research

Explicit formula for the generating series of diagonal 3D rook paths

Abstract

Let ana_n denote the number of ways in which a chess rook can move from a corner cell to the opposite corner cell of an n×n×nn \times n \times n three-dimensional chessboard, assuming that the piece moves closer to the goal cell at each step. We describe the computer-driven \emph{discovery and proof} of the fact that the generating series G(x)=n0anxnG(x)= \sum_{n \geq 0} a_n x^n admits the following explicit expression in terms of a Gaussian hypergeometric function: G(x) = 1 + 6 \cdot \int_0^x \frac{\,\pFq21{1/3}{2/3}{2} {\frac{27 w(2-3w)}{(1-4w)^3}}}{(1-4w)(1-64w)} \, dw.Comment: To appear in "S\'eminaire Lotharingien de Combinatoire

    Similar works