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S Y N O P S I S

Most integers are composite and most univariate polynomials over a
finite field are reducible. The Prime Number Theorem and a classical
result of Gauß count the remaining ones, approximately and exactly.

In two or more variables, the situation changes dramatically. Most
multivariate polynomials are irreducible. We present counting results
for some special classes of multivariate polynomials over a finite field,
namely the reducible ones, the s-powerful ones (divisible by the s-th
power of a nonconstant polynomial), and the relatively irreducible ones
(irreducible but reducible over an extension field). These numbers
come as exact formulas and as approximations with relative errors
that essentially decrease exponentially in the input size.

Furthermore, a univariate polynomial f over a field F is decom-
posable if f = g ◦ h with nonlinear polynomials g and h. It is intu-
itively clear that the decomposable polynomials form a small minor-
ity among all polynomials. The tame case, where the characteristic
p of F does not divide n = deg f, is fairly well understood, and the
upper and lower bounds on the number of decomposable polynomi-
als of degree n match asymptotically. In the wild case, where p does
divide n, the bounds are less satisfactory, in particular when p is the
smallest prime divisor of n and divides n exactly twice.

There is an obvious inclusion-exclusion formula for counting. The
main issue is then to determine, under a suitable normalization, the
number of collisions, where essentially different components (g,h)
yield the same f. In the tame case, Ritt’s Second Theorem classi-
fies all collisions of two such pairs. We provide a normal form for
collisions of any number of compositions with any number of com-
ponents. This generalization yields an exact formula for the number
of decomposable polynomials of degree n coprime to p. For the wild
case, we classify all collisions at degree n = p2 and obtain the exact
number of decomposable polynomials of degree p2.

Keywords. univariate polynomials, multivariate polynomials, fi-
nite fields, counting special polynomials, enumerative combinatorics
on polynomials, analytic combinatorics, generating functions, com-
puter algebra, tame polynomial decomposition, wild polynomial de-
composition, Ritt’s Second Theorem
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Z U S A M M E N FA S S U N G

Die meisten natürlichen Zahlen sind zusammengesetzt und die meis-
ten univariaten Polynome über einem endlichen Körper sind redu-
zibel. Der Primzahlsatz und ein klassischer Satz von Gauß zählen
näherungsweise und exakt die verbleibenden Elemente.

Bei Polynomen in zwei oder mehr Variablen wandelt sich das
Bild. Die meisten multivariaten Polynome sind irreduzibel. Wir zei-
gen Zählergebnisse für Klassen multivariater Polynome über einem
endlichen Körper, nämlich die reduziblen, die s-potenzvollen (teilbar
duch die s-te Potenz eines nichtkonstanten Polynoms) und die relativ
irreduziblen (irreduzibel, aber reduzibel in einer Körpererweiterung).
Hierzu präsentieren wir exakte Formeln und Näherungen mit einem
relativen Fehler der im Wesentlichen exponentiell in der Eingabegrö-
ße abnimmt.

Desweiteren ist ein univariates Polynom f über einem Körper F
zerlegbar, wenn f = g ◦ h mit nichtlinearen Polynomen g und h. Es
liegt intuitiv nahe, dass die zerlegbaren nur eine kleine Minderheit
unter allen Polynomen darstellen. Der zahme Fall, wenn die Charak-
teristik p von F kein Teiler von n = deg f ist, ist gut erschlossen und
untere und obere Schranke an die Zahl der zerlegbaren Polynome
sind asymptotisch gleich. Im wilden Fall, wenn p ein Teiler von n ist,
sind die Schranken gröber, insbesondere wenn p der kleinste Primtei-
ler von n ist und n genau zweimal teilt.

Das Zählen mittels Inklusion-Exklusion liegt nahe, erfordert aber
das Bestimmen von Kollisionen, dass heißt, unter geeigneter Normie-
rung, verschiedener Komponenten (g,h) die das gleiche f ergeben.
Im zahmen Fall klassifiziert der Zweite Satz von Ritt alle Kollisio-
nen zweier solcher Paare. Wir zeigen eine Normalform für Kollisio-
nen beliebig vieler Zusammensetzungen mit beliebig vielen Kompo-
nenten. Diese Verallgemeinerung liefert eine exakte Formel für die
Anzahl der zerlegbaren Polynome vom Grad n, wenn n teilerfremd
zu p ist. Im wilden Fall klassifizieren wir alle Kollisionen vom Grad
n = p2 und erhalten die genaue Anzahl der zerlegbaren Polynome
vom Grad p2.
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1
I N T R O D U C T I O N

I keep six honest serving-men
(They taught me all I knew);

Their names are What and Why and When
And How and Where and Who.1

— Rudyard Kipling

Why is it so hard to count[?]2

— Doron Zeilberger

This introduction answers Kipling’s questions. The remaining
chapters address Zeilberger’s.

1.1 why do we count?

Die ganzen Zahlen hat der liebe Gott gemacht,
alles andere ist Menschenwerk.3

— Leopold Kronecker

Counting is good for everybody. It brings happiness,4 helps democ-
racy,5 and starts sonnets.6 It is also said to be a natural sleeping aid
and tranquilizer. So it is no surprise that humans started counting
at least 50 000 years ago (Eves, 1990, p. 9). Much more recently, the
German ministry of education named 2008 national year of mathemat-
ics and chose “Mathematik – Alles, was zählt” [Mathematics – all
that counts] as its slogan. In the same year, this author attended the
crypt@b-it summer school at the University of Bonn and discussed his
first counting task with his advisor-to-be on a hike to Castle Drachen-
fels. Six years later, this thesis is the outcome.

1 The sources for the quotations are given on pages 137–138.
2 [Text in brackets added by the author, also in other quotations.]
3 God created the integers, all else is the work of man.
4 See Venetia Evripiotou, Counting Happiness, short film, 2013.
5 It’s not the voting that’s democracy, it’s the counting. — Tom Stoppard
6 How do I love thee? Let me count the ways. — Elizabeth Barrett Browning
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2 introduction

For mathematicians, the benefits of counting mentioned above are
pleasant extras, but as Hamming (1987, Preface) emphasizes, “[t]he
purpose of computing is insight, not numbers.” It is difficult to
measure insight, but when queried for the most beautiful theorems,
the readers of the Mathematical Intelligencer ranked six counting re-
sults among their top ten (Wells, 1990). Hence we ask, paraphrasing
Wigner (1960), where this “surprising popularity of counting in math-
ematics” comes from?

A possible answer is given by the numerous proofs of existence
based on counting and the pigeonhole principle. In this context,
counting modulo two may provide a valuable shortcut. But exis-
tence is only half of the story. Lipton (2014) points out that “a com-
mon situation in complexity theory [is] where finding one object is
easy, but finding the total number is hard.” Examples include perfect
matchings and satisfying assignments for formulas. This leads to an-
other possible answer: counting results may be obtained via a clever
parametrization. Here, explicit constructions and understanding of
the (non)uniqueness of the parameters are means for counting but
also of interest on their own. In this spirit, counting is simultaneously
motivation, benchmark, and our ultimate test of understanding.

A classical counting task concerns the number π(x) of primes less
or equal than x. Results come in two flavors. On the one hand, the
Prime Number Theorem says that asymptotically, a randomly chosen
integer up to x is prime with probability approximately 1/ ln x. The
error term is then closely related to the zeros of the Riemann zeta-
function. On the other hand, computing π(x) exactly for ever increas-
ing x is a traditional area of analytic number theory. The current
world record is held by Franke, Kleinjung, Büthe & Jost (2014) with
π(1025) = 176 846 309 399 143 769 411 680.

1.2 how is this thesis structured and what do we count?

We can face our problem. We can arrange such
facts as we have with order and method.

— Hercule Poirot

In this thesis, we count classes of special polynomials over finite
fields, approximately and exactly.

• In Part i (Chapter 2), we are interested in multivariate polynomi-
als with special factorization patterns.

• In Part ii (Chapters 3–4), we investigate univariate polynomials
with respect to their decomposition behavior.

We now highlight the main results. For more on the history and
related work, we refer to the introduction of each part.



1.2 how is this thesis structured and what do we count? 3

The analogue of the Prime Number Theorem for univariate poly-
nomials over finite fields is a classical result of Gauß. A randomly
chosen polynomial of degree n is irreducible with probability about
1/n and most univariate polynomials are composite. In two or more
variables, the situation changes dramatically. Most multivariate poly-
nomials are irreducible and Carlitz (1963) provides the first count of
irreducible multivariate polynomials.

In Chapter 2, we provide exact formulas for the numbers of re-
ducible (Sections 2.2–2.3), s-powerful (divisible by the sth power of a
nonconstant polynomial, Section 2.4), and relatively irreducible polyno-
mials (irreducible but reducible over an extension field, Section 2.5).
The latter also yields the number of absolutely reducible polynomi-
als. The formulas then lead to simple, yet precise, approximations to
these numbers, with rapidly decaying relative errors. Our contribu-
tions are as follows.

• We provide exact formulas for the numbers under considera-
tion using analytic combinatorics. These lead to easily imple-
mentable algorithms. The formulas are, however, not very trans-
parent. Even the leading term is not immediately visible. (The-
orems 2.2.7, 2.4.4, and 2.5.13).

• We use coefficient comparison to derive easy-to-use approxima-
tions to our numbers. The relative error is exponentially de-
creasing in the bit size of the data. However, it is given in
big-Oh form and thus contains an unspecified constant (The-
orems 2.2.16, 2.4.9, and 2.5.27).

• Finally, we present “second order” approximations to our num-
bers with explicit constants in the error term using a combina-
torial counting method (Theorems 2.3.3, 2.4.20, and 2.5.32).

After this investigation of multivariate polynomials, we turn in Part ii
to the decomposition of univariate polynomials.

The composition of two univariate polynomials g,h ∈ F[x] over a
field F is denoted as f = g ◦h = g(h), and then (g,h) is a decomposition
of f, and f is decomposable if g and h have degree at least 2. A funda-
mental dichotomy is between the tame case, where the characteristic
p of F does not divide degg, and the wild case, where p divides degg.
In the wild case, considerably less is known, both mathematically and
computationally.

It is intuitively clear that the univariate decomposable polynomials
form only a small minority among all univariate polynomials over a
field. There is an obvious inclusion-exclusion formula for counting
and the crux of the matter is to determine, under a suitable normaliza-
tion, the number of collisions, where essentially different components
(g,h) yield the same f. The number of decomposable polynomials of
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degree n is thus the number of all pairs (g,h) with degg · degh = n

reduced by the ambiguities introduced by collisions.
The task of counting compositions over a finite field of charac-

teristic p was first considered by Giesbrecht (1988). He shows that
the decomposable polynomials form an exponentially small fraction
of all univariate polynomials. Von zur Gathen (2014a) presents gen-
eral approximations for the number of decomposable polynomials
of degree n. These come with satisfactory (rapidly decreasing) rel-
ative error bounds except when p divides n exactly twice. He also
obtains explicit formulas for the number of decomposable polynomi-
als of degree n when n has at most four divisors. We complement
these results. In Chapter 3, we show how to quickly obtain explicit
formulas at any degree coprime to p and in Chapter 4, we present
approximations with satisfactory relative error bounds at degree p2.

Two theorems by Ritt are the starting point for the study of col-
lisions. Ritt’s First Theorem relates all complete decompositions of
a given polynomial, where all components are indecomposable. In
this situation, Zieve & Müller (2008) study sequences of Ritt moves,
where adjacent indecomposable g,h in a complete decomposition are
replaced by g∗,h∗ with the same composition, but degg = degh∗ 6=
degh = degg∗. Such collisions are the theme of Ritt’s Second The-
orem and von zur Gathen (2014b) presents a normal form with an
exact description of the (non)uniqueness of the parameters.

In Chapter 3, we combine the above “normalizations” of Ritt’s
theorems to classify collisions of two or more decompositions, not
necessarily complete and of arbitrary length. Our contributions are
as follows.

• We obtain a normal form for collisions of compositions given by
a set of degree sequences and determine exactly the (non)unique-
ness of the parameters (Theorems 3.4.2 and 3.4.5).

• We derive an exact formula for the number of collisions at de-
gree n over a finite field with characteristic coprime to n (Theo-
rem 3.4.9).

• We conclude with a fast algorithm for the number of decompos-
able polynomials of degree n over a finite field of characteristic
coprime to n (Algorithm 3.4.10).

In Chapter 4, we turn to the wild case. The previously known ap-
proximations come with satisfactory (rapidly decreasing) relative er-
ror bounds except when p divides n = deg f exactly twice. The main
result of this chapter (Theorem 4.5.6) determines exactly the number
of decomposable polynomials in one of these difficult cases, namely
when n = p2 and hence degg = degh = p. Our contributions are as
follows.
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• We provide explicit constructions for collisions at degree r2,
where r is a power of the characteristic p > 0 (Fact 4.2.1, Theo-
rem 4.2.22).

• We provide a classification of all collisions at degree p2, linking
every collision to a unique explicit construction (Theorem 4.4.9).

• We use these two results to obtain an exact formula for the num-
ber of decomposable polynomials at degree p2 (Theorem 4.5.6).

• The classification yields an efficient algorithm to test whether
a given polynomial of degree p2 has a collision or not (Algo-
rithm 4.4.14).

1.3 who, where , and when?

What we know is a drop,
what we don’t know, an ocean.

— Isaac Newton

Many people have contributed in various ways to the research
in this thesis. You meet them implicitly throughout this thesis and
explicitly in the acknowledgements at the end. Here, we merely sum-
marize the publication history of each chapter.

The results of Chapter 2 are joint work with Joachim von zur Ga-
then and Tuba Viola. We presented them at the meeting of the Ger-
man Fachgruppe Computeralgebra 2009 in Kassel, Germany, and at
LATIN 2010 in Oaxaca, Mexico. They have been published as

• Joachim von zur Gathen, Alfredo Viola & Konstantin Zieg-
ler (2013). Counting reducible, powerful, and relatively irre-
ducible multivariate polynomials over finite fields. SIAM Jour-
nal on Discrete Mathematics 27(2), 855–891. URL http://dx.doi.

org/10.1137/110854680. Also available at http://arxiv.org/
abs/0912.3312. Extended abstract in Proceedings of LATIN 2010,
Oaxaca, Mexico (2010).

The results of Chapter 3 have been presented at the meeting of
the German Fachgruppe Computeralgebra 2014 in Kassel, Germany,
at the CRM Workshop on Polynomials over Finite Fields 2014 in
Barcelona, Spain, and at ISSAC 2014 in Kobe, Japan. They are avail-
able as

• Konstantin Ziegler (2014). Tame decompositions and col-
lisions. Submitted, 35 pages. URL http://arxiv.org/abs/

1402.5945. Extended abstract in Proceedings of the 2014 In-
ternational Symposium on Symbolic and Algebraic Computation IS-
SAC ’14, Kobe, Japan (2014), 421–428.

http://dx.doi.org/10.1137/110854680
http://dx.doi.org/10.1137/110854680
http://arxiv.org/abs/0912.3312
http://arxiv.org/abs/0912.3312
http://arxiv.org/abs/1402.5945
http://arxiv.org/abs/1402.5945
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The results of Chapter 4 are joint work with Raoul Blankertz and
Joachim von zur Gathen. We presented them at the meeting of the
German Fachgruppe Computeralgebra 2012 in Kassel, Germany, at
ISSAC 2012 in Grenoble, France, at the BIRS Workshop on The Art of
Iterating Rational Functions over Finite Fields 2013 in Banff, Canada,
and at the Symbolic Computation Seminar, 2013, in Waterloo, Canada.
They have been published as

• Raoul Blankertz, Joachim von zur Gathen & Konstantin

Ziegler (2013). Compositions and collisions at degree p2. Jour-
nal of Symbolic Computation 59, 113–145. ISSN 0747-7171. URL
http://dx.doi.org/10.1016/j.jsc.2013.06.001. Also avail-
able at http://arxiv.org/abs/1202.5810. Extended abstract in
Proceedings of the 2012 International Symposium on Symbolic and
Algebraic Computation ISSAC ’12, Grenoble, France (2012), 91–98.

Concise versions of some results also appeared in the survey of
von zur Gathen & Ziegler (2015).

http://dx.doi.org/10.1016/j.jsc.2013.06.001
http://arxiv.org/abs/1202.5810


Part I

M U LT I VA R I AT E P O LY N O M I A L S

I have often wished, that I had employed about the
speculative part of geometry, and the cultivation of the
specious Algebra [multivariate polynomials] I had been

taught very young, a good part of that time and industry,
that I had spent about surveying and fortification (of which

I remember I once wrote an entire treatise) and other
practick parts of mathematicks. And indeed the operations
of symbolical arithmetick (or the modern Algebra) seem to
me to afford men one of the clearest exercises of reason

that I ever yet met with.
— Robert Boyle





2
C O U N T I N G M U LT I VA R I AT E P O LY N O M I A L S

The More Variables, the Better?
— Dick Lipton

An earlier version of this chapter appeared as von zur Gathen,
Viola & Ziegler (2013), see Section 1.3 for the complete publication
history.

Concerning special classes of univariate polynomials over a finite
field, Zsigmondy (1894) counts those with a given number of distinct
roots or without irreducible factors of a given degree. In the same
situation, Artin (1924) counts the irreducible ones in an arithmetic
progression and Hayes (1965) generalizes these results. Cohen (1969)
and Car (1987) count polynomials with certain factorization patterns
and Williams (1969) those with irreducible factors of given degree.
Polynomials that occur as a norm in field extensions are studied by
Gogia & Luthar (1981).

In two or more variables, the situation changes dramatically. Most
multivariate polynomials are irreducible. Carlitz (1963) provides the
first count of irreducible multivariate polynomials. In Carlitz (1965),
he goes on to study the fraction of irreducibles when bounds on the
degrees in each variable are prescribed; see also Cohen (1968). In this
work, we opt for bounding the total degree because it has the charm
of being invariant under invertible linear transformations. Gao &
Lauder (2002) consider the counting problem in yet another model,
namely where one variable occurs with maximal degree. The natural
generating function (or zeta function) for the irreducible polynomials
in two or more variables does not converge anywhere outside of the
origin. Wan (1992) notes that this explains the lack of a simple com-
binatorial formula for the number of irreducible polynomials. But he
gives a p-adic formula, and also a (somewhat complicated) combina-
torial formula. For further references, see Mullen & Panario (2013,
Section 3.6).

In the bivariate case, von zur Gathen (2008) proves precise approx-
imations with an exponentially decreasing relative error. Bodin (2008)
gives a recursive formula for the number of irreducible bivariate poly-
nomials and remarks on a generalization for more than two variables;

9



10 counting multivariate polynomials

he follows up with Bodin (2010). Further types of multivariate poly-
nomials are examined from a counting perspective: decomposable
ones (Bodin, Dèbes & Najib, 2009, von zur Gathen, 2011), singular
ones (von zur Gathen, 2008), and pairs of coprime polynomials (Hou
& Mullen, 2009).

This chapter provides exact formulas for the numbers of reducible
(Sections 2.2–2.3), s-powerful (Section 2.4), and relatively irreducible
polynomials (Section 2.5). The latter also yields the number of abso-
lutely reducible polynomials. Of these, only reducible polynomials
have been treated in the literature, usually with much larger error
terms. The formulas also yield simple, yet precise, approximations to
these numbers, with rapidly decaying relative errors.

We use two different methodologies to obtain such bounds: gener-
ating functions and combinatorial counting. The usual approach, see
Flajolet & Sedgewick (2009), of analytic combinatorics on series with
integer coefficients leads, in our case, to power series that diverge ev-
erywhere (except at 0). We have not found a way to make this work.
Instead, we use power series with symbolic coefficients, namely ratio-
nal functions in a variable representing the field size. Several useful
relations from standard analytic combinatorics carry over to this new
scenario. In a first step, this yields in a straightforward manner exact
formulas for the numbers under consideration (Theorems 2.2.7, 2.4.4,
and 2.5.13). These formulas are, however, not very transparent. Even
the leading term is not immediately visible.

In a second step, coefficient comparisons yield easy-to-use approx-
imations to our numbers (Theorems 2.2.16, 2.4.9, and 2.5.27). The
relative error is exponentially decreasing in the bit size of the data.
As an example, Theorem 2.2.16 gives a “third order” approximation
for the number of reducible polynomials, and thus a “fourth order”
approximation for the irreducible ones. The error term is in big-Oh
form and thus contains an unspecified constant.

In a third step, a different method, namely some combinatorial
counting, yields “second order” approximations with explicit con-
stants in the error term (Theorems 2.3.3, 2.4.20, and 2.5.32).

Geometrically, a single polynomial corresponds to a hypersurface,
that is, to a cycle in affine or projective space, of codimension 1. This
correspondence preserves the respective notions of reducibility. Thus,
Sections 2.2–2.3 can also be viewed as counting reducible hypersur-
faces, in particular, planar curves, and Section 2.4 those with an s-
fold component. Reducible curves embedded in higher-dimensional
spaces, parametrized by the appropriate Chow variety, are counted
by Cesaratto, von zur Gathen & Matera (2013).

We conclude with open questions and suggestions for future work
in Section 2.6.
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2.1 notation

The method used in proving these and similar
results is not elementary in that it depends on

equating coefficients in equal power series.
However it appears to be the natural one for the

subject, and there seems to be little point to
recasting the proofs in “arithmetic” shape.

— Leonard Carlitz

We work in the polynomial ring F[x1, . . . , xr] in r > 1 variables
over a field F and consider polynomials with total degree equal to
some nonnegative integer n:

Pall
r,n(F) = {f ∈ F[x1, . . . , xr] : deg f = n}.

The polynomials of degree at most n form an F-vector space of di-
mension

br,n =

(
r+n

r

)
=

(r+n)r

r!
,

where the falling factorial or Pochhammer symbol is

(r+ x)r = (r+ x) · (r− 1+ x) · · · (1+ x), (2.1.1)

for any real x and any nonnegative integer r, see Knuth (1992). Over
a finite field Fq with q elements, we have

#Pall
r,n(Fq) = q

br,n − qbr,n−1 = qbr,n(1− q−br−1,n).

The property of a certain polynomial to be reducible, squareful
or relatively irreducible is shared with all polynomials associated to
the given one. For counting them, it is sufficient to take one repre-
sentative. We choose an arbitrary monomial order, say, the degree-
lexicographic one, so that the monic polynomials are those with lead-
ing coefficient 1, and write

Pr,n(F) = {f ∈ Pall
r,n(F) : f is monic}.

Then

#Pr,n(Fq) =
#Pall
r,n(Fq)

q− 1
= qbr,n−1

1− q−br−1,n

1− q−1
. (2.1.2)

The product of two monic polynomials is again monic.
Our exact formulas are derived using a generating series, the

standard tool in analytic combinatorics as presented in Flajolet &
Sedgewick (2009) by two experts who created large parts of the theory.
We first recall a few general primitives from this theory that enable
one to set up symbolic equations for generating functions starting
from combinatorial specifications. A countable set C with a “size”
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function | · | : C→ Z>0 is called a combinatorial class if the preimage of
any n ∈ Z>0 is finite. The number of elements of size n is denoted
by Cn and these numbers are encoded in the generating function C(z)

of the sequence Cn:

C(z) =
∑
n>0

Cnzn ∈ Z>0 JzK .

We sometimes omit the argument z. Before we tackle the task of
counting polynomials, let us recall some basics about power series.
An element in the ring of univariate power series over a ring is in-
vertible if and only if its constant term is invertible. We call a power
series original if its constant term vanishes, so that its graph passes
through the origin. The power series

log(1− z) = −
∑
n>1

zn

n
∈ Q JzK (2.1.3)

is original and substituting a power series f in another power series
g is well-defined if f is original.

Two combinatorial classes A and B are isomorphic if there is a size-
preserving bijection A→ B or equivalently if the generating functions
A and B, respectively, are equal. We recall three basic constructions of
new combinatorial classes from given ones; see Flajolet & Sedgewick
(2009, Section I. 2.).

Let A and B be two combinatorial classes. We define the disjoint
union

A ∪̇B = {{0}×A}∪ {{1}×B}.

The size of an element (0,a) or (1,b) is defined as the size of a or b,
respectively. We also define the sequence class

SEQ(A) = {(α1, . . . ,α`) : ` > 0,αi ∈ A},

where |(α1, . . . ,α`)| =
∑
i|αi|. This is a combinatorial class, if A con-

tains no element of size 0. Finally, we derive the multiset class

MSET(A) = SEQ(A)/∼,

where (α1, . . . ,α`) ∼ (β1, . . . ,β`) if there is a permutation σ of {1, . . . , `}
such that αi = βσ(i) for all i. This class contains all finite sequences
of elements from A where repetition is allowed, but ordering is ig-
nored. The generating functions for these constructions are classic
applications of combinatorics.

Fact 2.1.4 (see Flajolet & Sedgewick, 2009, Theorems I.1 and I.5). Let
A, B, and C be combinatorial classes with generating functions A, B, and
C, respectively.
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(i) If A = B ∪̇C, then A = B + C.

(ii) If A = MSET(B) and B0 = 0, then

B =
∑
k>1

µ(k)

k
log(A(zk)),

where µ is the number-theoretic Möbius-function, defined as

µ(k) =


1 if k = 1,

(−1)` if k is the product of ` distinct primes,

0 otherwise.

2.2 generating functions for reducible polynomials

Practice yourself, for heaven’s sake, in little things;
and thence proceed to greater.

— Epictetus

“Excellent!”, I cried. “Elementary”, he said.

— John H. Watson

To study reducible polynomials, we consider the following sub-
sets of Pr,n(F):

Ir,n(F) = {f ∈ Pr,n(F) : f is irreducible},

Rr,n(F) = Pr,n(F) Ir,n(F).

In the usual notions, the polynomial 1 is neither reducible nor ir-
reducible. In our context, it is natural to have Rr,0(F) = {1} and
Ir,0(F) = ∅.

The sets of polynomials

P =
⋃
n>0

Pr,n(Fq),

I =
⋃
n>0

Ir,n(Fq),

R = P I,

are combinatorial classes with the total degree as size functions and
we denote the corresponding generating functions by P, I, R ∈ Z>0 JzK,
respectively. Their coefficients are

Pn = Pr,n(Fq) = #Pr,n(Fq) = q
br,n−1

1− q−br−1,n

1− q−1
, (2.2.1)

Rn = Rr,n(Fq) = #Rr,n(Fq),

In = Ir,n(Fq) = #Ir,n(Fq),



14 counting multivariate polynomials

allpolysGF:=proc(z,N,r) local i: option remember:

sum(’simplify((q^binomial(r+i,r)-q^binomial(r+i-1,r))/

(q-1))*z^i’,i=0..N):

end:

irreduciblesGF:=proc(z,N,r) local k: option remember:

convert(taylor((sum(’mobius(k)/k*
log(allpolysGF(z^k,N,r))’,k=1..N)),z,N+1),

polynom):

end:

reduciblesGF:=proc(z,N,r) option remember:

allpolysGF(z,N,r)-irreduciblesGF(z,N,r):

end:

reducibles:=proc(n,r)

coeff(sort(expand(reduciblesGF(z,n,r))),z^n):

end:

Figure 2.2.4: Maple program to compute the number of monic reducible
polynomials in r variables of degree n.

respectively, dropping Fq and r from the notation. By definition, P is
isomorphic to the disjoint union of R and I, and therefore

R = P − I (2.2.2)

by Fact 2.1.4 (i). By unique factorization, every element in P corre-
sponds to an unordered finite sequence of irreducible polynomials,
where repetition is allowed. Hence P is isomorphic to MSET(I) and
by Fact 2.1.4 (ii),

I =
∑
k>1

µ(k)

k
log P(zk). (2.2.3)

A Maple implementation of the resulting algorithm to compute
the number of reducible polynomials is described in Figure 2.2.4. It
is easy to program and execute and was used to calculate the number
of bivariate reducible polynomials in von zur Gathen (2008, Table 2.1).
We extend these exact results in Table 2.2.5.

This approach quickly leads to explicit formulas. For a positive in-
teger n, a composition of n is a sequence j = (j1, j2, . . . , j|j|) of positive
integers j1, j2, . . . , j|j| with j1+ j2+ · · ·+ j|j| = n, where |j| denotes the
length of the sequence. We define the set

Mn = {compositions of n}. (2.2.6)
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n #R3,n(Fq)

1 0

2 (q6 + 2 q5 + 3 q4 + 3 q3 + 2 q2 + q)/2

3 (3 q12+ 6 q11+ 9 q10+ 8 q9+ 6 q8+ 3 q7−q6− 3 q5− 3 q4+q2+

q)/3

4 (4 q22 + 8 q21 + 12 q20 + 12 q19 + 14 q18 + 16 q17 + 18 q16 +

16 q15 + 10 q14 − 13 q12 − 20 q11 − 20 q10 − 10 q9 − q8 + 6 q7 +

7 q6 + 4 q5 − 2 q3 − q2)/4

5 (5 q37 + 10 q36 + 15 q35 + 15 q34 + 15 q33 + 15 q32 + 15 q31 +

15 q30 + 15 q29 + 20 q28 + 25 q27 + 30 q26 + 30 q25 + 25 q24 +

15 q23 − 15 q21 − 30 q20 − 45 q19 − 60 q18 − 65 q17 − 55 q16 −

26 q15 + 10 q14 + 40 q13 + 50 q12 + 40 q11 + 19 q10 − 10 q8 −

10 q7 − 5 q6 − q5 + q3 + q2 + q)/5

6 (6 q58 + 12 q57 + 18 q56 + 18 q55 + 18 q54 + 18 q53 + 18 q52 +

18 q51 + 18 q50 + 18 q49 + 18 q48 + 18 q47 + 18 q46 + 18 q45 +

18 q44 + 24 q43 + 30 q42 + 36 q41 + 36 q40 + 30 q39 + 21 q38 +

6 q37 − 3 q36 − 6 q35 − 3 q34 + 3 q32 − 6 q31 − 27 q30 − 60 q29 −

99 q28 − 128 q27 − 141 q26 − 132 q25 − 104 q24 − 60 q23 − 3 q22 +

70 q21+ 144 q20+ 201 q19+ 203 q18+ 147 q17+ 51 q16− 45 q15−

102 q14 − 105 q13 − 71 q12 − 27 q11 + 3 q10 + 14 q9 + 11 q8 +

5 q7 + 3 q6 + 3 q5 + 2 q4 − 2 q3 − 2 q2 − q)/6

n #R4,n(Fq)

1 0

2 (q8 + 2 q7 + 3 q6 + 4 q5 + 4 q4 + 3 q3 + 2 q2 + q)/2

3 (3 q18+ 6 q17+ 9 q16+ 12 q15+ 12 q14+ 12 q13+ 11 q12+ 9 q11+

6 q10 + 2 q9 − 3 q8 − 6 q7 − 7 q6 − 6 q5 − 2 q4 + q2 + q)/3

4 (4 q38 + 8 q37 + 12 q36 + 16 q35 + 16 q34 + 16 q33 + 16 q32 +

16 q31 + 16 q30 + 16 q29 + 18 q28 + 20 q27 + 22 q26 + 24 q25 +

26 q24 + 28 q23 + 26 q22 + 20 q21 + 10 q20 − 4 q19 − 22 q18 −

36 q17 − 45 q16 − 48 q15 − 42 q14 − 34 q13 − 21 q12 − 6 q11 +

8 q10 + 18 q9 + 20 q8 + 16 q7 + 9 q6 + 2 q5 − 2 q4 − 2 q3 − q2)/4

n #R5,n(Fq)

1 0

2 (q10 + 2 q9 + 3 q8 + 4 q7 + 5 q6 + 5 q5 + 4 q4 + 3 q3 + 2 q2 + q)/2

3 (3 q25 + 6 q24 + 9 q23 + 12 q22 + 15 q21 + 15 q20 + 15 q19 +

15 q18+15 q17+15 q16+14 q15+12 q14+9 q13+5 q12−6 q10−

10 q9 − 12 q8 − 12 q7 − 10 q6 − 5 q5 − 2 q4 + q2 + q)/3

4 (4 q60 + 8 q59 + 12 q58 + 16 q57 + 20 q56 + 20 q55 + 20 q54 +

20 q53 + 20 q52 + 20 q51 + 20 q50 + 20 q49 + 20 q48 + 20 q47 +

20 q46 + 20 q45 + 20 q44 + 20 q43 + 20 q42 + 20 q41 + 22 q40 +

24 q39 + 26 q38 + 28 q37 + 30 q36 + 32 q35 + 34 q34 + 36 q33 +

38 q32 + 40 q31 + 38 q30 + 32 q29 + 22 q28 + 8 q27 − 10 q26 −

32 q25 − 50 q24 − 64 q23 − 74 q22 − 80 q21 − 79 q20 − 78 q19 −

74 q18 − 66 q17 − 53 q16 − 34 q15 − 12 q14 + 10 q13 + 29 q12 +

42 q11+ 45 q10+ 40 q9+ 30 q8+ 18 q7+ 7 q6− 2 q4− 2 q3−q2)/4

Table 2.2.5: Exact values of #Rr,n(Fq) for small values of r and n. For n < 4,
these are the numbers given in Theorem 2.2.16.
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This standard combinatorial notion is not to be confused with the
composition of polynomials in Part ii.

Theorem 2.2.7. For r > 1, q > 2, and Pn as in (2.2.1), we have

I0 = 0,

In = −
∑
k |n

µ(k)

k

∑
j∈Mn/k

(−1)|j|

|j|
Pj1Pj2 · · ·Pj|j| ,

for n > 1, and therefore

R0 = 1,

Rn = Pn +
∑
k |n

µ(k)

k

∑
j∈Mn/k

(−1)|j|

|j|
Pj1Pj2 · · ·Pj|j| ,

for n > 1.

Proof. We consider the original power series F = 1−P = −
∑
i>1 Pizi.

The Taylor expansion (2.1.3) of log(1− F(zk)) in (2.2.3) yields

I = −
∑
k>1

µ(k)

k

∑
i>1

F(zk)i

i
= −

∑
k>1

µ(k)

k

∑
i>1

(−1)i

i

(∑
j>1

Pjzjk
)i

= −
∑
k>1

µ(k)

k

∑
i>1

(−1)i

i
(P1zk + P2z2k + P3z3k + . . . )i,

I0 = 0,

In = −
∑
k |n

µ(k)

k

∑
i>1

(−1)i

i

∑
j∈Mn/k

|j|=i

Pj1Pj2 · · ·Pji ,

for n > 1, which proves the claimed formulas for I. The results for R
follow by (2.2.2).

We check that the formula yields the well-known one, see Lidl &
Niederreiter (1997, Theorem 3.25), in the univariate case, where r = 1.
We then have Pj = qj and so Pj1Pj2 · · ·Pji = qn/k for any composition
j1 + j2 + · · ·+ ji = n/k. Moreover, the number of compositions of m
with i components is

(
m−1
i−1

)
, see Flajolet & Sedgewick (2009, Section

I.3.1). As a consequence we have for k dividing n

∑
j∈Mn/k

|j|=i

(−1)i

i
Pj1Pj2 · · ·Pji = q

n/k
∑
i>1

(−1)i

i

(
n/k− 1

i− 1

)

=
kqn/k

n

∑
i>1

(−1)i
(
n/k

i

)
= −

kqn/k

n
,

In =
1

n

∑
k |n

µ(k)qn/k. (2.2.8)
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Cohen (1968) notes that, compared to the univariate case, “the
situation is different and much more difficult. In this case, no explicit
formula [...] is available.”

For r > 2, the power series P, I, and R do not converge anywhere
except at 0, and the standard asymptotic arguments of analytic com-
binatorics are inapplicable. We now deviate from this approach and
move from power series in Q JzK to power series in Q(q) JzK, where q
is a symbolic variable representing the field size. For r > 2 and n > 0
we let

Pn(q) = Pr,n(q) = qbr,n−1
1− q−br−1,n

1− q−1
∈ Z[q], (2.2.9)

where we usually omit r from the notation. As examples, we have

P0(q) = 1,P1(q) = qr
1− q−r

1− q−1
, and P2(q) = qr(r+3)/2

1− q−r(r+1)/2

1− q−1
.

(2.2.10)
We define the power series P, I,R ∈ Q(q) JzK by

P(q, z) =
∑
n>0

Pn(q)zn, (2.2.11)

I(q, z) =
∑
k>1

µ(k)

k
logP(q, zk), (2.2.12)

R(q, z) = P(q, z) − I(q, z).

Now 1− P(q, zk) is an original power series, and logP(q, zk) and I

are well-defined, with I(q, 0) = 0. For q ∈ Q, the rational functions in
Q(q) without pole at q ← q form a ring, the localization Q[q](q−q).
If we restrict the power series coefficients to this ring, the evaluation
map which substitutes an integer q for q is a ring homomorphism.
Since Pn is actually a polynomial in q, this poses no restriction in our
case, and evaluating q ← q maps P(q, z) to P(z) coefficientwise. In
other words, the coefficient of zn equals

[zn]P(q, z) = Pn

by (2.1.2). Furthermore, I and R relate to P in the same way as I and
R do to P, so that

[zn]I(q, z) = In,

[zn]R(q, z) = Rn.

The formula of Theorem 2.2.7 is exact but somewhat cumbersome.
A main goal in this chapter is to find simple yet precise approxima-
tions, with rapidly decaying error terms. We fix some notation. For
nonzero f ∈ Q(q), degq f is the degree of f, that is, the numerator
degree minus the denominator degree. Thus degq Pn = br,n − 1 and
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degq(f+ g) 6 max{degq f, degq g}. The appearance of O(q−m) with
a positive integer m in an equation means the existence of some f
with degree at most −m that makes the equation valid. The charm
of our approach is that we obtain results for any “fixed” r and n. If a
termO(q−m) appears, then we may conclude a numerical asymptotic
result for growing prime powers q.

We start with a degree comparison for certain products of the
Pi(q) and sometimes omit the argument q.

Lemma 2.2.13. Let r > 2 and n > 0.

(i) For i, j > 0, we have degq(Pi ·Pj) 6 degq Pi+j, with equality if and
only if ij = 0.

(ii) For 1 6 k 6 n/2, the sequence of integers degq(Pk ·Pn−k) is strictly
decreasing in k.

(iii) For 3 6 k 6 n/2, we have degq P
2
1Pn−2 > degq PkPn−k, with

equality only for (r,n,k) = (2, 6, 3).

Proof. (i) The claimed inequality is equivalent to(
r+ i

r

)
+

(
r+ j

r

)
− 1 6

(
r+ i+ j

r

)
,

which follows by considering the choices of r-element subsets
from a set with r+ i+ j elements. Since r > 2, this inequality is
strict if and only if both i and j are nonzero.

(ii) Using (2.2.9), we define a function u as

u(k) = degq(Pk ·Pn−k) =
(
r+ k

r

)
+

(
r+n− k

r

)
− 2. (2.2.14)

We extend the domain of u(k) to real numbers k between 1 and
n/2 by means of falling factorials as in (2.1.1)

u(k) =
(r+ k)r

r!
+

(r+n− k)r

r!
− 2.

It is sufficient to show that the affine transformation ū with

ū(k) = r! · (u(k) + 2) = (r+ k)r + (r+n− k)r

is strictly decreasing. The first derivative with respect to k is

ū ′(k) =
∑
16i6r

((r+ k)r
i+ k

−
(r+n− k)r

i+n− k

)
.

Since 0 < i+ k < i+ n− k for 1 < k < n/2, each difference is
negative, and so is ū ′(k).
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(iii) Since r > 2 we have

(r− 2)(r− 1)(r+ 5) > 0,

br−1,4 > br,3 − 2r− 1, (2.2.15)

2r+ br,4 − 1 > 2br,3 − 2,

degq P
2
1P4 > degq P3P3,

and equality if and only if r = 2. This proves the claimed in-
equality for n = 6.

For n > 6 we have br−1,n−2 > br−1,4 and with (2.2.15) follows

br−1,n−2 > br,3 − 2r− 1,

2r+ br,n−2 − 1 > br,3 + br,n−3 − 2,

degq P
2
1Pn−2 > degq P3Pn−3,

which proves (iii) for k = 3 and by the monotonicity proven in
(ii) also for all larger k.

