2))
pc(𝜙1 ∨ 𝜙2) = pc(𝜙1) ∨ pc(𝜙2)
pc(𝜙1 ∧ 𝜙2) = pc(𝜙1) ∧ pc(𝜙2)
pc(𝜙1 | 𝜙2) = pc(𝜙1) | pc(𝜙2)
pc({𝑥; 𝜙}) = {𝑥; pc(𝜙)}

pc(𝑔⟨𝜉1,… , 𝜉𝑛⟩) = pc(𝑔)⟨𝜉1,… , 𝜉𝑛⟩
pc(⟨𝑥1,… , 𝑥𝑛⟩.𝜙) = ⟨𝑥1,… , 𝑥𝑛⟩.pc(𝜙)

pc(if 𝜉 then 𝜙1 else 𝜙2) = if 𝜉 then pc(𝜙1) else pc(𝜙2)

Since no traces are valid with respect to 0, we only need to add the empty
one, therefore pc(0) = 𝜖. 𝜖 and 1 already accepts the empty trace, so nothing
needs to be changed.

Prefix operator expects at least one event, so we need to explicitly allow
termination by adding 𝜖. Concatenation, on the other hand, is less intuitive.
If we simply apply the transformation to both branches, then the resulting
specification could accept a prefix of a trace in J𝜙1K followed by a prefix of a
trace in J𝜙2K; this however is not a prefix of a trace belonging to J𝜙1 ⋅ 𝜙2K.

The transformation is entirely compositional on all the other operators and
strictly follows the structure of the specification.

Example 9. (Stack prefix closure) Example 7 shows a TC specification 𝜙 for a
stack. One limitation of that specification is that it expects the data structure to
be empty at the end of monitoring. While this can be sensible in some cases, it
could also make sense to relax the specification and allow elements to be in the
structure at the end of the program. Rather than changing the specification, we
can simply consider pc(𝜙) instead, and get the desired behavior with minimal
effort.

3.3 translation semantics

Since RML is defined at a higher-level w.r.t. TC, and inspired by it, its semantics
is given by translation: an RML specification is compiled down to a TC term,
and the specification semantics (as a set of traces) is that of such a term.
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Definition 22. (RML compilation)Given a list of RMLdefinitionsDef 1,… ,Def 𝑛,
an RML expression Exp is translated to a TC term 𝜙 according to the coin-
ductive interpretation of judgement Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙 in Figure 3.1.

The compilation rules are meant to be understood coinductively: when an
identifier is found, the relevant definition is picked from the specification,
and due to recursion between definitions, this can lead to cycles. While in an
inductive system this would lead to invalid infinite proof trees, the coinductive
interpretation “closes the loop” and produces a regular TC term. Due to this,
the constraint imposed in Definition 20 is crucial, as an invalid definition
like main = main could otherwise be translated to any regular term with
the coinductive interpretation (we recall that coinduction interpretation of an
inference system allows all infinite proof trees):

C-id
C-id

⋮
(main = main) ⊢ main ⇝ 𝜙
(main = main) ⊢ main ⇝ 𝜙

The compilation of constants empty, all, and none is trivial as equivalent
constants exist in TC (see rules C-empty, C-all, and C-none). The same holds
for intersection, union, shuffle and variable blocks, and the compilation just
needs to co-recursively compile the subterms (rules C-bin-op and C-var).

When an event type is found, it needs to be translated to a valid TC term
(event types by themselves are not TC terms), so a prefix is generated, with
the event type followed by the empty trace (rule C-evtype).

Since generic parameters in RML are declared in definitions, when an iden-
tifier is found the compilation also needs to take care of generic arguments,
if any. Rule C-id retrieves the relevant definition from the context (see the
side condition), compiles the expression on the right, and turns the result-
ing TC term in a generic one with the appropriate variables (⟨𝑥1,… , 𝑥𝑚⟩.𝜙).
Such parameters are then instantiated with the arguments used in the RML
expression, producing the generic application (⟨𝑥1,… , 𝑥𝑚⟩.𝜙)⟨𝜉1,… , 𝜉𝑚⟩.

Concatenation is translated in two different ways depending on the shape of
the expression on the left: if it is an event type, then a prefix is produced (rule
C-cat-1); otherwise, TC concatenation is used (rule C-cat-2). This way, RML
concatenation expressions in the shape evType exp are translated to evType ∶exp,
rather than (evType ∶ 𝜖) ⋅ exp, as it is expected. Note that rule C-evtype is
still needed, since in RML event types are proper expression and can be used
anywhere, even outside concatenation expressions.

Prefix closure compilation does not work in a compositional way, and it
resorts to the transformation formalized in Definition 21 (rule C-pc).

Compilation of regular expressions operators needs to change the structure
of the resulting term. For the optional operator ?, the compiled term 𝜙 is
inside a union operation together with the empty trace 𝜖, so that termination is
allowed, but the semantics is otherwise unchanged from that of 𝜙 (rule C-opt).
Kleene star is implemented producing a regular term that either stops (𝜖) or
uses the compiled term and then recursively start again from the initial choice,
effectively making the verification process iterate over 𝜙′ as many times as
needed (rule C-star). Plus operator is compiled in a similar way, with the
exception that at least one iteration is forced to happen in 𝜙′ ⋅ 𝜙 (rule C-plus).
Indeed, in regular expressions, 𝑒+ = 𝑒 𝑒∗.
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C-empty
Def 1,… ,Def 𝑛 ⊢ empty ⇝ 𝜖

C-all
Def 1,… ,Def 𝑛 ⊢ all ⇝ 1

C-none
Def 1,… ,Def 𝑛 ⊢ none ⇝ 0

C-evtype
Def 1,… ,Def 𝑛 ⊢ 𝜏 ⇝ 𝜏 ∶ 𝜖

C-id
Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙

Def 1,… ,Def 𝑛 ⊢ id⟨𝜉1,… , 𝜉𝑚⟩ ⇝ (⟨𝑥1,… , 𝑥𝑚⟩.𝜙)⟨𝜉1,… , 𝜉𝑚⟩
Def 𝑖 = (id⟨𝑥1,… , 𝑥𝑚⟩ = Exp)

C-cat-1
Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙

Def 1,… ,Def 𝑛 ⊢ 𝜏 Exp ⇝ 𝜏 ∶ 𝜙

C-cat-2
Def 1,… ,Def 𝑛 ⊢ Exp1 ⇝ 𝜙1 Def 1,… ,Def 𝑛 ⊢ Exp2 ⇝ 𝜙2

Def 1,… ,Def 𝑛 ⊢ Exp1 Exp2 ⇝ 𝜙1 ⋅ 𝜙2
Exp1 ≠ 𝜏

C-bin-op
Def 1,… ,Def 𝑛 ⊢ Exp1 ⇝ 𝜙1 Def 1,… ,Def 𝑛 ⊢ Exp2 ⇝ 𝜙2

Def 1,… ,Def 𝑛 ⊢ Exp1 op Exp2 ⇝ 𝜙1 op 𝜙2
op ∈ {∧,∨, |}

C-var
Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙

Def 1,… ,Def 𝑛 ⊢ {𝑥;Exp} ⇝ {𝑥; 𝜙}

C-pc
Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙′

Def 1,… ,Def 𝑛 ⊢ Exp! ⇝ 𝜙
𝜙 = pc(𝜙′)

C-opt
Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙

Def 1,… ,Def 𝑛 ⊢ Exp? ⇝ 𝜖 ∨ 𝜙

C-star
Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙′

Def 1,… ,Def 𝑛 ⊢ Exp∗ ⇝ 𝜙
𝜙 = 𝜖 ∨ (𝜙′ ⋅ 𝜙)

C-plus
Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙′

Def 1,… ,Def 𝑛 ⊢ Exp+ ⇝ 𝜙′ ⋅ 𝜙
𝜙 = 𝜖 ∨ (𝜙′ ⋅ 𝜙)

C-filter-1
Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙

Def 1,… ,Def 𝑛 ⊢ 𝜃(𝑝1,… , 𝑝𝑚) ≫ Exp ⇝ (𝜙′ ∧ 𝜙) | 𝜙″
𝜙′ = 𝜖 ∨ (𝜃(𝑝1, … , 𝑝𝑚) ∶ 𝜙′)

𝜙″ = 𝜖 ∨ (𝜃(𝑝1, … , 𝑝𝑚) ∶ 𝜙″)

C-filter-2
Def 1,… ,Def 𝑛 ⊢ Exp1 ⇝ 𝜙1 Def 1,… ,Def 𝑛 ⊢ Exp2 ⇝ 𝜙2

Def 1,… ,Def 𝑛 ⊢ 𝜃(𝑝1,… , 𝑝𝑚) ≫ Exp1 ; Exp2 ⇝ 𝜙

𝜙′ = 𝜖 ∨ (𝜃(𝑝1, … , 𝑝𝑚) ∶ 𝜙′)

𝜙″ = 𝜖 ∨ (𝜃(𝑝1, … , 𝑝𝑚) ∶ 𝜙″)

𝜙 = (𝜙′ ∧ 𝜙1) | (𝜙″ ∧ 𝜙2)

C-conditional
Def 1,… ,Def 𝑛 ⊢ Exp1 ⇝ 𝜙1 Def 1,… ,Def 𝑛 ⊢ Exp2 ⇝ 𝜙2

Def 1,… ,Def 𝑛 ⊢ if 𝜉 then Exp1 else Exp2 ⇝ if 𝜉 then 𝜙1 else 𝜙2

Figure 3.1: Inference system coinductively defining RML compilation
Def 1,… ,Def 𝑛 ⊢ Exp ⇝ 𝜙.
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Filter operators are the most complex ones to translate (rules C-filter-1 and
C-filter-2). Incoming events need to be verified against different expressions
depending whether they match the condition, expressed by the event type 𝜃.
TC terms 𝜙′ and 𝜙″ allow any number of events matching 𝜃 or its negation (see
Def. 9), respectively. Then, shuffle and intersection are combined to correctly
validate events. In the TC term produced by rule C-filter-1, events matching
the condition can only be consumed by the left side of the shuffle, and they are
forced to be valid with respect to the specification inside the filter (𝜙). Other
events are ignored by being consumed on the right through 𝜙″. A similar
translation is used in rule C-filter-2, though additionally events not matching
the condition also need to satisfy property Exp2, namely the one expressed in
the second branch of the filter.

Conditional expressions (if-then-else) are translated to the equivalent TC
construct. Note that filters select specifications depending on event typematch-
ing, while conditional expressions work on data expressions, possibly using
the result of arithmetic and boolean computations.

Finally, note that data expressions, which are used in generic instantiations
(rule C-id) and conditionals (rule C-conditional) do not need to be compiled,
as they are the same as in TC.

On top of the translation above, we can define the semantics of RML speci-
fications.

Definition 23. (RML semantics) Given an RML specification Spec in the fol-
lowing shape:

𝑑1;
⋮
𝑑𝑛;
main = Exp;
Def 1;
⋮
Def𝑚;

the semantics of Spec is JSpecK = J𝜙K𝑑1,…,𝑑𝑛,𝑑1,…,𝑑𝑛
, where 𝜙 is the TC term such

that the following judgment is derivable:

(main = Exp),Def 1,… ,Def𝑚 ⊢ Exp ⇝ 𝜙

In the definition above, first the main RML expression Exp is compiled to a
TC term 𝜙 using the translation formalized in Figure 3.1 (all definitions need
to be carried as context). Then, we take the TC semantics of 𝜙, and we do
so according not only to the given event type declarations, but also to their
negations (see Def.9). This is needed because compilation rules C-filter-1 and
C-filter-2 from Figure 3.1 exploit such additional declarations.



