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EXPLICIT FORMULA FOR THE GENERATING

SERIES OF DIAGONAL 3D ROOK PATHS

ALIN BOSTAN†, FRÉDÉRIC CHYZAK†, MARK VAN HOEIJ‡,
AND LUCIEN PECH†

Abstract. Let an denote the number of ways in which a chess
rook can move from a corner cell to the opposite corner cell of
an n × n × n three-dimensional chessboard, assuming that the
piece moves closer to the goal cell at each step. We describe the
computer-driven discovery and proof of the fact that the generating
series G(x) =

∑

n≥0 anxn admits the following explicit expression
in terms of a Gaussian hypergeometric function:

G(x) = 1 + 6 ·
∫

x

0

2F1

(

1/3 2/3
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∣
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∣
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27w(2−3w)
(1−4w)3

)

(1 − 4w)(1 − 64w)
dw.

1. Introduction

In this article, we solve a problem of enumerative combinatorics ad-
dressed and left open in [16]. The initial question is formulated in terms
of paths on an infinite three-dimensional chessboard. The 3D chess-
board being identified with N3, a 3D rook is a piece which is allowed
to move parallelly to one of the three axes. The general objective is
to count paths (i.e., finite sequences of moves) of a 3D rook on the 3D
chessboard. Following [16], we further restrict to 3D rook paths start-
ing from the cell (0, 0, 0), whose steps are positive integer multiples of
(1, 0, 0), (0, 1, 0), or (0, 0, 1). In other words, we assume that the piece
moves closer to the goal cell at each step. For example, one such rook
path is

(0, 0, 0) → (5, 0, 0) → (5, 0, 6) → (10, 0, 6) → (10, 2, 6).

Let ri,j,k denote the number of rook paths from (0, 0, 0) to (i, j, k) ∈
N3, and let an = rn,n,n be the number of diagonal rook paths from

Key words and phrases. Enumerative combinatorics, generating functions, lattice
paths, algebraic functions, hypergeometric functions, computer algebra, automated
guessing, creative telescoping, fast algorithms.
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(0, 0, 0) to (n, n, n). The sequence (an) is called the 3D diagonal rook
sequence; its first terms are

1, 6, 222, 9918, 486924, 25267236, 1359631776,

75059524392, 4223303759148, . . .

This is Sequence A144045 in Sloane’s on-line encyclopedia of integer
sequences at http://oeis.org/A144045. It was conjectured in [16]
that the sequence (an) satisfies the fourth-order recurrence relation

(1) 2n2(n− 1)an − (n − 1)(121n2 − 91n− 6)an−1

−(n−2)(475n2 −2512n+2829)an−2 +18(n−3)(97n2 −519n+702)an−3

− 1152(n− 3)(n− 4)2an−4 = 0, for n ≥ 4.

The aim of the present article is not only to give a computer-driven
proof of this conjecture, but also to show that the generating function
G(x) =

∑

n≥0 anx
n ∈ Q[[x]] admits the following explicit expression:

(2) G(x) = 1 + 6 ·
∫ x

0
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where the Gaussian hypergeometric series 2F1 with parameters a, b, c ∈
C, −c /∈ N, is defined by

2F1

(

a b
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=
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∑

n=0

(a)n(b)n

(c)n

zn

n!
,

using the notation (a)n for the Pochhammer symbol (a)n = a(a +
1) · · · (a+ n− 1).

The core of this article is Section 2, in which we complete the enu-
merative study of 3D rooks, proving in particular recurrence (1) and
the explicit form (2). Section 3 then presents further comments, variant
proofs and calculations, and discussions of a possible extension.

In more detail, Section 2 proceeds as follows. The question of the
enumeration of a constrained combinatorial walk is re-expressed in Sec-
tion 2.1 in terms of a diagonal of a rational series. Then, this diagonal
is encoded as a residue in Section 2.2, leading to the problem of finding
a special ODE it satisfies. In the literature, an effective approach to
finding this special ODE was developed by Lipshitz. In Section 2.3,
we show that, while the approach applies in theory, it leads to unfea-
sible calculations in practice. A faster approach, Zeilberger’s creative
telescoping and its evolution by Chyzak, is summarised and applied
in Section 2.4. The obtained ODE allows us to prove the conjectured

http://oeis.org/A144045


EXPLICIT FORMULA FOR DIAGONAL 3D ROOK PATHS 3

recurrence (1) and even a lower-order one, (15), in Section 2.5. We
then derive the 2F1 explicit form in Section 2.6.

When possible, we have attempted to describe the mathematical
phenomena, ideas, and techniques on a general level in Sections 2.1–
2.6. When the complete proofs of the results we state require a more
involved calculation, and also when they are based on more involved
notions or on the fine tuning of algorithms, we have postponed some
of the technicalities to Appendix A.

2. Main steps of the solution

2.1. From combinatorics to algebra. The combinatorial problem
translates into a question on generating series, best expressed in terms
of diagonals: given φ(s, t, u) =

∑

i,j,k≥0 ci,j,ks
itjuk in Q[[s, t, u]], its diag-

onal is defined as the univariate power series Diag(φ) =
∑

n≥0 cn,n,nx
n

in Q[[x]].

Question. Define the trivariate rational function f(s, t, u) in Q(s, t, u)
as


1 −
∑

n≥1

sn −
∑

n≥1

tn −
∑

n≥1

un





−1

=

(1 − s)(1 − t)(1 − u)

1 − 2(s+ t+ u) + 3(st+ tu+ us) − 4stu
,

which is seen to be at the same time in Q[[s, t, u]]. What can be said
about its diagonal Diag(f) =

∑

n≥0 anx
n?

This translation is based on the following straightforward extension
of Proposition 6.3.7 in [31], which we shall use with the choice S =
{ (n, 0, 0) : n ≥ 1 } ∪ { (0, n, 0) : n ≥ 1 } ∪ { (0, 0, n) : n ≥ 1 }.
Lemma 1. Given a finite set of allowed steps S ⊆ N3 \ {(0, 0, 0)}, let
NS(m,n, p) denote the number of paths from (0, 0, 0) to (m,n, p), with
path steps taken from S. Then, the generating series

GS(s, t, u) =
∑

m,n,p≥0

NS(m,n, p)smtnup

is rational, and has the form

GS(s, t, u) =
1

1 −∑

(i,j,k)∈S sitjuk
.

The same result holds for infinite step sets S provided the power series
∑

(i,j,k)∈S s
itjuk is rational.
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2.2. The key equation. A first, theoretical answer to our question
comes from the main result in Lipshitz’s article [24]: the diagonal
Diag(f) is a D-finite series, i.e., it satisfies a linear differential equation
in ∂x = d/dx with polynomial coefficients in x. Therefore, the sequence
(an) of its coefficients satisfies a linear recurrence with polynomial co-
efficients in n.

Moreover, let F be the trivariate rational function

F =
1

st
· f(s, t/s, x/t) =

(s− t)(s− 1)(t− x)

st(−st + 2s2t+ 2t2 + 2xs− 3st2 − 3xt − 3xs2 + 4xst)
.

Then, Remark 3 in [24] shows that

Lemma 2. If the equation

(3) P (F ) =
∂S

∂s
+
∂T

∂t

admits a solution (P, S, T ) where P (x, ∂x) is a non-zero linear differ-
ential operator with polynomial coefficients in Q[x], and S and T are
two rational functions in Q(x, s, t), then P (x, ∂x) annihilates Diag(f).