Theorem 2.2.16. Let r > 2 and

ρr,n(q) = q(
r+n−1
r )+r−1 1− q−r

(1− q−1)2
∈ Q(q). (2.2.17)

Then

R0 = 1,

R1 = 0,

R2 =
ρr,2(q)
2

· (1− q−r−1),

R3 = ρr,3(q)
(
1− q−r(r+1)/2 + q−r(r−1)/2 1− 2q

−r + 2q−2r−1 − q−2r−2

3(1− q−1)

)
,

R4 = ρr,4(q) ·
(
1+ q−(r+13 ) ·

1+O(q−r(r−1)/2)

2(1− q−r)

)
, (2.2.18)

and for n > 5

Rn = ρr,n(q) ·
(
1+ q−(r+n−2r−1 )+r(r+1)/2 ·

1+O(q−r(r−1)/2)

1− q−r

)
. (2.2.19)

Proof. We start the symbolic analog of our approach in the proof of
Theorem 2.2.7 with the original power series F = 1−P = −

∑
i>1 Piz

i.
The Taylor expansion of log(1− F(zk)) in (2.2.12) yields

R = P− I = 1+
∑
i>2

Fi

i
+
∑
k>2

µ(k)

k

∑
i>1

F(zk)i

i
. (2.2.20)
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i summands summands with

largest degree in q

[zn]Fi 2 PjPn−j, P1Pn−1,P2Pn−2,

1 6 j 6 n/2 P3Pn−3 (for n > 6)

> 3 Pj1Pj2 · · ·Pji , P21Pn−2

1 6 j1 6 j2 6 · · · 6 ji 6 n,

j1 + j2 + · · ·+ ji = n,

[zn]F(zk)i 1 Pn/k Pn/k

> 2 Pj1Pj2 · · ·Pji , P1Pn/k−1

1 6 j1 6 j2 6 · · · 6 ji 6 n/k,

j1 + j2 · · ·+ ji = n/k,

Table 2.2.21: Summands of R and bounds on their degrees in q.

Since Rn = [zn]R, we find R0 = 1, R1 = 0, R2 = (P21 + P1)/2,
and R3 = P2P1 − (P31 −P1)/3. Together with (2.2.10), these imply the
claims for n < 4.

When n > 4, the contributions to [zn]R from both sums in (2.2.20)
are displayed in Table 2.2.21, distinguishing the smallest possible
value for i from the remaining larger ones. The third column lists
all summands. We first show that the last column displays the terms
of largest degree in their row, and then compare the summands in
the last column. The terms of [zn]Fi are products of i factors

Pj1Pj2 · · ·Pji , 1 6 j1 6 j2 6 · · · 6 ji 6 n,

with j1 + j2 + · · ·+ ji = n. For i = 2, we find

degq P1Pn−1 > degq P2Pn−2 > degq PjPn−j (2.2.22)

for all j with 3 6 j 6 n/2 by Lemma 2.2.13 (ii). For i > 3,

degq P
2
1Pn−2 > degq Pj1Pj2 · · ·Pji

for all admissible values of j1, j2, . . . , ji by repeated application of
Lemma 2.2.13 (i) and a single instance of (ii). Let k divide n. Then
[zn]F(zk) = −Pn/k and [zn]

∑
i>2 F(z

k)i has degree degq P1Pn/k−1
as shown above for k = 1.

We continue the comparison started in (2.2.22) by noting that
degq P2Pn−2 > degq P

2
1Pn−2 by Lemma 2.2.13 (i), and degq P

2
1Pn−2 >

degq PjPn−j for all 3 6 j 6 n/2 with equality only for (r,n, j) =

(2, 6, 3) by Lemma 2.2.13 (iii). Furthermore, since degq P1 > 1, we
have for k > 2

degq P
2
1Pn−2 > degq Pn−2 > degq Pn/k > degq P1Pn/k−1,
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by Lemma 2.2.13 (i). Therefore, the summands of largest degree in
q are in decreasing order P1Pn−1, P2Pn−2, and P21Pn−2. For n = 4,
this leads to

R4 = P1P3 + P22/2− P21P2(1+O(q
−1))

= P1P3

(
1+

P22
2P1P3

·
(
1−

P21
P2

· (1+O(q−1))
))

,

while for n > 5, (r,n) 6= (2, 6) we have

Rn = P1Pn−1 + P2Pn−2 − P21Pn−2(1+O(q
−1))

= P1Pn−1

(
1+

P2Pn−2
P1Pn−1

·
(
1−

P21
P2

(1+O(q−1))
))

. (2.2.23)

For (r,n) = (2, 6), we have (2.2.23) with (1/2 +O(q−1)) instead of
(1+O(q−1)).

The estimates (2.2.18) and (2.2.19) follow from

P1Pn−1 = ρr,n(q)(1− q−br−1,n−1),

P2Pn−2
P1Pn−1

= q−br−1,n−1+br−1,2
1+O(q−r(r−1)/2)

1− q−r
, and

P21
P2

= O(q−r(r−1)/2).

Alekseyev (2006) lists (#Ir,n(Fq))n>0 as A115457–A115472 in The
On-Line Encyclopedia of Integer Sequences, for 2 6 r 6 6 and prime
q 6 7.

Bodin (2008, Theorem 7) states (in our notation)

1−
#Ir,n

#Pr,n
∼ q−br−1,n−r

1− q−r

1− q−1
.

Hou & Mullen (2009) provide results for #Ir,n(Fq). These do not
yield error bounds for the approximation of #Rr,n(Fq). Bodin (2010)
also uses (2.2.3). Without proving the required bounds on the various
terms, as in Lemma 2.2.13, he claims a result similar to (2.2.19), but
only for values of n that tend to infinity and with an unspecified
multiplicative factorO(1) in the place of our (1+O(q−r(r−1)/2))/(1−

q−r) in the error term; the latter is independent of n.
Our approach can be described as follows. We start in the usual

framework of algebraic combinatorics with a power series, P =∑
n>0 Pnzn in our case, with well-known integer coefficients. Then

we consider a well-defined series, I =
∑
n>0 Inzn in our case, whose

coefficients we want to determine. We find a description of P as f(I)
and turn this around to get I = g(P), usually by Möbius inversion.
For convergent series, we can then apply powerful tools from calcu-
lus, such as singularity analysis, to analyze the asymptotic behavior
of the coefficients.
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Since our series are not convergent, we deviate from the standard
approach. The coefficients Pn are rational functions of the field size
q. We introduce a variable q and define a power series P ∈ Q(q) JzK,
whose coefficients are rational functions in a variable q, such that
P(q, z) = P. Then g(P) is well-defined, and we set I = g(P) ∈ Q(q) JzK.
Then [zn] I(q, z) = In. We now estimate the degrees of the terms in
g(P). This yields I = h(q)(1 +O(q−m)), with a main contribution
h(q) ∈ Q(q) and a relative error O(q−m), which is an unspecified
rational function of degree at most −m.

Overall, we first have to determine P, I, f, and g, which is often a
substantial part of the labor in the standard framework. From then
on, our derivation enjoys three advantages.

• No convergence of the power series is required.

• A clean concentration on the degrees of the various contribu-
tions, as embodied in Lemmas 2.2.13, 2.4.8, and 2.5.21.

• The degree of a sum of rational functions is bounded by the
degree of the summands.

In the standard approach, the bound for a sum as in the third point
has to be multiplied by the number of summands. As to the second
point, one sometimes sees in the literature a simple claim of what the
main contribution is, without argument. It is not clear whether this
constitutes a mathematical proof in the usual sense. Since our series
are not convergent, the first point is a definitive requirement.

2.3 explicit bounds for reducible polynomials

It must be easy [. . . ] to bring out a double set of
results, viz. —1st, the numerical magnitudes which

are the results of operations performed on
numerical data. [. . . ] 2ndly, the symbolical results
to be attached to those numerical results, which
symbolical results are not less the necessary and

logical consequences of operations performed upon
symbolical data, than are numerical results when

the data are numerical.
— Augusta Ada Lovelace

We now describe a third approach to counting the reducible poly-
nomials. The derivation is somewhat more involved. The payoff
of this additional effort is an explicit relative error bound in Theo-
rem 2.3.3. However, the calculations are sufficiently complicated for
us to stop at the first error term. Thus we replace the asymptotic
1+O(q−r(r−1)/2) in Theorem 2.2.16 by 1/(1− q−1).

We consider, for integers 1 6 k < n, the sets

Rr,n,k(F) = {g ·h : g ∈ Pr,k(F),h ∈ Pr,n−k(F)} ⊆ Pr,n(F).
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For the remainder of this section we restrict ourselves to finite fields
Fq, which we omit from the notation. Then

#Rr,n,k 6 #Pr,k · #Pr,n−k = qu(k)
(1− q−br−1,k)(1− q−br−1,n−k)

(1− q−1)2
,

(2.3.1)
with u(k) = br,k + br,n−k − 2 as in (2.2.14). The asymptotic behavior
of this upper bound is dominated by the behavior of u(k). Since
Rr,n,k = Rr,n,n−k, we assume without loss of generality k 6 n/2.
From Lemma 2.2.13 (ii), we know that, for any r,n > 2, u(k) is strictly
decreasing for 1 6 k 6 n/2. As u(k) takes only integral values for
integers k we conclude that∑

26k6n/2

qu(k) < qu(2)
∑
k>0

q−k =
qu(2)

1− q−1
. (2.3.2)

Theorem 2.3.3. Let r,q > 2, and ρr,n as in Theorem 2.2.16. We have

#Rr,0(Fq) = 1,

#Rr,1(Fq) = 0,

#Rr,2(Fq) =
ρr,2(q)

2
· (1− q−r−1),

|#Rr,3(Fq) − ρr,3(q)| = ρr,3(q) ·q−r(r−1)/2

·
1− 2q−r + 2q−2r−1 − q−2r−2

3(1− q−1)
(2.3.4)

6 ρr,3(q) ·q−r(r−1)/2,

and for n > 4

|#Rr,n(Fq) − ρr,n(q)| 6 ρr,n(q) ·
q−(

r+n−2
r−1 )+r(r+1)/2

(1− q−1)(1− q−r)
(2.3.5)

6 ρr,n(q) · 3q−(
r+n−2
r−1 )+r(r+1)/2.

Proof. For n < 4, the claims follow from Theorem 2.2.16. We remark
that the fraction on the right-hand side of (2.3.4) is actually bounded
by 2/3. For n > 4, the proof proceeds in three steps. We claim

#Rr,n 6 ρr,n(q)
(
1+

q−br−1,n−1+br−1,2

(1− q−1)(1− q−r)

)
, (2.3.6)

#Ir,n > #Pr,n

(
1− 3q−br−1,n+r

1− q−r

1− q−1

)
, (2.3.7)

#Rr,n > ρr,n(q)
(
1− 3q−br−1,n−1+r

1− q−r−1

1− q−1

)
. (2.3.8)

We start with the proof of (2.3.6). Using Rr,n =
⋃
16k6n/2 Rr,n,k

and inequality (2.3.1), we have

#Rr,n 6
∑

16k6n/2

#Rr,n,k
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6
1

(1− q−1)2

∑
16k6n/2

qu(k)(1− q−br−1,k)(1− q−br−1,n−k)

<
1

(1− q−1)2

∑
16k6n/2

qu(k)(1− q−br−1,k).

For the sum, (2.3.2) shows∑
16k6n/2

qu(k)(1− q−br−1,k) < qu(1)(1− q−r) +
∑

26k6n/2

qu(k) (2.3.9)

< qu(1)(1− q−r) +
qu(2)

1− q−1

= qu(1)(1− q−r)
(
1+

q−u(1)+u(2)

(1− q−1)(1− q−r)

)
.

Since u(1) = br,n−1 + r− 1 and −u(1) + u(2) = −br−1,n−1 + br−1,2,
we conclude that

#Rr,n 6
qbr,n−1+r−1(1− q−r)

(1− q−1)2

(
1+

q−br−1,n−1+br−1,2

(1− q−1)(1− q−r)

)
= ρr,n(q)

(
1+

q−br−1,n−1+br−1,2

(1− q−1)(1− q−r)

)
< ρr,n(q)(1+ 3q

−br−1,n−1+br−1,2). (2.3.10)

This proves (2.3.6) and we proceed with (2.3.7). Using (2.3.10), we
have

#Ir,n = #Pr,n − #Rr,n

> #Pr,n

(
1− ρr,n(q)

1+ 3q−br−1,n−1+br−1,2

#Pr,n

)
= #Pr,n

(
1− q−br−1,n+r

(1+ 3q−br−1,n−1+br−1,2)(1− q−r)

(1− q−1)(1− q−br−1,n)

)
.

We observe that the exponent −br−1,n−1 + br−1,2 is decreasing in
r and n for n > 4. It is furthermore always negative and hence
the fraction (1+ 3q−br−1,n−1+br−1,2)/(1− q−br−1,n) is also decreasing
in q. Therefore it achieves its maximal value for n = 4, r = 2 and
q = 2, yielding 80/31 < 3 as upper bound and proving (2.3.7). For
the last argument, we need (2.3.7) also for n = 3; this follows from
Theorem 2.2.16.

We conclude with the proof of (2.3.8). The subset {g ·h : g ∈
Pr,1,h ∈ Ir,n−1} ⊂ Rr,n,k has size #Pr,1 · #Ir,n−1. With (2.3.7), we
find

#Rr,n > #Pr,1 · #Ir,n−1

> qbr,1−1
1− q−r

1− q−1
· #Pr,n−1

(
1− 3q−br−1,n−1+r

1− q−r

1− q−1

)
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Figure 2.3.11: The normalized relative error in Theorem 2.2.16 for r = 2.

= ρr,n(q)(1− q
−br−1,n−1)

(
1− 3q−br−1,n−1+r

1− q−r

1− q−1

)
> ρr,n(q)

(
1− 3q−br−1,n−1+r

1− q−r−1

1− q−1

)
.

We combine the upper and lower bounds (2.3.6) and (2.3.8). The
maximum of the bounds on the relative error term is

max
(
3q−r(r−1)/2(1− q−r−1),

1

1− q−r

)
·
q−br−1,n−1+br−1,2

1− q−1

=
q−(

r+n−2
r−1 )+r(r+1)/2

(1− q−1)(1− q−r)

and the observation (1 − q−1)(1 − q−r) 6 8/3 concludes the proof.

The approach of this section also works, with minor modifications,
for n < 4 and can provide a stand-alone proof of Theorem 2.3.3,
without recourse to Theorem 2.2.16.

Figure 2.3.11 shows plots of the normalized relative error (Rn(q)−
ρr,n(q))/(ρr,n(q)q−(r+n−2r−1 )+r(r+1)/2) for r = 2 and n = 4, 5, 20 as we
substitute for q real numbers from 2 to 20. Theorem 2.3.3 says that the
values are absolutely at most 1/((1− q−r)(1− q−1)). Theorem 2.2.16

indicates a bound of 1/2+ o(1) for n = 4 and 1+ o(1) for n > 4, but
without explicit error estimate.
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According to (2.3.5), the bound on the absolute value of the rela-
tive error for n > 4 is

q−br−1,n−1+br−1,2

(1− q−1)(1− q−r)
.

For n > 4, this is at most 2/3. For n = 4, we can drop the factor
1− q−1, since the sum in (2.3.9) consists only of a single summand
and the estimate by a geometric sum is not necessary. This shows
that also for n = 4, the relative error is at most 2/3.

Remark 2.3.12. How close is our relative error estimate to being expo-
nentially decaying in the input size? The usual dense representation
of a polynomial in r variables and of degree n requires br,n =

(
r+n
r

)
monomials, each of them equipped with a coefficient from Fq, using
about log2 q bits. Thus the total input size is about log2 q ·br,n bits.
This differs from log2 q · (br−1,n−1 − br−1,2) by a factor of

br,n

br−1,n−1 − br−1,2
<

br,n
1
2br−1,n−1

=
2(n+ r)(n+ r− 1)

nr
.

Up to this polynomial difference (in the exponent), the relative error
is exponentially decaying in the bit size of the input, that is, (logq)
times the number of coefficients in the usual dense representation. In
particular, it is exponentially decaying in any of the parameters r, n,
and log2 q, when the other two are fixed.

These bounds fit well into the picture described in Section 2 of
von zur Gathen (2008) for r = 2. The family of functions described
there approximates the quotient #R2,n/#P2,n (using our notation). If
we compare them to ρr,2(q)/#P2,n we find that they differ only by the
factor 1− q−n−1, which tends to 1 as n and q increase. Our bound
3q−n+3 on the relative error for r = 2 and n > 4 is only slightly larger
than the bound 2q−n+3 in Theorem 2.1(ii) of the paper cited.

The following provides some handy bounds.

Corollary 2.3.13. For r,q > 2, and n > 5, we have

1

4
q(
r+n−1
r )+r−1 6 #Rr,n(Fq) 6 6q(

r+n−1
r )+r−1,

1

4
q−(

r+n−1
r−1 )+r 6

#Rr,n(Fq)

#Pr,n(Fq)
6 3q−(

r+n−1
r−1 )+r.

We conclude this section with bounds for the number of irre-
ducible polynomials.

Corollary 2.3.14. Let r,q > 2, and ρr,n as in Theorem 2.2.16. We have

#Pr,n(Fq) − 2ρr,n(q) 6 #Ir,n(Fq) 6 #Pr,n(Fq), (2.3.15)

and more precisely

#Ir,1(Fq) = #Pr,1(Fq),
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#Ir,2(Fq) = #Pr,2(Fq) −
ρr,2(q)

2
· (1− q−r−1),

|#Ir,3(Fq) − (#Pr,3(Fq) − ρr,3(q))| 6 ρr,3(q) ·q−(r−1)r/2,

and for n > 4

|#Ir,n(Fq) − (#Pr,n(Fq) − ρr,n(q))| 6 ρr,n(q) · 3q−(
r+n−2
r−1 )+r(r+1)/2.

Proof. The more precise statements follow directly from Theorem 2.3.3
by application of #Pr,n(Fq) = #Rr,n(Fq)+ #Ir,n(Fq). These imply the
first claim for n < 4. For n > 4, the relative error in (2.3.5) is at most
2/3 < 1 as remarked after the proof of Theorem 2.3.3 and this con-
cludes the proof of (2.3.15).

2.4 powerful polynomials

Writing is nature’s way of letting you know how
sloppy your thinking is.

— Dick Guindon

Mathematics is nature’s way of letting you know
how sloppy your writing is.

— Leslie Lamport

For an integer s > 2, a polynomial is called s-powerful if it is
divisible by the s-th power of some nonconstant polynomial, and s-
powerfree otherwise; it is squarefree if s = 2. Let

Qr,n,s(F) = {f ∈ Pr,n(F) : f is s-powerful},

Sr,n,s(F) = Pr,n(F) Qr,n,s(F).

As in the previous section, we restrict our attention to a finite field
F = Fq, which we omit from the notation.

For the approach by generating functions, we consider the combi-
natorial classes Q =

⋃
n>0Qr,n,s and S = P Q, where the explicit

reference to r and s is omitted. Any monic polynomial f factors
uniquely as f = g ·hs where g is a monic s-powerfree polynomial
and h an arbitrary monic polynomial, hence

P = S · P(zs) (2.4.1)

and by definition Q = P − S for the generating functions of S and
Q, respectively. For univariate polynomials, Carlitz (1932) derives
(2.4.1) directly from generating functions to prove the counting for-
mula which we reproduce in (2.4.6). Flajolet, Gourdon & Panario
(2001, Section 1.1) use (2.4.1) for s = 2 to count univariate squarefree
polynomials, see also Flajolet & Sedgewick (2009, Note I.66). A corre-
sponding Maple program to compute the coefficients of Q is shown
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n #Q2,n,3(Fq)

0, 1,
2

0

3 q2 + q

4 q4 + 2 q3 + q2

5 q7 + 2 q6 + 2 q5 + q4

6 q11 + 2 q10 + 2 q9 + 2 q8 + q7 + q5 − q3 − q2

7 q16 + 2 q15 + 2 q14 + 2 q13 + 2 q12 + q11 + q7 + q6 − q5 − 2 q4 −

q3

8 q22 + 2 q21 + 2 q20 + 2 q19 + 2 q18 + 2 q17 + q16 + q10 + q9 −

2 q7 − 2 q6 − q5

9 q29 + 2 q28 + 2 q27 + 2 q26 + 2 q25 + 2 q24 + 2 q23 + q22 + q14 +

q13 − q11 − 2 q10 − q9 − q7 − 2 q6 − q5 + q4 + q3

n #Q3,n,2(Fq)

0, 1 0

2 q3 + q2 + q

3 q6 + 2 q5 + 3 q4 + 2 q3 + q2

4 q12 + 2 q11 + 3 q10 + 4 q9 + 4 q8 + 4 q7 + 2 q6 − 2 q4 − 2 q3 − q2

5 q22 + 2 q21 + 3 q20 + 3 q19 + 3 q18 + 3 q17 + 3 q16 + 3 q15 +

3 q14 + 3 q13 + 3 q12 + 3 q11 + 3 q10 + 2 q9 − 3 q7 − 5 q6 − 5 q5 −

3 q4 − q3

6 q37 + 2 q36 + 3 q35 + 3 q34 + 3 q33 + 3 q32 + 3 q31 + 3 q30 +

3 q29 + 3 q28 + 3 q27 + 3 q26 + 3 q25 + 3 q24 + 3 q23 + 2 q22 +

q21 + q19 + 2 q18 + 3 q17 + 4 q16 + 4 q15 + 3 q14 + q13 − 4 q12 −

8 q11 − 11 q10 − 11 q9 − 8 q8 − 3 q7 + 2 q6 + 4 q5 + 3 q4 + q3

n #Q3,n,3(Fq)

0, 1,
2

0

3 q3 + q2 + q

4 q6 + 2 q5 + 3 q4 + 2 q3 + q2

5 q12 + 2 q11 + 3 q10 + 3 q9 + 3 q8 + 3 q7 + 2 q6 + q5

6 q22 + 2 q21 + 3 q20 + 3 q19 + 3 q18 + 3 q17 + 3 q16 + 3 q15 +

3 q14 + 3 q13 + 2 q12 + q11 + q9 + q8 + q7 − q5 − 2 q4 − 2 q3 − q2

7 q37 + 2 q36 + 3 q35 + 3 q34 + 3 q33 + 3 q32 + 3 q31 + 3 q30 +

3 q29 + 3 q28 + 3 q27 + 3 q26 + 3 q25 + 3 q24 + 3 q23 + 2 q22 +

q21 + q12 + 2 q11 + 3 q10 + 2 q9 − 3 q7 − 5 q6 − 5 q5 − 3 q4 − q3

Table 2.4.3: Exact values of #Qr,n,s(Fq) for small values of r,n, s.
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spowerfreesGF:=proc(z,N,r,s) local i: option remember:

convert(taylor(allpolysGF(z,N,r)/allpolysGF(z^s,N,r),

z,N+1),polynom):

end:

spowerfulsGF:=proc(z,N,r,s) option remember:

allpolysGF(z,N,r)-spowerfreesGF(z,N,r,s):

end:

spowerfuls:=proc(n,r,s)

coeff(sort(expand(spowerfulsGF(z,n,r,s))),z^n):

end:

Figure 2.4.2: Maple program to compute the number of monic s-powerful
polynomials in r variables of degree n.

in Figure 2.4.2. It was used to compute #Q2,n,2(Fq) for n 6 6 in
von zur Gathen (2008, Table 3.1). We extend this in Table 2.4.3.

As in Theorem 2.2.7, this approach quickly leads to explicit for-
mulas.

Theorem 2.4.4. For r > 1, q, s > 2, Pn as in (2.2.1), andMn as in (2.2.6),
we have

Sn =
∑

06i6n/s
j∈Mi

(−1)|j|Pj1Pj2 · · ·Pj|j|Pn−is,

Qn = −
∑

16i6n/s
j∈Mi

(−1)|j|Pj1Pj2 · · ·Pj|j|Pn−is. (2.4.5)

Proof. We consider the original power series F = 1−P = −
∑
i>1 Pizi

and express (2.4.1) as

S = P ·
∑
i>0

F(zs)i

=
∑
k>0

Pkzk ·
∑
i>0

(
−
∑
j>1

Pjzjs
)i

.

Comparison of coefficients provides us with

Sn =
∑

06i6n/s
j∈Mi

(−1)|j|Pj1Pj2 · · ·Pj|j|Pn−is,

and the claim for Qn = Pn − Sn follows.

For r = 1, we have Pj = qj and for any composition j1 + j2 + · · ·+
jk of i in (2.4.5)

Pj1Pj2 · · ·PjkPn−is = qn−(s−1)i.
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Moreover, since

∑
k>1

(−1)k
(
i− 1

k− 1

)
= −

(
0

i− 1

)
=

−1 if i = 1,

0 if i > 2,

see Graham, Knuth & Patashnik (1989, p. 167), we have in the uni-
variate case

Qn = −
∑

16i6n/s
k>1

(−1)k
(
i− 1

k− 1

)
qn−(s−1)i =

0 if n < s,

qn−s+1 if n > s,

(2.4.6)
as shown by Carlitz (1932, Section 6).

To study the asymptotic behavior of Sn and Qn for r > 2 we
again deviate from the standard approach and move to power series
in Q(q) JzK. With P from (2.2.11), we define S,Q ∈ Q(q) JzK by

P = S ·P(zs),

Q = P− S.

This is well-defined, since P(zs) has constant term 1 and is therefore
invertible. By construction, we have

Sn(q) = #Sr,n,s(Fq),

Qn(q) = #Qr,n,s(Fq).

To study the asymptotic behavior, we examine Pk ·Pn−sk. Let

vr,n,s(k) = degq(Pk ·Pn−sk)

= (r+ k)r/r! + (r+n− sk)r/r! − 2

and consider vr,n,s(k) as a function of a real variable k (Figure 2.4.7).
In contrast to u(k) from Section 2.2, this function is not monotone in
k.

Lemma 2.4.8. Let r,n, s,q > 2.

(i) The function vr,n,s(k) is convex for 1 6 k 6 n/s.

(ii) For all integers k with 2 6 k 6 n/s, we have

vr,n,s(1) > vr,n,s(k).

(iii) For all integers k with 3 6 k 6 n/s, we have

vr,n,s(2) > vr,n,s(k) if (n, s) 6= (6, 2).

Furthermore,

vr,6,2(2) < vr,6,2(3) if r > 3,

v2,6,2(2) = v2,6,2(3) + 1.
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Figure 2.4.7: Graphs of v2,n,2(k) on [1,n/2] as n runs from 4 to 8. The dots
represent the values at integer arguments.

(iv) If (n, s) 6= (6, 2), then∑
26k6n/s

qvr,n,s(k) 6
2qvr,n,s(2)

1− q−1
.

Proof. We switch to the affine transformation

v̄(k) = r! ·
(
vr,n,s(k) + 2

)
= (r+ k)r + (r+n− sk)r,

which exhibits the same behavior as vr,n,s concerning convexity and
maximality.

(i) We have

v̄ ′′(k) =
∑

16i,j6r
i 6=j

( (r+ k)r

(i+ k)(j+ k)
+

s2(r+n− sk)r

(i+n− sk)(j+n− sk)

)
> 0.

(ii) For n < 2s, there is nothing to prove. For n > 2s, we find
n > s+ 2 > s+ 1+ 1/(s− 1) and for all i

(i+n− s) − (i+n/s) > 0,

(r+n− s)r − (r+n/s)r > 0,

v̄(1) − v̄(n/s) = (r+ 1)! + (r+n− s)r − (r+n/s)r − r!

= (r+n− s)r − (r+n/s)r + r · r! > 0.

With the convexity of v̄, this suffices.
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(iii) Analogously to (ii), it is sufficient to prove v̄(2) > v̄(n/s) for
(n, s) 6= (6, 2). If n > 2s2/(s− 1), then n− 2s > n/s, so that for
all i

(i+n− 2s) − (i+n/s) > 0

and hence

v̄(2) − v̄(n/s) = (r+ 2)!/2+ (r+n− 2s)r − (r+n/s)r − r!

> (r+n− 2s)r − (r+n/s)r > 0.

If n < 2s2/(s− 1), then n/s < 3 for s > 3 or n < 6 and there is
nothing to prove. Finally, the three conditions n < 2s2/(s− 1),
s = 2, and n > 6 enforce 6 6 n < 8, and we compute directly

vr,7,2(2) − vr,7,2(3) =
1

2
r(r+ 1) > 0,

vr,6,2(2)− vr,6,2(3) = −
1

6
(r− 3)(r+ 1)(r+ 2)− 1

= 1 if r = 2,

< 0 if r > 3.

(iv) The maximal value of the integer sequence vr,n,s(k) for 2 6 k 6
n/s is vr,n,s(2) by (iii). Each value is taken at most twice, due
to (i), and we can bound the sum by twice a geometric sum as∑

26k6n/s

qvr,n,s(k) 6 2qvr,n,s(2)
∑
k>0

q−k =
2qvr,n,s(2)

1− q−1
.

The approach by generating functions now yields the following
result. Its “general” case is (iv). We give exact expressions in special
cases, namely for n < 3s in (ii) and for (n, s) = (6, 2) in (iii), which
also apply when we substitute the size q of a finite field Fq for q.

Theorem 2.4.9. Let r, s > 2, n > 0, and

ηr,n,s(q) = q(
r+n−s
r )+r−1 (1− q−r)(1− q−(r+n−s−1r−1 ))

(1− q−1)2
∈ Q(q),

δ =

(
r+n− s

r

)
−

(
r+n− 2s

r

)
−
r(r+ 1)

2
.

(i) If n > 2s, then δ > r.

(ii)

Qn =



0 for n < s,

ηr,n,s(q) for s 6 n < 2s,

ηr,n,s(q)
(
1+ q−δ · 1−q−(n+r−2s−1r−1 )

1−q−(n+r−s−1r−1 )

·
(
1−q−r(r+1)/2

1−q−r − q−r(r−1)/2 1−q−r

1−q−1

))
for 2s 6 n < 3s.

(2.4.10)
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(iii) For (n, s) = (6, 2) and r > 2, we have

Q6 = ηr,6,2(q)
(
1+ q−(r+34 )−r+1 ·

(
q−1 (1−q−1)

(
1−q−(r+23 )

)
(1−q−r)

(
1−q−(r+34 )

)
+ q−(r3−7r+6)/6 (1−q−r(r+1)/2)2

(1−q−r)
(
1−q−(r+34 )

)
− q−(r3+3r2−10r+6)/6 (1−q−r)(1−q−r(r+1)/2)

(1−q−1)
(
1−q−(r+34 )

)
− 2q−(r3+3r2+4r−6)/6 1−q−r(r+1)/2

1−q−(r+34 )

+ q−(r3+6r2−7r+6)/6 (1−q−r)2

(1−q−1)
(
1−q−(r+34 )

)))
= ηr,6,2(q)

(
1+ q−δ+(r−2)(r−1)(r+3)/6(1+O(q−1))

)
.

(2.4.11)

(iv) For n > 2s and (n, s) 6= (6, 2), we have

Qn = ηr,n,s(q)
(
1+ q−δ(1+O(q−1))

)
. (2.4.12)

Proof. (i) If n > 2s, then

δ >

(
r+ s

r

)
− 1−

r(r+ 1)

2
>

(
r+ 2

r

)
− 1−

r(r+ 1)

2
= r.

(ii) The exact formulas of Theorem 2.4.4 yield

Qn = 0 for n < s,

Qn = P1Pn−s = ηr,n,s(q) for s 6 n < 2s,

and for 2s 6 n < 3s,

Sn = Pn − P1Pn−s − (P2 − P21)Pn−2s, (2.4.13)

Qn = P1Pn−s + (P2 − P21)Pn−2s

= ηr,n,s(q)
(
1+

P2Pn−2s
P1Pn−s

(
1−

P21
P2

))
= ηr,n,s(q)

(
1+ q−δ 1− q−(n+r−2s−1r−1 )

1− q−(n+r−s−1r−1 )

·
(1− q−r(r+1)/2

1− q−r
− q−r(r−1)/2 1− q−r

1− q−1

))
,

where δ = −degq(P2Pn−2s/(P1Pn−s)).

(iii) For s = 2, we evaluate (2.4.5) for

Q6 = P1P4 + P3 + P22 − P21P2 − 2P1P2 + P31

= ηr,6,2(q)(1+ (P3 + P22 − P21P2 − 2P1P2 + P31)/(P1P4))
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= ηr,6,2(q)
(
1+ q−vr,6,2(1)+vr,6,2(3)+1

·
(

q−1 (1−q−1)(1−q−br−1,3)

(1−q−r)(1−q−br−1,4)
(2.4.14)

+ q−(r3−7r+6)/6 (1−q−r(r+1)/2)2

(1−q−r)(1−q−br−1,4)

− q−(r3+3r2−10r+6)/6 (1−q−r)(1−q−r(r+1)/2)

(1−q−1)(1−q−br−1,4)

− 2q−(r3+3r2+4r−6)/6 1−q−r(r+1)/2

1−q−br−1,4

+ q−(r3+6r2−7r+6)/6 (1−q−r)2

(1−q−1)(1−q−br−1,4)

))
(2.4.15)

= ηr,6,2(q)
(
1+ q−δ+(r−2)(r−1)(r+3)/6(1+O(q−1))

)
,
(2.4.16)

since the sum (2.4.14)–(2.4.15) has nonpositive degree in q and
−vr,6,2(1) + vr,6,2(3) + 1 = −

(
r+3
4

)
− r + 1 = −δ + (r − 2)(r −

1)(r+ 3)/6.

(iv) Finally, for n > 2s and (n, s) 6= (6, 2), we claim

Sn = Pn − P1Pn−s − P2Pn−2s(1+O(q−1)). (2.4.17)

This implies immediately

Sn = Pn − P1Pn−s(1+O(q−1))

= Pn(1+O(q−1)),
(2.4.18)

by Lemmas 2.4.8 (ii) and 2.2.13 (i), respectively. We already have
(2.4.17) for 2s 6 n < 3s from (2.4.13) by Lemma 2.2.13 (i). We
also have (2.4.18) for (n, s) = (6, 2) from (2.4.16). This is enough
to obtain inductively

Sn = Pn −
∑

16i6n/s

Sn−isPi

= Pn − P1Sn−s −
∑

26i6n/s

PiSn−is

= Pn − P1
(
Pn−s − P1Pn−2s(1+O(q−1))

)
−

∑
26i6n/s

PiPn−is(1+O(q−1))

= Pn − P1Pn−s + P21Pn−2s(1+O(q
−1))

− P2Pn−2s(1+O(q−1))

= Pn − P1Pn−s − P2Pn−2s(1+O(q−1)),

using Lemma 2.4.8 (iii) for (n, s) 6= (6, 2) and Lemma 2.2.13 (i).
We conclude with

Qn = P1Pn−s + P2Pn−2s(1+O(q−1))
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= ηr,n,s(q)(1+ q−δ(1+O(q−1)))

by ηr,n,s(q) = P1Pn−s and δ = −degq(P2Pn−2s/(P1Pn−s)),
respectively.

For r > 3, we can replace 1+O(q−1) in (2.4.11) by q−1 +O(q−2).
In the following, the combinatorial approach replaces the asymp-

totic 1+O(q−1) of (2.4.12) with an explicit bound of 6 in (2.4.22). We
consider for integers 1 6 k 6 n/s the sets

Qr,n,s,k(F) = {g ·hs : g ∈ Pr,n−sk,h ∈ Pr,k} ∈ Pr,n(F)

and have
Qr,n,s(F) =

⋃
16k6n/s

Qr,n,s,k(F). (2.4.19)

For n < 3s the exact formula (2.4.10) of Theorem 2.4.9 (ii) applies. We
provide explicit bounds for n > 3s.

Theorem 2.4.20. Let r, s,q > 2, n > 0, and

ηr,n,s(q) = q(
r+n−s
r )+r−1 (1− q−r)

(
1− q−(r+n−s−1r−1 ))

(1− q−1)2
∈ Q(q),

δ =

(
r+n− s

r

)
−

(
r+n− 2s

r

)
−
r(r+ 1)

2

as in Theorem 2.4.9.

(i) For (n, s) = (6, 2), we have δ = r(r+ 1)(r2 + 9r+ 2)/24 and

|#Qr,6,2(Fq) − ηr,6,2(q)| 6 ηr,6,2(q) · 2q−δ+(r−2)(r−1)(r+3)/6.
(2.4.21)

(ii) For n > 3s and (n, s) 6= (6, 2), we have

|#Qr,n,s(Fq) − ηr,n,s(q)| 6 ηr,n,s(q) · 6q−δ. (2.4.22)

Proof. We omit the argument Fq from the notation. Considering only
the positive and negative summands of (2.4.15), respectively, we find

#Qr,6,2 6 ηr,6,2(q)(1+ 2q
−δ+(r−2)(r−1)(r+3)/6), (2.4.23)

#Qr,6,2 > ηr,6,2(q)(1− q
−δ+(r−2)(r−1)(r+3)/6),

which proves (i).
For the general case (ii), we claim

#Qr,n,s 6 ηr,n,s(q)
(
1+

16

3
q−δ

)
for (n, s) 6= (6, 2), (2.4.24)

#Qr,n,s > ηr,n,s(q)
(
1−

7

2
q−δ−r(r−1)/2

)
for n > 3s. (2.4.25)



36 counting multivariate polynomials

For (2.4.24), we find from (2.4.19)

#Qr,n,s 6
∑

16k6n/s

#Qr,n,s,k 6
∑

16k6n/s

#Pr,n−sk · #Pr,k

=
∑

16k6n/s

qvr,n,s(k)
(1− q−br−1,n−sk)(1− q−br−1,k)

(1− q−1)2

= ηr,n,s(q)
(
1+ q−vr,n,s(1)

·
∑

26k6n/s

qvr,n,s(k)
(1− q−br−1,k)(1− q−br−1,n−sk)

(1− q−r)(1− q−br−1,n−s)

)
6 ηr,n,s(q)

(
1+ q−vr,n,s(1) ·

∑
26k6n/s

qvr,n,s(k)
(1− q−br−1,k)

(1− q−r)

)

6 ηr,n,s(q)
(
1+

2q−vr,n,s(1)+vr,n,s(2)

(1− q−r)(1− q−1)

)
6 ηr,n,s(q)

(
1+

16

3
q−δ

)
,

using the bound of Lemma 2.4.8 (iv).
To prove (2.4.25), we observe that Qr,n,s,1 contains an injective

image of (Pr,n−s Qr,n−s,s)× Ir,1 by (g,h) 7→ g ·hs. For n > 3s, we
get from Ir,1 = Pr,1

#Qr,n,s > #Qr,n,s,1

> #Ir,1 · #(Pr,n−s Qr,n−s,s)

> #Pr,1 · (#Pr,n−s − #Qr,n−s,s)

> ηr,n,s(q) ·
(
1−

ηr,n−s,s(q)(1+
16
3 q

−r)

#Pr,n−s

)
> ηr,n,s(q) ·

(
1− qbr,n−2s−br,n−s+r

·
(1− q−r)(1− q−br−1,n−2s)(1+ 16

3 q
−r)

(1− q−1)(1− q−br−1,n−s)

)
(2.4.26)

> ηr,n,s(q)
(
1−

7

2
q−δ−r(r−1)/2

)
,

if (n, s) 6= (8, 2) using (2.4.24) for Qr,n−s,s with exponent δ > r by
Theorem 2.4.9 (i).

If (n, s) = (8, 2), we modify (2.4.26) according to (2.4.23) and get

#Qr,8,2 > ηr,8,2(q)
(
1−

3

2

(
1+ 2q−(

r+3
4 )−r+1

)
q−δ−r(r−1)/2

)
> ηr,8,2(q)(1− 2q

−δ−r(r−1)/2).

Combining (2.4.24) and (2.4.25) proves (ii).