4EXAMPLES AND PATTERNS

The previous chapters formalized the low-level calculus TC and the high-
level specification language RML. In Chapter 2 some examples of how to
declare and use event types have been given, so this part of the thesis will
be mainly focused on the actual specification layer, assuming sensible event
types. Indeed, event type declarations are the interface to instrumentation,
while here we will focus on high-level, reusable specifications and patterns
to show the features of RML and how they play together to specify complex
real-world properties.

All the examples presented here have been tested with our tool. These exam-
ples (and many others) can be found on our website1, and the implementation
of RML is open source and hosted on GitHub2.

4.1 resource management

The task of correctly handling the use of limited resources is ubiquitous in
software, and the more concurrent and distributed the system is, the harder it
becomes to verify correct usage statically. Therefore, verification of resource
management is a good fit for runtime verification of a control-oriented prop-
erty.

Three main typical operations on resources are acquisition, use, release. Ex-
amples include files, I/O channels, concurrency locks, and many others. A
first, simple RML specification for resource monitoring is the following:

// event types acquire(id), release(id), use(id) to be defined

Main = { let id; acquire(id) (use(id)* release(id) | Main )}?;

Listing 4.1: Resource management specification.

Resources are identified by id, and the first expected event is the acquisition
of a resource (and this is used to bind id through the event type matching
semantics). Then, two sequences of events are expected to happen, in an
interleaved way (hence the shuffle operator): on the left, we want to monitor
the correct use of the resource that has just been acquired, that is, any number
of uses followed by a release operation for that resource; on the right, the
specification recursively goes back to the starting point, to allow for more
resources to be acquired. Finally, the whole specification is followed by the
regular expression operator ? to state that the block is optional, and the empty
trace is also accepted (no use of resources is a correct bahavior).

The specification above is simple and compact yet powerful, as it allows
monitoring of a dynamically changing set of resources, used in a concurrent
way.When 𝑛 resources are simultaneously acquired, the underlying TC term is
recursively unfolded 𝑛 times and the variable id is instantiated every timewith
the new identifier. The block limits the scope and allows the standard hiding
of variables that is implemented in programming languages. Furthermore,

1 https://rmlatdibris.github.io/

2 https://github.com/RMLatDIBRIS
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when resources are released, TC optimizations (see laws for identity of shuffle
in Section 2.6) allow the monitor to shrink the rewritten term, keeping the
time and space complexity linear with respect to the maximum number of
resources simultaneously acquired, rather than all resources acquired since the
start of the execution.

As an example of RML compilation, the specification in Figure 4.1 is com-
piled to the TC term 𝜙, where

𝜙 = {id; acquire(id) ∶ ((𝜙′ ⋅ (release(id) ∶ 𝜖)) | 𝜙)} ∨ 𝜖
𝜙′ = 𝜖 ∨ (use(id) ∶ 𝜙′)

RML specifications can often be used in different systems thanks to event
type declarations. For instance, the resource specification above can be “in-
stantiated” for the file example provided in Chapter 23:

acquire(id) matches {funcName: 'open', result: id};

use(id) matches {funcName: 'read'|'write', args: [id, ...]};

release(id) matches {funcName: 'close', args: [id, ...]};

relevant matches use(_) | acquire(_) | release (_);

Main = relevant >> { let id;

acquire(id) (use(id)* release(id) | Main )

}?;

Listing 4.2: Adaptation of resource management specification to files.

One limitation of the resource specifications presented so far is that they
check for correct usage, but not necessarily exclusive: two subsequent acquire
operations on the same resource identifier would not raise an error. While this
may be acceptable if we trust the identifier assignment system (for instance
because it is part of the operating system), in some cases we may also want to
enforce this additional constraint.

The following RML specification verifies exclusive and correct use of a
dynamic set of resources.

// acquire(id), use(id), release(id) to be defined

acqRel(id) matches acquire (id) | release(id);

Main = {let id; acquire(id)

((Main | use(id)* release(id))

/\ (acqRel(id) >> release(id) all))

}?;

Listing 4.3: Resource management specification for exclusive use.

This extended specification adds another constraint to the specification:
after having acquired a resource id, any further acquire/release operation on
id must verify release(id) all, which means that the trace has to start with
a release of that resource (all can be understood as no more requirements
need to be verified). In other words, it is now enforced that a resource needs
to be released before it can be acquired again.

3 In Chapter 2, the pattern used to ignore elements at the end of a list is more, but the
concrete syntax implemented in our tool is ...; we chose a different mathematical no-
tation to avoid confusion at the meta-syntax level, but in the example the implemented
syntax will be used.
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This example also shows how the intersection operator can be used to em-
ploy a divide and conquer approach to specifications, when different, loosely
related properties can be specified independently and then joined together.
The filter operator is very useful to restrict the domain of events to those that
are relevant to a specific piece of RML code.

4.2 state variables

RML generics can be used to carry values during the verification process,
and data expressions allow arithmetic and boolean computations on them.
Furthermore, with conditionals, decisions during the verification procedure
can be taken depending on such values.

The following example (Listing 4.4) shows how to use state variables to
ensure that the use of limited resources does not exceed a given total amount.

// available(total), use(total, used) to be defined

Use<total> = if (total > 0)

{ let used; use(total, used) Use<total-used> }

else empty;

Main = { let total; (available(total) Use<total>)! };

Listing 4.4: Specification for operations on limited resources.

First, an event matching available(total) lets us know the total amount of
available resources. Then, available(total) is matched by operations check-
ing the availability of resources, with the parameter being themaximumusable
amount. Events that actually consume resources match use(total, used), so
that the specification both captures the total amount currently available and
the amount that has been used.

Generics, variables and conditionals can be used together to specify behav-
iors that do not directly depend on observed data, require some computation
over such data.

4.3 lifo properties

RML can can be successfully employed to verify also data-oriented properties
to check the correct implementation of data types. One of the most commonly
used data type are stacks. Besides the data type itself, LIFO properties are
often useful in concurrent and distributed programming. Nested locks, for
instance, can be verified with LIFO poperties (Kahlon, Ivancic, and Gupta,
2005), but this poses undecidability problems for static verification and model
checking (Atig et al., 2017). However, as it will be shown, the problem can be
successfully tackled with runtime verification and RML.

Stacks must support at least push (insertion) and pop (removal) of values.
A first example of stack specification follows.

// push(val) and pop(val) to be defined

Main = Stack!;
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Stack = { let val; push(val) Stack pop(val) }*;

Listing 4.5: Stack specification.

First, let us focus on the Stack definition. The specification expects that the
stack is initially empty; after declaring variable val to capture the actual value
that will be pushed, the specification expects a push operation, followed by
the behavior of a stack (recursively), followed by a pop operation of the same
value that was pushed before. This way we allow an unbounded number of
elements to be pushed, but we expect their removal in the opposite order;
intuitively, the Stack between push(val) and pop(val) is unfolded as much
as needed.

The whole variable block is followed by a Kleene star operator: this allows
to freely interleave push and pop operations (as long as the LIFO policy is
verified).

Finally, Main adds the prefix closure on the top, so that any prefix of a valid
trace with respect to Stack is also accepted. This way a program using a stack
and terminating before emptying it will not be rejected.

Data structures usually offer methods to get the current size, that is, the
number of elements inside. To take into account this functionality, we need to
extend the specification and exploit generics and conditional expressions; see
the following example.

// push(val), pop(val) and size(s) to be defined

Main = Stack<0>!;

Stack<s> = size(s)* { let val;

push(val) Stack<s+1> pop(val) Stack<s>

}?;

Listing 4.6: Stack specification monitoring size.

The core of the specification, Stack<s>, is now generic: it is parametric with
respect to a computed (rather than observed) value. In particular, the new
parameter is the size of the stack.

The first difference is that zero or more calls to the size method are now
allowed, and they have to return exactly s. Inside the specification, the size is
increased at the recursive occurence because a push operation has just been
observed. Note that after the pop operation the size used is again s.

The ability to compute values along the way adds a layer of parametricity
that is not limited to the information collected from observing the execution
of the system under scrutiny, and this can increase both expressivity and
decoupling between the monitor and the instrumentation.

A possible improvement to the given specification is a further decomposition.
From the specification it is not immediately clear when and how size(s)

events are allowed, and if we were about to add support for more operations,
the proposed approach would not scale.

By exploiting again filters and intersection, we can rewrite Listing 4.6 to
another specification with the same semantics, but more modular and ready
to be extended with more operations.

// push(val), pop(val) and size(s) to be defined

push matches push(_);
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pop matches pop(_);

notSize not matches size(_);

Main = ((notSize >> Stack) /\ Size<0>)!;

Stack = { let val; push(val) Stack pop(val) }*;

Size<s> = (size(s) Size<s>

\/ pop Size<s-1>

\/ push Size<s+1>)?;

Listing 4.7: Modular stack specification with size monitoring.

The new specification has the same semantics as the previous one, though
now the monitoring of structural modifications and that of the stack size are
clearly decoupled. In Size<s> no check on the size s is required to accept a
pop event, because Stack already forbids pop operations on the empty stack.

More pieces could be easily added with the intersection operator as above.
The specification can also be scaled to handle multiple stacks, with aug-

mented event types taking an additional argument to identify the stack. Event
types new(id) and free(id)will be introduced, encoding dynamic allocation.

// push(id, val), pop(id, val) and size(id, s) to be defined

// new(id) and free(id) to be defined

push matches push(_, _);

pop matches pop(_, _);

notSize not matches size(_, _);

Main = { let id; new(id) (Main | (Single<id> free(id))) }?;

Single<id> = ((notSize >> Stack<id>) /\ Size<id, 0>)!;

Stack<id> = { let val; push(id, val) Stack<id> pop(id, val) }*;

Size<id, s> = (size(id, s) Size<id, s>

\/ pop Size<id, s-1>

\/ push Size<id, s+1>)?;

Listing 4.8: Stack specification monitoring size and multiple objects.

Stack<id> and Size<id, s> are straightforward generalization of the pre-
vious definitions to also match identifiers (definitions can have more generic
parameters). The top-level definition Main ensures that objects are created and
deallocated correctly, and the optimizations presented in Chapter 2 will shrink
the verification term after stack deallocation.

4.4 fifo properties

From an expressivity point of view, LIFO properties are not very hard to be
specified. Context-free grammars are enough to match corresponding push
and pop operations (if we ignore parametricity). If we shift our attention to
First-In-First-Out properties (FIFO) then specifications become harder to be
defined, as they require context-sensitive capabilities. A FIFO policy is what it
is used in FIFO queues, another very common data type in computer science.

Let us consider the formal language 𝐿FIFO = { 𝑎𝑚𝑏𝑛𝑐𝑚𝑑𝑛 ∣ 𝑚 > 0 ∧ 𝑛 > 0 }.
Just like non-regular languages can be proved to be so exploiting the pumping
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lemma for regular languages, it can be shown that a language is not context-
free using the pumping lemma for context-free languages, also called Bar-
Hillel lemma (Bar-Hillel, Perles, and Shamir, 1961). The latter is however more
involved as it requires to divide string in five parts, rather than three as in the
case of regular languages.

