51 research outputs found

    Prediction based task scheduling in distributed computing

    Full text link

    Survey on counting special types of polynomials

    Full text link
    Most integers are composite and most univariate polynomials over a finite field are reducible. The Prime Number Theorem and a classical result of Gau{\ss} count the remaining ones, approximately and exactly. For polynomials in two or more variables, the situation changes dramatically. Most multivariate polynomials are irreducible. This survey presents counting results for some special classes of multivariate polynomials over a finite field, namely the the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), the relatively irreducible ones (irreducible but reducible over an extension field), the decomposable ones, and also for reducible space curves. These come as exact formulas and as approximations with relative errors that essentially decrease exponentially in the input size. Furthermore, a univariate polynomial f is decomposable if f = g o h for some nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials. The tame case, where the characteristic p of Fq does not divide n = deg f, is fairly well-understood, and we obtain closely matching upper and lower bounds on the number of decomposable polynomials. In the wild case, where p does divide n, the bounds are less satisfactory, in particular when p is the smallest prime divisor of n and divides n exactly twice. The crux of the matter is to count the number of collisions, where essentially different (g, h) yield the same f. We present a classification of all collisions at degree n = p^2 which yields an exact count of those decomposable polynomials.Comment: to appear in Jaime Gutierrez, Josef Schicho & Martin Weimann (editors), Computer Algebra and Polynomials, Lecture Notes in Computer Scienc

    Recent progress in linear algebra and lattice basis reduction (invited)

    Get PDF
    International audienceA general goal concerning fundamental linear algebra problems is to reduce the complexity estimates to essentially the same as that of multiplying two matrices (plus possibly a cost related to the input and output sizes). Among the bottlenecks one usually finds the questions of designing a recursive approach and mastering the sizes of the intermediately computed data. In this talk we are interested in two special cases of lattice basis reduction. We consider bases given by square matrices over K[x] or Z, with, respectively, the notion of reduced form and LLL reduction. Our purpose is to introduce basic tools for understanding how to generalize the Lehmer and Knuth-Schönhage gcd algorithms for basis reduction. Over K[x] this generalization is a key ingredient for giving a basis reduction algorithm whose complexity estimate is essentially that of multiplying two polynomial matrices. Such a problem relation between integer basis reduction and integer matrix multiplication is not known. The topic receives a lot of attention, and recent results on the subject show that there might be room for progressing on the question

    Fast algorithms for computing isogenies between elliptic curves

    Get PDF
    We survey algorithms for computing isogenies between elliptic curves defined over a field of characteristic either 0 or a large prime. We introduce a new algorithm that computes an isogeny of degree ℓ\ell (ℓ\ell different from the characteristic) in time quasi-linear with respect to ℓ\ell. This is based in particular on fast algorithms for power series expansion of the Weierstrass ℘\wp-function and related functions

    Explicit formula for the generating series of diagonal 3D rook paths

    Get PDF
    Let ana_n denote the number of ways in which a chess rook can move from a corner cell to the opposite corner cell of an n×n×nn \times n \times n three-dimensional chessboard, assuming that the piece moves closer to the goal cell at each step. We describe the computer-driven \emph{discovery and proof} of the fact that the generating series G(x)=∑n≥0anxnG(x)= \sum_{n \geq 0} a_n x^n admits the following explicit expression in terms of a Gaussian hypergeometric function: G(x) = 1 + 6 \cdot \int_0^x \frac{\,\pFq21{1/3}{2/3}{2} {\frac{27 w(2-3w)}{(1-4w)^3}}}{(1-4w)(1-64w)} \, dw.Comment: To appear in "S\'eminaire Lotharingien de Combinatoire

    On Hardness of Testing Equivalence to Sparse Polynomials Under Shifts

    Get PDF

    Implementing Brouwer's database of strongly regular graphs

    Get PDF
    Andries Brouwer maintains a public database of existence results for strongly regular graphs on n≤1300n\leq 1300 vertices. We implemented most of the infinite families of graphs listed there in the open-source software Sagemath, as well as provided constructions of the "sporadic" cases, to obtain a graph for each set of parameters with known examples. Besides providing a convenient way to verify these existence results from the actual graphs, it also extends the database to higher values of nn.Comment: 18 pages, LaTe

    Counting classes of special polynomials

    Get PDF
    Most integers are composite and most univariate polynomials over a finite field are reducible. The Prime Number Theorem and a classical result of Gauß count the remaining ones, approximately and exactly. In two or more variables, the situation changes dramatically. Most multivariate polynomials are irreducible. We present counting results for some special classes of multivariate polynomials over a finite field, namely the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), and the relatively irreducible ones (irreducible but reducible over an extension field). These numbers come as exact formulas and as approximations with relative errors that essentially decrease exponentially in the input size. Furthermore, a univariate polynomial f over a field F is decomposable if f = g o h with nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials. The tame case, where the characteristic p of F does not divide n = deg f, is fairly well understood, and the upper and lower bounds on the number of decomposable polynomials of degree n match asymptotically. In the wild case, where p does divide n, the bounds are less satisfactory, in particular when p is the smallest prime divisor of n and divides n exactly twice. There is an obvious inclusion-exclusion formula for counting. The main issue is then to determine, under a suitable normalization, the number of collisions, where essentially different components (g, h) yield the same f. In the tame case, Ritt's Second Theorem classifies all collisions of two such pairs. We provide a normal form for collisions of any number of compositions with any number of components. This generalization yields an exact formula for the number of decomposable polynomials of degree n coprime to p. For the wild case, we classify all collisions at degree n = p^2 and obtain the exact number of decomposable polynomials of degree p^2
    • …
    corecore