Lemma 2 is the heart of the result in [24], and the basis of all methods
for effectively computing differential equations satisfied by diagonals.
For completeness, we give here a self-contained proof, which closely
follows [24].

Proof. Although F is not a formal (Laurent) power series in x, s, t, it
does come from a formal power series after a change of variables, and
thus it can be seen as an element of the differential Q[x, s, t]-module of
all formal sums of the form

B =
∑

α∈N,β∈Z,γ∈Z

α+β≥−µ,β+γ≥−ν

cα,β,γs
αtβxγ

for some (µ, ν) ∈ N2 depending on B. As a consequence, it makes sense
to speak of the series expansion of F and of P (F ), but in later calcu-
lations, these series may be multiplied solely by elements of Q[x, s, t].

The diagonal Diag(f) is, by construction, equal to the coefficient
of s−1t−1 in F . On the other hand, equation (3) implies that the
coefficient of s−1t−1 in P (F ) is zero. The conclusion then follows from
the sequence of equalities

P (Diag(f)) = P ([s−1t−1]F ) = [s−1t−1]P (F ) = 0,
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the second equality being a consequence of the fact that P is free of ∂s

and ∂t. �

The question remaining is how to determine a non-trivial triple
(P, S, T ) solution of (3).

2.3. Lipshitz’s approach. Lipshitz [24, Lemma 3] uses a counting
argument, similar to Fasenmyer’s [17, 39], to show that there exists a
non-zero linear differential operator L(x, ∂x, ∂s, ∂t), free of s and t, that
annihilates F . Then, writing this operator under the form

L(x, ∂x, ∂s, ∂t) = P (x, ∂x)+

(higher-order terms in ∂s and ∂t, free of s and t),

it follows from Lemma 2 that P annihilates Diag(f).
Let us sketch Lipshitz’s argument on our concrete example; as we

shall see, while this proof is algorithmic and ultimately reduces the
existence of P to a linear-algebra argument, it produces unreasonably
large systems. The key observation is that, by Leibniz’s rule, for any

nonnegative integer N , the
(

N+4
4

)

rational functions

xi∂j
x∂

k
s ∂

ℓ
t (F ), 0 ≤ i+ j + k + ℓ ≤ N,

belong to the Q-vector space of dimension at most 18(N + 1)3 spanned
by the elements

(4)
xisjtk

qN+1
, 0 ≤ i ≤ 2N + 1, 0 ≤ j ≤ 3N + 2, 0 ≤ k ≤ 3N + 2,

where q is the denominator st(−st+2s2t+2t2+2xs−3st2−3xt−3xs2 +

4xst) of F . Thus, if N is an integer such that
(

N+4
4

)

> 18(N + 1)3,

then there exists a non-zero linear differential operator L(x, ∂x, ∂s, ∂t)
of total degree at most N in x, ∂x, ∂s, and ∂t, such that L(F ) = 0.

Now, it appears that N = 425 is the smallest integer satisfying

the inequality
(

N+4
4

)

> 18(N + 1)3; therefore, explicitly finding the

operator L would require solving a homogeneous linear system with
some 1,391,641,251 unknowns and some 1,391,557,968 equations!

It is possible to refine the previous argument in various ways, and
thus to reduce the search of L to a linear algebra problem of smaller
size. Such methods will be discussed and compared thoroughly in a
later work. In our case, the best reduction in size that we could achieve
uses a variation of the main idea in [9, §3.2].

First, as before, Leibniz’s rule shows that the uN :=
(

N+3
3

)

rational

functions
∂j

x∂
k
s ∂

ℓ
t (F ), 0 ≤ j + k + ℓ ≤ N,
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belong to the Q(x)-vector space spanned by the elements

(5)
sjtk

qN+1
, 0 ≤ j ≤ 3N + 2, 0 ≤ k ≤ 3N + 2,

whose dimension dN is at most 9(N + 1)2.
A further idea is to exploit the sparse feature of the monomial sup-

ports of the numerator and denominator of F . By studying the be-
haviour of these supports under differentiations with respect to x,
s, and t, one shows that the terms (5) will not be involved for the
(

2N+2
2

)

+
(

N+2
2

)

pairs (j, k) ∈ N2 in the set

{ (j, k) : j + k ≤ 2N } ∪
{ (j, k) : 2N + 2 ≤ j, k ≤ 3N + 2, j + k ≥ 5N + 4 }.

This implies that dN is bounded above by eN := 1
2
(13N+14)(N+1),

and shows that the search of L boils down to a homogeneous linear
system over Q(x), with uN unknowns and eN equations. The smallest
value of N such that uN > eN is N = 36, leading to the task of
computing the (right) kernel of a matrix of size 8917 × 9139, with
entries in Q[x] of degree at most 37.

Despite the spectacular reduction in dimension compared to Lip-
shitz’s original argument, these sizes are still too high to be dealt with
in practice. Of course, the value eN is only an upper bound on dN ,
leaving room for a magical rank drop occurring before the predicted
value N = 36. That being said, our implementation of the method
constructs the linear system for increasing values of N , but does not
find any non-trivial kernel for N ≤ 18, and is not able to finish the
computation for N = 19 before consuming all the available memory.1

The conclusion is that Lipshitz’s approach and its improvements
are not sufficient to obtain effectively an equation for the diagonal
of f(x, s, t).

2.4. The creative-telescoping approach. An alternative approach
to solving (3) was popularised among the computer-algebra commu-
nity by Zeilberger under the name of creative telescoping, and it is
the one that we shall use to effectively construct an equation for our
diagonal. This method, first introduced for hypergeometric summa-
tion [40, 42] and hyperexponential integration [3], was later generalised
by Chyzak [11] to more general integrands involving a larger class

1Our implementation of an optimisation of Lipshitz’s algorithm, available at
http://algo.inria.fr/chyzak/Rooks/OptimisedLipshitz.mpl, is nevertheless
able to predict that, with high probability, a non-trivial kernel does exist for N = 19.

http://algo.inria.fr/chyzak/Rooks/OptimisedLipshitz.mpl
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of special functions called holonomic. Zeilberger’s definition of this
class [41, Section 2.2.4] has its roots in D-module theory [5, 6] and is
not needed to understand the present paper. See also [12] for recent
extensions of creative telescoping to more general special functions.

Prior to summarising the method, we show its behaviour and its re-
sult on our concrete case, postponing the explicit details of intermediate
steps to Appendix A.

2.4.1. Obtaining the result. In our case, Chyzak’s algorithm, as imple-
mented by the package Mgfun2 for Maple, produces a solution (P, S, T )
of (3), with P = P2∂x, where

(6) P2 = x(x− 1)(64x− 1)(3x− 2)(6x+ 1)∂2
x

+ (4608x4 − 6372x3 + 813x2 + 514x− 4)∂x

+ 4(576x3 − 801x2 − 108x+ 74).

Let q = st · q1 with q1 irreducible in Q[x, s, t] of degree (1, 2, 2) in
(x, s, t). Then, S and T are of the very special forms:

S =
(s− t) · U

2st · q2
1 · disct(q1)

, T =
(s− t) · V

2s2 · q3
1 · disct(q1)2

,

where U and V are (irreducible) polynomials in Q[x, s, t] of respective
degrees (5, 8, 3) and (8, 14, 5) in (x, s, t). Here, disct(q1) denotes the
discriminant of q1 with respect to t. Observe the very moderate degrees
in comparison to those pessimistically predicted by Lipschitz’s method.