Lemma 9. (Bar-Hillel) For any context-free language 𝐿, there exists a pumping
length 𝑝 > 0 such that every string 𝑠 ∈ 𝐿 of length |𝑠| = 𝑛 (such that 𝑛 ≥ 𝑝) can be
decomposed as 𝑠 = 𝑢 𝑣𝑤𝑥 𝑦 so that:

1. |𝑣 𝑥| > 0;

2. |𝑣 𝑤 𝑥| ≤ 𝑝;

3. 𝑢 𝑣𝑛𝑤𝑥𝑛 𝑦 ∈ 𝐿, for all 𝑛 ≥ 0.

Lemma 10. 𝐿FIFO = { 𝑎𝑚𝑏𝑛𝑐𝑚𝑑𝑛 ∣ 𝑚 > 0 ∧ 𝑛 > 0 } is not context-free.

Proof. By contradiction. Assuming 𝐿FIFO is context-free, consider the string
𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝, with 𝑝 being a valid pumping length for 𝐿FIFO according the the
Bal-Hillel lemma. The string can be decomposed as 𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝 = 𝑢𝑣𝑤𝑥 𝑦, and
according to condition 2 of the lemma, |𝑣 𝑤 𝑥| ≤ 𝑝. Since the starting string
𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝, 𝑣 𝑥 cannot contain both 𝑎 and 𝑐, and similarly it cannot contain both 𝑏
and 𝑑 (it is not long enough); 𝑣 𝑥 cannot also be empty by condition 1. Then, by
condition 3, we can choose 𝑛 = 0 and obtain 𝑢𝑤𝑦, but 𝑢𝑤𝑦 ∉ 𝐿FIFO (because
removing 𝑣 𝑥 made either repetitions of 𝑎 and 𝑐, or 𝑏 and 𝑑, unbalanced),
contradicting the hypothesis.

Now consider the set {enqueue(0), enqueue(1), dequeue(0), dequeue(1)} en-
coding possible operations on a queue of binary numbers, and the formal
language over this set 𝑇FIFO such that it only contains strings corresponding to
correct sequences of queue operations. Let us use 𝑎, 𝑏, 𝑐, 𝑑 as abbreviations for
enqueue(0), enqueue(1), dequeue(0), dequeue(1), and consider the regular lan-
guage 𝑅 = 𝑎+𝑏+𝑐+𝑑+.

From the definitions of 𝐿FIFO, 𝑇FIFO, and 𝑅, 𝑇FIFO ∩𝑅 = 𝐿FIFO. By Lemma 10,
𝐿FIFO is not context-free, and the intersection of a context-free language and
a regular language is still a context-free language (Hopcroft, Motwani, and
Ullman, 2007). As a consequence, 𝑇FIFO is not context-free.

We will now give an example of RML specification for the non-context-free
property corresponding to the correct behavior of FIFO queues.

// enq(val) and deq(val) event type to be defined

deq matches deq(_);

Main = { let val;

enq(val) ((deq | Main) /\ (deq >> deq(val) all))

}?;

Listing 4.9: Specification for correct FIFO queue usage.

The queue is assumed to be initially empty, thus the only operation that
is allowed at the beginning is enqueue, and the inserted value is stored in
variable val. Verification then proceeds with the intersection of two properties.

On the left, (deq | Main) allows the removal of an element (since we just
inserted one, this is expected to happen) and the possibility to add more
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elements by recursively using Main. Here we are only concerned to ensure that
every time an element is inserted, it will be removed at some point, so we do
not care about the specific val.

On the right, (deq >> deq(val) all) states that all dequeue operations
must go through deq(val) all. This is equivalent to say that the first element
to be removed must be val, according to the FIFO policy.

When more elements are inserted, the rewriting procedure will unfold the
recursion and more interesections will be added, but because of the semantics
of the operator, all of themwill have to hold. This effectively ensure FIFO order
regardless of how many elements are in the queue.

Note that the two parts, joined with intersection, are both needed: on the
left we just match the number of enqueue and dequeue operations, not the
values; on the right, we ensure removals happen in the right order, although
they are not forced to happen.

The example also shows the importance of RML deterministic semantics
(regarding the shuffle in this case). If the semantics would not be constrained
to choose the term on the left (in (deq | Main) and its unfolding) the specifi-
cation would also accept incorrect traces like enq(0), enq(0), enq(1), deq(0),
deq(1), deq(0)

The queue specification can be extended in many ways, for instance by
adding a prefix closure operator to allow termination on non-empty queues. A
more interesting extension is, as done with stacks, the monitoring of the size.

// event types enq(val), deq(val), size(s) to be defined

enq matches enq(_);

deq matches deq(_);

notSize not matches size(_);

Main = (notSize >> Queue) /\ Size<0>;

Queue = { let val;

enq(val) ((deq | Queue) /\ (deq >> deq(val) all))

}?;

Size<s> = (size(s) Size<s>

\/ deq Size<s-1>

\/ enq Size<s+1>)?;

Listing 4.10: Queue specification with size.

The specification is extended in a compositional way, similarly as done
for the modular stack specification with size monitoring in Listing 4.7. The
Size<s> specification is the same, except for the fact that event types pop and
push have been replaced with deq and enq, respectively.

Several queue specifications have been developed that are extensions of the
ones proposed here, including randomized queues and queues that does not
allow for repeated elements4.

4 https://rmlatdibris.github.io/examples/fifo.html

https://rmlatdibris.github.io/examples/fifo.html
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4.5 iterator pattern

The iterator pattern (Gamma et al., 1995) is an object-oriented pattern used in
implementations of container objects to give the user the ability to traverse
containers without exposing their internal components.

Iterator have two main functionalities:

• hasNext: this method returns a boolean indicating whether there are
more elements to get from the container;

• next: returns the next element in the traversal and move the iterator
forward, or throws an error if there is no such element.

If used correctly, iterators should never raise errors on calls to next. The
correct behavior can be formalized with the following RML specification.

// hasNext(b) and next to be defined

Main = (hasNext(true) next)* hasNext(false);

Listing 4.11: Iterator pattern specification.

The specification is a regular expression. First, it allows zero or more invo-
cations of hasNext returning true followed by next, and then the trace must
end with an invocation of hasNext returning false.

The specification above is quite rigid, as it enforces (arguably) good prac-
tices: no multiple subsequent calls to hasNext can be made, and the whole
container must be traversed. Of course the specification could be modified to
be more flexible according to the verification goals.

The flexible support for parametric specifications of RML is well suited to
runtime verification object-oriented programming (Ancona, Dagnino, and
Franceschini, 2018; Ancona, Ferrando, Franceschini, et al., 2017), especially
if the instrumentation layer exposes object identifiers5. This makes it easy to
generalize specifications to monitor a container object.

For instance, consider the iterator example with two additional pieces of
information:

• when an iterator is created, an eventmatching iterator(id) is observed,
where id is the unique identifier of the newly created objects (this
essentially amounts to monitor constructors or factory methods);

• hasNext and next have an additional parameter id encoding the identi-
fier of the target object of the method call.

Then, a statically unknown, dynamically growing set of iterators can be
monitored with the following RML specification:

// iterator(id), hasNext(id, b) and next(id) to be defined

Main = {let id; iterator(id) (Iterator<id> | Main)}?;

Iterator<id> = (hasNext(id, true) next(id))* hasNext(id, false);

Listing 4.12: Multiple iterators specification.

5 Depending on the programming language, objects can natively have an identifier, or
the instrumentation component can assign one to them.
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The technique is based on shuffle and recursion combined, similarly to what
has been done for multiple resource management. Indeed, this is the general
RML pattern that can be used to lift a property from a single entity to multiple
ones, possibly acting concurrently.

Finally, Listing 4.13 specifies the correct behaviors of multiple iterators over
the same list. Additionally, this specification monitors events that structurally
change the list, i. e., that change the size of the data structure; such events are
encoded by event type list.

// hasNext(id, b) and next(id) to be defined

// iterator(id), free(id), and list to be defined

hasNextOrNext(id) matches hasNext(id, _) | next(id);

it matches iterator(_) | hasNextOrNext(_) | free(_);

notIterator not matches iterator(_);

listOrIterator(id) matches hasNextOrNext(id) | free(id) | list;

Main = ListSafe /\ it >> Iterators;

ListSafe = notIterator* {let id; iterator(id) (ListSafeIter<id>

/\ ListSafe)}?;

ListSafeIter<id> = listOrIterator(id) >> hasNextOrNext(id)*

list* free(id) all;

Iterators = {let id; iterator(id) (Iterator<id> free(id) |

Iterators)}?;

Iterator<id> = ((hasNext(id, true)+ next(id))* hasNext(id,

false)+)!;

Listing 4.13: Multiple iterators on the same list, with checks for structural
modifications.

Creation and disposal of iterators is matched by events iterator(id) and
free(id). The specification verifies that events matching next(id) occur after
those matching hasNext(id, true), and that the result of hasNext(id, res)

can only change after next(id). Here the iterator is not required to necessary
consume the whole sequence of events.

The generic ListSafeIter<id> verifies that if the list is structurally modi-
fied, then disposal of iterator id is the only possible event that can occur on it
after the modification of the list.
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Figure 5.1: Architectural overview of RML implementation.

This chapter provides some details of the implementation of RML hosted
on GitHub1. The implementation of the RML system consists of many mod-
ules using different languages and frameworks, and an overview of the archi-
tecture is depicted in Figure 5.1. The final goal is to generate from an RML
specification a monitor implemented in Prolog, the language of choice for the
implementation of the rewriting semantics presented in Chapter 2.

The GitHub repository includes:

• a compiler from RML to Prolog;

• a Prolog monitor implementing RML semantics;

1 https://github.com/RMLatDIBRIS
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• an example of a real-world instrumentation developed for Node.js2 (the
cross-platform JavaScript runtime environment).

A website3 devoted to RML and its usage has also been created, and can be
used as an introductory resource to the language.

5.1 compiler

As it is customary in language implementation, the first step is lexical and
syntactical anlysis of RML source code. This is implemented using ANTLR4

(Parr and Quong, 1995), an advanced, powerful and flexible parser generator.
The syntax of RML is formalized as an ANTLR grammar: examples from the
lexical and syntactical grammars are shown in Listings 5.1 and 5.2.

ELLIPSIS: '...' ;

INT: [0-9]+ ;

FLOAT: INT '.' INT ;

STRING: '\'' [ a-zA-Z0-9_.]* '\'' ;

Listing 5.1: Portion of ANTLR lexical grammar for RML.

// RML expression syntax

exp: exp '*' # starExp

| exp '+' # plusExp

| exp '?' # optionalExp

| exp '!' # closureExp

| <assoc=right> exp exp # catExp

| exp '/\\' exp # andExp

| exp '\\/' exp # orExp

| exp '|' exp # shufExp

| evtype '>>' leftBranch=exp (':' rightBranch=exp)? #

filterExp

| 'empty' # emptyExp

| 'all' # allExp

| '{' 'let' evtypeVar (',' evtypeVar)* ';' exp '}' # blockExp

| 'if' '(' dataExp ')' exp 'else' exp # ifElseExp

| expId ('<' dataExp (',' dataExp)* '>')? # varExp

| evtype # evtypeExp

| '(' exp ')' # parenExp

;

Listing 5.2: Portion of ANTLR parsing grammar for RML.