We note that for (n, s) = (6, 2), inequality (2.4.22) follows from
(2.4.21) if r = 2 and is false for sufficiently large q if r > 3.
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Figure 2.4.27: The normalized relative error in Theorem 2.4.9 (iii)–(iv) for
(r, s) = (2, 2).

Figure 2.4.27 shows plots of (Qr,n,s(q) − ηr,n,s(q))/(ηr,n,s(q)q−δ)

for r = 2, s = 2 and n = 4, 6, 10, as we substitute for q real numbers
from 2 to 20.

Remark 2.4.28. As noted in Remark 2.3.12 for reducible polynomials,
the relative error term is (essentially) exponentially decreasing in the
input size, and exponentially decaying in any of the parameters r, n,
s, and log2 q, when the other three are fixed.

In the bivariate case, von zur Gathen (2008, Theorem 3.1) approx-
imates the quotient #Q2,n,s(Fq)/#P2,n(Fq) (using our notation) by

q−(2ns−s2+3s−4)/2 (1+ q
−1)(1− q−n+s−1)

1− q−n−1
,

which equals the term η2,n,s(q)/#P2,n(Fq) derived from our analysis
above.

We append handy bounds using Corollary 2.3.13.

Corollary 2.4.29. For r, s,q > 2, and n > s, we have

1

2
q(
r+n−s
r )+r−1 6 #Qr,n,s(Fq) 6 10q(

r+n−s
r )+r−1,

1

2
q−(

r+n
r )+(r+n−sr )+r 6

#Qr,n,s(Fq)

#Pr,n(Fq)
6 5q−(

r+n
r )+(r+n−sr )+r,

1

6
q−(

r+n−1
r )+(r+n−sr ) 6

#Qr,n,s(Fq)

#Rr,n(Fq)
6 19q−(

r+n−1
r )+(r+n−sr ).
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We conclude this section with bounds for the number of s-powerfree
polynomials.

Corollary 2.4.30. Let r, s,q > 2, n > 0, and ηr,n,s and δ as in Theo-
rem 2.4.9. We have

#Pr,n(Fq) − 3ηr,n,s(q) 6 #Sr,n,s(Fq) 6 #Pr,n(Fq),

and more precisely

#Sr,n,s(Fq) =



#Pr,n(Fq) for n < s,

#Pr,n(Fq) − ηr,n,s(q) for s 6 n < 2s,

#Pr,n(Fq) − ηr,n,s(q)

(
1+ q−δ

· 1−q
−(n+r−2s−1r−1 )

1−q−(n+r−s−1r−1 )
·
(
1−q−r(r+1)/2

1−q−r for 2s 6 n < 3s,

−q−r(r−1)/2 1−q
−r

1−q−1

))

|#Sr,6,2(Fq) − (#Pr,n(Fq) − ηr,6,2(q))| 6 ηr,6,2(q)

· 2q−δ+(r−2)(r−1)(r+3)/6,

and for n > 3s with (n, s) 6= (6, 2)

|#Sr,n,s(Fq) − (#Pr,n(Fq) − ηr,n,s(q))| 6 ηr,n,s(q) · 6q−δ.

2.5 relatively irreducible polynomials

Premature optimization is the root of all evil.

— Donald E. Knuth

A polynomial over F is absolutely irreducible if it is irreducible over
an algebraic closure of F, and relatively irreducible if it is irreducible
over F but factors over some extension field of F. We define

Ar,n(F) = {f ∈ Pr,n(F) : f is absolutely irreducible} ⊆ Ir,n(F),

Er,n(F) = Ir,n(F) Ar,n(F). (2.5.1)

As before, we restrict ourselves to finite fields and recall that all our
polynomials are monic. For a field extension Fqk over Fq of degree
k, we consider the Galois group Gk = Gal(Fqk : Fq) ∼= Zk. It acts on
Fqk [x] coefficientwise and we have the “norm” map

ϕr,n,k : Pr,n/k(Fqk)→ Pr,n(Fq),

g 7→
∏
σ∈Gk

gσ,
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for each k dividing n. Since (ϕr,n,k(g))
τ = ϕr,n,k(g) for any τ ∈ Gk

and therefore ϕr,n,k(g) ∈ Pr,n(Fq), this map is well-defined.
Relatively irreducible polynomials in Pr,n(Fq) are the product of

all conjugates of an irreducible polynomial g defined over some exten-
sion field Fqk . If g itself is relatively irreducible over Fqk , then there
exists an appropriate multiple j of k and h ∈ Pr,n/j(Fqj) with the
same image ϕr,n,k(g) = ϕr,n,j(h) in Pr,n(Fq) and the property that h
is absolutely irreducible. So, every relatively irreducible polynomial
is contained in ϕr,n,k(Ar,n/k(Fqk)) for a unique k > 1 dividing n.
Furthermore, the absolutely irreducible polynomials in Pr,n(Fq) are
exactly those in ϕr,n,1(Ar,n(Fq)), and we summarize

Ar,n(Fq) = ϕr,n,1(Ar,n(Fq)), (2.5.2)

Er,n(Fq) ⊆
⋃

1<k |n

ϕr,n,k(Ar,n/k(Fqk)). (2.5.3)

In order to replace the latter by an equality, we let

A+
r,n/k(Fqk) = Ar,n/k(Fqk)

⋃
s |k,s6=k

Ar,n/k(Fqs) (2.5.4)

be the set of absolutely irreducible polynomials over Fqk that are not
defined over a proper subfield containing Fq, and

Ir,n,k(Fq) = ϕr,n,k(A
+
r,n/k(Fqk)).

Lemma 2.5.5. (i) We have the disjoint union

Ir,n(Fq) =
⋃̇
k |n

Ir,n,k(Fq) (2.5.6)

and more precisely

Ar,n(Fq) = Ir,n,1(Fq), (2.5.7)

Er,n(Fq) =
⋃̇

1<k |n

Ir,n,k(Fq). (2.5.8)

(ii) #Ir,n,k(Fq) =
1
k#A+

r,n/k(Fqk).

Proof. (i) Let g ∈ Ar,n/k(Fqk). By definition, g is monic. The
k conjugates gσ, for σ ∈ Gk, are pairwise non-associate if and
only if the coefficients are not contained in some proper subfield
of Fqk . This shows

Ir,n,k(Fq) ⊆ Ir,n(Fq). (2.5.9)

Let f ∈ Ir,n(Fq). Then f = ϕr,n,k(g) for some g ∈ Ar,n/k(Fqk),
with k dividing n as observed in (2.5.3). If g has coefficients
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from a subfield of Fqk , say g ∈ Ar,n/k(Fqs) for some s < k

dividing k, then gσ equals g for some σ ∈ Gk {id}. Taking the
smallest such s and

h =
∏
τ∈Gs

gτ ∈ Ir,n,k/s(Fq),

we have hk/s = ϕr,n,k(g). Hence ϕr,n,k(g) is a (k/s)-th power
and therefore reducible, in contradiction to the choice of f. This
shows that g ∈ A+

r,n/k(Fqk) and a fortiori

Ir,n(Fq) ⊆
⋃
k |n

Ir,n,k(Fq).

The disjointness follows from the fact that the factorization of
ϕr,n,k(g) for any g ∈ A+

r,n/k(Fqk) has exactly k irreducible fac-
tors over Fqn , and (2.5.6) follows with (2.5.9).

Finally, (2.5.7) and (2.5.8) follow from (2.5.2) and (2.5.1), respec-
tively.

(ii) Let g,h ∈ Ir,n/k(Fqk). Then ϕr,n,k(g) = ϕr,n,k(h) if and only if
h = gσ for some automorphism σ ∈ Gk. Sufficiency is a direct
computation and necessity follows from the unique factoriza-
tion of ϕr,n,k(g) and ϕr,n,k(h) over Fqk . Therefore, the size of
each fibre of ϕr,n,k on A+

r,n/k(Fqk) is #Gk = k.

We omit the parameter r from the notation of the generating
functions and their coefficients. The generating function A+(Fqk) of
#A+
r,n(Fqk) is related to the generating function A(Fq) of #Ar,n(Fq)

by definition (2.5.4) and we find by inclusion-exclusion

A+(Fqk) =
∑
s |k

µ(k/s)A(Fqs).

With (2.5.6) and Lemma 2.5.5 (ii), we relate this to the generating
function I(Fq) of irreducible polynomials as introduced in Section 2.2
and obtain

[zn]I(Fq) =
∑
k |n

1

k

∑
s |k

µ(k/s) · [zn/k]A(Fqs),

[zn]A(Fq) =
∑
k |n

1

k

∑
s |k

µ(s) · [zn/k]I(Fqs) (2.5.10)

with Möbius inversion.
A Maple program to compute the latter is shown in Figure 2.5.11.

Exact values for #E2,n(Fq) with n 6 6 are given in von zur Gathen
(2008, Table 4.1). We extend this in Table 2.5.12.

For an explicit formula, we combine the expression for In(Fq) =
In from Theorem 2.2.7 with (2.5.10).



2.5 relatively irreducible polynomials 41

n #E2,n(Fq)

1 0

2 (q4 − q)/2

3 (q6 + q3 − q2 − q)/3

4 (2 q10 + q8 − 2 q5 − 2 q4 + q2)/4

5 (q10 + q5 − q2 − q)/5

6 (3 q18 + 3 q16 + 2 q15 − 2 q12 − 3 q10 − 3 q9 − 3 q8 + q6 + q5 −

q4 − q3 + 2 q2 + q)/6

7 (q14 + q7 − q2 − q)/7

8 (4 q28 + 4 q26 + 4 q24 − 6 q20 − 8 q18 − 3 q16 − 4 q13 + 6 q10 +

8 q9 + 2 q8 − 4 q7 − 4 q6 + q4)/8

n #E3,n(Fq)

1 0

2 (q6 + q4 − q3 − q)/2

3 (q9 + q6 − q2 − q)/3

4 (2 q18 + 2 q16 + 2 q14 + q12 − 2 q9 − 3 q8 − 2 q7 − 3 q6 + 2 q3 +

q2)/4

5 (q15 + q10 + q5 − q3 − q2 − q)/5

6 (3 q38 + 3 q36 + 3 q34 + 3 q32 + 3 q30 + 3 q28 + 2 q27 + 3 q26 +

2 q24 − 3 q22 + 2 q21 − 6 q20 − 3 q19 − 11 q18 − 3 q17 − 9 q16 −

3 q15 − 6 q14 − 3 q13 − q12 + 3 q11 + 9 q10 + 4 q9 + 7 q8 + q7 −

3 q6 − 3 q5 − 2 q4 + 2 q3 + 2 q2 + q)/6

7 (q21 + q14 + q7 − q3 − q2 − q)/7

n #E4,n(Fq)

1 0

2 (q8 + q6 − q3 − q)/2

3 (q12 + q9 + q6 − q4 − q2 − q)/3

4 (2 q28 + 2 q26 + 2 q24 + 2 q22 + 2 q20 + 2 q18 + q16 − 2 q14 −

2 q13 − 3 q12 − 2 q11 − 4 q10 − 2 q9 − 4 q8 − q6 + 2 q5 + 2 q4 +

2 q3 + q2)/4

5 (q20 + q15 + q10 + q5 − q4 − q3 − q2 − q)/5

6 (3 q68 + 3 q66 + 3 q64 + 3 q62 + 3 q60 + 3 q58 + 3 q56 + 3 q54 +

3 q52 + 3 q50 + 3 q48 + 3 q46 + 3 q44 + 5 q42 + 3 q40 + 2 q39 +

3 q38 + 2 q36 − 6 q34 − q33 − 9 q32 − 3 q31 − 10 q30 − 3 q29 −

15 q28 − q27 − 15 q26 − 3 q25 − 14 q24 − 3 q23 − 12 q22 − 3 q21 −

9 q20 − 3 q19 − 4 q18 + 3 q17 + 9 q16 + 7 q15 + 16 q14 + 10 q13 +

12 q12 + 7 q11 + 10 q10 − 2 q9 − q8 − 6 q7 − 7 q6 − 4 q5 + q4 +

2 q3 + 2 q2 + q)/6

Table 2.5.12: Exact values of #Er,n(Fq) for small values of r and n.
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absirreds:=proc(n,r) local k,s: option remember:

add(1/k*add(mobius(s)*subs(q=q^s,coeff(irreduciblesGF(

z,n/k,r),z^(n/k))),s=divisors(k)),k=divisors(n))

end:

absirredsGF:=proc(z,N,r) local k,s: option remember:

sum(’absirreds(k,r)*z^k’,k=1..N)

end:

relirredsGF:=proc(z,N,r) option remember:

irreduciblesGF(z,N,r)-absirredsGF(z,N,r);

end:

relirreds:=proc(n,r)

coeff(sort(expand(relirredsGF(z,n,r))),z^n):

end:

Figure 2.5.11: Maple program to compute the number of relatively irre-
ducible polynomials in r variables of degree n.

Theorem 2.5.13. For r,n > 1, q > 2,Mn as in (2.2.6), and Pn(Fq) = Pn
as in (2.2.1), we have

A0(Fq) = 0,

An(Fq) = −
∑
s |k |n

µ(s)

k

∑
m |n/k

µ(m)

m∑
j∈Mn/(km)

(−1)|j|

|j|
Pj1(Fqs)Pj2(Fqs) · · ·Pj|j|(Fqs),

E0(Fq) = 0,

En(Fq) = −
∑
1<k |n

1

k

∑
s |k

µ(s)In/k(Fqs) (2.5.14)

=
∑
1<k |n

1

k

∑
s |k

m |n/k

µ(s)µ(m)

m

·
∑

j∈Mn/(km)

(−1)|j|

|j|
Pj1(Fqs)Pj2(Fqs) · · ·Pj|j|(Fqs).

We check that for r = 1 we obtain the expected result

An(Fq) =

q if n = 1,

0 if n > 1.



2.5 relatively irreducible polynomials 43

To this end, we use the well-known fact that

∑
s |n

µ(s) =

1 if n = 1,

0 if n > 1.

From (2.5.15) and (2.2.8) we have

nAn(Fq) =
∑
s |k |n
t |n/k

µ(s)µ(t)q
ns
kt =

∑
s |k |n
a |n/k

µ(s)µ(n/(ka))qsa

=
∑
m |n

qm
∑
s |k |n

m=sa,a |n/k

µ(s)µ(n/(ka)) =
∑
m |n

qm
∑
s |m

µ(s)
∑
s |k |n
m/s |n/k

µ(ns/(mk))

=
∑
m |n

qm
∑
s |m

µ(s)
∑
j |n/m

µ(n/(mj))

=
∑
m |n

qm
∑
s |m

µ(s)
∑
i |n/m

µ(i) =

q if n = 1,

0 if n > 1,

where a = n/(kt), m = as, j = k/s, and i = n/(mj).
The remainder of this section deals with the case r > 2. For the

approach by symbolic generating functions, we define, with I(q, z) as
in (2.2.12), the two power series A,E ∈ Q(q) JzK by

A0(q) = I0(q) = 0,

An(q) =
∑
k |n

1

k

∑
s |k

µ(s)In/k(qs) ∈ Z[q] for n > 0, (2.5.15)

A(q, z) =
∑
n>0

An(q)zn ∈ Z[q] JzK ,

E(q, z) = I(q, z) −A(q, z)

= −
∑
1<k |n

1

k

∑
s |k

µ(s)In/k(qs) ∈ Z[q] JzK . (2.5.16)

Then

An(q) = #Ar,n(Fq),

En(q) = #Er,n(Fq).

The inner sum of (2.5.16) has degree degq In/k(q
k) in q. Let n be

composite and ` its smallest prime divisor. For k = `, this inner sum
consists of only two terms and we find

En(q) =
1

`
(In/`(q`) − In/`(q)) −

∑
`<k |n

1

k

∑
s|k

µ(s)In/k(qs)

=
1

`
(Pn/`(q`) − Rn/`(q`) − In/`(q)) +O(qmax`<k|nwr,n(k)),

(2.5.17)
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summand degq

Pn/`(q`) `(br,n/` − 1) = wr,n(`)

Rn/`(q`) `(br,n/`−1 + r− 1) = wr,n(`) − `(br−1,n/` − r)

In/`(q) br,n/` − 1 =
1
`wr,n(`)∑

`<k |n In/k(qk) 6 max`<k |nwr,n(k)

Table 2.5.19: Summands of E and their degrees in q.

2 4 6 8 10
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35

40

n = 4

n = 6

n = 8

n = 9

n = 10

Figure 2.5.20: Graphs for w2,n(k) on [`,n] for composite n in the range from
4 to 10, where ` denotes the smallest prime divisor of n. The
dots represent the values at divisors of n.

with

wr,n(k) = degq(In/k(q
k)) = degq(Pn/k(q

k)) = k((r+n/k)r/r! − 1)
(2.5.18)

for any divisor k of n. Table 2.5.19 lists the degree in q for all sum-
mands in (2.5.17). We consider wr,n as a function on the real interval
[1,n], see Figure 2.5.20.

Lemma 2.5.21. Let r > 2, n be composite, ` the smallest and k2 the second
smallest divisor of n greater than 1.

(i) The function wr,n(k) is strictly decreasing in k on [1,n].

(ii) For composite n 6= 4, 6, we have

wr,n(`) −wr,n(k2) −wr−1,n(`) > 0. (2.5.22)
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(iii) For composite n > `k2 different from 12, we have

wr,n(`) −wr,n(k2) −wr−1,n(`) > log2 n− 2. (2.5.23)

This also holds if n = 12 and r > 3.

The inequality (2.5.22) is false when n is 4 or 6, and (2.5.23) is false
for n = 12, r = 2.

Proof. (i) We compute

w ′r,n(k) =
(r+n/k)r

r!
−
n

r!k

∑
16i6r

(r+n/k)r

i+n/k
− 1

=
(r+n/k)r

r!

(
1−

∑
16i6r

1

1+ i kn

)
− 1. (2.5.24)

If r > 3, then ∑
16i6r

1

1+ i kn
>
∑
16i63

1

1+ i
> 1

for all 1 6 k 6 n, which proves w ′r,n(k) < 0.
If r = 2, we evaluate (2.5.24) as

w ′2,n(k) =
(1+n/k)(2+n/k)

2

(
1−

1

1+ k/n
−

1

1+ 2k/n

)
− 1 = −

n2

2k2

to find w ′2,n(k) < 0 for all k.
For (ii) and (iii), we first show that the sequence ar,n = wr,n(`) −

wr−1,n(`) −wr,n(k2) = `br,n/l−1 − k2(br,n/k2 − 1) is monotonically
increasing in r. We have

ar,n − ar−1,n = `br,n/`−2 − k2br,n/k2−1 > 0

if and only if

Ar,n =
`(r+n/`− 2)r

k2(r+n/k2 − 1)r
> 1

and prove the latter by induction on r > 2.
For r = 2, we have to prove

n(k2 − `) > 2`k2. (2.5.25)

If k2 = `+ 1, then ` = 2, k2 = 3 and since we exclude n = 6, we have
n > 12 to show (2.5.25). If k2 > `+ 2, we distinguish two cases. Now,
k2 = n if and only if n = `2. Since we exclude n = 4, we then have
` > 3 and (2.5.25) follows. If k2 6= n, then k2 6

√
n < n and therefore

2`k2 < 2
√
n
√
n 6 (k2 − `)n.

For the induction step, we have

Ar,n = Ar−1,n
n/`− 2+ r

n/k2 − 1+ r
>
n/`− 2+ r

n/k2 − 1+ r
> 1,
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where the last inequality is equivalent to n(k2 − `) > `k2, which fol-
lows from (2.5.25).

With this monotonicity of ar,n in r, it is sufficient to check (ii) and
(iii) for the smallest admissible value of r.

(ii) We have

a2,n =
n

2

(n
`
−
n

k2
− 2
)

. (2.5.26)

For

• n = `2, ` 6= 4,

• n = `k2, n 6= 6, or

• n = 12,

this is non-negative by direct computation, and in the remaining
case, n > `k2 different from 12, by (iii).

(iii) For n > `k2 different from 12, we have n/`−n/k2 > 3 and find
with (2.5.26)

a2,n >
n

2
> log2 n− 2.

For n = 12 and r > 3, we compute directly a3,12 = 10 >

log2 12− 2.

This lemma allows us to order the summands in (2.5.17) by degq,
and the approach by generating functions gives the following result.

Theorem 2.5.27. Let r,n > 2, let ` be the smallest prime divisor of n, and

εr,n(q) =
q`((

r+n/`
r )−1)

`(1− q−`)
∈ Q(q),

κ = (`− 1)(

(
r− 1+n/`

r− 1

)
− r) + 1.

Then the following hold.

(i) E1(q) = 0.

(ii) If n is prime, then

En(q) = εr,n(q)(1− q−nr)
(
1− q−r(n−1) (1− q−r)(1− q−n)

(1− q−1)(1− q−nr)

)
.

(iii) If n is composite, then κ > 2 and

En(q) = εr,n(q)(1+O(q−κ)).



2.5 relatively irreducible polynomials 47

Proof. For n = 1, the sum (2.5.14) is empty and this shows (i). For n =

` prime, (2.5.14) simplifies to En(q) = (I1(q`) − I1(q))/` = (P1(q`) −
P1(q))/`, since I1 = P1 by Theorem 2.2.16 and (ii) follows.

For composite n, the product (`− 1)(br−1,n/` − r) is positive and
therefore κ > 2. We recall the summands of (2.5.17) in Table 2.5.19.
Lemma 2.5.21 (i) shows that max`<k |nwr,n(k) = wr,n(k2) and we
find

En(q) =
1

`
(Pn/`(q`) − Rn/`(q`) − In/`(q)) +O(qwr,n(k2)).

Since br−1,n/`− r > 0 for composite n, we identify with Lemma 2.5.21

(i) as main term Pn/`(q`)/` = εr,n(q)(1− q−`br−1,n/`). For the sum-
mands of

En(q)/εr,n(q) = (1− q−`br−1,n/`)
(
1−

Rn/`(q`)
Pn/`(q`)

−
In/`(q)
Pn/`(q`)

)
+O(qwr,n(k2)−degq Pn/`(q`))

we find as degrees in q

−`br−1,n/` 6 −κ,

degq Rn/`(q
`) − degq Pn/`(q

`) = −`(br−1,n/` − r) 6 −κ, (2.5.28)

degq In/`(q) − degq Pn/`(q
`) = −(`− 1)(br,n/` − 1) 6 −κ, (2.5.29)

wr,n(k2) − degq Pn/`(q
`) 6 −`(br−1,n/` − 1) 6 −κ (2.5.30)

for n 6= 4, 6 by Lemma 2.5.21 (ii). When n is 4 or 6, the last inequality
in (2.5.30) is false, but still

wr,n(k2) − degq Pn/`(q
`) 6 −κ. (2.5.31)

On closer inspection, it is possible to partition for each compos-
ite n the range for r into two non-empty intervals, where either the
difference in (2.5.28) or the difference in (2.5.29) dominates all others.
This provides tighter bounds at the cost of further case distinctions.

The combinatorial approach yields the following result.

Theorem 2.5.32. Let r,q > 2, and εr,n and κ as in Theorem 2.5.27.

(i) #Er,1(Fq) = 0.

(ii) If n is prime, then

#Er,n(Fq) = εr,n(q)(1− q
−nr)

(
1− q−r(n−1)

(1− q−r)(1− q−n)

(1− q−1)(1− q−nr)

)
,

(2.5.33)

0 6 εr,n(q) − #Er,n(Fq) 6 3q
−r(n−1).

(iii) If n is composite, then

|#Er,n(Fq) − εr,n(q)| 6 εr,n(q) · 3q−κ.



48 counting multivariate polynomials

Proof. The exact statements of (i) and (ii) were already shown in The-
orem 2.5.27 and in (2.5.33) we have q−r(n−1)/16 as upper bound for
q−nr and 32q−r(n−1)/15 as upper bound for the last subtracted term.

For (iii), let ` be the smallest and k2 the second smallest divisor of
n greater than 1. We prove that

#Er,n(Fq) > εr,n(q)(1− 3q
−κ), (2.5.34)

#Er,n(Fq) 6 εr,n(q)(1+ 2q
−`(br−1,n/`−1)) for n 6= 4, 6, (2.5.35)

#Er,n(Fq) 6 εr,n(q)(1+ q
−κ) for n = 4, 6. (2.5.36)

We begin with (2.5.34) and have from Lemma 2.5.5 (ii)

#Er,n(Fq) > #Ir,n,`(Fq) =
1

`
#A+
r,n/`(Fq`)

=
1

`
(#Ir,n/`(Fq`) − #Ir,n/`(Fq)),

since ` is prime and there are no proper intermediate fields between
Fq and Fq` . With the lower bound on the number of irreducible
polynomials from Corollary 2.3.14 this yields

#Er,n(Fq) >
1

`
(#Pr,n/`(Fq`) − 2ρr,n/`(q

`) − #Pr,n/`(Fq))

= εr,n(q)
(
1− q−`br−1,n/` − 2q−`(br−1,n/`−r)

1− q−`r

1− q−`

− q−(`−1)(br,n/`−1)
(1− q−br−1,n/`)(1− q−`)

1− q−1

)
= εr,n(q)

(
1− q−κ

(
q−br−1,n/`−`r+1 + 2q−br−1,n/`+r+1

1− q−`r

1− q−`

+ q−(`−1)br,n/`−1−`r+`+r
(1− q−br−1,n/`)(1− q−`)

1− q−1

))
> εr,n(q)(1− q

−κ(1/16+ 8/3+ 1/4))

> εr,n(q)(1− 3q
−κ).

For the lower bounds (2.5.35) and (2.5.36), we have from Lemma 2.5.5 (ii)

#Ir,n,k(Fq) =
1

k
#A+
r,n/k(Fqk)

6
1

k
#Pr,n/k(Fqk)

= qwr,n(k)
1− q−k(

n/k+r−1
r−1 )

k(1− q−k)
,

with wr,n(k) as defined in (2.5.18). We obtain with (2.5.8)

#Er,n(Fq) 6
∑
1<k|n

#Ir,n,k(Fq)
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6
∑
1<k |n

qwr,n(k) ·
1− q−kbr−1,n/k

k(1− q−k)

= qwr,n(`)
1− q−`br−1,n/`

`(1− q−`)
+
∑
`<k |n

qwr,n(k)
1− q−kbr−1,n/k

k(1− q−k)

= εr,n(q)(1− q
−`br−1,n/`)

·
(
1+ q−wr,n(`)

∑
`<k |n

qwr,n(k)
`(1− q−`)(1− q−kbr−1,n/k)

k(1− q−k)(1− q−`br−1,n/`)

)

6 εr,n(q)
(
1+ q−wr,n(`)

∑
`<k |n

`

k
qwr,n(k)

)
, (2.5.37)

since (1− q−k)/(1− q−kbr−1,n/k) is monotone increasing with k.
For n = `2 or n = `k2, we compute directly from (2.5.37)

#Er,`2(Fq) 6 εr,n(q)
(
1+

1

`
q−wr,n(`)+wr,n(n)

)
,

#Er,`k2(Fq) 6 εr,n(q)
(
1+ q−wr,n(`)+wr,n(k2)

( `
k2

+
`

n

))
6 εr,n(q)(1+ q

−wr,n(`)+wr,n(k2)),

respectively. These prove (2.5.35) for n 6= 4, 6, since −wr,n(`)+wr,n(k2) 6
−wr−1,n(`) 6 −κ by Lemma 2.5.21 (ii), and they also show (2.5.36) for
n = 4, 6 with (2.5.31).

For n > `k2, we show

q−wr,n(`)
∑
`<k |n

`

k
qwr,n(k) 6 2q−wr−1,n(`). (2.5.38)

We use the coarse bound #{k : ` < k | n} 6 n/2 = 2log2n−1 6
2qlog2n−2 and show the stronger

q−wr,n(`)2qlog2n−2qwr,n(k2) 6 2q−wr−1,n(`)

or equivalently

−wr,n(`) +wr,n(k2) 6 −wr−1,n(`) − log2 n+ 2.

For n 6= 12 or n = 12 and r > 3, this follows from Lemma 2.5.21 (iii).
For r = 2 and n = 12, it suffices to evaluate left- and right-hand side
of (2.5.38) to find 5/6q−12 < 2q−12 as claimed.

Finally, we combine the bounds (2.5.34), (2.5.35), and (2.5.36) with
−wr−1,n(`) 6 −κ from (2.5.30).

Figure 2.5.39 shows plots of (Er,n(q) − εr,n(q))/(εr,n(q)q−κ) for
r = 2 and n = 4, 6, 8, 9, as we substitute for q real numbers from 2 to
10.
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Figure 2.5.39: The normalized relative error in Theorem 2.5.27 (iii) for r = 2.

Remark 2.5.40. The bivariate result of von zur Gathen (2008) approxi-
mates the ratio #E2,n(Fq)/#P2,n(Fq) by

q−n
2(`−1)/(2`)(1− q−1)

`(1− q−`)(1− q−n−1)
.

This differs from the approximation by ε2,n(q)/#P2,n(Fq) in Theo-
rem 2.5.32 by a factor of 1− q−n−1.

We append some handy bounds.

Corollary 2.5.41. Let r,n,q > 2, and ` be the smallest prime divisor of n,
then

1

4`
q`(

r+n/`
r )−` 6 #Er,n(Fq) 6

2

`
q`(

l+n/`
r )−`,

1

8`
q−(

r+n
r )+`(r+n/`r )−`+1 6

#Er,n(Fq)

#Pr,n(Fq)
6
2

`
q−(

r+n
r )+`(r+n/`r )−`+1,

1

8`
q−(

r+n
r )+`(r+n/`r )−`+1 6

#Er,n(Fq)

#Ir,n(Fq)
6
2

`
q−(

r+n
r )+`(r+n/`r )−`+1.

The last inequalities follow with Corollary 2.3.13 for n > 5 and
by computation with the exact expressions otherwise. We conclude
with bounds for the number of absolutely irreducible polynomials by
combining Corollary 2.3.14 and Theorem 2.5.32.

Corollary 2.5.42. Let r,n,q > 2, and ρr,n(q) as in (2.2.17). Then

#Pr,n(Fq) − 4ρr,n(q) 6 #Ar,n(Fq) 6 #Ir,n(Fq) 6 #Pr,n(Fq),

where the 4 can be replaced by 3 for n > 3.
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2.6 conclusion and future work

Civilization advances by extending the number of
important operations which we can perform

without thinking about them.
— Alfred North Whitehead

We have provided exact formulas for the numbers of reducible
(Sections 2.2–2.3), s-powerful (Section 2.4), and relatively irreducible
polynomials (Section 2.5). The latter also yielded the number of abso-
lutely reducible polynomials.

Further types of multivariate polynomials that are examined from
a counting perspective include singular bivariate ones (von zur Ga-
then, 2008) and pairs of coprime polynomials (Hou & Mullen, 2009).
It remains open to extend the methods of this chapter to singular mul-
tivariate ones and achieve exponentially decreasing error bounds for
coprime multivariate polynomials.





Part II

D E C O M P O S A B L E P O LY N O M I A L S

Science is knowledge which we understand so well that we
can teach it to a computer; and if we don’t fully

understand something, it is an art to deal with it. [. . . ] We
should continually be striving to transform every art into a

science: in the process, we advance the art.
— Donald E. Knuth

All is fair in war, love, and mathematics.
— Eric Temple Bell
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You probably think that one knows everything
about polynomials. Most mathematicians would

think that, including myself.
— Serge Lang

The composition of two univariate polynomials g,h ∈ F[x] over a
field F is denoted as f = g ◦ h = g(h), and then (g,h) is a decomposi-
tion of f, and f is decomposable if g and h have degree at least 2. In the
1920s, Ritt, Fatou, and Julia studied structural properties of these de-
compositions over C, using analytic methods. Particularly important
are two theorems by Ritt on the uniqueness, in a suitable sense, of de-
compositions, the first one for (many) indecomposable components
and the second one for two components, as above. Engstrom (1941)
and Levi (1942) proved them over arbitrary fields of characteristic
zero using algebraic methods.

The theory was extended to arbitrary characteristic by Fried &
MacRae (1969), Dorey & Whaples (1974), Schinzel (1982, 2000), Zan-
nier (1993), and others. Its use in a cryptographic context was sug-
gested by Cade (1985). In computer algebra, the decomposition me-
thod of Barton & Zippel (1985) requires exponential time. A funda-
mental dichotomy is between the tame case, where the characteristic p
of F does not divide degg, and the wild case, where p divides degg,
see von zur Gathen (1990a,b). (Schinzel (2000, § 1.5) uses tame in a dif-
ferent sense.) A breakthrough result of Kozen & Landau (1989) was
their polynomial-time algorithm to compute tame decompositions;
see also von zur Gathen, Kozen & Landau (1987), Kozen, Landau &
Zippel (1996), Gutierrez & Sevilla (2006b), and the survey articles of
von zur Gathen (2002) and Gutierrez & Kozen (2003) with further
references.

In the tame case, Schur’s conjecture, as proven by Turnwald (1995),
offers a natural connection with the multivariate polynomials of Chap-
ter 2. In this situation, f is indecomposable if (f(x) − f(y))/(x− y) is
absolutely irreducible. Aside from natural exceptions, the converse is
also true.

In the wild case, considerably less is known, both mathematically
and computationally. Zippel (1991) suggests that the block decompo-
sitions of Landau & Miller (1985) for determining subfields of alge-
braic number fields can be applied to decomposing rational functions
even in the wild case. A version of Zippel’s algorithm by Blankertz
(2014) computes in polynomial time all decompositions of a polyno-
mial that are minimal in a certain sense.

It is intuitively clear that the univariate decomposable polynomi-
als form only a small minority among all univariate polynomials over
a field. There is an obvious inclusion-exclusion formula for counting.
The main issue is then to determine, under a suitable normalization,
the number of collisions, where essentially different components (g,h)
yield the same f. The number of decomposable polynomials of degree
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n is thus the number of all pairs (g,h) with degg · degh = n reduced
by the ambiguities introduced by collisions. An important tool for es-
timating the number of collisions is Ritt’s Second Theorem. The first
algebraic versions of Ritt’s Second Theorem in positive characteristic
p required p > deg(g ◦ h). Zannier (1993) reduced this to the milder
and more natural requirement g ′ 6= 0 for all g in the collision. His
proof works over an algebraically closed field, and Schinzel’s (2000)
monograph adapts it to finite fields. Von zur Gathen (2014b) gives a
normal form with an explicit description of the (non)uniqueness of
the parameters.

The task of counting compositions over a finite field of character-
istic p was first considered by Giesbrecht (1988). He showed that the
decomposable polynomials form an exponentially small fraction of
all univariate polynomials. Von zur Gathen (2014a) presents general
approximations to the number of decomposable polynomials. These
come with satisfactory (rapidly decreasing) relative error bounds ex-
cept when p divides n = deg f exactly twice.

Zannier (2007, 2008, 2009) studies a different but related question,
namely decompositions f = g ◦h in C[x] of sparse (or lacunary) polyno-
mials f, where the number t of terms is fixed, while the correspond-
ing degrees and coefficients may vary. He shows that the sparsity of
f implies the sparsity of h, proving a conjecture by Schinzel, and also
gives a parametrization of all such f, g, h in terms of varieties (for
the coefficients) and lattices (for the exponents). Fuchs & Pethő (2011)
and Fuchs & Zannier (2012) follow up with complete descriptions of
sparse decomposable rational functions.

In Chapter 3, we classify all collisions of compositions given by a
set of degree sequences via a generalization of Ritt’s theorems. This
gives an exact formula for the number of decomposable polynomials
of degree n over a finite field of characteristic coprime to n.

In Chapter 4, we classify all collisions at degree p2. This deter-
mines exactly the number of decomposable polynomials in one of
the open wild cases.
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C O U N T I N G D E C O M P O S A B L E P O LY N O M I A L S : T H E
TA M E C A S E

Algebraists like algorithms. Algebra began as a
search for algorithms for solving equations, and

algebra has never lost its taste for finding recipes
for solving classes of problems.

— Al Cuoco, E. Paul Goldenberg, June Mark

An extended abstract of this chapter will appear in the Proceed-
ings of ISSAC ’14, see Section 1.3 for the complete publication history.

Ritt’s First Theorem relates complete decompositions of a given
polynomial, where all components are indecomposable. Zieve &
Müller (2008) turn it into an applicable method and Medvedev &
Scanlon (2014) combine this approach with results from model the-
ory to describe the subvarieties of the k-dimensional affine space that
are preserved by a coordinatewise polynomial map. Both works lead
to slightly different canonical forms for the complete decomposition
of a given polynomial. Zieve & Müller (2008) study sequences of
Ritt moves, where adjacent indecomposable g,h in a complete de-
composition are replaced by g∗,h∗ with the same composition, but
degg = degh∗ 6= degh = degg∗. Such collisions are the theme of
Ritt’s Second Theorem and von zur Gathen (2014b) presents a normal
form with an exact description of the (non)uniqueness of the param-
eters under Zannier’s assumption g ′(g∗) ′ 6= 0.

This chapter combines the above “normalizations” of Ritt’s theo-
rems in the tame case to classify collisions of two or more decom-
positions, not necessarily complete and of arbitrary length (Theo-
rems 3.4.2 and 3.4.5). This yields a fast algorithm for the number
of decomposable polynomials of degree n over a finite field of char-
acteristic coprime to n (Theorem 3.4.9 and Algorithm 3.4.10).

We proceed as follows. In Sections 3.1–3.2, we fix some notation
and establish basic relations. In Section 3.3, we introduce the rela-
tion graph of a set of collisions which captures the necessary order
and possible Ritt moves for any decomposition. In Section 3.4, this
information leads to a complete classification of collisions by Theo-
rems 3.4.2 and 3.4.5. We derive a formula for the number of such col-
lisions over a finite field (Theorem 3.4.9) and obtain a fast algorithm

57
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for the number of decomposable polynomials of degree n over a finite
field of characteristic coprime to n (Algorithm 3.4.10). We conclude
with open questions and suggestions for future work in Section 3.5.

• We obtain a normal form for collisions in the tame case de-
scribed by a set of degree sequences for (possibly incomplete)
decompositions (Theorems 3.4.2 and 3.4.5).

• The (non)uniqueness of the parameters leads to an exact for-
mula for the number of such collisions over a finite field with
characteristic coprime to their degree (Theorem 3.4.9).

• We conclude with a fast algorithm for the number of decompos-
able polynomials of degree n over a finite field of characteristic
coprime to n (Algorithm 3.4.10).

3.1 notation and preliminaries

However contracted, that definition is
the result of expanded meditation.

— Herman Melville

A nonzero polynomial f ∈ F[x] over a field F of characteristic p > 0
is monic if its leading coefficient lc(f) equals 1. We call f original if its
graph contains the origin, that is, f(0) = 0. For g,h ∈ F[x],

f = g ◦ h = g(h) ∈ F[x] (3.1.1)

is their composition. If degg, degh > 2, then (g,h) is a decomposition
of f. A polynomial f ∈ F[x] is decomposable if there exist such g and
h, otherwise f is indecomposable. A decomposition (3.1.1) is tame if
p - degg, and f is tame if p - deg f.

Multiplication by a unit or addition of a constant does not change
decomposability, since

f = g ◦ h⇐⇒ af+ b = (ag+ b) ◦ h

for all f, g, h as above and a,b ∈ F with a 6= 0. In other words, the set
of decomposable polynomials is invariant under this action of F×× F
on F[x]. Furthermore, every decomposition (g,h) of a monic original
f can be normalized by this action, by taking a = lc(h)−1 ∈ F×,
b = −a ·h(0) ∈ F, g∗ = g((x− b)a−1) ∈ F[x], and h∗ = ah+ b. Then
f = g ◦ h = g∗ ◦ h∗ and g∗ and h∗ are monic original.