Maple commands to produce P , S, and T are provided online at
http://algo.inria.fr/chyzak/Rooks/CreativeTelescoping.mpl;
they take less than 10 seconds on an average laptop. The rational
functions S and T are not displayed here, but can be found online at
http://algo.inria.fr/chyzak/Rooks/Certificates.mpl.

2.4.2. Sketch of the algorithm. We proceed to sketch the algorithm
of [11] for the creative telescoping of multiple “integrals.” By this, we
actually mean in this article answering the algebraic question of how
to solve the key equation, whether in the form (7) below for “simple
integrals,” or in the form (3) for “double integrals.”

Presenting Chyzak’s algorithm directly in its generality would prove
too arid, so we go instead progressively from the simpler case of rational
simple integrals to the integration of more general functions, then to
double integrals. In effect, this section is mostly bibliographic, with the

2version 4.0, available as part of Algolib 13.0 from
http://algo.inria.fr/libraries/. Initially developed by F. Chyzak. Specific
version used here reimplemented by L. Pech.

http://algo.inria.fr/chyzak/Rooks/CreativeTelescoping.mpl
http://algo.inria.fr/chyzak/Rooks/Certificates.mpl
http://algo.inria.fr/libraries/
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exception that, in the case of multiple integrals, we provide an extension
of the algorithm in [11] beyond the so-called “natural boundaries.”

For a single integral of a bivariate rational function F (u, v), the
creative-telescoping method finds a linear differential operator P (u, ∂u)
and a rational function S in Q(u, v) such that (cf. equation (3))

(7) P (F ) =
∂S

∂v
.

To this end, the algorithm in [3] writes P and S in undetermined form

(8) P = ηr(u)∂r
u + · · · + η0(u) and S = φ(u, v)F

for some tentative order r and unknown rational functions ηi from Q(u)
and φ from Q(u, v). To get φ, the original algorithm of [3] exploits the
specific nature of F (hyperexponential). We prefer describing here
the less optimal variant of [11], as it will extend to the more general
class of inputs we need: (7) is rewritten into an auxiliary ordinary
linear differential equation on φ, before one uses known algorithms for
solving a linear differential equation with polynomial coefficients for its
rational solutions. More precisely, such algorithms, like the one in [1],
have to be refined to solve for the ηi as well; this is easily taken into
account just by having more unknowns in the crucial step of linear
algebra over Q(u) in this rational solving.

For reasons to be given shortly, the double integration of trivariate
rational functions is based on integration of more general functions F ,
leading to a more general form for S in (7). Specifically, the case dealt
with in [11] is that of functions F for which there exists a finite maximal
set of derivatives ∂a

u∂
b
v(F ) that are linearly independent over Q(u, v).

Such functions are known as differentiably finite in the literature, or
in short D-finite [30, 25]. However, note that the notions of holonomic
and differentiably finite functions, which look technically very different,
cover in fact exactly the same sets of functions. This fact is explained
in elementary terms in [32, Appendix]. Still, the more elaborate holo-
nomic point of view is needed in proofs that require a subtler counting
argument.

Once such a set of pairs (a, b) is fixed for a given D-finite function F ,
equation (7) is changed by setting S to the undetermined form

(9) S =
∑

(a,b)

φa,b(u, v)∂a
u∂

b
v(F )

for unknown rational functions φa,b from Q(u, v). The only change
then is that the auxiliary equation in φ becomes an auxiliary ordinary
linear differential system in the φa,b’s. Solving is performed either by
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uncoupling and using the algorithm mentioned previously several times,
or by a direct approach as in [4].

The case of double integrals leads to generalising (7) into (3), but
the solving does not generalise so smoothly: attempting to write S =
φ1(s, t, x)F and T = φ2(s, t, x)F for undetermined rational functions
φ1 and φ2 from Q(s, t, x) yields a linear partial differential equation
relating these functions with ∂φ1/∂s and ∂φ2/∂t. To the best of our
knowledge, although this overdetermined equation has a very specific
form, no algorithm is available to solve it for its rational solutions.

Therefore, instead of a direct approach, Chyzak developed in [11]
a cascading approach which we now summarise. Noting that the de-
pendency of P on a single derivation ∂u in (7) is inessential, the same
approach is possible for the creative telescoping with respect to the
(single) variable v of a trivariate rational function F from Q(u1, u2, v).
Indeed, setting P to the undetermined form

(10) P =
∑

0≤i+j≤r

ηi,j(u1, u2)∂
i
u1
∂j

u2

for some tentative total order r and unknown rational functions ηi,j

from Q(u1, u2) and performing the same solving as previously, now
relying on linear algebra over Q(u1, u2), leads to a basis of P (α)’s of total
order at most r for which there exists a rational function φ(α)(u1, u2, v)
satisfying

P (α)(F ) =
∂

∂v

(

φ(α)F
)

.

The theory (as developed, e.g., by Zeilberger in [41]) guarantees that
the function F is D-finite and that the set of P (α)’s obtained for suf-
ficiently large r can be used to determine the finite set needed as an
input to the algorithm of [11] and in (9).

Finally, a double integration algorithm is obtained by continuing the
approach used for natural boundaries in [11] (Stages A and B below)
by a suitable recombination of the outputs (Stage C below). The re-
sulting treatment of multiple integrals over non-natural boundaries is
an extension over [11], and the corresponding algorithm is as follows:

• Stage A: First iteration of creative telescoping. Using the uni-
variate algorithm for trivariate rational functions and variables
(s, x, t) in place of (u1, u2, v) delivers identities

(11) P (α)(s, x, ∂s, ∂x)(F ) =
∂

∂t

(

φ(α)(s, t, x)F
)

.

• Stage B: Second iteration of creative telescoping. Considering a
function F̂ of (s, x) that is annihilated by all P (α) and using the
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univariate algorithm for general functions and variables (s, x)
in place of (u, v) delivers an identity

(12) P (x, ∂x)(F̂ ) =
∂

∂s

(

Q(s, x, ∂s, ∂x)(F̂ )
)

.

• Stage C: Recombination. By the theory of linear-differential-
operators ideals,3 the calculations of the algorithm can be in-
terpreted as a proof of existence of operators L(α)(s, x, ∂s, ∂x)
satisfying

(13) P (x, ∂x)−∂sQ(s, x, ∂s, ∂x) =
∑

α

L(α)(s, x, ∂s, ∂x)P (α)(s, x, ∂s, ∂x).

These L(α) can effectively be obtained either by following the
calculations step by step or (less efficiently) by a postprocessing
(non-commutative multivariate division). Hence, defining

(14)

S = Q(s, x, ∂s, ∂x)(F ) and T =
∑

α

L(α)(s, x, ∂s, ∂x)
(

φ(α)(s, t, x)F
)

leads to a solution (P, S, T ) of (3).

Note that this two-stage process inherently introduces a dissymmetry
in the treatment of the variables s and t: the output from the first
iteration tends to be larger than its input; in turn, the output from the
second is larger than the output from the first. As a consequence, the
order we deal with the variables may have an impact on the running
time.