Lexical rules are mostly based on standard regular expression operators,
while ANTLR parsing grammar is more interesting, as it is based on quite a
few features that are useful for the implementation of RML:

2 https://nodejs.org/en/

3 https://rmlatdibris.github.io/

4 https://www.antlr.org/

https://nodejs.org/en/
https://rmlatdibris.github.io/
https://www.antlr.org/
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• the grammar syntax is based on awidely understood formalism, namely
contex-free grammars;

• productions can be decorated with names (introduced by #): this will be
used by the parser generator to introduce Java classes with meaningful
names to implement the different kinds of nodes of the parse tree in the
produced parser;

• associativity can be easily changed (see concatenation);

• left-recursion, which is often a problem in parsing, is automatically
handled by ANTLR (the only limitation is related to mutually left-
recursive rules);

• whenparts of the production are assigned a name (as in leftBranch=exp),
the generated parser will produce a parse tree whose nodes will be
objects with fields named accordingly.

When fed with a grammar, ANTLR generates a parser; many languages
are supported, but in our case Java is used. Such parser produces a parse tree
supporting the visitor pattern (Gamma et al., 1995), which allows users to
traverse the tree according to their needs.

While the automatically generated parser is a Java program, the software
we developed for the internals of the compiler is written in Kotlin5. Kotlin is a
modern, concise, statically typed, object-oriented programming language that
runs on the JVM and is fully interoperable with Java.

The parse tree generated by ANTLR is a low-level representation of the
RML specification, as it still includes many parsing-related information. The
next step of the compilation process is to translate the parse tree into a more
manageable abstract syntax tree (AST) implemented in Kotlin. The language
is well suited to the task, and AST classes are encoded in just a few lines, as
shown in Listing 5.3. Such classes are produced by the Kotlin code which
interfaces with Java and implements the visit of the parse tree. Sticking to Java
for the whole project would have led to a lot of boilerplate code, as Java is
much more verbose.

AST classes are implemented with a combination of data classes and sealed
classes. The former feature makes the Kotlin compiler automatically generate
all common class methods (toString, equals, etc) and gives the instances a
value (as opposed to reference) semantics, when compared to other instances.
The latter ensures that the whole class hierarchy is known at compile-time;
this, combined with Kotlin type inference algorithm and its functional pro-
gramming support, allows the developer to choose a functional style based on
pattern matching. This comes in handy when implementing languages and
manipulating AST, tasks that are often more suited to a functional program-
ming style.

At this point, the specification is encoded in a compact, high-level Kotlin
AST encoding RML structure. Here the compilation pipeline is divided in two
parts (see Figure 5.1). Event type declarations are directly compiled to a Prolog
AST, while specification definition are converted to another AST encoding TC
syntax (Definition 12). The additional step favors modularity by using the
TC calculus as intermetidiate representation; in this way optimizations can be
implemented more easily.

5 https://kotlinlang.org/

https://kotlinlang.org/
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sealed class Expression

// regex-like unary operators

data class StarExpression(val exp: Expression): Expression()

data class PlusExpression(val exp: Expression): Expression()

data class OptionalExpression(val exp: Expression): Expression()

data class PrefixClosureExpression(val exp: Expression):

Expression()

// binary operators

data class ConcatExpression(val left: Expression,

val right: Expression): Expression()

data class AndExpression(val left: Expression,

val right: Expression): Expression()

data class OrExpression(val left: Expression,

val right: Expression): Expression()

data class ShuffleExpression(val left: Expression,

val right: Expression): Expression()

// conditional operators

data class FilterExpression(val eventType: EventType,

val filteredExpression: Expression,

val unfilteredExpression: Expression?): Expression()

data class IfElseExpression(val condition: DataExpression,

val thenExpression: Expression,

val elseExpression: Expression): Expression()

Listing 5.3: A code snippet from the RML AST written in Kotlin.
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The two lines then meet again and produce the AST of the resulting Prolog
program. Since the Prolog dialect of choice is fixed (SWI-Prolog6) the AST is
closely related to its particular syntax, and exploits it whenever convenient.
This allows the RML compiler to produce a human-readable Prolog program
that can be inspected if needed (see Listing 5.4).

The ASTs for Prolog and TC are structured in the same way as the RML
AST (see Listing 5.3).

:- module(spec, [(trace_expression/2), (match/2)]).

:- use_module(monitor(deep_subdict)).

:- use_module(library(clpr)).

match(_event, push(Val)) :- deep_subdict(_{event:"func_pre",

name:"mypush", args:[Val]}, _event).

match(_event, pop(Val)) :- deep_subdict(_{event:"func_post",

name:"mypop", res:Val}, _event).

match(_event, relevant) :- match(_event, push(_)).

match(_event, relevant) :- match(_event, pop(_)).

match(_event, any) :- deep_subdict(_{}, _event).

match(_event, none) :- not(match(_event, any)).

trace_expression('Main', Main) :- (Main=((relevant>>Stack);1)),

(Stack=star(var(val,

((push(var(val)):eps)*(Stack*(pop(var(val)):eps)))))).

Listing 5.4: Example of a RML specification compiled to Prolog with our tool.

5.2 prolog semantics

The main reason why Prolog has been the language of choice for the imple-
mentation of the rewriting semantics relies in the underlying programming
paradigm. Logic programming is based on rules and unification, thus a logic
program is extremely similar to an inference system, and the translation of the
rewriting rules is natural. Consider for instance the following rewriting rule:

𝜙1
o−→ 𝜙3 ; 𝜎1 𝜙2

o−→ 𝜙4 ; 𝜎2

𝜙1 ∧ 𝜙2
o−→ 𝜙3 ∧ 𝜙4 ; 𝜎

𝜎 = 𝜎1 ∪ 𝜎2

In our Prolog implementation this is represented by the following clause:

next(T1/\T2, O, T, S) :- !,

next(T1, O, T3, S1),

next(T2, O, T4, S2),

merge(S1, S2, S),

conj(T3, T4, T).

The atoms in the clause have the following meaning:

• ! (known as “cut” in logic programming) tells the Prolog interpreter not
to backtrack in case of failure, since there are no other rules applicable
for the intersection operator;

• next(T1, O, T3, S1) recursively implements 𝜙1
o−→ 𝜙′

1 ; 𝜎1;

6 https://www.swi-prolog.org/

https://www.swi-prolog.org/
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• next(T2, O, T4, S2) recursively implements 𝜙2
o−→ 𝜙′

2 ; 𝜎2;

• merge(S1, S2, S): the predicate merge implements substitution merg-
ing;

• conj(T3, T4, T) implements the shrinking optimizations described in
Chapter 2 to produce the term 𝜙3 ∧ 𝜙4, and simplify it if possible.

Parametric variables need to be implemented with care, as variables in
the specification must not be confused with Prolog variables. In old imple-
mentations we tried to encode parametric specifications with Prolog vari-
ables, but that clutters the implementation with bookkeeping code and meta-
programming features. The current implementation takes a simpler approach
and encode a specification variable 𝑥 as a functor var(x) (note that it does not
contain any variable, which cannot start with a lowercase letter in Prolog).

Substitutions are implemented with association lists, that is, lists of terms
X=T. Association lists are widely used in Prolog, and the whole list library can
be used to manipulate them, helping with the implementation of substitution
application, merge, etc.

Since TC terms are regular, it is extremely useful to have language support
for cyclic expressions. SWI-Prolog directly supports cyclic terms by allowing
unification of a variable X with a term containing X itself. For instance, unifi-
cation X = f(X) succeeds and instantiates variable X with the (only) regular
term satisfying that equation.

One of the main reasons why we chose SWI-Prolog in particular as a dialect,
is its native support for coinductive logic programming (Simon et al., 2006).
Since terms are regular, substitution application is coinductively defined on
them (Definition 5). In coinductive logic programming, predicates are labelled
either as inductive (by default) or coinductive. When coinductive predicates
are involved in the derivation, after each resolution step the interpreter checks
whether the current goal unifies with any of the previous ones, and if it
does, then the cycle is detected and the resolution concludes producing the
substitution resulting from that unification.

Substitution application to prefix terms ET1:T1, for instance, is defined by
the following Prolog clause:

apply_sub_trace_exp(S, ET1:T1, ET2:T2) :- !,

apply_sub_event_type(S, ET1, ET2),

apply_sub_trace_exp(S, T1, T2).

If we consider the cyclic SWI-Prolog term (corresponding to a valid regular
TC term) defined by the unification T1=ET1:T1, then the standard inductive
resolution would result in an infinite loop, where the interpreter keeps trying
to apply substitution S to term T1.

However, in SWI-Prolog, we can mark the predicate as coinductive:

:- use_module(library(coinduction)).

:- coinductive apply_sub_trace_exp/3.

This allows us to get the correct coinductive (and, thus, terminating) semantics
when substitutions are applied to regular terms.

The event type matching code is automatically generated by the RML com-
piler. For instance, consider the following event type declaration (from one of
the tested examples on our website):

operation(fd) matches {

event: 'func_pre',
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name: 'fs.write' | 'fs.read',

args: [fd ...]

};

The RML compiler then produces the following clauses:

match(Event, operation(Fd)) :- deep_subdict(

_{ args: [Fd|_], name: "fs.write", event: "func_pre" },

Event).

match(Event, operation(Fd)) :- deep_subdict(

_{ args: [Fd|_], name: "fs.read", event: "func_pre" },

Event).

Differently from RML variables in specification terms, here it is correct
to translate variables in event type definitions into proper Prolog variables,
since we actually want them to unify with (part of) the event sent by the
instrumentation and bound to Event.

The last version of SWI-Prolog introduced dictionaries, that is, record-like
terms having shape tag{field1: term1, ..., fieldN: termN}. Event pat-
terns are conveniently represented with dictionaries, because of their record-
like structure.

Unfortunately, at the moment the SWI-Prolog standard library for dictionar-
ies does not implement a predicate to check whether a dictionary is a “deep”
sub-dictionary of another one by recursively traversing down the dictionary
structure.We implemented such a feature as part of the library that can be used
by the generated Prolog monitor, and exported it as predicate deep_subdict.

Recalling the event type matching semantics, deep_subdict allows an event
to match a pattern even if it has more fields than requested. The implementa-
tion of the predicate in turn relies on SWI-Prolog standard library for JSON
(de)serialization and manipulation, which is used to inspect the events (that
are expected to be in JSON format) received from the instrumentation.

Choice patterns ('fs.write' | 'fs.write') are implemented by unfold-
ing them to produce a set of patterns covering all the combinations of choices,
without containing any choice operator themselves. Since such operator was
only used once in the event type declaration above, two Prolog clauses are
generated.

The RML compiler, in one of the steps of its pipeline, statically detects those
specification terms thatwould lead to termination problems in themonitor and
rejects them. An example would be the (poorly written) recursive specification
𝜙 = 𝜖 ∨ 𝜙, whose formal semantics is empty (𝜙 does not rewrite to any term
and does not accepts the empty trace), but it would lead to infinite loops in
the implementation.