It is therefore sufficient to consider compositions f = g ◦ h, where
all three polynomials are monic original. For n > 1 and d a positive
divisor of n, we write

Pn(F) = {f ∈ F[x] : f is monic original of degree n},
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Dn(F) = {f ∈ Pn : f is decomposable},

Dn,d(F) = {f ∈ Pn : f = g ◦ h for some (g,h) ∈ Pd ×Pn/d}. (3.1.2)

We sometimes leave out F from the notation, when it is clear from the
context, and have over a finite field Fq with q elements

#Pn(Fq) = qn−1. (3.1.3)

It is well known that in a tame decomposition, g and h are uniquely
determined by f and degg and we have over Fq with p - n

#Dn,d(Fq) = q
d+n/d−2. (3.1.4)

The set Dn of all decomposable polynomials of degree n admits
the covering

Dn =
⋃
d|n

1<d<n

Dn,d. (3.1.5)

In particular, Dn = ∅ if n is prime. Our collisions turn up in the
resulting inclusion-exclusion formula for #Dn(Fq) if n is composite.

Let N = {1 < d < n : d | n} be the set of nontrivial divisors of n.
For D ⊆ N a nonempty subset of size k, we define the set

Dn,D =
⋂
d∈D

Dn,d

of k-collisions and obtain from (3.1.5) the inclusion-exclusion formula

#Dn(Fq) =
∑
k>1

(−1)k+1
∑
D⊆N
#D=k

#Dn,D. (3.1.6)

For #D = 1, the size of Dn,D is given in (3.1.4). For #D = 2, the
central conceptual and computational tool is Ritt’s Second Theorem
as presented in Theorem 3.1.10 below.

For f ∈ Pn(F) and a ∈ F, the original shift of f by a is

f[a] = (x− f(a)) ◦ f ◦ (x+ a) ∈ Pn(F).

Original shifting defines a group action of the additive group of F on
Pn(F). The following lemma describes its stabilizers and orbits in the
tame case.

Lemma 3.1.7. Let n > 1, coprime to the characteristic of F, and f ∈ Pn.

(i) The stabilizer of f under original shifting is F if n = 1 and {0} other-
wise.

(ii) For F = Fq a finite field with q elements, the orbit of f under original
shifting has size 1 if n = 1 and size q otherwise.
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Proof. (i) If n = 1 then f = x and f[a] = x for all a ∈ F. Otherwise, the
coefficient of xn−1 in f[a] is na+ fn−1. Since char(F) - n, this is equal
to fn−1 if and only if a = 0. (ii) follows from (i).

Original shifting respect decompositions in the sense that for each
decomposition (g,h) of f we have a decomposition (g[h(a)],h[a]) of
f[a], and vice versa. We denote (g[h(a)],h[a]) as (g,h)[a].

Ritt (1922) presented two types of essential 2-collisions at degree
n:

xe ◦ xkw(xe) = xkewe(xe) = xkwe ◦ xe,

T∗d(x, ze) ◦ T∗e (x, z) = T∗de(x, z) = T∗e (x, zd) ◦ T∗d(x, z), (3.1.8)

where n = de, w ∈ F[x] of degree s, d = s · e+ k, T∗d is the dth Dickson
polynomial of the first kind, and z ∈ F× = F {0}. Then he proved that
these are all possibilities up to composition with linear polynomials.
This involved four unspecified linear functions, and it is not clear
whether there is a relation between the first and the second type of
example.

Von zur Gathen (2014b) presents a normal form for the decompo-
sitions in Ritt’s Theorem under Zannier’s assumption g ′(g∗) ′ 6= 0 and
the standard assumption gcd(e,d) = 1. Without loss of generality, we
use the originalized dth Dickson polynomial Td(x, z) = T∗d(x, z) − T∗d(0, z)
which also satisfies (3.1.8). This normal form is unique and particu-
larly simple if p - d.

For coprime integers d > 2 and e > 1, we define the sets

E
(e)
d =


Pd for e = 1,

{xkwe ∈ Pd : d = s · e+ k with 1 6 k < e

and w ∈ Fq[x] monic of degree s} otherwise,

(3.1.9)

T
(e)
d = {Td(x, ze) ∈ Pd : z ∈ F×q }

of exponential and trigonometric components, respectively. We some-
times omit the exponent e = 1 from the notation. For d < e, we have
s = 0, k = d in (3.1.9), and therefore

E
(e)
d = {xd}.

For two sets A, B of polynomials, we write A ◦B = {g ◦h : (g,h) ∈
A×B} for the compositions of A×B and A[F] = {f[a] : f ∈ A,a ∈ F}
for the original shifts of A.

Theorem 3.1.10. (Ritt’s Second Theorem, Normal Form, tame case) Let
d > e > 2 be coprime integers, and n = de coprime to the characteristic of
F. For f ∈ Dn,{d,e}, we have either (i) or (ii) and (iii) is also valid.

(i) (Exponential Case) There is a unique monic original g ∈ E
(e)
d and a

unique a ∈ F such that

f = (g ◦ xe)[a].
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(ii) (Trigonometric Case) There is a unique monic original Tn(x, z) ∈ Tn
and a unique a ∈ F such that

f = Tn(x, z)[a].

(iii) If e = 2, then case (ii) is included in case (i). If e > 3, they are
mutually exclusive.

Furthermore, we have

Dn,{d,e} =

{
(E

(2)
d ◦ E

(d)
2 )[F] ⊇ T

[F]
n if e = 2,

(E
(e)
d ◦ E

(d)
e )[F] ∪̇ T[F]

n otherwise,

#Dn,{d,e} = q · (qbd/ec + (1− δe,2)(q− 1)),

where δ denotes Kronecker’s delta function.

If p - n, then the case where gcd(d, e) 6= 1 is reduced to the
previous one by the following result about the left and right great-
est common divisors of decompositions. It was shown over alge-
braically closed fields by Tortrat (1988, Proposition 1); a more con-
cise proof over C using Galois theory is due to Zieve & Müller (2008,
Lemma 2.8). We use the version of von zur Gathen (2014b, Fact 6.1(i)),
adapted to monic original polynomials.

Proposition 3.1.11. Let d, e,d∗, e∗ > 2 be integers and de = d∗e∗ coprime
to the characteristic of F. Furthermore, let g ◦h = g∗ ◦h∗ be monic original
polynomials with degg = d, degh = e, degg∗ = d∗, degh∗ = e∗,
` = gcd(d,d∗), and r = gcd(e, e∗). Then there are unique monic original
polynomials s and v of degree ` and r, respectively, such that

g = s ◦ t, h = u ◦ v,
g∗ = s ◦ t∗, h∗ = u∗ ◦ v,

for unique monic original polynomials t, t∗, u, u∗ of degree d/`, d∗/`, e/r,
and e∗/r, respectively.

Together with Theorem 3.1.10, this determines Dn,D for #D = 2

exactly if p - n.

3.2 refinement of factorizations

Adrian Albert used to say that a theory is worth
studying if it has at least three distinct good hard

examples. Do not therefore define and study a new
class of functions, the ones that possess left upper
bimeasurably approximate derivatives, unless you
can, at the very least, fulfill the good graduate

student’s immediate request: show me some that
do and show me some that don’t.

— Paul Halmos
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In the previous section, we dealt with 2-collisions of bi-decompo-
sitions g ◦ h = g∗ ◦ h∗. In this section, we generalize them in two
respects. First, every decomposition may have more than two compo-
nents and second, more than two decompositions may collide.

Let d = (d1,d2, . . . ,d`) be an ordered factorization of the integer
n = d1 ·d2 · · ·d` into ` divisors di > 1 of n, for 1 6 i 6 `. We define
the set

Dn,d(F) = {f ∈ Pn : there are gi ∈ Pdi for 1 6 i 6 `

with f = g1 ◦ · · · ◦ g`}

of decomposable polynomials with decomposition degree sequence d of
length |d| = `. This generalizes the set Dn,d as defined in (3.1.2) for
a positive divisor d of n and we have Dn,d = Dn,d for d = (d,n/d).
See Knopfmacher & Mays (2006) for a survey on enumerating and
generating all ordered factorizations of a given n.

If p - n, then the degree sequence determines the components
uniquely and thus

Dn,d = Pd1 ◦Pd2 ◦ · · · ◦Pd` ,

#Dn,d(Fq) = q
−`+

∑
16i6` di ,

(3.2.1)

where d = (d1,d2, . . . ,d`) is an ordered factorization of n.
For a nonempty set D = {d(1), d(2), . . . , d(c)} of c distinct ordered

factorizations of n, we define

Dn,D(F) =
⋂
d∈D

Dn,d

= {f ∈ Pn : there are g(k)i ∈ P
d
(k)
i

for 1 6 i 6 |d(k)|, 1 6 k 6 c

with f = g(k)1 ◦ · · · ◦ g(k)
|d(k)|

}.

In the tame case, the structure and size of Dn,D for #D = 1 is de-
scribed in (3.2.1). The goal of the remaining chapter is to determine it
for #D > 1. In this section, we replace D by a normalization D∗, where
all elements are suitable permutations of the same ordered factoriza-
tion of n. Then, we define the relation graph of D∗ that captures the
degree sequences for polynomials in Dn,D (Section 3.3). Finally, we
describe Dn,D as compositions of the trigonometric and exponential
components defined in (3.1.9) and determine the (non)uniqueness of
this composition (Section 3.4).

Let d = (d1,d2) and e = (e1, e2) be two distinct ordered factor-
izations of n with ` = gcd(d1, e1) and r = gcd(d2, e2). We define
d∗ = (`,d1/`,d2/r, r) and e∗ = (`, e1/`, e2/r, r), where we omit entries
equal to 1. Then

Dn,{d,e} = Dn,{d∗,e∗}
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by Proposition 3.1.11 (“⊆”) and a direct computation (“⊇”). Fur-
thermore, e∗ is a permutation of d∗ since gcd(d1/`, e1/`) = 1 =

gcd(d2/r, e2/r) and thus d1/` = e2/r, d2/r = e1/`. In the tame case,
this yields

Dn,{d,e} = P` ◦Dn/(`r),{(d1/`,d2/r),(d2/r,d1/`)} ◦Pr

due to the absence of equal-degree collisions. We generalize this pro-
cedure to two ordered factorizations of arbitrary, possibly distinct,
lengths.

Let us introduce some notation for an ordered factorization d =

(d1,d2, . . . ,d`) of n. A refinement of d is an ordered factorization
d∗ = (d∗11, . . . ,d∗1m1

,d∗21, . . . ,d∗2m2
, . . . ,d∗`1, . . . ,d∗`m`

) of n with di =∏
16k6mi

d∗ik for all 1 6 i 6 ` and we write d∗ | d. A refinement of
d, where all entries are primes is called complete. Refinement defines
a partial order on all ordered factorizations of n. Every complete
refinement is minimal and the trivial factorization (n) is the unique
maximum. For d∗ | d, we have directly

Dn,d ⊇ Dn,d∗ . (3.2.2)

We call the underlying multiset of divisors d = {d1,d2, . . . ,d`}
the support of d. Two ordered factorizations d = (d1, . . . ,d`) and
e = (e1, . . . , e`) of n with the same support define a permutation
σ = σ(d, e) of the indices 1, 2, . . . , ` via

di = eσ(i) (3.2.3)

for 1 6 i 6 `. We require

σ(i) < σ(j) for all i < j with di = dj

to make σ unique. In other words, σ has to preserve the order of
repeated divisors. If we have, even more restrictively,

σ(i) < σ(j) for all i < j with gcd(di,dj) > 1, (3.2.4)

then we call d and e aligned.
Complete refinements d∗ of d and e∗ of e, respectively, are aligned

and we derive from (3.2.2)

Dn,{d,e} ⊇ Dn,{d∗,e∗}. (3.2.5)

But, we ask for aligned refinements that yield equality in (3.2.5). A
basic step to this end is described by the following lemma.

Lemma 3.2.6. Let n be coprime to the characteristic of F, d = (d1, . . . ,d`)
and e = (e1, . . . , em) ordered factorizations of n, and g1 ◦ g2 ◦ · · · ◦ g` =
h1 ◦ h2 ◦ · · · ◦ hm two decompositions of f ∈ Pn with degree sequences d

and e, respectively. For all 1 6 i 6 ` and 1 6 j 6 m with
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gcd(d1 · . . . ·di−1 ·di, e1 · . . . · ej−1) =

gcd(d1 · . . . ·di−1, e1 · . . . · ej−1 · ej), (3.2.7)

we have unique monic original polynomials u, v, u∗, and v∗ of degree c =

gcd(di, ej), di/c, c, and ej/c, respectively, such that

gi = u ◦ v and hj = u∗ ◦ v∗. (3.2.8)

Therefore, f has decomposition degree sequences d∗ = (d1, . . . ,di−1, c,di/c,
di+1, . . . ,d`) | d if 1 < c < di, and e∗ = (e1, . . . , ej−1, c, ej/c,
ej+1, . . . , e`) | e if 1 < c < ej.

Proof. Let 1 6 i 6 ` and 1 6 j 6 m such that (3.2.7) holds and
define G = g1 ◦ · · · ◦ gi−1 and H = h1 ◦ · · · ◦ hj−1 of degree Di−1 and
Ej−1, respectively, where an empty decomposition is equal to x. Then
Proposition 3.1.11 applied to the bi-decompositions

G ◦ (gi ◦ · · · ◦ g`) = H ◦ (hj ◦ · · · ◦ hm) (3.2.9)

guarantees for the left components the existence of unique monic orig-
inal s, t, and t∗ with degrees b = gcd(Di−1,Ej−1), D ′i−1 = Di−1/b,
and E ′j−1 = Ej−1/b, respectively, such that

G = s ◦ t and H = s ◦ t∗, (3.2.10)

gcd(D ′i−1,E ′j−1) = 1. (3.2.11)

Condition (3.2.7) provides gcd(Di−1 ·di,Ej−1) = gcd(Di−1,Ej−1 · ej).
We divide by b to find gcd(di,E ′j−1) = gcd(D ′i−1, ej). These gcds
equal 1, since E ′j−1 and D ′i−1 are coprime, and in particular

gcd(d ′i,E
′
j−1) = gcd(D ′i−1, e ′j) = 1 (3.2.12)

for all d ′i | di and e ′j | ej.
We substitute (3.2.10) back into (3.2.9), cancel the common left

component s, and consider the bi-decomposition

(t ◦ gi) ◦ (gi+1 ◦ · · · ◦ g`) = (t∗ ◦ hj) ◦ (hj+1 ◦ · · · ◦ hm). (3.2.13)

For the left components, we compute with (3.2.11) and (3.2.12)

gcd(deg(t ◦ gi), deg(t∗ ◦ hj)) = gcd(D ′i−1 ·di,E ′j−1 · ej)

= gcd(D ′i−1,E ′j−1) · gcd(
D ′i−1

gcd(D ′i−1,E ′j−1)
,
ej

c
)

· gcd(
di
c

,
E ′j−1

gcd(D ′i−1,E ′j−1)
) · gcd(di, ej)

= c.
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Thus, Proposition 3.1.11 applied to the left components of (3.2.13)
yields unique monic original τ, γ, τ∗, and η of degree c, D ′i−1di/c, c,
and E ′j−1ej/c, respectively, such that

t ◦ gi = τ ◦ γ,

t∗ ◦ hj = τ∗ ◦ η.
(3.2.14)

For the right components of each collision in (3.2.14), we compute
with (3.2.12)

gcd(deggi, degγ) = gcd(di,D ′i−1di/c)

= gcd(di,di/c) · gcd(c,D ′i−1) = di/c,

gcd(deghj, degη) = gcd(ej,E ′j−1ej/c)

= gcd(ej, ej/c) gcd(c,E ′j−1) = ej/c,

respectively. Thus, a final application of Proposition 3.1.11 to (3.2.14)
yields the unique decompositions of gi and hj claimed in (3.2.8).

The two refinements d∗ and e∗ defined in Lemma 3.2.6 have the
common element c and describe the same collisions as d = (d1, . . . ,d`)
and e = (e1, . . . , em) do. This is the basic step in the following proce-
dure to find refinements having common support and describing the
same collisions.

We build an (`+ 1)× (m+ 1)-matrix C(0) of positive integers by
taking an `×m-matrix of all 1’s at the top left and adding a border
column and row, at right and bottom, respectively, containing d and
e, respectively, plus 1 at position (`+ 1,m+ 1), that is

C(0) =


1 . . . 1 d1
...

. . .
...

...

1 . . . 1 d`

e1 . . . em 1

 = (c
(0)
i,j ) 16i6`+1

16j6m+1
∈N(`+1)×(m+1).

(3.2.15)
We extend this recursively to a sequence of integer matrices C(k) ∈

N(`+1)×(m+1) for 1 6 k 6 `m, by writing k = (i − 1)m + j with
unique 1 6 i 6 ` and 1 6 j 6 m, computing c = gcd(c(k−1)i,m+1, c(k−1)`+1,j ),
and defining C(k) as C(k−1) with the three modifications

c
(k)
i,j ← c, c(k)i,m+1 ← c

(k−1)
i,m+1/c, and c(k)`+1,j ← c

(k−1)
`+1,j /c. (3.2.16)

If c = 1, we have C(k) = C(k−1). Otherwise, the matrices C(k) and
C(k−1) differ at the positions (i, j), (i,m+ 1), and (`+ 1, j) viz

C(k) =

 c c
(k−1)
i,m+1/c

c
(k−1)
`+1,j /c

 , C(k−1) =

 1 c
(k−1)
i,m+1

c
(k−1)
`+1,j


(3.2.17)
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and are identical at all other positions.
Every matrix C(k) for 0 6 k 6 `m, provides two ordered factor-

izations d(k) and e(k). For d(k), we read C(k) row-by-row skipping
entries equal to 1 and skipping the bottom row. Similarly for e(k),
we read C(k) column-by-column skipping entries equal to 1 and skip-
ping the right column. We have d(0) = d, e(0) = e by (3.2.15) and
d(k) | d(k−1), e(k) | e(k−1) for 1 6 k 6 `m. We call the final d(`m) the
refinement of d by e, denoted by d // e, and also have e(`m) = e // d, see
Proposition 3.2.19 (iii). Algorithm 3.2.18 summarizes the outlined pro-
cedure and returns d // e and e // d. These refinements are aligned and
describe the same collisions as d and e do, see Proposition 3.2.19 (iv).

Algorithm 3.2.18: Refine d by e and e by d

Input: two ordered factorizations d = (d1, . . . ,d`) and
e = (e1, . . . , em) of n

Output: two aligned refinements d∗ | d and e∗ | e

1 k← 0 and C(0) = (c
(0)
i,j ) 16i6`+1

16j6m+1
←


1 . . . 1 d1
...

. . .
...

...

1 . . . 1 d`

e1 . . . em 1


2 for i = 1, . . . , ` do
3 for j = 1, . . . ,m do
4 k← k+ 1 and C(k) ← C(k−1) /* k = (i− 1) ·m+ j */

5 c← gcd(c(k−1)i,m+1, c(k−1)`+1,j )

6 c
(k)
i,j ← c, c(k)i,m+1 ← c

(k−1)
i,m+1/c, and c(k)`+1,j ← c

(k−1)
`+1,j /c

7 end
8 end
/* read C(`m) row-by-row skipping entries equal to 1

and skipping the bottom row */

9 d∗ ← d(`m) = (c
(`m)
i,j if c(`m)

i,j > 1) 16k6`(m+1)
k=(i−1)(m+1)+j
16i6`,16j6m+1

/* read C(`m) column-by-column skipping entries equal

to 1 and skipping the right column */

10 e∗ ← e(`m) = (c
(`m)
i,j if c(`m)

i,j > 1) 16k6m(`+1)
k=(j−1)(`+1)+i
16j6m,16i6`+1

11 return d∗, e∗

Proposition 3.2.19. Let d = (d1, . . . ,d`) and e = (e1, . . . , em) be two
ordered factorizations of n and C(k) ∈ N(`+1)×(m+1), 0 6 k 6 `m, the
sequence of integer matrices defined by (3.2.15) and (3.2.16). Then the fol-
lowing holds.
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(i) For 1 6 i 6 `, 1 6 j 6 m, and 0 6 k 6 `m, the product of all entries
in the ith row of C(k) is di and the product of all entries in the jth
column of C(k) is ej.

(ii) For 1 6 i < i ′ 6 `+ 1, 1 6 j ′ < j 6 m+ 1, and (i− 1)m+ j ′ 6
k 6 `m, we have

gcd(c(k)i,j , c(k)i ′,j ′) = 1. (3.2.20)

Furthermore, every entry in the bottom row and every entry in the
right column of the final C(`m) is equal to 1.

(iii) Algorithm 3.2.18 works as specified. Furthermore, on input d and e,
it returns d // e and e // d using `m gcd-computations and 2`m exact
divisions on integers 6 n.

(iv) We have Dn,{d,e} = Dn,{d//e,e} = Dn,{d,e//d} = Dn,{d//e,e//d}.

Proof. (i) For k = 0, the claim follows from (3.2.15) and we proceed
inductively. For k > 0, we write k = (i ′− 1)m+ j ′ with 1 6 i ′ 6 ` and
1 6 j ′ 6 m. Then the i ′th row in C(k) is obtained from the i ′th row in
C(k−1) by replacing entries equal to 1 and c(k−1)i ′,m+1 by c and c(k−1)i ′,m+1/c,
respectively as shown in (3.2.17). Similarly, the j ′th column in C(k)

is obtained from the j ′th column in C(k−1) by replacing entries equal
to 1 and c(k−1)`+1,j ′ by c and c(k−1)`+1,j ′/c, respectively. These are the only
substitutions. They leave the product of all entries in the ith row and
the product of all entries in the jth column unchanged and thus equal
to di and ej, respectively.

(ii) Let k0 = (i− 1)m+ j ′. Then gcd(c(k0)i,m+1, c(k0)`+1,j ′) = 1 since the

substitution (3.2.16) factors out gcd(c(k0−1)i,m+1 , c(k0−1)`+1,j ′ ) when defining

C(k0). We have j ′ < j and k0 6 k, thus c(k)i,j is a divisor of c(k0)i,m+1.

Also, i < i ′ and k0 6 k yield c(k)i ′,j ′ | c
(k0)
`+1,j ′ . This proves (3.2.20).

For all 0 6 k 6 `m, we have 1 at the position (` + 1,m + 1)

of C(k). We denote the top left ` ×m-submatrix of C(`m) by D =

(c
(`m)
i,j )16i6`,16j6m, the bottom row of C(`m), excluding the 1 at po-

sition (` + 1,m + 1), by B = (c
(`m)
`+1,j)16j6m, and the right column

of C(`m), again excluding the 1 at position (` + 1,m + 1), by R =

(c
(`m)
i,m+1)16i6`, that is

C(`m) =

(
D R

B 1

)
.

LetD, R, B denote the product of all entries in D, R, B, respectively.
From (i), we have n = DR = DB, thus R = B. Taking i ′ = ` + 1,
j = m + 1, and k = `m in (3.2.20) we find that every entry in R is
coprime to every entry in B. Thus, gcd(B,R) = 1 and we conclude
R = B = 1.

(iii) The outputs d∗ and e∗ are refinements of d and e, respectively,
by (i). The common support of d∗ and e∗ is the multiset of entries in
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D(`m) that are greater than 1 by (ii). We now show that d∗ and e∗ are
aligned.

Assume that all entries of D(`m) are greater than 1 and therefore
d∗ = e∗ = {c

(`m)
i,j : 1 6 i 6 `, 1 6 j 6 m} is a multiset of size `m. We

define a permutation σ on {1, . . . , `m} via σ(k) = (j− 1)`+ i, where
k = (i− 1)m+ j with 1 6 i 6 `, 1 6 j 6 m and have

c
(`m)
i,j = d∗k = e∗σ(k).

Let k < k ′ = (i ′ − 1)m+ j ′ 6 `m with 1 6 i ′ 6 `, 1 6 j ′ 6 m. We
prove that σ(k) > σ(k ′) implies gcd(d∗k,d∗k ′) = 1. The conditions on k
and k ′ are equivalent to i < i ′ and j > j ′ and the claim follows from
(3.2.20).

In the general case, where D(`m) may contain 1’s, the restriction
of σ from above to indices k = (i− 1)m+ j with c(`m)

i,j > 1 provides
the required permutation.

We have d∗ = d // e by definition. We check directly that if the
order of the inputs to the algorithm is reversed, then the final state is
the transpose of C(`m). Thus e // d = e∗.

Finally, the only arithmetic costs are the gcd-computations in step 5

and the integer divisions in step 6.
(iv) We begin with the first equality and show inductively

Dn,{d(k−1),e} = Dn,{d(k),e} (3.2.21)

for all 1 6 k 6 `m.
Let k = (i− 1)m+ j with 1 6 i 6 `, 1 6 j 6 m. If c = 1 in (3.2.16),

then d(k) = d(k−1) and (3.2.21) holds trivially. Otherwise, d(k) is
the proper refinement of d(k−1), where the entry c(k−1)i,m+1 in d(k−1) is

replaced by the pair (c, c(k−1)i,m+1/c). Thus, we have “⊇” in (3.2.21) by
(3.2.5).

For “⊆”, we denote by D the denote the top left i× j-submatrix of
C(k−1), by R the top right (i− 1)× (m+ 1− j)-submatrix of C(k−1),
and by B the lower left (`+ 1− i)× (j− 1)-submatrix of C(k−1). This
yields the partition

C(k−1) =


D

R

1 ′ c
(k−1)
i,m+1

B
1

*
c
(k−1)
`+1,j

 ,

where 1 ′ and 1 denote the row and the column vector consisting of
m− j and `− i ones, respectively. LetD, R, B denote the product of all
entries in D, R, B, respectively. We have gcd(R,B) = gcd(c(k−1)i,m+1,B) =
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gcd(R, c(k−1)`+1,j ) = 1 by (ii). Let i∗ denote the index of c(k−1)i,m+1 in d(k−1)

and j∗ denote the index of c(k−1)`+1,j in e(k−1). Then

gcd(d(k−1)1 · · ·d(k−1)i∗−1 d
(k−1)
i∗ , e(k−1)1 · · · e(k−1)j∗−1 )

= gcd(DBc(k−1)`+1,j ,DR) = D = gcd(DB,DRc(k−1)i,m+1)

= gcd(d(k−1)1 · · ·d(k−1)i∗−1 , e(k−1)1 · · · e(k−1)j∗−1 , e(k−1)j∗ )

and we apply Lemma 3.2.6 with d = d(k−1), e = e(k−1), i = i∗, and
j = j∗ to find “⊆” in (3.2.21).

Finally, interchanging the rôles of d and e yields

Dn,{d,e} = Dn,{d//e,e} = Dn,{d,e//d}

= Dn,{d//e,e} ∩Dn,{d,e//d} = Dn,{d//e,e//d,d,e} = Dn,{d//e,e//d},

where the last equality follows from the fact that the refined com-
position degree sequence d // e implies d and similarly e // d implies
e.

For squarefree n this is similar to the computation of a coprime
basis (or gcd-free basis) for d∪ e, if we keep duplicates and the order
of factors; see Bach & Shallit (1997, Section 4.8). For squareful n, the
factors with gcd > 1 require additional attention.

Example 3.2.22. Let n = 7! = 5040. On input d = (12, 420) and e =

(14, 360), Algorithm 3.2.18 runs through the states

C(0) =

 1 1 12

1 1 420

14 360 1

 , C(1) =

2 1 6

1 1 420

7 360 1

 ,

C(2) =

2 6 1

1 1 420

7 60 1

 , C(3) =

2 6 1

7 1 60

1 60 1

 , C(4) =

2 6 1

7 60 1

1 1 1



and provides as aligned refinements

d // e = (2, 6, 7, 60) | d,

e // d = (2, 7, 6, 60) | e.

If the characteristic of F is greater than 7, then any f ∈ Dn,{d,e} has a
unique decomposition f = a ◦ g ◦ b with a ∈ P2, g ∈ D42,{(6,7),(7,6)},
and b ∈ P60 due to the absence of equal-degree collisions.

Algorithm 3.2.18 returns the “coarsest” aligned refinements of
two given ordered factorizations. Two ordered factorizations that are
already aligned remain unchanged.
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Lemma 3.2.23. For two ordered factorizations d and e of n, the following
are equivalent.

(i) d and e are aligned.

(ii) d // f and e // f are aligned for all ordered factorizations f of n.

(iii) d // e = d and e // d = e.

Proof. Assume that d = (d1, . . . ,d`) and e = (e1, . . . , e`) are aligned
and σ = σ(d, e) is the unique permutation on {1, . . . , `} satisfying
(3.2.3) and (3.2.4). We extend σ to {1, . . . , `+ 1} via σ(`+ 1) = `+ 1.

On input d and e, Algorithm 3.2.18 begins with the state

C(0) =


1 . . . 1 d1
...

. . .
...

...

1 . . . 1 d`

e1 . . . e` 1

 =


1 . . . 1 eσ(1)
...

. . .
...

...

1 . . . 1 eσ(`)

e1 . . . e` 1


and terminates with the state C(`2) defined by

c
(`2)
i,j =

{
di = eσ(i) if j = σ(i),

1 otherwise,

for all 1 6 i, j 6 `+ 1. Thus, it returns d and e and (iii) follows.
Let f = (f1, . . . , fm) be an ordered factorization of n. On input d,

f and e, f, respectively, the initial state of Algorithm 3.2.18 is
1 . . . 1 d1
...

. . .
...

...

1 . . . 1 d`

f1 . . . fm 1

 and


1 . . . 1 e1
...

. . .
...

...

1 . . . 1 e`

f1 . . . fm 1


respectively. Let C and D, respectively, denote the final state, respec-
tively.

We define the permutation τ of the indices I = {1, . . . , ` + 1} ×
{1, . . . ,m} of C by τ(i, j) = (σ(i), j) for 1 6 i 6 `+ 1, 1 6 j 6 m+ 1.
We take the lexicographic order on I, corresponding to reading row-
by-row, and claim

ci,j = dτ(i,j), (3.2.24)

gcd(ci,j, ci ′j ′) = 1, (3.2.25)

for all (i, j), (i ′, j ′) ∈ I with (i, j) < (i ′, j ′) and (i, j) > τ(i ′, j ′).
Assume for contradiction that (i, j) is the minimal index where

some prime p divides dσ(i),j, but not ci,j. The product of all elements
in the ith row of C is di and the product of all elements in the σ(i)th
row of D, namely eσ(i) = di. There is therefore some column index
j ′ such that p | di,j ′ and j ′ > j by assumption. Similarly, there is some
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row index i ′ such that p | di ′,j. This is a contradiction to Proposi-
tion 3.2.19 (ii) and proves (3.2.24). Similarly, if there is some prime
dividing c, but not d.

The conditions on (i, j) and (i ′, j ′) imply σ(i) > σ(i ′). But then
ci,j | di and ci ′,j ′ | di ′ and gcd(di,di ′) = 1 since σ(i) > σ(i ′) and
i < i ′. This proves (3.2.25).

Together, if we restrict τ to the indices with ci,j > 1, we obtain a
map from the indices of d // f to the indices of e // f satisfying (3.2.3)
and (3.2.4) and (ii) follows.

Conversely, we assume (ii). Then d // (n) = d and e // (n) = e are
aligned and (i) follows.

Finally, we assume that Algorithm 3.2.18 returns d and e on in-
put d and e. Then they are aligned by Proposition 3.2.19 (iii) and (i)
follows.

Given a set D with more than two ordered factorizations, we re-
peatedly replace pairs d, e ∈ D by d // e and e // d, respectively, until we
reach a set D∗ of refinements invariant under this operation. We call
a nonempty set D of ordered factorizations normalized if all elements
are pairwise aligned. A normalized D∗ with Dn,D∗ = Dn,D is called a
normalization of D.

This process terminates by Lemma 3.2.23. The result depends
on the order of the applied refinements, but any order ensures the
desired properties.

Proposition 3.2.26. Let n be a positive integer and D a set of c ordered
factorizations of n. There is a set D∗ of at most c ordered factorizations of n
with the following properties.

(i) D∗ is normalized.

(ii) Dn,D∗ = Dn,D.

(iii) D∗ can be computed from D with at most c(c − 1)/2 calls to Algo-
rithm 3.2.18.

Proof. For c = 1, we have D = {d} and D∗ = {d} satisfies all claims.
For c = 2, we have D = {d, e} for ordered factorizations d 6= e, and

D∗ = {d // e, e // d} satisfies all claims by Proposition 3.2.19.
Let c > 2 and D = {d(1), . . . , dc}. By induction assumption, we can

assume all d(i) for 1 6 i < c− 1 be pairwise aligned. Let d(c) = f and
D∗ = {d(1) // f, d(2) // f, . . . , d(c−1) // f, f // d(1)}. Clearly Dn,D = Pn,D∗

and it remains to show that all elements of D∗ are pairwise aligned.
By construction, we have d(1) // f aligned with f // d(1) and by tran-

sitivity of alignedness the (ii) suffices.
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We call any D∗ satisfying Proposition 3.2.26(i)-(ii) a normalization
of D. Also, we call D normalized, if D = D∗. For a normalized D =

{d(k) : 1 6 k 6 c}, we have the same support d(k) for all 1 6 k 6 c and
call this multiset the support of D, denoted by D.

Example 3.2.27. We add the ordered factorization f = (20, 252) to D =

{d, e} from Example 3.2.22. Then the normalization obtained via the
process described above consists of

d∗ = (d // e) // f = (2, 2, 3, 7, 5, 12) ,

e∗ = (e // d) // f = (2, 7, 2, 3, 5, 12) ,

f∗ = f // (d // e) = (2, 2, 5, 3, 7, 12) .

(3.2.28)

For the last refinement, Algorithm 3.2.18 runs through the states

C(0) =

1 1 1 1 20

1 1 1 1 252

2 6 7 60 1

 ,C(4) =

2 2 1 5 1

1 1 1 1 252

1 3 7 12 1

 ,

C(8) =

2 2 1 5 1

1 3 7 12 1

1 1 1 1 1

 .

If the characteristic of F is greater than 7, than any f ∈ Pn,{d,e,f} =

Pn,{d∗,e∗,f∗} has a unique decomposition f = a ◦ g ◦ b with a ∈ P2,
g ∈ D210,{(2,3,7,5),(7,2,3,5),(2,5,3,7)}, and b ∈ P12 due to the absence of
equal-degree collisions. The support of the normalized {d∗, e∗, f∗} is
the multiset {2, 2, 3, 5, 7, 12}.

3.3 relation graph of D

Mathematicians love to build bridges between
apparently disconnected fields, hoping to get a

better perspective of both.
— Andrew Granville

For an ordered factorization d = (d1,d2, . . . ,d`) of n, we define
its relation graph as the (vertex-)labeled directed graph Gd with

• vertices 1, 2, . . . , `,

• label di attached to vertex i for 1 6 i 6 `,

• and directed edges i→ j for all 1 6 i < j 6 `.

The underlying undirected graph is complete and therefore Gd is a
tournament. For a tournament G, the following are equivalent.

• G is transitive, that is every path i → j → k for vertices i, j,k of
G implies an edge i→ k in G.
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Figure 3.3.1: Relation graphs of Examples 3.2.22 and 3.2.27; in the latter, 2i
denotes the ith 2 in each ordered factorization for i = 1, 2.

• G has a unique Hamiltonian path, that is a path in G that visits
every vertex of G exactly once.

A relation graph satisfies these conditions. The transitivity of “<”
in the specification of the edges implies the transitivity of Gd and
1→ 2→ · · · → ` is its unique Hamiltonian path.

Now, let D = {d(1), d(2), . . . , d(c)} be a normalized set of c ordered
factorizations ordered lexicographically. We start with the relation
graph Gd(1) and for each k > 1 add directed edges i → j for all
1 6 i, j 6 ` with σ(d(1), d(k))(i) < σ(d(1), d(k))(j). In other words, we
build the union of all Gd for d ∈ D, where we identify vertices via the
σ (and choose labels according to d(1)). The resulting graph is called
the relation graph of D, denoted as GD. The underlying undirected
graph is still complete, but since GD may contain bidirectional edges
this may be no tournament. Furthermore, it may be intransitive and
contain several Hamiltonian paths. See Figure 3.3.1 for the relation
graphs of Example 3.2.22 and Example 3.2.27.

A Hamiltonian path p = v1 → v2 → · · · → v` in a directed
graph G with vertices {1, 2, . . . } defines a unique permutation σp of
{1, 2, . . . , `} such that σp(i) → σp(i+ 1) is an edge in G for 1 6 i < `

and then σp(i) = vi. A path p = v1 → v2 → · · · → v` ′ is transitive, if
its transitive closure is a subgraph of G. In other words, p is transitive
if vi ← vj is an edge in G for all 1 6 i < j 6 `1.

For a relation graph G on ` vertices with labels d1,d2, . . . ,d` and
n =
∏
16i6` di, we define

DG = {f ∈ Pn : for every transitive Hamiltonian path

e1 ← · · · ← e` in G, there are gi ∈ Pei for 1 6 i 6 `

with f = g1 ◦ g2 ◦ · · · ◦ g`}.

If G = {d} is a singleton, we have DG = Pd. If G = d → e, we
have DG = Pd ◦Pe.
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Proposition 3.3.2. Let n be a positive integer, D a normalized set of ordered
factorizations of n, and G the relation graph of D. We have

Dn,D = DG.

Proof. Every transitive tournament Gd for d ∈ D, has d as its unique
transitive Hamiltonian path. Since G is the union of all such Gd, we
have “⊇”.

For “⊆”, we have to show that every polynomial with decomposi-
tion degree sequences D also has decomposition degree sequence d∗

for every transitive Hamiltonian path d∗ in G. We proceed on two
levels. First, we derive all transitive Hamiltonian paths in G from
“twisting” the paths given by D. Second, we show that the corre-
sponding “twisted” decomposition degree sequences follow from the
given ones.

Let d∗ be a transitive Hamiltonian path in G and d ∈ D arbitrary.
We use Bubble-Sort to transform d into d∗ and call the intermediate
states after k passes d(k), 0 6 k 6 c, such that d(0) = d and d(c) = d∗.

Algorithm 3.3.3: Bubble-Sort d according to d∗

1 `← |d|

2 k← 0, d(0) ← d

3 while d(k) 6= d∗ do
4 k← k+ 1, d(k) ← d(k−1) /* copy previous state */

5 for i = 1, . . . , `− 1 do
6 σ = σ(d(k), d∗)
7 if σ(i) > σ(i+ 1) then
8 (d

(k)
i ,d(k)i+1)← (d

(k)
i+1,d(k)i ) /* swap */

9 end
10 end
11 end
12 c← k

In other words, d(k) is obtained from d(k−1) by at most ` − 1
“swaps” of adjacent vertices. Figure 3.3.4 visualizes a swap of d(k)i
and d(k)i+1 as in step 8. The fundamental properties of Bubble-Sort

guarantee correctness and c 6 `(` − 1)/2, see Cormen, Leiserson,
Rivest & Stein (2009, Problem 2.2).

Furthermore, the following holds.

(i) Every pair (d
(k)
i ,d(k)i+1) of swapped vertices in step 8 is con-

nected by a bidirectional edge in G.

(ii) Every d(k), 0 6 k 6 c, is a transitive Hamiltonian path in G.

For (i), we have the edge d(k)i ← d
(k)
i+1 from d(k−1) and the edge

d∗σ(i+1) = d
(k)
i+1 ← d

(k)
i = d∗σ(i) from d∗ with σ as in step 6.
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di+1

di+2di−1

di

di+1

di+2di−1

di

Figure 3.3.4: A “swap” between two transitive Hamiltonian paths di−1 ←
di ← di+1 ← di+2 and di−1 ← di ← di+1 ← di+2 along the
bidirectional edge between di and di+1.

For k = 0, (ii) holds by definition. For k > 0 it follows inductively
from k− 1, since a swap merely replaces the 4-subpath di−1 ← di ←
di+1 ← di+2 by di−1 ← di+1 ← di ← di+2, where the outer edges
are guaranteed in G by transitivity of d(k−1) and the inner edge by
(i). Thus, the swapped path is also a transitive Hamiltonian path in
G.

Now, we mirror the “swaps” of vertices by “Ritt moves” of com-
ponents as introduced by Zieve & Müller (2008).