2.5. Proving the recurrence. Translating the differential equation
P (Diag(f)) = 0 into a recurrence satisfied by the coefficients an of
Diag(f) yields the fourth-order recurrence relation (1).

It is possible to prove that the sequence (an) satisfies the even shorter
recurrence

(15)

2(n−1)(35n−52)n2an−(n−1)(4655n3−11781n2+8494n−1776)an−1

+ (n − 2)(11305n3 − 41856n2 + 46487n− 13128)an−2

− 192(n− 3)2(35n− 17)(n− 2)an−3 = 0, for n ≥ 3.

Recurrence (15) can be guessed (e.g., by linear algebra) using, say,
the first 25 terms of the sequence (an). Once it is conjectured, proving

3This observation was made during a discussion between F. Chyzak, M. Kauers,
and Ch. Koutschan on July 17, 2008, in the “UFO” room at RISC (Linz, Austria).
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its correctness is easy: if (bn) denotes the sequence defined by the left-
hand side of (15), then recurrence (1) implies that (bn) satisfies the
recurrence

bn + 6bn−1 = (35n− 52)
(

2(n− 1)n2an − (n− 1)(121n2 − 91n− 6)an−1

−(n−2)(475n2 −2512n+2829)an−2 +18(n−3)(97n2 −519n+702)an−3

− 1152(n− 3)(n− 4)2an−4

)

= 0, for n ≥ 3,

which, combined with the initial condition b0 = −54864 · 6 + 2 · 43362 ·
222 − 2 · 2 · 53 · 32 · 9918 = 0, yields bn = 0 for all n ≥ 0.

Maple code to obtain the first terms of the sequence and derive the re-
currences can be obtained at http://algo.inria.fr/chyzak/Rooks/Recurrence.mpl.

2.6. Solution in explicit form. Operator P2 from equation (6) has
a power series solution with integer coefficients, namely ∂x(Diag(f)).
By a speculation of Dwork’s [15], it appears plausible that P2 has a

2F1-type solution. We shall briefly sketch how, for a second-order op-
erator L, one might find such solutions. A similar problem (for Bessel
instead of 2F1) was solved in [14, 36], and many of the details discussed
in those papers are needed for the 2F1-case as well (in particular the
first part of Section 3 in [14]). The result of our computation is:

(16) ∂x(Diag(f)) =
6

(1 − 4x)(1 − 64x)
· 2F1

(

1/3 2/3
2

∣

∣

∣

∣

∣

27x(2 − 3x)

(1 − 4x)3

)

.

2.6.1. Formal asymptotic-series solutions of linear differential opera-
tors. We recall the necessary facts from the classical theory of asympto-
tic-series solutions of linear differential operators [22, 38], and specialise
them here to our need: the order 2.

With respect to a given linear differential operator L of order r with
polynomial coefficients, each point p from C ∪ {∞} falls in one of two
categories:

• it is called an ordinary point of L if the coefficient of the highest
derivative in the equation does not vanish at p, in which case
a solution f is fully determined by the initial conditions f(p),
. . . , f (r−1)(p) (Cauchy theorem);

• it is called a singular point of L otherwise.

Among singular points, the more tractable situation is that of a reg-
ular singular point (of L). At such a point, the growth of solutions is
bounded (in any small sector) by an algebraic function. In the neigh-
bourhood of a regular singular point p, any solution can be written as a
linear combination of products of a (possibly multivalued) term of the

http://algo.inria.fr/chyzak/Rooks/Recurrence.mpl
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form (x−p)e with e ∈ C, logarithms ln(x−p), (respectively (1/x)e and
ln(1/x) if p = ∞) and analytic (univalued) functions. The constants e
are called the exponents of L at x = p. They are the zeroes of the
so-called indicial equation of L at x = p, an algebraic equation that is
defined for any L and p, and can be obtained algorithmically.

Another simple situation occurs at a singular point p of L when
there exist a function u (possibly singular at p) and functions y1, . . . ,
yr that are analytic in a neighbourhood of p, such that uy1, . . . , uyr

constitute a basis of the solution space of L. Then, we say that p is a
removable singularity of L. Otherwise, we say that it is a non-removable
singularity.

Assume from now on that L is irreducible and of order 2. Then, the
indicial equation at x = p has degree at most 2; in other words, there
are at most 2 exponents at x = p (counting with multiplicity). We
shall also assume that L is regular singular at x = p, which implies
that the degree of the indicial equation is equal to 2 and that there are
two exponents, e1 and e2 (counting with multiplicity). The exponent
difference d at x = p is defined up to sign as ±(e1 − e2).

The numbers e1, e2, and d describe a lot of the asymptotic behaviour
of the solutions of L when x tends to p. Let us be more specific about
this. For notational convenience, consider first the case p = 0. Then
e is an exponent at x = 0 if and only if L has a formal solution u for
which u/xe ∈ R\xR, where R := C[[x]][ln(x)]. If ln(x) actually occurs
in u/xe then the point p is called logarithmic. If ln(x) does not occur,
then our assumption that L is regular singular can be used to prove
that u/xe is analytic at x = 0, so that xe describes the local behaviour
of u at x = 0. Similar statements hold for p 6= 0, after replacing x
by x − p if p is finite, or x by 1/x if p = ∞. The following lemma
summarises the link between the exponent difference of a second-order
operator and the asymptotic behaviour of its solutions.

Lemma 3. Let L be a linear difference operator of order 2 with expo-
nent difference d at some point p ∈ C ∪ {∞}. Assume p to be either
an ordinary or a regular singular point of L. Then:

(1) If p is ordinary, then d = 1.
(2) If p is a removable singularity, then d ∈ Z \ {0}.
(3) If p is logarithmic, then d ∈ Z.
(4) If d = 0, then p is logarithmic.
(5) If d ∈ Z \ {0}, then p is either logarithmic or a removable

singularity.

For proofs, see [14, Theorem 1], or see [13] for more details.
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2.6.2. Transporting the singularities of the Gauss hypergeometric equa-
tion. Let La,b

c denote the differential operator of the Gauss hypergeo-
metric equation,

x(1 − x)
d2w

dx2
+
(

c− (a+ b+ 1)x
)dw

dx
− abw = 0.

Of its two linearly independent classical solutions, we shall only need
one: 2F1(a, b; c; x). It has 3 singular points: 0, 1, and ∞. The respective
exponent differences are (e0, e1, e∞) = (±(1−c),±(c−a−b),±(a−b)).

Let f be a rational function, and denote by La,b
c;f the operator obtained

from La,b
c by the change of variables x = f , so that it has 2F1(a, b; c; f)

as a solution.
The following lemma explains how the exponent differences of the

Gauss differential equation get transported by the composition under f .
The proof is the same as in [14, Theorem 2(i)] (more details are given
in [13]).

Lemma 4. Let d be the exponent difference of La,b
c;f at x = q. Then:

(1) If q is a root of f(x) with multiplicity m, then d = m · e0.
(2) If q is a root of f(x) − 1 with multiplicity m, then d = m · e1.
(3) If q is a pole of f(x) of order m, then d = m · e∞.