Other static checks will be implemented in the future, to ease the specifi-
cation writing process. However, correct RML are fully supported and the
features presented in this work are all implemented in the available prototype.

5.3 monitor

After an RML specification has been compiled into Prolog, another Prolog
module, the monitor, loads the Prolog specification and then starts handling
events in JSON format received from the instrumentation: by using the devel-
oped library mentioned above to implement the rewriting semantics of TC,
the monitor checks whether a rewrite step is allowed for the incoming event,
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and, if so, updates its state with the Prolog term representing the new TC term
obtained by rewriting.

Our tool can generate monitors working according to two different modes.
In offline mode, the monitor reads a trace from a file, which is expected to

contain a single JSON event per line, then verifies the trace and outputs a
verdict. Offline monitoring is still considered to be runtime verification: even
if the verification process happens after termination of the program, we are
still analyzing a single execution of the program.

In online mode, the monitor listens on an input channel for events, and veri-
fies them one at a time, responding every time with a verdict and updating its
internal state according to the rewriting semantics. Online mode is especially
interesting for runtime verification of distributed and heterogeneous systems,
when multiple components (possibly implemented using different technolo-
gies) are instrumented to connect to the monitor. At current time, two types
of communications are supported:

http The monitor works as a web server waiting for HTTP requests. HTTP is
a widely understood and implemented protocol, thus it is generally easy
for instrumented components to send events to the monitor. However,
an entirely new HTTP request is made every time, possibly affecting
performance for high event flow-rate.

websocket The monitor opens a WebSocket communication channel and
waits for events; this mode is highly recommended for high event flow-
rate, because in this case communication is more efficient because the
connection stays active once established.

Both protocols are supported by the SWI-Prolog standard library.
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The previous chapters are devoted to the design, definition, implementation
and usage of RML; however, verification needs to be efficient, other than ef-
fective. This is even more important in runtime verification, since it has to be
executed for every run of the program, and possibly at the same time if online
monitoring is employed.

6.1 methodology

There are two main factors determining the (worst case) computational com-
plexity of RML semantics:

• trace length: in order to check the correctness of a trace, all of its events
need to be analyzed, putting the trace length as a lower bound on the
complexity of the whole process (to equalize the tests and stress the
monitor, benchmarks are done on correct traces so that the monitor has
to read them all);

• specification term size: since the semantics relies on a rewriting system, at
each step the term encoding the specification can change in size, and a
single rewriting step may need to analyze the whole term, thus fixing a
lower bound for the complexity of a single rewriting step.

In order to show that the complexity of RML is indeed optimal, the experiments
will change one of the two variables at a time, keeping the other one fixed.

The hardware and software details of the system used for benchmarking
follows:

• Intel® Core™ i7-7700HQ CPU (2.8 GHz);

• 16 GB RAM;

• Ubuntu 18.04.2 LTS operating system (64 bit);

• Linux kernel 4.15.0-54-generic;

• SWI-Prolog 8.0.3.

In order to test the tool in a realistic scenario, we used an instrumentation
developed for Node.js (Ancona, Franceschini, Delzanno, et al., 2017), whose
repository is publicly available1. It is based on Jalangi22 (Sen et al., 2013),
a JavaScript static instrumentation tool that allows the user to set callbacks
to be executed before and after specific events during execution, including
function/method invocations. The callbacks also have access to all the relevant
metadata, that is, the program data involved in the observed operation. The
instrumentation we developed collects all the metadata, serializes them in
JSON format and writes them on a log file, which is later given to the monitor.
The monitor is run in offline mode, because the purpose of the benchmarks is
to test the performance of the monitor generated by our tool, independently
of the overhead of the instrumentation layer.

1 https://github.com/RMLatDIBRIS/instrumentation

2 https://github.com/Samsung/jalangi2/
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A different approach to runtime verification of Node.js programs has also
been proposed. Node-MOP (Schiavio et al., 2019) brings a monitor oriented
programming approach (see Section 7.4) to Node.js. By being less system-
agnostic and more closely-related to the runtime environment, Node-MOP
has a tighter coupling between the monitor and the program, and allow the
verification code to take actions when errors are detected.

Since the benchmarks are executed on real programs, and the instrumenta-
tion is independent from the specification, a lot of events will be generated,
even those that are not relevant for the specific property being monitored.
Because of this, the actual RML specifications contain a top-level filter that
ignores all irrelevant events.

The examples will be focused on events encoding function calls. Invocation
foo(42) returing true, for instance, is represented by the following event:

{ event: 'func_post', name: 'foo', args: [42], res: true }

Events marked with 'func_pre' and 'func_post' are generated before and
after function execution, respectively. The main difference is that the latter
also includes the result.

The following sections will show and discuss the results of benchmarks
testing the performance of the tool with examples from Chapter 4.

6.2 resource management

Listings 4.1 and 4.3 presented RML specifications for acquisition and release
of resources, checking correct acquire/release patterns and exclusive access,
respectively. A variation of the pattern can be seen as a specification for a set
data structure, with two operations for adding and removing elements.

More precisely, the set specification is based on the pattern used for exclusive
resource access to multiple resources: here the “resources” are the elements
of the set, with acquisition corresponding to the addition of a new element,
release corresponding to removal of an element from the set, and usage of
allocated resources corresponding to addition of an element that already
is in the set. Set APIs usually allow one to detect if the operation actually
changed the set by returning a boolean. There is a set operation that is not
quite equivalent to any resource operation discussed so far, namely, removal
of an element that is not in the set; this corresponds to all other resource uses
that are only allowed when the resourse is not allocated. We will use event
type noUse for such case.

The set specification follows.

// acquire(el), use(el), release(el), no_use(el) to be defined

toCheck(el) matches acquire(el) | release(el) | noUse(el);

noUse matches noUse(_);

Main = (noUse* { let el;

acquire(el) ((use(el)* release(el) | Main)

/\ (toCheck(el) >> (release(el) all)))

})?;

The tested (and instrumented) Node.js script iterates over the following
steps several times:

1. all available resources are acquired;
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2. acquired resources are used;

3. all acquired resources are released in reversed order.

The three steps make the specification term grow to the maximum size (since
the parametric specification captures resources, the term grows with their
number), and then, thanks to the shrinking optimizations, allow it to reduce
to its original size.

Figure 6.1: Resource-like specification patterns. Average time in milliseconds
per event (Y) as a function of the maximum number of resources
allocated simultaneously (X), keeping trace length constant.

The chart in Figure 6.1 shows that the optimizations work as expected: all
three traces have the same length, therefore we can compare the average time
spent on each event by dividing the total time by the trace length. The pattern
is linear: the time needed for the monitor to process an event grows linearly
with respect to the size of that term, as expected,

Figure 6.2: Resource-like specification patterns. Average time in milliseconds
per event (Y) as a function of the trace length (X), keeping the
maximum number of resources/elements constant.
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Figure 6.2, on the other hand, shows the average time needed to process
an event as a function of the trace length, while the maximum size of the
term is fixed. Since here the trace size is part of the test, we cannot cut it such
that all three scripts produces traces of equal length. Indeed, it is completely
normal that different programs produce traces of different length, even if they
abstractly implement the same (or similar) operations. This is because the
number of generated events depends on the implementation (function calls,
in this case) which of course can change quite significantly.

The important thing to note is that the average time is constant: it is not
affected by the trace size. Thismeans that, when the size of the term is bounded,
the total verification time will grow linearly with respect to the trace length.
This is also the best we can do in the general case: to verify a correct trace, it is
necessary to scan it all.

6.3 stacks

Listings 4.5 and 4.6 describe the correct behavior of a stack, respectively with-
out and with size monitoring. The Node.js script used for this benchmark is a
typical stack implementation supporting push, pop and size operations. The
script main loop follows the same use pattern as the one for resources: stacks
are first added elements to their maximum capacity (variable “data size”) and
emptied by removing all the elements, and these steps are iterated multiple
times. Additionally, the script used for testing the specification that includes
the size, retrieves the size from the stack after each push and pop operation.

Figure 6.3: Single stack specification with and without size monitoring. Av-
erage time in milliseconds per event (Y) as a function of the max-
imum number of elements allowed (X), while keeping the trace
length constant.

Figure 6.3 shows the average time per event as the size of the stack increases,
which appears to be constant. For stacks, the monitor only has to inspect a
constant top-level part of the specification term to check for the size and the
last pushed element, thus the size of the whole specification term is almost
irrelevant.

The specification with size monitoring seems to show a very slowly increas-
ing average time that is not observed with the simpler specification. This may
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be more related to a memory issue: the size monitoring specification is consid-
erably more complex, thus the specification term can become quite big when
the stack is full, leading to a less efficient use of memory, and more frequent
invocations of the garbage collector.

Figure 6.4: Single stack specification with and without size monitoring. Av-
erage time in milliseconds per event (Y) as a function of the trace
length (X), while keeping the maximum stack size constant.

Figure 6.4 shows the average event processing time as a function of trace
length. Again, the time does not increment with the trace length, confirming
that the shrinking optimizations are effective.

The test for the specification monitoring multiple stacks with size oper-
ations (Listing 4.8) has been kept separated as the results are not directly
comparable. With specifications monitoring only one stack, the “data size”
variable determines the maximum size of the stack. With the specification
monitoring multiple stacks, the variable determines the sum of all the lengths
of the stacks involved.

Figures 6.5 and 6.6 show the results for the same experiments repeated on
a script using multiple stacks. In this case the script is slightly more complex
as there is also an outer loop allocating and deallocating entire stacks.

The only appreciable difference can be observed in Figure 6.5, where the
time is actually increasing with the data size. This is due to the fact that the
specification contains multiple stacks and the monitor needs to traverse the
term until the right one is found.

6.4 queues

RML specifications in Listings 4.9 and 4.10 formalize the correct behaviors of
FIFO queues without and with size monitoring, respectively. Beyond them,
in this benchmark three more variants of queue specifications will be tested:
queue with no repetitions (Listing 6.1), random queues (Listing 6.2), and
randomqueueswith no repetitions (Listing 6.3).We recall that randomqueues
does not obey the FIFO policy, but instead dequeue elements from the queue
in random order.

Figures 6.7 and 6.8 show the experiment results for all the different queue
implementations. The results are similar to those observed for resource man-
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Figure 6.5: Multiple stack specification with size monitoring. Average time in
milliseconds per event (Y) as a function of the maximum number
of elements allowed over all stacks (X), while keeping the trace
length constant.

Figure 6.6: Multiple stack specification with size monitoring. Average time in
milliseconds per event (Y) as a function of the trace length (X),
while keeping the sum of all stack sizes constant.

// enq(val), deq(val) to be defined

deq matches deq(_);

Main = { let val;

enq(val) ((enq(val)* deq | Main )

/\ (deq >> deq(val) all))

}?;

Listing 6.1: Queue with no repetitions allowed: elements are not enqueued if
already contained in the queue.
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// event types enq(val), deq(val)

Main = { let val; enq(val) (deq(val) | Main) }?;

Listing 6.2: Random queue.

// event types enq(val), deq(val)

Main = { let val; enq(val) (enq(val)* deq(val) | Main) }?;

Listing 6.3: Random queue with no repetitions allowed.

Figure 6.7: Different queue implementations. Average time in milliseconds
per event (Y) as a function of the maximum size of the queue (X),
while keeping the trace length constant.