Claim 3.3.5 (Ritt moves). Let g1 ◦ · · · ◦ g` = h1 ◦ · · · ◦ h` be decompo-
sitions with degree sequence d and e, respectively. Let d and e be aligned,
σ = σ(d, e), and 1 6 i < ` with σ(i) > σ(i+ 1). Then

gi ◦ gi+1 = g∗i ◦ g∗i+1

with deg(gi) = deg(g∗i+1) and deg(gi+1) = deg(g∗i ). Therefore, if some
monic original polynomial f has decomposition degree sequences d and e,
it also has the decomposition degree sequence d∗ = (d1, . . . ,di−1,di+1,
di,di+2, . . . ,d`).

The claim is based on the following lemma.

Lemma 3.3.6. Let d and e be aligned ordered factorizations, σ = σ(d, e),
1 6 i 6 |d|, and j = σ(i). Then

gcd(d1 · . . . ·di−1, e1 · . . . · ej−1)

= gcd(d1 · . . . ·di−1 ·di, e1 · . . . · ej−1)
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= gcd(d1 · . . . ·di−1, e1 · . . . · ej−1 · ej).

In particular, (3.2.7) holds.

Proof of lemma. For any 1 6 k < j, with gcd(ek, ej) = gcd(ek,di) > 1,
we have σ−1(k) < i due to (3.2.4). In other words, σ−1 maps all
indices 1 6 k < j, where gcd(ek,di) > 1, into the set {1, . . . , i − 1}.
Therefore

gcd(
e1 · . . . · ej−1

gcd(d1 · . . . ·di−1, e1 · . . . · ej−1)
,di) = 1,

gcd(d1 · . . . ·di−1 ·di, e1 · . . . · ej−1)

= gcd(gcd(d1 · . . . ·di−1, e1 · . . . · ej−1)di, e1 · . . . · ej−1)

= gcd(d1 · . . . ·di−1, e1 · . . . · ej−1).

Let j ′ = σ(i+ 1) < σ(i) = j, A = g1 ◦ · · · ◦ gi−1, C = gi+2 ◦ · · · ◦ g`,
A ′ = h1 ◦ · · · ◦ hj ′−1, B ′ = hj ′+1 ◦ · · · ◦ hj−1, and C ′ = hj+1 ◦ · · · ◦ h`,
such that

A ◦ gi ◦ gi+1 ◦C = A ′ ◦ hj ′ ◦B ′ ◦ hj ◦C ′.

Lemma 3.3.6 for i and i+ 1 yields

gcd(deg(A ◦ gi), deg(A ′ ◦ hj ′ ◦B ′)) = gcd(deg(A), deg(A ′ ◦ hj ′ ◦B ′)),

gcd(deg(A ◦ gi ◦ gi+1), deg(A ′)) = gcd(deg(A ◦ gi), deg(A ′ ◦ hj ′)),

respectively. From the former, we derive

1 = gcd(gi,
deg(A ′ ◦ hj ′ ◦B ′)

gcd(deg(A), deg(A ′ ◦ hj ′ ◦B ′))
)

= gcd(gi,
deg(A ′ ◦ hj)

gcd(deg(A), deg(A ′ ◦ hj ′))
).

And then continue the latter as

gcd(deg(A ◦ gi ◦ gi+1), deg(A ′))

= gcd(deg(A ◦ gi), deg(A ′ ◦ hj ′))

= gcd(deg(A), deg(A ′ ◦ hj ′)) · gcd(gi,
deg(A ′ ◦ hj ′)

gcd(deg(A), deg(A ′ ◦ hj ′))
)

= gcd(deg(A), deg(A ′ ◦ hj ′)). (3.3.7)

Let G = gi ◦ gi+1 and H = hj. We have gcd(di,di+1) = 1 due to the
“twisting condition” σ(i+ 1) < σ(i) and thus gcd(deg(G), deg(H)) =
di+1. We apply Lemma 3.2.6 with gi = G, hj = H, and c = di+1 in
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Figure 3.4.1: The three strongly connected components of each relation
graph in Figure 3.3.1, respectively.

the notation of that claim, and find, since (3.3.7) provides condition
(3.2.7),

G = g∗i ◦ g∗i+1

with deg(g∗i ) = di+1 and deg(g∗i+1) = di as required.
Repeated application of Claim 3.3.5 shows that for every f ∈ Dn,D,

d ∈ D, and every transitive Hamiltonian path d∗ in G, we have d(k) as
in Algorithm 3.3.3 as decomposition degree sequence. In particular,
d(c) = d∗.

3.4 structure and size of Dn ,D

Measure what is measurable,
and make measurable what is not so.

— Galileo Galilei

Every directed graph admits a decomposition into strictly con-
nected components, where any two distinct vertices are connected by
paths in either direction. Since a relation graph G is the union of di-
rected complete graphs, its strictly connected components Gi, 1 6 i 6
`, are again relation graphs and form a chain G1 ← G2 ← · · · ← G`.
Figure 3.4.1 shows the connected components of the relation graphs
Figure 3.3.1
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Theorem 3.4.2. Let n be coprime to the characteristic of F, D a nonempty
set of ordered factorizations of n, andG the relation graph of D with strongly
connected components G1 ← G2 ← · · · ← G`. Then the composition map∏

16i6`

DGi → DG, (gi)16i6` 7→ g1 ◦ g2 ◦ . . . g` (3.4.3)

is bijective. Thus,

DG = DG1 ◦DG2 ◦ · · · ◦DG`

and over a finite field F = Fq with q elements, we have

#DG =
∏
16i6`

#DGi .

Proof. The map (3.4.3) is injective due to the absence of equal-degree
collisions. To show that it is surjective, we show that for any f ∈ DG,
we have uniquely determined gi ∈ DGi such that f = g1 ◦ g2 ◦ · · · ◦ g`
and for any tuple (gi) ∈

∏
.

For f ∈ Pn, where n =
∏
v∈G v, we show that the following are

equivalent.

(i) The polynomial f has decomposition degree sequence d for ev-
ery transitive Hamiltonian path d in G.

(ii) The polynomial f has decomposition degree sequence d = d1 ←
d2 ← · · · ← d` for every concatenation of transitive Hamiltonian
paths di in Gi for 1 6 i 6 `.

Assume (i) and let d = d1 ← d2 ← · · · ← d` be the concatenation
of transitive Hamiltonian paths di in Gi for 1 6 i 6 ` as in (ii). Then
di is a Hamiltonian path in G. Since the underlying undirected graph
of G is complete, we have di ← dj in G for any vertices di ∈ Gi and
dj ∈ Gj in distinct strictly connected components with i < j. Thus d

is also transitive and f has decomposition degree sequence d by (i).
Conversely, assume (ii) and observe that the decomposition of G

into strictly connected components induces a decomposition of every
transitive Hamiltonian path d in G into Hamiltonian paths di in Gi.
These are transitive, since transitivity is a local condition and f has
decomposition degree sequence d by (ii).

Uniqueness and thus the counting formula follow from the ab-
sence of equal-degree collisions in the tame case.

We split the edge set E of a strictly connected relation graph G
with vertices V into its uni-directional edges

−→
E = {(u, v) ∈ E : (v,u) /∈

E} and its bi-directional edges (2-loops) E = {{u, v} ⊆ V : {(u, v), (v,u)} ∈
E} = E

−→
E . We call the corresponding graphs on V the directed and the

undirected subgraph of G, respectively. The directed subgraph of G is
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Figure 3.4.4: The strongly connected component on 4 vertices of Figure 3.4.1
decomposed into its undirected subgraph (red) and its directed
subgraph (blue) with max-sink-sorting 7 ≺ 2 ≺ 5 ≺ 3.

a directed acyclic graph since G is the union of transitive tournaments.
The undirected subgraph of G is connected. It is also the union of the
permutation graphs of σk, 1 6 k 6 c.

The directed subgraph
−→
G captures the requirements on the posi-

tion of the degrees in a decomposition sequence. The undirected sub-
graph G captures the admissible Ritt moves d’après Zieve & Müller
(2008) and thus the requirements on the shape of the components.

Every directed acyclic graph admits a topological sorting v1, v2, . . . , v`
of its vertices, where a directed edge vi ← vj in

−→
G implies i < j, see

Cormen et al. (2009, Section 22.4) or (Knuth, 1973, Exercise 2.3.4.2.4).
A directed acyclic graph may have several distinct topological sort-
ings. Tarjan (1976) suggested to use Depth-First-Search on

−→
G . The

time step, when Depth-First-Search visits a vertex for the last time,
is called the finish time of the vertex and listing the vertices with in-
creasing finish time yields a topological sorting. The result is unique,
if the tie-break rule in the expansion step of Depth-First-Search is
deterministic. We use the following terminology.

Let U(v) denote the open G-neighborhood of a vertex v. It is
always nonempty. We call a vertex v locally maximal, if its value is
greater or equal than the value of every vertex in U(v). Since ver-
tices with equal values are never connected by an edge in G, a locally
maximal v is always strictly greater than all vertices in U(v). Further-
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more, there is at least one locally maximal vertex, namely a “globally”
maximal one. There is a unique enumeration of the locally maximal
vertices d1,d2, . . . ,dm such that

d1 ← d2 ← · · · ← dm

is a directed path in G. Furthermore, we define for 1 6 i 6 m,

Vi = U(di) U(di+1) and Wi = Vi ∪ {di},
V0 =W0 = {v ∈ G : no edge di ← v in G for any 1 6 i 6 m},

Vm+1 =Wm+1 = {v ∈ G : no edge v← di in G for any 1 6 i 6 m}.

The Wi, 0 6 i 6 m + 1, form a partition of all vertices of
−→
G and

we formulate the tie-break rule for Depth-First-Search as follows.
Given vertices u ∈ Wi and v ∈ Wj with i < j, the vertex u is pre-
ferred. Given vertices u, v ∈ Wi, the vertex with the larger value
is preferred. Since vertices with equal value are always connected
by a unidirectional edge in

−→
G due to (3.2.4), the search has never

to choose between to vertices with the same value and Depth-First-
Search with this tie-break rule yields a unique topological sorting.
We call it the Max-Sink topological sorting of

−→
G . Figure 3.4.4 shows

the largest strongly connected component of Figure 3.4.1 and its Max-
Sink topological sorting.

Theorem 3.4.5. Let G be a strongly connected relation graph with at least
two vertices,

−→
G its directed subgraph, and G its undirected subgraph. Let

d1,d2, . . . ,d` be the Max-Sink topological sorting of
−→
G and let ei be the

product of all vertices in the open G-neighborhood of di. For every f ∈ DG
either (i) or (ii) holds, and (iii) is also valid.

(i) (Exponential Case) There are unique gi ∈ E
(ei)
di

for 1 6 i 6 ` and
a ∈ F such that

f = (g1 ◦ g2 ◦ · · · ◦ g`)[a].

(ii) (Trigonometric Case) There are unique z,a ∈ F with z 6= 0 such that

f = Td1d2···d`(x, z)[a].

(iii) If G contains no edge that connects two vertices both larger than 2,
then the Trigonometric Case is included in the Exponential Case. Oth-
erwise, they are mutually exclusive.

Furthermore,

Dn,G = T
[F]
d1d2···dm ∪ (E

(e1)
d1
◦ E(e2)
d2
◦ · · · ◦ E(em)

dm
)[F]. (3.4.6)
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The ei are well-defined, since there are no empty neighborhoods
in the connected graph G with at least two vertices.

Proof. We begin with the proof of existence, then show uniqueness
and conclude with the “converse” (3.4.6).

The Max-Sink topological sorting d1,d2, . . . ,d` of
−→
G yields a tran-

sitive Hamiltonian path

d = d1 ≺ d2 ≺ · · · ≺ d`

in G. For the rest of the proof, we identify the max-sink topological
sorting with the corresponding transitive Hamiltonian path.

We (re)label the locally maximally vertices d1,d2, . . . ,dm and the
elements of Vi as d(1)i ,d(2)i , . . . ,d(`i)i for 0 6 i 6 m+ 1 and `i = #Vi
such that

d = (d
(1)
0 , . . . ,d(`0)0 ,d1,d(1)1 , . . . ,d(`1)1 ,d2,d(1)2 , . . . ,

d
(`m−1)
m−1 ,dm,d(1)m , . . . ,d(`m)

m ,d(1)m+1, . . . ,d(`m+1)
m+1 )

= (V0,d1,V1,d2, . . . ,dm,Vm,Vm+1),

where the Vi are read as tuple (d
(1)
i ,d(2)i , . . . ,d(`i)i ). Then f has a

decomposition

f = G
(1)
0 ◦ · · · ◦G

(`0)
0 ◦G1 ◦G

(1)
1 ◦ · · · ◦G

(`1)
1 ◦G2 ◦G

(1)
2 ◦ . . . (3.4.7)

◦G(`m−1)
m−1 ◦Gm ◦G

(1)
m ◦ · · · ◦G(`m)

m ◦G(1)
m+1 ◦ · · · ◦G

(`m+1)
m+1

with G(j)
i ∈ P

d
(j)
i

for 0 6 i 6 m+ 1, 1 6 j 6 `i, and Gi ∈ Pdi for
1 6 i 6 m.

We assume for the moment that all edges in G contain a 2. Then
Theorem 3.1.10 reduces to the exponential case, and we proceed as
follows. First, we show that every G(j)

i for 1 6 i 6 m, 1 6 j 6 `i, is

of the form g
[ai]
i for unique gi ∈ E

(e
(j)
i )

d
(j)
i

and unique ai ∈ F. Then, we

extend this to i = 0 and i = m+ 1. Finally, we show that the shifting
parameters ai are “compatible” such that a single shifting parameter
a suffices.

For every 1 6 i 6 m, we use Bubble-Sort Algorithm 3.3.3 with
Lemma 3.4.8 to obtain the decomposition degree sequence

(V0,d1,V1, . . . ,di,Vi,d
(`i+1)
i , . . . d(mi)

i ,di+1, V̂i+1, . . . ,dm, V̂m,Vm+1),

where U(di) = Vi ∪ {d
(`i+1)
i , . . . d(mi)

i } and the latter elements have
been omitted from Vi+1, . . . ,Vm. We have ei =

∏
16j6mi

d
(j)
i and

this implies the two decomposition degree sequences

(V0,d1,V1, . . . ,di, ei,di+1, V̂i+1, . . . ,dm, V̂m,Vm+1),

(V0,d1,V1, . . . , ei,di,di+1, V̂i+1, . . . ,dm, V̂m,Vm+1).
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Thus, there are unique gi ∈ E
(ei)
di

and ai ∈ F such that in (3.4.7), we
have

Gi ◦G
(1)
i ◦ · · · ◦G

(`i)
i = (gi ◦ xd

(1)
i ◦ · · · ◦ x(d

(`i)

i ))[ai].

The same form applies to i = 0, since there is at least one d(j)i with
1 6 i 6 m, 1 6 j 6 `i that is in the G-neighborhood of some element
of V0 due to the strong connectedness of G. And since there is no

locally maximal element in V0 all components are of the form xd
(j)
0

with possible some shift applied. Every connection in G relates the
corresponding shifting parameters and since G has a Hamiltonian
path, they are all determined by a single choice.

Now to the general case, where some collisions may be trigono-
metric, but not exponential. For any two locally maximal vertices di
and dj there is some vertex d ∈ U(di) ∩U(dj). This shows that ei-
ther all blocks fall into the exponential case or all blocks fall into the
trigonometric case. The two cases are disjoint if and only if there is
some edge in G that connects two vertices both with value greater
than 2.

The stabilizer of original shifting is {0} for nonlinear monic origi-
nal polynomials and there are no equal-degree collisions. Hence the
representation is unique.

The converse (3.4.6) is a direct computation.

Lemma 3.4.8. Let i < j and dj in the open G-neighborhood of di. Then for
every i < k < j, we have dk in the open G-neighborhood of di or dj or both.

Proof. The tournaments underlying G are acyclic. Therefore, if di ≺
dk ≺ dj and dj ≺ dk, then at least one other edge is bidirectional,
too.

The classification of Theorem 3.4.5 yields the exact number of de-
composable polynomials of degree n over a finite field Fq.

Theorem 3.4.9. Let G be a strongly connected relation graph of n with
undirected subgraph G. Let d1,d2, . . . ,d` be the vertices of G and ei be the
product of all vertices in the (open) G-neighborhood of di. Let δG,2 be 1 if
there is no edge in G between two vertices both larger than 2 and let δG,2 be
0 otherwise. Then

#DG =

{
qd−1 if G = {d},

q · (
∏
di∈G q

bdi/eic + (1− δG,2) · (q− 1)) otherwise.

Proof. For G = {d}, this follows from (3.1.3). Otherwise from the
(non)uniqueness of the parameters in Theorem 3.4.5.

We are finally ready to employ the inclusion-exclusion formula
(3.1.6) from the beginning. For a nonempty set D of nontrivial di-
visors of n, it requires #Dn,D = #Dn,D for D = {(d,n/d) : d ∈ D}.
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We compute a normalization D∗ by repeated application of Algo-
rithm 3.2.18 and derive the relation graph of D∗. Then #Dn,D = #DG
and the latter follows from Theorem 3.4.2 and Theorem 3.4.9.

Algorithm 3.4.10: Count decomposables
Input: positive integer n
Output: #Dn(Fq) as a polynomial in q for n coprime to q

1 if n = 1 or n is prime then
2 return 0
3 end
4 total← 0

5 N← {1 < d < n : d | n}

6 for ∅ 6= D ⊆ N do
7 D← {(d,n/d) : d ∈ D}

8 D∗ ← normalization of D
9 G← relation graph of D

∗

10 collisions← 1

11 for strongly connected components Gj of G do
12 Gj ← undirected subgraph of Gj
13 if Gj = {d} then
14 connected← qd−1

15 else
16 {d1,d2, . . . ,d`}← Gj
17 for i = 1, . . . , ` do
18 Ui ← open neighborhood of di in Gj
19 ei ←

∏
v∈Ui vi

20 end
21 connected←

∏
di∈Gj q

bdi/eic

22 if some edge in Gj connects two vertices both larger than
2 then

23 connected← connected + q− 1

24 end
25 connected← connected ·q
26 end
27 collisions← collisions · connected
28 end
29 total← total + (−1)#D · collisions
30 end
31 return total

This is easy to implement, see Algorithm 3.4.10, and yields the
exact expressions for #Dn(Fq) at lightning speed, see Table 3.4.11.
The expressions fit within the bounds given by von zur Gathen (2014a,
Theorem 3.2) and match the explicit formulas in the cited work for
composite n with one or two nontrivial divisors.
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Let ` be the smallest prime divisor of n and τ the number of
positive divisors of n. The naive method for counting the number of
decomposables at degree n loops over all τ− 2 nontrivial divisors d
of n, computes the composition of all Pd × Pn/d, and stores them in
a sorted list to catch duplicates. This requires O(q`+n/`−2) memory
and O(τq`+n/`−2) compositions of polynomials of degree at most
n/`.

General bounds on τ are τ > 3, if n is composite, and lim sup(ln τ
ln lnn/ lnn) = ln 2 by Wigert (1907), so that τ = O(n1/(loglogn)), see
Hardy & Wright (1985, Theorem 317), For the average as n → ∞,
Dirichlet provides x−1

∑
n6x τ(n) = ln x+ 2γ− 1+O(xθ−1/2), where

γ is Euler’s constant, see Apostol (1976, Theorem 3.3). Improving the
error term is known as Dirichlet’s divisor problem and the most recent
value is θ = 131/416 ≈ 0.31490 by Huxley (2003).

Algorithm 3.4.10 requires 2τ−2 − 1 evaluations of the collision
counting formula and stores at most n integer coefficients. More
importantly it requires only integer and graph operations, indepen-
dent from q, while the naive method requires field operations and
therefore depends on q.

3.5 conclusion and future work

As long as a branch of science offers an abundance
of problems, so long it is alive; a lack of problems

foreshadows extinction or the cessation of
independent development.

— David Hilbert

We presented a normal form for multi-collisions of decomposi-
tions of arbitrary length with exact description of the (non)uniqueness
of the parameters. This led to an exact formula for the number of such
collisions of degree n over a finite field of characteristic coprime to n.
We concluded with a fast algorithm to compute the exact number of
decomposable polynomials of degree n over a finite field Fq in the
tame case.

We introduced the relation graph of a set of collisions which is
related to transitive tournaments and permutation graphs. The rela-
tion graph of a single polynomial may be of independent interest as
a data structure. Furthermore, it would be useful to characterize sets
D of ordered factorizations that lead to identical contributions #Dn,D

and to quickly derive #Dn,D∪{e} from #Dn,D or conversely. Finally,
this chapter deals with polynomials only and the study of rational
functions with the same methods remains open. Here, Gutierrez &
Sevilla (2006a) provide counterexamples to generalizations of Ritt’s
First Theorem to rational functions.
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n #Dn(Fq) lower bound, upper bound

4 q2

6 2 q3 − q2

8 2 q4 − q3

9 q4

10 2 q5 − q3

12 2 q6 + 2 q5 − 3 q4 − q2 + q 2q6 − q4, 2 q6 − q4 − 2q5

1
q
−1

14 2 q7 − q4

15 2 q6 − 2 q2 + q

16 2 q8 + q6 − 3 q5 + q4 2 q8 − q5, 2 q8 − q5 − 2q6

1
q
−1

18 2 q9 + 2 q7 − 4 q5 + q3 2 q9 − 2 q5, 2 q9 − 2q7

1
q
−1

− q5

20 2 q10 + 2 q7 − 3 q6 2 q10 − q6, 2 q10 − q6 − 2q7

1
q
−1

21 2 q8 − q3 − q2 + q

22 2 q11 − q6

24 2 q12 + 2 q9 + 2 q8 − 3 q7 − 6 q6 + 4 q5 − q3 +

2 q2 − q

2q12 − q7, 2 q12 − 2q9

1
q
−1

− q7

25 q8

26 2 q13 − q7

27 2 q10 − q6

28 2 q14 + 2 q9 − 3 q8 2 q14 − q8, 2 q14 − q8 − 2q9

1
q
−1

30 2 q15 + 2 q11 + 2 q9 − q8 − 6 q7 + q4 + q2 2 q15 − 2 q8, 2 q15 − 2q11

1
q
−1

− q8

32 2 q16 + 2 q10 − 3 q9 − 3 q7 + 4 q6 − q5 2 q16 − q9, 2 q16 − q9 − 2q10

1
q
−1

33 2 q12 − q4 − q2 + q

34 2 q17 − q9

35 2 q10 − 2 q2 + q

36 2 q18 + 2 q13 + 2 q11 − 2 q10 − 6 q8 − 3 q7 +

6 q6
2 q18 − q10, 2 q18 − 2q13

1
q
−1

− q10

38 2 q19 − q10

39 2 q14 − q5 − q2 + q

40 2 q20 + 2 q12 − q11 − 6 q8 + 4 q7 − q2 + q 2q20 − q11, 2 q20 − q11 − 2q12

1
q
−1

42 2 q21 + 2 q15 + q11 − 6 q9 + q5 + 2 q3 − q2 2 q21 − 2 q11, 2 q21 − 2q15

1
q
−1

− q11

44 2 q22 + 2 q13 − 3 q12 2 q22 − q12, 2 q22 − q12 − 2q13

1
q
−1

45 2 q16 + 2 q12 − 3 q8 − q2 + q 2q16 − q8, 2 q16 − 2q12

1
q
−1

− q8

46 2 q23 − q12

48 2 q24 + 2 q17 + 2 q14 − 3 q13 + 2 q12 − 6 q10 −

6 q9 + q8 + 12 q7 − 6 q6 + 3 q3 − 3 q2 + q

2q24 − q13, 2 q24 − 2q17

1
q
−1

− q13

49 q12

50 2 q25 + q13 − 3 q9 + q5 2 q25 − 2 q13, 2 q25 − q13 − 2q13

1
q
−1

Table 3.4.11: Exact values of #Dn(Fq) in the tame case for composite n 6 50,
consistent with the upper and lower bounds (in the last col-
umn) or exact values (no entry in the last column) of von zur
Gathen (2014a, Theorem 3.2). The computation took 8.53 s (av-
erage over 100 trials) with Sage using a single core 2.4 GHz
CPU and 4 GB RAM.





4
C O U N T I N G D E C O M P O S A B L E P O LY N O M I A L S : T H E
W I L D C A S E

The creator of the new composition [. . . ]
is an outlaw until he is a classic.

— Gertrude Stein

An earlier version of this chapter appeared as Blankertz, von zur
Gathen & Ziegler (2013)1, see Section 1.3 for the complete publication
history.

In this chapter, we study only equal-degree collisions of f = g ◦h =

g∗ ◦ h∗, where degg = degg∗ and thus degh = degh∗. The main re-
sult (Theorem 4.5.6) determines exactly the number of decomposable
polynomials in one of open difficult cases, namely when n = p2 and
hence degg = degh = p.

This is shown in three steps. First, we exhibit some classes of
collisions in Section 4.2. Their properties are easy to check. In the
second step we show that these are all possibilities (Theorem 4.4.9). In
Section 4.3 we use ramification theory of function fields to study the
root multiplicities in collisions, and in Section 4.4 classify all collisions
at degree p2. In the third step we count the resulting possibilities
(Section 4.5). We conclude with open questions and suggestions for
future work in Section 4.6.

Our contribution is fourfold.

• We provide explicit constructions for collisions at degree r2,
where r is a power of the characteristic p > 0 (Fact 4.2.1, Theo-
rem 4.2.22).

• We provide a classification of all collisions at degree p2, linking
every collision to a unique explicit construction (Theorem 4.4.9).

• We use these two results to obtain an exact formula for the num-
ber of decomposable polynomials at degree p2 (Theorem 4.5.6).

1 Notice: this is the authors’ version of a work that was accepted for publication in
Journal of Symbolic Computation. Changes resulting from the publishing process, such
as peer review, editing, corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes have been made to this
work since it was submitted for publication. A definitive version was subsequently
published as Blankertz, von zur Gathen & Ziegler (2013).
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• The classification yields an efficient algorithm to test whether
a given polynomial of degree p2 has a collision or not (Algo-
rithm 4.4.14).

4.1 definitions and examples

If one should try to define algebra, it might be said
that algebra deals with the formal combinations of

symbols according to prescribed rules.
— Oystein Ore

We consider a field F of positive characteristic p > 0. Composition
of g and h with linear polynomials introduces inessential ambiguities
in decompositions f = g ◦ h. To avoid them, we normalize f, g, and
h to be monic original, that is with leading coefficient 1 and constant
coefficient 0 (so that the graph of f passes through the origin); see
von zur Gathen (2014a).

For a nonnegative integer k, an (equal-degree) k-collision at degree
n is a set of k distinct pairs (g,h) of monic original polynomials in
F[x] of degree at least 2, all with the same composition f = g ◦ h of
degree n and degg the same for all (g,h). A k-collision is called
maximal if it is not contained in a (k+ 1)-collision. We also say that f
has a (maximal) k-collision. Furthermore, g is a left component and h
a right component of f. For n > 1, we define

Pn(F) = {f ∈ F[x] : f is monic original of degree n},

Dn(F) = {f ∈ Pn(F) : f is decomposable},

Cn,k(F) = {f ∈ Pn(F) : f has a maximal k-collision}. (4.1.1)

Thus #Pn(Fq) = qn−1. We sometimes leave out F from the notation
when it is clear from the context.

Let f ∈ Pn have a k-collision C, f ′ 6= 0, and m be a divisor of
n. If all right components in C are of degree m and indecomposable,
then k 6 (n− 1)/(m− 1); see Blankertz (2011, Corollary 3.27). For
n = p2, both components are of degree p and thus indecomposable
and we find k 6 p+ 1; see also von zur Gathen, Giesbrecht & Ziegler
(2010, Proposition 6.5 (iv)). For counting all decomposable polyno-
mials of degree p2 over Fq, it is sufficient to count the sets Cp2,k of
polynomials with maximal k-collision for k > 2, since

#Dp2 = q
2p−2 −

∑
k>2

(k− 1) · #Cp2,k. (4.1.2)

Lemma 4.1.3. In a decomposition (g,h), g is uniquely determined by g ◦h
and h.

Proof. Let f = g◦h. Consider the F-algebra homomorphismϕ : F[x]→
F[x] with x 7→ h. Its kernel is trivial, since h is nonconstant, and thus
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ϕ is injective. Hence there is exactly one u ∈ F[x] such that ϕ(u) = f,
namely u = g.

Furthermore, g is easy to compute from g ◦ h and h by the gener-
alized Taylor expansion; see von zur Gathen (1990a, Section 2). The
following is a simple example of a collision.

Example 4.1.4. Let r = pe. For h ∈ Pr(F), we have

xr ◦ h = ϕr(h) ◦ xr, (4.1.5)

where ϕr is the eth power of the Frobenius endomorphism on F, ex-
tended to polynomials coefficientwise. For h 6= xr, we have a 2-
collision {(xr,h), (ϕr(h), xr)} and call it a Frobenius collision.

In the case r = p, we have the following description.

Lemma 4.1.6. (i) Assume that f ∈ Pp2(F) has a 2-collision. Then it is a
Frobenius collision if and only if f ′ = 0.

(ii) A Frobenius collision of degree p2 is a maximal 2-collision.

Proof. (i) If f is a Frobenius collision, then f ′ = 0 by definition. Con-
versely, let f ∈ Pp2(F) with f ′ = 0. Then f ∈ F[xp] and thus f = g ◦ xp
for some monic original polynomial g. Let f = g∗ ◦ h∗ be another
decomposition of f. By Lemma 4.1.3, f and h∗ determine g∗ uniquely,
hence h∗ 6= xp and h∗ ′ 6= 0. Thus from f ′ = g∗ ′(h∗) ·h∗ ′ = 0 follows
g∗ ′ = 0 and hence g∗ = xp. Furthermore, f = xp ◦ h∗ = ϕp(h

∗) ◦ xp
by (4.1.5), g = ϕp(h

∗) by the uniqueness in Lemma 4.1.3, and f is a
Frobenius collision.

(ii) Let f = xp ◦ h = ϕp(h) ◦ xp, with h 6= xp, be a Frobenius col-
lision, and (g∗,h∗) a decomposition of f. Then 0 = f ′ = g∗ ′(h∗) ·h∗ ′

and thus g∗ ′ = 0 or h∗ ′ = 0. If h∗ ′ = 0, then h∗ = xp and thus g∗ =
ϕp(h), by Lemma 4.1.3. If g∗ ′ = 0, then g∗ = xp and f = ϕp(h∗) ◦ xp
as in (i). Thus ϕp(h∗) = ϕp(h) by the uniqueness in Lemma 4.1.3,
which implies h = h∗.

If F is perfect—in particular if F is finite or algebraically closed—
then the Frobenius endomorphismϕp is an automorphism on F. Thus
for f ∈ Pp2(Fq), f ′ = 0 implies that f is either a Frobenius collision or
xp

2
.
For f ∈ Pn(F) and w ∈ F, the original shift of f by w is

f[w] = (x− f(w)) ◦ f ◦ (x+w) ∈ Pn(F).

We also simply speak of a shift. Original shifting defines a group ac-
tion of the additive group of F on Pn(F). Indeed, we have forw,w ′ ∈ F

(f[w])[w
′] = (x− f[w](w ′)) ◦ f[w] ◦ (x+w ′)
= (x− (f(w ′ +w) − f(w))) ◦ (x− f(w)) ◦ f ◦ (x+w) ◦ (x+w ′)
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= (x− f(w ′ +w)) ◦ f ◦ (x+w ′ +w) = f[w ′+w].

Furthermore, for the derivative we have (f[w]) ′ = f ′ ◦ (x+w). Shift-
ing respects decompositions in the sense that for each decomposition
(g,h) of f we have a decomposition (g[h(w)],h[w]) of f[w], and vice
versa. We denote (g[h(w)],h[w]) as (g,h)[w].

4.2 explicit collisions at degree r2

A good theorem has two proofs
and one counterexample.

— Volker Strassen

This section presents two classes of explicit collisions at degree r2,
where r is a power of the characteristic p > 0 of the field F. The col-
lisions of Fact 4.2.1 consist of additive and subadditive polynomials.
A polynomial A of degree rκ is r-additive (or r-linearized) if it is of the
form A =

∑
06i6κ aix

ri with all ai ∈ F. We call a polynomial additive
if it is p-additive. A polynomial is additive if and only if it acts addi-
tively on an algebraic closure F of F, that isA(a+b) = A(a)+A(b) for
all a, b ∈ F; see Goss (1996, Corollary 1.1.6). The composition of addi-
tive polynomials is additive, see for instance Proposition 1.1.2 of the
cited book. The decomposition structure of additive polynomials was
first studied by Ore (1933). Dorey & Whaples (1974, Theorem 4) show
that all components of an additive polynomial are additive. Gies-
brecht (1988) gives lower bounds on the number of decompositions
and algorithms to determine them.

For a divisorm of r−1, the (r,m)-subadditive (or (r,m)-sublinearized)
polynomial associated with the r-additive polynomial A is given by
S = x(

∑
06i6κ aix

(ri−1)/m)m of degree rκ. Then A and S are re-
lated as xm ◦A = S ◦ xm and fall into the First Case of Ritt’s Second
Theorem. Dickson (1897) notes a special case of subadditive polyno-
mials, and Cohen (1985) is concerned with the reducibility of some
related polynomials. Cohen (1990a,b) investigates their connection
to exceptional polynomials and coins the term “sub-linearized”; see
also Cohen & Matthews (1994). Coulter, Havas & Henderson (2004)
derive the number of indecomposable subadditive polynomials and
present an algorithm to decompose subadditive polynomials.

Ore (1933, Theorem 3) describes exactly the right components of
degree p of an additive polynomial. Henderson & Matthews (1999)
relate such additive decompositions to subadditive polynomials, and
in their Theorems 3.4 and 3.8 describe the collisions of Fact 4.2.1 be-
low. The polynomials of Theorem 4.2.22 popped up in the course of
trying to prove that these examples might be the only ones; see the
proof of Theorem 4.4.9. In Section 4.4, we show that together with the
Frobenius collisions of Example 4.1.4, these two examples and their
shifts comprise all 2-collisions at degree p2.
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Fact 4.2.1. Let r be a power of p, u, s ∈ F×, ε ∈ {0, 1}, m a positive divisor
of r− 1, ` = (r− 1)/m, and

f = S(u, s, ε,m) = x(x`(r+1) − εusrx` + usr+1)m ∈ Pr2(F),
T = {t ∈ F : tr+1 − εut+ u = 0}.

(4.2.2)

For each t ∈ T and

g = x(x` − usrt−1)m,

h = x(x` − st)m,
(4.2.3)

both in Pr(F), we have f = g ◦ h. Moreover, f has a #T -collision.

The polynomials f in (4.2.2) are “simply original” in the sense that
they have a simple root at 0. This motivates the designation S.

Proof. For t ∈ T , we have

g ◦ h = x(x` − st)m(x`(x` − st)r−1 − usrt−1)m

= x(x`(x` − st)r − (x` − st)usrt−1)m

= x(x`r+` − srtrx` − usrt−1x` + usr+1)m

= x(x`(r+1) − sr(tr + ut−1)x` + usr+1)m

= x(x`(r+1) − εusrx` + usr+1)m = f.

This proves that (g,h) is a decomposition of f. While f does not
depend on t, the #T different choices for t yield #T pairwise different
values for the coefficients of xr−` in h, namely

hr−` = −mst 6= 0.

The polynomial S(u, s, ε,m) is r-additive for m = 1 and (r,m)-
subadditive for all m. Bluher (2004) shows that for ε = 1 and F ∩Fr

of size Q, the cardinality of T is either 0, 1, 2, or Q+ 1. This also holds
for ε = 0. In either case, T is independent of m and `. If T is empty,
then S(u, s, ε,m) has no decomposition of the form (4.2.3), but r+ 1
such decompositions exist over the splitting field of the squarefree
polynomial yr+1 − εuy+ u ∈ F[y].

For a polynomial f ∈ Pn(F) and an integer i, we denote the coeffi-
cient of xi in f by fi, so that f = xn +

∑
16i<n fix

i with fi ∈ F. The
second degree of f is

deg2 f = deg(f− xn). (4.2.4)

If p | n and p - deg2 f, then deg2 f = deg(f ′) + 1.

Fact 4.2.5 (von zur Gathen, Giesbrecht & Ziegler (2010), Proposition
6.2). Let r be a power of p, and u, s, ε, m and u∗, s∗, ε∗, m∗ satisfy the
conditions of Fact 4.2.1. For f = S(u, s, ε,m) and f∗ = S(u∗, s∗, ε∗,m∗),
the following hold.
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(i) For ε = 1, we have f = f∗ if and only if

(u, s, ε,m) = (u∗, s∗, ε∗,m∗).

(ii) For ε = 0, we have f = f∗ if and only if

(usr+1, ε,m) = (u∗(s∗)r+1, ε∗,m∗).

(iii) The stabilizer of f under original shifting is F if m = 1, and {0}

otherwise. For F = Fq, the orbit of f under original shifting has size
1 if m = 1, and size q otherwise.

(iv) The only polynomial of the form (4.2.2) in the orbit of f under original
shifting is f itself.

Proof. The appearance of O(xi) for some integer i in an equation
means the existence of some polynomial of degree at most i that
makes the equation valid.

Let ` = (r − 1)/m. Then gcd(r, `) = gcd(r,m) = 1 and `m ≡
−1 mod p. We have

f = x(x`(r+1) − εusrx` + usr+1)m

= x(xr
2−1 −mεusrxr

2−`r−1

+musr+1xr
2−`r−`−1 +O(xr

2−2`r−1))

= xr
2

−mεusrxr
2−`r

+musr+1xr
2−`r−` +O(xr

2−2`r), (4.2.6)

fr2−`r = −mεusr, (4.2.7)

fr2−`r−` = mus
r+1 6= 0, (4.2.8)

deg2 f =

r2 − `r if ε = 1,

r2 − `r− ` if ε = 0.
(4.2.9)

From the last equation, we find ε = 1 if r | deg2 f, and ε = 0 otherwise.
For either value of ε, deg2 f determines ` and m = (r− 1)/` uniquely.
Similarly, deg2 f

∗ determines ε∗, `∗, and m∗ uniquely. Therefore, if
deg2 f = deg2 f

∗, then

(ε, `,m) = (ε∗, `∗,m∗). (4.2.10)

Furthermore, m and the coefficient fr2−`r−` determine usr+1 =

fr2−`r−`/m uniquely by (4.2.8). Similarly, m∗ and f∗
r2−`∗r−`∗

deter-
mine u∗(s∗)r+1 uniquely. Thus, if m = m∗ and fr2−`r−` = f∗r2−`∗r−`∗ ,
then

usr+1 = u∗(s∗)r+1. (4.2.11)
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(i) If (u, s, ε,m) = (u∗, s∗, ε∗,m∗), then f = f∗. On the other hand,
we have fr2−`r = −musr 6= 0 in (4.2.7) and with (4.2.8) this deter-
mines uniquely

s = −fr2−`r−`/fr2−`r,

u = −fr2−`r/ms
r = `fr2−`r/s

r.
(4.2.12)

This implies the claim (i).
(ii) The condition (usr+1, ε,m) = (u∗(s∗)r+1, ε∗,m∗) is sufficient

for f = f∗ by direct computation from (4.2.2). It is also necessary by
(4.2.10) and (4.2.11).

(iii) For m = 1, f is r-additive as noted after the proof of Fact 4.2.1
and f[w] = f for all w ∈ F. For m > 1 and w ∈ F, we find

f[w] = xr
2

−mεusrxr
2−`r +musr+1xr

2−`r−`

+wusr+1xr
2−`r−`−1 +O(xr

2−`r−`−2),
(4.2.13)

f
[w]

r2−`r
= fr2−`r = −mεusr, (4.2.14)

f
[w]

r2−`r−`
= fr2−`r−` = mus

r+1 6= 0, (4.2.15)

f
[w]

r2−`r−`−1
= wusr+1. (4.2.16)

We have f = f[0] by definition and f 6= f[w] for w 6= 0 by (4.2.16) and
usr+1 6= 0.