Recall that L is irreducible and of order 2. Let y = 2F1(a, b; c; f)
where f is some rational function. By solving L in terms of y, we mean
finding three rational functions r, r0, and r1 such that

(17) exp
(∫

r
)

· (r0y + r1y
′)

is a solution of L (see [14, Definition 2, parts (ii),(iii)]). A neces-
sary condition for such a solution to exist is that L has the same set
of non-removable singularities as La,b

c;f , and moreover, that the expo-
nent differences match modulo Z (see [14, Lemma 4]). The expression
exp(

∫

r) is usually a radical function, i.e., a function whose rth power
is rational for some integer r.

Consider the operator P2 in (6). Its non-removable singularities are
0, 1, 1/64, 2/3, and ∞, and all these singular points are logarithmic;
on the other hand, the root x = −1/6 of the leading coefficient of P2

is a removable singularity.
Suppose that we choose a, b, c so that (e0, e1, e∞) = (0, 1/3, 0) (this

choice will be explained in Section 2.6.3), and want to solve P2 in terms
of y := 2F1(a, b; c; f). By the discussion above, if p is a logarithmic

point for P2 then it must be a logarithmic point for La,b
c;f and vice versa.

Since x = 0 and x = ∞ are the logarithmic points of La,b
c one sees
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that the union of the set of roots and the set of poles of f must be
exactly {0, 1, 1/64, 2/3,∞}. For each possible degree of f , this leaves
finitely many candidate integer values for n0, n1, n1/64, and n2/3, such
that f is of the form c(x − 0)n0(x − 1)n1(x − 1/64)n1/64(x − 2/3)n2/3

for an unknown constant c. For an exhaustive search, we therefore try
successive potential degrees 2, 3, 4, . . . for f .

The exponent difference of La,b
c;f at x = q is m ·e1 if q is a root of f−1

with multiplicity m. So m · e1 must match (modulo Z) an exponent
difference of P2. Since P2 has only integer exponent differences, and
e1 = 1/3, it follows that 3 divides m and so the numerator of f−1 must
be a cube. Thus, we try various n0, n1, . . . ∈ Z, and for each, we check
if there exists c ∈ C for which the numerator of c(x− 0)n0(x− 1)n1(x−
1/64)n1/64(x−2/3)n2/3−1 is a cube. A computer implementation quickly
finds

n0 = 1, n1 = −2, n2/3 = 1, n1/64 = −1, c = −81/64,

and we get

f =
−81x(x− 2/3)

64(x− 1)2(x− 1/64)
.

Next, we compute a, b, c for which the exponent differences e0, e1, e∞

are 0, 1/3, 0 and find La,b
c . Applying a change of variables produces

La,b
c;f . Then a call to the program equiv [34] provides a map of the form

y 7→ exp(
∫

r)(r0y + r1y
′) from the solutions of La,b

c;f to the solutions of
P2. This way we find a solution of P2 in the form (17).

2.6.3. Simplifying the obtained solution. The question now is how to
make this solution more compact. First of all, the numerator of f−1 is
a cube. Interchanging e1 and e∞ makes the denominator of f a cube.
That makes the expression for f slightly smaller. Now, composition
with x/(x − 1) interchanges 1,∞ while keeping 0 fixed, so we replace
f by f/(f − 1) and obtain a new f ,

f =
27x(2 − 3x)

(1 − 4x)3
,

which corresponds to the new (e0, e1, e∞) = (0, 0, 1/3). Next, we try
to change e0, e1, e∞ by some integers in such a way that the exponent
differences of La,b

c;f not only match those of P2 modulo Z, but are also as
close as possible, because this tends to reduce the size of r0, r1. Surpris-
ingly, one can even match the exponent differences exactly! That allows
r1 to become 0. We get an exact match for (e0, e1, e∞) = (1, 1, 1/3),
corresponding to a = 1/3, b = 2/3, c = 2, and end up with the following
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solution

6

(1 − 4x)(1 − 64x)
· 2F1

(

1/3 2/3
2

∣

∣

∣

∣

∣

27x(2 − 3x)

(1 − 4x)3

)

.

This expression is not unique because we can interchange (e0, e1, e∞),
updating f accordingly. We can also change e0, e1, e∞ by integers (as
long as those integers add up to an even number) but doing that would
make r1 non-zero again. Moreover, there are other exponent differences
that would have solved P2 as well.

The set of (e0, e1, e∞)’s (modulo Z) we should try is given in [33,
Table (I), Section 4]. To make the expression size as small as possible,
the (e0, e1, e∞) that leads to the lowest degree for f should be tried
first. The table shows how the degrees are related to each other; to
minimise the degree, we should check (0, 0, 0) first, and (0, 1/2, 1/3)
last. The first case (0, 0, 0) did not lead to a solution. The second case
we tried was (0, 0, 1/3), and since that led to a solution, we did not
need to try more cases. The table in [33] shows some of the other cases
must also lead to a solution; one sees in the table that (0, 0, 1/3) (and
hence P2) is solvable in terms of (0, 1/2, 1/6) and (0, 1/2, 1/3). We can
also read from the table that if we had used those exponent differences
for our 2F1, then the degree of f would have been 2, respectively 4,
times higher.

A Maple session to perform all operations of this section is given
online at http://algo.inria.fr/chyzak/Rooks/Compute2F1.mpl.

3. Further comments

3.1. Asymptotics. It was pointed out in [16] that general results
from [27] on the asymptotics of diagonal coefficients of multivariate
generating functions imply

(18) an ∼ 9
√

3

40π
· 64n

n
.

Here we show that the same result can be derived in a simpler way
(using univariate, instead of multivariate, singularity analysis), based
on the explicit expression (16).

Indeed, basic singularity analysis [19, 20] shows that, since the dom-
inant singularity of ∂x(Diag(f)) is x = 1/64, with residue

r =
6

(1 − 4
64

)
· 2F1

(

1/3 2/3
2

∣

∣

∣

∣

∣

27
64

(2 − 3
64

)

(1 − 4
64

)3

)

=
32

5
· 2F1

(

1/3 2/3
2

∣

∣

∣

∣

∣

1

)

,

http://algo.inria.fr/chyzak/Rooks/Compute2F1.mpl
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the asymptotic behaviour of the coefficient hn of ∂x(Diag(f)) is hn ∼
r · 64n, and thus an ∼ r

64
· 64n

n
.

The value of r is found using Gauss’s formula

2F1

(

a b
c

∣

∣

∣

∣

∣

1

)

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

and the multiplication formula

Γ(z) · Γ
(

z +
1

m

)

· · · Γ
(

z +
m− 1

m

)

= (2π)(m−1)/2 m
1

2
−mz Γ(mz)

with m = 3 and z = 1. This gives r = 72
√

3/(5π), and proves (18).

3.2. Non-algebraicity and simpler formulas. One may wonder
whether the function Diag(f) is algebraic. This is not the case, and
can be seen in several ways: (i) as a consequence of the asymptotic be-
haviour of the coefficients an (generating series of sequences asymptoti-
cally equivalent to nαρn with α ∈ Z− are necessarily transcendental [18,
Thm D]); (ii) by doing a local analysis of P near its singularities (the
presence of logarithmic terms in a local expansion excludes algebraic-
ity); (iii) by applying Schwarz’s classification [28] of algebraic 2F1’s.