Figure 6.8: Different queue implementations. Average time in milliseconds
per event (Y) as a function of the trace length (X), while keeping
the maximum size of the queue constant.
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agement: Figure 6.7 shows that the time spent for monitoring a single event
increases in a linear waywith respect to themaximum queue length; Figure 6.8
on the other hand shows how the total monitoring time linearly increases with
the trace length, when the size of the queue is bounded.

6.5 final remarks

From an absolute perspective, the experiments show satisfying and encour-
aging performances, as the average time needed to process an event is in the
order of magnitude of 0.1 or 0.01 milliseconds, depending on the experiment.
This would allow an event throughput of 10, 000 to 100, 000 events per second,
which suggests that the monitoring itself is suitable for real-time verification
and analysis of very long traces.

Of course the total overhead of a runtime verification systemalso depends on
the instrumentation, and on how that sends events to the monitor. Implement-
ing an efficient instrumentation, however, is a completely system-dependent
task, while the goal of this Chapter was to show the performance of RML itself.
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This Chapter describes the main approaches to runtime verification that have
been proposed in the scientific literature. Even if the field is still relatively
young (almost all contributions to runtime verification have been published
in the last 20 years), a considerable number of languages, tools, architectures
and views have been proposed. A precise comparison between RML and
every other tool would be both extremely hard and possibly not really useful,
due to many profound differences: application domains, generality of the
approach, and abstraction levels are only some of the identifying characteristics
of runtime verification tools.

The following sections will briefly describe the main techniques, their pros
and cons, some state-of-the-art tools and their difference with respect to RML,
comparing their design choices and their consequences. This is not meant
to be a precise, complete classification of runtime verification tools. This is a
complex research task by itself; such a taxonomy has been recently proposed
by Falcone, Krstic, et al. (2018), and a graphical representation is given in
Figure 7.1. With respect to such taxonomy, we can identify RML as follows.

specification The system model, i. e., the abstraction level at which the pro-
gram is observed, is defined by the intrumentation; RML specifications
are always explicit, as they are written by users and there are no implicit
properties checked by the tool.

monitor RML monitors employ an operational, rewriting-based decision pro-
cedure (the rewriting semantics); such monitors are explicitly generated
by our compiler, and directly executed as SWI-Prolog code.

deployment The current implementation of RML monitors can work both
offline and online; regarding the latter, the monitor itself works in a syn-
chronous way, though the instrumentation can handle the communi-
cation with the monitor also in an asynchronous manner. The monitor
is placed outline, meaning it is a different program executed in a dif-
ferent address space; the instrumentation can be inline, as it happens
with our Node.js instrumentation, which is an instance of a software in-
strumentation (as opposed to hardware ones). Finally, RML monitors
are centralized, as properties globally describe the correct behavior of a
system.

reaction Our monitors are passive, since they only provide specification
outputs (verdicts). However, such outcomes are delivered to the instru-
mentation layer, which may be either passive or active; the latter would
affect the execution of the program under scrutiny to some extent.

trace Traces both have a role in the theoreticalmodel (where they are possibly
infinite sequences of events) and in the practical observation (where
they are necessarily finite sequences); everything else about the kind of
information encoded in events entirely depends on the instrumentation
(the evaluation can either refer to points or intervals in time, though in
all of our examples we considered events about single execution points).

71
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Figure 7.1: “A Taxonomy for Classifying Runtime Verification Tools” (Falcone,
Krstic, et al., 2018).

interference Again, this depends on the instrumentation. For our Node.js
instrumentation, the interference is semantically non-invasive, as the
code instrumentation step does not change the behavior of the program.
Regarding performances, however, the overhead cannot be zero when
such techniques; Chapter 6 is devoted to performance evaluation.

application area RML is designed as an analysis technique, complemen-
tary to testing, static analysis and possibly other tools.

The distinction between monitors and instrumentation layers is not common
in runtime verification literature: indeed even an authoritative work as the
taxonomy above freely mixes the two concepts. However, we believe the dis-
tinction is worth the additional effort for maximal flexibility.

Other general, comprehensive and authoritative surveys on runtime verifi-
cation have been done by Bartocci et al. (2018), Delgado, Gates, and Roach
(2004), Falcone, Havelund, and Reger (2013), Havelund and Goldberg (2005),
Leucker and Schallhart (2009), and Sokolsky, Havelund, and Lee (2012).

7.1 temporal logics

Since runtime verification has its roots in model checking, it is not surprising
that logic-based formalism previously introduced in the context of the latter
have been applied to the former.

Temporal logics (first studied by Prior, 1957) are a family of modal logics
where modalities are used to qualify propositions in terms of time, like “prop-
erty 𝜙 will always/eventually hold” or “property 𝜙 (always) held”. Some
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temporal logics only refer to the past or to the future, while others allow for
both.

Linear Temporal Logic (LTL, Pnueli, 1977), is one of the most used formalism
in verification. Its modalities refer to events in the future; the two fundamental
operators are X𝜙 (“𝜙 has to hold at the next state”) and 𝜙U𝜓 (“𝜙 has to hold
at least until 𝜓 does, which must happen at the current or a future time”). Note
that the standard semantics of LTL is defined on infinite traces only. Finally,
“linear” comes from the fact that only one possible path is taken into account.

To account for the incremental nature of runtime verification monitors
(as opposed to static formal verification), a three-valued semantics for LTL,
named LTL3 has been proposed (Bauer, Leucker, and Schallhart, 2006b, 2011).
Beyond the basic “true” and “false” truth values, a third “inconclusive” one
is considered (LTL specification syntax is unchanged, only the semantics is
modified to take into account the new value). This allows one to distinguish
the satisfaction/violation of the desired property (“false”) from the lack of
sufficient evidence among the events observed so far (“inconclusive”), making
this semantics more suited to runtime verification. Differently from LTL, the
semantics of LTL3 is defined on finite prefixes, making it more suitable for
comparison with other runtime verification formalisms. Further development
of LTL3 led to RV-LTL (Bauer, Leucker, and Schallhart, 2007), a 4-valued
semantics.

The expressive power of LTL is the same as of star-free 𝜔-regular languages
(Pnueli and Zuck, 1993). When restricted to finite traces, RML is much more
expressive than LTL as any regular expression can be trivially translated to
it. On infinite traces, the comparison is slightly more intricate and results in
RML and LTL3 having incomparable expressiveness (Ancona, Ferrando, and
Mascardi, 2016).

Since RML can describe non-regular languages, it can express some proper-
ties LTL cannot. On the other hand, the U operator has no precise counterpart
in RML, as happens in general in runtime verification where monitors can
inspect only a finite prefix of the execution trace. A naive translation of 𝜙U𝜓
would be 𝜙∗𝜓, however, the first one expects 𝜓 to happen in the future, while
the second can accept an infinite sequence of events matching 𝜙.

Considering the LTL formula is not monitorable with respect to the infinite
sequence of events matching 𝜙 (meaning it will be considered neither valid
nor invalid, Pnueli and Zaks, 2006), this expressiveness feature is not useful
for runtime verification purposes.

There existmany extensions of LTL that dealwith time in amore quantitative
way (as opposed to the strictly qualitative approach of standard LTL) without
increasing the expressive power, like interval temporal logic (Cau and Zedan,
1997), metric temporal logic (Thati and Rosu, 2005) and timed LTL (Bauer,
Leucker, and Schallhart, 2011). Other proposals go beyond regularity (Alur,
Etessami, and Madhusudan, 2004) and even context-free languages (Bollig,
Decker, and Leucker, 2012).

Regardless of the formal expressivity, RML and temporalized logics are
essentially different: RML has no direct support for time. However, if the
instrumentation provides timestamps as part of the monitored events, then
some time-related properties can still be expressed exploiting parametricity,
generics and conditionals.

More insights on the use of temporal logics in runtime verification can be
found in the survey papers of Leucker and Schallhart (2009) and Bartocci
et al. (2018).
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LTL and other temporal logics have been embedded in a more expressive
framework, namely recHML (Larsen, 1990), which is a variant of the modal 𝜇-
calculus (Kozen, 1983). This allowed to formally study issues such as monitora-
bility (Aceto, Achilleos, Francalanza, Ingólfsdóttir, and Lehtinen, 2019a) in a
general framework, and derive results for free about any formalism that can be
embedded as well. It would be interesting to embed TC in a more expressive
calculus and get theoretical results that are missing from this presentation.
Unfortunately, it is not clear whether TC and recHML are comparable at all.
For instance, recHML is a fixed-point logic including both least and greatest
fixpoint operators, while TC implicitly uses a greatest fixpoint semantics for
recursion. On the other hand, recHML does not include a shuffle operator,
and we are not aware of a way to derive it from other operators (indeed it is
part of our core calculus).

7.2 assertions

Assertions in programming are predicates over program variables, used to
ensure some expected property holds. Their use in verification has been in-
troduced with Hoare logic (Hoare, 1969), where imperative statements are
associated with preconditions and postconditions that are expected and need
to hold in order for the program to be proved correct. Today, assertions are a
common programming tool that developers use to document, test and ensure
expected properties in a specific point of the execution. They can be supported
either at the language level or as libraries.

Further development led to design by contract, first introduced in the context
of the Eiffel1 language, which embraces it (Meyer, 1992). In this methodology,
software components explicitly state, at the code level, which preconditions
are expected from client code, which postconditions are ensured after usage,
and which invariants are always held true2. In an object-oriented setting,
for instance, method signatures would be decorated with preconditions and
postconditions, and classes would explicitly contain their invariants.

When they are not statically implemented (via typical formal methods
techniques), assertion-based frameworks can be understood as an instance
of runtime verification, effectively monitoring and verifying the program at
execution time. This approach has indeed been followed by some runtime
verification tools.

Java Modeling Language (JML, Leavens, Baker, and Ruby, 2006) is a verifica-
tion tool specifically tailored for Java programs, wheremethods and classes are
decorated with assertions, using first-order logic extendedwith arithmetic and
boolean expressions, plus some other features. TheOpenJML3 implementation
(Cok, 2011) supports runtime assertion checking. From a runtime verification
perspective, the tool is focused on data-oriented properties, as it allows one
to assess the correctness of manipulated data in specific code locations. The
implementation relies on Java bytecode4 instrumentation.

1 https://www.eiffel.org/

2 More precisely, invariants need to hold after construction and both before and after
routine calls from outside the component. It is possible for them not to hold during
the execution of code from the component itself.

3 http://www.openjml.org/

4 The bytecode is the target language of the Java compiler, and the instruction set of the
Java Virtual Machine (JVM).

https://www.eiffel.org/
http://www.openjml.org/
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In order for RML to support runtime assertion checking of pre/post-conditions
and invariants in object-oriented programming, the instrumentation layer
needs to monitor at least all method calls (and returns), and possibly con-
structors (to first evaluate the invariants). Given such infrastructure, one
can validate parameters and results of methods, as previously shown in the
object-oriented examples in Chapter 4, thanks to with guard expressions in
match declarations. This idea suggests that simple assertions5 in the design-by-
contract style could be automatically translated into RML match declarations,
while the main specification is used to verify control-oriented properties, by
allowing only some valid sequences of method calls. Since in RML the spec-
ification is separated from the code, integration with assertion checking of
pre/post-conditions would require appropriate match declarations capturing
the relevant variables from the program state (i. e., from the JSON-serialized re-
ceived event). This (arguably small) additional complexity seems unavoidable
for language-independent tools, as properties are not connected to any particu-
lar code location. Examples in Chapter 4 on stacks and queues have shown that
for some data types one can specify in RML data-oriented properties more
abstractly at the interface level, independently of the specific implementation
defined in the corresponding classes.