(iv) For m = 1, the claim follows from (iii). For m > 1 and w ∈
F, assume f0 = S(u0, s0, ε0,m0) = f[w] for parameters u0, s0, ε0,m0
satisfying the conditions of Fact 4.2.1. Then deg2 f0 = deg2 f

[w] by
assumption and

deg2 f
[w] = deg2 f =

r2 − `r if ε = 1,

r2 − `r− ` if ε = 0,
(4.2.17)

from (4.2.13) and (4.2.9). Thus, we have ` = `0 by (4.2.10). The coeffi-
cient of xr

2−`r−`−1 is 0 in f0 andwusr+1 in f[w] by (4.2.6) and (4.2.16),
respectively. With usr+1 6= 0, we have w = 0 and f0 = f[0] = f.

Algorithm 4.2.18 identifies the examples of Fact 4.2.1 and their
shifts. The algorithm involves divisions which we execute condition-
ally “if defined”. Namely, for integers the quotient is returned, if it
is an integer, and for field elements, if the denominator is nonzero.
Otherwise, “failure” is returned. Besides the field operations +, −,
· , we assume a routine for computing the number of roots in F of a
polynomial. Furthermore, we denote by M(n) a number of field oper-
ations which is sufficient to compute the product of two polynomials
of degree at most n.

Theorem 4.2.19. Algorithm 4.2.18 works correctly as specified. If F = Fq,
it takes O(M(n) log(nq)) field operations on input a polynomial of degree
n = r2.
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Algorithm 4.2.18: Identify simply original polynomials

Input: a polynomial f =
∑
i fix

i ∈ Pr2(F) with all fi ∈ F and r a
power of char F

Output: integer k, parameters u, s, ε,m as in Fact 4.2.1, and
w ∈ F such that f = S(u, s, ε,m)[w] has a k-collision
with k = #T as in (4.2.2), if such values exist, and
“failure” otherwise

1 if deg2 f = −∞ then return “failure”
2 if r | deg2 f then
3 ε← 1

4 `← (r2 − deg2 f)/r and m← (r− 1)/` if defined
5 s← −fr2−`r−`/fr2−`r if defined
6 else
7 ε← 0

8 `← (r2 − deg2 f)/(r+ 1) and m← (r− 1)/` if defined
9 s← 1

10 end
11 u← −`fr2−`r−`/s

r+1 if defined
12 if us = 0 then return “failure”
13 w← mfr2−`r−`−1/fr2−`r−` if defined
14 if f = S(u, s, ε,m)[w] then
15 k← #{y ∈ F : yr+1 − εuy+ u = 0}

16 return k,u, s, ε,m,w
17 end
18 return “failure”
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Proof. For the first claim, we show that for u0, s0, ε0,m0 as in Fact 4.2.1
and w0 ∈ F the algorithm does not return “failure” on input f =

S(u0, s0, ε0,m0)[w0].
We have deg2 f > 0 by (4.2.17). Thus, step 1 does not return

“failure”. By the same equation, we have r | deg2 f if and only if
ε0 = 1. Therefore, ε = ε0 after step 3 or 7, respectively, and since
(4.2.17) determines `0 = (r − 1)/m0 uniquely, we find ` = `0 and
m = (r− 1)/`0 = m0 after step 4 or 8, respectively. If ε = 1, then step
5 computes s = s0 from (4.2.12), (4.2.14), and (4.2.15). Furthermore,
step 11 computes u = u0 from (4.2.8) and (4.2.15). If ε = 0, then

S(u0, s0, 0,m)[w0] = (x(x`(r+1)+u0s
r+1
0 )m)[w0] = S(u0s

r+1
0 , 1, 0,m)[w0].

(4.2.20)
Therefore, we can choose s = 1 in step 9 and set u = −`fr2−`r−` =

u0s
r+1
0 by (4.2.8) and (4.2.15) in step 11. For either value of ε, we have

us 6= 0 from u0s0 6= 0 and step 12 does not return “failure”.
For m = 1, we have

S(u, s, ε, 1)[w0] = S(u, s, ε, 1)[0]

by Fact 4.2.5 (iii) and w = f0/f1 = 0 in step 13 is a valid choice. For
m > 1, we find w0 from (4.2.15) and (4.2.16) as

w = mfr2−`r−`−1/fr2−`r−` = w0.

A polynomial f of the assumed form passes the final test in step 14,
while an f not of this form will fail here at the latest. The size k of the
set T = {t ∈ F : tr+1 − εut+ u = 0} is computed in step 15 and f is a
k-collision according to Fact 4.2.1.

In the following cost estimate for F = Fq, we ignore the (cheap)
operations on integers. The calculation of the right-hand side in
step 14 takes O(M(n) logn) field operations, and the test another n
operations. In step 15, we compute k as degy(gcd(yq − y,yr+1 −
εuy+u)) with O(M(r)(logq+ log r)) field operations. The cost of all
other steps is dominated by these bounds.

Let C(S)
n,k(F) denote the set of polynomials in Pn(F) that are shifts

of some S(u, s, ε,m) with T as in (4.2.2) of cardinality k. Over a fi-
nite field, #C(S)

r2,k(Fq) can be computed exactly, as in von zur Gathen,
Giesbrecht & Ziegler (2010, Corollary 6.3).

Proposition 4.2.21. Let r be a power of p, q a power of r, and τ the number
of positive divisors of r− 1. For k > 2, we have

#C(S)

r2,k(Fq) =



(τq− q+ 1)(q− 1)2(r− 2)

2(r− 1)
if k = 2,

(τq− q+ 1)(q− 1)(q− r)

r(r2 − 1)
if k = r+ 1,

0 otherwise.
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Proof. We count the polynomials in C(S)

r2,k(Fq) by counting the admis-
sible parameters u, s, ε, m, w modulo the ambiguities described in
Fact 4.2.5.

For ε = 1, we count the possible u ∈ F×q such that yr+1−uy+u ∈
Fq[y] has exactly k roots in Fq. Let a,b ∈ F×q and u = ar+1b−r. The
invertible transformation x 7→ y = −ab−1x gives a bijection

{x ∈ F×q : xr+1 + ax+ b = 0}↔ {y ∈ F×q : yr+1 − uy+ u = 0}.

Theorem 5.1 and Proposition 5.4 of von zur Gathen, Giesbrecht &
Ziegler (2010) determine the number c(2)q,r,k of pairs (a,b) ∈ (F×q )

2

such that xr+1+ax+b has exactly k roots, as described below. Every
value of u corresponds to exactly q− 1 pairs (a,b), namely an arbi-
trary a ∈ F×q and b uniquely determined by br = u−1ar+1. Hence,

there are exactly c(2)q,r,k/(q− 1) values for u where #T = k. For m = 1,
the orbit under original shifting has size 1 by Fact 4.2.5 (iii) and tak-
ing into account the q− 1 possible choices for s we find that there are
c
(2)
q,r,k polynomials of the form S(u, s, 1, 1)[w]. For m > 1, the orbit

under original shifting contains exactly one polynomial of the form
(4.2.2) by Fact 4.2.5 (iv) and has size q by (iii). Taking into account the
q− 1 choices for s and the τ− 1 possible values for m, we find that
there are c(2)q,r,k · (τ− 1) ·q polynomials of the form S(u, s, 1,m)[w].

For ε = 0, we have S(u, s, 0,m)[w] = S(usr+1, 1, 0,m)[w] as in
(4.2.20) and T = {t ∈ Fq : t

r+1 + usr+1 = 0} as in (4.2.2). This set has
exactly γ = gcd(r+ 1,q− 1) elements, if −u is an (r+ 1)st power, and
is empty otherwise. Then #T = k > 2 if and only if k = γ and −u is an
(r+ 1)st power. There are exactly (q− 1)/γ distinct (r+ 1)st powers in
F×q and therefore exactly (q− 1)/γ distinct values for usr+1 such that
#T = γ. With δ being Kronecker’s delta function, we find, as above,
that there are δγ,k · (q− 1)/γ polynomials of the form S(u, s, 0, 1)[w]

in C(S)

r2,k(Fq) and δγ,k · (τ − 1)q(q − 1)/γ of the form S(u, s, 0,m)[w]

with m > 1.
This yields

#C(S)

r2,k(Fq) = (τq− q+ 1) ·
(
c
(2)
q,r,k + δγ,k

q− 1

γ

)
.

The work cited above provides the following explicit expressions for
k > 2, with q = rd:

c
(2]
q,r,2 =


(q− 1)(qr− 2q− 2r+ 3)

2(r− 1)
if q and d are odd,

(q− 1)2(r− 2)

2(r− 1)
otherwise,

c
(2)
q,r,r+1 =


(q− 1)(q− r2)

r(r2 − 1)
if d is even,

(q− 1)(q− r)

r(r2 − 1)
if d is odd,
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and c(2)q,r,k = 0 for k /∈ {2, r+ 1}. Furthermore, we have from Lemma
3.29 in von zur Gathen (2014a, Preprint)

γ = gcd(r+ 1, rd − 1) =


1 if d is odd and r is even,

2 if d is odd and r is odd,

r+ 1 if d is even.

The claimed formulas follow from

c
(2)
q,r,k + δγ,k

q− 1

γ
=



(q− 1)2(r− 2)

2(r− 1)
if k = 2,

(q− 1)(q− r)

r(r2 − 1)
if k = r+ 1,

0 otherwise.

For a prime p > 7, we have τ > 4. Large values of τ occur when
m ≈ exp(k logk) is the product of the first k primes and p 6 mC the
smallest prime congruent 1 mod m for Linnik’s constant C. Then k ≈
logm/ loglogm & C−1 logp/ loglogp and τ > 2k & 2C

−1 logp/ loglogp.
By Heath-Brown (1992) and Xylouris (2011) we can take C just under
5. Except for the constant factor, τ is asymptotically not more than
this value (Hardy & Wright, 1985, Theorem 317). Luca & Shparlinski
(2008) give general results on the possible values of τ. It follows that
#C(S)

r2,2(Fq) ≈ τq
3/2 is in q3O(p1/ loglogp).

The odd/even distinctions for q, r, and d cancel out in the formula
of Proposition 4.2.21. This might indicate that those distinctions are
alien to the problem.

The second and new construction of collisions goes as follows.

Theorem 4.2.22. Let r be a power of p, b ∈ F×, a ∈ F {0,br}, a∗ = br−a,
m an integer with 1 < m < r− 1 and p - m, m∗ = r−m, and

f =M(a,b,m) = xmm
∗
(x− b)mm

∗ (
xm + a∗b−r((x− b)m − xm)

)m
·
(
xm

∗
+ ab−r((x− b)m

∗
− xm

∗
)
)m∗

,

g = xm(x− a)m
∗
,

h = xr + a∗b−r(xm
∗
(x− b)m − xr),

g∗ = xm
∗
(x− a∗)m,

h∗ = xr + ab−r(xm(x− b)m
∗
− xr).

(4.2.23)

Then f = g ◦ h = g∗ ◦ h∗ ∈ Pr2(F) has a 2-collision.

The polynomials f in (4.2.23) are “multiply original” in the sense
that they have a multiple root at 0. This motivates the designation
M. The notation is set up so that ∗ acts as an involution on our data,
leaving b, f, r, and x invariant.
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Avanzi & Zannier (2003) study collisions g ◦ h = g ◦ h∗ with a
polynomial g and nonconstant rational functions h,h∗ over C. Mike
Zieve (2011) points out that the rational functions of case (4) in their
Proposition 5.6 can be transformed into (4.2.23). Zieve also mentions
that this example already occurs in unpublished work of his, joint
with Bob Beals.

Proof. Let

H = h/xm
∗
= xm + a∗b−r((x− b)m − xm),

H∗ = h∗/xm = xm
∗
+ ab−r((x− b)m

∗
− xm

∗
).

(4.2.24)

Then h− a = (x− b)mH∗ and h∗ − a∗ = (x− b)m
∗
H. It follows that

g ◦ h = g∗ ◦ h∗ = xmm∗(x− b)mm∗Hm(H∗)m
∗
= f. (4.2.25)

If g = g∗, then the coefficients of xr−1 in g and g∗ yield mbr = 0,
hence p | m, a contradiction. Thus f is a 2-collision.

For r 6 4, there is no value of m satisfying the assumptions. The
construction works for arbitrary a ∈ F and 1 6 m 6 r − 1. But
when a ∈ {0,br}, we get a Frobenius collision; see Example 4.1.4.
When p | m, we write m = pem0 with p - m0 and have f = xp

e ◦
M(a,bp

e
,m0) ◦ xp

e
with r/pe instead of r in (4.2.23). When m is 1

or r− 1, an original shift of (4.2.23) yields a polynomial of the form
S(u, s, ε,m). Indeed, for m = 1, let w = a∗b−r+1, c = (ab1−r)r − a∗,
and

(u, s, ε,m, t, t∗) =

{
(−aa∗b1−r, 1, 0, r− 1,−a∗b1−r,ab1−r) if c = 0,

(c/sr,−aa∗b1−r/c, 1, r− 1,−c/a, c/a∗) otherwise.

Then M(a,b, 1)[w] = S(u, s, ε,m), (g,h)[w] is of the form (4.2.3), and
so is (g∗,h∗)[w] with t replaced by t∗. Furthermore, for m = r− 1, we
have M(a,b, r− 1) = M(a∗,b, 1) and the claimed parameters can be
found as described by interchanging a and a∗.

Next, we describe the (non)uniqueness of this construction. We
take all polynomial gcds to be monic, except that gcd(0, 0) = 0.

Proposition 4.2.26. Let r be a power of p, b ∈ F×, a ∈ F {0,br}, m an
integer with 1 < m < r− 1 and p - m, and f =M(a,b,m) as in (4.2.23).
Then the following hold.

(i) In the notation of Theorem 4.2.22 and with H and H∗ as in (4.2.24),
we have gcd(m,m∗) = 1 and the four polynomials x, x− b, H, and
H∗ are squarefree and pairwise coprime.

(ii) The stabilizer of f under original shifting is {0}. For F = Fq, the orbit
of f under original shifting has size q.
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(iii) For a0,b0,m0 satisfying the conditions of Theorem 4.2.22, we have
M(a,b,m) =M(a0,b0,m0) if and only if (a0,b0,m0) ∈ {(a,b,m),
(a∗,b,m∗)}. If we impose the additional condition m < r/2, then
(a,b,m) is uniquely determined by M(a,b,m).

(iv) There are exactly two polynomials of the form (4.2.23) in the orbit of
f under original shifting, namely f and f[b] =M(−a∗,−b,m).

Proof. (i) If d > 1 was a common divisor of m and m∗, then d | m+

m∗ = r and thus d would be a power of p—in particular p | m, a con-
tradiction. Thus gcd(m,m∗) = 1. From mH− xH ′ = m∗a∗b1−r(x−

b)m−1 and H(0) ·H(b) 6= 0, we find that H is squarefree and coprime
to x(x − b), and similarly for H∗. Since H | h, H∗ | (h − a), and
gcd(h,h− a) = 1, we have gcd(H,H∗) = 1.

(ii) For the coefficient of xr
2−r−2 in the composition f = g ◦ h, we

find
fr2−r−2 = gr−1(h

2
r−1 − hr−2),

since r > 2. For the shifted composition f[w] = g[h(w)] ◦h[w], we have
the coefficients

g
[h(w)]
r−1 = gr−1 = −m∗a 6= 0,

h
[w]
r−1 = hr−1 = −ma∗(−b)1−r 6= 0,

h
[w]
r−2 = hr−2 −whr−1,

f
[w]

r2−r−2
= gr−1(h

2
r−1 − hr−2 +whr−1).

Thus, fr2−r−2 = f
[w]

r2−r−2
if and only if w = 0.

(iii) Sufficiency is a direct computation. Conversely, assume that
f = M(a,b,m) = M(a0,b0,m0) = f0. From (i) and the multiplicity
mm∗ of 0 and b in f, we findmm∗ = m0m∗0 and b0 = b; see (4.2.25). If
necessary, we replace (a,b,m) by (a∗,b,m∗), and obtain m0 = m. Di-
viding f and f0 by xmm

∗
(x− b)mm

∗
yields Hm(H∗)m

∗
= Hm0 (H∗0)

m∗

by (4.2.25). Hence by (i), we find H0 = H and thus a0 = a.
(iv) We find f[b] = M(−a∗,−b,m) by a direct computation. Con-

versely, we take a0, b0, m0 as in Theorem 4.2.22 and assume that
f[w] =M(a0,b0,m0) = f0. By (iii), we may assume that m,m0 < r/2.
We have

g ′ = m∗axm−1(x− a)m
∗−1,

h ′ = ma∗b1−rxm
∗−1(x− b)m−1,

f ′ = (g ′ ◦ h) ·h ′

= mm∗aa∗b1−r(x(x− b))mm
∗−1Hm−1(H∗)m

∗−1.

(4.2.27)

Now (i) and p - mm∗ show that f ′ has roots of multiplicitymm∗−
1 exactly at 0 and b and otherwise only roots of multiplicity at most
m∗ − 1 < mm∗ − 1. Furthermore, (f[w]) ′ = f ′(x +w) has roots of
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multiplicity mm∗− 1 exactly at −w and b−w. Similarly, f0 has roots
of multiplicity m0m∗0− 1 at 0 and b0, and all other roots have smaller
multiplicity. It follows thatmm∗ = m0m∗0 andm = m0. Furthermore,
one of −w and b−w equals 0, so that w ∈ {0,b}. Hence

(a0,b0,m0,w) ∈ {(a,b,m, 0), (a∗,b,m∗, 0),

(−a∗,−b,m,b), (−a,−b,m∗,b)}.

We now provide the exact number of these collisions over Fq,
matching Proposition 4.2.21. When r 6 4, there are no polynomials
of the form (4.2.23).

Corollary 4.2.28. For r > 3 and F = Fq, the number of polynomials that
are of the form (4.2.23) or shifts thereof is

q(q− 1)(q− 2)(r− r
p − 2)

4
.

Proof. There are q− 1, q− 2, and r− r/p− 2 choices for the parame-
ters b, a, and m, respectively. By Proposition 4.2.26 (iii), exactly two
distinct triples of parameters generate the same polynomial (4.2.23).
By (ii), the shift orbits are of size q and by (iv), they contain two such
polynomials each.

Over a field F of characteristic p > 0, Algorithm 4.2.29 finds the
parameters for polynomials that are original shifts of (4.2.23), just as
Algorithm 4.2.18 does for original shifts of (4.2.2). It involves con-
ditional divisions and routines for extracting pth and square roots.
Given a field element, the latter produce a root, if one exists, and
“failure” otherwise. If F is finite, then every element has a pth root.
The algorithm for a square root yields a subroutine to determine the
set of roots of a quadratic polynomial.

Theorem 4.2.30. Algorithm 4.2.29 works correctly as specified. If F = Fq,
it takes O(M(n) logn+ n logq) field operations on input a polynomial of
degree n = r2.

Proof. For the correctness, it is sufficient—due to the check in step 23—
to show that for a0,b0,m0 as in Theorem 4.2.22 and w0 ∈ F, the
algorithm does not return “failure” on input f = M(a0,b0,m0)[w0].
As remarked after Theorem 4.2.22, we have r > 5 and by Proposi-
tion 4.2.26 (iii), we may assume m0 < r/2. Furthermore, (4.2.27)
determines lc(f ′) 6= 0 explicitly and step 1 is defined. The square root
in step 2 is defined, since for p = 2, m0 and r−m0 are odd and all
exponents in the monic version of (4.2.27) are even.

By (4.2.27) and Proposition 4.2.26 (i), we have after steps 1 and 2

f0 =

{
ϕm0(r−m0)−1Hm0−1

0 H∗0
r−m0−1 if p > 2,

ϕ(m0(r−m0)−1)/2H
(m0−1)/2
0 H∗0

(r−m0−1)/2 if p = 2,
(4.2.31)



4.2 explicit collisions at degree r2 101

Algorithm 4.2.29: Identify multiply original polynomials
Input: a polynomial f ∈ Pr2(F) with r a power of p = char F
Output: parameters a,b,m, as in Theorem 4.2.22, and w ∈ F

such that f =M(a,b,m)[w], if such values exist, and
“failure” otherwise

1 f0 ← f ′/ lc(f ′) if defined

2 if p = 2 then f0 ← f
1/2
0 if defined

3 f1 ← f0/ gcd(f0, f ′0) if defined
4 if deg f1 < 4 or deg f1 > r+ 2 then return “failure”
5 determine the maximal k such that fk1 | f0 via the generalized

Taylor expansion of f0 in base f1
6 if p = 2 then k← 2k

7 m← min{k+ 1, r− k− 1}
8 if m < 2 then return “failure”
9 if p = 2 or p - m2 + 1 then

10 f2 ← gcd(fr−m1 , f0)/ gcd(fr−m−1
1 , f0)

11 else
12 f3 ← f0/ gcd(fr−m−1

1 , f0) if defined
13 determine the maximal ` such that p` divides every

exponent of x with nonzero coefficient in f3
14 f3 ← f

1/p`

3 if defined
15 f2 ← f3/ gcd(f3, f ′3)
16 end
17 if deg f2 6= 2 then return “failure”
18 compute the set X of roots of f2 in F
19 if #X < 2 then return “failure”
20 write X as {x1, x2} and set b← x2 − x1 and w← −x1
21 compute the set A of roots of y2 − bry−m−2br−1 lc(f ′) ∈ F[y]

in F
22 for a ∈ A do
23 if f =M(a,b,m)[w] then
24 return a,b,m,w
25 end
26 end
27 return “failure”
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with ϕ = (x+w0)(x− b0 +w0), H0 = H ◦ (x+w0), H∗0 = H∗ ◦ (x+
w0), and H and H∗ as in (4.2.24) with a0,a∗0,b0,m0,m∗0 instead of
a,a∗,b,m,m∗, respectively. By Proposition 4.2.26 (i), these three poly-
nomials are squarefree and pairwise coprime. Let δ, ε, ε∗ be 0 if p
divides the exponent of ϕ, H0, H∗0, respectively, in (4.2.31), and be 1

otherwise. Then

gcd(f0, f ′0) =


ϕm0(r−m0)−1−δHm0−1−ε

0 H∗0
r−m0−1−ε

∗
if p > 2,

ϕ(m0(r−m0)−1)/2−δH
(m0−1)/2−ε
0

·H∗0
(r−m0−1)/2−ε

∗
if p = 2.

This gcd is nonzero, and step 3 computes

f1 = f0/ gcd(f0, f ′0) = ϕ
δHε0H

∗
0
ε∗ .

We have

δ =

{
1 if p = 2 or p - m20 + 1,
0 otherwise.

(4.2.32)

For odd p, this follows from m0(r−m0) − 1 ≡ −m20 − 1 mod p, and
for p = 2 from 4 - m20 + 1. The sum of the exponents of H0 and H∗0
in (4.2.31) is r− 2 for odd p and r/2− 1 for p = 2. In either case, it is
coprime to p and at least one of ε and ε∗ equals 1. If p > 2 and ε = 0,
then m0 ≡ 1 mod p, and thus m20 ≡ 1 mod p. Hence p - m20 + 1 and
δ = 1. Similarly, ε∗ = 0 implies δ = 1, and we find that at least two of
δ, ε, and ε∗ take the value 1. This also holds for p = 2.

Since degϕ = 2, degH0, degH∗0 > 2, and degH0 + degH∗0 = r,
this implies 4 6 deg f1 6 r+ 2 and step 4 does not return “failure”.
The exponents in (4.2.31) satisfy m0− 1 < r−m0− 1 < m0(r−m0) −
1. If p > 2, then k as determined in step 5 equals m0 − 1 if ε = 1, and
r−m0 − 1 otherwise. In characteristic 2, step 6 modifies k ∈ {(m0 −

1)/2, (r−m0− 1)/2}, so that in any characteristic, step 7 recoversm =

m0 > 2 and step 8 does not return “failure”.
The condition in step 9 reflects the case distinction in (4.2.32).

• If the condition holds, we have δ = 1 and

gcd(fr−m1 , f0) = ϕr−mH
ε(m−1)
0 H∗0

ε∗(r−m−1),

gcd(fr−m−1
1 , f0) = ϕr−m−1H

ε(m−1)
0 H∗0

ε∗(r−m−1),

and therefore f2 = ϕ in step 10.

• Otherwise, we have δ = 0, p > 2, ε = ε∗ = 1,

f0 = ϕ
m(r−m)−1Hm−1

0 H∗0
r−m−1,

gcd(fr−m−1
1 , f0) = Hm−1

0 H∗0
r−m−1,

and f3 = ϕm(r−m)−1 in step 12. After step 14, we have f3 = ϕe

for some e with p - e and f2 = ϕe/ϕe−1 = ϕ in step 15.
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In any case, we have f2 = (x+w0)(x−b0+w0) with distinct roots
−w0 and b0−w0 in F, and steps 17, 18, and 19 do not return “failure”.
We determine a, b, and w in steps 20–23. In step 20, we have (b,w) ∈
{(b0,w0), (−b0,w0 − b0)}, depending on the choice of the order of x1
and x2. Since f = M(a0,b0,m)[w0] = M(br0 − a0,−b0,m)[w0−b0] ac-
cording to Proposition 4.2.26 (iv), we have f =M(ā,b,m)[w] for some
ā ∈ {a0,br0 − a0}. The leading coefficient of f ′ is −m2āb1−r(br − ā)

by (4.2.27) yielding a quadratic polynomial in F[y] with roots ā and
br− ā for step 21. There, we find A = {ā,br− ā} and step 23 identifies
ā.

For the cost over F = Fq, the conditions in steps 4 and 8 ensure
that all powers of f1 in the gcd computations of steps 10 and 12 have
degree at most (r + 2)(r − 2) < n and we have O(M(n) logn) field
operations for the quotients, gcds, and products in steps 1, 3, 10, 12,
15, and 23. The f1-adic expansion of f0 is a sequence a0, . . . ,aν−1 ∈
Fq[x] such that f0 =

∑
06i<ν aif

i
1 and degai < deg f1 for all i < ν.

We may bound ν by the smallest power of 2 greater than deg f0/deg f1.
Then ν < 2deg f0/deg f1 and for k in step 5 we have k+ 1 = min{0 6
i < ν : ai 6= 0}. We can compute the expansion withO(M(νdeg f1) logν)
field operations; see von zur Gathen & Gerhard (2013, Theorem 9.15).
Thus the cost of step 5 is O(M(n) logn) field operations. The calcula-
tion of the right-hand side in step 23 takes O(M(n) logn) field opera-
tions, by first substituting x+w for x in M(a,b,m) as in (4.2.23), then
computing its coefficients and leaving away the constant term. We ig-
nore the (cheap) operations on integers in the various tests, in step 13,
and the computation of derivatives in steps 1, 3, and 15. The polyno-
mial square root in step 2 and the p`th root in step 14 take O(n logq)
field operations each using uq

c/p` = u1/p
`

for u ∈ Fq and the small-
est c > 1 with qc > p`. Taking the square roots in steps 18 and 21 can
be done deterministically by first reducing the computations to the
prime field Fp, see von zur Gathen & Gerhard (2013, Exercise 14.40),
and then finding square roots in Fp by exhaustive search. These take
O(logq) and O(

√
n) field operations, respectively, since n = r2 is a

power of p.

4.3 root multiplicities in collisions

The aim of research
is the discovery of the equations

which subsist between the elements of phenomena.
— Ernst Mach

In this section we describe the structure of root multiplicities in
collisions over an algebraic closure of F under certain conditions.
In Section 4.4 these results will be used for the classification of 2-
collisions at degree p2. For the classification, its proof, and the lem-
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mas in this section, we follow ideas of Dorey & Whaples (1974) and
Zannier (1993); an earlier version can be found in Blankertz (2011).

After some general facts about root multiplicities, we state an as-
sumption on 2-collisions (Assumption 4.3.8) under which we deter-
mine the root multiplicities of their components (Proposition 4.4.4).
In Example 4.3.13 we see that the 2-collisions in Fact 4.2.1 and in The-
orem 4.2.22 satisfy this assumption. Then we recall the well-known
relation between decompositions of polynomials and towers of ratio-
nal function fields. We reformulate a result by Dorey & Whaples
(1974) about the ramification in such fields in the language of root
multiplicities of polynomials (Proposition 4.3.23) and derive further
properties about the multiplicities in collisions for which Assump-
tion 4.3.8 holds.

We use the following notation. Let F be a field of characteristic
p > 0 and K = F an algebraic closure of F. For a nonzero polynomial
f ∈ F[x] and b ∈ K, let multb(f) denote the root multiplicity of b in f,
so that f = (x− b)multb(f)u with u ∈ K[x] and u(b) 6= 0. For c ∈ K, we
denote as f−1(c) the set of all b ∈ K such that f(b) = c.

Lemma 4.3.1. Let f = g ◦ h ∈ Pn(F) and c ∈ K. Then

f−1(c) =
⋃̇

a∈g−1(c)

h−1(a)

is a partition of f−1(c), and for all b ∈ f−1(c), we have

multb(f− c) = multh(b)(g− c) · multb(h− h(b)). (4.3.2)

The partition of f−1(c) from Lemma 4.3.1 is illustrated in Fig-
ure 4.3.3, where we write g−1(c) = {a0,a1,a2, . . . } and h−1(ai) =

{ai0,ai1,ai2, . . . } for i > 0.

Proof. Let b ∈
⋃
a∈g−1(c) h

−1(a) and a ∈ g−1(c) such that b ∈ h−1(a).
Hence f(b) = g(h(b)) = g(a) = c and thus b ∈ f−1(c). On the
other hand, let b ∈ f−1(c) and set a = h(b). Then b ∈ h−1(a) and
a ∈ g−1(c), since g(a) = g(h(b)) = c. Hence b ∈

⋃
a∈g−1(c) h

−1(a).
Moreover if b ∈ h−1(a) ∩ h−1(a0) for some a, a0 ∈ K, then a =

h(b) = a0.
For (4.3.2), let b ∈ f−1(c), a = h(b), e = multa(g − c), and

e0 = multb(h− a). Then g− c = (x− a)eG and h− a = (x− b)e0H

for some G, H ∈ K[x] with G(a) ·H(b) 6= 0. Thus f − c = g(h) −

c = (h − a)eG(h) = ((x − b)e0H)eG(h) = (x − b)ee0HeG(h) with
(HeG(h))(b) = H(b)eG(a) 6= 0.

Lemma 4.3.4. Let f ∈ K[x] and b ∈ K. Then b is a root of f ′ if and only if
there is some c ∈ K with multb(f− c) > 1. Moreover, for any c ∈ K with
p - multb(f− c), we have multb(f ′) = multb(f− c) − 1.
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Figure 4.3.3: Partition of f−1(c)

Proof. Let b be a root of f ′ and set c = f(b). Then b is a root of f− c.
We write f− c = (x− b)u for some u ∈ K[x]. Then f ′ = (f− c) ′ =

u+ (x− b)u ′, and thus u(b) = f ′(b) = 0. Hence b is a multiple root
of f− c.

Now, let c ∈ K with e = multb(f− c). Then f− c = (x− b)eu for
some u ∈ K[x] with u(b) 6= 0 and f ′ = (f − c) ′ = (x − b)e−1(eu +

(x− b)u ′). Thus, b is a root of f ′ if e > 1. This proves the converse.
Moreover, if p - e then (eu+ (x− b)u ′)(b) = eu(b) 6= 0 and hence
multb(f ′) = e− 1.

We use the following proposition. The second part was stated as
Proposition 6.5 (i) in von zur Gathen, Giesbrecht & Ziegler (2010) for
F = Fq.

Proposition 4.3.5. Let r be a power of p and f ∈ Pr2(F) have a 2-collision
C such that degg = degh = r and g ′h ′ 6= 0 for all (g,h) ∈ C. Then
f ′ 6= 0 and the following hold.

(i) There are integers d1 and d2 such that degg ′ = d1 and degh ′ = d2
for all (g,h) ∈ C.

(ii) Furthermore, if r = p, then d1 = d2.

Proof. (i) Let (g,h) ∈ C and f = g ◦ h. Then

deg f ′ = degg ′ · degh+ degh ′. (4.3.6)

Since g ′h ′ 6= 0, this is an equation of nonnegative integers. More-
over, degh ′ < degh = r and thus degg ′ and degh ′ are uniquely
determined by deg f ′ and r, which proves the claim.
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(ii) For r = p, let ` = deg2 g and m = deg2 h with the second
degree deg2 as in (4.2.4). Since g ′h ′ 6= 0, we find d1 = degg ′ = `− 1
and d2 = degh ′ = m− 1 for all (g,h) ∈ C and it is sufficient to show
` = m. We have

g = xp + g`x
` +O(x`−1),

h = xp + hmx
m +O(xm−1)

with g`,hm ∈ F×. The highest terms in h` and g ◦ h are given by

h` = (xp + hmx
m +O(xm−1))`

= x`p + `hmx
(`−1)p+m +O(x(`−1)p+m−1),

g ◦ h = xp
2

+ hpmx
mp +O(x(m−1)p) + g`x

`p + `g`hmx
(`−1)p+m

+O(x(`−1)p+m−1) +O(x(`−1)p).
(4.3.7)

Algorithm 4.10 of von zur Gathen (2013) computes the compo-
nents g and h from f, provided that hp−1 6= 0. We do not assume
this, but can apply the same method. Once g` and hm are deter-
mined, the remaining coefficients first of h, then of g, are computed
by solving linear equations of the form uhi = v, where u and v are
known at that point, and u 6= 0. Quite generally, g is determined by
f and h, see Lemma 4.1.3.

For (g∗,h∗) ∈ C, we find that (g`,hm) = (g∗` ,h
∗
m) implies (g,h) =

(g∗,h∗) by the uniqueness of the procedure just sketched. Inspection
of the coefficient of x(`−1)p+m in (4.3.7) shows that g` = g∗` if and
only if hm = h∗m.

Now take some (g∗,h∗) ∈ C and assume that ` 6= m. Then
deg2(g ◦ h) is one of the two distinct integers mp or `p. If m > `,
then hpm (and hence hm) is uniquely determined by f, and otherwise
g` is. In either case, we conclude from the previous observation that
(g,h) = (g∗,h∗). This shows ` = m if (g,h) 6= (g∗,h∗).

A common right component (over K) of two polynomials h,h∗ ∈ K[x]
is a nonlinear polynomial v ∈ K[x] such that h = u ◦ v and h∗ = u∗ ◦ v
for some u, u∗ ∈ K[x]. We now state an assumption which we use in
Proposition 4.3.23, the lemmas thereafter, and in Proposition 4.4.4.

Assumption 4.3.8. Let f ∈ Pn(F) have a 2-collision {(g,h), (g∗,h∗)}.
We consider the following conditions.

(A1) The derivative f ′ is nonzero.

(A2) The degrees of all components are equal, that is, degg = degg∗ =
degh = degh∗.

(A3) The right components h and h∗ have no common right compo-
nent over K.
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(A4) For all c ∈ K, neither g − c nor g∗ − c have roots in K with
multiplicity divisible by p.

(A5) The degrees of g ′ and h∗ ′ are equal.

Lemma 4.3.9. Let f ∈ Pn(F) have a 2-collision {(g,h), (g∗,h∗)}.

(i) Assumption (A1) holds if and only if all derivatives g ′, g∗ ′, h ′, and
h∗ ′ are nonzero.

(ii) If h or h∗ is indecomposable, then (A3) holds. In particular, it holds
if degh = degh∗ is prime.

(iii) If degg = p and (A1) holds, then (A4) holds.

(iv) If n = p2 and (A1) holds, then (A5) holds.

(v) If (A1), (A2), and (A5) hold, then degg ′ = degg∗ ′ = degh ′ =
degh∗ ′.

Proof. (i) The claim follows from the fact that f ′ = g ′(h) ·h ′.
(ii) Assume that h is indecomposable. Then a common right com-

ponent of h and h∗ would imply h = h∗ and thus (g,h) = (g∗,h∗),
by Lemma 4.1.3, a contradiction. Hence (A3) holds. Moreover, poly-
nomials of prime degree are indecomposable.

(iii) If a root multiplicity of g − c was divisible by p for some
c ∈ K, then g− c = (x−a)p for some a ∈ K. This would imply g ′ = 0,
contradicting (A1). Similarly, for all c ∈ K the root multiplicities of
g∗ − c are not divisible by p. Thus (A4) holds.

(iv)–(v) We can apply Proposition 4.3.5, since degg = degg∗ =

degh = degh∗ by n = p2 or (A2), respectively, and g ′h ′g∗ ′h∗ ′ 6= 0

by (A1) and (i). Then (ii) of the cited proposition shows degg ′ =
degg∗ ′ = degh ′ = degh∗ ′, proving (iv) and (v).

In Example 4.3.13 we show that Assumption 4.3.8 holds for the
collisions in Fact 4.2.1 and in Theorem 4.2.22. We need the next two
propositions to check (A3) for these collisions.

Proposition 4.3.10. Let r be a power of p, let a,a∗ ∈ F andm be a positive
divisor of r− 1, ` = (r− 1)/m, and

h = x(x` − a)m,

h∗ = x(x` − a∗)m.

If h and h∗ have a common right component, then h = h∗. In particular,
the right components in 2-collisions of the form as in Fact 4.2.1 have no
common right component.

Proof. By Henderson & Matthews (1999, Theorem 4.1) it suffices to
prove the claim for additive polynomials, that is, for m = 1. Further-
more, we can assume without loss of generality that F is algebraically
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closed. Let v ∈ Ppν(F) be a common right component of h and h∗

with h = u ◦ v and h∗ = u∗ ◦ v for some u,u∗ ∈ Ppk(F), ν > 1, and
r = pk+ν. Then u, u∗, and v are additive polynomials; see Cohen
(1990b, Lemma 2.4). By Ore (1933, Theorem 3 in Chapter 1) and since
F is algebraically closed, we may assume ν = 1 and v = xp − bx, for
some b ∈ F. For u =

∑
06i6k uix

pi , we have

h = xr − ax = u ◦ (xp − bx)

= ukx
r +

∑
16i6k

(ui−1 − uib
pi)xp

i

− u0bx.

Thus uk = 1 and ui−1 = uib
pi =

∏
i6j6k b

pj , for 1 6 i 6 k. More-
over, a = u0b =

∏
06j6k b

pj is uniquely determined by b. Thus
a = a∗ and h = h∗.

Proposition 4.3.11. Let r, b, a, a∗, m, m∗, g, and h be as in Theo-
rem 4.2.22. Then g and h are indecomposable.

Proof. Let g = u ◦ v with u ∈ Pk(F), v ∈ P`(F), k` = r, and ` > 1. Then
p | `. By Lemma 4.3.1 we have⋃̇

a0∈u−1(0)

v−1(a0) = g
−1(0) = {0,a}. (4.3.12)

Since v is original, we have {0} ⊆ v−1(0) ⊆ {0,a}. If v−1(0) = {0},
then v = x` and thus p | ` | m, by (4.3.2), in contradiction to p - m.
Thus v−1(0) = {0,a}. Since the union in (4.3.12) is disjoint, we find
that u−1(0) = {0} and 0 is the only root of u. Hence u = xk and
k | gcd(m,m∗) = 1, by (4.3.2) and Proposition 4.2.26 (i). Therefore u
is linear and thus g is indecomposable.

By (4.2.24) and Proposition 4.2.26 (i), we find h = xm
∗
H and h−

a = (x− b)mH∗ with squarefree polynomials H and H∗. Thus h[b] =
xmH̃ for squarefree H̃ = H∗ ◦ (x+ b). We find that h is decomposable
if and only if h[b] is decomposable. By Proposition 4.2.26 (iii) either
m > r/2 or m∗ > r/2. If m > r/2, then we rename h as h[b], H as H̃
and m as m∗. We have in either case m∗ > r/2.