It is also legitimate to seek for an even simpler closed form, not
involving any integration sign. Such a reduction is not possible: if it
were, the algorithm given in [2] should have found it. The sequence (an)
satisfies the third-order recurrence (15), but no second-order recurrence
with polynomial coefficients, for otherwise (15) or a closely related
adjoint recurrence would need to possess a hypergeometric solution,
which is easily sorted out by Petkovšek’s algorithm [26].

3.3. An alternative hypergeometric expression. Using a com-
pletely different method, Frits Beukers [8] independently found that
the diagonal 3D rook path series G(x) satisfies

(19) G′(x) =
1 − x

2(1 + 6x)

(

(1 − 4x)H ′(x) − 4H(x)

)

,

where

H(x) =
1

g
1/4
2

· 2F1

(

1/12 5/12
1

∣

∣

∣

∣

∣

1

J(x)

)

,

with

g2 = (1 − 4x)(1 − 60x+ 120x2 − 64x3),

J(x) =
g3

2

1728(1 − x)2x3(2 − 3x)3(1 − 64x)
.
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The function J(x) is obtained, by a method similar to the one in [7],
as the J-invariant of a family of elliptic curves naturally associated to
the integral interpretation of the diagonal problem.

Of course, once obtained, it is an easy task to check that the new hy-
pergeometric expression coincides with ours: the difference of the two
hypergeometric expressions satisfies a simple linear differential equation
derived from the defining linear differential equation for the hypergeo-
metric 2F1, and it is easily expanded as a Taylor series, showing that
enough first terms are zero, so that the difference is zero. This calcula-
tion is available as Maple code at http://algo.inria.fr/chyzak/Rooks/CompareFormulas.mpl

Interestingly, one can algebraically reduce one expression to the other
by combining only two classical hypergeometric identities:

(a) Gauss’ contiguity relation

(20)
9(1 − x)

2
· 2F1

(

1/3 2/3
1

∣

∣

∣

∣

∣

x

)′

= 2F1

(

1/3 2/3
2

∣

∣

∣

∣

∣

x

)

,

obtained by evaluating at a = 1
3
, b = 2

3
, and c = 1 the more

general contiguous transformation

c(1 − x) · d

dx
2F1

(

a b
c

∣

∣

∣

∣

∣

x

)

=

(c− a)(c − b) · 2F1

(

a b
c+ 1

∣

∣

∣

∣

∣

x

)

+ c(a + b− c) · 2F1

(

a b
c

∣

∣

∣

∣

∣

x

)

,

(b) Goursat’s quartic relation
(21)

2F1

(

1/3 2/3
1

∣

∣

∣

∣

∣

x

)

= 2F1

(

1/12 5/12
1

∣

∣

∣

∣

∣

64x3(1 − x)

(9 − 8x)3

)

·
(

1 − 8x

9

)−1/4

,

obtained by taking α = 1
12

in the identity [21, Eq. (126)] (see
also [37, Eq. (25)]):

2F1

(

4α 4α + 1
3

6α+ 1
2

∣

∣

∣

∣

∣

x

)

= 2F1

(

α α + 1
3

2α + 5
6

∣

∣

∣

∣

∣

64x3(1 − x)

(9 − 8x)3

)

·
(

1 − 8x

9

)3α

.

The detailed reduction is as follows: Equations (20) and (21) show
that

2F1

(

1/3 2/3
2

∣

∣

∣

∣

∣

x

)

=
9(1 − x)

2
·
(

2F1

(

1/12 5/12
1

∣

∣

∣

∣

∣

ψ(x)

)

· χ(x)

)′

,

http://algo.inria.fr/chyzak/Rooks/CompareFormulas.mpl
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where ψ(x) = 64x3(1 − x)/(9 − 8x)3 and χ(x) =
(

1 − 8x
9

)−1/4
. By

substitution, the latter equality implies

2F1

(

1/3 2/3
2

∣

∣

∣

∣

∣

ϕ(x)

)

=

9

2
· 1 − ϕ(x)

ϕ′(x)
·
(

2F1

(

1/12 5/12
1

∣

∣

∣

∣

∣

ψ(ϕ(x))

)

· χ(ϕ(x))

)′

,

with ϕ(x) = 27x(2 − 3x)/(1 − 4x)3. The right-hand side term rewrites

(1 − 64x)(1 − x)(1 − 4x)

12(1 + 6x)
·
(

2F1

(

1/12 5/12
1

∣

∣

∣

∣

∣

1

J(x)

)

·
(

g2

(1 − 4x)4

)−1/4)′

,

and this, in combination with equation (16), finally implies equation (19).

3.4. The case of 3D queens. A closely related problem is to find the
generating function for the diagonal sequence for 3D queen paths. This
is Sequence A143734 in Sloane’s encyclopedia http://oeis.org/A143734,
whose first terms read

1, 13, 638, 41476, 3015296, 232878412, 18691183682, 1540840801552, . . .

Computationally, it turns out that this problem is more difficult
than the one on 3D rooks. By Lemma 1, it boils down to finding the
complete diagonal Q(x) of the rational function
(

1 − s

1 − s
− t

1 − t
− x

1 − x
− st

1 − st
− tx

1 − tx
− xs

1 − xs
− stx

1 − stx

)−1

.

We empirically found (using guessing routines based on Hermite–
Padé approximants) thatQ(x) satisfies a differential equation LQ(x, ∂x)
of order 6 and polynomial coefficients (in x) of degree at most 71. The
corresponding sequence satisfies a recurrence of order 14 with polyno-
mial coefficients (in n) of degree at most 52. Moreover, it is very likely
that these are the minimal-order equations. They are available online
at http://algo.inria.fr/chyzak/Rooks/QueensRecEq.mpl for the
recurrence and http://algo.inria.fr/chyzak/Rooks/QueensDiffEq.mpl

for the differential equation.
The conjectured equations already have a large size, so that proving

their correctness by the creative-telescoping approach becomes a chal-
lenge; we have not yet succeeded in proving this in a fully algorithmic
fashion.

However, we are convinced that our guessed equations are correct:
they pass all the various check tests described in [10]. In addition, the

http://oeis.org/A143734
http://algo.inria.fr/chyzak/Rooks/QueensRecEq.mpl
http://algo.inria.fr/chyzak/Rooks/QueensDiffEq.mpl


EXPLICIT FORMULA FOR DIAGONAL 3D ROOK PATHS 19

degree-71 leading coefficient of the differential equation factors as

x2 · (5x− 4) · (x+ 1) · (x− 1)6 · (36x2 − 40x+ 9) ·
(512x4 − 661x3 + 84x2 + 95x− 1) ·

(14063x6 − 15940x5 − 5918x4 + 12063x3 − 4118x2 + 575x− 40) ·P (x)

where P (x) ∈ Q[x] is irreducible of degree 49.
Note the known fact [27, 16] that the nth coefficient ofQ(x) is asymp-

totically equal to κc−3n/n, for some κ ∈ R and c ≈ 0.2185. More
specifically, c is the smallest positive real root of the equation

1 −
(

3

1

)

x

x− 1
−
(

3

2

)

x2

1 − x2
−
(

3

3

)

x3

1 − x3
= 0,

which is consistent with the presence of the factor 512x4 − 661x3 +
84x2 + 95x − 1 having c3 ≈ 0.0104 as a root (in fact, its root that is
closest to zero).