The notion of ghost variable in JML (and other tools) refers to variables
only existing in the specification and not in the observed program. While this
notion makes sense when one needs to distinguish between program variables
and specification variables, all RML variables can be understood as ghost
ones. However, first-order logic based formalisms like JML also supports
universal and existential quantification over ghost variables, though with
restriction to avoid undecidability. RML does not support this as it would
require quantification over new variables in guard expressions of event type
declarations. This keeps RML matching implementation reasonably fast, since
only pattern matching and basic expressions need to be supported.

On the other hand, with RML it is easy to monitor control-oriented proper-
ties and correct API usage (Ancona, Dagnino, and Franceschini, 2018; Ancona,
Ferrando, Franceschini, et al., 2017). Furthermore, if the instrumentationworks
at a finer granularity, RML can be used to verify properties when specific types
of statements are executed. Essentially, the abstraction level entirely depends
on the instrumentation layer.

Another object-oriented runtime verification tool, SAGA6 (De Boer and
De Gouw, 2014), targets Java programs with a different formalism based
on attribute grammars. Context-free grammars are well suited for specifying
protocols and control-oriented properties, while attributes are used to also
support data-oriented specifications. From such attributes, assertions to be
checked at runtime are generated, and the code is instrumented using Rascal
(Klint, Storm, and Vinju, 2009), a DSL devoted to source code manipulation.

The choice of context-free grammars as fundamental building blocks may
look similar to what is done with RML recursive definitions; however, SAGA
does not directly support the shuffle and intersection operators; intersection
can be recovered by associating more specifications with the same class (or
other entity), but it is not clear how an RML recursive specification involving
the intersection operator could be translated into SAGA.

5 For instance, assertions that do not require first-order quantification or ghost variables;
see more related comments below.

6 https://www.cwi.nl/innovation/software/saga-a-run-time-verifier-for-java-programs/

saga-a-run-time-verifier-for-java-programs

https://www.cwi.nl/innovation/software/saga-a-run-time-verifier-for-java-programs/saga-a-run-time-verifier-for-java-programs
https://www.cwi.nl/innovation/software/saga-a-run-time-verifier-for-java-programs/saga-a-run-time-verifier-for-java-programs
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SAGA formalism requires to declare in the source codewhich events (method
calls, for instance) need to be monitored. This resembles RML event types,
though they are more general in nature and are parametric, while in SAGA
data is accessed by mixing code with the specification.

7.3 state machines

High-level (runtime) verification languages are often translated to low-level,
more directly executable ones. This is the approach of RML as well, that is
compiled down to the trace calculus, forwhich a rewriting semantics is defined,
that in turn drives the implementation. This step is sometimes called monitor
synthesis. While this allows one to write down the specification at a higher
abstraction level, it clearly needs more work and tools to be developed (and
optimized).

A different approach consists in formalizing the specification using state
machines (a.k.a. automata or finite-state machines). Though the core concept of
a finite set of states and a (possibly input-driven) transition function between
them is always there, in the field of automata theory different formalizations
and extensions bring the expressivity anywhere from simple deterministic
finite automata to Turing machines. From a runtime verification perspective,
they can be understood as executable specifications (this is also true for rewrit-
ing based approaches like RML).

An example of such formalisms is DATE (Dynamic Automata with Timers
and Events, Colombo, Pace, and Schneider, 2008), an extension of the finite-
state automata computational model based on communicating automata with
timers and transitions triggered by observed events. This is the basis of LARVA7

(Colombo, Pace, and Schneider, 2009), a Java runtime verification tool fo-
cused on control-flow and real-time properties, exploiting the expressivity
of the underlying system (DATE). The tool also supports other logics, like
QDDC (Quantified Discrete-time Duration Calculus, Pandya, 2000), LUSTRE
(Halbwachs, Lagnier, and Ratel, 1992), and counterexample traces (Hoenicke,
2006); still, all the supported logics are internally translated to it.

The main feature of LARVA that is missing in RML is the support for tem-
poralized properties, as observed events can trigger timers for other expected
events. Currently the only way RML can monitor real-time properties is with
the support of an instrumentation adding timestamps to serialized events;
then, with arithmetic and boolean expression, it is possible to ensure the time
distance between two events is acceptable. This approach has some limitation:
such a monitor could only emit a negative verdict after the expected event (or
another one) is actually observed, and not as soon as the time has expired. In
the worst case, this could postpone the final verdict indefinitely, unless the
instrumentation layer send clock-based events to the monitor, but this would
lead to efficiency and synchronization problems, especially in distributed sys-
tems.

On the other hand, the parametric verification support of RML is more
general. LARVA scope mechanismworks at the object level, thus parametricity
is based on trace slicing and implemented by spawning new monitors and
associating them with different objects. The RML approach is different as
specifications are always global, and they can be parametric with respect to
any observed data: this makes it easier to write down parametric specifications

7 http://www.cs.um.edu.mt/svrg/Tools/LARVA/

http://www.cs.um.edu.mt/svrg/Tools/LARVA/
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that are still related to the whole system, or to a family of otherwise unrelated
(and possibly dynamically discovered) objects. Limitations of the parametric
trace slicing approach described above, as well as possible generalizations to
overcome them, have been explored by Barringer, Falcone, et al. (2012), Chen
and Rosu (2009), and Reger, Cruz, and Rydeheard (2015). In RMLwe decided
not to reason on trace slicing but rather to keep just one (global) specification
and syntactically instantiate parameters as soon as they are discovered, a task
simplified by our design choice of having variable declarations together with
a notion of scope for them.

Finally, the goals of the two tools are very different to start with. While
RML strives to be system-independent, LARVA is devoted to Java verification,
and the implementation relies on AspectJ8 (Kiczales, Hilsdale, et al., 2001)
as an “instrumentation” layer, which allows one to inject code (the monitor)
to be executed at specific locations in the program under scrutiny. Aspect-
oriented programming (Kiczales, Lamping, et al., 1997) is a paradigm that
allows the developer to add new behavior to existing code without modifying
it, enhancing modularity and separation of concerns; AspectJ brings these
concepts to Java.

7.4 monitor-oriented programming

Similarly as RML, which does not depend on the monitored system (not even
on its instrumentation), other proposals exist in the literature that introduce
different levels of separation of concerns.Monitor-oriented programming9 (MOP,
Chen and Rosu, 2007) is an infrastructure for runtime verification that is nei-
ther tied to any particular programming language nor to a single specification
language; indeed, it has been instantiated on a number of formalisms. In or-
der to add support for new logics, one has to develop an appropriate plug-in
converting specifications to one of the format supported by the MOP instance
of the language of choice (e. g. JavaMOP, Chen and Rosu, 2005), so that the
infrastructure can synthesize an appropriate monitor.

MOP can also be understood as a software development methodology
where the program to be verified is actually aware of the monitoring process,
and the two entities can interact with each other. This approach has also been
suggested in the context of runtime reflection (Bauer, Leucker, and Schallhart,
2006a). This is fundamentally different fromRML,where themonitor basically
sits on top of the existing program and it is passive in nature.

A brief discussion of the main formalisms implemented in existing MOP
instances follows. Support for finite state machines has limited expressivity
(they are known to be as expressive as regular languages), and they can
easily be translated to RML. Extended regular expressions include intersection
and, more interestingly, complement; while this does not increase the formal
expressive power (regular languages are closed under both intersection and
complement), negation of arbitrary expressions is not supported in RML.
However, the complement (with respect to matching) of existing event type is
supported through negative match declarations. Context-free grammars ara
again easily embedded in RML using recursion, concatenation, union, and the
empty trace. Finally, temporal logics have been discussed previously in this
section.

8 https://www.eclipse.org/aspectj/

9 http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming

https://www.eclipse.org/aspectj/
http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming
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State machine systems are sometimes employed in mixed system together
with other types of formalism. TraceContract10 (Barringer and Havelund, 2011),
for instance, offers a mix of finite state machines and temporal logic features.
It is implemented and available as a Scala internal DSL.

As expressive as finite state machines, regular expressions have been used
in runtime verification for their simple semantics and their well-understood
meaning among software developers. Tracematches11 (Allan et al., 2005) use
regular expressions augmented with variables to get parametricity. The tool is
implemented in AspectJ and is devoted to Java programs verification, espe-
cially regarding correct usage of APIs. This is similar to what we proposed
(Ancona, Dagnino, and Franceschini, 2018; Ancona, Ferrando, Franceschini,
et al., 2017) using the precursor of RML, namely parametric trace expressions
(Ancona, Ferrando, and Mascardi, 2017). Indeed, quite some common API
usage patterns can be formalized using regular languages, though more op-
erators (like shuffle and intersection) allow more flexibility and expressive
power, as shown in Chapter4.

7.5 rule systems

The core idea behind rule-based verification systems is to encode properties
in a set of “rules”, with rules being composed of conditions that needs to hold
in order to apply the rule, events that can trigger the application of the rule,
and statements about what holds after such transition. Different formalisms
extend this basic conept in different directions.

RuleR (Barringer, Rydeheard, and Havelund, 2010) approach is based on
dynamic activation and deactivation of rules: observed events can trigger rules
that in turn can change the set of applicable rules in subsequent steps. RuleR
has been proposed as a simpler, more essential and easier alternative to Eagle
(Barringer, Goldberg, et al., 2004), a highly expressive first-order logic with
fixpoint and linear temporal operators, in order to get a more effective runtime
verification tool. For this reasons we focus on the successor.

Just like in RML, RuleR supports data parameterization, so that specifi-
cations can depend on observed data from the event. Furthermore, it also
includes a different form of parametric specifications, namely, rules parameter-
ized over other rules. This form of higher-order specifications are currently not
supported in RML; extending the trace calculus in such a way should be done
with care to guarantee termination of the algorithm for a single transition step.

Comparing rule-based system to RML is not easy from the usage point of
view, as the underlying concepts are very different. Rule systems are arguably
lower-level formalisms: the state is explicitlymanipulated and onemust reason
mostly on single event steps. This often leads to longer specifications, as also
acknowledged by this method’s proponents (Havelund, 2015). On the other
hand, RML offers a higher abstraction level, and language operators work at
the trace level.

Formal expressive power is conjectured to be the same. Both RML and
RuleR can embed context-free grammars and express context-sensitive prop-
erties. Furthermore, they both have counting ability over natural numbers,
which suggests Turing-completeness when parametricity (in the sense of RML
generics) is used.

10 https://github.com/havelund/tracecontract

11 https://patricklam.ca/research/tracematch/
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Rule systems are connected to rule based artificial intelligence models,
as they share the underlying deductive approach, based on deriving new
knowledge from known facts. LogFire (Havelund, 2015), for instance, uses
an algorithm from the artificial intelligence community called Rete (Forgy,
1982). By using different inference engines and more efficient way to store
information about the observed data, the implementation of such systems can
be greatly optimized, also becoming suitable for online runtime verification
purposes.