Now let h = u ◦ v with u ∈ Pk(F), v ∈ P`(F), k` = r, and ` > 1.
Then p | `. The only multiple root in h is 0, since H is square-
free, by Proposition 4.2.26 (i). Its multiplicity is mult0(h) = m∗ =

mult0(u) · mult0(v). Thus mult0(v) | m∗ and hence p - mult0(v).
Since the multiplicities of v sum up to `, which is divisible by p, there
is another root b0 6= 0 of v. Then 1 = multb0(h) = mult0(u) · multb0(v)
and thus mult0(u) = 1. Hence mult0(v) = m∗. We have ` > m∗ > r/2,
thus ` = r and u is linear.

Example 4.3.13. Assumption 4.3.8 holds for the #T -collisions in Fact 4.2.1
with #T > 2 and the 2-collisions in Theorem 4.2.22. In both cases (A2)
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holds by definition. Assumption (A3) follows from Proposition 4.3.10

and from Proposition 4.3.11 and Lemma 4.3.9 (ii), respectively.
The derivatives of the components in Fact 4.2.1 are

g ′ = −usrt−1(x` − usrt−1)m−1,

h ′ = −st(x` − st)m−1.
(4.3.14)

Since u, s, t ∈ F×, we find degg ′ = degh ′ = `(m− 1) > 0, indepen-
dent of t ∈ T , and thus (A5) holds. By (4.3.6), deg f ′ > 0 and thus
(A1) holds. If there is c ∈ K such that g− c has a multiple root b ∈ K,
then b is also a root of g ′ by Lemma 4.3.4. Since g ′−1(0) ⊆ g−1(0) by
(4.3.14), we have only simple roots in g− c for c 6= 0. The multiple
roots of g have multiplicity m and (A4) follows from p - m | r− 1.

For the collisions in Theorem 4.2.22, (A4) follows similarly from
p - mm∗. Finally, (A1) and (A5) are satisfied by (4.2.27) and a, a∗,
b ∈ F×.

Lemma 4.3.15. Let f ∈ F[x] be monic and y be transcendental over K(x).
Then f− y ∈ K(y)[x] is irreducible.

Proof. Assume f− y = uv for some u, v ∈ K[x,y]. The degree in y
of f− y is degy(f− y) = 1 = degy u+ degy v. Thus we may assume
degy u = 1 and degy v = 0. Then av = −1, where a ∈ K[x] is the lead-
ing coefficient of u in y. Thus v ∈ K[x]× = K× and f− y is irreducible
in K[x,y]. A factorization of f − y in K(y)[x] yields a factorization
in K[x,y], by the Lemma of Gauß, see Lang (2002, Corollary 2.2 in
Capter IV). Hence f− y is also irreducible in K(y)[x].

Let f ∈ Pn(F) with f ′ 6= 0 and y be transcendental over K(x). Then
f−y ∈ K(y)[x] is irreducible and separable over K(y), by Lemma 4.3.15

and since the derivative of f− y with respect to x is (f− y) ′ = f ′ 6= 0.
In particular, f−y ∈ F(y)[x] is irreducible and separable. Let α ∈ K(y)
be a root of f − y. Then K(y)[α] = K(α) is a rational extension
of K(y) of degree n. Let M be the set of intermediate fields be-
tween K(α) and K(y) and R = {h ∈ Pm(K) : m | n and there is g ∈
Pn/m(K) such that f = g ◦ h} be the set of right components of f.

Fact 4.3.16 (Fried & MacRae (1969), Proposition 3.4). Let f ∈ Pn(K)
with f ′ 6= 0 and let α ∈ K(y) be a root of f− y ∈ K(y)[x]. Then the map

R→M,

h 7→ K(h(α))
(4.3.17)

is bijective.

The fact follows from Fried & MacRae (1969, Proposition 3.4). In-
deed, for each u ∈ K[x] of degree m there is exactly one v ∈ Pm(K)

such that u = ` ◦ v for some linear polynomial ` ∈ K[x]; see von zur
Gathen (2013, Section 2).
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The sets R and M can be equipped with natural lattice structures
for which (4.3.17) is an isomorphism.

We now use the theory of places and ramification indices in func-
tion fields; see Stichtenoth (2009) for the background. A place in a
function field L over K is the maximal ideal of some valuation ring
of L over K. For an finite extension M of L a place p in M is said
to lie over a place P in L if P ⊆ p. Then we write p | P and de-
fine the ramification index of p | P as the integer e(p | P) such that
vp(a) = e(p | P) · vP(a) for all a ∈ L, where vp and vP are the corre-
sponding valuations of p and P, respectively; see Stichtenoth (2009,
Proposition 3.1.4 and Definition 3.1.5).

Later, we translate this into the language of root multiplicities of
polynomials. First, we need the following result, which is proven in
Dorey & Whaples (1974, Lemma 1) for rational function fields under
the assumption that the characteristic of K is zero. Our proof avoids
this assumption.

Theorem 4.3.18. Let L, M, M∗, N be function fields over K such that
L ⊆ M,M∗ ⊆ N are finite separable field extensions and M ⊗LM∗ ∼=

MM∗ = N. Let P be a place in L, and p, p∗ be places over P in M and M∗,
respectively. Assume that at least one of the ramification indices m = e(p |

P) and m∗ = e(p∗ | P) is not divisible by the characteristic of K. Then there
are gcd(m,m∗) places q in N which lie over p and over p∗. Moreover, for
such a place we have e(q | P) = lcm(m,m∗).

Proof. Abhyankar’s Lemma says that for a place q in N over p and
over p∗,

e(q | P) = lcm(m,m∗), (4.3.19)

see Stichtenoth (2009, Theorem 3.9.1). Now we proceed as in Dorey
& Whaples (1974). For places p, p∗, and q over P in M, M∗, and N,
respectively, we denote by Λ = L̂, M̂p, M̂∗p

∗
, and N̂q the completions

of L, M, M∗, and N with respect to P, p, p∗, and q, respectively. The
tensor product N⊗M M̂p is the direct sum of the completions of N
with respect to the places in N over p, and M∗⊗L Λ is the direct sum
of the completions of M∗ with respect to the places in M∗ over P; see
Neukirch (1999, Proposition 8.3 in Chapter II). Since M⊗LM∗ ∼= N,
we have⊕

q|p

N̂q ∼= N⊗M M̂p ∼=M∗ ⊗LM⊗M M̂p ∼=M∗ ⊗L M̂p

∼=M∗ ⊗L (Λ⊗Λ M̂p) ∼= (M∗ ⊗L Λ)⊗Λ M̂p

∼=
⊕
p∗0|P

M̂∗p
∗
0 ⊗Λ M̂p,

where the last direct sum is taken over all places p∗0 in M∗ over P. We
show that M̂∗p

∗ ⊗Λ M̂p is the direct sum of the completions ofNwith
respect to the places that lie over p and p∗. For this purpose, consider
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the (external) composite fields of M̂∗p
∗

and M̂p in an algebraic closure
Ω of N̂q; those are the field extensions Γ ⊆ Ω of Λ such that there
are two field homomorphisms which map M̂∗p

∗
and M̂p, respectively,

into Γ and whose images generate Γ . Then M̂∗p
∗ ⊗Λ M̂p is the direct

sum of the composite fields of M̂∗p
∗

and M̂p; see Jacobson (1964,
Theorem 21 in Chapter I). Each such composite field Γ is isomorphic
to a summand in

⊕
q|p N̂

q, by the Krull-Remak-Schmidt Theorem; see

Lang (2002, Theorem 7.5). Thus there exists q | p such that Γ = N̂q.
Since Γ is an extension of M̂∗p

∗
, we find q | p∗ as claimed. On the

other hand, for a place q in N over p and p∗, N̂q is a composite field
of M̂∗p

∗
and M̂p and thus is a summand in M̂∗p

∗ ⊗Λ M̂p.
The summands of M̂∗p

∗ ⊗Λ M̂p are of degree lcm(m,m∗), by
(4.3.19), and the Λ-dimension of M̂∗p

∗ ⊗Λ M̂p is mm∗. Thus there
are mm∗/ lcm(m,m∗) = gcd(m,m∗) places over p and p∗.

In the following we link the notion of places and ramification
indices to the notion of roots and root multiplicities. Let K(t) be a
rational function field. Then the local ring O∞ = {g/h ∈ K(t) : g,h ∈
K[t], degg 6 degh} is the 1/t-adic valuation ring of K(t) and P∞ =

(1/t)O∞ is its maximal ideal. For c ∈ K, the local ring Ot−c = {g/h ∈
K(t) : g,h ∈ K[t],h(c) 6= 0} is the (t− c)-adic valuation ring of K(t)
and Pc = (t− c)Ot−c is its maximal ideal. We denote the (t− c)-adic
valuation by vPc . Then we have for f ∈ K[x]

vPc(f(t)) = multc(f). (4.3.20)

Since the irreducible polynomials in K[t] are linear, the places P∞ and
Pc for all c ∈ K are pairwise distinct and comprise all places in K(t);
see Stichtenoth (2009, Theorem 1.2.2). We call the places Pc finite
places. The map

K→ {P : P is a finite place in K(t)},

c 7→ Pc
(4.3.21)

is bijective.

Lemma 4.3.22. Let f ∈ Pn(K) with f ′ 6= 0, let α ∈ K(y) be a root of
f− y ∈ K(y)[x], let b, c ∈ K, and let Pc and qb be the corresponding finite
places in K(y) and K(α), respectively. Then qb | Pc if and only if f(b) = c.
Furthermore

e(qb | Pc) = multb(f− c).

Proof. Let qb | Pc. Then y − c ∈ qb and thus f(α) − c = y − c =

(α − b)g/h for g,h ∈ K[α] with h(b) 6= 0. Hence, f(b) − c = (b −

b)g(b)/h(b) = 0.
Conversely, let f(b) = c. Then α − b | f(α) − c in K[α] . Let

(y− c)g/h ∈ Pc for some g,h ∈ K[y] with h(c) 6= 0. Then h(f(b)) =
h(c) 6= 0 and thus (y− c)g/h = (f(α) − c)g(f(α))/h(f(α)) ∈ qb.
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By (4.3.20) and since vPc(y− c) = 1, we have e(qb | Pc) = vqb(y−

c) = vqb(f(α) − c) = multb(f− c).

Proposition 4.3.23. Let c ∈ K and f ∈ Pn(F) have a 2-collision {(g,h),
(g∗,h∗)} satisfying (A1)–(A4) in Assumption 4.3.8. For a ∈ g−1(c) and
a∗ ∈ g∗−1(c), there are exactly gcd (multa(g− c), multa∗(g∗ − c)) roots
b ∈ f−1(c) such that h(b) = a and h∗(b) = a∗. Furthermore, for each
such root b we have

multb(f− c) = lcm (multa(g− c), multa∗(g∗ − c)) . (4.3.24)

Proof. By (A1) we have f ′ 6= 0 and thus f− y ∈ F(y)[x] is irreducible
and separable; see Lemma 4.3.15 and the paragraph thereafter. Let
α ∈ K(y) be a root of f− y, M = K(h(α)) and M∗ = K(h∗(α)), as in
(4.3.17). Then α is a root of h− h(α) and by Lemma 4.3.15, h− h(α)

is irreducible in M[x]. Thus the minimal polynomial of α over M is
h− h(α), and similarly the minimal polynomial of h(α) over K(y) is
g− y. Hence [K(α) : M] = degh and [M : K(y)] = degg. Figure 4.3.25

illustrates the relation between these field extensions and their respec-
tive minimal polynomials.

M = K(h(α)) M∗ = K(h∗(α))

K(α)

K(y)

h− h(α) h∗ − h∗(α)

g− y g∗ − y

Figure 4.3.25: Lattice of subfields

By Fact 4.3.16 and since MM∗ ⊆ K(α), there is a monic origi-
nal v ∈ K[x] such that MM∗ = K(v(α)). Since M ⊆ MM∗, there is
u ∈ K[x] such that h = u ◦ v, by applying Fact 4.3.16 to K(α) |M. Sim-
ilarly, there is u∗ ∈ K[x] such that h∗ = u∗ ◦ v. Hence v = x, by (A3),
and MM∗ = K(α). Moreover, MM∗ is contained in M⊗K(y)M∗ as a
direct summand; see Jacobson (1964, Theorem 21 in Chapter I). Their
K(y)-dimensions both equal deg f = degg · degh = (degg)2, by (A2).
Thus M⊗K(y)M∗ ∼=MM∗ = K(α). Let Pc be as in (4.3.21). Since, by
Lemma 4.3.22, the root multiplicities of g− c are the ramification in-
dices of the places over Pc in M, (A4) rules out finite wildly ramified
places in M | K(y). Thus we can apply Theorem 4.3.18, as follows.
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c

a
a∗

b

g

g−1(c)

g∗

g∗−1(c)

m = multa(g− c)

h

h−1(a)

h∗

m∗ = multa∗(g∗ − c)

h∗−1(a∗)

f−1(c)

Figure 4.3.26: Roots and multiplicities

Let m = multa(g− c) and m∗ = multa∗(g∗ − c), see Figure 4.3.26.
By Lemma 4.3.22, there are finite places pa and p∗a∗ over Pc in M and
M∗, respectively, with m = e(pa | Pc) and m∗ = e(p∗a∗ | Pc). Then,
by Theorem 4.3.18, there are gcd(m,m∗) places q over pa and p∗a∗ in
K(α). By the bijection (4.3.21), for each such place q there is b ∈ K
such that q = qb, and by applying Lemma 4.3.22 to K(α) | M and to
K(α) | M∗, we find b ∈ h−1(a) ∩ h∗−1(a∗) ⊆ f−1(c). On the other
hand, for b ∈ h−1(a) ∩ h∗−1(a∗), the place qb lies over pa and p∗a∗ .
Thus #h−1(a) ∩ h∗−1(a∗) = gcd(m,m∗) and multb(f − c) = e(qb |

Pc) = lcm(m,m∗), by Theorem 4.3.18.

Combining (4.3.24) and (4.3.2), for b ∈ K, a = h(b), a∗ = h∗(b),
and c = f(b), we find multa(g− c) · multb(h− a) = multb(f− c) =

lcm (multa(g− c), multa∗(g∗ − c)) and thus

multb(h− a) = lcm (multa(g− c), multa∗(g∗ − c)) /multa(g− c).
(4.3.27)

Hence, the root multiplicities of h − a are determined by those of
g− c and g∗ − c.

From Proposition 4.3.23 we derive further results about the root
multiplicities of f, g, and g∗.

Lemma 4.3.28. Let c ∈ K, r be a power of p, f ∈ Pr2(F) have a 2-collision
{(g,h), (g∗,h∗)} satisfying Assumption 4.3.8, and let a ∈ g−1(c) and e =
multa(g− c). Then the following hold.
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(i) We have

gcd{multa∗(g∗ − c) : a∗ ∈ g∗−1(c)} = 1. (4.3.29)

In particular, if e divides multa∗(g∗ − c) for all roots a∗ ∈ g∗−1(c),
then e = 1.

(ii) The multiplicity e either equals 1 or divides multa∗(g∗ − c) for all
roots a∗ ∈ g∗−1(c) but exactly one.

Proof. (i) Let d be the gcd of all root multiplicities of g∗ − c. Then d
divides

∑
a∗∈g∗−1(c) multa∗(g∗ − c) = deg(g∗ − c) = r. Thus d is a

power of p and hence all multiplicities of g∗ − c are divisible by p if
d > 1, which contradicts (A4), and (i) follows.

Before we start with the proof of (ii), we introduce some notation
and results for arbitrary c ∈ K, a ∈ g−1(c), and a∗ ∈ g∗−1(c). We
define

i(c,g) =
∑

a∈g−1(c)

multa(g ′),

i(c,h∗) =
∑

b∈f−1(c)

multb(h∗
′),

j(a,a∗) =
∑

b∈h−1(a)∩h∗−1(a∗)

multb(h∗
′),

(4.3.30)

and have ∑
c∈K

i(c,g) = degg ′,∑
c∈K

i(c,h∗) = degh∗ ′,∑
a∈g−1(c)

a∗∈g∗−1(c)

j(a,a∗) = i(c,h∗),

(4.3.31)

since
⋃̇
c∈Kg

−1(c) = K,
⋃̇
c∈Kf

−1(c) = K, and

f−1(c) =
⋃̇

a∈g−1(c)

a∗∈g∗−1(c)

h−1(a) ∩ h∗−1(a∗)

by Lemma 4.3.1.
By (A4), p - multa(g− c) and thus multa(g ′) = multa(g− c) − 1,

by Lemma 4.3.4. Hence for c ∈ K we have

i(c,g) =
∑

a∈g−1(c)

(multa(g− c) − 1) = degg− #g−1(c). (4.3.32)

Let e = multa(g−c) and e∗ = multa∗(g∗−c). By Proposition 4.3.23,
the set h−1(a) ∩ h∗−1(a∗) has size gcd(e, e∗) and for a root b ∈
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h−1(a) ∩ h∗−1(a∗), we have multb(h∗ − a∗) = multb(f − c)/e∗ =

lcm(e, e∗)/e∗, by (4.3.27). Thus multb(h∗ ′) = lcm(e, e∗)/e∗ − 1 by
(A4) and Lemma 4.3.4 and we have

j(a,a∗) = gcd(e, e∗) · (lcm(e, e∗)/e∗ − 1) = e− gcd(e, e∗). (4.3.33)

We now show ∑
a∗∈g∗−1(c)

j(a,a∗) > e− 1. (4.3.34)

Let a∗0, . . . ,a∗` be the roots of g∗ − c in K and e∗i = multa∗i (g
∗ − c) be

their multiplicities. If e divides all e∗i , then e = 1 by (i) and (4.3.34)
follows trivially. If e divides all e∗i except exactly one, say e - e∗0 and
e | e∗i for 1 6 i 6 `, then the gcd of e and e∗0 divides all e∗i and hence
divides gcd{e∗i : 0 6 i 6 `} = 1; see (4.3.29). Thus gcd(e, e∗0) = 1,
j(a,a∗0) = e− 1 by (4.3.33), and (4.3.34) follows.

Now assume that e does not divide at least two e∗i , say e - e∗0
and e - e∗1. Then gcd(e, e∗i ) 6= e, gcd(e, e∗i ) 6 e/2, and j(a,a∗i ) > e/2

by (4.3.33) for i = 0, 1. Hence, (4.3.34) holds with strict inequality.
Summing both sides of (4.3.34) over all roots of g− c yields

i(c,h∗) =
∑

a∈g−1(c)

a∗∈g∗−1(c)

j(a,a∗) >
∑

a∈g−1(c)

(multa(g− c) − 1) = i(c,g)

by (4.3.30) and (4.3.32). With (4.3.31), this leads to

degh∗ ′ > degg ′,

a contradiction to (A5).

Lemma 4.3.35. Let c ∈ K, r be a power of p, and let f ∈ Pr2(F) have a 2-
collision {(g,h), (g∗,h∗)} satisfying Assumption 4.3.8. Then the following
statements are equivalent.

(i) g− c is squareful.

(ii) g∗ − c is squareful.

(iii) f− c is squareful.

Furthermore, if g− c is squareful, then g− c has at most one simple root.

Proof. Assume that g− c is squareful. Then there is a root of g− c
with multiplicity greater than 1. This multiplicity divides all multi-
plicities of g∗ − c but exactly one, by Lemma 4.3.28 (ii). Hence all
multiplicities of g∗− c but at most one are greater than 1. Thus g∗− c
is squareful and has at most one simple root. We interchange the
rôles of g and g∗ in Lemma 4.3.28 and obtain the equivalence of (i)
and (ii) and the last claim.
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Now let a ∈ K be a multiple root of g− c, and b ∈ h−1(a). Then
multb(f− c) = multa(g− c) · multb(h− h(b)) > 1, by Lemma 4.3.1,
and thus f− c is squareful.

It is left to prove that if f− c is squareful, then g− c or g∗ − c is
squareful. Let b ∈ K be a multiple root of f− c. Then 1 < multb(f−
c) = lcm(multh(b)(g − c), multh∗(b)(g∗ − c)), by Proposition 4.3.23.
Thus multh(b)(g− c) > 1 or multh∗(b)(g∗ − c) > 1.

Lemma 4.3.36. Let r be a power of p, and let f ∈ Pr2(F) have a 2-collision
{(g,h), (g∗,h∗)} satisfying Assumption 4.3.8. Then the following hold.

(i) There is at most one c ∈ K such that f− c is squareful.

(ii) For all c ∈ K, #g−1(c) = #g∗−1(c).

Proof. (i) Assume g − c is squareful, for some c ∈ K. Then g − c

has at most one simple root, by Lemma 4.3.35. Thus r = degg =∑
a∈g−1(c) multa(g− c) > 1+ 2(#g−1(c) − 1). Hence #g−1(c) 6 (r+

1)/2 and thus i(c,g) = r− #g−1(c) > (r− 1)/2, by (4.3.32). Now, if
there is another value c0 ∈ K {c} such that g− c0 is also squareful,
then r− 2 > degg ′ =

∑
c∈K i(c,g) > r− 1, by (4.3.31). By this con-

tradiction, there is at most one c in K such that g − c is squareful.
Hence there is at most one c in K such that f − c is squareful, by
Lemma 4.3.35.

(ii) If g− c is squarefree, then so is g∗ − c, by Lemma 4.3.35, and
both have exactly degg = degg∗ = r roots. If g− c is squareful, then
by (i), c is unique with this property and thus the roots of g ′ are the
multiple roots of g− c by Lemma 4.3.4. Hence

degg ′ = multa∈g−1(c) multa(g ′) = i(c,g) = degg− #g−1(c)
(4.3.37)

by (4.3.32). Interchanging the rôles of g and g∗ shows degg∗ ′ =
degg∗ − #g∗−1(c) and Lemma 4.3.9 (v) yields degg ′ = degg∗ ′, thus
#g−1(c) = #g∗−1(c).

The previous lemmas deal with the root multiplicities over K. The
next lemma shows that certain parameters are in F, when F is as-
sumed to be perfect.

Lemma 4.3.38. Let F be perfect, c ∈ K, r be a power of p, and f ∈ Pr2(F)
have a 2-collision {(g,h), (g∗,h∗)} satisfying Assumption 4.3.8. Then the
following hold.

(i) If f− c is squareful, then c ∈ F.

(ii) If g− c = gm1

1 gm2

2 for some monic squarefree coprime polynomials
g1,g2 ∈ K[x] and integers m1 6= m2, then c ∈ F and g1,g2 ∈ F[x].

(iii) If a ∈ F and h− a = hm1

1 hm2

2 for some monic squarefree coprime
polynomials h1,h2 ∈ K[x] and positive integers m1 6= m2, then
h1,h2 ∈ F[x].
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Proof. Since F is perfect, K is Galois over F. An element c ∈ K is fixed
by all automorphisms in the Galois group Gal(K | F) if and only if
c ∈ F.

(i) Let f− c be squareful and σ ∈ Gal(K | F). Then σ(f− c) = f−

σ(c) is squareful as well. Indeed, if f− c = (x− a)2u for some a ∈ K
and u ∈ K[x], then σ(f− c) = (x− σa)2σ(u). But by Lemma 4.3.36 (i),
c is unique and thus c = σ(c). This holds for all σ ∈ Gal(K | F) and
hence c ∈ F.

(ii) Since m1 6= m2, g− c is squareful and thus f− c is squareful,
by Lemma 4.3.35. By (i), we find c ∈ F. Let σ ∈ Gal(K | F). Then
gm1

1 gm2

2 = g − c = σ(g − c) = σ(g1)
m1σ(g2)

m2 . Since m1 6= m2,
unique factorization implies that gi = σ(gi) and thus gi ∈ F[x] for
i = 1, 2.

The proof of (iii) is analogous to that of (ii).

4.4 classification

There is no . . . Mathematician so expert in his
science, as to place entire confidence in any truth

immediately upon his discovery of it . . . Every time
he runs over his proofs, his confidence encreases;
but still more by the approbation of his friends;

and is raised to its utmost perfection by the
universal assent and applauses of the learned world.

— David Hume

We use the results of the previous section to describe in Propo-
sition 4.4.4 the factorization of the components of 2-collisions at de-
gree r2 satisfying Assumption 4.3.8 over a perfect field F. All non-
Frobenius collisions at degree p2 satisfy this assumption and in The-
orem 4.4.9 we provide a complete classification of 2-collisions at that
degree over a perfect field. That is, the 2-collisions at degree p2 are
up to original shifting those of Example 4.1.4, Fact 4.2.1, and The-
orem 4.2.22. This yields the maximality of these collisions (Corol-
lary 4.4.11) and an efficient algorithm to determine whether a given
polynomial f ∈ Pp2(F) has a 2-collision (Algorithm 4.4.14). In the next
section we use this classification to count exactly the decomposable
polynomials over a finite F.

Let F be a perfect field and denote by K = F an algebraic closure
of F.

Definition 4.4.1. Let r be a power of p and f ∈ Pr2(F) have a 2-
collision {(g,h), (g∗,h∗)} satisfying Assumption 4.3.8. We call f multi-
ply original if there is some c ∈ K such that f− c has no simple roots
in K. Otherwise, we call f simply original.

By Lemma 4.3.36 (i), there is at most one c ∈ K such that f −
c is squareful. Since F is perfect, such a c lies in F if it exists, by
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Lemma 4.3.38 (i). Furthermore, if f is multiply original, then there is
some c ∈ F such that f− c is squareful. If f is simply original, then
either f− c is squarefree for all c ∈ K or there is a unique c ∈ F such
that f− c is squareful and has a simple root.

Example 4.4.2. Assumption 4.3.8 holds for the 2-collisions M(a,b,m)

of Theorem 4.2.22 and the #T -collisions S(u, s, ε,m) of Fact 4.2.1 with
#T > 2; see Example 4.3.13. Moreover, a polynomial M(a,b,m) has
no simple roots and is therefore multiply original. When #T > 2, then
f = S(u, s, ε,m) is squareful with a simple root if m > 1, and f− c is
squarefree for all c ∈ K if m = 1.

Proposition 4.4.4 and Theorem 4.4.9 answer the converse question,
namely whether every simply original or multiply original polyno-
mial can be obtained as S(u, s, ε,m)[w] or M(a,b,m)[w], respectively.
We need the following graph-theoretic lemma.

Lemma 4.4.3. Let G = (V ,E) be a directed bipartite graph with bipartition
V = A ∪A∗, where the outdegree of each vertex equals ` > 1 and #A =

#A∗ = `+ 1. Then some vertex in A is connected to all other vertices in A
by a path of length 2.

Proof. Let A = {0, . . . , `}, A∗ = {`+ 1, . . . , 2`+ 1}, and M the (2`+ 2)×
(2`+ 2) adjacency matrix of G having for each edge from i ∈ A ∪A∗
to j ∈ A ∪A∗ the entry 1 at position (i, j) and entries 0 everywhere
else. Since G is bipartite, we have

M =

(
0 N

N∗ 0

)
,

where N and N∗ are (`+ 1)× (`+ 1)-matrices satisfying the following
properties by the assumptions of the lemma.

(i) Each row in N has exactly one entry 0 and all other entries 1.

(ii) Exactly `+ 1 entries of N∗ are 0 and all other entries are 1.

The number of paths of length 2 that connect a vertex i ∈ A to a
vertex j ∈ A is given by the entry (i, j) of

M2 =

(
N ·N∗ 0

0 N∗ ·N

)
.

If every column of N∗ contains at least two 1’s, then N ·N∗ has only
positive entries, because of (i), and every vertex in A is connected to
all other vertices in A by a path of length 2. Otherwise, N∗ has a
column j that contains at most one 1. Because of (ii), every different
column of N∗ contains at most one 0. Because of ` > 1 and (i), all
entries at (j, j ′) with j ′ 6= j in N ·N∗ are positive. Starting from j we
can reach all other vertices by a path of length 2.
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Thanks go to Rolf Klein and an anonymous referee for this proof,
much simpler than our original one.

Proposition 4.4.4. Let r be a power of the characteristic p > 0 of the perfect
field F and let f ∈ Pr2(F) have a 2-collision {(g,h), (g∗,h∗)} satisfying
Assumption 4.3.8. Then exactly one of the following holds.

(s) The polynomial f is simply original. Let m = (r − 1)/(r − 1 −

degg ′). Then there are w ∈ F and unique monic squarefree poly-
nomials f̂, ĝ, ĥ, ĝ∗, and ĥ∗ in F[x], none of them divisible by x,
with f̂ of degree (r2 − 1)/m and the other four polynomials of degree
r− 1− degg ′ = (r− 1)/m such that

f[w] = xf̂m,

g[h(w)] = xĝm,

h[w] = xĥm,

(g∗)[h
∗(w)] = x(ĝ∗)m,

(h∗)[w] = x(ĥ∗)m.

(4.4.5)

If deg f ′ > 0, thenw is unique. Otherwise, factorizations (4.4.5) with
the claimed properties exist for all w ∈ F.

(m) The polynomial f is multiply original and there are a, b, and m as in
Theorem 4.2.22 and w ∈ F such that

f[w] =M(a,b,m)

and the collision {(g,h)[w], (g∗,h∗)[w]} is as in Theorem 4.2.22.

Proof. Every polynomial satisfying the assumption of the proposition
is either simply original or multiply original by Definition 4.4.1. So,
at most one of the two statements holds and it remains to exhibit
the claimed parameters in each case. We begin with two general
observations.

(i) If deg f ′ = 0, then f−c is squarefree for all c ∈ K, by Lemma 4.3.4.
Thus f is simply original. Moreover, f[w] has derivative (f[w]) ′ =

f ′ ◦ (x+w) = f ′ ∈ F× for all w ∈ F and is therefore squarefree.

(ii) If deg f ′ > 0, then there is some c ∈ K such that f − c has
a multiple root by Lemma 4.3.4. Moreover, c is unique by
Lemma 4.3.36 (i), and in F by Lemma 4.3.38 (i). Let #g−1(c) =
` + 1 be the number of distinct roots of g − c in K. Then, by
Lemma 4.3.36 (ii), g∗ − c also has `+ 1 roots in K and

` = r− 1− degg ′ > 1, (4.4.6)

by (4.3.37). Let a0, . . . ,a` and a∗0, . . . ,a∗` be the distinct roots of
g− c and g∗ − c, respectively, and let ei = multai(g− c) and
e∗i = multa∗i (g

∗ − c) be their multiplicities, that is,

g− c =
∏
06i6`

(x− ai)
ei , g∗ − c =

∏
06i6`

(x− a∗i )
e∗i . (4.4.7)
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By Proposition 4.3.23, for each i and j the set Bi,j = h−1(ai) ∩
h∗−1(a∗j ) ⊆ K has cardinality gcd(ei, e∗j ).

We now deal with the two cases of the theorem separately.
Case (s): Let f be simply original. First, if deg f ′ = 0, then degg ′ =

0, by (4.3.6). Hence m = (r − 1)/(r − 1 − degg ′) = 1 and f[w] =

g[h(w)] ◦ h[w] = (g∗)[h
∗(w)] ◦ (h∗)[w] is squarefree for all w ∈ F, by (i).

Thus the monic polynomials f̂ = f[w]/x, ĝ = g[h(w)]/x, ĥ = h[w]/x,
ĝ∗ = (g∗)[h

∗(w)]/x, and ĥ∗ = (h∗)[w]/x are also squarefree and not
divisible by x, and (4.4.5) holds for all w ∈ F.

Second, we assume deg f ′ > 0 for the rest of case (s). By (ii), there
is a unique c ∈ F such that f− c has multiple roots and we assume
the notation of (4.4.7) for g− c and g∗− c. By the definition of simple
originality, f − c has a simple root, say b0 ∈ f−1(c). Furthermore,
g− c and g∗ − c also have simple roots, since

1 = multb0(f− c) = lcm(multh(b0)(g− c), multh∗(b0)(g
∗ − c))

by Proposition 4.3.23. But g− c and g∗ − c have at most one simple
root by Lemma 4.3.35. We may number the roots so that these unique
simple roots are a0 = h(b0) and a∗0 = h∗(b0), both with multiplicity
e0 = e

∗
0 = 1, and ei, e∗i > 1 for all i > 1.

By Lemma 4.3.28 (ii) and using e∗0 = 1, each ei with i > 1 divides
all e∗j with j > 1. Similarly, each e∗j with j > 1 divides all ei with
i > 1. Thus all these multiplicities are equal to some integer m > 2,
and with r = degg = 1+ `m from (4.4.7), we have m = (r− 1)/` =

(r− 1)/(r− 1− degg ′) by (4.4.6). Therefore

g− c = (x− a0)g̃
m, g∗ − c = (x− a∗0)(g̃

∗)m

with monic squarefree polynomials g̃ =
∏
16i6`(x − ai) and g̃∗ =∏

16i6`(x − a
∗
i ) ∈ K[x]. We find a0,a∗0 ∈ F and g̃, g̃∗ ∈ F[x] by

Lemma 4.3.38 (ii).
Next, we show that h− a0 and h∗ − a∗0 have the same root mul-

tiplicities as g∗ − c and g − c, respectively. For 0 6 i 6 `, we find
from (4.3.27) with the unique bi ∈ B0,i and the unique b∗i ∈ Bi,0 as
implicitly defined in (ii) that

multbi(h− a0) = lcm(multa0(g− c), multa∗i (g
∗ − c))

= multa∗i (g
∗ − c),

multb∗i (h
∗ − a∗0) = multai(g− c).

Since #B0,0 = 1 by Proposition 4.3.23, we have b0 = b∗0 and arrive at

h− a0 = (x− b0)h̃
m, h∗ − a∗0 = (x− b0)(h̃

∗)m

with monic squarefree polynomials h̃ =
∏
16i6`(x − bi) and h̃∗ =∏

16i6`(x− b
∗
i ) ∈ K[x]. Again, we find b0 ∈ F and h̃, h̃∗ ∈ F[x], by

Lemma 4.3.38 (iii).
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Finally, we let w = b0, ĝ = g̃ ◦ (x+ a0), ĥ = h̃ ◦ (x+ b0), ĝ∗ =

g̃∗ ◦ (x+a∗0), ĥ∗ = h̃∗ ◦ (x+b0), and f̂ = ĥ · ĝ(xĥm). Then h(b0) = a0,
f(b0) = g(h(b0)) = g(a0) = c, and

g[h(w)] = (x− c) ◦ g ◦ (x+ a0) = xĝm,

h[w] = (x− a0) ◦ h ◦ (x+ b0) = xĥm,

(g∗)[h
∗(w)] = (x− c) ◦ g∗ ◦ (x+ a∗0) = x(ĝ∗)m,

(h∗)[w] = (x− a∗0) ◦ h∗ ◦ (x+ b0) = x(ĥ∗)m

with squarefree monic ĝ, ĝ∗, ĥ, and ĥ∗ of degree ` = r− 1− degg ′.
Furthermore, ĝ(0) = g̃(a0) =

∏
16i6`(a0 − ai) 6= 0. This shows

that ĝ is coprime to x and similar arguments work for ĝ∗, and for
ĥ and ĥ∗ with b0 6= bi for i > 1, since h(b0) = a0 6= ai = h(bi)

for i > 1. Moreover, f̂ = ĥ ·
∏
16i6`(xĥ

m − ai + a0) is monic and
not divisible by x, and f[w] = g[h(w)] ◦ h[w] = (xĝm) ◦ (xĥm) = xf̂m.
Since B0,0 = {b0} and lcm(e0, e∗0) = 1, we find that f− c has a simple
root b0, by Proposition 4.3.23. Furthermore, f− c has

∑
i+j>1 #Bi,j =

2`+ `2m = `(r+ 1) roots with multiplicity m. Thus f̂ is squarefree
and of degree `(r+ 1) = (r2 − 1)/m, and the values as claimed in (s)
indeed exist.

For the uniqueness in the case deg f ′ > 0, we consider another
factorization f[w0] = xf̂m0 satisfying the conditions of case (s). Then
f(x) − f(w) = f[w] ◦ (x−w) = (x−w)(f̂(x−w))m and f(x) − f(w0) =
f[w0] ◦ (x−w0) = (x−w0)(f̂0(x−w0))

m. The value for c such that
f − c is squareful with a simple root is unique for a simply orig-
inal polynomial with deg f ′ > 0, as remarked in (i). Thus c =

f(w) = f(w0) and (x−w)(f̂(x−w))m = (x−w0)(f̂0(x−w0))
m. Since

deg f ′ > 0, we have degg ′ > 0 andm > 1. Unique factorization yields
w = w0 and f̂ = f̂0. An analogous argument works for ĝ, ĝ∗, ĥ, and
ĥ∗.

This concludes case (s), and we continue with the case (m).
Case (m): Let f be multiply original. Then deg f ′ > 0 by (i) from

the beginning of the proof. By (ii), there is a unique c ∈ F such that
f− c is squareful, and then f− c has no simple root by Definition 4.4.1
of multiple originality. By Lemma 4.3.35, g− c and g∗ − c are also
squareful.

Assume that g − c has a simple root. Then ` > 0 and we may
number the roots of g− c such that e0 = 1 in the notation (4.4.7). By
Lemma 4.3.35, g − c has at most one simple root and thus e1 > 1.
By Lemma 4.3.28 (ii), e1 divides all e∗j but one and we may number
the roots of g∗ − c such that e1 | e∗j for 1 6 j 6 `. Interchanging the
rôles of g and g∗ in Lemma 4.3.28 (ii), we have e∗0 | e1 since e0 =

1. Combining these divisibility conditions shows e∗0 | gcd{e∗j : 0 6
j 6 `} and we find e∗0 = 1 from (4.3.29). Hence there exists some
b ∈ K such that multb(f− c) = lcm(e0, e∗0) = 1, by Proposition 4.3.23,
contradicting Definition 4.4.1 of multiply original by the uniqueness
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of c. Therefore g− c has no simple root and ei > 1 for all i > 0. An
analogous argument for g∗ shows e∗i > 1 for all i > 0.

We now proceed in three steps. First, we determine the factor-
izations of g− c and g∗ − c. Second, we derive the factorizations of
h− ai and h∗ − a∗i for the roots ai ∈ g−1(c) and a∗i ∈ g∗

−1(c), re-
spectively. Third, we apply an appropriate original shift and prove
the claimed form.

To compute `, we translate Proposition 4.3.23 into the language of
graphs. We consider the directed bipartite graph on the set V = A ∪
A∗ of vertices, with disjointA = {i : 0 6 i 6 `} andA∗ = {i∗ : 0 6 i 6 `}.
The set E of edges consists of all (i, j∗) with ei | e∗j plus all (i∗, j) with
e∗i | ej. Each vertex has outdegree `, by Lemma 4.3.28 (ii), since no
root is simple. If ` > 1, then by Lemma 4.4.3 some vertex i in A is
connected to all other vertices in A. Then ei > 1 divides all other
multiplicities of g− c, which contradicts (4.3.29) with g instead of g∗.
Hence ` = 1 and therefore

g− c = (x− a0)
e0(x− a1)

e1 ,

g∗ − c = (x− a∗0)
e∗0(x− a∗1)

e∗1

with 1 < ei, e∗i < r− 1, for i = 0, 1. We know by Lemma 4.3.28 (i)
applied to g and g∗, respectively, that gcd(e0, e1) = gcd(e∗0, e∗1) = 1

and since ei, e∗i > 1 for i = 0, 1, each ei divides exactly one e∗j , by
(ii) of the cited lemma, and similarly each e∗j divides exactly one ei.
By renumbering if required, we assume e0 | e∗1. If e∗1 | e1, then
gcd(e0, e1) = e0 > 1, a contradiction to Lemma 4.3.28 (i). Therefore
e∗1 | e0 and we have e0 = e∗1. Similar arguments show e∗0 | e1 and
e1 | e∗0, and hence e1 = e∗0. We write m = e0 = e∗1 and m∗ = e1 = e∗0.
Then m and m∗ are coprime, m∗ = r −m, since r = e0 + e1, and
p - m, by (A4). Lemma 4.3.38 (ii) yields distinct a0,a1 ∈ F and
distinct a∗0,a∗1 ∈ F with

g− c = (x− a0)
m(x− a1)

m∗ ,

g∗ − c = (x− a∗0)
m∗(x− a∗1)

m.