The sixth-order differential operator LQ(x, ∂x) can be factored as

LQ = L4 ·R(a)
1 ·R(b)

1 , where L4 has order 4, and both R
(a)
1 and R

(b)
1 have

order 1. By analogy with our result on rook paths, a natural question
is whether L4 is solvable in terms of indefinite integrals, algebraic func-
tions, and 2F1’s expressions. If it were, then it would be solvable in
terms of solutions of second-order equations, and by [29] at least one
of the following should then be true (see [35, Sections 1.1 and 1.2] for
definitions and details):

(1) L4 is reducible,
(2) L4 is gauge equivalent (under Maple’s DEtools[Homomorphisms])

to the third symmetric power of a second-order operator,
(3) L4 is gauge equivalent to the symmetric product of two second-

order operators.

Regarding option (1), the operator does not factor (DFactor in Maple).
Regarding options (2) and (3), [35, Section 3] shows how to find order
reductions of such type (if they exist). We found that no such reduction
exists. Option (2) can be ruled out quickly by local data (if a third
symmetric power has a logarithmic solution at x = p, then the cube of
a logarithm should appear as well). For option (3), we computed the
eigenring of the second exterior power of L4. To conclude, the fourth-
order factor L4 is not solvable (in the sense of Singer’s definition [29]) in
terms of solutions of second-order equations; in particular, this means
that, in this definition, there is no expression in terms of 2F1 functions
for the generating function Q(x) of diagonal 3D queen paths.
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It appears that L4 has no 4F3 type solution either, but we have not
obtained a proof of this fact yet.

3.5. Faster but heuristic approach to getting the certificates.

As already mentioned in the introduction, we have chosen in Section 2
to confine ourselves to calculations that follow an algorithmic approach,
that is, that would provably (theoretically) succeed on any other ra-
tional input. Beside this, heuristics are available to cleverly guess a
solution to the key equation, including certificates, and often lead to
faster computations when they succeed, although they can fail in the-
ory and sometimes do in practice. One of the most advanced strategies
in this spirit is due to Koutschan [23]. Note that by rational-function
normalisation, verifying the key equation a posteriori proves the ob-
tained results.

We have implemented such a strategy in the rational case, and we
could get a solution (P, S ′, T ′), where P is the same operator as in
Section 2.4.1, but for other certificates S ′ and T ′. In effect, this heuris-
tically solves a partial differential equation for (some of) its rational
solutions. The calculation is 4 times faster than in the algorithmic way.
Interestingly enough, the denominators of S ′ and T ′ only involve q1,
and not its discriminant disct(q1).

Acknowledgements. We wish to thank the referee for his quick and
serious job and for his constructive comments on the manuscript.
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Appendix A. Details of calculations of the iterated
creative telescoping for the 3D rook

generating series

In this appendix, the calculation sketched in §2.4.2 is explained in
more detail, and we provide explicit values of intermediate computa-
tions. We start by introducing the notions needed for our description.

http://www.math.fsu.edu/~hoeij/files/equiv
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Differential operators. Whereas the sketch of the algorithm was given
with references to the function F to be integrated and its derivatives,
here we prefer presenting the calculations as they are done in actual
implementations: a primal role is played by differential operators that
represent linear combinations of derivatives of a given function.

As certain operators map the function under consideration to zero,
operators have to be viewed up to addition of such annihilating oper-
ators. This explains the use of congruences in the calculations below,
denoted L1 ≡ L2 mod I, when L1(F ) = L2(F ) and I is the (left) ideal
of all operators that annihilate F .

Representing a D-finite function. Recall from [30, 25] the definition
that a D-finite function of variables u and v is a function F for which
there exists a finite maximal set of derivatives ∂a

u∂
b
v(F ) that are linearly

independent over Q(u, v). The natural question is how a function is
algorithmically recognised and represented as D-finite.

The best algorithmic answer would be in terms of non-commutative
Gröbner bases (and ideals of Hilbert dimension 0) [12], but here, to keep
the sophistication to a minimum, we shall use the alternate definition
that a function is D-finite if there are non-zero operators A(u, v, ∂u)
and B(u, v, ∂v) that annihilate it, one for each derivative. Follow-
ing [12], the pair (A,B) of annihilating operators will be called a rect-
angular system.

Rational solutions of parametrised systems of linear differential equa-
tions. Chyzak’s algorithm relies on an algorithm that, given matrices
A ∈ Mn(K(t)) and B ∈ Mn×d(K(t)) for some field K that depends on
the application, solves

(22)
∂y

∂t
+ Ay = Be

for y ∈ K(t)n and e ∈ Kd. In our uses, the field K is a rational
function field in the other variables of the problem. We do not describe
this algorithm here, and refer the reader for instance to [1] (and the
description of its use in [11]).

For convenience, let us recall the notation of §2.4.1. Let q be the
denominator of F , then q = stq1 with q1 = −st + 2s2t + 2t2 + 2xs −
3st2 − 3xt − 3xs2 + 4xst an irreducible polynomial of Q[x, s, t]. Let
disct(q1) = (x−s)(16xs2 −4s3 −24xs+4s2 +9x−s) be the discriminant
of q1 with respect to t.
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A.1. Stage A: First iteration of Chyzak’s algorithm. Stage A
in §2.4.2 looks for operators P (α) ∈ Q(x, s)〈∂x, ∂s〉 (according to the
ansatz (10)) and rational functions φ(α) ∈ Q(x, s, t) such that P (α)(F ) =
∂
∂t

(φ(α)F ) (cf. (11)). A property of the left ideal 〈P (α)〉 thus obtained
in Q(x, s)〈∂x, ∂s〉 is that it contains a rectangular system.

Ansatz with r = 1. We first look for operators P (α) of total degree r =
1. Let η0,0, η1,0, η0,1 ∈ Q(x, s) be unknowns such that P = η0,0 +
η1,0∂x+η0,1∂s, and let φ ∈ Q(x, s, t) be another unknown. The equation
P (F ) = ∂

∂t
(φF ) rewrites

η0,0F + η0,1
∂F

∂s
+ η1,0

∂F

∂x
=
∂φ

∂t
F + φ

∂F

∂t
,

which is an equation in φ and η0,0, η0,1, η1,0, of the form (22) with K =
Q(x, s). All solutions are proportional to the one given by
(23)






































η0,0 = 2(s− 1)(3s2 − 6s+ 2),

η1,0 = 6xs3 − 2s3 − 10xs2 + s2 − 4x2s + 10xs+ 3x2 − 4x,

η0,1 = 2s(3s− 2)(s− 1)2,

φ =
−t(s − 1)(−6xs2 + 6s2t− s2 + 11xs− 9st− 4x− xt + 4t)

t− x
.