As it happens with other approaches, these systems can either be imple-
mented on their own or embedded in existing languages as libraries. For in-
stance, RuleR is implemented in Java, while LogFire is provided as an internal
Scala12 DSL, a task for which Scala is very well suited thanks to its set of fea-
tures. The same implementation choice (Scala internal DSL) has ben made
for TraceContract (Barringer and Havelund, 2011), which also supports some
basic rule-oriented features.

7.6 static and dynamic analysis

Effective and efficient combination of static and dynamic analysis techniques
is a currently investigated research problem, which poses many challenges
and is highly dependent on the formalism used and the kind of system under
observation. Despite the challenges, it is a natural step towards software
correctness: every property that is too impractical (or impossible) to enforce
statically, is postponed to dynamic analysis, ideally getting the best of both
worlds. In this view, runtime verification serves as a complementary technique
to more traditional ones: static analysis, formal methods, type systems, etc.

PQL13 (Program Query Language, Martin, Livshits, and Lam, 2005) is a tool
that allows the user to define patterns of execution to be matched against the
flow of the observed program. Statically, the analyzer finds the relevant code
points that need to be instrumented, thus minimizing the runtime overhead.
At runtime, a monitor generated from the property (as a finite state machine)
matches the sequence of observed events against the specification. PQL is
mainly concerned with security properties and resource leaks.

Regarding its expressivity, basic queries can be compared to context-free
grammars. However, queries are patterns that can be instantiated by an arbi-
trary number of matching existing objects. While this form of parametricity
increses the expressiveness (intersection of context-free grammars, according
to Martin, Livshits, and Lam, 2005), it seems to share similar limitations to
those of the trace slicing approach previously discussed. In this sense, PQL
properties are more local, as opposed to the global approach of RML.

This optimization is not uncommon in runtime verification tools; a similar
analysis has also been developed for Tracematches (Bodden, Hendren, and
Lhoták, 2007).

Another example of state-of-the-art combination of static and dynamic
analysis framework is Unified Static and Runtime Verification of Object-Oriented
Software14 (StaRVOOrS, Chimento et al., 2015). In this case the combination
has the goal of reducing the original specification by simplifying what can
be proved statically, and produce a runtime specification for what needs dy-

12 https://www.scala-lang.org/

13 http://pql.sourceforge.net/

14 https://starvoors.github.io/
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namic analysis. Thus, rather than optimizing the instrumentation, here the
specification itself is “optimized”.

The framework combines the static deductive verifier KeY 15 (Ahrendt,
Beckert, et al., 2016) with the runtime verification tool LARVA (Colombo, Pace,
and Schneider, 2009). The formalism of choice for the specification is ppDATE
(Ahrendt, Chimento, et al., 2015), an extension of DATE (Colombo, Pace,
and Schneider, 2008) that allows both control- and data-oriented properties
to be stated, decorating automaton states with Hoare triples. From this, JML
(Leavens, Baker, and Ruby, 2006) annotations are produced, and the deductive
verifier uses both to prove correctness, or if it is not possible, only partial
proofs. In the latter case, the specification is refined to encode what needs to
be checked at runtime, compiled to DATE and used at runtime with LARVA
(Colombo, Pace, and Schneider, 2009).

Given the runtime verification flavor of RML, and its independence from
the monitored system, it seems hard to refine the specification with static
information. However, optimizing the instrumentation for a given specification
is very doable, and this could be a future extension of RML. More specifically,
from the RML compilation a configuration file could be produced, including
the kind of events that are actually relevant; then, such information can be
used to minimize the amount of generated and monitored events, gaining
more efficiency. This would be especially useful in specifications having a
“global filter”, as opposed to generate and then ignore most of the observed
events.

7.7 process calculi

Process calculi (a.k.a. process algebras) are a formalism family developed to
precisely describe the behavior of concurrent systems. The main entities are
processes (single computing units) that can both work independently and
communicate (and synchronize) with each other. Different choices of opera-
tors and different restrictions about dynamic creation of processes and com-
munication channels led to a number of systems. Notable examples include
Communicating Sequential Processes (CSP, Brookes, Hoare, and Roscoe, 1984),
the Calculus of Communicating Systems (CCS, Milner, 1980) and the 𝜋-calculus
(Engberg and Nielsen, 1986).

Despite the different goals and techniques involved, some runtime verifica-
tion formalisms and tools have been inspired by process calculi, since both
the communities try to model software behavior.

Java with Assertions Debugging Architecture16 (Jassda, Brörkens and Möller,
2002) uses a CSP-like syntax to express properties, enriched with a notation
to deal with set of events as a whole. This resembles the event types of RML
which can be understood, in a sense, as set of events (those matching the event
type pattern). As it happens with many other tools in object-oriented runtime
verification, parametricity is limited to trace slicing based on instances.

Though process calculi are quite expressive and can model complex interac-
tions, theymiss some operators that are useful in verification.Most importantly,
intersection is usually not included since it makes little sense in that context.
When specifying expected properties however, intersection can be crucial: it
can both increase expressiveness (contex-free languages are not closed under

15 https://www.key-project.org/

16 http://jassda.sourceforge.net/
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intersection, for instance) and support modular specifications, as shown in
several RML examples in Chapter 4.

7.8 stream runtime verification

Beyond ensuring correctness of the observed execution of the program under
scrutiny, it is sometimes useful to also collect quantitative, statistical data for
analysis. In this case one needs to treat a sequence of events as a whole. This
is often called a stream, and the specification languages manipulating them
are sometimes called stream computation languages, or stream languages for
short. More specifically, the observation constitute input streams, which can
be used to generate output streams of results. The goal of stream languages
is to define the dependencies between streams, and to compute the output
stream in an incremental way.

The concept was pioneered by Lola17 (D’Angelo et al., 2005), a monitoring
language allowing the user to manipulate streams of events and create new
ones by specifying them with equations. The formalism (and algorithm) is
explicitly devised for monitoring low-level software and circuits, and allow
logical and arithmetical operations on streams. To keep the system efficient,
operations are computed in an incremental fashion. The expressivity is higher
than temporal logics and finite state machines, and some context-free proper-
ties can be encoded. Furtnermore, in Lola 2.0 (Faymonville et al., 2016) para-
metricity support is added.

While initially developed in the context of synchronous systems monitoring
(a system clock is assumed), stream runtime verification has been generalized
to deal with asynchronous systems. TeSSLa18 (Convent et al., 2018; Leucker,
Sánchez, et al., 2018) is a temporal stream specification language supporting
timestamped events, aiming at monitoring asynchronous, cyber-physical, real-
time systems (a global order over events is still assumed).

A lower level formalism named data transducers (Alur, Mamouras, and
Stanford, 2019) has been recently proposed,with the goal of defining amachine
language for stream computations. Thus it is not meant to be directly used
to write specifications, but rather to be the target language of compilation
from other ones, with a focus on supporting modular compilation of queries
over streams of data. The formalism has been used to translate QRE-past, a
specification language that extends quantitative regular expressions (regular
expressions with aggregate operations, Alur, Fisman, and Raghothaman, 2016)
with past-time temporal logic.

The goals of ensuring correctness and computing metrics are quite different,
and thus the features are not immediately comparable. However, even though
RML scope is traditional runtime verification, generics and data expressions
allow one to compute some values along the way (though no history of pre-
vious events is directly supported). Thanks to parametric event types, such
computations can easily be computed from the observed data.

Transducers have also been used in runtime enforcement to anticipate in-
correct behavior and allow acting on the system under scrutiny in a timely
manner to avoid errors (Aceto, Cassar, et al., 2018).

17 https://www.react.uni-saarland.de/tools/lola/

18 https://www.tessla.io/
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8CONCLUS ION AND FUTURE WORK

This thesis proposed RML, a deterministic, system-agnostic DSL for runtime
verification. We briefly recap its main features.

system-independence RML does not make any assumption on the kind
of system being monitored, and relies on the extremely common and
universally supported JSON format to handle events. By being system-
agnostic, RML is also applicable to heterogeneous systems, and its spec-
ifications can be reused in different contextes.

modularity The instrumentation, the specification and the monitor are kept
strictly separated, and this modular, decoupled design allows one to
reuse as much of the runtime verification framework as possible when
monitoring new kind of systems. Modularity also allows reasoning on
a higher level of abstraction.

expressivity This work showed how complex properties, both data- and
control-oriented, can be specifiedusingRML, including context-sensitive
ones. Key features from the expressivity point of view are parametric
and generic specifications, together with basic computing capabilities.

semantics RML is still a reasonably compact formalism, and relies on a well-
defined, directly implementable rewriting semantics formalized for the
lower-level calculus it compiles to.

practical usability Throughout this work many examples of different
specifications have been given, to show that RML can be actually em-
ployed in practice.

Though the actual state of RML provides a solid foundation, further devel-
opment in different directions is still needed. So far RML has been applied to
Node.js1, Internet of Things systems and Node-RED2 (Leotta, Ancona, et al.,
2018), and current effort is ongoing to apply RML to the Robotic Operating
System3. Nonetheless, more case studies and experiments will further assess
the usability and flexibility of the language, and reveal whether the current
set of features is appropriate.

Distributed runtime verification (Francalanza, Pérez, and Sánchez, 2018)
poses a whole new set of challenges, and application of RML in this context
requires further study. The system-independent flavor of RML lends itself well
to the monitoring of heterogeneous, distributed systems, often implemented
employing many different programming languages and technologies. It is
reasonable to expect that the “global” nature of RML specifications is more
suited to the specification of a distributed system as a whole, monitored by a
central entity, as opposed to monitor spawning on single entities.

An extremely useful next step would be to enrich the compiler with more
static analysis tools that would help the user to avoid subtle errors. When
specifications are not correct, finding the source of the problem can be hard,

1 https://github.com/RMLatDIBRIS/instrumentation

2 https://nodered.org/

3 https://www.ros.org/
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especially because we do not know a priori whether the bug is in the specifi-
cation or in the program. A necessary condition to employ RML for bigger
project is the capability to assist the developer in writing the specification.

In this work some formal properties are proved in order to have a sound
foundation for the optimizations needed to keep the complexity manageable.
However a deeper study of the expressivity of TC and the algebraic properties
of its operators still needs to be done. We conjecture that the language is Turing
complete, as the presence of recursion, conditional expressions and counting
capabilities gives a very expressive framework to work with.

Another direction for future work is related to the concept of monitorability
(Aceto, Achilleos, Francalanza, Ingólfsdóttir, and Lehtinen, 2019a,b; Bartocci et
al., 2018), that is, which properties can be not only expressed but also effectively
monitored at runtime. Before discussing monitorability, two more steps need
to be taken. First, a declarative semantics of TC specifications must be defined
(we only gave an operational semantics) so that notions of soundness and
completeness of the rewriting procedure (from which the monitor is derived)
can be given; this may not be trivial because of our coinductive interpretation
and the deterministic semantics. Second, the incremental nature of runtime
verification needs to be formalized, i. e., observed prefixes of traces must be
given a semantics; in order to do so, more than two truth values would be
employed (Bauer, Leucker, and Schallhart, 2007). At the very least, beyond
“true” and “false”, a third, inconclusive, verdict needs to be considered, to be
used when the observed prefix is not informative enough to decide whether
the execution is correct with respect to the given specification.
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