For the sets Bi,j defined in (ii), we find #B0,0 = #B1,1 = 1, #B0,1 =

m, and #B1,0 = m
∗. The multiplicity of each bi,j ∈ Bi,j satisfies

multbi,j(h− ai) =
lcm(ei, e∗j )

ei
=


m∗ if i = j = 0,

m if i = j = 1,

1 otherwise,

by (4.3.27), and similarly

multbi,j(h
∗ − a∗j ) =


m if i = j = 0,

m∗ if i = j = 1,

1 otherwise.
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Writing B0,0 = {b0,0} and B1,1 = {b1,1}, this shows

h− a0 = (x− b0,0)
m∗H0, h− a1 = (x− b1,1)

mH∗0,

h∗ − a∗0 = (x− b0,0)
mH∗0, h− a∗1 = (x− b1,1)

m∗H0

with squarefree monic H0 =
∏
b∈B0,1

(x−b) and H∗0 =
∏
b∈B1,0

(x−b)

that do not vanish at b0,0 or b1,1. Lemma 4.3.38 (iii) implies that
b0,0,b1,1 ∈ F and H0,H∗0 ∈ F[x].

We use this information to apply the appropriate original shift
to our decompositions. Let w = b0,0, a = a1 − a0, a∗ = a∗1 − a

∗
0,

and b = b1,1 − b0,0, with all differences being different from 0, and
squarefree monic H = H0 ◦ (x +w) and H∗ = H∗0 ◦ (x +w). Then
h(w) = a0, h∗(w) = a∗0, g(a0) = g∗(a∗0) = c, and

g[h(w)] = xm(x− a)m
∗
,

h[w] = xm
∗
H, h[w] − a = (x− b)mH∗,

g∗[h
∗(w)] = xm

∗
(x− a∗)m,

h∗[w] = xmH∗, h∗[w] − a∗ = (x− b)m
∗
H.

(4.4.8)

Equations (4.4.8) yield a system of linear equations

xm
∗
H− (x− b)mH∗ = a,

−(x− b)m
∗
H+ xmH∗ = a∗

over F(x) in H and H∗. We apply Cramer’s rule and find

H = (axm + a∗(x− b)m)/br,

H∗ = (a∗xm
∗
+ a(x− b)m

∗
)/br,

and a + a∗ = br, since H is monic. Therefore, the polynomials
H and H∗ are as in (4.2.24) and f[w] = g[h(w)] ◦ h[w] = xmm

∗
(x −

b)mm
∗
Hm(H∗)m

∗
=M(a,b,m), as in Theorem 4.2.22.

For 2-collisions at degree p2, we can refine the classification of
Proposition 4.4.4.

Theorem 4.4.9. Let F be a perfect field of characteristic p and f ∈ Pp2(F).
Then f has a 2-collision {(g,h), (g∗,h∗)} if and only if exactly one of the
following holds.

(F) The polynomial f is a Frobenius collision as in Example 4.1.4.

(S) The polynomial f is simply original and there are u, s, ε, and m as in
Fact 4.2.1 and w ∈ F such that

f[w] = S(u, s, ε,m)

and the collision {(g,h)[w], (g∗,h∗)[w]} is contained in the #T -collision
described in Fact 4.2.1, with #T > 2.
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(M) The polynomial f is multiply original and there are a, b, and m as in
Theorem 4.2.22 and w ∈ F such that

f[w] =M(a,b,m)

and the collision {(g,h)[w], (g∗,h∗)[w]} is as in Theorem 4.2.22.

Proof. By Lemma 4.1.6 (i), f is a Frobenius collision if and only if
f ′ = 0.

The rest of the proof deals with the case f ′ 6= 0. Assumption 4.3.8
holds by Lemma 4.3.9, the assumptions in Definition 4.4.1 are satis-
fied, and f is either simply original or multiply original.

For a multiply original f, Proposition 4.4.4 yields the claimed pa-
rameters directly, and we now show their existence in the simply
original case.

We take w,m, ĝ, ĥ as in Proposition 4.4.4 (s) and have

g[h(w)] = xĝm,

h[w] = xĥm.

We determine the form of ĝ and ĥ. Let ` = deg ĝ = (p − 1)/m.
The derivative of g[h(w)] is ĝm−1(ĝ +mxĝ ′), and its degree equals
degg ′ = p − 1 − `, by (4.4.6). Thus degg ′ = (m − 1)` + deg(ĝ +

mxĝ ′) = degg ′ + deg(ĝ+mxĝ ′) and deg(ĝ+mxĝ ′) = 0. We write
ĝ =

∑
06i6` ĝix

i with ĝi ∈ F for all i > 0. Then ĝ +mxĝ ′ =∑
06i6`(1 +mi)ĝix

i and we have ĝ0 6= 0 and (1 +mi)ĝi = 0 for
all i > 1. Since 1+mi 6= 0 in F for 1 6 i < `, it follows that ĝi = 0 for
these values of i. Thus we get ĝ = x` − ĝ0 and ĝ0 6= 0. An analogous
argument yields ĥ = x` − ĥ0 with ĥ0 6= 0. Therefore, we find

f[w] = x(x`(p+1) − (ĥp0 + ĝ0)x
` + ĝ0ĥ0)

m. (4.4.10)

Let

(u, s, ε, t) =


(ĝ0ĥ0, 1, 0, ĥ0) if ĥp0 + ĝ0 = 0,

((ĥp0 + ĝ0)
p+1/(ĝ0ĥ0)

p,

ĝ0ĥ0/(ĥ
p
0 + ĝ0), 1, ĥ0/s) otherwise.

In both cases, u, s, and t are in F× and the equations tp+1− εut+u =

0, ĥ0 = st, ĝ0 = uspt−1, and f[w] = g[h(w)] ◦h[w] = S(u, s, ε,m) hold.
Similarly, we find g∗[h

∗(w)] = x(x` − ĝ∗0)
m and h∗[w] = x(x` − ĥ∗0)

m

for some ĝ∗0, ĥ∗0 ∈ F×, and derive the parameters u∗, s∗, ε∗, and t∗

analogously. Since f[w] = g∗[h
∗(w)] ◦ h∗[w], it follows from (4.4.10)

that ĥp0 + ĝ0 = (ĥ∗0)
p + ĝ∗0 and ĝ0ĥ0 = ĝ∗0ĥ

∗
0. Hence ε = ε∗, u = u∗,

and s = s∗. Since the decompositions are distinct, we have t 6= t∗

and thus (g,h)[w] and (g∗,h∗)[w] are both of the form (4.2.3) with
different values for t.

Corollary 4.4.11. (i) A polynomial in case (S) of Theorem 4.4.9 has a
maximal #T -collision with T as in (4.2.2).



4.4 classification 125

(ii) A polynomial in case (M) of Theorem 4.4.9 has a maximal 2-collision.

Proof. For a polynomial fwith collision C and w ∈ F, we write C[w] =

{(g,h)[w] : (g,h) ∈ C} for the corresponding collision of f[w].
If f is a Frobenius collision as in case (F) of Theorem 4.4.9, then

f is maximal by Lemma 4.1.6 (ii). Now let f be a polynomial with
a 2-collision C = {(g,h), (g∗,h∗)} that does not fall into case (F) of
Theorem 4.4.9.

(i) If f falls into case (S) of Theorem 4.4.9, we have by that theorem
u, s, ε, and m as in Fact 4.2.1 and w ∈ F such that f = S(u, s, ε,m)[−w]

and C ⊆ D(u, s, ε,m)[−w], where D(u, s, ε,m)[−w] denotes the #T -
collision described in Fact 4.2.1 shifted by −w.

Take another decomposition (g0,h0) 6= (g,h) of f. We apply The-
orem 4.4.9 to f with 2-collision C0 = {(g,h), (g0,h0)}. Due to the
mutual exclusivity of the three cases this falls again in case (S), and
we obtain u0, s0, ε0, and m0 as in Fact 4.2.1, and w0 ∈ F such that
f = S(u0, s0, ε0,m0)[−w0] and C0 ⊆ D(u0, s0, ε0,m0)[−w0]. Thus,

f[w0] = S(u, s, ε,m)[w0−w] = S(u0, s0, ε0,m0).

By Fact 4.2.5 (iv), the only polynomial of the form (4.2.2) in the orbit of
S(u, s, ε,m) under original shifting is the polynomial itself. Therefore,

S(u, s, ε,m) = S(u0, s0, ε0,m0). (4.4.12)

If m > 1, then the stabilizer of S(u, s, ε,m) under original shifting
is {0} by Fact 4.2.5 (iii) and we have w = w0. Otherwise, m = 1

and S(u, s, ε,m), D(u, s, ε,m), and D(u0, s0, ε0,m0) consist only of
additive polynomials which are invariant under original shifting. In
that case, we can assume w = w0 without loss of generality.

If ε = 1, then Fact 4.2.5 (i) yields (u, s, ε,m) = (u0, s0, ε0,m0) from
(4.4.12) and therefore D(u, s, ε,m)[−w] = D(u0, s0, ε0,m0)[−w0] con-
tains (g0,h0). Otherwise, ε = 0 and Fact 4.2.5 (ii) provides (usp+1, ε,
m) = (u0s

p+1
0 , ε0,m0) from (4.4.12). By the definition of D(u0, s0, ε0,

m0)
[−w0] via Fact 4.2.1, there is some t0 ∈ F satisfying tp+10 = −u0

such that

g
[h0(−w0)]
0 = x(xp−m0 − u0s

p
0t

−1
0 )m0 = x(xp−m − uspt−1)m,

h
[−w0]
0 = x(xp−m0 − s0t0)

m0 = x(xp−m − st)m

for t = t0s0/s ∈ F. Since t satisfies tp+1 = −u, this shows (g0,h0) ∈
D(u, s, ε,m)[−w].

(ii) Let f fall into case (M) of Theorem 4.4.9 and take another de-
composition (g0,h0) 6= (g,h) of f. We apply that theorem to f with
2-collisions C and C0 = {(g,h), (g0,h0)} and obtain a, b, m and a0,
b0, m0 as in Theorem 4.2.22 and w,w0 ∈ F, respectively, such that

f =M(a,b,m)[−w] =M(a0,b0,m0)[−w0],
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C = E(a,b,m)[−w], and C0 = E(a0,b0,m0)[−w0],

where E(a,b,m)[−w] denotes the 2-collision defined in (4.2.23) shifted
by −w, and E(a0,b0,m0)[−w0] is analogous. We have

M(a,b,m)[w0−w] =M(a0,b0,m0). (4.4.13)

The only polynomials in the orbit of M(a,b,m) that are of the form
(4.2.23) are M(a,b,m) itself and M(a,b,m)[b] according to Proposi-
tion 4.2.26 (iv); and by (ii), the stabilizer of M(a,b,m) under original
shifting is {0}. Hence, w0 −w = 0 or w0 −w = b.

If w0 = w, then M(a0,b0,m0) = M(a,b,m) from (4.4.13) and
with (iii) of the cited proposition

(a0,b0,m0) ∈ {(a,b,m), (a∗,b,m∗)}.

If w0 = w+ b, then M(a0,b0,m0) =M(a,b,m)[b] =M(−a∗,−b,m)

and again with (iii)

(a0,b0,m0) ∈ {(−a∗,−b,m), (−a,−b,m∗)}.

In either case, we check E(a0,b0,m0)[−w0] = E(a,b,m)[−w] directly
and therefore (g0,h0) ∈ C.

In particular, the polynomials of case (M) have no 3-collision. We
combine Theorem 4.4.9 with the algorithms of Section 4.2 for a gen-
eral test of 2-collisions in Algorithm 4.4.14.

Algorithm 4.4.14: Identify 2-collisions
Input: a polynomial f ∈ Pp2(F), where p = char F
Output: “(F)”, “(S)”, or “(M)” as in Theorem 4.4.9, if f has a

2-collision, and “no 2-collision” otherwise
1 if f ∈ F[xp] {xp

2
} then return “(F)”

2 if Algorithm 4.2.18 does not return “failure” on input f, but
k,u, s, ε,m,w then

3 if k > 2 then return “(S)”
4 end
5 if Algorithm 4.2.29 does not return “failure” on input f then
6 return “(M)”
7 end
8 return “no 2-collision”

Theorem 4.4.15. Algorithm 4.4.14 works correctly as specified. If F = Fq

and n = p2 = deg f, it takes O(M(n) log(pq)) field operations.

The correctness follows from Theorem 4.4.9. Its cost is dominated
by that of Algorithm 4.2.18, where the logn factor is subsumed in
log(pq) since n = p2 and pq > p2. If f is found to have a collision,
then that can be returned as well, using Example 4.1.4 for (F).
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4.5 counting at degree p2

My work always tried to unite the truth with the
beautiful, but when I had to choose one or the

other, I usually chose the beautiful.
— Hermann Weyl

The classification of the composition collisions at degree p2 yields
the exact number of decomposable polynomials over a finite field Fq.

Theorem 4.5.1. Let p be a prime and q a power of p. For k > 1, we write
ck for #Cp2,k(Fq) as in (4.1.1), δ for Kronecker’s delta function, and τ for
the number of positive divisors of p− 1. Then the following hold.

c1 = q
2p−2 − 2qp−1 + 2−

(τq− q+ 1)(q− 1)(qp− q− p)

p

− (1− δp,2)
q(q− 1)(q− 2)(p− 3)

2
, (4.5.2)

c2 = q
p−1 − 1+

(τq− q+ 1)(q− 1)2(p− 2)

2(p− 1)

+ (1− δp,2)
q(q− 1)(q− 2)(p− 3)

4
, (4.5.3)

cp+1 =
(τq− q+ 1)(q− 1)(q− p)

p(p2 − 1)
, (4.5.4)

ck = 0, if k /∈ {1, 2,p+ 1}. (4.5.5)

Proof. For k > 2, we consider Ck = Cp2,k(Fq). Theorem 4.4.9 pro-
vides the partition

Ck = C
(F)
k ∪̇ C(S)

k ∪̇ C(M)
k ,

where the sets on the right-hand side correspond to the cases (F),
(S), and (M), respectively. Lemma 4.1.6 (ii), Proposition 4.2.21, and
Corollary 4.2.28 imply that

#C(F)
k =

{
qp−1 − 1 if k = 2,

0 if k > 3,

#C(S)
k =



(τq− q+ 1)(q− 1)2(p− 2)

2(p− 1)
if k = 2,

(τq− q+ 1)(q− 1)(q− p)

p(p2 − 1)
if k = p+ 1,

0 otherwise,

#C(M)
k =

(1− δp,2)
q(q− 1)(q− 2)(p− 3)

4
if k = 2,

0 if k > 3.
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Summing up yields the exact formulas (4.5.3), (4.5.4), and (4.5.5).
Finally, there is a total of q2p−2 pairs (g,h) ∈ Pp(Fq)× Pp(Fq) and
therefore (4.5.2) follows from

c1 = q
2p−2 −

∑
k>2

k · ck.

Equation (4.1.2) now yields the counting result of this chapter,
namely the following exact formula for the number of decomposable
polynomials of degree p2 over Fq.

Theorem 4.5.6. Let Fq be a finite field of characteristic p, δ Kronecker’s
delta function, and τ the number of positive divisors of p− 1. Then

#Dp2(Fq) = q
2p−2 − qp−1 + 1−

(τq− q+ 1)(q− 1)(qp− p− 2)

2(p+ 1)

− (1− δp,2)
q(q− 1)(q− 2)(p− 3)

4
.

Proof. By (4.1.2) and Theorem 4.5.1 we find

#Dp2(Fq) = q
2p−2 − c2 − pcp+1,

from which the claim follows.

For p = 2, this yields

#D4(Fq) = q2 ·
2+ q−2

3
,

consistent with the result in von zur Gathen (2013). Furthermore, we
have

#D9(Fq) = q4
(
1−

3

8
(q−1 + q−2 − q−3 − q−4)

)
for p = 3,

#Dp2(Fq) = q
2p−2

(
1− q−p+1

+O(q−2p+5+1/d)
)

for q = pd and p > 5.

We have two independent parameters p and d, and q = pd. For
two eventually positive functions f,g : N2 → R, here g ∈ O(f) means
that there are constants b and c so that g(p,d) 6 c · f(p,d) for all p
and d with p + d > b. With the bounds on τ mentioned after the
proof of Proposition 4.2.21, we have the following asymptotics.

Corollary 4.5.7. Let p > 5, d > 1, and q = pd. Then

c1 = q
2p−2(1− 2q−p+1 +O(q−2p+5+1/d)),

c2 = q
p−1(1+O(q−p+4+1/d)),

cp+1 = (τ− 1)q3−3/d
(
1+O(q−max{2/d,1−1/d})

)
= O

(
q3−3/d+1/(d loglogp)

)
.
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Von zur Gathen (2014a) considers the asymptotics of

νq,n =

{
#Dn/q2`−2 if n = `2,

#Dn/2q`+n/`−2 otherwise,

where ` is the smallest prime divisor of n. It turns out that for any
composite n, lim supq→∞ νq,n = 1, and that lim infq→∞ νq,n = 1

for many n. But when ` divides n exactly twice, denoted as `2 ‖ n,
determining the limes inferior was left as an open question. If n = `2,
we obtain from Theorem 4.5.6

lim
q→∞νq,`2 = 1

for any prime ` > 2. For n = 4, the sequence has no limit, but oscil-
lates between close to lim infq→∞ νq,4 = 2/3 and lim supq→∞ νq,4 =

1, and these are the only two accumulation points of the sequence
νq,4. If `2 ‖ n and n 6= `2, the question of good asymptotics is still
open, as it is for νq,n when q is fixed and n→∞.

4.6 conclusion and future work

I have another question for your answer.

— Joachim von zur Gathen

In the wild case of univariate polynomial decomposition, we have
presented some (equal-degree) collisions in the special case where the
degree is r2 for a power r of the characteristic p, and determined their
number. We gave a classification of all 2-collisions at degree p2 and
an algorithm which determines whether a given polynomial has a 2-
collision, and if so, into which class it falls. We computed the exact
number of decomposable polynomials of degree p2 over finite fields.
This gave tight asymptotics on νq,n = #Dn/q2`−2 for q → ∞, when
n = `2 is the square of a prime `.

The question of good asymptotics for νq,n when q is fixed and
n → ∞ is still open. More work is needed to understand the case
where the characteristic p is the smallest prime divisor of the degree
n, divides n exactly twice, and n 6= p2. Ritt’s Second Theorem cov-
ers distinct-degree collisions, even in the wild case, under Zannier’s
mild condition g ′(g∗) ′ 6= 0. It would be interesting to see a similar
classification for general equal-degree collisions. Finally, the study of
rational functions with our method remains open.





A C K N O W L E D G M E N T S

However,
not everything that can be counted counts,

and not everything that counts can be counted.
— William Bruce Cameron

Les bons élèves font la gloire du maître.2

— Joseph Liouville

I am deeply grateful to my advisor Joachim von zur Gathen. He
constantly encouraged me to look for the bigger picture and empha-
sized clarity of thought and expression. His influence and insight can
be felt throughout this thesis. All remaining errors are of course my
own.

Furthermore, it is my pleasure to thank Jens Franke and Mark
Giesbrecht for serving as referees, and Jaime Gutierrez and Alex
Markowetz for joining the doctoral committee. Special thanks go to
my co-authors Raoul Blankertz and Tuba Viola for the exciting joint
research.

The lion’s share of this thesis is based on already published work.
Anonymous referees and the audiences at numerous workshops, con-
ferences, and cosec Oberseminar meetings provided plenty of feed-
back and helpful discussions. Their comments and their patience
have been greatly appreciated.

Many colleagues at the University of Bonn and the B-IT have ac-
companied me along this thesis. I shared an amazing experience
with Laila El Aimani, Ismail Khoffi, Martina Kuhnert, Daniel Loeben-
berger, Michael Nüsken, Alex Pfister, Claudia Oliveira Coelho, Dejan
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S O U R C E C O D E

Rule 8: The development of fast algorithms is slow!
— Arnold Schönhage

Beware of bugs in the above code; I have only
proved it correct, not tried it.

— Donald E. Knuth

With this situation [closed source] two of the most
basic rules of conduct in mathematics are violated:

In mathematics information is passed on free of
charge and everything is laid open for checking.

— Joachim Neubüser

We have implemented all our counting formulas to adhere to Don
Knuth’s warning. We also gladly follow Joachim Neubüser’s appeal
and make the implementations public. The Sage code is available at

• https://github.com/zieglerk/multivariate_polynomials and

• https://github.com/zieglerk/polynomial_decomposition

for Part i and ii, respectively.

135

https://github.com/zieglerk/multivariate_polynomials
https://github.com/zieglerk/polynomial_decomposition




S O U R C E S O F Q U O TAT I O N S

I hate quotation. Tell me what you know.
— Ralph Waldo Emerson

I don’t necessarily agree with everything that I say.

— Marshall McLuhan

page 1: Bundesministerium für Bildung und Forschung, Jahr der
Mathematik 2008, available at http://www.jahr-der-mathematik.de/ (last
accessed 2014/05/31).
page 1: Doron Zeilberger, Title of a lecture at the Conference in Honor of
Doron Zeilberger’s 60th Birthday, delivered on August 14, 2010, available at
www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hard.html (last
accessed 2014/05/30).
page 1: Tom Stoppard, Jumpers, Act I, 1972.
page 1: Elizabeth Barrett Browning, Sonnets from the Portuguese,
Number 43, 1850.
page 1: Rudyard Kipling, Just So Stories, 1902.
page 1: Leopold Kronecker, Vortrag bei der Berliner
Naturforscher-Versammlung, 1886.
page 2: Agatha Christie, Murder on the Orient Express, 1934.
page 5: Isaac Newton, attributed
page 7: Robert Boyle, Some Considerations touching the Usefulness of
Experimental Natural Philosophy, vol. 2, The Usefulness of Mathematicks to
Natural Philosophy, Oxford, 1671.
page 9: Dick Lipton, The More Variables, the Better?, available at http://
rjlipton.wordpress.com/2014/04/16/the-more-variables-the-better/

(last accessed 2014/06/02).
page 11: Leonard Carlitz, The arithmetic of polynomials in a Galois field,
American Journal of Mathematics 54, pp. 39–50, 1932, p. 39.
page 13: Epictetus, Discourses, Book I, Chapter 18.
page 13: Arthur Conan Doyle, The crooked man, published in The Memoirs
of Sherlock Holmes, 1893. page 22: Augusta Ada Lovelace, Sketch of the
Analytical Engine Invented by Charles Babbage, Esq., by L. F. Menabrea
(translated and with notes by “A. A. L.”). Taylor’s Scientific Memoirs 3

(1843), Article XXIX, 666–731.
page 27: Dick Guindon, cartoon, San Francisco Chronicle, January 1989.
page 27: Leslie Lamport, Specifying Systems, Boston, 2002, p. 2.
page 38: Donald E. Knuth, Turing Award Lecture, Communications of the
ACM 17 (12), pp. 667–673, December 1974, p. 671.
page 51: Alfred North Whitehead, An Introduction to Mathematics, 1911,
Chapter 5.
page 53: Donald E. Knuth, Turing Award Lecture, Communications of the
ACM 17 (12), pp. 667–673, December 1974, pp. 668–669.

137

http://www.jahr-der-mathematik.de/
www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hard.html
http://rjlipton.wordpress.com/2014/04/16/the-more-variables-the-better/
http://rjlipton.wordpress.com/2014/04/16/the-more-variables-the-better/


138

page 53: Eric Temple Bell, Men of Mathematics I, ch. 2: Modern minds in
ancient bodies, Penguin Books, 1937, p. 33.
page 55: Serge Lang, Math Talks for Undergraduates, Springer, 1999.
page 57: Al Cuoco, E. Paul Goldenberg, June Mark, Habits of Mind: An
Organizing Principle Form Mathematics Curriculum, Journal of Mathematical
Behavior 15, pp. 375–402, 1996, available at
http://jwilson.coe.uga.edu/EMAT7050/Cuoco.HabitsOfMind.pdf.
page 58: Herman Melville, Moby Dick, 1851, Chapter 32.
page 62: Paul Halmos, Four panel talks on publishing, American
Mathematical Monthly 82, pp. 14–17, 1975.
page 72: Andrew Granville, Don’t be seduced by the zeros!, available at
http://www.dms.umontreal.ca/~andrew/PDF/CMSNotes.pdf, p. 2.
page 77: Galileo Galilei, attributed, in Timothy Rasinski and Lorraine
Griffith, Building Fluency Through Practice and Performance, 2008, p. 64.
page 84: David Hilbert, Mathematical Problems, Bulletin American
Mathematical Society, Volume 8, Number 10, 1902, available at http:
//www.ams.org/journals/bull/1902-08-10/S0002-9904-1902-00923-3/,
p. 438.
page 87: Gertrude Stein, Composition as Explanation, 1926.
page 88: Oystein Ore, On the foundations of abstract algebra, I. Annals of
Mathematics 36, pp. 406–37, 1935.
page 90: Volker Strassen, Asymptotic spectrum and matrix multiplication,
invited talk at ISSAC’12, delivered on July 24, 2012.
page 103: Ernst Mach, Popular Scientific Lectures, Chicago, 1894, available
at http://www.gutenberg.org/files/39508/39508-h/39508-h.htm, p. 205.
page 117: David Hume, A Treatise of Human Nature, 1739, available at
http://www.gutenberg.org/files/4705/4705-h/4705-h.htm.
page 127: Hermann Weyl, Gesammelte Abhandlungen, 4 Volumes, edited by
K. Chandrasekharan, 1968.
page 129: Joachim von zur Gathen, question to the author in the cosec
Oberseminar on May 8, 2014.
page 131: Joseph Liouville, Œuvres mathématiques d’Évariste Galois,
Journal de mathématiques pures et appliquées 9, pp. 381–444, 1846, p. 381.
page 131: William Bruce Cameron, Informal Sociology: A Casual
Introduction to Sociological Thinking, 1963, p. 13.
page 135: J. Neubüser, An Invitation to Computational Group Theory,
Groups’93 Galway/St. Andrews, Vol. 2, 457–475, London Math. Soc.
Lecture Note Ser., 212, Cambridge Univ. Press, Cambridge, 1995. Preprint
available at http://www.gap-system.org/Doc/Talks/cgt.ps, p. 16.
page 135: Arnold Schönhage, Andreas F. W. Grotefeld, Ekkehard

Vetter, Fast Algorithms: A Multitape Turing Machine Implementation,
BI-Wissenschaftsverlag, Mannheim, 1994, p. 284.
page 135: Donald E. Knuth, Notes on the van Emde Boas construction of
priority deques: An instructive use of recursion, 1977, p. 5.
page 137: Marshall McLuhan, attributed.
page 137: Ralph Waldo Emerson, Journals, May, 1849.
page 141: Woodrow Wilson, Speech to the National Press Club, delivered on
March 20, 1914.

http://jwilson.coe.uga.edu/EMAT7050/Cuoco.HabitsOfMind.pdf
http://www.dms.umontreal.ca/~andrew/PDF/CMSNotes.pdf
http://www.ams.org/journals/bull/1902-08-10/S0002-9904-1902-00923-3/
http://www.ams.org/journals/bull/1902-08-10/S0002-9904-1902-00923-3/
http://www.gutenberg.org/files/39508/39508-h/39508-h.htm
http://www.gutenberg.org/files/4705/4705-h/4705-h.htm
http://www.gap-system.org/Doc/Talks/cgt.ps


L I S T O F F I G U R E S

Figure 2.2.4 Maple program to compute the number of monic
reducible polynomials in r variables of degree n. 14

Figure 2.3.11 The normalized relative error in Theorem 2.2.16

for r = 2. . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.4.2 Maple program to compute the number of monic
s-powerful polynomials in r variables of de-
gree n. . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.4.7 Graphs of v2,n,2(k) on [1,n/2] as n runs from
4 to 8. The dots represent the values at integer
arguments. . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.4.27 The normalized relative error in Theorem 2.4.9 (iii)–
(iv) for (r, s) = (2, 2). . . . . . . . . . . . . . . . 37

Figure 2.5.11 Maple program to compute the number of rel-
atively irreducible polynomials in r variables
of degree n. . . . . . . . . . . . . . . . . . . . . 42

Figure 2.5.20 Graphs for w2,n(k) on [`,n] for composite n
in the range from 4 to 10, where ` denotes the
smallest prime divisor of n. The dots represent
the values at divisors of n. . . . . . . . . . . . . 44

Figure 2.5.39 The normalized relative error in Theorem 2.5.27 (iii)
for r = 2. . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.3.1 Relation graphs of Examples 3.2.22 and 3.2.27;
in the latter, 2i denotes the ith 2 in each or-
dered factorization for i = 1, 2. . . . . . . . . . 73

Figure 3.3.4 A “swap” between two transitive Hamiltonian
paths di−1 ← di ← di+1 ← di+2 and di−1 ←
di ← di+1 ← di+2 along the bidirectional
edge between di and di+1. . . . . . . . . . . . . 75

Figure 3.4.1 The three strongly connected components of
each relation graph in Figure 3.3.1, respectively. 77

Figure 3.4.4 The strongly connected component on 4 ver-
tices of Figure 3.4.1 decomposed into its undi-
rected subgraph (red) and its directed subgraph
(blue) with max-sink-sorting 7 ≺ 2 ≺ 5 ≺ 3. . . 79

Figure 4.3.3 Partition of f−1(c) . . . . . . . . . . . . . . . . . 105

Figure 4.3.25 Lattice of subfields . . . . . . . . . . . . . . . . 112

139



140 LIST OF TABLES

Figure 4.3.26 Roots and multiplicities . . . . . . . . . . . . . 113

L I S T O F TA B L E S

Table 2.2.5 Exact values of #Rr,n(Fq) for small values of r
and n. . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 2.2.21 Summands of R and bounds on their degrees
in q. . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 2.4.3 Exact values of #Qr,n,s(Fq) for small values of
r,n, s. . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 2.5.12 Exact values of #Er,n(Fq) for small values of r
and n. . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 2.5.19 Summands of E and their degrees in q. . . . . 44

Table 3.4.11 Exact values of #Dn(Fq) in the tame case for
composite n 6 50. . . . . . . . . . . . . . . . . . 85



B I B L I O G R A P H Y

I not only use all the brains I have,
but all I can borrow.
— Woodrow Wilson

Max Alekseyev (2006). A115457–A115472. In The On-Line Ency-
clopedia of Integer Sequences. OEIS Foundation Inc. URL http:

//oeis.org. Last download 4 December 2012. (Cited on page 21.)

T. M. Apostol (1976). Introduction to Analytic Number Theory.
Springer-Verlag, New York. (Cited on page 84.)

E. Artin (1924). Quadratische Körper im Gebiete der höheren Kon-
gruenzen. II. (Analytischer Teil.). Mathematische Zeitschrift 19(1),
207–246. URL http://dx.doi.org/10.1007/BF01181075. (Cited on
page 9.)

Roberto M. Avanzi & Umberto M. Zannier (2003). The equation
f(X) = f(Y) in rational functions X = X(t), Y = Y(t). Compositio
Math. 139(3), 263–295. URL http://dx.doi.org/10.1023/B:COMP.

0000018136.23898.65. (Cited on page 97.)

Eric Bach & Jeffrey Shallit (1997). Algorithmic Number Theory, Vol.1:
Efficient Algorithms. MIT Press, Cambridge MA, second printing
edition. ISBN 0-262-02405-5. (Cited on page 69.)

David R. Barton & Richard Zippel (1985). Polynomial Decomposi-
tion Algorithms. Journal of Symbolic Computation 1, 159–168. (Cited
on page 55.)

Raoul Blankertz (2011). Decomposition of Polynomials. Diplomarbeit,
Universität Bonn. Modified version available at http://arxiv.org/
abs/1107.0687. (Cited on pages 88 and 104.)

Raoul Blankertz (2014). A polynomial time algorithm for comput-
ing all minimal decompositions of a polynomial. ACM Communica-
tions in Computer Algebra 48(1), 13–23. Issue 187. (Cited on page 55.)

Raoul Blankertz, Joachim von zur Gathen & Konstantin

Ziegler (2013). Compositions and collisions at degree p2. Jour-
nal of Symbolic Computation 59, 113–145. ISSN 0747-7171. URL
http://dx.doi.org/10.1016/j.jsc.2013.06.001. Also available
at http://arxiv.org/abs/1202.5810. Extended abstract in Proceed-
ings of the 2012 International Symposium on Symbolic and Algebraic

141

http://oeis.org
http://oeis.org
http://dx.doi.org/10.1007/BF01181075
http://dx.doi.org/10.1023/B:COMP.0000018136.23898.65
http://dx.doi.org/10.1023/B:COMP.0000018136.23898.65
http://arxiv.org/abs/1107.0687
http://arxiv.org/abs/1107.0687
http://dx.doi.org/10.1016/j.jsc.2013.06.001
http://arxiv.org/abs/1202.5810


142 bibliography

Computation ISSAC 2012, Grenoble, France (2012), 91–98. (Cited on
page 87.)

Antonia W. Bluher (2004). On xq+1 + ax+ b. Finite Fields and Their
Applications 10(3), 285–305. URL http://dx.doi.org/10.1016/j.

ffa.2003.08.004. (Cited on page 91.)

Arnaud Bodin (2008). Number of irreducible polynomials in several
variables over finite fields. American Mathematical Monthly 115(7),
653–660. ISSN 0002-9890. (Cited on pages 9 and 21.)

Arnaud Bodin (2010). Generating series for irreducible polynomials
over finite fields. Finite Fields and Their Applications 16(2), 116–125.
URL http://dx.doi.org/10.1016/j.ffa.2009.11.002. (Cited on
pages 10 and 21.)

Arnaud Bodin, Pierre Dèbes & Salah Najib (2009). Indecompos-
able polynomials and their spectrum. Acta Arithmetica 139(1), 79–
100. (Cited on page 10.)

Jan Büthe (2014). A Practical Analytic Method For Calculating π(x)
II. Preprint, 21 pages. (Cited on page 2.)

John J. Cade (1985). A New Public-key Cipher Which Allows Sig-
natures. In Proceedings of the 2nd SIAM Conference on Applied Linear
Algebra. SIAM, Raleigh NC. (Cited on page 55.)

M. Car (1987). Théorèmes de densité dans Fq[X]. Acta Arithmetica 48,
145–165. (Cited on page 9.)

Leonard Carlitz (1932). The arithmetic of polynomials in a Galois
field. American Journal of Mathematics 54, 39–50. (Cited on pages 27

and 30.)

Leonard Carlitz (1963). The distribution of irreducible polynomials
in several indeterminates. Illinois Journal of Mathematics 7, 371–375.
(Cited on pages 3 and 9.)

Leonard Carlitz (1965). The distribution of irreducible polynomials
in several indeterminates II. Canadian Journal of Mathematics 17, 261–
266. (Cited on page 9.)

Eda Cesaratto, Joachim von zur Gathen & Guillermo Matera

(2013). The number of reducible space curves over a finite field.
Journal of Number Theory 133, 1409–1434. URL http://dx.doi.org/

10.1016/j.jnt.2012.08.027. (Cited on page 10.)

Stephen Cohen (1968). The distribution of irreducible polynomials
in several indeterminates over a finite field. Proceedings of the Edin-
burgh Mathematical Society 16, 1–17. (Cited on pages 9 and 17.)

http://dx.doi.org/10.1016/j.ffa.2003.08.004
http://dx.doi.org/10.1016/j.ffa.2003.08.004
http://dx.doi.org/10.1016/j.ffa.2009.11.002
http://dx.doi.org/10.1016/j.jnt.2012.08.027
http://dx.doi.org/10.1016/j.jnt.2012.08.027


bibliography 143

Stephen Cohen (1969). Some arithmetical functions in finite fields.
Glasgow Mathematical Society 11, 21–36. (Cited on page 9.)

Stephen D. Cohen (1985). Reducibility of sub-linear polynomials
over a finite field. Bulletin of the Korean Mathematical Society 22, 53–
56. (Cited on page 90.)

Stephen D. Cohen (1990a). Exceptional polynomials and the re-
ducibility of substitution polynomials. Enseign. Math. (2) 36(1-2),
53–65. ISSN 0013-8584. (Cited on page 90.)

Stephen D. Cohen (1990b). The Factorable Core of Polynomi-
als Over Finite Fields. Journal of the Australian Mathematical Soci-
ety, Series A 49(02), 309–318. URL http://dx.doi.org/10.1017/

S1446788700030585. (Cited on pages 90 and 108.)

Stephen D. Cohen & Rex W. Matthews (1994). A class of excep-
tional polynomials. Transactions of the American Mathematical Soci-
ety 345(2), 897–909. ISSN 0002-9947. URL http://www.jstor.org/

stable/2155005. (Cited on page 90.)

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest &
Clifford Stein (2009). Introduction to Algorithms. MIT Press,
Cambridge MA, London UK, 3rd edition. ISBN 978-0-262-03384-
8 (hardcover), 978-0-262-53305-8 (paperback), 1312 pages . (Cited
on pages 74 and 79.)

Robert S. Coulter, George Havas & Marie Henderson (2004).
On decomposition of sub-linearised polynomials. Journal of the
Australian Mathematical Society 76(3), 317–328. ISSN 1446-7887.
URL http://dx.doi.org/10.1017/S1446788700009885. (Cited on
page 90.)

L. E. Dickson (1897). The analytic representation of substitutions
on a power of a prime number of letters with a discussion of
the linear group. Part I & II. Annals of Mathematics 11, 65–
120, 161–183. URL http://www.jstor.org/stable/1967217,http:

//www.jstor.org/stable/1967224. (Cited on page 90.)

F. Dorey & G. Whaples (1974). Prime and Composite Polynomials.
Journal of Algebra 28, 88–101. URL http://dx.doi.org/10.1016/

0021-8693(74)90023-4. (Cited on pages 55, 90, 104, and 110.)

H. T. Engstrom (1941). Polynomial Substitutions. American Journal
of Mathematics 63, 249–255. URL http://www.jstor.org/stable/

2371520. (Cited on page 55.)

Howard Eves (1990). Introduction to the History of Mathematics. Saun-
ders College Publishing, Philadelphia PA, 6th edition. (Cited on
page 1.)

http://dx.doi.org/10.1017/S1446788700030585
http://dx.doi.org/10.1017/S1446788700030585
http://www.jstor.org/stable/2155005
http://www.jstor.org/stable/2155005
http://dx.doi.org/10.1017/S1446788700009885
http://www.jstor.org/stable/1967217, http://www.jstor.org/stable/1967224
http://www.jstor.org/stable/1967217, http://www.jstor.org/stable/1967224
http://dx.doi.org/10.1016/0021-8693(74)90023-4
http://dx.doi.org/10.1016/0021-8693(74)90023-4
http://www.jstor.org/stable/2371520
http://www.jstor.org/stable/2371520


144 bibliography

P. Flajolet, X. Gourdon & D. Panario (2001). The Complete Anal-
ysis of a Polynomial Factorization Algorithm over Finite Fields.
Journal of Algorithms 40(1), 37–81. Extended Abstract in Proceedings
of the 23rd International Colloquium on Automata, Languages and Pro-
gramming ICALP 1996, Paderborn, Germany, ed. F. Meyer auf der

Heide and B. Monien, Lecture Notes in Computer Science 1099,
Springer-Verlag, 1996, 232–243. (Cited on page 27.)

Philippe Flajolet & Robert Sedgewick (2009). Analytic Combina-
torics. Cambridge University Press. ISBN 0521898064, 824 pages.
(Cited on pages 10, 11, 12, 16, and 27.)

Jens Franke, Thorsten Kleinjung, Jan Büthe & Alexander Jost

(2014). A Practical Analytic Method For Calculating π(x). Submitted,
20 pages. (Cited on page 2.)

Michael D. Fried & R. E. MacRae (1969). On the invariance of
chains of fields. Illinois Journal of Mathematics 13, 165–171. (Cited
on pages 55 and 109.)
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