Set P1 to the operator P obtained for these specific values. The ideal
generated by it obviously does not contain any rectangular system in
Q(x, s)〈∂x, ∂s〉.
Ansatz with r = 2. Since all the monomials ∂i

s can be reduced by P1, we
set r = 2 and look for P = η0+η1∂x+η2∂

2
x, with η0, η1, η2 ∈ Q(x, s), and

φ ∈ Q(x, s, t) such that P (F ) = ∂
∂t

(φF ). (This ansatz is not strictly
of the form (10) that would involve ∂s; this will require additional
manipulations when obtaining a rectangular system.) The equation
on F becomes

η0F + η1
∂F

∂x
+ η2

∂2F

∂x2
=
∂φ

∂t
F + φ

∂F

∂t
,

which is a parametrised equation in φ and η0, η1, η2, with K = Q(x, s).
All solutions are proportional to the one given by:

(24)







































η0 = 0,

η1 = −2(−19s2 − 9x+ 13s3 + 7s− 16xs2 + 24xs),

η2 = disct(q1),

φ =
−t(3s − 2)(s− 1)(2s2 − 4st− s+ 3t)(s− t)2

(t− x)q1
,
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and we call P2 the operator P obtained for these specific values. The
ideal 〈P1, P2〉 now contains a rectangular system: eliminating ∂x from
P1 and P2 results in an operator P ′

2 = η′
0 +η′

1∂s +η′
2∂

2
s , with coefficients

of respective degrees (4, 9), (4, 10), and (4, 11) in (x, s). This ends the
calculation.

The Maple code to compute P ′
2 can be obtained at http://algo.inria.fr/chyzak/Rooks/Rec

A.2. Stage B: Second iteration of Chyzak’s algorithm. To per-
form Stage B in §2.4.2, we now work modulo the ideal I = 〈P1, P2〉 of
Q(x, s)〈∂x, ∂s〉. The vector space V = Q(x, s)〈∂x, ∂s〉/I is 2-dimensional
over Q(x, s), with basis (1 + I, ∂x + I). In other words, we consider a

generic solution F̂ of P1 and P2, and represent it by 1 + I.
To simplify the notation in what follows, we normalise the operators

into the form P1/(2s(3s−2)(s−1)2) = ∂s−p1∂x−p0 and P2/disct(q1) =
∂2

x − q∂x, for coefficients p0, p1, q ∈ Q(x, s).
The algorithm now starts from ansatz (8) for P , but with the form (9)

for S, in order to find a relation of the form (12). For increasing values
of d, it looks for an operator P =

∑d
i=0 ηi∂

i
x, such that P ≡ ∂sQ mod I,

with ηi ∈ Q(x), φ0, φ1 ∈ Q(x, s), and Q = φ0 + φ1∂x.
There is no solution for d < 3, and we give details for d = 3 only.

First, the algorithm simplifies (7). Modulo I, we have ∂2
x ≡ q∂x, and

therefore

∂3
x ≡ ∂q

∂x
∂x + q∂2

x ≡
(

∂q

∂x
+ q2

)

∂x.

Additionally, ∂s ≡ p0 + p1∂x, so

∂x∂s ≡ ∂p0

∂x
+

(

p0 +
∂p1

∂x

)

∂x + p1∂
2
x ≡ ∂p0

∂x
+

(

p0 +
∂p1

∂x
+ p1q

)

∂x.

As to the right-hand side:

∂sQ =
∂φ0

∂s
+ φ0∂s +

∂φ1

∂s
∂x + φ1∂s∂x

≡ ∂φ0

∂s
+(p0 + p1∂x)φ0 +

∂φ1

∂s
∂x +φ1

(

∂p0

∂x
+

(

p0 +
∂p1

∂x
+ p1q

)

∂x

)

.

Since P ≡ η0 +
(

η1 + qη2 +
(

∂q
∂x

+ q2
)

η3

)

∂x, the congruence P ≡ ∂sQ

mod I expressed in the basis (1 + I, ∂x + I) is equivalent to the differ-
ential system

http://algo.inria.fr/chyzak/Rooks/RectangularSystem.mpl
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(25)






















∂φ0

∂s
= −p0φ0 − ∂p0

∂x
φ1 + η0,

∂φ1

∂s
= −p1φ0 −

(

p0 +
∂p1

∂x
+ p1q

)

φ1 + η1 + qη2 +

(

∂q

∂x
+ q2

)

η3.

Solving this parametrised system of linear differential equations in Q(x)
results in a 1-dimensional vector space, with basis given by the solution

(26)



































































η0 = 0,

η1 = 4(576x3 − 801x2 − 108x+ 74),

η2 = 4608x4 + 813x2 − 6372x3 + 514x− 4,

η3 = x(x− 1)(64x− 1)(3x− 2)(6x+ 1),

φ0 =
(53 + 108x)(3s− 2)s

s− 1
,

φ1 =
γ

2(s− 1)2disct(q1)
,

where γ is an irreducible polynomial in Q[x, s] of degree (5, 7) in (x, s).
The Maple code to compute γ can be obtained at http://algo.inria.fr/chyzak/Rooks/Seco

A.3. Stage C: Reconstruction. We finally derive an explicit identity
of the form (13) in Stage C in §2.4.2 and obtain the corresponding
values for S and T given by (14), thus leading to the solution (P, S, T )
of (3).

The previous calculation of P1 and P2 can be reinterpreted as follows:
Introducing the left ideal J that annihilates F , that is, the ideal J
generated by

F∂x − dF

dx
, F∂s − dF

ds
, F∂t − dF

dt
,

we have obtained the congruences

P1 ≡ ∂tψ1 mod J and P2 ≡ ∂tψ2 mod J,

for rational functions ψ1 and ψ2 that are the functions φ in (23) and (24),
respectively. Additionally, P ≡ ∂sQ mod I for P = η0 + η1∂x + η2∂

2
x

and Q = φ0 + φ1∂x described by (26), and I = 〈P1, P2〉.
To express P − ∂sQ ∈ 〈P1, P2〉 more explicitly, we look for A1, A2 ∈

Q(x, s)〈∂x, ∂s〉 such that P − ∂sQ = A1P1 + A2P2. This division is
made algorithmic by observing that (P1, P2) is a Gröbner basis, and
by performing a reduction by this Gröbner basis. In simple terms, the
calculation is as follows: We first use P1 to eliminate ∂s from P − ∂sQ,

http://algo.inria.fr/chyzak/Rooks/SecondIteration.mpl
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then use P2 to divide the remainder. Collecting the quotients, we then
find:







































A1 = −108x+ 53

2(s− 1)3
+

γ1

4s(3s− 2)(s− 1)4disct(q1)
∂x,

A2 =
γ2

4s(3s− 2)(s− 1)4disct(q1)2
+

x(x− 1)(64x− 1)(3x− 2)(6x+ 1)

disct(q1)
∂x,

with γ1, γ2 irreducible polynomials in Q[x, s] of respective degrees (5, 7)
and (7, 10) in (x, s).

Since P1(F ) = ∂t(ψ1F ) and P2(F ) = ∂t(ψ2F ), we get the equality
(P−∂sQ)(F ) = (A1∂tψ1 +A2∂tψ2)(F ). Since A1 and A2 do not depend
on t, we get P (F ) = (∂sQ+ ∂t(A1ψ1 + A2ψ2))(F ).

Let S = Q(F ) and T = (A1ψ1 + A2ψ2)(F ). Then S, T ∈ Q(x, s, t)
and P (F ) = ∂S

∂s
+ ∂T

∂t
. It turns out that S and T are of the very special

form

S =
(s− t)U

2stq2
1disct(q1)

, T =
(s− t)V

2s2q3
1disct(q1)2

,

with U, V irreducible polynomials in Q[x, s, t] of respective degrees
(5, 8, 3) and (8, 14, 5) in (x, s, t).

The Maple code for this reconstruction of S and T can be obtained
at http://algo.inria.fr/chyzak/Rooks/Reconstruction.mpl.
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